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A review of two different approaches for the analysis of 
growth data using longitudinal mixed linear models: 

Comparing hierarchical linear regression (ML3, HLM) 
and repeated measures designs with 

structured covariance matrices (BMDP5V) 

Rien van der Leeden 1), Karen  Vrijburg 1) & Jan de Leeuw ~) 

1~ Department of Psychometrics and Research Methodology, University of Leiden, 
Postbus 9555, 2300 RB Leiden,The Netherlands 

2)UCLA Department of Statistics, University of California at Los Angeles, USA 

Abstract: In this paper we review two approaches for 
the analysis of growth data by means of longitudinal 
mixed linear models. In these models the individual 
growth parameters, (most often) specifying polynomial 
growth curves, may vary randomly across individuals. 
This variation may in turn be accounted for by explain- 
ing variables. 
The first approach we discuss, is a type of multilevel 
model in which growth data are treated as having a hi- 
erarchical slructure: measurements are 'nested' within 
individuals. The second is a version of a MANOVA 
repeated measures model employing a structured 
(error)covariance matrix. Of both approaches we ex- 
amine the underlying statistical models and their inter- 
relations. Apart from this theoretical comparison we 
review software by which they can be applied for real 
data analysis: two multilevel programs, ML3 and 
HLM, and one repeated measures program, BMDP5V. 
The programs are described and discussed with re- 
spect to several more general criteria, such as data 
setup and handling, implemented numerical routines 
and user friendliness, and, in particular, with respect 
to their application in longitudinal situations, i.e. their 
capabilities for the analysis of data on growth. Two 
data sets are used to compare the results of analyses 
performed by the three programs. 
Although both ways of specifying growth curve models 
show some shortcomings, each appears to be a fruitful 

method to handle growth data, theoretically, as well as 
in a practical sense. For the most part, shortcomings 
are induced by the accompanying software, developed 
within different scientific traditions. Applied to com- 
parable problems, the three programs produce 
equivalent results. 
Keywords: Multilevel analysis, Mixed linear models, 
MANOVA, Repeated mesaures, Growth curve models, 
Structured covariance matrices. 
(SSNinCSDA 20, 583-605 (1996)) 
Received: March 1995 Revised: February 1996 

I. Introduct ion  
In social science one frequently encounters re- 
search situations in which individuals are meas- 
ured repeatedly over a period of  time. The main 
goal of  such longitudinal research can be consid- 
ered as the assesment of  change. Often, in social 
science research, this change concerns a kind of 
growth rate, e.g. biological, learning, etc. In that 
case, we could call the measurements 'growth 
data'. 
Growth data, more specifically, can be considerd 
as measurements on one variable for the same 
(groups of) individuals on a number of  consecu- 

NOTE: Since this review was written, both multilevel programs have been updated. ML3 is now MLn and is 
able to fit multilevel models to data with up to 15 levels (Rasbash, Yang, Woodhouse & Goldstein, 1995). HLM is 
now combining software for the analysis of models with two or three levels. 
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five points in time. In this paper we will be con- 
cerned with the analysis of individual growth as 
well as with the analysis of mean growth for a 
group of subjects. 

Because data on growth reflect a developmental 
process as a function of time, a suitable method 
to model them is describing the expected values 
of the observations as functions of time. It has 
become very common to use polynomial func- 
tions for this purpose, and to present the results 
in the form of (growth) curves. 

Generally, the analysis of longitudinal data is 
more complicated than that of cross sectional 
data, since repeated measurements for the same 
subjects are likely to be serially dependent. A 
useful property for growth curve models could 
therefore be the possibility of handling more 
complex, e.g. autoregressive, within-subject co- 
variance structures. 

1.1 Models for growth data 
Many authors have considered the analysis of 
growth data from several points of view and a 
variety o f  techniques for fitting polynomial 
growth curves has been proposed. An overview of 
these developments, as well as a number of useful 
references, is given by Visser (1982) and Van der 
Leeden (1990). All the techniques are variations 
of a general linear model. Nevertheless, two ma- 
jor approaches concerning models for growth 
data can be distinguished. On the one hand, a 
(more traditional) class of models can be ob- 
served based on the MANOVA repeated meas- 
ures design. In that case the consecutive meas- 
ures on the growth variable are treated as sepa- 
rate dependent variables corresponding with the 
different timepoints. The work of Potthoff and 
Roy (1964) has inspired much research on this 
class of models. Some references include Rao 
(1959, 1965, 1966, 1967), Khatri (1966), Grizzle 
and Allen (1969), Lee and Geiser (1972, 1975), 
Timm (1980) and Geisser (1970, 1980). 

On the other hand there is a class of growth 
curve models emerging within the framework of 
multilevel analysis, which technique is also 
known as hierarchical linear regression analysis. 
In the application of multilevel models, data are 
viewed as having a hierarchical structure. Longi- 

tudinal data can be viewed as such: the meas- 
urements at multiple timepoints are 'nested' 
within the individuals. In longitudinal multilevel 
models, each individual is allowed to have 
his/her own growth curve, whereas the individual 
growth parameters vary across individuals. For 
more details concerning the multilevel treatment 
of longitudinal data we refer to Laird and Ware 
(1982), Goldstein (1986a, 1986b, 1995), Bryk 
and Raudenbush (1987, 1989) and Beck (1989). 
Ware (1985) gives an overview of linear models 
for longitudinal data. 

Longitudinal multilevel models can be consid- 
ered very appropriate for the modeling of growth 
data, conceptually as well as statistically. It can 
be shown that they incorporate two important 
features of real growth (cf. Bryk and Rauden- 
bush, 1987; Prosser, Rasbash and Goldstein, 
1990): observations on the different timepoints 
are correlated and the variance of the observa- 
tions is a function of time (i.e. the between- 
subject variation is a function of time). Longitu- 
dinal multilevel models allow for the description 
of the mean growth trajectory and for the estima- 
tion of individual variation around this mean. If 
grouping variables are involved (e.g. sex group), 
these can be used as explanatory variables to ac- 
count for the between-subject variation of indi- 
vidual growth parameters. In longitudinal multi- 
level models, differences in growth rate between 
groups of individuals will therefore be revealed 
not only in different mean levels of growth rate. 
Moreover, differences between groups will be 
modelled as different distributions of growth pa- 
rameters within each group. Further, longitudinal 
multilevel models can treat unbalancedness due 
to missing observations very well, since it is not 
necessary for each individual to have the same 
number of measurements. 

Compared to longitudinal multilevel models, re- 
peated measures models appear to be less attrac- 
tive for the analysis of growth data. Models of 
this kind are mostly concentrated upon 
(MANOVA-like) between-group designs and 
thus upon the estimation of (fixed) group effects. 
Hence, they are not as flexible as one should 
wish, concerning the modeling of random varia- 
tion of individual growth parameters around the 
mean growth trajectory. Generally the results 
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consist of mean growth curves estimated for 
specified groups, found as deviations from the 
mean growth curve for the whole sample. In the 
ultimate case, groups may be reduced to indi- 
viduals, and random error components could be 
interpreted as the most basic individual variation. 
But since estimation procedures for repeated 
measures model are generally not suited for N- I  
groups and assumptions for (in that case) within- 
subject (co)variances are fairly simple and these 
(co)variances can not be modelled, this does not 
provide an appealing approach. 

However, recent developments include repeated 
measures models with structured covariance ma- 
trices, which are suited to handle incomplete data 
too. Jennrich and Schluchter (1986) present a 
very general model formulated at the level of the 
individual response vectors. Their model may be 
considered the most advanced repeated measures 
model as it includes all other previously sug- 
gested approaches as special cases, such as uni- 
variate mixed-model ANOVA and (versions of) 
MANOVA (for details see Jennrich and Schlu- 
chter, 1986). In the model of Jennrich and Schlu- 
chter, the within-subject (co)variances can be 
modeled as arbitrary functions of a set of un- 
known (co)variance parameters. The mean 
structure is specified by a set of regression pa- 
rameters defined by a (fixed) between-subject 
design matrix. The general parametrization of 
the within-subject covariance matrix makes it 
possible to fit a numer of different structures, 
among which random effects and time-series 
structures are the most interesting for the analy- 
sis of growth data. 

1.2 Purpose of  the paper  

In this paper we will review both approaches for 
the analysis of growth data described above. At 
first, we will examine the underlying statistical 
models and their interrelations. Although they 
are originating from different fields of applica- 
tion, their elementary concepts are basically 
alike. Secondly, we will give a review and com- 
parison of several computer programs with which 
these models can be applied for data analysis. 
Concerning longitudinal multilevel models we 
will discuss 1~K,3 and HLM. ML3 is software for 
two or three level analysis, written by Prosser, 

Rabash and Goidstein. FILM is a program for two 
level analysis written by Bryk, Raudenbush and 
Congdon. A third program we will discuss is 
BMDPSV, designed to fit repeated measures 
models with structured covariance matrices and 
written by Jennrich and Schluchter. 

We will focuss our discussion upon models in 
which the individual growth parameters may 
vary randomly across individuals and in which 
this variation may be, partially, explained by one 
or more variables at the subject level. Models of 
that kind go under various names, such as 'ran- 
dom coefficient regression models', 'longitudinal 
random effects models', etc. Because it can be 
shown that these models can be split up into a 
random part and a fixed part (cf. Bryk and 
Raudenbush, 1987) we prefer the general term 
'longitudinal mixed linear models'. 

