
UC San Diego
UC San Diego Previously Published Works

Title
Abnormal Capillary Vasodynamics Contribute to Ictal Neurodegeneration in Epilepsy

Permalink
https://escholarship.org/uc/item/3zb58983

Journal
Scientific Reports, 7(1)

ISSN
2045-2322

Authors
Leal-Campanario, Rocio
Alarcon-Martinez, Luis
Rieiro, Hector
et al.

Publication Date
2017-02-01

DOI
10.1038/srep43276
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3zb58983
https://escholarship.org/uc/item/3zb58983#author
https://escholarship.org
http://www.cdlib.org/


1Scientific RepoRts | 7:43276 | DOI: 10.1038/srep43276

www.nature.com/scientificreports

Abnormal Capillary 
Vasodynamics Contribute to Ictal 
Neurodegeneration in Epilepsy
Rocio Leal-Campanario1,2,*, Luis Alarcon-Martinez1,3,*, Hector Rieiro1,4,*,  
Susana Martinez-Conde1,5, Tugba Alarcon-Martinez1, Xiuli Zhao1,6, Jonathan LaMee1,7, 
Pamela J. Osborn Popp1,8, Michael E. Calhoun9, Juan I. Arribas1,10, Alexander A. Schlegel1, 
Leandro L. Di Stasi1,11, Jong M. Rho1,12, Landon Inge13, Jorge Otero-Millan1,5,14, 
David M. Treiman1 & Stephen L. Macknik1,5

Seizure-driven brain damage in epilepsy accumulates over time, especially in the hippocampus, which 
can lead to sclerosis, cognitive decline, and death. Excitotoxicity is the prevalent model to explain 
ictal neurodegeneration. Current labeling technologies cannot distinguish between excitotoxicity 
and hypoxia, however, because they share common molecular mechanisms. This leaves open the 
possibility that undetected ischemic hypoxia, due to ictal blood flow restriction, could contribute to 
neurodegeneration previously ascribed to excitotoxicity. We tested this possibility with Confocal Laser 
Endomicroscopy (CLE) and novel stereological analyses in several models of epileptic mice. We found a 
higher number and magnitude of NG2+ mural-cell mediated capillary constrictions in the hippocampus 
of epileptic mice than in that of normal mice, in addition to spatial coupling between capillary 
constrictions and oxidative stressed neurons and neurodegeneration. These results reveal a role for 
hypoxia driven by capillary blood flow restriction in ictal neurodegeneration.

Progressive neuronal degeneration is a frequent consequence of prolonged and/or repetitive seizure activity1,2, 
and is thought to be the result of glutamate-induced excitotoxicity, which produces calcium overload and acti-
vates pro-apoptotic molecular cascades3. Excitotoxicity activates the same pro-apoptotic pathways as hypoxia, 
however, so molecular labeling of pathways underlying excitotoxicity versus hypoxia is inherently ambiguous. 
Local hypoxia might therefore contribute to ictal neurodegeneration. This possibility is contrary to current 
thinking, however, because seizure foci are macroscopically hyperemic4, and draining veins in the epileptic brain 
are hyper-oxygenated (draining veins from seizure foci turn red with oxygenated blood), both of which suggest 
hyperoxia rather than hypoxia within the epileptogenic focus4–6. Yet, microscopic hypoxia, detectable only with 
recent imaging techniques, might be present, even during macroscopic hyperemia and in the absence of macro-
scopic hypoxia.
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One obstacle to determining the relative contributions of excitotoxicity and hypoxia to neurodegeneration 
has been that, whereas the effects of excitotoxicity can be tested in vitro, hypoxia due to microvascular ischemia 
can only be tested in vivo. The recent development of fiber-optic-bundle-coupled laser-scanning confocal fluo-
rescence imaging (Confocal Laser Endomicroscopy—CLE) has made it possible to establish the contribution 
of microvascular dynamics to ictal neural degeneration7. In vitro8,9 and in vivo10,11 cortical imaging has shown 
pericyte-driven capillary constrictions as a function of both drug application and functional local neural activity 
in healthy animals11. No studies to date have assessed the potential contribution of hippocampal microvascular 
constrictions to ictal neural degeneration, however. Here we used CLE to image microscopic blood flow in the 
hippocampus of KCNA1-null (Kv1.1 knockout (KO)) mice12,13 (the first of the genetic rodent models to replicate 
human temporal lobe epilepsy (episodic ataxia type 1))13, and their wild-type (WT) littermates. We also turned 
neurotypical mice into epileptic mice by treating them with kainic-acid (KA) (a classical experimental model of 
epilepsy). In addition, we used two-photon laser scanning microscopy to image microscopic blood flow14 in the 
cortex of KA and healthy animals. Hippocampal and cortical vasoconstrictions occurred in both epileptic and 
WT animals11, but capillaries exhibiting microspasms were more prevalent in epileptic mice. Intravenous mural 
cell labeling and in vivo imaging showed that mural cells drove the capillary constrictions in both epileptic and 
healthy animals.

See Supplementary Information, Supplementary Fig. 1 for a general summary of the methods used in this study.
Because hypoxia and excitotoxicity both activate the same caspase molecular apoptotic pathway, no extant 

molecular label can distinguish neurodegeneration caused by hypoxia versus excitotoxicity. We therefore devel-
oped a novel stereological analysis to detect the source of the apoptosis—hypoxia vs excitotoxicity—based on 
the spatial distribution of oxidatively-stressed neurons with respect to the vasculature. Because hypoxia is driven 
by a blood flow effect (ischemia), neurodegeneration due to hypoxia should be spatially associated to vessels. 
Excitotoxicity is not blood-flow related and thus should not result in cell death patterns that are spatially asso-
ciated with the vasculature. We found that apoptotic neurons in epileptic animals were more closely associated 
to the microvasculature than non-apoptotic cells, and that the apoptotic cells that were found in healthy ani-
mals were not associated with the vasculature. These results reveal a contribution of ischemic hypoxia to ictal 
neurodegeneration.

Results
We recorded hippocampal capillary blood flow in awake Kv1.1 KO mice and their WT littermates. To ensure that the 
effects were due to epilepsy and not the specific Kv1.1 mutation in our genetic model or anesthesia, we also imaged 
capillary blood flow in two other epileptic mice populations: an anesthetized cohort of KO and WT mice and an 
awake cohort of KA treated mice (a classical model of epilepsy15,16) versus a sham group. In the awake KO and KA 
cohorts we also performed in vivo mural cell imaging of vasospasms, novel stereological methods, and cortical 
two-photon imaging of mural cell vasospasms to determine the effects of abnormal blood flow on ictal cell death.

