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WATER RESOURCES RESEARCH, VOL. 23, NO. 6, PAGES 1027-1035, JUNE 1987 

Parameter Estimation in Groundwater' Classical, Bayesian, 
and Deterministic Assumptions and Their 

Impact on Management Policies 

HUGO A. LOA!C!GA 

Department of Geological Sciences, Wright State University, Dayton, Ohio 

MIGUEL A. MARINO 

Department of Land, Air, and Water Resources and Department of Civil Engineering, University of California, Davis 

This work deals with a theoretical analysis of parameter uncertainty in groundwater management 
models. The importance of adopting classical, Bayesian, or deterministic distribution assumptions on 
parameters is examined from a mathematical standpoint. In the classical case, the parameters (e.g., 
hydraulic conductivities or storativities) are assumed fixed (i.e., nonrandom) but unknown. The Bayesian 
assumption considers the parameters as random entities with some probability distribution. The deter- 
ministic case, also called certainty equivalence, assumes that the parameters are fixed and known. 
Previous work on the inverse problem has emphasized the numerical solution for parameter estimates 
with the subsequent aim to use them in the simulation of field variables. In this paper, the role of 
parameter uncertainty (measured by their statistical variability) in groundwater management decisions is 
investigated. It is shown that the classical, Bayesian, and deterministic assumptions lead to analytically 
different management solutions. Numerically, the difference between such solutions depends upon the 
covariance of the varameter estimates. The theoretical analyses of this work show the importance of 
specifying the proper distributional assumption on groundwater parameters, as well as the need for using 
efficient and statistically consistent methods to solve the inverse problem. The distributional assumptions 
on groundwater parameters and the covariance of their sample estimators are shown to be the dominant 
parameter uncertainty fastors affecting groundwater management solutions. An example illustrates the 
conceptual findings of this work. 

1. INTRODUCTION 

There has been a substantial number of research papers 

dealing with the inverse problem in the last two decades. Yeh 
[1986] summarized many of the contributions reported in the 
literature. The main goal of the various approaches to the 
inverse problem is to obtain unbiased and consistent esti- 
mators of groundwater parameters based on measured values 
of the pertinent field variable. The computed estimates are 
then available for use in simulation models that predict the 
response of aquifers to natural or anthropogenic inputs. Such 
simulation models are commonly integrated within more gen- 
eral management schemes to yield various decision variables 
that optimize specified objectives (see, for example, Danskin 
and Gorelick [1985]). The statistical properties of parameter 
estimators (in particular their covariances) affect the simulated 
field variable (see, for example, Freeze [1975]) and conse- 
quently should have an influence on the output resulting from 
any management scheme that includes the groundwater model 
as a subunit. The theoretical analysis of the dependence of 
management decisions on groundwater parameter uncertainty 
is the main focus of this study. 

Parallel to the development of stable and reliable algo- 
rithms for the solution of the inverse problem, groundwater 
management modeling has received substantial attention (see, 
for example, Gorelick [1983]). However, the authors are not 
aware of research devoted to the analysis of the relationship 
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between the solution to the inverse problem and the quality of 
groundwater management decisions, except for a few case- 
specific studies based on sensitivity analyses (see, for example, 
Young and Bredehoefi [1972] or Maddock [1974]) or the 
chance-constrained analysis by Tung [1986]. A review of the 
literature indicates that it is customary to solve the inverse 
problem first and then use the parameter estimators into man- 
agement models, treating such estimators as if they were non- 
random variables. It is shown below that treating parameter 
estimators as deterministic entities leads to management solu- 
tions that are different from the true ones consistent with 
more realistic assumptions about the parameters. It is also 
shown in this work that if parameter estimators are treated as 
stochastic entities (as they should be treated), then the solu- 
tions to the management problem are functions of the statis- 
tical variability of those estimators. In fact, such management 
solutions are also dependent on whether the parameters are 
treated as fixed but unknown (i.e., the classical approach) or as 
random variables with some probability distribution (i.e., the 
Bayesian approach). 

The purpose of this study is to present a theoretical analysis 
of groundwater parameter uncertainty and its relationship 
with management solutions. An analytical functional relation- 
ship between control solutions for groundwater management 
and the statistical properties of parameters is derived. The 
difference among management solutions based on the classi- 
cal, Bayesian, or certainty equivalence assumptions imposed 
on groundwater parameters is then established. The theoreti- 
cal developments are illustrated for open-loop and closed-loop 
versions of a management model. The former version is popu- 
lar among researchers who prefer nonlinear programming 
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1028 LOAICIGA AND MARINO.' PARAMETER ESTIMATION IN GROUNDWATER 

methods, whereas the latter is appealing to those who are 
more inclined toward dynamic programming. The findings of 
this work are identically applicable to either the open-loop or 
the closed-loop versions of the groundwater management 
problem. An example provides a numerical interpretation of 
the theoretical results developed in this study. 

2. PROBLEM STATEMENT 

Suppose that the continuity equation for an isotropic and 
inhomogeneous medium is given by 

&t 

in which K*= K*(x, y, z) denotes hydraulic conductivity; 
S = S(x, y, z) denotes specific storativity; F is a time- 
dependent sink term (e.g., pumping); and 4> = •p(x, y, z, t) de- 
notes piezometric head. Equation (1) is coupled with proper 
initial and boundary conditions that fully specify the time and 
space distribution of the field variable •p. It is assumed that K 
and S are distributed parameters, and under the classical ap- 
proach, they are treated as unknown but fixed (i.e., nonran- 
dom), whereas the Bayesian approach specifies them as being 
random coefficients following some probability distribution. 
The deterministic (or certainty equivalence) assumption con- 
sists of treating K and S as known and fixed parameters. 