It should be noted that the class of 'generalized 
linear models' (GLMs) (see e.g. McCullagh and 
Nelder, 1989) could provide a common theoreti- 
cal framework to compare the two longitidinal 
data analysis approaches discussed here. Zeger, 
Liang and Albert (1988), for instance, study ex- 
tensions to the generalized linear model for the 
analysis of repeated measures data. They discuss 
a 'mixed generalized linear model' of which the 
longitudinal multilevel model (with two-levels) 
and the generalized MANOVA repeated meas- 
ures model of Jennrich and Schluchter are special 
cases.  

The reason for not choosing this perspective is a 
practical one. GLMs are usually fitted using the 
GLIM package (Francis, Green and Payne, 
1993), which has been designed as an interactive 
'tool kit' for statistical modeling. With GLIM, 
'longitudinal mixed generalized linear models' 
should be developed (programmed) as 'macros'. 
As a result, the GLIM software is of a complete 
different nature than the more or less 'tailored' 
software discussed in this paper, and less suited 
for a comparison. 

The comparison of the three programs we discuss 
here will be limited in the following way: 

(1) Not all programs could be run on the same 
computer system or in similar computer and 
user environments. At the time of writing this 
paper, ML3 and HLM were available as MS- 
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DOS applications and ran on a 80286-based 
PC, but BMDP5V was run on an AMDAHL 
5870 mainframe; 

(2) our discussion will be focussed on those fea- 
tures of ML3, HLM and BMDP5V relevant 
for the modeling of growth data. A more 
complete discussion and comparison of both 
multilevel programs is given in Kreft, De 
l.aeuw and Van der Leeden (1994). BMDP5V 
is extensively discussed in Dixon (1988). 

II. Comparison of models 
Individual growth can often be modeled as a 
polynomial function of time. Suppose a subject j 
is measured on some response variable Y on T 
consecutive occasions, indicated by i. Then, the 
basic model to fit these responses with a poly- 
nomial growth curve looks like 

Yi j"  130j + 131j tij + 132j t2 ,ij + "" + eij" (2.1) 

Using more convenient matrix notation, model 
(2.1) is written as 

yj - TI3j + e j ,  (2.2) 

where yj is the (T x 1) response vector containing 
the repeated measurements for subject j, T is a 
(T x r, r < T) matrix of known constants, 13j_ is a 
(r x 1) vector of individual parameters specitying 
the shape of the growth curve for person j and ej 
is a (T x 1) vector of random error components. 
The matrix T can be defined as 

T = .  

• 1 t j  t2~ . . .  

1 t2 t 2 . . .  

. o ,  

1 tT  t 2 . . .  

T - I "  

t l 
T - I  

t 2 

T-I 
t T 

(2.3) 

Since T is of order (T x r, r < T), the degree of 
the polynomial fitted for person j is r-1, and T-1 
at most. Note that in this formulation, it is not 
necessary for each individual to have T meas- 
urements. Matrix T may contain a set of poly- 

nomial vectors (see e.g. De Lury, 1950), or it 
may contain an explanatory variable, as well as 
powers of that variable, corresponding to the T 
occasions, such as 'weight' or 'age'. 

Model (2.2) is well known in the literature. It can 
be considered as a version of the polynomial re- 
gression model with the special feature that the 
observations, i.e. the repeated measurements 
contained by yj, are not indepently distributed. 
The problem of estimating ~ j can, for instance, 
be solved using generalized least squares (cf. 
Rao, 1973; Timm, 1975; Visser, 1982). 
In the sequel we will take this model for individ- 
ual growth as a common basis to compare the 
formulation of longitudinal mixed linear models 
within a multilevel framework and within a gen- 
eralized MANOVA repeated measures design. In 
this kind of models, the individual growth pa- 
rameters vary randomly across a group of sub- 
jects and this variation may be accounted for by 
variables on the group level. 

2.1 Longitudinal mixed linear models in a 
multilevel framework 

Multilevel models are designed for the analysis 
of data with hierarchical structure. The term 
'multilevel' points out that we study nested mem- 
bership relations among the units of observation. 
Models for the analysis of hierarchical data and 
their corresponding estimation procedures have 
been extensively discussed in the literature. 
Among others we mention Goldstein (1986a; 
1995), Raudenbush (1988), Bock (1989), Bryk 
and Raudenbush (1992) and Longford (1993). 
Usually, in multilevel model building, individu- 
als are considered as the lowest (level 1) level 
units. For instance, students are members of 
classes, and classes (level 2) are nested within 
schools. Growth data can be interpreted as hav- 
ing a hierarchical structure too. Data from indi- 
viduals that are measured at a number of con- 
secutive points in time can be interpreted as 
having a two-level structure: individuals are 
considered as level 2 units and observations as 
level 1 units, that is, measurements are nested 
within individuals. In that way, a longitudinal 
mixed linear model is easily formulated within a 
multilevel framework. Equation (2.2) serves as 
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the within-subject (level 1) model for person j 
(which is a level 2 unit). Clearly, each person has 
its own set of growth parameters, i.e. each per- 
son's growth curve is unique. The variation of the 
individual growth parameters across the total 
group is modeled by the between-subject (level 2) 
model (2.4b). H e n c e ,  the complete two-level 
model for growth data is given by 

yj - T[3j + ej ,  (2.4a) 

[3j - Z T + uj.  (2.4b) 

In equation (2.4b), Z is a (r x q) between-subject 
design matrix with known, fixed elements, T is a 
(q x 1) vector of fixed coefficients and uj is a (r x 
1) vector of random error components.-The be- 
tween-subject model (2.4b) is formulated in a 
general way. For instance, if Z - I, we have a 
model of simple variation in which T is a vector 
containing parameters indicating the mean 
growth curve over all individuals, whereas the 
elements of u.- denote the departures from this 

J mean curve for each individual j. More elabo- 
rated models emerge if Z contains dummy vari- 
ables coding subgroups of individuals and/or 
other explanatory variables that could account for 
the variation of the ~j's. In that way it is possible 
to study the variability of the growth curve ccef- 
ficients as a function of the differences between 
the individuals on some characteristic that re- 
mains fixed across occasions (e.g. sex). Another 
extension to the model would be to include time 
varying covadates to T at level 1. 

The within- and between-subject models can be 
combined into one single equation model that is 
given by 

yj ffi TZ T + Tuj + ej .  (2.5) 

Usually it is assumed that the elements of ej are 
independently distributed as ej ~ N(0, o~I), that 
the level 2 random terms in uj are distributed as 

~ ~ N(0, f~), and that the level 1 random terms, 
e elements of e j, are distributed independently 

from the level 2 random terms in uj. 

In the combined model (2.5) the term TZT can be 
called the fixed part and the term Tuj + ej the 
random part. This explains why we can view the 

multilevel (longitudinal) model as a 'mixed' 
model. Some useful references concerning the 
multilevel treatment of longitudinal data can be 
found in section 1. 
The variance of the random part, i.e. the 
(co)variances among the elements of y. that are J 
not accounted for by the fixed part, is given by 

Var (Tuj + ej) - Var (yjITZT) - 

gj - TROT' + o2I .  (2.6) 

The assumptions described above, especially that 
ej - N(0, o2I), lead to a relatively simple covari- 
ance structure on the first (individual) level: the 
error terms are equal and uncorrelated across the 
timepoints. Although it is possible to formulate a 
more general model incorporating a complex 
level 1 covaxiance structure, Bryk and Rauden- 
busch (1987) argue that this simple structure is 
sufficient for most longitudinal applications with 
a limited number of timepoints. 

2.2 Longitudinal mixed linear models in a 
MANOVA repeated measures context 

There exists a huge amount of literature concern- 
ing MANOVA and MANOVA repeated meas- 
ures models. They are discussed extensively e.g. 
in Kirk (1982) in an experimental framework, 
and in many textbooks on multivariate data 
analysis, such as Timm (1975). Relevant for our 
present discussion is the following. Typically, 
MANOVA models are focussed upon the be- 
tween-group~subject side of the analysis. The to- 
tal variance to be explained in the dependent 
variables, is accounted for by differences in group 
membership as good as possible. Main effects, as 
well as interaction effects are estimated by look- 
ing at differences between the overall mean and 
the group means. Usually, this takes place under 
fairly simple assumptions for the within- 
group~subject covariances. 
MANOVA models therefore typically emphasize 
the fixed part of the modeling. An 'explaining' 
structure of the means is estimated and the 
within-group~subject covariances are considered 
as random error, that is, they are the final part of 
the variance in the dependent variables that can 
not be explained by group membership. 
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In repeated measures applications the fixed part 
of the model is expanded. To fit polynomial 
growth curves of a certain degree, the set of ex- 
planatory variables, first indicating group mem- 
bership alone, is supplemented with within- 
subject variables (and powers of that variables) 
corresponding to the different timepoints, such as 
'age'. On the individual level, we can write for 
such a model 

yj - X15 + vj. (2.7) 

Again, y.. contains the T repeated measurements 
• J for a single subject j, X is a known (T x q) design 

matrix and 1~ is a (q x 1) vector of regression 
coefficients The v.. are vectors of random error • . J 

components. Since the repeated measures are 
likely to be dependent, it is assumed that the v.. 
are independently distributed as N(0,~j). Thd 
columns of X correspond to the different terms in 
the model, i.e. the elements of 15. Normally the 
first column is a vector of ones, neccesary to 
specify the intercept. Further columns code 
(between-subjec0 grouping variables and 
(within-subject) explaining variables (and powers 
of that variables). The fixed parameters in 15 can 
be combined so that we find the parameters of a 
mean growth curve for the whole group and of 
separate (mean) curves for the subgroups, found 
as deviations from this mean curve. 

