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ABSTRACT OF THE DISSERTATION 
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By 
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The following thesis explores the within-host population dynamics of viruses and 

their target cells using mathematical and computational models. Chapter 1 investigates the 

dynamics that arise when two independently regulated HIV-specific t helper cell 

populations grow by clonal expansion in response to antigenic stimulation by HIV. Despite 

no direct competition for antigenic stimulation, we find that it is still possible for the 

stronger clone to drive the weaker clone to extinction through the process of apparent 

competition. In addition, we find that under certain conditions a weaker clonal population 

can be facilitated by the presence of a stronger one, causing the weaker clone to become 

established where it would have failed to persist in isolation. Chapter 2 explores the 

regulation of tissue architecture in a model of stem cells and differentiated cells.  We 

investigate two types of feedback regulation, and discuss how these regulatory controls 

influence the ability to maintain tissue homeostasis during viral infections. We find that 

when feedback factors are produced by stem cells, viral infection leads to a significant 

reduction in the number of differentiated cells (tissue pathology), while the number of 

stem cells is not affected at equilibrium. In contrast, if the feedback factors are produced by 
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differentiated cells, a viral infection never reduces the number of tissue cells at equilibrium 

because the feedback mechanism compensates for virus-induced cell death. However, the 

number of stem cells becomes elevated, which could increase the chance of these stem cells 

to accumulate mutations that drive cancer. In Chapter 3, we investigate viral infection in an 

agent-based model, allowing us to simulate in-host microenvironments that have some 

spatial structure, such as the lymph nodes. The model explores the consequences of 

multiple infection and an increased burst size on the dynamics of early viral spread 

through host cells. We find that the model predicts larger proportions of multiply infected 

cells at low viral loads in environments where mobility is limited. In addition, when an 

increased burst size in multiply infected cells is included in the model, both accelerated 

viral spread and a decreased probability of infection extinction are observed. 
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INTRODUCTION 

  

This dissertation explores the ecology of viruses and their target cell populations 

using mathematical and computational models that investigate different aspects of these 

within-host disease dynamics. Viruses and their host cells are treated as interacting groups 

of organisms, with the goal of gaining insights into the principles governing the population 

dynamics of viral infections. There is a growing body of research in the field of 

mathematical biology that explores the dynamics of Human Immunodeficiency Virus (HIV) 

infection. HIV is characterized by large numbers of complex interactions with multiple 

immune cell types, as well as a high mutation rate that drives rapid viral evolution. Much of 

our current understanding of how infection plays out comes from patient data, which 

provide a limited snapshot of the underlying disease dynamics. Mathematical and 

computational models help us investigate these largely unobservable interactions, 

generating testable predictions that motivate clinical and experimental studies.  Models 

also give us insight into the principles governing infection, linking theoretical 

understanding to experimental outcomes and patient data. 

 

HIV- Overview 

 

In the early 1980’s, hospitals began reporting an increased incidence of 

opportunistic infections and rare cancers in clustered populations of gay men and 

intravenous drug users. By 1984, researchers had identified the causative agent of this new 

disease- a retrovirus that targeted the immune system, first misclassified as a new strain of 
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human T-lymphotropic virus (HTLV). The virus was named HTLV-III in the U.S. and 

lymphadenopathy-associated virus (LAV) in France. Soon after, the molecular structure 

and link between the newly discovered virus and acquired immune deficiency syndrome 

(AIDS) were established, and HTLV-III/LAV was renamed human immunodeficiency virus 

(HIV).  

There are 37 million people worldwide living with HIV as of 2015, with 1.2 million 

of those infected individuals residing in the U.S (UNAIDS). The largest AIDS epidemic by 

country is in South Africa, where 6.8 million individuals (about 12% of the total 

population) are infected, with 340,000 individuals newly infected each year. There are 

numerous socioeconomic obstacles to treating the HIV epidemic in developing countries 

that lack adequate government infrastructure, and access to public health care and testing 

remains foremost among these issues in many areas. Public attitudes, including AIDS 

denialism and the lingering stigma of HIV as a “homosexual” disease, are further barriers to 

diagnosing and treating millions of infected individuals in these developing countries. It is 

estimated that 19 million infected individuals worldwide were unaware of their HIV-

positive status (UNAIDS). 

 

HIV Structure and Life Cycle  

 

HIV is in the family of retroviruses, a group of RNA viruses whose life cycle includes 

a DNA intermediate produced by the viral enzyme reverse transcriptase. The enveloped 

virus is pseudodiploid- each virion is packaged with two complete copies of the positive-

sense single stranded RNA genome. The genome also comes packaged with several viral 
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proteins that aid in transcription and integration into the host cell. The CD4+ receptor, 

which is present on the surface of several types of immune cells, is the access point for HIV. 

The virus uses a co-receptor, typically either CCR5 or CXCR4, to assist with viral entry 

across the host plasma membrane (Bleul et al., 1997). CCR5 is the primary co-receptor that 

HIV uses, and individuals who possess the CCR5-Δ32 mutation are resistant to infection 

(Liu et al., 1996). There are seven major stages in the life cycle of HIV, from entry to release 

of new virus particles from the host. Assuming that infection occurs via free virus 

transmission, the replication cycle begins with binding of virus to CD4+ receptors on the 

surface of target cells. Fusion of the viral envelope with the cell membrane releases viral 

contents into the cytoplasm of the cell. The viral enzyme reverse transcriptase constructs a 

single stranded DNA copy of the viral genome in the cytoplasm by jumping between the 

two single-stranded RNA genomes. This process is highly error prone, on the order of 10-5 

substitutions per base pair per replication cycle (Mansky and Temin, 1995). The completed 

DNA genome migrates to the nucleus of the cell, where it is inserted into the host genome 

with the help of the viral enzyme integrase. The integrated viral genome is known as a 

provirus. The integrated provirus will either lie dormant, leading to a latently infected cell 

that may eventually activate, or it will begin producing the next generation of virus 

particles. During viral production the host transcriptional machinery is used to produce 

viral mRNA, which is spliced and sent to the cytoplasm for assembly. In the cytoplasm, 

immature new virions are packaged and undergo “budding”- packaged virus leave the host 

cell, pinching off parts of the host’s lipid membrane to form new viral envelopes. Budding 

virions must undergo maturation in order to become infectious, a process which involves 
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cleaving and folding of viral proteins into their final functional states (Sundquist and 

Krausslich, 2012). 

HIV targets several different types of cells within the immune system that are found 

throughout the body. The main targets of HIV are the short-lived activated CD4+ T cells of 

the adaptive immune system (Douek et al, 2002). When productively infected, these cells 

turn over rapidly, with a half-life of about 2 days (Ho et al, 1995; Wei et al, 1995). Infection 

of resting (non-activated) CD4+ T cells typically results in latent rather than productive 

infection (Siliciano and Greene, 2011), and cells in this state have a half-life of 44 months 

(Pierson et al, 2000). Other targets of HIV infection include dendritic cells and 

macrophages, immune cells of the innate immune system that also express the CD4+ 

surface protein required for HIV entry.  

  

HIV- Stages of Infection  

 

Untreated HIV infection proceeds in three distinct phases. The first phase, the acute 

phase, occurs during the first 3-6 months following contraction of the virus and is often 

accompanied by flu-like symptoms. Circulating CD4+ T cells rapidly drop, while plasma 

virus levels increase exponentially and peak around 21-28 days following infection, 

eventually declining to a viral set point of about 103-105 virions/ml (O’Brien and 

Hendrickson, 2013), (McMichael et al, 2010). It is during this acute period that the virus is 

rapidly disseminated throughout the body and a large reservoir of latently infected cells 

becomes established. This is also the period during which the adaptive immune response 

begins to mount a defense against the virus. Following the acute phase of infection, the 
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chronic or asymptotic phase of infection typically lasts between 5-10 years. The chronic 

period of infection is characterized by a low viral load but a high rate of viral turnover, i.e. 

the virus is still actively infecting and replicating but is mostly controlled by the 

continuously active immune system (Pantaleo et al, 1993). Left untreated, HIV will 

ultimately deplete the CD4+ population to below 200 cells/mm3, at which point the disease 

has progressed to AIDS. The weakened immune system is highly vulnerable to 

opportunistic infections, and AIDS-related mortality is associated with these complications. 