Loaiciga and Marifio [1987] have shown that by dis- 
cretizing (1) by finite element or finite difference methods and 
solving for the field variable at time t, one obtains the linear 
discrete expression 

I-[011)t-1 + H lX, + u, t = 1, 2,"-, T (2) 

in which •t is an N x 1 vector containing piezometric heads 
at time t; II 0 is an N x N matrix whose elements are func- 
tions of the vector of parameters (i.e., hydraulic conductivities 
and specific storativities); II• is an N x K matrix whose ele- 
ments are functions of the parameter vector; x t is a K x 1 
vector of inputs or decision variables (depends on sink terms); 
and u t is an N x 1 vector error term that accounts for mod- 
eling and/or measurement errors. The error term u t may have 
an arbitrary covariance structure, and without loss of gener- 
ality, it is assumed to have an expected value equal to zero. 
The choice of time indexes in (2) implies that the state of the 
system at time t is a function of the state at time t- 1, of the 
decision implemented in the interval It- 1, t], and of the 
disturbance occurred in this same time interval. Notice that if 

physical parameters (e.g., hydraulic conductivities and/or spe- 
cific storativities) are estimated by a consistent method (say, 
maximum likelihood), then by letting • be the estimated pa- 
rameter vector, Ho(•) = •o and H•(•) - • are the corre- 
sponding matrix estimators. In the case of maximum likeli- 
hood estimation, flo and fl• are also consistent. Recall that an 
estimator is consistent if its limiting probability distribution 
converges to the true but unknown parameter being estimated 
(see, for example, Bickel and Doksum [1977, pp. 132-133]). 

In general, an additional (additive) term should be present 
on the right-hand side of (2) to account for known but essen- 
tially uncontrollable variables (i.e., boundary conditions). For 
the sake of simplifications in the mathematical developments, 
such a term has been dropped without affecting the con- 
ceptual validity of the results. The example in section 5 pro- 
vides details for a case in which this term, which depends on 
boundary conditions, is included. 

The groundwater management model consists of mini- 
mizing with respect to the decision variables xt, t = 1, 2, -.., 
T, the quadratic loss function 

T 

Lx = E • •t'Qt•t (3) 
t=l 

over the T periods in the control horizon, in which E denotes 
expectation, subject to the model (2); the primed notation 
denotes the transpose of a vector. The policymaker's prefer- 
ences are embodied in the symmetric matrix Qt (notice that 
since equation (3) is quadratic, symmetry is purely an assump- 
tion of convenience). Equation (3) is more general than it may 
seem at first hand. Costs on inputs can be handled by aug- 
menting (2) with x t = Ix t (I is an identity matrix) and includ- 
ing their penalties in a suitably enlarged matrix Qt. Desired 
paths of heads can be incorporated by subtracting them from 
both sides of the model equation (2). Thus (3) represents a 
general quadratic criterion and is quite frequently found in 
groundwater management models (see, for example, Madclock 
[1972], California Department of Water Resources [1982], and 
Casola et al. [1986]). In addition, the quadratic criterion (3) 
allows an analytical treatment, both in the open-loop and 
closed-loop formulations of the management problem, of the 
relationship between parameter uncertainty and the optimal 
solutions. An example is given in section 5. 

To clarify what is at issue with regard to the three different 
possible assumptions (i.e., classical, Bayesian, and determinis- 
tic) on the parameters, let us consider an univariate problem 
involving one time period, a single head •Pt, and a single input 
x t, with anything else relegated to an error term u c Under the 
Bayesian assumption, the parameters are random. Thus it is 
the sum of the mean (say, 7) and a stochastic deviation (say, 
that links the input and the field variable; i.e., 

,P, = (• + ,Dx, + u• (4) 

It is important to note that it is the evolution of the parameter 
7 + St and not the parameter mean 7 that multiples the input 
variable x t. 

In the classical approach, the parameters are unknown but 
fixed, leading to 

•Pt = 7xt + ut (5) 

in which the fixed but unknown true parameter 7 links the 
input term to the field variable. Randomness exists because 
the parameter is unknown and must be estimated, not because 
the parameter is fundamentally stochastic, as in the Bayesian 
case. Given that the true parameter 7 is unknown, decisions 
must be based on an estimate • that includes sampling error r/, 
i.e., • -- 7 + r/. The model in terms of estimated variables is 

4, = (•7 + rl)X t + (u t -- rlXt) (6) 

to be contrasted with the true model (5) and the Bayesian 
model (4). Since estimation is based on n prior observations, 
so that the estimation and control periods are disjoint, the 
unknown sampling error r/ (a function of the first n observa- 
tions) has already occurred and will not vary through the 
control horizon. In contrast, the stochastic component •t of 
the parameter (see equation (4)) is yet to be realized within the 
control horizon under the Bayesian (random-parameter) as- 
sumption. Since the classical and Bayesian models are so dif- 
ferent, it is not surprising that their corresponding solutions to 
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LOAICIGA AND MARIlqO' PARAMETER ESTIMATION IN GROUNDWATER 1029 

the management problems are also distinct. A primary objec- 
tive of this study is to derive the management solutions consis- 
tent with the classical, Bayesian, and deterministic assump- 
tions, and to compare them. 