Clearly, model (2.7) is conceptually not aimed at 
the modeling of individual growth. Only if X 
would be specified in such way that each individ- 
ual forms a subgroup, we could estimate individ- 
ual growth curves. However, this option is not 
very attractive from a statistical point of view, 
not in the least because we would be confronted 
with the problem of incidental parameters: each 
new individual adds another set of parameters to 
the model (see e.g. Kendall & Stuart, 1979; Van 
der Leeden, 1990). 

So, even though the fixed part of the repeated 
measures model contains both between- and 
within-subject elements it still remains a fixed 
part. To include random variation of the individ- 
ual growth parameters in model (2.7), we have to 
give the random part of it a more complex struc- 
ture. This can be accomplished by specifying 

vj - Zbj + q ,  (2.8) 

where vj is  as before and Z is a known (T x r) 
matrix The (r x 1) bj and (T x 1) r. are inde- • j 

pendent random vectors. It is assumed that the bj 
and rj are independently, identically distributed 
as bj - N(0,~) and rj - N(0, o2I), respectively. If 
Z is specified accordingly, b, contains the 
(random) growth parameters for J subject j. This 
holds if its columns contain the same (within- 
subject) explaining variables (and powers of that 
variables). The rj contain the remaining random 
error which can not be accounted for by the fixed 
part modeled with X and the random part mod- 
eled with Z. As in the previous section both 
models (2.7) and (2.8) can be combined into one 
single equation model 

yj - X15 + Zbj + r j .  (2.9) 

As it holds for model (2.5), this model can be 
split up into a fixed part and a random part too. 
The variance of the random part in (2.9) is given 
by 

v a t  (Zbj + rj ) - v a r  (yjlX15) = 

~j - Z ~ Z '  + 02I. (2.10) 

A comparison of models (2.5) and (2.6) with 
(2.9) and (2.10) shows that both approaches, i.e. 
the multilevel and the MANOVA repeated meas- 
ures framework, if specified accordingly, may 
lead to the same longitudinal mixed linear model 
(see also Vrijburg (1991) for a comprehensive 
discussion on this comparison). If we let X =, X v, 

Z - T R, b. - u. and rj - e. in (2.9), if we 
15 TTZ ' - X F and 41" ffi ~R in (2.5) J (with the sub- let 
scripts F and R indicating fixed and random, re- 
spectively), and if we let ~ - f~ in (2.10), we 
can write this longitudinal mixed linear model as 

yj -. XFY + TRu j + ej ,  (2.11) 

where the uj and ej are independently, identically 
distributed as uj ~ N(0,[2) and e i ~ N(0, o21), re- 
spectively. The-variance of the r-andom part, Var 
(TRu j + ej), is then written as TRg2T n' + o21. In 
the literature, models employing this specific 
within-subject covariance structure generally go 
under the name of 'random coefficient models' 
(De I.e~uw and Kreft, 1986; Prosser et al., 1990). 
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In the sequel we will adopt the notation described 
above. Hence, fixed effects will be indicated with 
T' s and the variances of the random parameters 
with oYs, the elements of f~. The variance of the 
elements of ej (which is constant in our case) will 
be denoted by 0 -2 . 
Concluding, one could say that when the error 
covariance structure of a MANOVA model is 
specified in an appropriate way, the model ap- 
proaches or becomes identical to a random coef- 
ficient model. In that way, we could also con- 
elude that MANOVA models can be derived as 
special cases of a multilevel model. Apparently, 
the concept of hierarchically structured data 
could provide a common framework for studying 
the interrelations among both approaches. 

IH. Description of  the programs 
In this paper we review two different approaches 
for the analysis of growth data using longitudinal 
mixed linear models. In the previous section we 
have examined the underlying statistical models 
and their interralations. In this section we review 
and compare three computer programs with 
which these models can be applied for data 
analysis. The programs are ML3, HLM and 
BMDP5V. They are described on the basis of the 
following topics: 

• Design philosophy. 
• Implementation details. 
• Implemented model. 
• Routines. 
• Data setup and data handling. 
• Output and results. 
• User friendliness. 
• Special features. 
In this paper we are directing our attention to 
longitudinal applications, i.e. to the analysis of 
growth data. In the descriptions of the programs, 
we have tried to balance the emphasis given to 
aspects relevant for those applications, and to 
more general features. A certain quantity of gen- 
eral remarks is very valuable and unavoidable 
too. Nonetheless, some aspects are treated briefly. 
For a very detailed, extensive discussion of ML3 
and HLM we refer to Kreft, De Leeuw and Van 
der Leeden (1994). In their paper, the application 
of BMDP5V for longitudinal mixed models is 
discussed too. 

Program ML3 

A. Design philosophy 
The ML3 program is designed for multilevel 
analysis with two or three levels. One is able to 
fit mixed linear models to data with a two or 
three-level hierarchical structure, in which the 
coefficients of the explanatory variables may be 
random. The program is written by Presser, Ras- 
bash and Goldstein. It is described and docu- 
mented in Presser, Rasbash and Goldstein 
(1990), the ML3 user's guide. ML3 is combined 
with the more general statistical package 
NANOSTAT written by Healy (Healy, 1989), 
which makes a variety of utility functions avail- 
able to the program. The theory on which ML3 is 
based is described in Goldstein (1987) and 
Goidstein and Rasbash (1989). Models that can 
be estimated using the program include random 
coefficient regression models, growth curve 
models and hierarchical legit models. Fitting 
growth curve models with ML3 is basically a 
two-level analysis of longitudinal data. It means 
that the repeated measurements 0evei 1) are 
viewed as being nested within individuals (level 
2). If necessary, the individuals may be grouped 
on level 3. The handling of longitudinal data in a 
multilevel framework is discussed in Goldstein 
(1986a, 1987, 1989, 1995) and in Bryk and 
Raudenbush (1987, 1992). 

B. Implementation details 

ML3 is available as an executable program only. 
That is, it is shipped without the program source. 
It runs on 80X86- to Pentium-based personal 
computers under DOS/OS2. Proper operation of 
the program requires 640 Kb of RAM and a hard 
disk. A CGA, EGA or Hercules graphics card is 
required if one wishes to use the program's high- 
resolution graphics capabilities. ML3 is available 
either as a math coprocessor version or as a non- 
coprocessor version.. It is shipped on a single 
diskette in compressed form. Installation is sim- 
ple as the files are easily expanded and tranfered 
to a subdirectory on the hard disk. According to 
the ML3 User's guide, insufficient memory is the 
most common problem that new users experi- 
ence. For this paper we ran ML3 Version 2.1 on 
a 80286 PC with math coprocessor. 
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There are two versions of ML3 available for 
analyses involving very large data sets. ML3/E is 
especially compiled for personal computers with 
expanded RAM (386-based and higher). It lets 
you work with all the extended memory avail- 
able. ML3/V is a special version of ML3 for 
VAX computers running under VMS. 

C. Implemented model 

In ML3 the basic model implemented is the 
mixed linear model for data with a two or three- 
level nested structure. At any level of the hierar- 
chy, the coefficient of any explanatory variable 
may be defined random or fixed. The random 
coefficients at each level may have any 
(co)variance pattem. Concerning models for 
longitudinal data, ML3 can fit polynomial 
growth curve models, as well as growth models 
fitting functions with free coefficients. In the 
manual, the latter models go under the name of 
fixed occasion models. 

D. Routines 

In ML3 the model parameters are estimated us- 
ing an iterative generalized least squares (IGLS) 
algorithm. This procedure yields consistent esti- 
mates of model parameters and maximum likeli- 
hood estimates if the assumption of multivariate 
normality is valid. The program can also com- 
pute unbiased or restricted (RIGLS) estimates. 
Under the assumption of multivariate normality, 
these estimates are called restricted maximum 
likelihood (REML) estimates. IGLS is described 
by Goldstein (1986b, 1987, 1995). RIGLS is de- 
scribed by Goldstein and Rasbash (1989). The 
RIGLS procedure is comparable to REML in the 
other multilevel program discussed in this paper, 
HLM by Bryk, Raudenbush and Congdon. The 
RIGLS procedure adds bias correction terms to 
the IGLS estimates on each iteration. This im- 
plies that during the estimation of the random 
parameters, the fixed coefficients are treated as 
quantities which have uncertainty "built in". In 
IGLS, the fixed coefficients are treated as known 
when estimating the random parameters. Starting 
values for both IGLS and RIGLS procedures are 
provided by an ordinary least squares (OLS) re- 
gression using all cases and ignoring grouping. 

According to the ML3 User's guide, RIGLS and 
IGLS estimates may differ considerably for snail 
data sets. IGLS appears to be the default method 
of estimation. However, neither the reason why, 
nor further information concerning these estima- 
tion procedures, are given in the manual. 
The number of iterations may range from 1 to 
999, but the default number is set to 5. According 
to the manual this number is sufficient to reach 
convergence if several criteria are met, such as a 
number of observations per unit large enough for 
stable estimation, a small number of parameters 
to be estimated, and so on (further details are 
given in the ML3 manual). 