 

HIV Treatment 

 

There is no cure or vaccine for HIV. One of the greatest obstacles to curing HIV 

infection is the high mutation rate of the virus combined with a rapid turnover rate. 

Mutants are generated at the rate of 3 × 10�� per base pair per replication cycle, with 

about 10�� new virions produced per day. Thus, millions of viral variants are generated in a 

single host each day. This allows the virus to continuously mutate away from detection by 

the immune system, and is also responsible for the rapid rise of single-drug resistant viral 

strains. Another obstacle to eradicating HIV from the body is the reservoir of latently 

infected immune cells, such as resting CD4+ T cells, which are very long lived. Cells 

harboring integrated provirus are frequently undetectable by the host immune system, and 

are capable of activation and production of new virus.  

HIV infected individuals are treated using antiretroviral therapy (ART), which is a 3-

drug combination that typically includes two reverse transcriptase inhibitors and a 

protease inhibitor. Using a “cocktail” of drugs inhibits viral load to nearly undetectable 
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levels, ensuring that there is no likelihood of generating a viral mutant resistant to all three 

drugs in the lifetime of the patient. Lack of adherence to drug therapy in an infected 

individual leads to rapid expansion of the viral population, and sustained viral suppression 

is one of the best predictors of long-term disease control during ART (Wit et al., 1999) 

In 2012, the FDA approved the antiretroviral combination drug Truvada as an HIV 

pre-exposure prophylactic (PrEP). Originally indicated for use in HIV ART treatment, 

Truvada can also prevent HIV infection when taken regularly for several days prior to 

exposure, and a similar drug combination is used as a post-exposure prophylactic or PEP 

(Grant et al., 2010; Winston et al., 2005). Retroviral treatments like ART and PrEP/PEP 

require close adherence to the treatment regime to be effective. Short-term adherence is 

often difficult due to unpleasant side effects such as nausea, and antiretrovirals have 

significant long-term side effects associated with their toxicity as well, including bone 

density loss and liver damage (Nunez, 2006; Pan et al., 2006).  

 

Mathematical Modeling of Virus Dynamics 

 

This thesis explores the interactions between virus and host cell interactions at the 

population level. Population dynamics models are a critical component to the study of 

virology, as the ability to formulate equations that accurately predict biological outcomes 

can provide insight into the underlying dynamics of the complex interactions between 

viruses and the immune system.  Mathematical descriptions of viral dynamics have been 

vital to the understanding of antiviral therapies, viral evolution, and to our understanding 

of viral pathogenesis (Perelson, 2002; Perelson and Ribeiro, 2013). These models, when 
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combined with data from in vitro experiments, allow us to better describe processes that 

are often impossible to experimentally test in humans, and prohibitively expensive to 

investigate in animals. The collaboration between mathematical and experimental 

scientists since the 1990's has resulted in several important breakthroughs that have come 

to define the field, including estimates of key parameters such as infected cell death rate 

(Nowak and May, 2000; Perelson and Ribeiro, 2013).  

The population dynamics of viral infections can be formulated as a system of 

differential equations that describes the process of infecting cells to produce new virus. The 

basic model of virus dynamics as formulated by Nowak and May serves as a starting point 

for numerous published modeling works that describe how viruses and their target cells 

interact, including the first and third chapters of this thesis.  

There are three populations in the basic model: x, uninfected cells, v, free virus, and 

y, infected cells. Uninfected cells are assumed to be produced at a constant rate λ, and these 

cells die at rate 
�. Free virus particles decay at rate �
. Free virus particles encounter and 

infect uninfected cells at rate ��
. Note that the infectivity parameter β also encompasses 

the “handling time” of successful viral fusion and entry. Infected cells produce free virus 

with rate ��, and die with rate ��. It is assumed that � > 
 in this model, i.e. infected cells 

decay more rapidly than uninfected cells. This model can be formulated as a system of 

differential equations shown below: 

�� = � − 
� − ��
 

�� =  ��
 − �� 


� = �� − �
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In the basic model of virus dynamics, establishment of infection is predicted by R0, 

the basic reproductive ratio of the infection or basic reproductive rate. R0 is defined as the 

total number of newly infected cells that arises from one singly infected cell when most 

cells are uninfected. The formulation of this ratio is found by dividing all such parameters 

that promote the spread of infection, including �, by all such parameters that inhibit the 

spread of infection, including the decay rate of free virus, �. This gives us the following 

ratio: 

�� =  ���/
�� 

This ratio is useful because it predicts if a new infection will “take hold” and spread, 

or decline to extinction. If R0<1, the infection will not become established, as each infected 

cell is on average leading to less than one newly infected cell and the population will decay. 

If R0 is greater than 1, infection is established in this deterministic model. Both virus, 
, and 

infected cells, �, will grow exponentially and peak, then decline to an equilibrium value 

given by the following steady-state solutions:  

�∗ = (�� − 1)
�/��, 


∗ = (�� − 1)
/� 

Uninfected cells will decline from a pre-infection load of �� = �/
 to the steady-state 

infection equilibrium: 

�∗ = ��/�� 

The formulation of the basic model of virus dynamics has provided numerous insights into 

the underlying principles governing interacting populations of viruses and their host cells. 

In the case of HIV, a modified version of the above model has been used to accurately 

predict the decay rate of free virus in the blood after the onset of drug treatment (Nowak 
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and May 2000). This model has also been shown to accurately describe the kinetics of the 

acute phase of HIV infection (Stafford et al 1999). 

The three chapters of this thesis explore models of virus dynamics in several 

different contexts. Chapter 1 investigates competitive and facilitative interactions between 

multiple HIV CD4+ T cell populations during the acute phase of HIV infection, before a 

significant immune defense has been mounted. Chapter 2 explores the regulatory 

mechanisms that contribute to the stable growth and division of stem cell lineages, and 

how these mechanisms respond during a challenge to feedback control- in this case, viral 

infection of the stem cell lineage. Chapter 3 explores the consequences of multiple infection 

in host cells on the dynamics of viral spread in a spatially limited environment.  
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Chapter 1: Infection of HIV-specific CD4 T helper cells and the clonal composition of 

the response 

 

Abstract 

 

A hallmark of human immunodeficiency virus is its ability to infect CD4+ T helper 

cells, thus impairing helper cell responses and consequently effector responses whose 

maintenance depends on help (such as killer T cells and B cells). In particular, the virus has 

been shown to infect HIV-specific helper cells preferentially. Using mathematical models, 

we investigate the consequence of this assumption for the basic dynamics between HIV and 

its target cells, assuming the existence of two independently regulated helper cell clones, 

directed against different epitopes of the virus. In contrast to previous studies, we examine 

a relatively simple scenario, only concentrating on the interactions between the virus and 

its target cells, not taking into account any helper-dependent effector responses. Further, 

there is no direct competition for space or antigenic stimulation in the model. Yet, a set of 

interesting outcomes is observed that provide further insights into factors that shape 

helper cell responses. Despite the absence of competition, a stronger helper cell clone can 

still exclude a weaker one because the two clones are infected by the same pathogen, an 

ecological concept called “apparent competition”. Moreover, we also observe “facilitation”: 

if one of the helper cell clones is too weak to become established in isolation, the presence 

of a stronger clone can provide enhanced antigenic stimulation, thus allowing the weaker 

clone to persist. The dependencies of these outcomes on parameters is explored. Factors 

that reduce viral infectivity and increase the death rate of infected cells promote 
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coexistence, which is in agreement with the observation that stronger immunity correlates 

with broader helper cell responses. The basic model is extended to explicitly take into 

account helper-dependent CTL responses and direct competition. This study sheds further 

light onto the factors that can influence the clonal composition of HIV-specific helper cell 

responses, which has implications for the overall pattern of disease progression. 