3. OPEN-LOOP STOCHASTIC CONTROL 

An npen-!oop solution to the minimization of (3) subject to 
(2) is more easily derived if (2) is expressed in terms of the 
known initial conditions •0; i.e., 

t-1 t-1 

•t = Ilot•o + • Ilot'II•xt-t, + • Ilot'Ut-t, (7) 
k=0 k=0 

for t = 1, 2, .-', T. In (7), 1-Io • means HoHo ... H o t times. 
Time stacking (7) yields 

= no .o + no..n, nl. 
L*d 0 [IoT- 2111 
(TN x 1)(TN xN) (N x 1) (TN x TK) 

I 

H o I 
+ . 

0 TM [I0 TM ß ß ß 

(TN x TN) 

or in shorthand notation, 

• = ©•o + •Px + u 

x 1 

x 2 

ß ..II • 
(TK x 1) 

u 1 

u ! (8) 
(TN x 1) 

(9) 

In (9), the vector u equals the product of the matrix and vector 
in the third term of the right-hand side. Notice that by ex- 
pressing (8) and (9) in terms of the initial conditions, any 
subset of the piezometric heads can be decoupled so that only 
those heads that are actually targets on the management 
model need be carried in the algebraic developments. Equa- 
tion (9) can be viewed as a response function, where the de- 
pendent variable is explicitly (and linearly) expressed in terms 
of the initial conditions and the control variables. Therefore 

(9) is a generalization of the technological function introduced 
by Maddock [1972], since it applies to irregular, finite do- 
mains, and linear processes with nonhomogeneous boundary 
conditions. Furthermore, groundwater quality models dealing 
with linear transport processes (see, for example, Willis 
[1979], Gorelick and Remson [1982]) would lead to system 
model equations identical to (9) with proper redefinition of 
variables (e.g., piezometric heads would be replaced by con- 
centrations, etc.). 

Applying the rule vec (ABC) - (C' © A) vec (B) to (9), where 
vec is an operator that stacks successive columns of a matrix 
below one another and © denotes Kronecker's product (see 
the appendix), yields 

dp = (dpo' © ITN ) vec ((9) + (x' © ITN ) vec (•) + u (10) 

in which lrN denotes the TN x TN identity matrix. The ob- 
jective function (3) is rewritten in shorthand notation as 

L 1 = E•'Q• (11) 

in which Q is a block diagonal matrix containing QI' Q2, '' ', 
QT along the diagonal. 

Substituting (10) into (11) and expanding the resulting ex- 
pressions gives 

L 1 = E{vec (O)'(•o' © ITiv)'Q(•o' © ITiV) vec (O) 

+ vec (•)'(x' © lrlv)'Q(x'© ITiV) vec (W) 

+ u'Qu + 2 vec (O)'(•o' © ITN)'Q(x'© ITiV) vec (•) 

+ 2 vec (0)'(•o'© ITN)'Qu 

+ 2 vec (W)'(x' © ITN)'Qu } (12) 

Noting that the cross-product terms in a single error (e.g., 2 
vec ((9)'(•0'© lrffQ u) have zero expected values and re- 
grouping the expectation of the terms that do not involve the 
decision vector x into a separate term L* that is irrelevant to 
the optimization gives 

L 1 = L* + E[vec (W)'(x' © IT•v)'Q(x'© IT•v) vec (•)] 

+ 2E[vec ((9)'(•o'© IT•)'Q(x' © IT•) vec (W)] (13) 

The last two terms in (13) have the same structure, so it suf- 
fices to examine only one. Consider 

l• = 2E[vec ((9)'(•o' © IT•)'Q(x' © ITN) vec (W)] (14) 

By using the property of a trace operator that states that for 
arbitrary conformable vectors a, b, and matrix A, Tr 
(a'Ab) = Tr (ha'A) (see the appendix) permits (14) to be rewrit- 
ten as 

l, = 2 Tr {E[vec (W) vec ((9)'](½0'© IT•v)'Q(x'© IT•V)} (15) 

Next, in order to express (15) in terms of observables, the 
classical assumption on the parameters (9 and W is used; i.e., 
they are assumed as fixed and unknown. The Bayesian and 
deterministic solutions are readily obtained once the classical 
solution is available. 

3.1. The Classical Approach 

First, notice that 

E[vec (W) vec ((9)'] = E[vec (W)]E[vec ((9)'] (16) 

since, under the classical assumption, W and (9 are nonran- 
dom. W and (9 are estimated by Cp and •), and these esti- 
mators are assumed unbiased, e.g., E vec(C-P)= vec (W). From 
the well-known expression for the covariance Z; of two arbi- 
trary random vectors w and z, i.e., Z,,,.- Ewz'--EwEz', it 
follows that 

E[vec (W) vec ((9)'] = E[vec (W)]E[vec ((9)'] 

= E vec (CI,)E vec (0)' 

= :[vec (% vec - 

The second equality in (17) follows from the fact that E[vec 
(W)] = vec (W) = E[vec (cp)], since W is fixed and its estimator 
C_p is unbiased. The same arguments hold true for (9. In (17), 
Z•,o is the TKTN x NTN covariance matrix of vec (C_p) with 
vec ((9). Using (17) in (15) yields 

l x = 2 Tr {[E[vec (C_p) vec (•3)'] -- E•,o] 

'(½o'© lrff Q(x' © IT•V)} (18) 

By using the identity 

Tr (ABCDE) = vec (B')'[A'E' © C] vec (O) (19) 
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1030 LOAICIGA AND MARIlqO.' PARAMETER ESTIMATION IN GROUNDWATER 

for arbitrarily conformable matrices A, B, C, D, and E (see, for 
example, Neudecker [1969]) (18) can be rewritten as 

l• = 2[vec (4)o' © ITN)]' 