E. Data setup and data handling 
ML3 stores data in a memory segment called the 
worksheet. This worksheet is divided into 100 
columns which can be refered to as C 1, C2, etc. 
When a data file is read in, these columns will 
hold the variables. On the worksheet there are 
100 boxes too, refered to as K1, K2, etc., which 
are capable of holding single numbers, for in- 
stance, the result of some computation. A third 
section of the worksheet is meant for the specifi- 
cation of the model. For convience, the data in a 
worksheet can be stored in a file for use in future 
work sessions. 
The input file needs to be a standard, numeric 
ASCII file. File reading may be unformatted or 
formatted, using a FORTRAN format statement. 
Small quantities of data, for instance starting 
values, may be entered by keyboard. 

Records in the input file are considered individ- 
ual cases as usual. In regular multilevel analysis, 
individuals are nested within groups. Hence, 
ML3 expects each case to be labeled with a group 
identifier (ID2 -> level 2) and a case identifier 
(ID1 -> level 1). However, when analyzing re- 
peated measures data within a two-level context, 
the individuals are considered as level 2 units, 
and the measurements-within-individuals are the 
level 1 units. Hence, the usual structure of re- 
peated measures data needs to be transformed ac- 
cordingly: each occasion should be given a sepa- 
rate record. For the Potthoff-Roy data (Potthoff 
and Roy, 1964; see also section 4), in the case of 
a quadratic model where growth is modeled as a 
function of age (and age2), with one explanatory 
grouping variable (sex), this may look like: 
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1 01 21 8 64 1 
2 01 20 10 100 I 
3 01 21.5 12 144 1 
4 01 23 14 196 1 
1 02 21 8 64 1 
2 02 21.5 10 100 1 

3 27 23.5 12 144 -1 
4 27 25 14 196 -1 

occasion person response age age 2 sex 
hr. ID var. (expi. variables) 

Fortunately, ML3 contains a utility for convert- 
ing a "one record per individual file" into a "one 
record per occasion" file. 
On the whole, data handling is very flexible in 
ML3. A variety of data operations can be per- 
formed within the NANOSTAT package, such as 
computational and statistical transformations, 
coding and recoding, generation of dummy vari- 
ables, selection and sorting of cases, and so on. 
Auxiliary files can be used. Even vectors and 
matrices can be input. 
Missing data can be handled if they are indicated 
with a numerical code chosen by the user. Sev- 
eral options are available including the imputa- 
tion of estimated values to replace missing data 
and listwise deletion. 

F. Output and results 
The default output is none, program convergence 
is the only information reported. All special out- 
put can be acquired by commands. "Rand" and 
"fixe", for instance, generate the estimates of the 
random coefficients and the fixed coefficients, re- 
spectively, as well as their accompanying stan- 
dard errors. Although not documented in the 
manual, the command "like" produces the - 2 log 
likelihood value (also called "deviance") of the 
estimated model. Commands enable the user to 
compute predicted values and residuals. This is 
of particular interest in the analysis of growth 
curve data if one is interested in the individual 
growth trajectories. 

All output may be printed on the screen or writ- 
ten to an output file specified by the user. 

The NANOSTAT package provides the user with 
several graphic commands. Plots such as stem- 
and-leaf plots, boxplots ansd scatterplots may be 
obtained. 

For a more elaborate discussion of the options 
mentioned above, as well as for further features, 
we refer to Kreft, De Leeuw and Van der Leeden 
(1994). 

G. User friendliness 

The program is extensively documented, the 
manual is clearly written and complete. An entire 
chapter with examples is included in which the 
log files of six example runs (with different sub- 
models) are given and discussed. The manual 
provides a nice introduction to multilevel model- 
ing theory too, with many references. This intro- 
duction may be of great help to a novice in this 
kind of data analysis. 

The interactive capabilities of ML3 are very 
powerful. Users have much freedom in making 
adjustments during the run. The specification of 
a model is very flexible. One proceeds by enter- 
ing commands that tell the program the roles of 
the input, or created, variables and which pa- 
rameters are to be estimated. A screen displaying 
all current specifications and choices may be 
called up at any time entering the command 
SETI'. An online help program is built in too, 
which shows the commands and their syntax. 

The ML3 program offers many possibilities to 
advanced users of multilevel analysis. There are 
many options, not in the least because of the ex- 
tensive NANOSTAT package which is merged 
with the program. The program is probably not 
an easy one to start out with for an unexperi- 
enced user. 

H. Special features 

There are a number of special features. We men- 
tion the possibility to enter starting values for pa- 
rameters other than default OLS estimates. Fur- 
ther, estimation of certain, slow converging, pa- 
rameters can be 'frozen' during the estimation 
proces, to speed up convergence. Special is the 
ability to fit multilevel logit and log-linear mod- 
els. This allows the analysis of data with propor- 
tions or binary variables as dependent variables. 
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Program H L M  

A. Design philosophy 
The abbreviation HLM refers to the Hierarchical 
Linear Model. The program FILM, implementing 
this model is written by Bryk, Raudenbusch and 
Congdon (1988) and is designed for the analysis 
of multi-level data with a two level hierarchical 
structure. The program is described and docu- 
mented in Bryk, Raudenbush, Seltzer and Cong- 
don (1988), the HLM user's guide. According to 
this manual the program is aimed at two broad 
classes of applications: the familiar analysis of 
nested data, as in the study of school effects, for 
instance, and the analysis of growth curve data. 
In both cases we have a within-unit and between- 
unit representation: within and between class 
analysis and within-subject (time-series observa- 
tions) and between-subject analysis, respectively. 
Recently, a version of HLM has been released 
which can deal with three-level data as well. 

B. Implementation details 
HLM is available in two versions, one for work- 
stations or mainframes and one for the PC op- 
erating under MS-DOS. The PC version of the 
program is an executable only; there is no source 
code available. The other version comes with the 
source code too (the source of HI_hi used to be in 
the public domain, but this appears to have come 
to an end with version 2.1). HLM runs on 
80X86- (with or without a math coprocessor) to 
Pentium-based personal computers under DOS/ 
OS2. The computational kernel of the program is 
written in FORTRAN 77. Some additional rou- 
tines have been written in C. For the PC version 
we used, program limitations (see the manual, p. 
39) are: a maximum of 10 within-unit variables 
(either fixed or random) in a model, a maximum 
of 15 between-unit variables and a maximum of 
35 fixed effects in all equations. HLM uses the 
input data to create a file of "sufficient statistics". 
The current maximums for this sufficient staffs- 
tics file are 25 within-unit variables, 25 between- 
unit variables, and a total of 300 units. For the 
non-PC version, these maximums are slightly 
higher, although they can all be changed if the 
parameter statements in the source code are 
modified. 

For this paper we used HLM version 2.1 running 
on a 80286 PC with math coprocessor. 

C. Implemented model 
The basic model implemented in HLM is the 
two-level hierarchical model. By default, the 
program assumes that the coefficients of the 
within-unit model are to be treated as random, 
but this can be changed. In the interactive proc- 
ess during the run, the user may apply additional 
constraints to the coefficients. Either the variance 
or the mean of one or more of the within-unit 
coefficients can be set to zero. The result is that 
we can have models in which a within-unit vari- 
able has a fixed effect or a random effect only, or 
both. 
Also by default, both the within and between 
model have a base term (intercept). This can be 
overruled too. For instance in growth curve 
analysis it may be of interest to fit models with- 
out a within-unit intercept. 
Concerning models for growth data, HLM has 
roughly the same possibilities as ML3. A third 
level in the data can be handled by the recent 
three-level version of HLM. 

D. Routines 
FILM implements an EM algorithm for its pa- 
rameter estimation (Dempster, Laird and Rubin, 
1977). The algorithm is supplemented by an 
Aitkin accelerator (Laird, Lange and Strom, 
1987). According to the manual, using this ac- 
celerator a 30 to 40 percent reduction in compu- 
tation time can be achieved. The number of it- 
erations is optional. The manual suggests that 10 
iterations are often sufficient for explanatory 
analysis, but recognizes the fact that generally 
this number will not be high enough to reach 
convergence in practice. In fact, the EM algo- 
rithm is well known for its notoriously slow con- 
vergence, especially when variance estimates are 
close to zero (close to a boundary of the parame- 
ter space). In those cases, a number of over 100 
iterations is easily reached. 
A second algorithm provided by I-ILM is the so 
called "V-known" routine. This program is in 
fact a very general, multivariate regression rou- 
tine for cases in which the sampling variances 
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and covariances are (assumed) known for each 
unit. The V-known routine is mainly used in 
meta-analysis. Further details concerning this 
topic are given by Raudenbush and Bryk (1985). 

E. Data setup and data handling 
If a user wants to analyze a particular data set for 
the first time, FILM needs two input files: a 
within-unit and a between-unit file. From these 
files, the program computes a file of sufficient 
statistics, which can be used in all subsequent 
analyses of the same data. For growth data the 
within-unit file has the familar "one record per 
occasion" structure (see the section on ML3). 
Subjects are identified by an ID number in the 
first field of each record, which must be read in 
text format. This also holds for the between-unit 
file which uses these ID numbers to link the be- 
tween-unit information for a unit to its within- 
unit data. ID numbers in both files must therefore 
be completely consistent. For the Potthoff-Roy 
data (see section 4), in the case of a linear model 
where growth is modeled as a function of age, 
these files may look like: 

01 
01 
01 
01 
02 
02 

. . .  