 

Introduction 

 

Human immunodeficiency virus-1 (HIV-1) infection typically progresses through 

three phases: the acute phase in which extensive initial virus growth is observed that is 

eventually down-regulated; the chronic or asymptomatic phase during which virus load 

remains relatively low and the patient appears healthy; and the AIDS phase during which 

virus load rises sharply and destroys the CD4 T helper cell population to a degree at which 

the immune system effectively ceases to function. The dynamics between HIV-1 replication 

and immune responses has been subject to much research, both experimentally and 

mathematically (Douek et al., 2003, Nowak and May, 2000, Perelson, 2002 and Simon and 

Ho, 2003). This has provided many insights not only into patterns of disease progression 

but also into aspects of therapy. A characteristic that sets HIV infection apart from many 

other viral infections is the ability of the virus to impair not only the immune system as a 

whole, but also HIV-specific immune responses in particular (Kalams and Walker, 1998, 

Rosenberg and Walker, 1998, Rosenberg et al., 1997 and Rosenberg et al., 2000). Moreover, 

the ability of HIV to evolve rapidly in vivo (Ho et al., 1995, Mansky and Temin, 1995, 

Nowak, 1990 and Wei et al., 1995) allows the virus to escape immune responses that are 
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mounted by the patient (Goulder and Walker, 1999, Goulder et al., 1997, Goulder et al., 

2001, Klenerman et al., 2000, McMichael and Phillips, 1997, Phillips et al., 1991 and Price et 

al., 1997). These aspects significantly contribute to the inability of the immune response to 

control the infection in the long term, eventually leading to uncontrolled viral replication 

and the development of AIDS. 

HIV-1 infects a variety of cell types, including CD4+ helper T cells, macrophages, and 

dendritic cells, all of which play central roles in the establishment of immune effector 

responses, such as cytotoxic T lymphocyte (CTL) and B cell responses. Infection of these 

cells is the basis for virus-induced immune impairment, the dynamics of which has been 

analyzed in detail mathematically and experimentally (El-Far et al., 2008, Kalams and 

Walker, 1998, Komarova et al., 2003, Korthals Altes et al., 2003, Lifson et al., 2000, McLean 

and Kirkwood, 1990, Moir et al., 2011, Rosenberg and Walker, 1998, Rosenberg et al., 1997, 

Rosenberg et al., 1999, Rosenberg et al., 2000, Wodarz and Nowak, 1999, Wodarz and 

Jansen, 2001, Wodarz and Hamer, 2007 and Wodarz et al., 2000). Experiments have shown 

that HIV-specific helper cell infection not only occurs, but occurs preferentially over 

infection of T cells with other specificities (Douek et al., 2002 and Douek et al., 2003). This 

makes intuitive sense because HIV-specific T cells are likely to be abundant in anatomical 

areas that contain HIV-infected cells, allowing transmission to occur not only via free virus, 

but also from cell to cell through virological synapses (Hubner et al., 2009). 

This study extends previous work and examines the dynamics of virus replication in 

HIV-specific helper T cell responses assuming the existence of two helper cell clones rather 

than one. We examine the consequences of HIV-specific helper cell infection for the 

dynamics and the clonal composition of the helper cell response in the simplest setting, 
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assuming no competition between the helper cell clones and the absence of helper-

dependent effector responses. Interestingly, the model suggests that even in this simple 

setting, relatively complex dynamics are observed that can shape the early composition of 

the HIV-specific T helper cell response and that can therefore have lasting consequences 

for progression of the disease (Lifson et al., 1997). The effect of competition between 

helper cell clones and the presence of helper-dependent effector responses are 

subsequently studied in extensions of the basic model. 

 

Basic dynamics of HIV-specific helper cell infection 

 

We discuss a basic model that describes HIV dynamics in HIV-specific CD4+ T helper 

cells, assuming only a single helper cell population. This will form the basis for a more 

complex model that takes into account two helper cell clones, directed against different 

epitopes of the virus. Besides the specific helper cells, the model also takes into account an 

alternative target cell population, which can include non-specific helper cells as well as 

macrophages and dendritic cells. We denote uninfected and infected non-specific target 

cells by S and I, respectively. Uninfected and infected specific helper cells are denoted by x 

and y, respectively. The free virus population is denoted by v. The model is given by the 

following set of ordinary differential equations that describe the average time course of the 

infection:  

(Eq. 1.1) 
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The HIV specific helper cells proliferate upon contact with virus with a rate r. While 

at relatively low virus load, the T cell proliferation rate is proportional to the amount of 

virus, v, this dependency saturates at higher virus loads. Further, the T cell proliferation 

term saturates as the overall number of specific T cells (x+y) grows, implying a regulatory 

mechanism that prevents unbounded growth of the immune response. The degree of 

saturation is given by the parameters ε and η. They also appear in the numerator of the 

expression such that large values of ε and η do not reduce the proliferation term and 

require rescaling of r. Upon contact with virus, the specific helper cells become infected 

with a rate β, and infected helper cells die with a rate a. Non-specific target cells are 

produced with a rate λ, die with a rate dns, and become infected upon contact with virus at a 

rate βns. Infected non-specific cells die with a rate ans. Virus is produced by specific and 

non-specific infected cells with a rate k and kns, respectively. Finally, free virus decays with 

a rate u. In this notation, the subscript “ns” stands for non-specific. 

Note that the model is phenomenological in nature, describing complex biological 

processes with relatively simple terms. As mentioned above, the non-specific target cell 

population contains a group of cells consisting of T cells, dendritic cells and macrophages. 

In the equations, they are assumed to be produced with a constant rate λ. This might be a 
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correct assumption in general, but T cells are also likely to undergo cell divisions, which is 

not captured in the model. Hence, the rate λ should be considered to be a general input 

term and it is difficult to relate it to a particular process, the kinetics of which could be 

measured. On the other hand, the equation for the specific T cells ignores a constant 

production term assuming that significant increases in this population are driven mainly by 

antigen-induced cell division, as has been done in previous immune response models 

(Antia et al., 2005, Nowak and May, 2000 and Wodarz, 2006). A production term can 

significantly impact the dynamics if the number of immune cells is very low, further 

explored in Fig. 1.2. 

This model is very similar to previous work that incorporated HIV-specific helper 

cells into mathematical models of HIV infection (Wodarz and Hamer, 2007). Specifically, 

their model only differed in the term that describes the proliferation of HIV-specific T cells, 

which was still antigen-driven, but limited through logistic growth. This was altered in the 

current study to include the more realistic assumption of saturated T cell proliferation. The 

paper by Wodarz and Hamer (2007) also considered antigen-driven expansion of infected 

HIV-specific helper cells. This was not included in the current model because its relevance 

is unclear given the relative short life-span of infected cells. Additionally, including this 

assumptions leads to biologically dubious outcomes, such as 100% prevalence of the virus 

in the T helper cell population (Wodarz and Hamer, 2007). 

Model properties are summarized as follows. Because of the strong similarity of this 

model and its properties to the one analyzed in Wodarz and Hamer (2007), this section is 

designed to be more of an overview than a full analysis. For details, the reader is referred to 

Wodarz and Hamer (2007). The outcomes of the model include failure to establish a virus 
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infection; successful infection in the absence of a specific helper cell response; and 

establishment of infection in the presence of specific helper cells. It is useful to define the 

basic reproductive ratio of the virus (Nowak and May, 2000) in the non-specific target cells 

only, given by �� =
�� !" !

# !$ !%
. If R0>1, then the virus can establish an infection in the non-

specific target cells alone and can therefore persist. If the T cell response does not become 

established, the system converges to the following equilibrium: &∗ =
%$ !