ß {[E[vec (•) vec (Cp),] _ Z,i,©, ] © Q} vec (x' © ITN ) (20) 

The outer factors in (20) are simplified by noting that 

vec (x' © Ir• ) = F,,x (21) 

in which F,, is a TNTKTN x TK matrix aggregator whose 
elements are either zero or one and are suitably arranged 
through rows and columns to make (21) valid (see the appen- 
dix). Similarly, a TNNTN x N matrix aggregator F, is also 
introduced to simplify the outer product on 4)o' i.e., F, is such 
that 

vec (4)o' © ITN) = ["4•0 (22) 

By using (21) and (22), the term l• in (20) becomes 

l• = 24•o'F,'{[E[vec (•) vec (cI')'] - Z•'] © Q}F•x (23) 
A similar treatment is applicable to the other term involving 

Kronecker products in (13), leading to the following equation' 

E[vec (•)'(x' © IT•)'Q(x' © IT•) vec (tp)] 

= x'F,,'{[E[vec (•P) vec (•P)'] -- Z•,•,] © Q} F,,x (24) 

in which Z,i,, I, is the TNTK x TNTK symmetric covariance 
matrix of vec (•P). Substitution of (23) and (24) into (13) gives 

L• = L* + x'F,,'{[E[vec (Cp) vec (Cp),] _ Z,i,,i,] © Q}F,,x 

+ 200o'F,'{[E[vec (•) vec (cI')'] - Z•'] © Q}I'•x (2•) 
Define 

L• = I'•'{[•[vec (cI') vec (cI')'] - Z•] © Q}I'• (26) 

L• = I'•'{[•[vec (q') vec (•))'] - Z•] © Q}I',4•o (27) 
The first-order condition for a minimum applied to (25) and 
the use of (26) and (27) in the resulting expression yield the 
optimal vector x* decisions for the entire control horizon' i.e., 

x* = -- L• - • L• (28) 

Actual implementation of a management policy requires 
substitution in (26) and (27) of the population moments with 
their sample estimates. Therefore let 

L• = r/{[vec (CI') vec (CI')' - $:•] © Q}F• (29) 

L• = r/{[vec (•) vec (½)'- $:•] © Q}I'•4•o (30) 
leading to the optimal solution, 

• = -L•-xL• (31) 

In (29) and (30), •,i,,i, and •,i,o are the covariance matrices of 
the parameter estimators that are available from the solution 
of the inverse problem. Equations (29) and (31) characterize in 
a general form the dependence of the management policy on 
the parameter estimates obtained from the solution of the 
inverse problem. The reader may realize that for arbitrary 
nonlinear objective functions, (31) represents the Newton 
equations that yield consecutive approximations to the solu- 
tion. Even under the condition of (nonquadratic) nonlinear 
objective function, the dependence of the Hessian L•,•, and 
gradient L•, on •, •, •,i,,i,, and •,i,o as specified in (29) and (30) 
is well-approximated. Thus œ•,•, and L•, as defined in (29) and 

(30) are quite useful in characterizing the nature of the solu- 
tion under the classical assumption. Furthermore, the usual 
approach, popular in the groundwater management literature, 
of using the parameter estimates obtained from the solution of 
the inverse problem in the management model and then as- 
suming them constant is equivalent to setting S2,i,, I, and S2,i, • 
equal to zero in (29) and (30). Therefore the deterministic or 
certainty equivalence policies disregard the statistical varia- 
bility of estimators and do not include their covariances. The 
certainty equivalence solution approaches the classical result 
as long as the covariances of estimators tend to zero. This will 
occur for consistent estimators Cp and • only when the sample 
size used in the solution of the inverse is very large, an im- 
probable situation in applied groundwater management where 
data scarcity is more of the rule rather than the exception. It is 
emphasized that usually the inverse problem solutions are in 
terms of physical parameters, e.g., hydraulic conductivities 
and/or storativities. If such parameter set, call it g, is estimated 
via a consistent method, like maximum likelihood, the 
matrices •(•)= •P and ©(•)= • are also consistent maxi- 
mum likelihood estimators. 

3.2. The Bayesian Approach 

The Bayesian, random-parameter assumption leads to a 
solution that resembles the classical result, except for an im- 
portant sign inversion. Suppose that the groundwater parame- 
ters are random, with expected values E(tP)= tp and E(O)= 
O, and covariance Zvv and cross-covariance E w. Thus 

E[vec (W) vec (O)'] = vec (W) vec (O)' + Z,i, © (32) 

Next, the factor E[vec (tp) vec (O)'] in (15) is substituted by 
the right-hand side of (32). This is in contrast to the expression 
used in the classical approach (i.e., equation (17)), where a 
minus sign appears in its right-hand side, indicating a subtrac- 
tion of the covariance matrix. Notice that in (32) the correct 
sign is positive and the covariance matrix is added. The re- 
maining developments leading to the Bayesian control are 
analogous to those shown above for the classical case. After 
sample estimates replace the unknown means and covariances 
in the appropriate expressions, the Bayesian policy can be 
shown to be 

(33) 

in which 

•,,,, = F,,'{ [vec (Cp) vec (Cp), + S2,i,,i, ] © Q} F,, (34) 

[•,, = F,,'{[vec (•P) vec (•)' + •',i,•] © Q}F4,4So (35) 
Equations (34) and (35) are identical to the classical equa- 

tions (29) and (30) except for the plus sign appearing in the 
factors involving second moments in the Bayesian equations 
(34) and (35). Notice that a minus sign is required in those 
factors in (29) and (30). Clearly, the classical and Bayesian 
management solutions differ more between themselves than 
each of them does with respect to the deterministic solution, 
where parameter covariances are ignored altogether. For con- 
sistent estimators, $;,i,,I, and •,,i,o vanish in the limit (i.e., for 
large sample sizes), and the classical and Bayesian results are 
asymptotically equivalent and equal to the deterministic solu- 
tion. However, from a practical standpoint, field data samples 
are commonly quite limited and the classical and Bayesian 
solutions are dominated by the small sample properties of 
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LOAICIGA AND MARINO: PARAMETER ESTIMATION IN GROUNDWATER 1031 

parameter estimators, rendering the asymptotic convergence 
only marginally significant from an utilitarian viewpoint. 