27 
27 

person 
ID 

within-unit file between-unit file 

21 8 01 1 
20 10 02 1 
21.5 12 03 1 
23 14 . . . . . .  
21 8 16 1 
21.5 10 17 -1 
. . . . . . . . . . . .  18 -1 

23.5 12 27 -1 
25 14 

response age person sex 
variable ID 

A HLM utility, PRINTSSM, can be used to print 
and thereafter inspect the sufficient statistics file 
when it is first created. 

HLM will also accept a SYSTAT system file as 
input (SYSTAT is a statistical package for use on 
personal computers). Using the V-known routine 
requires a different input file structure. In that 
case the input includes estimates of within-unit 

sample variances and covarianees (see the man- 
ual, p. 57 for further details). 

The program can handle missing data in the 
within-unit file only. It is assumed that the be- 
tween-unit file contains no missing data. If so, 
the user has to take action such as delete the case 
or impute a value. Handling of missing data can 
be listwise or pairwise deletion. 

F. Output and results 
By default HLM produces a complete and com- 
prehensive output file, for which name the user is 
prompted. Standard errors for the fixed parame- 
ter estimates are given as well as a table with t- 
statistics and p-values. The variance estimates 
(the random parameters) are tested in a chi- 
square table with which one can decide if a suf- 
ficient part of variance is explained by variables 
on the second level. Reliability estimates of these 
parameters are provided too. Model fit can be as- 
sessed with a deviance statistic. Options control 
the printing of OLS estimates for each unit. Ei- 
ther for ten or for all units the within-unit re- 
gression parameters are printed. For growth 
curve applications this is of interest: it provides 
the user with the individual growth trajectories, 
wheras the average growth trajectory for the 
whole sample is given too. The output concern- 
ing the history of iterations is controlled by the 
user too. The value of the likelihood function is 
given either for all iterations or only for the first 
and the last one. 

For an extensive discussion of the options men- 
tioned above, as well as for further features, we 
refer to Kreft, De Leeuw and Van der Leeden 
(1994). 

Upon request HLM produces a so called residual 
file, providing a means of checking the fit and 
distributional assumptions of the between-unit 
model. This file can be read in into SAS, SPSS 
or SYSTAT if the user wants to compute various 
diagnostics. 

G. User friendliness 
The program is extremely interactive: it starts by 
asking the user the first of a long series of ques- 
tions, which guides the user step-by-step through 
the model specification process. This makes the 
program fairly easy to use. 
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The manual is definitely of great help to an un- 
experienced user. It is build up along the lines of 
the annotated output of a number of example 
runs. A serious disadvantage of this approach is 
that relevant information is scattered throughout 
the manual. Specific information is mixed with 
example output, instead of organized under 
specific headings. It is therefore not always easy 
to find. 

H. Special features 
Compared to the other two programs, HLM is the 
only one that provides a variety of tests. We 
mention: a t-test for significance of the fixed pa- 
rameters, a chi-square test for residual unex- 
plained variance in the first level parameters, a 
reliability estimate of the first level variables, a 
multivariate hypothesis test involving the fixed 
effects, a homogeneity of variance test for the re- 
sidual variation in each unit and a likelihood- 
ratio test for the variance-covariance components 
model. 

Although the program is meant to be totally in- 
teractive, it can also be executed in a batch mode 
using an extended default file (or "personal" de- 
fault file). This can be of great use to bypass ir- 
relevant prompts and other cumbersome interac- 
tive features as one becomes a more experienced 
user. 

Program BMDP5V 

A. Design philosophy 
The BMDP5V program is designed by Jennrich 
and Schluchter and described in Schluchter 
(1988). The theory on which the program is 
based is given by Jennrich and Schluchter (1986). 
Being a procedure of the BMDP software pack- 
age, the program is extensively documented and 
illustrated in the BMDP user's guide (Dixon, 
1988). 

BMDP5V is especially meant for the analysis of 
repeated measures with special emphasis on un- 
balanced situations, including unbalance caused 
by missing data. Although the program has many 
possible applications, it is developed with small 
experimental data sets in mind, especially in a 
biological context. When there are many obser- 
vations and/or a large number of parameters to 

be estimated, the program becomes expensive to 
use.  

B. Implementation details 

BMDP5V is provided at any site where the 
BMDP package is running. Usually this package 
has been implemented on mainframes and mini 
computers, so there are versions working under 
different operating systems such as MVS, VM, 
VAX/VMS and so on. More recently, PC ver- 
sions of the package have become available for 
use under MS-DOS or OS/2. 

The BMDP procedures can be operated either in 
batch mode, or in interactive mode, depending on 
the user's preferences and/or the available com- 
puter facilities. 

BMDP5V shows no limitations concerning the 
number of individuals and variables. However, 
the memory needed for data storage will increase 
with these numbers, and will also depend on the 
specified model. Probable implementation re- 
strictions could therefore arise dependent on the 
computer system used for running BMDP. 

C. Implemented model 

The models that can be fitted in BMDP5V belong 
to a general class of multivariate linear models. 
In these models a set of regression parameters 
describes the structure of the expected values of 
the observations, and a set of covariance parame- 
ters provide for a general parametrization of the 
within-subject covariances. A number of special 
structures for these covariances are built-in. 
User-defined covariance structures can be speci- 
fied too. 

When repeated measures data are analyzed using 
a generalized multivariate linear model such as 
in BMDP5V, the individuals are considered as 
data records and the observations on multiple oc- 
casions are interpreted as separate dependent 
variables. In a multilevel context, this makes in- 
dividuals the second level within which the (first 
level) observations are nested. 

D. Routines 
BMDP5V uses three different algorithms to com- 
pute maximum likelihood estimates for all model 
parameters: a Newton-Raphson, a Fisher scoring 
and a generalized EM algorithm. Producing 
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identical results, these methods differ with re- 
spect to the number of iterations required and the 
costs per iteration. Generally, EM will converge 
slowly, but with low costs per iteration, whereas 
Newton-Raphson will require the smallest num- 
ber of iterations, but has the highest cost. BMDP 
advises to use Newton-Raphson if the number of 
covariance parameters is 15 or less, otherwise 
EM is preferable. BMDP5V offers two different 
algorithms to compute restricted maximum like- 
lihood estimates for the covariance parameters: 
generalized EM and a quasi-scoring algorithm. 
Results will be identical but convergence is faster 
for the scoring method with higher cost and vice 
versa for the restricted ML method. For any of 
these procedures, the maximum number of itera- 
tions is set to 15 by default. If neccessary, this 
number can be altered by the user. 

E. Data setup and data handling 
The data input file must be organized so that in- 
dividuals are the records and the repeated meas- 
urements are the variables. Note that this is dif- 
ferent with respect to the way in which hierarchi- 
cal data are usually organized. 
We have run the program in batch mode. The 
BMDP instructions are given by keyword- 
statements, which look much alike usual SPSS 
statements. Input data and BMDP instructions 
can be stored in the same file, or we may use 
separate files for both. Keywords control the 
names of the variables, their number, format, 
tranformations, and so on. The actual modeling 
of the data is controlled by three keywords- 
statements: 

DESIGN, MODEL and STRUCTURE. 

The DESIGN statement specifies the structure of 
the data. It identifies variables classifying sub- 
jects and variables measured repeatedly. The 
models itself are specified in the MODEL state- 
ment, using variable names. The STRUCTURE 
statement specifies the structure of the within- 
subject covariances. An example of a set of 
BMDP instructions for the Potthoff-Roy data, is 
given below. 

/PROBLEM 
/INPUT 
/DESIGN 

TITLE='POTTHOFF-ROY DATA'. 
FILE = DENTAL.DAT. 
GROUPING = SEX. 
REPEATED = TIME. 

LEVEL = 4. 
DPNAME = DISTANCE. 
DPVAR = DISTI, DIST2, DIST3, 

DIST4. 
CONTRAST (TIME) ~ AGE. 
AGE ~ 8, i0, 12, 14. 

/MODEL DISTANCE = 'SEX + AGE + 
SEX. AGE'. 

/STUCTURE TYPE=UNSTRUC. 

In this example (see section 4), data are defined 
and modeled consisting of measurements of some 
dental distance for a group of children, obtained 
at ages 8, 10, 12 and 14 (DISTI, DIST2, DIST3 
and DIST4). As a characteristic of interest, re- 
maining fixed over occassions, we have the 
grouping variable sex (SEX). In the example 
setup, the within-subject factor is defined to be 
TIME. The CONTRAST statement creates a 
variable, AGE, taking the values 8, 10, 12 and 14 
respectively, for each of the values of TIME. The 
model specified here fits linear growth curves to 
the data. The curves are found as a regression of 
distance on age. The coefficients of the individ- 
ual curves vary randomly across the individuals. 
A mean growth curve for the whole group, as 
well as mean growth curves for boys and girls 
separately, are easily produced by combining the 
fixed coefficients of the model in the correct way. 
The expression SEX.AGE adds an interaction 
term to the model. We will return to this data in 
section 4 where the results of the different pro- 
grams are compared. 
In the STRUCTURE statement one of the built-in 
structures for the within-subject covariances can 
be specified. In the example setup above, these 
covariances are contained in an arbitrary matrix 
(fully parametrized). Other built-in special 
structures include first order autoregressive 
models, compound symmetry and banded or gen- 
eral autoregressive structures. For some struc- 
tures additional input is needed. A factor analytic 
structure requires the number of factors to be 
specified. Random effects requires the input of a 
(known) matrix containing the variables that are 
to be used for the specification of random coeffi- 
cients. For the Potthoff-Roy data the additional 
input in that case may look like: 

/STUCTURE TYPE=RANDOM. 
ZCOLI z i, I, I, i. 
ZCOL2 = 8, i0, 12, 14. 
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A general linear structure requires the number of 
parameters to be specified as well as a set of 
known matrices. Finally a user-defined covari- 
ance structure which is not built-in and not lin- 
ear, can be specified by adding a FORTRAN 77 
subroutine to the program input. This routine be- 
comes a part of the program, called in each it- 
eration. 