� !" !
, '∗ =

�� !" !�# !$ !%

� !" !$
, 
∗ =

�� !" !�# !$ !%

� !$ !%
,  �∗ = 0, �∗ = 0. 

On the other hand, if the helper cell response does become established, the system 

converges to a different steady state at which all populations are greater than zero. This is 

given by the solution of a fourth degree polynomial and is thus not written out here. 

Whether the specific T cell response is established can depend both on model 

parameters and on the initial conditions. Since the model does not include a production 

term for specific helper cells, the initial number of helper cells must be greater than zero 

for this population to expand in response to antigenic stimulation. If this is the case, the 

specific T cell response always becomes established if 

((rv*(γ+ϵ)(γ+η))/(ϵ(v*+η)))−βnsv*−d>0, i.e. if the rate of antigen-induced proliferation is 

greater than the combination of the natural death rate and virus-induced impairment of the 

response. This condition is not fulfilled if the amount of stimulating virus, v*, either lies 

below a threshold or above a threshold. If virus load is too low, it is insufficient to stimulate 

the response. If it is too high, the degree of immune impairment outweighs the degree of 

antigenic stimulation. This balance between immune stimulation in immune impairment 
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has been described before (e.g. Wodarz et al., 2000 and Younes et al., 2007). If the 

inequality does not hold, the specific helper cell response may or may not become 

established depending on the initial conditions (Fig. 1.1). A high initial virus load and a high 

initial number of specific helper cells can promote establishment of the helper cell 

response. It generates more infected cells, which in turn can provide higher levels of 

stimulation, thus leading to positive feedback. This dependence on initial conditions does, 

however, not occur in the entire parameter region in which the above inequality is not 

fulfilled. If the rate of helper cell expansion is too weak relative to the rate of loss, then the 

only outcome is failure of the response. This was determined by numerical simulations, and 

an analytic condition could not be obtained. This is explored more extensively in the study 

by Wodarz and Hamer (2007).  
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Fig. 1.1 Properties of model (1) assuming a single helper cell clone, demonstrating the dependence of the 

outcome on initial conditions. (a) Simulations are started with a low initial virus load and a low initial number 

of virus-specific helper cells, leading to the extinction of the specific helper cell response. (b) Simulations are 

started with a high initial virus load and a high initial number of virus-specific helper cells, leading to the 

persistence of the specific helper cell response. Note, this we consider this outcome biologically unrealistic 

because it requires most infected cells to be specific helper cells. Nevertheless, it is explored for completeness 

and parameters are chosen arbitrarily for illustrative purposes: β=0.01; d=0.5; a=1; r=2; ε=10; η=10; γ=1; 

k=1; u=1; βns=0.2; λ=0.12; dns=0.1; ans=0.2 kns=1. S(0)=λ/dns; I(0)=0; y(0)=0. (a) x(0)=1; v(0)=1 and (b) 

x(0)=100; v(0)=100. 

 

 

Now assume that the basic reproductive ratio of the virus in the non-specific cells 

alone is less than one (R0<1), i.e. an infection cannot be established in the non-specific cells 

alone. We observe the same dependence of outcome on initial conditions as before, i.e. a 

high initial virus load and a high initial helper cell population can lead to the establishment 

of the infection. In this case, the helper cell response obviously is established, and the virus 
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is present in both specific and non-specific target cells. Again, if the rate of helper cell 

expansion is too weak relative to the rate of loss, then the infection can never be 

established. 

  We note that the cases in which the establishment of the specific helper cell 

response depends on the initial conditions (beyond the trivial requirement that x0>0) are 

not likely to be biologically realistic. It requires that the majority of virus replication occurs 

in specific helper cells rather than in non-specific target cells. In reality, however, infected 

specific helper cells make up about 1–10% of all infected cells in the blood ( Douek et al., 

2002), and the non-specific helper cells are thought to act in part as reservoirs that 

contribute to the maintenance of the virus in the host. Because the described dynamics are 

a property of the model, however, they are still important to discuss, and Fig. 1.1 does not 

rely on any measured parameters and is shown for illustrative purposes only. 

While these insights are conceptually not novel (Wodarz and Hamer, 2007), this 

model provides the foundation for incorporating two specific helper cell clones in which 

the virus can replicate, described in the following section. 

 

 

Infection dynamics in two helper cell clones 

 

Here, we add a second helper cell clone to the model, directed against a different 

viral epitope. We denote clone 1 by subscript 1, and clone two by subscript 2. It is assumed 

that the two clones only differ in their proliferation rates, r1 and r2. The equations thus 

become 
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(Eq. 1.2) 

 

In this section, it is assumed that the two immune cell clones are not in any type of 

direct competition with each other. The rate of helper cell proliferation only saturates with 

the number of helper cells belonging to the same clone, and not all specific helper cells in 

the system. The two clones are therefore regulated independently. The clones also do not 

compete through immune-mediated suppression of virus load because our model does not 

include helper-induced effector responses. (In many models that include effector 

responses, one effector clone can suppress virus load to levels that are too low to stimulate 

other clones, leading to competitive exclusion.) The reason for this assumption is that we 

seek to examine the effects of specific helper cell infection in the absence of further 

complicating factors. The impact of direct competition and effector responses will be 

explored below. 

The model properties were studied largely by numerical simulations. It will be 

assumed that the basic reproductive ratio of the virus in the non-specific target cells alone 

is greater than one, ensuring the establishment of a successful infection in this system. 

Furthermore, we assume that each helper cell clone in isolation can become established 
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without dependence on initial population sizes (except zero), the conditions for which 

were discussed in the last section. Under these assumptions, two outcomes are observed 

(Fig. 1.2): (i) both helper cell clones become established. (ii) One of the helper cell clones 

becomes established, while the other one goes extinct. The persisting clone is the stronger 

one, i.e. its net rate of expansion is faster. This exclusion occurs in the absence of any 

competitive interactions. The reason is that the two helper cell clones are infected by a 

common virus population. This leads to the phenomenon of “apparent competition” (Holt, 

1977), in which the stronger helper cell clone produces an amount of virus that is too high 

for the weaker clone to survive.  

 

Fig. 2.2 Outcomes of model (2) assuming the presence of two virus-specific helper cell responses that are 

regulated independently. (a) Only one clone, the stronger one, persists. The other clone goes extinct, although 

it would persist in isolation (see inset). In the inset, two graphs are given. The upper graph plots the weaker 

helper cell response using a model without a production term for specific helper cells. Initial virus replication 

severely impairs the helper cell response before it settles at a steady state. The drop of this population to such 

low levels is likely to be unrealistic because at these low numbers, a production term can significantly 

influence the dynamics. In reality, the helper cell population cannot fall much below the naïve base-line levels. 

The lower graph displays the same simulation with a constant production term ξ=0.01 day−1 vol−1. (b) This 
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graph shows the percentage of infected specific helper cells among all infected cells, corresponding to the 

simulation presented in part (a). (c) In this simulation, both helper cell clones coexist. For all cases, 

simulations can be performed for different tissue compartments or blood. In each case, the appropriate unit 

volume (vol) should be chosen to measure cell/viral densities. Parameters were chosen as follows: (a) 

β=0.015 day−1 vol; d=0.1 day−1; a=0.45 day−1;  r1=0.5 day−1; r2=0.05 day−1;ε=10 vol−1; η=10 vol−1; γ=1 

vol−1; k=1 day−1; u=3.33 day−1; βns=0.01 day−1 vol; λ=100 day−1 vol−1;dns=0.01 day−1; ans=0.2 day−1; 

kns=0.1 day−1. S(0)=λ/dns; I(0)=0.1; x1(0)=0.1; y1(0)=0; x2(0)=0.1; y2(0)=0;v(0)=1. (b) Same, except 

β=0.005 day−1 vol. 