4. CLOSED-LOOP STOCHASTIC CONTROL 

4.1. The Classical Approach 

In some cases, the optimal feedback rule (i.e., the closed- 
loop solution) may be preferred to the simple knowledge of 
the optimal policy values over the entire horizon (i.e., the 
open-loop solution as shown in section 3). This section consid- 
ers the closed-loop solution based on the classical asstimption, 
Le., fixed but unknown parameters. The Bayesian result fol- 
lows readily•from ,the classical solution. The algebra parallels 
the open-loop development, .except for the fact that only one 
period is treated at a time. We will use the classical backward 
recursion approach of dynamic programming. 

The problem is, as before, to minimize the .objective func- 
tion (3) subject to the model constraint in the form of (2), since 
a feedback rule based on 4h-t is desired, for any period t. To 
incorporate again the computationally expedient aggregators 
(see, for example, equations (21) and (22)) the model equation 
(2) is rewritten by applying the vec operator; i.e., 

•, = (•,-t' © In') vec (1-Io) + (x,'© IN) vec (1-It) + u, (36) 

Beginning in the terminal period T in an attempt to develop 
the backward dynamic programming recursion, the problem 
of minimizing 

Mr = E4sr'Qr4sr (37) 

is directly analogous to the open-loop solution. Substitution 
of the constraint equation (36) with t = T into (37), dropping 
terms that involve a single u t whose expectation is zero, and 
collecting terms that do not involve x r and are irrelevant to 
the minimization into Mr* yields 

M r = Mr* + Tr 

' {E[vec (I'll) VeC (II1)'](XT' (•) IN)'HT(XT' •) IN) } 

+ 2Tr {E[vec(II0vec (Iio)'](4Sr_t'(8)IN)'Hr(xr'(8)lN) } (38) 

in which Ht--Q r, and the trace operator has been used to 
reorder the factors as before (see equations (14) and (15)). As 
done previously, the square of the parameters is replaced by 
the expectation of the square of their estimates less their co- 
variance matrix under the classical assumption, the trace rule 
equation {19) is used, and the matrix aggregators are substitu- 
ted (the dimensions are now NKN x K for F,, and NNN x N 
for F,) to give 

Mr= Mr* + xr'rx'{[E[vec (fit) vec (fl 0'] --Zmn•](8)Hr}rxx r 
+ 24•r- t'r,'{[E[vec (rio) vec (fit)' ] 

-- Zn,no'] (8) Hr}F•Xr (39) 

in which E;n•n• is the NK x NK covariance of vec (fit), and 
En•no denotes the NK x NN covariance of vec (fit) with vec 
(flo)- Applying the first-order condition to (39), i.e., setting 
OMr/OXr equal to zero and solving yields the closed-loop rule 

Xr* = Gr4sr- t (40) 

in which 

a• = -{r•'{[•[vec (fl0 vec (fI•)'] - zriai•] © H•}r,,} -• 

ß r•'{[E[vec (lit) vec (I'Io)'] - En•no] (8) HT}F, (41) 
(recall H r -- Q r). 

For period T- i, the principle of optimality [Bellman, 
1957] permits reduction of the two-period problem to a one- 
period-- pt om•m with 

Mr_ t = E[4s r_ t 'Qr_ t4Sr_ t + ]Or] (42) 
in which/•r r is the minimum cost to go obtained by substitut- 
ing the optimal rule or policy equation (40) into the terminal 
loss equation (39). Applying the same steps used to derive (39), 

but now replacing population moments by their sample esti- 
mates to make the results computationally feasible, gives the 
required recursion in H that characterizes the closed-loop 
solution; i.e., 

Hr-t = Qr-t + r,'{[vec (rio) vec (rio)' - •nono] 

+ Gr'r•'{[vec (fI•) vec (rio)' - gmno] © Hr}r, (43) 

which is in general form. Thus the optimal management policy 
or control is generated for any period t by simply replacing T 
with t in (40), (41), and (43) and with the understanding that 
population moments are replaced with sample estimates in 
those equations. 

4.2. The Bayesian Approach 

By analogy with the open-loop solutions of section 3, it is 
straightforward to see that the Bayesian assumption of 
random parameters leads to equations similar to the classical 
closed-loop solution embodied by (40), (41), and (43), excei•t 
for a sign inversion in the factors involving sample second 
moments in those equations. Explicitly, the Bayesian analogs 
of (41) and (43) are glven by 

½• = -{r•'{[E[vec (fl0 vec (fI•)'] + Zi•i•] © a•}r•} -• 

r•'{[E[vec (fI•) vec (flo)'] + Znaio] © a•}r, (44) 

/•_x = Q•_x + F,'{[vec (flo) vec (rio)' + $:l•ono] © 

+ ½•'r•'{[vec (fix) vec (rio)' + $:1•1•o] © fi•}r, (45) 

respectively. Notice that in (45) all second population mo- 
ments were replaced by their sample estimates. The determin- 
istic approach of substituting parameter estimators in the 
groundwater management model and neglecting their statis- 
tical variabillty is equivalent to setting all the covariances 
appearing in (41) and (43)-(45) equal to zero. 