CLE of Hippocampal Capillaries in vivo. We used CLE to image blood flow (i.e. fluorescence in blood 
serum with 2MD green fluorescein dextran (Supplementary Information, Supplementary Fig. 2)) in the three dif-
ferent animal models. In our primary study with awake Kv1.1 KO animals, we recorded within 1154 hippocampal 
capillaries (703 vessels in 22 awake KO mice and 451 vessels in 19 WT littermates).

Vasospasms were more prevalent in the KO than in the WT animals, as shown by the following four findings:

1. The average rate of vasospasms across vessels was higher for KOs than for WTs (0.456 vasospasms/hr  
+/− 0.062 (s.e.m.) vs. 0.254 vasospasms/hr +/− 0.073). See Fig. 1A, expressed as the number of vasospasm 
onsets measured per hour of recording (t (1004) = 2.11; p = 0.035, labeled *).

2. The likelihood of a vessel exhibiting a vasospasm was higher for KOs than for WTs (8.87% +/− 0.94% vs. 
2.12% +/− 0.60%). See Fig. 1D, expressed as a percentage of the total recording time per vessel  
(t (1100) = 6.05; p < 1 × 10−8, labeled *8).

3. A larger fraction of vessels exhibited vasospasms in KOs than in WTs (17.4% +/− 2.98 (s.e.m.)  
vs. 4.15% +/− 1.23% (s.e.m.); t (15) = 3.53; p = 1 × 10−3).

4. The average vasospasm magnitude was larger (4.27% +/− 0.32% vs 3.09% +/− 0.49%; t (81) = 2.00; 
p = 0.049, labeled *) in KO than in WT mice.

We did not find differences between cohorts for these three measures of vascular dynamics:

1. The average vasospasm duration (t (55) = 0.52; p = 0.61).
2. The average vasospasm onset speed (t (52) = 0.93; p = 0.36).
3. The average vasospasm termination speed (t (36) = −0.84; p = 0.40) (Supplementary Information, 

Supplementary Fig. 3).

We also imaged blood flow in 378 hippocampal capillaries in anesthetized Kv1.1 KO animals (209 vessels in 
12 anesthetized Kv1.1 KO mice and 169 vessels in 15 anesthetized WT littermates). These were the initial pilot 
studies we conducted while developing the surgical methods to perform the deep-brain CLE recordings in awake 
animals. Below we show that, even in anesthetized animals, ictal vasospasms were more prevalent in the KO than 
in the WT mice, as indicated by the following five findings:

1. The average rate of vasospasms across vessels was higher for anesthetized KOs than for anesthetized WTs 
(0.846 vasospasms/hr +/− 0.262 (s.e.m.) vs. 0.273 vasospasms/hr +/− 0.107). See Fig. 1B (t (914) = 2.03; 
p = 0.044, labeled *).
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2. The likelihood of a vessel exhibiting a vasospasm was higher for anesthetized KOs (15.42% + /− 2.33%) 
than for anesthetized WTs (3.75% +/− 1.35%). See Fig. 1E, (t (1064) = 4.34; p < 1 × 10–4, labeled *4).

3. We found a small difference in the fraction of vessels that exhibited vasospasms in anesthetized KOs vs 
anesthetized WTs (19.64% +/− 4.81 (s.e.m.) vs. 14.87% +/− 7.02% (s.e.m.); t (24) = 1.65; p = 0.58).

4. The average vasospasm duration was longer (1229.38 s +/− 183.06 vs 541 s +/− 156) in anesthetized KO 
than in anesthetized WT mice (t (175) = 2.86; p = 0.005, labeled 2*).

5. The average vasospasm onset speed was also greater (258.8 s +/− 44.29 vs 88.57 s +/− 40.01) in anesthe-
tized KO than in anesthetized WT mice (t (118) = 2.85; p = 0.007, labeled 2*).

We did not find differences between cohorts for these two measures:

1. The average vasospasm magnitude (9.43% +/− 1.38% vs 10.43% +/− 3.25%; t (57) = −0.28; p = 0.78).
2. The average vasospasm termination speed (81.82 +/− 16.15 vs 108.6 +/− 38.39; t (45) = −0.64; p = 0.53) 

(Supplementary Information, Supplementary Fig. 3).

To determine whether these effects were due to general effects of epilepsy vs a specific function of the Kv1.1 
genetic knockout, we imaged blood flow within 267 hippocampal capillaries in neurotypical mice made epileptic 
by injecting the KA chemical agent vs saline (147 vessels in 12 KA mice vs 120 vessels in 6 saline (sham) mice). 
We replicated the findings from the mutant animals, with more prevalent vasospasms in KA than sham mice, as 
indicated by the following four findings:

Figure 1. Capillary vasospasms in epileptic (KO) and WT/sham mice. Vasospasm rate ((A–C), number of 
vasospasm onsets measured per hour of recording) and vasospasm likelihood per vessel ((D–F), expressed as a 
percentage of the total recording time per vessel) were significantly higher in epileptic than in WT mice.
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1. The average rate of vasospasms across vessels was higher for KA than for sham mice (0.642 vasospasms/
hr +/− 0.18 (s.e.m.) vs. 0.133 vasospasms/hr +/− 0.068), Fig. 1C (t (885) = 2.63; p = 0.0093, labeled **).

2. The likelihood of a vessel exhibiting a vasospasm was higher for KA mice (9.87% +/− 2.20%) than for sham 
animals (1.74% +/− 1.05%), Fig. 1F (t (978) = 3.34; p = 0.001, labeled *3).

3. A larger fraction of vessels exhibited vasospasms in KA than in sham mice (27.02% +/− 7.79 (s.e.m.) vs. 
3.35% +/− 1.83% (s.e.m.), t (12) = 2.96; p = 0.012).

4. The average vasospasm magnitude showed a small difference (6.42% +/− 1.02% vs 3.90% +/− 0.73%;  
t (215) = 2.01, p = 0.056) between KA vs sham mice.

We did not find differences between cohorts for these three measures:

1. The average vasospasm duration (560.3 s +/− 169.01 vs 458.05 s +/− 144.11; t (175) = 0.46; p = 0.65).
2. The average vasospasm onset speed (109.9 s +/− 31.04 vs 64.47 s +/− 14.15; t (204) = 1.33; p = 0.2).
3. The average vasospasm termination speed (51.51 +/− 27.54 vs 59.69 +/− 30.13, t (99) = −0.2; p = 0.85); 

(Supplementary Information, Supplementary Fig. 3).