 

 

 To make sure that these dynamics are not at odds with established quantitative 

parameters of HIV infection, the simulation in Fig. 1.2 was run taking into account the two 

most established parameter measurements (Perelson et al., 1996): an average infected cell 

life span of 2.2 days, and an average life-span of plasma virions of 0.3 days. The rest of the 

parameters, while largely uncertain, were selected such that the percentage of infected 

specific helper cells lies within the observed range of 1–10% (Douek et al., 2002) (Fig. 1.2). 

Because the non-specific target cell population encompasses several different cell types, 

some of which can be characterized by a relatively long life-span when infected, an overall 

life-span of 5 days was assigned to this population. This is necessarily arbitrary, but aims to 

capture the existence of both shorter lived infected T cells and the longer lived infected 

antigen-presenting cells in this population. 

Fig. 1.3a shows how the outcome depends both on the rate of helper cell infection, β, 

and the death rate of infected cells, a. The base-line parameter values for this plot are taken 

from Fig. 1.2 and are thus within biologically realistic ranges. A lower rate of helper cell 

infection and a higher death rate of infected cells promote coexistence of both responses 

rather than exclusion. If these two parameters are influenced by immune effector 

responses of any kind, it can be interpreted to mean that stronger virus suppression leads 

to coexistence of the helper cell clones, while less efficient virus suppression leads to the 

exclusion outcome. The region in which exclusion of one clone is observed varies, 
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depending on the uncertain parameter values. In particular, the relative rates of antigen 

driven T cell proliferation, r1 and r2, play an important role, which is shown in Fig. 1.4. If the 

proliferation rate of the weaker clone, r2, lies above a threshold relative to the value of r1, 

coexistence is observed, otherwise, exclusion occurs. The higher the value of r1, the higher 

the value of r2 needs to be to ensure coexistence. Other parameters can also affect the 

outcomes, although some of them are biologically difficult to interpret, such as the 

saturation terms used in the model. 

 

 
 

Fig. 1.3 Outcomes of model (2) depending on the death rate of infected cells, a, and the infection rate of 

specific helper cells, β. Blue indicates coexistence and green indicates persistence of only the stronger clone. 

(a) The shaded area indicates the parameter region in which the weaker clone persists in isolation. A lower 

death rate of infected cells and a higher infection rate of specific helper cells promotes exclusion through 

apparent competition. When the infection rate of specific helper cells lies above a threshold (above the 

shaded area), then the weaker helper cell clone never persists, even in isolation. If the infection rate of 

specific helper cells crosses another threshold, both helper cell populations go extinct (not shown). (b) In 

contrast to part (a), this plot assumes that the weaker helper cell clone cannot persist in isolation in the 

parameter region under consideration. In this case, a stronger helper cell clone can facilitate the maintenance 

of the weaker clone. This occurs for intermediate death rate of infected specific helper cells. If the infection 

rate of specific helper cells becomes too large this is not possible anymore because the net expansion rate of 

the weaker helper cell clone becomes too small. If the infection rate of specific helper cells is increased 

further, both helper cell clones go extinct (not shown). Base-line parameters were chosen as follows. 

(a) d=0.1 day−1; r1=0.5 day−1; r2=0.05 day−1; ε=10 vol−1; η=10 vol−1; γ=1 vol−1; k=1 day−1; u=3.33 day−1; βns=

0.01 day−1 vol; λ=100 day−1 vol−1; dns=0.01 day−1; ans=0.2 day−1; kns=0.1 day−1. (b) Same,  except r1=8 

day−1; r2=0.014 day−1.  Initial conditions were as follows. Upon introduction of the weaker clone, the system 

was at the equilibrium describing persistence of the stronger clone alone (given this equilibrium was stable, 

as determined numerically). 
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Fig. 1.4 Outcomes of model (2) depending on the antigen-induced growth rate of the stronger (r1) and the 

weaker (r2) helper cell clone. Blue indicates coexistence; green indicates persistence of only the stronger 

clone; red indicates extinction of both clones. Base-line parameters were chosen as follows:  β=0.015 day−1 

vol;d=0.1 day−1; a=0.45 day−1; ε=10 vol−1; η=10 vol−1; γ=1 vol−1; k=1 day−1; u=3.33 day−1; βns=0.01 

day−1 vol; λ=100 day−1 vol−1; dns=0.01 day−1; ans=0.2 day−1; kns=0.1 day−1.  

 

 

So far, we have assumed that each individual helper cell clone can establish a 

response in isolation. Now, we assume that only one of the helper cell clones can establish a 

response in isolation, and that the other one is too weak to persist. In this case, we observe 

a parameter region in which the presence of the stronger clone enables the weaker clone to 

persist as well, leading to coexistence (Fig. 1.3b, again using the base-line parameters from 

Fig. 1.2). The presence of the stronger clone allows additional infection to occur, and this 

boosts virus load to sufficient levels to also successfully stimulate the weaker clone. Hence, 

in this scenario, a cooperative effect occurs. This is observed for intermediate rates of 

infected cell death. If the death rate of infected cells is too high, not enough virus is 

produced by the stronger clone to maintain the weaker clone. If the death rate of infected 

cells is sufficiently low, too much virus is produced by the stronger clone, such that the 
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degree of impairment outweighs the degree of stimulation of the weaker clone. Similarly, 

the degree of immune impairment is too strong for the weaker clone to persist if the 

infection rate of specific helper cells lies above a threshold. On the other hand, if the 

infection rate of helper cells lies below a threshold, then the weaker clone can already 

persist alone without the need for the stronger clone because the degree of immune 

impairment is relatively weak. In general, to observe this behavior, the weaker clone must 

be unable to persist in isolation, and the stronger clone must provide sufficient virus for 

antigenic stimulation, but not too much virus to avoid significant impairment. 

 

Effect of direct competition 

 

So far we have assumed that each clone is regulated separately, i.e. that they do not 

directly compete in any way. This was done because the occurrence of competition among 

immune cell clones is controversial (Fryer et al., 2009 and Kastenmuller et al., 2007) and 

we aimed to show that even in the absence of competition, similar outcomes can be 

observed through indirect effects. Here, we include direct competition into the model and 

explore the outcomes. The model is now given by the following set of ordinary differential 

equations: 

(Eq. 1.3) 
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Direct competition is expressed in the saturation term of helper cell proliferation. In the 

previous model, proliferation of a particular clone only saturated when the number of cells 

belonging to that clone rose to higher levels. In the current model, saturation is determined 

by the total number of specific helper cells, belonging to either clone (x1+y1+x2+y2). In 

contrast to the previous model (2), this formulation is characterized only by one outcome: 

persistence of one specific helper cell clone and extinction of the other. The clone with the 

larger net rate of expansion persists. This is not surprising because the two clones are in 

direct competition with each other with no degree of niche separation. 

 

Effector responses 

 

So far, we have considered the dynamics of virus infection in specific helper cells in 

the absence of any effector responses, such as cytotoxic T lymphocyte (CTL) or B cell 

responses, although the helper cell responses promote the development of the effector 

responses, which in turn can suppress the virus population. The reason for this omission is 

that we wanted to see how the basic dynamics between HIV and the specific helper cells 
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can influence the clonal composition of the helper cell response without adding further 

components to the model with uncertain biological assumptions. It is thought that a broad 

helper cell response promotes better virus control, presumably through the induction of 

effector responses. The nature of the relationship between the breadth of the helper cell 

response and the quality and breadth of the CTL response, however, remain unknown, and 

conflicting experimental data have been reported (Chouquet et al., 2002, Feeney et al., 

2004, Karlsson et al., 2007 and Rolland et al., 2008). In this section, we aim to show that 

indirect interactions can still shape the clonality of the helper cell response if a helper-

dependent effector response is added to the model. As an example, we consider CTL, 

denoted by C. Modifying model (2) leads to the following equations: 

(Eqn. 1.4) 

 

The rate of CTL expansion depends both on the presence of uninfected specific 

helper cells (x1+x2) and the presence of infected cells (y1+y2+I). Infected helper cells are 

assumed to be compromised. Both helper cell clones can promote CTL expansion. Helper 

cells are thought to activate CTL indirectly via the activation of professional antigen 
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presenting cells. Hence, a helper cell clone of a given specificity need not just promote one 

specific CTL clone, but can promote the rise of different CTL responses. In the absence of 

stimulation, the CTL die with a rate b. This is a phenomenological model and could be 

formulated in a number of different ways with a number of different assumptions. Some 

models of CTL dynamics assume the rate of expansion to be proportional to the number of 

CTL, which leads to a stronger expansion term and significantly less stable dynamics. For 

the current context, we have kept the model to a simple form, assuming that upon 

interaction with antigen and helper cells, the specific CTL population rises, presumably 

through an induced proliferation program, and acquires effector activity. Due to the 

phenomenological nature of the model, details of the CTL differentiation pathway have not 

been taken into account. The CTL are assumed to have both lytic and non-lytic activity. 