It has been shown in sections 3 and 4 that both in the 

open-loop and closed-loop solutions to the management prob- 
lem, the different asSUmptions (i.e., classical and Bayesian) lead 
to a fundamental sign inversion in their respective control 
solutions. In contrast, the deterministic approach sets all co- 
variances equal to zero, neglecting the statistical variability of 
parameters. The impact of parameter uncertainty on manage- 
ment solutions in the classical and Bayesian cases is measur- 
able in terms of the covariances of parameter estimators. The 
following application example illustrates numerically the 
meaning of the analytical results obtained previously. 
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1032 LOAICIGA AND MARI•10' PARAMETER ESTIMATION IN GROUNDWATER 

5. APPLICATION EXAMPLE 

Consider the aquifer shown in Figure 1. Groundwater flow 
takes place under time-varying boundary conditions and 
pumping at x = L/2 (L = 2000 m). The boundary conditions 
at x=0 and x=L are given by •b A=80+t and •b•= 100 
- t, respectively. The time index t takes the values t = 0, 1, 2 
ß .., T and the heads are expressed in meters. The initial distri- 
bution of heads is linear between the two boundaries of the 

aquifer. Loaiciqa and Marigo [1987] applied the method of 
maximum likelihood based on a set of head values at nodes 1, 
2, and 3 to derive groundwater parameter estimators and their 
covariances (Table 1 of their paper contains the pertinent 
data) under the classical assumption. Assuming constant 
transmissivity and storativity throughout the flow domain, 
their values were estimated as • = 462 m2/day and 
0.0110, with standard errors of 47.8 m2/day and 0.00390, re- 
spectively. Due to the presence of nonhomogeneous boundary 
conditions, the flow equation (see equation (9)) was expressed 
as 

4• = O4•o + Wx + Az + u (46) 

in which the TM x 1 (M = 4) vector z is a function of the 
boundary conditions and thus known and deterministic [see 
Loaiciqa and Marigo, 1987], and A is a TN x TM parameter 
matrix. The estimates • and •q quoted above and their covari- 
ances were used to compute the matrix and covariance esti- 
mates (i.e., W, E,I,,I,, etc.) needed in the open-loop control ex- 
pressions. From the developments of section 3 it is straightfor- 
ward to show that the addition of the vector z in (46) modifies 
the control solution only through the gradient, leaving the 
Hessian matrix unchanged. For completeness, the open-loop 
control expressions used in this application are 

x = --L•-IL• (47) 

in which 

L,,,, = r,,'{[vec (OF) vec (OF), ___ •,I,,I,] © Q}F,, (48) 

L,, - Fx'{[vec (Cp) vec (•)' _+ •,vo] © Q•F•4•o 
+ F,,'{[vec (Cp) vec (•)' + •,,I,^] © Q•F:z (49) 

where the plus and minus signs in the factors involving sample 
second moments in (48) and (49) indicate Bayesian and classi- 
cal solutions, respectively. In (49), •,I,^ is the estimate of the 
covariance of vec (Cp) with vec (3,). Notice that the Hessian in 
(48) has not been modified (compare with equations (29) and 
(34)), whereas the gradient in (49) includes an additional term 
accounting for the uncontrollable, known vector z (the aggre- 
gator F: is of size TNTMTN x TM). Since the open-loop 
and closed-loop solutions are numerically identical, only the 
former is referred to in this application. The objective is to 
minimize the sum of squared deviations of the piezometric 
head at node 2 (where pumping takes place) about a reference 
value of 4•2 = 85 m. Since there is only one target value, it is 
possible to decouple and operate only with the heads at node 
2 for t=l, 2,... T in (46). Hence only rows 2, 5, 8,..., 
3T- 1 of (46) are used. The vectors 4•o, x, and z are not 
affected by the &coupling processes. Using a time horizon of 
20 periods, i.e., t = 1, 2, ..., 20, the dimensions of the vectors 
4•, 4•o, x, z, and u in the decoupled flow equation used in the 
application are 20 x 1, 3 x 1, 20 x 1, 80 x 1, and 20 x .'.' 
respectively. Notice that there is only one decision variable for 
each time period. The dimensions of the matrices O, W, and A 

are 20 x 3, 20 x 20, and 20 x 80, respectively, in the decou- 
pled equation. Only the 20 rows corresponding to the head 
values at node 2 have been kept in these matrices, while their 
column dimensions were not affected by the decoupling pro- 
cedure. In order to express the objective function in the qua- 
dratic form given in (11), one must subtract the 20 x 1 vector 
of target heads whose elements are equal to 85 m from both 
sides of the (decoupled) flow equation. Because of the short 
time horizon, the weighting matrix Q in (11) was set equal to 
the identity matrix (of dimensions 20 x 20), giving equal 
weight to each squared deviation through the control horizon. 