Our results reveal only minor differences between the three animal models tested, suggesting that epi-
lepsy leads to microvessel vasospasms in awake and anesthetized Kv1.1 mice, as well as in awake KA mice 
(Fig. 1B,C,E,F), and that capillary vasospasms are a general result of epileptic seizures.

Next, we analyzed the ictal vasodynamics from the awake KO cohort in greater detail.

The Timing of Capillary Vasospasms With Respect To Seizure Onset. We examined the timing 
between seizure onsets and capillary vasospasms in the awake KO animals (Fig. 2). Microscopic vasospasms 
tended to occur within 80 seconds after seizure onset (the bins at −80 sec and 0 sec were significantly greater than 
chance (p = 0.0002 and p = 0.004, respectively, determined by random permutation statistics17). No other time 
points in the −400 secs to 400 secs time window reached significance). This suggests that, whereas seizures may 
trigger capillary vasospasms, it is less common for capillary vasospasms to lead to seizures.

Analysis of NG2+ mural cells in Microvessel Strictures. There is a growing body of evidence indicat-
ing that NG2+ mural cells may contribute to blood flow control within capillary beds in normal function7–11,18. 
Consistent with prior observations7,10,11, we found capillary vasospasms in neurotypical animals (Fig. 1), suggest-
ing that active control of normal blood flow in capillary beds may not be solely due to pre-capillary mechanisms 
in arteries19, and that capillaries also control flow directly—through both active constrictive mural cell mecha-
nisms and passive restrictive mechanisms. Next, we examined the role of mural cells in ictal blood flow dynamics.

In vivo mural cell labeling. We developed a new selective in vivo mural cell labeling technique, based on the 
intravenous tail vein injection of 10 kD fluorescently-conjugated dextran. Previous work had shown 10 kD 
fluorescently-conjugated dextran to label mural cells when injected directly into the brain20. These prior 1 μL 
brain injections had produced a small number of labeled mural cells distributed randomly throughout the brain, 
diminishing in number as a function of distance from the injection site. We reasoned that the brain injections 
might have functioned by vascular uptake and transport of the dye for later deposit in distant mural cells. If that 

Figure 2. Timing of vasospasms with respect to seizure onset in awake KO mice. Vasospasm onset occurred 
with higher frequency (p < 0.05) within 80 secs of seizure onset (N = 703 vessels).



www.nature.com/scientificreports/

5Scientific RepoRts | 7:43276 | DOI: 10.1038/srep43276

were true, we reasoned that 200 μL intravenous tail vein injections should result in the comprehensive labeling 
of capillary mural cells, both in WT and in epileptic animals (KO and KA mice). See Experimental Procedures 
for details.

Colocalization of capillary vasospasms to mural cells in KO mice. To verify the selectivity of our new in vivo mural 
cell labeling technique, and determine if mural cells colocalized with vascular strictures, we employed a second 
immunohistochemical label, using antibodies against the mural cell biomarker NG221 (Fig. 3A–D). Figure 3F–H 
shows a progressive zoom-in of a 3D volumetric model from a typical capillary stricture (vessel is constricted 
to 1 μm, down from its 4 μm unconstricted diameter), completely surrounded by a mural cell, which blocked 
proximal blood flow completely in this vessel. We found KO mice to exhibit 59% more hippocampal microvessel 
strictures than WT mice (N = 3 each cohort) (p = 0.0418, 2-tailed Wilcoxon signed rank test), see Fig. 3I (inset). 
Stereological distance analysis further revealed that most strictures in both KO and WT cohorts were within 2 μm 
 of a mural cell (Fig. 3I).

Colocalization of capillary vasospasms to mural cells in KA mice. KA mice afforded us the ability to image 
the same neurotypical animals (N = 4) both as untreated (pre-injection of kainic-acid) and treated (after KA 
injection) epileptic mice. We used a dual-band Cellvizio fiber-optic-coupled confocal microscope (Mauna Kea 
Technologies, Paris, France) to simultaneously image hippocampal vessels (injected with green 2MD fluorescein 
dextran) and mural cells (labeled through intravenous tail vein injection of 10 kD red AlexaFluor 647 1–6 days 
previous), see Fig. 4A–R. We imaged 42 capillary vessels (21 untreated, 21 after KA-injection) at labeled mural 
cells and observed 27 vasospasms, 13 in untreated capillaries and 14 after KA injection.

Two-photon imaging of mural cells in parietal cortex of KA mice. To image mural cells during vasospasms at 
sub-micron resolutions, we used two-photon laser scanning microscopy (TPLSM) in the parietal cortex of anes-
thetized mice (hippocampus is too deep for TPLSM without significant brain trauma). Because KA treatment 
results in generalized seizures, we reasoned that cortical capillary blood flow may present similar alterations to 
the ones we found in hippocampal blood flow with CLE. We imaged 635 capillary vessels (331 untreated and 304 
after KA injection) in 12 mice with labeled mural cells (red) and serum (2MD green fluorescein dextran), first in 
the untreated animals, and then after injecting KA to induce seizures, see Fig. 4S–W. Of the 635 vessels imaged, 
35 had vasospasms (5.5%; 21 in untreated animals and 14 after KA-injection), which was a lower percentage than 
that observed in the hippocampal recordings. The lower prevalence of cortical ictal vasospasms vs. hippocampal 

Figure 3. Analysis of mural cell vasoconstrictions in KO and WT mice. (A) Mural cells labeled 
immunohistochemically with anti-NG2 antibodies, and stained with a DyLight 405 (blue) secondary antibody. 
(B) Mural cells labeled in vivo with 10 kD AlexaFluor 647 (red) fluorescent conjugated Dextran, injected 
intravenously 1–6 days before sacrificing the mouse for histological processing. (C) Composite image of 
panels A & B, showing double-labeling of mural cells. (D) Mural cells from panels A-C, now in the context of 
microvasculature labeled with both 2MD in vivo IV injected tetra-methyl rhodamine fluorescently-conjugated 
Dextran (yellow), and with antibodies against endoglin protein (vasculature endothelium) tagged with Alexa 
Fluor 488 (green) secondary antibodies. Notice that the vessels near the mural cells have strictures (arrows). (E) 
Traditional confocal stack from KO hippocampus of immunohistochemically labeled mural cells  
(α-SMA, red, with red arrowheads) and vessel strictures (white arrowheads), DAPI (blue) cellular nuclei, and 
2MD fluorescein dextran labeled vessels (green). (F–H) 3D volumetric modeling of stack in panel E (panel F), 
progressively magnified and rotated (panels G-H) to reveal mural cell surrounding stricture of capillary vessel. 
See Video S7. (I) Stereological quantification of hippocampal capillary strictures is significantly greater for KO 
than WT animals (inset), with most strictures having a paired mural cell within 2 μM distance. Scales in panels 
A–D = 40 μM; E,F = 10 μM; G = 8 μM; H = 1.5 μM.
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vasospasms may reflect the fact that the clinical presentation of ictal neurodegeneration occurs primarily in the 
hippocampus, rather than in the cortex22. Figure 4X–AA shows a mural cell constriction that was imaged with 
high-magnification TPLSM, revealing a slow onset and fast termination dynamics that we also saw in hippocam-
pus (Supplementary Information, Supplementary Figs 2C and 3G–I).