They lyse infected cells with a rate p and they inhibit the rate of virus production by 

infected cells with a rate q. 

In this model, exclusion of one helper cell clone via indirect interactions is still 

observed. We thus explored the dependence of the model outcome on CTL parameters. Fig. 

1.5 shows how the outcome depends on the strength of the lytic and non-lytic effector 

mechanisms and the rate of CTL expansion and death. The simulations are again based on 

the available parameter estimates used thus far. Increasing the rate of lytic or non-lytic 

effector activity (i.e. increasing the values of p and q, Fig. 1.5a) leads to a reduction in the 

amount of virus and the number of infected cells. If these rates of effector activity lie below 

a threshold, then apparent competition can lead to the exclusion of the weaker helper cell 

clone. The square in the graph indicates a sample parameter combination where we 

checked for biological realism. The infected specific helper cells make up about 8% of the 



32 

 

total infected cell population, consistent with observed ranges (Douek et al., 2002). In 

addition, CTL-mediated lysis contributes between 9% and 18% of total infected cell death, 

depending on the cell type under consideration, an order of magnitude that is consistent 

with previously obtained parameter estimate ranges (Asquith et al., 2006). Once the rate of 

effector activity crosses a threshold, exclusion does not occur anymore and the two helper 

cell clones coexist. This result is directly analogous to the result in Fig. 1.3a, where a 

reduction in the viral replication kinetics and an increase in the death rate of infected cells 

(parameters that are essentially altered by non-lytic and lytic CTL effector mechanisms, 

respectively) promoted coexistence rather than exclusion. Finally, if the rates of CTL-

mediated effector activities are higher and lie above a threshold, the weaker helper cell 

clone again goes extinct and only the stronger clone persists. However, the mechanism is 

not apparent competition in this case. Strong immunity suppresses virus load (arising from 

all cell types) to levels that are simply too low to stimulate the weaker clone. If the rate of 

CTL-mediated effector activity was increased further, virus load would become too low to 

even stimulate the stronger helper cell clone, which, however, is not shown in Fig. 1.5a. As 

shown in Fig. 1.5b, similar trends are observed for the parameters that describe the rate of 

CTL proliferation, g, and the rate of CTL death, b. The higher the value of g and the lower 

the value of b, the stronger the degree of virus suppression and the lower virus load 

becomes. Lower degrees of virus suppression lead to exclusion of the weaker helper cell 

clone through apparent competition. Increasing the degree of virus suppression leads to 

coexistence, and a further increase in the degree of virus suppression results in levels of 

virus load that are too low to stimulate the weaker helper cell clone. 
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Fig. 1.5 Outcomes of model (4) depending on CTL parameters. Blue indicates coexistence; green 

indicates persistence of only the stronger clone. (a) Dependence on the rate of lytic, p, and non-

lytic, q, effector activity. The red square indicates a parameter regime where apparent competition 

leads to the exclusion of the weaker helper cell clone. In this region, the specific infected helper cells 

make up about 8% of the total infected cell population, and CTL-mediated lysis contributes between 

9% and 18% to the death rate of the infected cells. (b) Dependence on the rate of CTL proliferation, g, 

and the death rate of CTL, b. Base-line parameters were chosen as follows. β=0.015 day−1 vol; d=0.1 

day−1; a=0.45 day−1; r1=0.5 day−1;r2=0.05 day−1; ε=10 vol−1; η=10 vol−1; γ=1 vol−1; k=1 day−1; 

u=3.33 day−1; βns=0.01 day−1 vol; λ=100 day−1 vol−1; dns=0.01 day−1; ans=0.2 day−1; kns=0.1 

day−1; g=0.0002 day−1 vol; b=0.01 day−1; p=0.0003 day−1 vol; q=0.001 vol. 

 

 

Discussion and conclusion 

 

We have investigated the basic dynamics of HIV replication in two helper T cell 

clones that are specific to HIV. This extends previous work that examined HIV dynamics in 

a single population of specific helper T cells (Wodarz and Hamer, 2007). It is 

complementary to another study (Korthals Altes et al., 2003) that also examined HIV 

dynamics in the presence of polyclonal helper cell responses, but assumed the existence of 

effector responses that remove the virus population and are directly driven by the specific 

helper cells. They showed an array of interesting and complex behavior, including multiple 

steady states that are simultaneously stable. In contrast, our model considers a much 
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simpler scenario. The main model did not take into account helper-dependent effector 

responses and excluded the possibility for any competition among the helper cell clones. 

Nevertheless, complex dynamics were observed that included both negative and positive 

interactions between the helper cell clones through a shared pathogen. On the one hand, a 

stronger helper cell clone can exclude a weaker one through apparent competition, 

maintaining an amount of virus that is too high for the weaker clone to persist. On the other 

hand, a stronger clone can facilitate the establishment of a weaker clone by increasing the 

amount of antigenic stimulation to levels that are sufficient to ensure expansion of the 

weaker clone. 

Our model set-up is likely to apply best to the initial phase of HIV infection due to 

the absence of helper-driven effector responses. Effector responses only arise some weeks 

post infection. In addition, while the exact role of help for effector cells is still debated, 

there is evidence that acute CTL responses develop without the need for help and that help 

plays a bigger role in the long-term maintenance of CTL (Borrow et al., 1996, Kaech and 

Ahmed, 2001, Thomsen et al., 1998, van Stipdonk et al., 2001 and van Stipdonk et al., 2003). 

If the dynamics described in this paper apply in the early phases of the infection, this could 

set the stage for the remaining disease process (Lifson et al., 1997), which is likely to be 

influenced by the breadth of the remaining HIV-specific helper cells (Rosenberg et al., 

1997). According to the model, innate or helper-independent responses that influence the 

death rate of infected cells and the infection rate of the virus could play a crucial role in this 

respect. Both a high rate of cell killing and a low infection rate promote coexistence of the 

different helper cell clones, consistent with the notion that stronger virus suppression 

leads to broader immune responses (Harrer et al., 1996 and Rosenberg et al., 2000). Note 
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that we have shown through an extension of the model that the generation of helper-

dependent CTL responses does not alter our main conclusions about the role of indirect 

interactions for determining the clonal composition of the helper cell response, so in 

principle, our arguments could be valid in the longer term as well. Stronger CTL-mediated 

reduction of viral replication kinetics and a higher CTL-mediated death rate of infected 

cells is predicted to promote coexistence rather than exclusion and thus a broader 

response. However, it is premature to speculate about the longer term dynamics because 

the relationship between the nature of the helper cell response, the nature of the CTL 

response, and the quality of virus control remain too uncertain at this stage. 

Exclusion of weaker immune cell clones by stronger ones has been explored with 

mathematical models in the context of cytotoxic T lymphocyte (CTL) responses. 