F. Output and results 
The output of BMDP5V is controlled by the 
PRINT statement and can be very comprehen- 
sive. There are no special output files. Program 
instructions, model specifications and (default) 
values of various program parameters are exten- 
sively listed. An extended output presents, for 
each iteration, a table with the log likelihood of 
the specified model, the values of the regression 
parameters and the values of the covariance pa- 
rameters. Akaike's information criterion is pro- 
vided to check the appropriateness of a chosen 
covariance structure. Asymptotic standard errors 
and z-values are given for all maximum likeli- 
hood estimates of the model parameters. For the 
terms of the regression model Wald (chi-square) 
tests of significance are included. Within-subject 
and all-pairs within-subject covariance and corre- 
lation matrices are given. A very useful option, 
especially when analyzing individual growth 
trajectories, is a listing of individual responses (at 
the different timepoints), their predicted values, 
residuals and standardized residuals. With this 
listing, Mahalanobis distances are provided. 
These distances can be helpful in detecting cases 
which may be outliers. 

G. User friendliness 
The BMDP user's guide is written very clearly. 
BMDP5V, as any BMDP procedure, is exten- 
sively discussed and commented. The different 
options are very well illustrated presenting a va- 
riety of real data examples. Most technical details 
can be found in the appendix. 
The program is easy to use. As far as the key- 
word command structure, and the ability to run 
BMDP in interactive mode is considered user- 
friendly, the program is too. 
When repeated measures are to be analyzed, the 
built-in autoregressive structures for the within- 

subject covariances can be very useful. However, 
to include a user-defined covariance structure by 
adding a FORTRAN 77 subroutine to the pro- 
gram may be quite difficult for regular users. 

H. Special features 
A unique option of BMDP5V is the ability to 
analyze incomplete data. Using an EM algo- 
rithm, values for missing data can be imputed. In 
that case it is assumed that there is an underlying 
set of complete data from which the observations 
of each subject form a subset. This property is 
very useful because it is been known to improve 
the reliability of the data analysis (cf. Little and 
Rubin, 1987). An option like this is certainly not 
very common in statistical software. 

Another special feature is that BMDP5V can deal 
with time-varying covariates. For instance, in the 
case that we have multivariate repeated observa- 
tions, that is two or more dependent variables 
measured repeatedly, we could take one (or 
more) of these variables as a covariate. This fea- 
ture is built-in and easy to use. 

IV. Comparison of results 
In this section we present comparisons of the 
outcomes of growth curve analyses with ML3, 
HLM and BMDP5V. In doing this, two different 
datasets will be used: a small data set called 
DENTAL data, and a large data set called 
SCHOOL data (for a description see below). 

First, a description of the data will be given, fol- 
lowed by the models which we have analysed. 
Each model will be accompanied by a table with 
results comparing the three programs. For ML3 
we have included results from two estimation 
methods available within this program: full in- 
formation and restricted maximum likelihood, 
indicated by ML3F and ML3R respectively. As 
mentioned before we have concentrated upon 
models in which the individual growth parame- 
ters vary randomly across individuals and in 
which this variation is (partially) explained by 
variables on the group level. 

DENTAL data: The DENTAL data were al- 
ready briefly mentioned in Section 3, where data 
setup and handling in the three programs were 
discussed. The data are taken from Potthoff and 
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Roy (1964). They were collected at the University 
of North Carolina Dental School and concern the 
measurements of the distance (DIST) from the 
centre of the pituitary to the pteryomaxillary fis- 
sure for eleven gifts and sixteen boys, at ages of 
8, 10, 12 and 14. 
Both approaches for the analysis of growth data 
using a random coefficient model have been 
applied to these data: a multilevel analysis and a 
generalized MANOVA. Conceptually, the ran- 
dom coefficient model as a general case of the 
multilevel model is equivalent to the random 
coefficient model as a special case of the general- 
ized MANOVA-model of Jennrich and Schlu- 
chter (Jennrich and Schluchter, 1986). Conse- 
quently, we will compare the results of the two 
multilevel programs, ML3 and HLM, with the 
results of the MANOVA program of Jennrich en 
Schluchter, BMDP5V. 
The analysis consists of fitting linear growth 
curves found as a regression of distance in age. 
In a multilevel framework the repeated meas- 
urements are considered nested within the sub- 
jects. On the first level the individual growth 
curve coefficients are treated as random vari- 
ables. On the second level (SEX), defined as a 
dummy variable with values -1 for gifts and 1 for 
boys, is used as an explanatory variable of ran- 
dom variation across the indiviual growth trajec- 
tories. 
The within-subject model can be written as 

(DIST)i j = 130j + [3 lj (AGE)j + eij, 

and the between-subject model is 

[~0j ""Yoo + ~'Ol (SEX)j + u0j, 

~lj "'~/10 + Tll (SEX)j + Ulj. 

The single equation version of the model is writ- 
ten as 

(DIST)ij" ~'oo + ~/Ol (SEX)j + ~'lO (AGE)j + 

TIl (AGE)j(SEX)j + uij(AGE)j + U0j+ eij. 
Jennrich and Schluchter define the random coef- 
ficient model in a slightly different way. Accord- 
ing to the MANOVA tradition one typically 
wants to research whether one or more dependent 
variables (or the mean score on it) differs be- 

tween several subpopulations. The dimensions 
along which these subpopulations are divided, 
are considered the independent variables. In this 
example the independent variables are (SEX) and 
(AGE). In other words, one wants to study the 
joint effect of the independent variables on one 
(here DIST) or more dependent variables. In the 
MANOVA tradition these are all fixed effects. 
Random variation of the individual growth pa- 
rameters can be achieved by a modeling of the 
error structure, as was explained in Section 2. 
The within-subject covariance matrix, Ej, is 
given the 'random coefficient' structure X~X' + 
o2I. In that way we can derive a single equation 
model which can be interpreted in the same way 
as that of the multilevel model described above. 

For the DENTAL data model, Xj is thus build up 
from four covariance terms: the variances of the 
intercept and the linear component, their covari- 
ance and the variance of the (remaining) within- 
subject error. The former three are the same ele- 
ments that are contained in the second level vari- 
anoe-covariance matrix (fl) of the multilevel 
model. The latter term is equal to the only ele- 
ment of which the first level varianoe-covariance 
matrix consist in the multilevel model (02). 

Results of the analysis are presented in Table 1. 

Refering to the model described above, we find 
the following entries in Table I. First we have 
the fixed coefficients, T00 and Tl0, which denote 
the fixed intercept and slope of the mean growth 
curve for the whole group. Deviations from this 
mean intercept and slope for the gifts' group and 
for the boys' group, are given by T01 and Tll re- 
spectively. Hence, the fixed intercept and slope of 
the mean curve for the gifts are given by (T00 - 
T01) and (TI0 - Yl l)" Equivalently, the fixed inter- 
cept and slope of the mean curve for the boys are 
given by (Too + To l) and (TlO + Tll). 

The random coefficients to0o and tOll denote the 
variances of the random (within-subject) inter- 
cept and the random (within-subject) slope, i.e. 
the variance not accounted for by (AGE) and 
(SEX). to01 gives the covariance between both 
random coefficients. The variance of the first 
level disturbances is contained in o 2. Note that 
regardless of the fact that the measurements are 
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Table I :  Results of the analyses of the DENTAL data, N = 27. 

BMDP5V HLM ML3F ML3R 

~/00 16.8567 16.8993 16.8570 16.8570 
TI0 0.6320 0.6287 0.6320 0.6320 
~/01 -0.5161 -0.3824 -0.5161 -0.5161 
'~11 0.1524 0.1419 0.1524 0.1524 

02 1.7162 1.7651 1.7162 1.7162 
o~00 4.5569 5.7509 4.5569 5.7861 
6010 -0.1983 -0.3082 -0.1983 -0.2896 
0)11 0.0238 0.0356 0.0238 0.0325 

# iterations 2 60 2 4 

deviance 427.80 43 i .73 427.81 427.96 

time related here, this random coefficient model 
does not include a special covariance structure 
for the error components. 

Comparing solutions in Table 1, we see that the 
three programs produce similar, though not 
identical results. Estimates for fixed and random 
coefficients are the same for BMDP5V and 
ML3F. However, results from HLM differ from 
these to a certain extent. This holds for the 

estimates of the random parameters in the ML3R 
solution too. The major part of the differences in 
the solutions can be explained by the use of dif- 
ferent estimation methods: HLM and ML3R use 
restricted maximum likelihood, whereas 
BMDP5V and ML3F use full information maxi- 
mum likelihood. Differences between both likeli- 
hood procedures are strengthened in this case be- 
cause we use a small data set. Results from 
analyses on larger data sets reported in the sequel 
as well as results from Kreft, De l_geuw and Van 
der Leeden (1994) support this finding. 