The Spatial Association Between Hippocampal Neurodegeneration And Microvessels. To 
quantify the contribution of abnormal capillary vasodynamics to neural degeneration we prepared sections of 
hippocampus from the awake KO and KA mice for histological analysis. The sections were stained with DAPI—to 
highlight cell nuclei in blue23—and with AIF primary antibodies tagged with red fluorescent Cy3 secondary anti-
bodies—to identify cells that were oxidatively stressed and/or had engaged in apoptosis24,25 (Fig. 5A–F). Vessels 
had already been stained green with 2MD fluorescein dextran to prepare for CLE imaging.

We applied stereological methods to randomly sample and count neurons26,27, and developed a novel ste-
reological technique (Supplementary Information, Supplementary Fig. 4) to measure the 3D distance between 
each individual hippocampal AIF+ or AIF- cell and its nearest blood vessel (Supplementary Information, 
Supplementary Table 1). We found that AIF+ cells were more numerous in KO mice (N = 5) than in WT mice 

Figure 4. Analysis of mural cell vasoconstrictions in KA mice (A–H) In vivo fiber-optic confocal image of 
capillary vasospasm (vessels in green, labeled with 2MD fluorescein-conjugated dextran) colocalized to mural 
cells (red, labeled via intravenous vein tail injection of Alexa Fluor 647) in KA mice during seizure (arrow 
indicates mural cell and associated vasospasm). See Video S4. (I–R) Fiber-optic confocal image of capillary 
vasospasm colocalized to mural cells in WT mouse (arrow indicates mural cell and associated vasospasm). See 
Video S5 (S–W). In vivo two-photon scanning laser microscopy (TPLSM) stack of capillary vessels (green) and 
mural cells (red). See Video S6. (X–Z) In vivo TPLSM of a mural-cell-localized (red) capillary constriction. See 
Video S8. (AA) Quantification of vessel constriction from panels P-R measured at white line. Scales for panels 
A–R = 5 μM; S–W = 25 μM; X–Z = 5 μM.
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Figure 5. Contribution of abnormal capillary vasodynamics to neural degeneration in KO and WT mice  
(A–F), stereological analysis of hippocampal AIF+/− cell spatial correlation to vessels in anesthetized animals 
(G–J), and stereological analysis of hippocampal AIF+/− cell spatial correlation to vessels in Kainate injected 
(KA) animals vs sham (K–N). Immunohistochemistry of 4′-6-Diamidino-2-phenylindole (DAPI, blue), 
Apoptosis Inducing Factor (AIF, red), and fluorescein (green) in the hippocampus. (A,B) KO (A) and WT  
(B) hippocampus. (C) KO high-magnification DAPI stained nuclei. (D) AIF-labeled red fluorescence reveals 
AIF-positive clusters. (E) Green fluorescence reveals capillaries spatially associated to the AIF clusters in panel 
D. (F) Composite of (C–E). (G–J) Cell distribution as a function of distance from the nearest vessel in Kv1.1 
mice, for KO AIF+/− (G), WT AIF+/− (H), KO vs WT AIF+ (I), KO vs WT AIF-. (K–N) Cell distribution as 
a function of distance from the nearest vessel in Kainic acid mice for KA AIF+/− (K), sham AIF+/− (L), KA vs 
sham AIF+ (M), KA vs sham AIF- (N). Scales for panels A,B = 150 μM; C–F = 10 μm. This figure is related to SI 
text 1, Table S2.
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(N = 5) (F(3,1885) = 2.826, p = 0.0356) (Fig. 5G,H). AIF+ cells were, on average, 15.17% (+/−0.07% s.e.m.) closer 
to blood vessels than AIF- cells (χ2 (1, N = 1146) = 16.70, p < 0.0001) in KO mice, whereas there was no differ-
ence (χ2 (1, N = 743) = 1.976, p = 0.1598) in WT littermates (Fig. 5K,L). In addition, AIF- cells were not signif-
icantly further from vessels in KO mice than in WT mice (χ2 (1, N = 388) = 1.287, p = 0.2566), suggesting that 
non-degenerating cells in KO mice are normal. Finally, AIF + cells were significantly closer to vessels in KO mice 
than in WT animals (χ2 (1, N = 1541) = 5.907, p = 0.0151), supporting the idea that vascular effects are related to 
cellular apoptosis in KO mice.

We found similar effects in KA (N = 5) vs sham (N = 6) mice. AIF + cells were, on average, 12.683%  
(+/−0.804% s.e.m.) nearer to blood vessels than AIF- cells (χ2 (1, N = 2551) = 34.32, p < 0.0001) in KA mice, 
whereas there was no difference (χ2 (1, N = 3780) = 0.6070, p = 0.4780) in sham mice (Fig. 5K,L). Unlike in KO 
mice, AIF+ cells were not more numerous in KA than in sham animals: this may reflect the fact that KA animals 
are neurotypical for their entire lifetime up to the point of KA injection, whereas the KO animals are abnormal 
for their entire lifetime.

Figure 6. Stereological analysis of dying cells. (A) Number of AIF+ cells exhibiting cytosolic or nuclear 
labeling in KO vs WT. AIF positivity was higher in KO animals than in WT animals for both nuclear AIF 
staining (indicating imminent or complete cellular death) or cytosolic AIF staining (indicating oxidative stress 
that may lead to death). (B) We found that an average of 87% (+/−23%) of the AIF+ cells are Neu-N+ neurons. 
(C) Caspase positivity (indicating imminent or complete cellular death) is more prevalent in KO than in WT 
mice. (D) Caspase+ cells in KO mice lie nearer to vessels than Caspase- cells. Caspase+ cells in KO mice are 
nearer to vessels than Caspase+ cells in WT mice. See also SI Text 1, Tables S1 and S2.
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To ensure that the oxidative stress measured with AIF affected neurons—rather than glia or other 
non-neuronal populations—we stained interleaved sections (from N = 3 of the originally recorded KO animals) 
with primary antibodies to the neuron-specific biomarker Neu-N. We found that 87% (+/−23%) of the AIF+ 
cells were Neu-N+ neurons (Fig. 6B). Although the AIF+/Neu-N+ count was slightly lower than the AIF+/
DAPI+ cell count, suggesting that as many as 13% of the AIF+ cells may have been from non-neuronal popula-
tions, the difference was not significant.