Competition for antigenic stimulation has been a major mechanism by which exclusion, and 

thus a narrow immune response, was explained (Nowak, 1996, Nowak et al., 1995a and 

Nowak et al., 1995b). In such models, coexistence between different CTL clones is difficult 

to achieve and has been accounted for by various mechanisms. It can occur through the 

evolution of antigenic escape mutants that trigger immune responses directed against new 

epitopes (Nowak, 1996, Nowak et al., 1995a and Nowak et al., 1995b). Alternatively, 

persistence of multiple CTL clones can occur in a non-equilibrium situation in which the 

life-span of CTL precursors is sufficiently long such that extinction does not occur within a 

realistic time frame (Wodarz and Nowak, 2000). Finally, the complex dynamics between 

polyclonal helper cell responses and helper-driven CTL mentioned above can allow for the 

persistence of broad responses (Korthals Altes et al., 2003). The difficulty in achieving 

coexistence of immune cell clones in the context of direct competition is further reflected in 
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our model extension in which both helper cell clones can negatively impact the expansion 

of either clone. Survival of only one helper cell clone was the only possible outcome under 

this assumption. The notion that direct competition shapes the dynamics of immune 

responses remains controversial (Fryer et al., 2009 and Kastenmuller et al., 2007). 

According to our model, however, exclusion can be observed among different HIV-specific 

helper cell clones even in the absence of any competition, simply as a consequence of the 

fact that they are infected and killed by the same virus population. This certainly can be a 

reasonable assumption to make, since a substantial amount of mixing of cells and viruses 

occurs in the blood, and even within lymph nodes. In contrast to direct competition, 

coexistence of the helper cell clones can readily occur. 

Obviously, in vivo more than two helper cell clones can arise. The principles 

explored here, however, would still hold, albeit in a more complex setting. Depending on 

the exact expansion rates of the different helper cell clones, preliminary simulations (not 

shown) indicate that all responses can coexist, that one response leads to the exclusion of 

all others under consideration, or that some of the clones persist while others go extinct. 

This has not been explored further because consideration of two helper cell clones is 

sufficient to describe the main results of this study and because further exploration would 

only make sense once some of the notions explored here have been shown to be relevant in 

experimental systems. 

It is encouraging that the dynamics described here are observed for parameter 

combinations that are based on empirically measured values for the life-span of infected 

cells and the decay rate of free virus, and occur in regimes where the percentage of infected 

specific helper cells lies within measured bounds. On the other hand, a number of 
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uncertainties prevent more quantitatively exact approaches. First, other parameters in our 

model are unknown. In addition the same biological processes can be described 

mathematically in a variety of ways, which in turn could potentially influence results. 

Related to this, our uncertainly about the exact processes that occur during helper cell 

activation, and the consequently phenomenological nature of the model, provides further 

difficulties for parameterizing the equations and for providing quantitatively exact 

predictions. Finally, our model (like most models) does not take into account all aspects of 

HIV biology that may influence details of the dynamics and the interpretation of 

parameters. For example, while our model assumes virus spread through cell-free virions, 

recent evidence indicates that direct cell-to-cell transmission might be as important 

(Hubner et al., 2009). Moreover, it has to be noted that different micro-environments for 

HIV replication can be spatially separated. Distinct quasi-species compositions have been 

observed in different anatomical areas of an HIV-infected patient, and this presents a 

spatially complex scenario that has not been taken into account in our model (Sala et al., 

1994). Such spatial considerations could potentially alter our results, which merits further 

investigation. Nevertheless, our modeling approach is very valuable because it highlights 

the key assumptions that lead to the observed dynamics and provides new insights into 

factors that can determine the clonal composition of helper cell responses, which might 

have important implications for the overall process of disease progression. A first step 

towards empirically testing the model predictions would be in vitro experiments that 

mimic the assumptions of the model and where the individual cell populations can be easily 

tracked over time, allowing model fitting to the data. The dynamics occurring in vivo are 

characterized by complications, such as spatially distinct locations where virus replication 
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takes place, which also renders the measurement of the appropriate populations difficult. 

More theoretical work will be required to analyze such more complex situations and to 

guide specific experiments. 
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Chapter 2: Tissue architecture, feedback regulation, and resilience to viral infection 

 

Abstract 

 

Tissue homeostasis is one of the central requirements for the existence of 

multicellular organisms, and is maintained by complex feedback regulatory processes. 

Homeostasis can be disturbed by diseases such as viruses and tumors. Here, we use 

mathematical models to investigate how tissue architecture influences the ability to 

maintain tissue homeostasis during viral infections. In particular, two different tissue 

designs are considered. In the first scenario, stem cells secrete negative feedback factors 

that influence the balance between stem cell self-renewal and differentiation. In the second 

scenario, those feedback factors are not produced by stem cells but by differentiated cells. 

The model shows a tradeoff. If feedback factors are produced by stem cells, then a viral 

infection will lead to a significant reduction in the number of differentiated cells leading to 

tissue pathology, but the number of stem cells is not affected at equilibrium. In contrast, if 

the feedback factors are produced by differentiated cells, a viral infection never reduces the 

number of tissue cells at equilibrium because the feedback mechanism compensates for 

virus-induced cells death. The number of stem cells, however, becomes elevated, which 

could increase the chance of these stem cells to accumulate mutations that can drive 

cancer. Interestingly, if the virus interferes with feedback factor production by cells, 

uncontrolled growth can occur in the presence of the virus even in the absence of genetic 

lesions in cells. Hence, the optimal design would be to produce feedback factors by both 
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stem and differentiated cells in quantities that strike a balance between protecting against 

tissue destruction and stem cell elevation during infection. 

 

Introduction 

 

The functioning of multicellular organisms requires tight regulation of cellular 

behavior such that the number of tissue cells is maintained at constant levels. Human adult 

tissue is thought to be maintained by tissue stem cells that have self-renewal capacity. The 

tissue stem cells differentiate into transit amplifying cells that are capable of a limited 

number of divisions, and further differentiation results in terminally differentiated cells 

that cannot divide anymore (Crosnier et al., 2006). Terminally differentiated cells perform 

their function that is required for the tissue, and die after a certain period of time. 

Homeostasis is thought to be achieved by various negative feedback loops (Daluiski et al., 

2001, Elgjo and Reichelt, 2004, Lander et al., 2009, McPherron et al., 1997, Tzeng et al., 

2011, Wu et al., 2003 and Yamasaki et al., 2003). An important process that is subject to 

regulation is the decision for stem cells to self-renew upon division (giving rise to two 

daughter stem cells), or to differentiate, thus giving rise to two daughter cells that are on 

the path to terminal differentiation. As the number of cells grows, feedback factors have 

been shown to block self-renewal and promote differentiation instead, which limits tissue 

size through the eventual death of terminally differentiated cells. Other feedback factors 

down-regulate the rate of cell division as the number of cells grows, thus also preventing 

excessive growth. Such feedback loops have been observed in a variety of tissues (Daluiski 

et al., 2001, Elgjo and Reichelt, 2004, Lander et al., 2009, McPherron et al., 1997, Tzeng et 
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al., 2011, Wu et al., 2003 and Yamasaki et al., 2003) and many feedback factors have been 

found to belong to the transforming growth factor β (TGF-β) superfamily. For example, 

GDF11 is produced by neuronal cells in the mouse olfactory epithelium and provides 

feedback to inhibit the production of neurons. Lack of GDF11 leads to elevated production 

of neurons (Lander et al., 2009). 

Tissue homeostasis can be disturbed by diseases. The development of tumors 

obviously leads to uncontrolled cell growth. Viral infection can lead to the depletion of 

tissue cells and compromised tissue function. There is also an interplay between viral 

infections and the development of tumors, with several viruses thought to contribute to 

tumor initiation (Butel, 2000 and Zur Hausen, 2009). Because viral infections can destroy 

tissue cells, they thereby influence the feedback dynamics of the tissue, for example by 

reducing the level of feedback inhibition and thus inducing altered levels of cell 

proliferation and differentiation. In this paper we use mathematical models to study the 

consequences of viral infections for the dynamics of feedback regulation in otherwise 

healthy tissue. In particular, we ask how the design of regulatory circuits affects the 

protection against pathology. The models suggest the presence of an important tradeoff: if 

the regulatory mechanisms are designed to provide maximal protection against virus-

induced tissue destruction, this can lead to increased levels of stem cell proliferation, which 

can promote the development of cancers. Interestingly, it is shown that in this case, viral 

interference with feedback factor production can lead to uncontrolled cellular proliferation 

even in the absence of induced genetic lesions in cells. In contrast, if tissue is designed to 

minimize the impact of the infection on stem cell proliferation, then virus-induced tissue 
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destruction is maximized. Hence, evolution is likely to favor a tissue design that optimizes 

this tradeoff. 