If we compare the number of required iterations, 
Table 1 clearly demonstrates the (well known) 
slow convergence of the EM algorithm employed 
by HLM, when parameter estimates come close 
tO zero. 

SCHOOL data: For the next illustration we use 
part of the results stemming from an educational 
study. De data are derived from a longtitudinal 
study (Voeten, 1991) concerning the individual 
development of technical reading (TR). Techni- 
cal reading is measured as a score on a so-called 

"One-Minute Test". This test measures the speed 
at which a pupil can decode words. Scores of 436 
pupils are used which are measured after respec- 
tively 1, 8, 11, 18 and 22 months, on 25 Dutch 
Primary Schools (for further details we refer to 
Guldenmund, 1991). Two explanatory variables 
will be used on the second level, the variable 
(SEX) and a score on a test measuring fonemic 
analysis ability, (FA). The first model to be ana- 
lysed i s  a random coefficient model in which 
(TR) is regressed on (TIME) as a quadratic func- 
tion. (SEX) is used as an explanatory variable on 
the second level. This model looks similar to the 
model which we used to analyse the DENTAL 
data. However, now we have a much larger 
sample and a quadratic instead of a linear func- 
tion is fitted. 

The within-subject model can be written as 

(TR)i j - 130j + 131j (TIME)j + 

132j (TIME)j 2 +.eij, 

and the between-subject model is 

13oj = ~'0o + ~'01 (SEX)j + u0j, 
~lj  " TI0 + Tll (SEX)j  + Ulj .  

[~2j " T20 + T21 (SEX)j + u2j. 
A single equation version of this model is given 
by 

(TR)ij "~/00 + Tol(SEX)j + ]tI0(TIME)j + 

720(TIME)j2 + T1 I(SEX)j(TIME)j + 
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is (SEX), measurement times are centered, except for BMDP5V. 
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BMDP5V HLM ML3F ML3R 

700 45.9339 60.2410 60.2800 60.2800 
Y10 0.7522 0.8009 0.7522 0.7522 
Y20 0.0288 0.0258 0.0288 0.0288 
Y01 1.6653 1.4756 1.4580 1.4580 
T11 0.0187 0.0291 0.0187 0.0187 
Y21 -0.0023 -0.0025 -0.0023 -0.0023 

02 37.2859 36.9274 31.6500 31.7300 
co00 158.9831 179 .5018  1 8 2 . 0 0 0 0  183.2000 
COl0 7.6650 2.4385 5.4620 5.4710 
°~11 -1.0276 0.0520 0.0000 0.0000 
o)20 -0.3977 -0.1551 -0.2824 -0.2831 
co21 0.0426 -0.0019 0.0016 0.0016 
¢o22 -0.0017 0.0002 0.0000 0.0000 

# iterations 3 158 6 6 

deviance 10511.88 10574.60 1 0 5 4 9 . 3 0  10549.30 

721 (SEX)j(TIME)j 2 + u0j + Ulj(TIME)j + 
u2j(TIME)j 2 + eij. 

The analysis of these data were troubled by some 
program limitations. First, HLM appeared to run 
only if the independent variable (TIME) was 
centered, otherwise singularity problems occured. 
In order to make an as adequate comparison of 
the results we had to center the data using ML3 
and BMDP5V too. In ML3 this requires some 
data manipulation, in BMDP5V however, this 
appeared to be impossible. It is caused by the fact 
that the program does not allow the input of 
noninteger values in its CONTRAST statement 
(see Section 3), necessary for the specification of 

(1) centered variables . 
Secondly, we were forced to analyse the data us- 
ing only 300 cases. This number is the default 
maximum number of cases in HLM when indi- 

viduals are treated as level 2 units (see also Sec- 
tion 3). Since we did not have immediate acces to 
the HLM Fortran source, we were not capable of 
extending this maximum. 

The results of  our analysis are shown in Table 2. 

The entries in Table 2 are interpreted in a similar 
way as in Table 1. Again, the two multilevel pro- 
grams produce similar though not identical re- 
suits. Comparing ML3F and ML3R, the esti- 
mates of the random parameters are relatively 
more alike than those in the first example analy- 
sis. This is explained by the fact that we use a 
much larger data set here. 

The more general differences between HLM and 
ML3 can be attributed to their different estima- 
tion procedures. The slow convergence of the EM 
algorithm employed by HLM is shown dramati- 
cally here. 

(1) Personal communication with BMDP has indicated that there is indeed a prohibition against the input of other 
than integer parameters in the CONTRAST statement. However, BMDP suggested a so-called work-around ap- 
proach based on the use of covariates to make use of centered variables. Moreover, it was stated that in the PC-90 
version of the BMDP statistical software one has the possibility of introducing non-integer elements for the matrix 
Z (see ZCOL1 and ZCOL2 in the example above), and for the independent variables. 
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The parameter estimates of the noncentered so- 
lution of BMDP5V are not quite comparable to 
the estimates of the other solutions. As might be 
expected, the largest difference in parameter 
value can be observed regarding the intercept 
term Too. Centering of the measurement times, 
i.e. the within-unit independent variable, can be 
computationally convenient, since it causes the 
sampling covariance of the ordinary least squares 
intercept and slope to be equal to zero. At the 
same time it changes the way in which the 
within-unit coefficients are interpreted. It is 
therefore probably the most informative to look at 
the deviance only. Comparing values of this sta- 
tistic, we observe considerable differences among 
the programs. According to the results in both 
Table 1 and 2, it seems as if HLM overestimates 
the deviance. It is not quite clear to us if the dif- 
ferences in deviance value among all programs in 
general, and between BMDP5V and ML3(F and 
R) in particular, are acceptable. 
Notice the negative variance estimates in the so- 
lutions of HLM and BMDP5V. Apparently, these 
parameters are at the boundary of the parameter 
space (equal to zero). Both programs do not pro- 
vide a proper solution for this problem. ML3, 
however, does, by simply setting those estimates 
to zero. 
In the next analysis, instead of (SEX) we use 
another explanatory variable, fonemic analysis 
(FA). Now, the within-subject model can be 
written as 

(ZR)ij - [~0j + [~lj (TIME)j + 
~2j (TIME)j 2 + eij" 

and the between-subject model is 

~0j " ~00 + "~0[ (FA)j + u0j, 

~lj = T10 + Tll (FA)j + Ulj. 

~2j = 720 + T21 (FA)j + u2j. 
The single equation version of this model equals 

(TR)ij = ~00 + ~01(FA)j + ~I0(TIME)j + 

~20(TIME)j2 + ~/l 1(FA)j(TIME)j + 

T21 (FA)j(TIME)j 2 + Uoj + U lj(TIME)j + 

u2j(TIME)j2 + eij • 

Obviously, this model is similar to the model 
using (SEX) as a second level explanatory vari- 
able, only now we use (FA) for this purpose. 
However, besides the aforementioned program 
limitations we now stumble upon what can be 
seen as a fundamental difference between the 
analysis of variance and regression analysis. This 
difference lies in the assumption of the measure- 
ment level which is allowed for the independent 
variable. While in the analysis of variance only 
independent variables of no more then nominal 
level are assumed, in regression analysis the in- 
dependent variables are assumed to be of at least 
interval level. Since (FA) consists of a scale with 
scores ranging from 1 to 29, it can be considered 
as being measured on an interval scale. Hence, 
different results will occur if multilevel analysis 
considers the variable (FA) as numerical, 
whereas BMDP5V considers it a categorical 
variable. As a consequence, the only way this 
program can deal with such explanatory variable, 
is to code the categories by means of a set of 28 
dummy variables. In other words, in BMDP5V 
this problem is considered as one in which ex- 
perimental conditions or groups are involved: the 
scores on (FA) are conceived as a groupcode with 
29 possible effects. 

This problem is highlighted comparing 
BMDP5V with ML3 only. Results are given in 
Table 3. 

In Table 3, the entries indicated by FA k, FAk* 
Lin and FAk* Qua, each consists of 28 separate 
values denoting interactions of (FA) with the in- 
tercept, linear and quadratic component, respec- 
tively. Hence, the amount of parameters to be es- 
timated in BMDP5V is much larger. A compari- 
son with the parameter values of ML3 is there- 
fore problematic. 
In Table 3, the entries indicated by FA k, FAk* 
Lin and FAk* Qua, each consists of 28 separate 
values denoting interactions of (FA) with the in- 
tercept, linear and quadratic component, respec- 
tively. Hence, the amount of parameters to be es- 
timated in BMDPSV is much larger. A compari- 
son with the parameter values of ML3 is there- 
fore problematic. 