Whereas cytosolic AIF positivity indicates oxidative stress in neurons24,28 (and serves as an indicator of the 
spatial association between oxidative stress in cells and vessels), nuclear-translocated AIF labeling indicates cells 
actively committed to apoptotic ischemic-cell death. These two labeling techniques, in combination, allowed us 
to determine the subset of AIF+ cells that escalate from oxidative stress to death, as follows.

First, we counted cytosolic versus nuclear AIF+ labeling (Fig. 6A), as compared to AIF- cells (in both KO and 
WT cohorts), and found a significant number of neurons with positivity for both cytosolic and nuclear staining 
(two-way ANOVA F (1, 14) = 9.70; p = 0.0076). We also found fewer dying neurons in WT than in KO mice  
(F (1, 14) = 7.70; p = 0.0149). Further, there was a significant interaction between AIF labeling and cohort (F (1, 
14) = 7.07; p = 0.0187), in which KO mice, but not WT animals, showed a significant difference between cytosolic 
and nuclear AIF staining (two-tailed t (3) = 4.330; p < 0.01 (Bonferroni corrected)). These results indicate more 
oxidative stress leading to neuronal death in KO animals than in WT animals.

We further confirmed that AIF+ labeling indicated cellular oxidative stress and eventual death by staining 
interleaved sections of the same tissue with primary antibodies against active caspase-3—a pro-apoptotic molec-
ular cascade that is AIF-independent29,30. Using stereological analyses, we found that caspase+ cells were more 
prevalent (two-tailed t (4) = 5.979; p = 0.0039) and nearer to vessels (two-tailed Mann-Whitney U = 52805; 
p = 0.0040) in KO mice than in WT mice Fig. 6C,D).

Seizures also resulted in tighter association of AIF+ cells to vessels in KA mice than in sham mice (χ2 (1, 
N = 1422) = 34.32, p < 0.0001) (Supplementary Information, Supplementary Table 2).

Discussion
Our results suggest that microscopic vasospasms are more likely in the hippocampus capillary beds of epileptic 
mice than in those of neurotypical mice (Fig. 1). These vasospasms tend to occur within 80 secs of seizure onset 
(Fig. 2), and are mediated by mural cell constrictions (Figs 3 and 4). We also found that ictal neurodegeneration is 
spatially associated with the microvasculature, which supports the presence of ischemia-related sources of neural 
degeneration in epilepsy. Our analyses moreover provide a novel method to determine the relative contributions 
of vasoconstrictions and excitotoxicity to neural degeneration; this dissociation has been previously hindered by 
the fact that both of these mechanisms activate the same caspase-mediated apoptotic pathways, and hence cannot 
be dissociated with molecular labels (Figs 5 and 6).

The link between epilepsy and neuronal damage was first noticed almost two centuries ago31. Early work 
suggested that ictal vasospasms led to ischemia and neurodegeneration32,33, but later neurosurgical macroscopic 
observations found hyperemia—the opposite of ischemia—at the seizure focus4–6. Investigators concluded that 
seizures led to metabolic excitotoxicity, which led to cell death. Yet, cell death due to excitotoxicity activates the 
same apoptotic pathways as ischemic cell death, which makes it difficult to distinguish between these two poten-
tial sources of neurodegeneration. Few subsequent studies addressed the possible role of abnormal blood flow in 
cell death, because there were no indications of macroscopic ischemia at the seizure focus. Yet, previous research 
localized pockets of hypoxia within the ictal focus34, though the mechanism was unknown. A recent quantitative 
computational model found that hyperemia can exacerbate hypoxia when capillaries vasospasm, leading to heter-
ogeneous blood flow within capillary beds35. Our present findings indicate that irregular capillary blood flow due 
to mural cell dysfunction, combined with hyperemia, can exacerbate cell death in epilepsy.

Tissue perfusion is thought to be lowest in the “watershed areas” between major vessels (Fig. 7A). After a 
stroke, watershed areas between two or more obstructed arteries are most vulnerable to ischemia because they 
are farthest from the blood supply. In contrast, our data indicate that after a capillary vasospasm, the neurons 
suffering the most from lack of oxygen are those closest to the constriction, rather than those far away from the 
vessel, in the watershed area (Fig. 7C). The reason—consistent with the principle that neurons farthest from 
the blood supply are most likely to die—may be that the inter-capillary watershed areas have the best and most 
redundant oxygen perfusion from unaffected capillaries, and thus the lowest vulnerability during seizures affect-
ing individual nearby vessels. Thus, the same mechanism may produce opposite effects on neuronal cell death for 
arteriolar dysfunction (i.e. stroke) and capillary dysfunction (i.e. individual mural cell vasospasms), as a function 
of distance from vessels.

If this is correct, degenerating neurons affected by ischemic-hypoxic oxidative stress from capillary vasos-
pasms should be spatially associated with the vasculature. In contrast, if excitotoxicity were the sole contributor 
to apoptosis, then degenerating neurons should not be spatially associated to the vasculature—neurodegeneration 
should be random with respect to the vasculature—because excitotoxicity is a process unrelated to the blood 
supply (Fig. 7B). Our data indicate a substantial vascular contribution to ictal neurodegeneration (Fig. 7C). These 
findings help to reconcile previous, seemingly contradictory, proposals that both excitotoxicity and vascular 
ischemia contribute to ictal cell death (see Supplementary Information; Supplementary Fig. 5).

Our present findings indicate that neurodegeneration in epileptic mice may result from the combination of 
excitotoxicity and ischemia. If this is also the case in humans, it may be possible to prevent or ameliorate the 
progression of neural damage in epileptic patients via the administration of blood flow regulating drugs. This 
could be particularly important to patients with medically or surgically intractable forms of epilepsy (i.e. patients 
with status epilepticus or severe forms of childhood epilepsy, including Lennox-Gastaut Syndrome, Dravet’s 
Syndrome, and Phelan-McDermid Syndrome), who are especially vulnerable to neural degeneration.
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Mural cells contain the same KCNA1 potassium channel that is knocked out in the neurons of Kv1.1 mice36. 
Thus, one may wonder if the Kv1.1 mutation might not act on mural cells directly to produce vasospasms (which, 
in that case, would be unrelated to seizures). The data in Fig. 2 refute this possibility, because if the mutation drove 
the vasospasms, rather than the seizures, then the seizures should not precede the vasospasms; yet we found the 
opposite. Further, the fact that we found similar vascular dynamics in KA-treated WT animals indicates that 
seizures, rather than the genetic mutation per se, drive vasospasms in Kv1.1 animals.