The decision policies were computed for the classical, 
Bayesian, and deterministic cases and are shown in Figure 2, 
along with their corresponding temporal head distributions at 
node 2. Notice that the classical decision policy specified 
higher pumping rates at early times, driving the head closer to 
the target than the Bayesian and deterministic policies. How- 
ever, for t > 10, the classical decision policy (i.e., pumping) 
levels off at values lower than the Bayesian and deterministic 
solutions, and hence its rate of approach to the target head 
becomes smaller than that exhibited by the other two solu- 
tions. The Bayesian solution shows a pattern almost sym- 
metrically opposite to the classical results, i.e., lowest pumping 
rates at early times and highest rates for t > 10, thus exhibit- 
ing the lowest and highest rates of approach to the target head 
value for t < 10 and t _> 10, respectively, relative to the classi- 
cal and deterministic policies. The deterministic pumping rates 
and head distribution lie in between the classical and Bayesian 
results throughout the entire control horizon. In terms of the 
total loss associated with each solution, their values were 
105.6, 125.8, and 145.3 for the classical, Bayesian, and deter- 
ministic policies, respectively. Since the inverse problem was 
solved under the classical assumption, the classical solution 
should be viewed as the correct answer in this case. This ex- 

ample illustrates in a clear manner the conceptual findings of 
sections 3 and 4. Parameter variability and the assumption 
imposed on the structure of the parameters produce different 
management solutions and therefore may have an impact on 
management policies. 

6. SUMMARY AND CONCLUSIONS 

Closed-loop and open-loop groundwater management solu- 
tions have been analytically derived for the optimization of a 
quadratic objective function subject to the linear system of 
constraints imposed by the groundwater flow equations. The 
solutions are of a stochastic nature, in the sense that ground- 
water parameters are modeled as statistical quantities, both 
under classical and Bayesian assumptions imposed upon 
them. The groundwater parameters can be estimated by any 
method suitable to solve the inverse problem, and even 
though the estimates and covariance matrices may vary from 
method to method, one form of the control solutions remains 

unchanged. It has been shown that classical and Bayesian 
solutions differ by a sign inversion in those factors involving 
sample second moment estimates, e.g., Hessian and gradients, 
whereas the deterministic solution sets the covariances of esti- 

mators equal to zero. 
One important practical implication of our findings is rele- 

vant to actual groundwater management model applications. 
The classical approach, i.e., groundwater parameters assumed 
nonrandom and unknown, is widely adopted in the solution of 
the inverse problem. Typically, the inverse problem is first 
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LOAICIGA AND MARINO' PARAMETER ESTIMATION IN GROUNDWATER 1033 

Fig. 1. 

•A (t) 

/ / / / / / / / / / / / / ,/' / / / / 

L 

•B (t) 

Confined aquifer subject to time-dependent boundary conditions and a discharge (of units L3T - •L-•)at x = L/2. 

solved, and subsequently the calibrated parameters are intro- 
duced in the management model as deterministic quantities, 
producing management solutions that are compatible with a 
deterministic assumption on the parameters, but inconsistent 
with their original classical interpretation in the solution of 
the inverse problem. From a practical viewpoint, the conse- 
quences of mixing two worlds, i.e., adopting a classical stand- 
point when solving the inverse problem, but using their values 
deterministically in a management model, depend upon the 
covariance of estimators and on the relative importance of 
various variables that enter in the management model as 
shown above. In particular, when the covariance of estimators 
is large, the classical, Bayesian, and deterministic solutions are 
bound to be significantly different. If the parameter estimates 
from the solution of the inverse problem are consistent, then 
their covariances monotonically decrease with the sample size 
and the classical, Bayesian, and deterministic solutions con- 
verge to the same results. 

The Bayesian approach is often found in the literature too, 
and for example, it is frequently assumed that the logarithm of 
transmissivities follows a Gaussian distribution. If such pa- 
rameters are used in a groundwater management problem, the 
results of sections 3 and 4 indicate the role of the Bayesian 
assumption on groundwater management policies. It was 

Fig. 2. 

1 o 90 
B 

8- c c 88 

6 86 '• 

d .85 ._o 

o'> 4 84 E 

.•_ B: Bayesian -'•• N ø e-1 B 03 
• I _c: _Classical.. • -- 

•. D: Deterministic c • 2/• Piezometric head 82 
• Pumping rate 
/ i i i i i i i i i 

0 2 4 6 8 10 12 14 16 18 20 

Time, in days 

Classical, Bayesian, and deterministic policies (pumping 
rates) and head distributions at node 2. 

shown that the Bayesian solution leads to a sign inversion in 
the closed-loop and open-loop solutions to the groundwater 
management problem when compared to the classical results. 
Solving the inverse problem under a Bayesian framework and 
then using parameter estimators deterministically in a man- 
agement model results in biased policies. The magnitude of 
such bias is a function of the covariance of parameter esti- 
mators. 

A numerical example has shown the differences in pumping 
schedules that are obtained for the same groundwater man- 
agement problem under the classical, Bayesian, and determin- 
istic assumptions on the parameters. In the example, the in- 
verse problem was solved under the classical assumption, and 
therefore the corresponding classical solution should be 
viewed as the correct answer that incidentally produced the 
minimum loss amongst the three alternative solutions. In com- 
plex management problems it is not possible to assess before- 
hand, i.e., prior to the solution of the problem, which of the 
three alternative solutions will produce a minimum (under 
minimization) of the objective function. It is conceivable that 
the answer obtained by mixing assumptions, e.g., taking a 
classical viewpoint when solving the inverse problem but 
adopting a deterministic stance in the management model, 
could produce values of the objective function that are lower 
(assuming minimization), for example, than those obtained 
from a classical solution of the inverse and the groundwater 
management problems. However, one must realize that mixing 
worlds, obtaining a classical solution to the inverse problem 
and then computing deterministic groundwater management 
solutions, may be computationally expeditious but it is tanta- 
mount to solving a management problem (i.e., the determinis- 
tic case) that is inherently different from the one conceived 
prior to the solution of the inverse problem. Further research 
is needed to fully assess the implications of the classical, 
Bayesian, and deterministic assumptions within the context of 
complex management problems. This paper provides a first 
contribution in that direction. 