Concerning ML3F and ML3R results, Table 3 
shows that the differences between the random 
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Results of the analyses of the SCHOOL data, N - 384, explanatory variable 
is (FA), measurement times not centered. 
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ML3F ML3R BMDP5V 

Y00 38.0600 38.0600 44.8670 
YI 0 0.9890 0.9890 0.7067 
Y20 0.0247 0.0247 0.0320 
~01 0.4459 0.4459 FA k 
71 1 -0.0147 -0.0147 FAk* Lin 
Y21 0.0003 0.0003 FAk* Qua 

02  ̀ 32.1200 32.1800 38.1900 
co00 155.1000 156.1000 130.0900 
C°l 0 4.5250 4.5280 5.8400 
oo! ! 0.0000 0.0000 -0.8200 
oo20 -0.2742 -0.2749 -0.0300 
0) 2 ! 0.0015 0.0015 0.0300 
OO22 0.0000 0.0000 -0.0010 

# iterations 5 5 4 

deviance 13547.10 13547.1 13327.84 

parameters are even less substantial here, with N 
- 384, as in the previous analysis. 

So far, we have been comparing random coeffi- 
cient models to analyse data on growth, using 
ML3, HLM and BMDP5V. As mentioned earlier 
one can expect growth data to be serially depend- 
ent. If this is the case, one can consider the 
modeling of a characteristic structure for the 
within-subject covariance matrix. In multilevel 
models for longitudinal data, usually the as- 
sumption of uncorrelated error components with 
equal variance is made. Although the manual de- 
scribes the possibility to model complex level-1 
covariance structures, it is not straightforward 
to understand how this should be accomplished 
in practice for serial dependent structures (see 
also Discussion). 

Contrary to both multilevel programs, BMDP5V 
explicitly provides several possibilities to model 
the within-subject covariance structure. A set of 
frequently encountered special structures are 
build into the program, including autoregressive 
structures (see also Section 3). 
In the next analysis, an illustration is given of a 
model in which several within-covariance struc- 

tures are fitted: banded, or general autoregres- 
sive, first-order autoregressive, completely un- 
constrained (unstructured) and the already famil- 
iar random coefficient structure. Again the 
school data have been analyzed. The fitted model 
is identical to the first model described in this 
section, with (SEX) as a grouping variable and 
employing a quadratic growth curve. The scores 
of 384 pupils were used. The results are given in 
Table 4. Only the fixed terms of the model and 
the deviance are listed. Estimates of the random 
terms are omitted because there number varies 
across the different covariance structures. 
If we assume that the two models which apply 
autoregressive covariance structures, as well as 
the one with the random coefficient structure, are 
'nested' within the model with unconstrained co- 
variance matrix, likelihood-ratio tests can be 
computed to decide which model is the most ap- 
propriate. Differences between relevant deviance 
values are chi-square distributed with degrees of 
freedom equal to the difference between the 
number of independent parameters in the corre- 
sponding models. Hence, from Table 4 it can be 
concluded that the models applying autoregres- 
sive covariance structures are neither favorable 
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Results of the analyses of the SCHOOL data using BMDP5V, N - 384, 
explanatory variable is (SEX), different structures for f. 

E structure ~ unconstrained Y~-TFt~TF'+O2I oij-~k,k=li-jl+l oij-o2® li-jl 

TO O 49.5493 46.2603 44.7326 48.1164 
T10 0.8338 0.6877 1.0413 0.5681 
~'20 0.0163 0.0314 0.0152 0.0304 
~/01 -1.0327 -0.9486 -1.0553 -0.9652 
T11 -0.0308 -0.0455 -0.0196 -0.0349 
T21 0.OO22 0.OO27 0.OO17 0.OO21 

# parameters i 5 7 5 2 

deviance 13270.098 13412.618 13431.496 13859.856 

over the random coefficient model (~2 _ 447.2, 
d f - -  5 for the first-order autoregressive model 
and X 2 - 18.9, df i 2 for the general autoregres- 
sive model), nor over the unconstrained model 
( ~ 2 ,  589.8, df - 13 for the first-order autore- 
gressive model and X 2 - 161.4, df - 10 for the 
general autoregressive model). In fact, Table 4 
shows that the random coefficient model is less 
appropriate than the completely unconstrained 
model (X 2 - 142.5, df-- 8). 

V. Conclusions 

In this paper we have reviewed two approaches 
for the analysis of growth data by means of longi- 
tudinal mixed linear models. The first is a type of 
multilevel model in which growth data are 
treated as hierarchically structured. The second 
approach is a version of a MANOVA repeated 
measures model employing a structured (error) 
covariance matrix. From our theoretical and 
practical comparisons, it can be concluded that 
both ways of specifying 'random coefficient 
models' are fruitful for the analysis of growth 
data. Although they originate from different sta- 
tistical and data-analytic traditions, the growth 
curve models they provide are basically alike. 
Nonetheless, both approaches show a few short- 
comings which are not really on a theoretical 
level, but most strongly connected to the associ- 
ated computer programs. Several of these limita- 
tions are listed below. 
In multilevel modeling, and within the accompa- 
nying multilevel programs, one has optimal 

flexibility specifying the coefficients either as 
random or as fixed on any level. One has also 
much freedom in choosing which explanatory 
variable explains what variation on which level 
of the model. In BMDP5V however, either all or 
non of the (level 1) individual growth coefficients 
are specified as random. Coefficients on the sec- 
ond, between-subject, level are always fixed. Ex- 
planatory variables can therefore only operate on 
the second level to account for individual growth 
curve coefficient variation. Further, in BMDP5V 
there is no build in way to specify interaction 
between fixed variables at level 2 and random 
coefficients at level 1. Inflexibilities of this kind 
in BMDP5V are caused by the fact that the pro- 
gram is in fact a variance component model, de- 
composing the total variance into a between part 
and a within part. The between model uses fixed 
coefficients always. The random coefficient 
growth curve model emerges by modeling the 
within-subject error components with an appro- 
priate covariance structure, which brings up the 
limitations mentioned above. 

The smooth way in which the within-subject er- 
ror covariances can be modeled in BMDP5V is a 
very useful feature analyzing time dependent 
data. Especially when the number of time points 
enlarges, the modeling of serial dependency be- 
comes increasingly valuable. In BMDP5V this is 
easily accomplished: several relevant covariance 
structures are build into the program and ready 
foi" use. However, the user has to be aware of the 
fact that applying those structures not necessarily 
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implies a random coefficient structure for the 
individual growth parameters. Reversely, the 
multilevel programs do not offer easily applicable 
ways in which the within-subject (level I) covari- 
ances can be modeled. In theory, complex level 1 
covariance structures can be formulated: Gold- 
stein, Healy and Rasbash (1994) give a detailed 
discussion of multilevel time series models. 

Centering of the within-unit explanatory vari- 
ables brings up another point of difference. Al- 
though it changes the way in which the within- 
unit coefficients are interpreted, as was men- 
tioned before, centering can be computationaily 
convenient. Concerning the multilevel programs, 
in HLM centering is offered as an option, 
whereas in ML3 it is realized by simple data 
manipulation using NANOSTAT commands. 
However, HLM refused to run with uncentered 
variables, because of singularity problems. ML3 
on the other hand, provided centered as well as 
uncentered solutions. In contrast~ it seemed im- 
possible to compute a centered solution i n  
BMDP5V. For this purpose, the program re- 
quires additional input of non-integer values. 
Unfortunately, in the BMDP version currently 
available to us, this option was not available. 
Meanwhile we now from personal communica- 
tion with BMDP that this feature is implemented 
in the PC-90 version of the BMDP software. As 
an alternative, a 'work-around' approach using 
covariates was suggested but we were not able to 
further elaborate on this topic. 

Another major point of difference is the handling 
of numerical, explanatory variables in the be- 
tween-subject model. In HLM and ML3, numeri- 
cal variables at this second level are treated as 
predictor variables measured at an interval level, 
just as is the case in common regression analysis. 
BMDP5V, on the other hand, is developed as a 
general version of the analysis of variance model. 
Hence, variables acting in the between-subject 
model are considered as categorical 'grouping' 
variables. The categories of these variables are 
coded by a set of dummy variables, as if they are 
indicating separate experimental conditions. It 
means that for each dummy variable, or separate 
group code, an additional model parameter is 
created. Hence, the variance that can be ex- 
plained by the model is decomposed into single 
degree of freedom terms. Therefore, in those 

cases, the results of BMDP5V versus those of the 
multilevel programs are somewhat difficult to 
compare, although the amount of variance ac- 
counted for by the model, should be identical for 
both approaches. 

As far as parameter estimates are concerned, we 
have observed that the three programs produce 
similar, though not identical results. Differences 
are mainly caused by the different estimation 
procedures employed. In HLM and BMDP5V 
variance estimates may become slightly negative 
in case these parameters are at the boundary of 
the parameter space (equal to or close to zero). 
ML3 simply sets these estimates to zero (but this 
option can be turned off). The programs show a 
large difference between EM and the other im- 
plemented estimation procedures, in the number 
of iterations required for convergence. It is 
clearly illustrated that when parameter estimates 
come close to zero, the EM algorithm is slowly 
converging. 

A minor point of concern is the following. When 
growth data are analyzed in HLM, the number of 
cases is limited to 300. This restriction is caused 
by the fact that the number of groups is limited 
analyzing growth data. Groups refer to the sec- 
ond level, so in a usual hierarchically organized 
data set, where individuals are considered level 1 
units, this is not a problem in particular. In prac- 
tice, we will seldom want to make use of more 
than 300 groups. However, when growth data are 
treated as hierarchical, measurements are the 
level 1 units and individuals become the second 
level. Hence, we have a restriction on the number 
of cases. It may be overcome by changing the 
defaults in the HLM source code and having it 
recompiled. As far as we know one has access to 
this source code in the non-PC versions of HLM 
only. 
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