Other alternative interpretations of our findings include: 1) excitotoxicity may injure not only neurons, but 
also non-neuronal populations such as blood vessels, mural cells, or astrocytes (which, if damaged, could pro-
duce microvascular dysfunction and increased rates of capillary vasospasms) and 2) our stereological measures 
of degeneration may have mistakenly counted non-neurons as neurons. We addressed these issues by performing 
Neu-N controls: these indicate that our stereological measurements did not mistake non-neurons for neurons in 
large numbers (most—if not all—of the degenerating cells were labelled by Neu-N and therefore were neurons).

Some or all of the mural cells identified in our study may be either pericytes or smooth muscle cells (SMCs). 
A recent study suggests that traditional molecular biomarkers of pericytes (such as anti-NG2 anti-bodies) may 
also label smooth muscle cells37. We are agnostic on the issue, as, either way, it is not relevant to our finding 
that epilepsy results in inhomogeneous flow within microvessels—driven by capillary mural cells—that leads to 
vascularly-associated neurodegeneration.

Materials and Methods
In conducting research using animals, the investigators adhered to the laws of the United States and regulations of 
the Department of Agriculture. All procedures were approved by the Barrow Neurological Institute Institutional 
Animal Care and Use Committee and performed in accordance with the NIH Guide for the Care and Use of 
Laboratory Animals.

We used a total of 124 mice for these experiments. We genotyped all mice descended from mutant breeders 
(Transnetyx Inc. USA and/or in-house). In the fiber-optic confocal blood flow imaging experiments we used 41 
awake KCNA-null Kv1.1 knockout (KO = 22) and wild-type (WT = 19) littermates, 27 anesthetized mutant mice 
(12 KO, 15 WT littermates), and 18 neurotypical C57BJ kainic acid (KA) treated (12) vs sham (6) animals (Fig. 1). 
We used 4 KA-treated mice (imaged both before and after KA injection) for the dual-band Cellvizio hippocampal 
mural cell imaging (as in Fig. 4; Mauna Kea Technologies, Paris, France), and 12 KA mice for the TPLSM corti-
cal mural cell recordings. For some of the stereology studies we used brains taken from a subset of the animals 
imaged above: five of the KO, five of the WT, six of the sham and five of the KA.

Mutant breeders were obtained from Jackson Laboratories (Bar Harbor, Maine), and were bred in-house and 
genotyped (either in-house or by Transnetyx Inc., USA) for use in these studies. The Kv1.1 KO mouse is a clini-
cally relevant model of partial-onset epilepsy for the following reasons: 1) seizures manifest in the early postnatal 
period, corresponding to early childhood in humans, and are likely of limbic origin; 2) progressive histological 

Figure 7. Models of blood flow control. (A) The prevalent model in which flow through capillaries is passive, 
and ultimately controlled by arteriolar structures and pre-capillary sphincters. (B) The prevalent model of blood 
flow dysfunction. An arteriolar stroke leads to uniform decrease in capillary flow within a blocked capillary 
bed—which leads to uniform ischemia and hypoxia—and neurodegeneration is concentrated in the watershed 
areas farthest from vessels. (C) If mural cells can non-uniformly block flow within capillary beds, in diseases 
such as epilepsy, neurodegeneration patterns may be altered or concentrated near blood vessels.
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changes in the hippocampus of these mice are similar to those observed both in human epileptic tissue and in 
many animal models of temporal lobe epilepsy; and 3) the KCNA1 gene—which encodes the delayed rectifier 
potassium channel alpha subunit Kv1.1—is one of only a few epilepsy genes in a rodent model that has a homo-
logue in a human epileptic condition13. All mice were maintained on a 12 h light/dark cycle. Food and water were 
available ad libitum. All efforts were made to minimize the discomfort and number of animals used.

Before imaging, we injected fluorescein-coupled dextran (see Supplementary methods) and positioned the 
fiber-optic objective (Cellvizio, Mauna Kea Technologies, Paris, France) into the hippocampus of awake spon-
taneously seizing mice to visualize blood flow dynamics during EEG-determined normal, ictal, or inter-ictal 
periods of neural activity (Supplementary Information, Supplementary Figs 1, 2, 6 and 7).

To determine whether ischemia contributes to ictal neural degeneration, we labeled fixed tissue with immuno-
fluorescent labels of cellular nuclei (DAPI), the neuronal marker Neu-N, antibodies against alpha smooth muscle 
actin (α-SMA) to visualize mural cells, and indicators of oxidative stress and apoptosis (such as antibodies against 
Apoptosis Inducing Factor and Caspase-3). We conducted standard stereological analyses and also developed 
a novel 3D stereological nearest-neighbor probe to determine if this abnormal blood flow resulted in neural 
damage (Figs 3, 5, 6 and 7). To visualize mural cells that constricted vessels, we developed a novel in vivo mural 
cell fluorescence labeling system and used a combination of dual-channel fiber-optic-coupled imaging system 
in the hippocampus and high spatial- and temporal-resolution TPLSM (Prairie Technologies, Madison, WI) in 
the cortex to directly visualize microvessel constrictions during seizures and normal function. We created a 3D 
volumetric digital model of mural cell constrictions from the labeled tissue.

General surgical methods. Before implanting a craniotomy chamber and head-holder, we anesthetized 
the animals with Ketamine-Xylazine (100 mg/kg–10 mg/kg i.p.), continuously monitoring and controlling 
body temperature with a heating blanket and a rectal thermometer (TC-1000, CWE Inc., USA). Skull perfo-
rations were performed to insert epidural EEG recording electrodes (Supplementary Fig. 6; red and grey dots) 
as well as the craniotomy over the right hippocampus for the fiber-optic bundle used in the confocal micros-
copy (Supplementary Fig. 6A, red rectangle). A robotic stereotaxic drive (StereoDrive, Neurostar GmBH, 
Germany) implanted a 300 μm beveled fiber-optic bundle (5000–7000 3 μm-wide fibers) into the hippocampus 
(Supplementary Figs 1 and 7), and green fluorescein lysine-fixable dextran (2MD, Invitrogen, USA) was tail-vein 
injected (1 ml/kg of Fluorescein 5% w/w) to visualize blood flow.