When parameters are treated deterministically in a ground- 
water management model, perhaps because of extreme math- 
ematical complexity, the developments of this work indicate 
the need for using consistent methods to solve the inverse 
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1034 LOAICIGA AND MARINO: PARAMETER ESTIMATION IN OROUNDWATER 

problem and collecting reasonably large samples of field data. 
In such cases, parameter covariances usually approach small 
values quickly as the sample sizes increase, yielding manage- 
ment solutions that are likely to be numerically similar to 
those that would be obtained if groundwater parameters were 
truly deterministic, i.e., fixed and known. Last, but not least, a 
recent simulation study by Tung [1986], where a BayeSian 
assumption On the parameters is used, appears to further con- 
firm our theoretical results,. indicating the importance of ex- 

, 

plicitly including the statistical.variability of certain parame- 
ters (e.g., transmissi4ity) in groundwater management studies. 

APPENDIX' VECTOR-MATRIX OPERATORS 
:, 

The trace of an n x n square matrix A is defined as follows' 

Tr (A) = • a, (A1) 
i=1 

in which a u denotes the ith diagonal element of A. 
The vec operator stacks successive columns of an n x rn 

matrix B below one another, i.&, 

b 1 

vec (B)= (A2) 

nmX 1 

identity matrix, then 

vec (a' © I) = 

1 0 

(All) 

NOTATION 

H, N x N recursive matrix in the classical closed-loop 
solution. 

H, N x N recursive matrix in the Bayesian 
closed-loop solution. 

I n n x n identity matrix. 
K dimension of the decision vector for period t. 

K* hydraulic conductivity. 
L length of aquifer (m). 

L 1 objective function of the management problem. 
L* term of the objective function independent of 

decision variables. 

L•, TK x 1 gradient vector. 
L•, gradient in the Bayesian solution. 
L•, gradient in the classical solution. 

L•,•, TK x TK Hessian matrix of second derivatives. 
Ex• , Hessian in the Bayesian solution. 
œ•,•, Hessian in the classical solution. 

in which b• denotes the ith column of B. Mt cost-to-go function in the closed-loop solution. 
The Kronecker or (right) direct product of an I x s matrix C M,* term in the cost-to-go function independent of 

and an n x rn matrix B is defined as follows' decision variables. 

C 1 B ' ' ' C lsB 1 ß 

C (8) B = (A3) 
Lc'IB"' c'sB.j ,nxsm 

Several useful identities used throughout the paper are 
given nextß Suppose that C and D are conformable and square 
matrices, then 

Tr (CD)= Tr (DC) (A4) 

For a square matrix A, 

Tr (A)= Tr (A') (A5) 

For conformable vectors a, b and matrix A, 

Tr (a'Ab} = Tr (ha'A) (A6) 

(d/db)ia'Ab) = A'a (A7) 
Let A, B, C, D, F, and I be suitably dimensioned matrices in 

which I denotes the identify matrix; let a be a suitably dimen- 
sioned vector, then 

vec (ABC) = (C' © ,4) vec (B) (A8) 

Tr (ABCDF) = [vec (B')]'[A'F' © C]vec (D) (A9) 

vec (a' © I) = Faa (A10) 

In (A10), l•a is a matrix aggregator with elements equal to 
either zero or one, e.g., let a'= (a•, a2) and I be the 2 x 2 

3• minimum cost to go at time t. 
N dimension of the field variable vector. 

Q TN x TN matrix in the objectiv e function in the 
open-loop formulation. 

Q, N x N penalty matrix. 
S specific storativity. 
T number of periods in the control horizon. 
u TN x 1 error vector. 

u, N x 1 error vector. 
x TK x ! decision vector. 

x, K x 1 decision vector. 
i TK x 1 classical decision vector. 

i TK x 1 Bayesian decision vector. 
xt* K x 1 optimal closed-loop decision vector. 

•, mean of a random parameter. 
6 stochastic deviation about the mean of a random 

parameter. 
r/ sampling error of a parameter estimator. 
F matrix aggregator. 
• TN x N parameter matrix in the open-loop 

formulation. 

•) estimator of ©. 

• expected value of •. 
A TN x TM parameter matrix. 
g vector of parameters (unspecified dimension). 

H o N x N parameter matrix. 
fl o estimator of H o. 
l-I 1 N x K parameter matrix. 
fI1 estimator of II•. 
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LOAICIGA AND MARI•IO' PARAMETER ESTIMATION IN GROUNDWATER 1035 

2nono NN x NN covariance matrix of vec (rio). 
f•nono estimator of I;nono. 
I;n•no NK x NN covariance matrix of vec (fI•) 

with vec (rio). 
f•n•no estimator of 2n•no. 
•;?? TNTK x TNTK covariance matrix of vec (•). 
• estimator of E•. 
•e ................. rance matrix of vec • with 

vec (0). 
•o estimator of •o. 
• TN x TM covariance matrix of vec (•) with vec (•). 
• estimator of •. 

• N x 1 vector of piezometric heads for period t. 
• TN x 1 vector of piezometric heads. 
• TN x TK parameter matrix in the open-loop 

formulation. 

• expected value of •. 
( )' transpose of a vector or matrix. 
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