Fiber-Coupled CLE Image Analysis. We assigned a region-of-interest (ROI) to each vessel in each 
movie and analyzed the changes in fluorescence as a function of time. We monitored EEG to detect seizures 
continuously (Supplementary Information, Supplementary Figs 1 and 6). We used two Cellvizio fiberscopes (a 
single-band Leica Microsystems, GmbH, Germany FCM-1000 fiber-optic confocal microscope manufactured 
by Mauna Kea Technologies emitting at 488 nm; and a dual-band Cellvizio emitting at both 488 nm and 660 nm) 
with 300-micron penetrating fiber-optic probes precisely positioned surgically in the hippocampus of each mouse 
with a Stereodrive 3-axis robotic stereotaxic (Neurostar GmbH, Germany). On-board image analysis software 
was used to create ROIs of each recorded vessel. From this we derived an independent measure of each vessel’s 
fluorescence-over-time (ΔF/F). From these fluorescence measures we calculated the rate of vasospasms, the per-
centage of time that vessels vasospasmed, individual vasospasm duration, vasospasm magnitude, and onset and 
termination speeds (Fig. 1). The experimenter who collected the data was not blind because only the KO mice 
have spontaneous seizures, thus she could not be blinded from identifying KO or WT by animal’s behavior or 
EEG. We therefore controlled for experimenter bias by keeping the image analyst blind to the cohort. In addition, 
this blind analyst measured vasospasm internal dynamics automatically and objectively via custom MATLAB 
(Mathworks, Natick, MA) software. We averaged the metrics across animals in each cohort and tested the signif-
icance of the difference between cohorts with standard two-tailed unpaired Student’s t-tests.

We assessed the seizure rate, as a function of vasospasm onsets, separately for each KO mouse. We determined 
the pooled chance probability of seizure onset—the baseline seizure rate—by shuffling the seizure onset times 
with 10,000 random permutations, and assigning the resultant correlation to vasospasms as baseline (0% level) 
in the analysis. We then correlated the actual seizure times to vasospasms to create a histogram of normalized 
seizure onset rates as a function of vasospasm onset time.

Mural Cell Labeling Method. Our mural cell labeling method builds on a previous study that showed 
that mural cells could be selectively labeled by direct 1 μL brain injections of fluorescent dextran8. To determine 
the effectiveness of our novel mural cell label, and to stereologically measure the distance between mural cells 
and vascular strictures in fixed tissue, we created tissue for traditional confocal and stereological analysis in KO 
(N = 3) and WT animals (N = 3) that were IV injected with our mural cell label (2MD fluorescein dextran to label 
vessels in green). We sacrificed the animals 1–6 days post-injection (to allow for mural cell labeling), processed 
the hippocampal tissue histologically (see Immunohistochemical procedures section below), labeling cellular 
nuclei in blue with the DNA-binding dye, 4′,6-diamidino-2-phenylindole dihydrochloride (DAPI)23, and labeled 
mural cells immunohistochemically in red with anti-α-smooth muscle-actin primary antibodies (α-SMA) with 
Cy3 secondary antibodies9, see Fig. 3E. We could have potentially used a transgenic mouse with a fluorescent 
protein tagged to NG2, but by developing a new injectable label we were free to then use it in wild-type animals, 
or in mutants and/or chemically treated animals with epilepsy. We injected 200 μL of fluorescent dextran (0.5 mg 
of dye in 0.2 ml of ACSF) intravenously (tail vein), which labels mural cells within 16–24 hours, as we verified 
with double-labeling by anti-NG2 Chondroitin Sulfate Proteoglycan antibodies in subsequent histological studies 
(Fig. 3A–D). Labeling lasts at least 6 days (the longest post-injection duration we tried). The label functions well 
in adults but fails in juveniles P21 or younger for unknown reason. Some mural cells endocytose the dye into 
vacuoles (as in Fig. 4X–Z).
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TPLSM Analysis. We imaged parietal cortex in KA treated mice with a custom Prairie Technologies 
(Madison, WI) Ultima IV in vivo two-photon microscope powered by a Spectra-physics DeepSee Mai Tai HP 
(Mountain View, CA) Titanium: Sapphire laser. The microscope was developed with an integrated intrinsic sig-
nal optical recording setup (Optical Imaging Inc.), using epi-illumination powered by a Till Photonics (GmbH, 
Germany) Polychrome 5000 monochromator. Image analysis followed the analysis described for fiber-optic con-
focal recordings and was carried out with ImageJ38.

Immunohistochemical procedures. After each recording session, we overdosed the mice with Nembutal 
(100 mg/Kg) and fixed their brains in 4% paraformaldehyde. We cut 50 μm cryosections and every sixth 
hippocampus-containing section was stained for rabbit anti-AIF (1:200) (Millipore, USA), rabbit anti-active 
caspase-3 (1:250) (BD Pharmigen, USA), mouse anti-Neu-N (1:200) (Millipore Corporation, USA), rat 
anti-endoglin (CD105) (1:250) (Developmental Studies Hybridoma Bank, USA), rat anti-NG2 Chondroitin 
Sulfate Proteoglycan Antibodies (1:200) (Millipore Corporation, USA), or mouse anti-α-SMA (1:200) (Thermo 
scientific, USA) as primary antibodies. We then added sheep anti-rabbit IgG antibodies conjugated to Cy3 as sec-
ondary (1:500) (Sigma-Aldrich, USA) to stain AIF+ and Caspase-3+ cells in red; goat anti-mouse IgG conjugated 
to Dylight-488 (Jackson ImmunoResearch, USA) (1:500) to stain Neu-N+ cells in green; goat anti-mouse IgG 
conjugated to Dylight-405 (Jackson ImmunoResearch, USA) (1:500) to stain mural cells in blue; biotin-tagged 
goat anti-rat IgG (1:200) (ABC Elite, Vector Laboratories, Burlingame, CA) completed by avidin-biotin/CY3 tyr-
amide signal amplification (1 h) (CY3-TSA, Perkin Elmer Life Sciences, Inc., Boston, MA, Cat#: SAT704A001EA, 
1:50) to stain the vessels in the animals that we did not injected the dye; or goat anti-mouse IgG conjugated to 
DyLight-549 (1:500) (Jackson ImmunoResearch, USA) to stain SMA+ cells in red. Finally, we stained the sec-
tions with fluorescent DNA-binding dye, 4′,6-diamidino-2-phenylindole dihydrochloride (DAPI, Sigma-Aldrich, 
USA). The general protocol used for the immunohistochemistry was as follows: we first treated the tissue sections 
for antigen retrieval 15 minutes in phosphate-buffered saline (PBS) containing TritonX-100 0.5% (Sigma-Aldrich, 
USA) or, if necessary, in proteinase K (1:2 dilution, Dako, USA) in PBS 1X for 15 min, and then washed them in 
PBS 3 × 5 min. We blocked the sections in 80% PBS containing triton X-100 0.5%, 10% fetal bovine serum (PAA 
laboratories Inc., Canada), and 10% Gelatin of 2% (Sigma-Aldrich, USA) for 1 h at room temperature. We then 
incubated the tissue in the primary antibody at appropriate dilution in blocking solution at 4 °C overnight. We 
washed the sections in PBS and incubated them for 2 h at room temperature (light shielded) in secondary anti-
body diluted with blocking solution, and rewashed them with PBS, incubated in DAPI for 2 min, with a final wash 
in PBS for 10 min. Finally, we cover-slipped the sections using Prolongold Antifade reagent (Invitrogen, USA).

Stereology methods. We counted AIF+/− cells26,28 from the 10 animals with the most consistent immu-
nofluorescent staining (5 KO vs 5 WT; 5 KA vs 6 sham). We then analyzed a random sub-sampled group of 
DAPI+ cells to determine their proximity to blood vessels. This sub-sampling (maximum of three per disector) 
controlled for clustering that occurred in some disector locations containing as many as 17 DAPI+ neurons. 
We developed an algorithm in which we masked the entire stack of green fluorescent vessels and then sequen-
tially unmasked concentric spheres in increasing steps of 2 μm radius, starting with a 2 μm radius sphere at the 
three-dimensional center of each sub-sampled DAPI+ nucleus (Supplementary Fig. 4). The smallest sphere that 
contained a green fluorescent blood vessel was determined to be the distance of the cell from the nearest vessel 
(maximum observed: 36 μm).

We binned each neuron-vessel distance into one of four distributions dependent on whether the animal was 
KO or WT (or Kainate vs. sham), and whether the neuron was AIF+ or AIF- (Figs 5 and 6A,B). We statistically 
tested mean differences (two-tailed Chi-square test for trend) on the raw data bins (Graphpad Prism 6.0, USA). 
Gaussian curve fits and normalization (to the highest raw data point in each distribution) of the data were com-
puted solely for graphical visualization purposes.

For the trans-nuclear versus cytosolic AIF analysis (5 KO vs 4 WT animals), as well as the caspase and Neu-N 
analyses (3 KO vs 3 WT animals), we created images of the immunohistochemically stained sections with a 
Nikon Eclipse 80 microscope (Nikon Instruments, Melville, NY), equipped with a Nikon 100 W mercury light 
source for fluorescence illumination. A MAC5000 XYZ stage controller (Ludl Electronic Products, Hawthorne, 
NY) and a linear encoder (Heidenhain, Schaumburg, IL) affixed to the stage (Z movement was monitored to an 
accuracy of +/−0.1 μm) controlled stage movement. An average of 12 images at 2 μm Z spacing were taken from 
the top to bottom section surfaces for each channel separately, at an XY spacing of 450 μm systematic-randomly 
spaced throughout the entire CA1-3 regions. StereoInvestigator software (Microbrightfield, Williston, VT) facil-
itated both stage movement and stack capture. A MBF Bioscience CX9000/Microfire camera integrated with the 
PC/software via Firewire (Optronics, Goleta, CA) acquired high-resolution 8-bit grayscale images (1600 × 1200 
pixels; 5.4 pixels/μm final magnification) in each fluorescence channel, using a Nikon PlanApo 40x/0.95NA air 
objective. We acquired AIF images at a constant 500 ms exposure time, whereas we adjusted exposure for DAPI 
(20–100 ms) and blood vessels (250–500 ms) to optimize the signal-to-noise ratio. We kept all other instrument 
and configuration settings constant for the duration of image acquisition. We alternated between sections from 
WT and KO mice to counterbalance any potential changes in the imaging conditions over time (e.g., lamp inten-
sity). This process produced an average of 60 stacks (+/−3 s.e.m.) per subject, which we then subdivided into four 
(550 × 550 pixel) quadrants for further analysis. To quantify pyramidal neuron number, we counted only large 
round nuclei within the pyramidal cell layers of CA1–313, using the disector technique26 to count neurons which 
came into focus in a disector frame (5600 μm2), and then counted only those neurons within the middle 6 μm 
of the section (average post-processing section thickness: 22.8 μm +/−1.0). We found an average of 470 nuclei  
(+/−33 s.e.m.) per subject. The total DAPI+ neuron number was calculated using the fractionator technique27, 
with sampling fractions of 1/6 for the sections, 1/36 for the area, and 6/(mean thickness) in Z.
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Caspase-3 expressing cells (from 3 WT and 3 KO animals), as well as cytoplasmic AIF and nuclear translocated 
AIF expressing cells (from 4 WT and 5 KO animals) were counted using the optical disector counting method39 of an 
image analysis system (Stereologer, Version 2.1, Stereology Resource Center, Inc, USA). This image analysis system 
consists of a color camera (Imi Tech, model IMC-147FT, USA), a personal computer (Dell, USA), a computer con-
trolled motorized specimen stage for X, Y and Z-axis (Applied Scientific Instrumentation, model MS-2000, USA) 
and a microscope (Olympus, model BX53, USA) with a fluorescent light source (Polychrome V, TILL Photonics, 
Germany). For each section, we outlined the region of interest by tracing a contour around the hippocampus CA1–3 
region using low magnification objective (4x). The software generated a random grid of 3-dimensional counting 
frames (dissector). We counted cells in each group using a 60X objective according to the unbiased counting rules of 
the optical dissector39. Previous studies determined the counting frame area, disector height, and sampling grid area. 
To measure the distance between caspase+ cells and vessels we marked the cells in the center of each disector using 
the StereoInvestigator software (MicroBrightField, Inc., USA), and created 3-dimensional reconstructions of the 
vessels using NeuroLucida software (MicroBrightField, Inc., USA); the distance between each cell and the nearest 
vessel was calculated using NeuroLucida Explorer software from the StereoInvestigator and NeuroLucida data files.

Finally, we carried out the volumetric analysis of the mural cells with Imaris software (Bitplane AG, 
Switzerland).
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