 

Results 

 

A model will be considered that includes two basic populations: (i) cells with self-

renewal capacity, which includes both tissue stem cells and transit amplifying cells. For 

simplicity, this population will be collectively referred to as “stem cells”, and is denoted by 

S. (ii) Terminally differentiated cells that cannot divide anymore, denoted by D. It is based 

on previous models (Lander et al., 2009, Lo et al., 2009 and Rodriguez-Brenes et al., 2011) 

and given by the following set of ordinary differential equations that describe the time 

evolution of these cell populations. 

(Eqn. 2.1) 

 

This represents a minimally parameterized model to describe tissue dynamics, which 

allows us to obtain analytical insights. Stem cells divide with a rate (). With a probability *), 

division results in two daughter stem cells (self-renewal). With a probability 1 − *’, 

division results in two differentiated cells. Differentiated cells die with a rate a. The primes 

in the notation mean that these parameters can be influenced by negative feedback. 

Feedback factors can either be produced by stem cells or by differentiated cells. In the 

context of differentiation, this is expressed as *’ = */(,�& - ,./ - 1). Thus, the basic 

probability of self-renewal is given by *, and the parameters ,� and ,. describe the relative 
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strength of feedback factors produced by stem and differentiated cells, respectively. 

Feedback on the rate of cell division is expressed by (’ = (/(0�& - 0./ - 1). The 

parameter ( describes the intrinsic rate of cell division, and the relative strength of 

feedback factors produced by stem and differentiated cells is given by 0� and 0., 

respectively. 

Next, we introduce a viral infection into this model, assuming that the virus can only 

infect differentiated cells and not the stem cells. Denoting infected differentiated cells by I, 

this is formulated as follows according to standard virus dynamics equations. 

(Eqn. 2.2) 

 

The infection is modeled based on established virus dynamics formulations ( Nowak and 

May, 2000 and Perelson, 2002). Upon contact with uninfected differentiated cells, infection 

occurs with a rate 1. Infected cells die with a rate ad. Free virus particles are not explicitly 

taken into account but are assumed to be in a quasi-steady state. This is a well justified 

assumption in the field ( Nowak and May, 2000) because the turnover of free virus is much 

faster than that of infected cells. In the presence of the virus infection, two types of 

differentiated cells exist (uninfected and infected), and both can potentially secrete 

feedback factors. Infected cells can maximally produce the same amount of feedback 

factors as uninfected cells, but may produce less due to viral impairment. Thus, the self-

renewal feedback is now given by: *’ = */(,�& - ,./ - 2,.' - 1), where 2 3 1. Similarly, 

the division feedback is given by (’ = (/(0�& - 0./ - 40.' - 1), where 4 3 1. 
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We will start by analyzing a scenario where there is only feedback on self-

renewal/differentiation (p’). No feedback on the rate of cell division will be assumed to 

exist for now. Feedback on self-renewal is the most important feedback loop that enables 

the existence of a stable equilibrium in this system (Lander et al., 2009 and Lo et al., 2009), 

and this simplification helps us obtain some key results. Subsequently, feedback on the rate 

of cell division is introduced and examined. 

 

Feedback on self-renewal only 

 

This section considers the scenario where there is feedback on self-renewal only, 

and the rate of cell division is simply given by the parameter r (m1=m2=0). The following 

outcomes are observed. Persistence of the tissue requires that p>0.5. In this case the 

system can converge to two different equilibria depending on the parameter values. If the 

infection is not established, the following equilibrium is observed: 

 

If the virus does establish an infection, the dynamics converge to the following steady state: 

 

Successful infection is established if the basic reproductive ratio of the virus ( Anderson 

and May, 1991 and Nowak and May, 2000) is greater than one, given by R0=bD(0)/ad. 
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We are interested in the effect of the infection on tissue homeostasis. Therefore, we 

compare the number of stem cells and differentiated cells in the presence of the infection 

with the number in the absence of the infection at equilibrium, expressed as ratios 

Sfrac=S(1)/S(0) and Dfrac=(D(1)+I(1))/D(0). Let us first examine the dependence of these ratios 

on the viral replication rate, b ( Fig. 2.1). We consider the effect of infection in the context of 

two different tissue designs. First we assume that feedback factors are only produced by 

stem cells and not by differentiated cells (n1>0; n2=0). Fig. 1a shows that in this case, the 

fraction of stem cells during infection, Sfrac, is independent of the viral replication rate, b. 

The fraction of differentiated cells, Dfrac, declines with b towards an asymptote because a 

faster replicating virus leads to a higher degree of cell depletion ( Fig. 2.1a). If the basic 

reproductive ratio of the virus, R0, is around its threshold value of one, there is a strong 

dependence. But if R0»1, the dependence is weak while converging to the asymptote. Now, 

the opposite scenario is explored where all feedback factors are produced by differentiated 

cells and none by stem cells (n1=0; n2>0). The fraction of stem cells during infection, Sfrac, 

increases asymptotically with b ( Fig. 2.1b). The reason is that a faster replicating virus kills 

more differentiated cells, which triggers the feedback mechanism to compensate for this, 

achieved through an elevation of the stem cell compartment. This dependence is again 

strong for R0 around one, and becomes weak for R0»1. Because of the feedback induced 

compensation for the death of differentiated cells, this population does not depend on the 

viral replication rate in this case ( Fig. 2.1b). 
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Fig. 2.1 Dependence of the measures Sfrac and Dfrac on the replication rate of the virus, b, according to model 

(2). (a) Scenario where we assume n1=1 and n2=0. (b) Scenario n1=0 and n2=1. Other parameters were chosen 

as follows. p=0.6, r=0.5; a=0.05; a2=0.2; m1=m2=0; f=1. 

 

Fig. 2.1 shows some interesting differences between the tissue designs. To explore 

this further, we make a simplification. Because the fractions Sfrac and Dfrac do not strongly 

depend on the viral replication rate b for R0»1, we will consider these fractions at the limit 

b→∞, i.e.  and . The expressions are given by 

(Eqn. 2.3) 
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Let us now investigate the properties of the two tissue designs in more detail. If 

feedback factors are only produced by stem cells (n1>0; n2=0), the expressions simplify as 

follows. 

 

That is, the presence of infection does not alter the number of stem cells, but it lowers the 

total number of differentiated cells. This is also shown without the simplification b→∞ in 

Fig. 2.2a. Since many tumors are thought to arise by mutations in stem cells, a lack of 

increase of this population means that the infection is not likely to increase the risk of 

carcinogenesis. Tissue size is compromised, however, and the degree of reduction in the 

number of differentiated cells is given by the virus-induced death rate of infected cells, ad, 

compared to the death rate of uninfected cells, a. Therefore, if the virus kills the cells 

relatively fast (cytopathic virus), the degree of pathology is predicted to be large. 
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Fig. 2.2  Tissue architecture and resilience to infection, according to model (2). Arrow indicates infection. (a) 

Scenario where we assume n1=1 and n2=0 as well as f=1. Stem cell numbers remain steady during infection 

but differentiated cells decline. (b) Scenario where we assume n1=0 and n2=1 as well as f=1. Infection does not 

alter the equilibrium number of differentiated cells, but the number of stem cells grows. For n1=0 and n2>0, 

uncontrolled tissue growth is observed if f<1, shown in (c) f=0 and (d) f=0.1. Other parameters were chosen 

as follows. b=10; p=0.6, r=0.5; a=0.05; a2=0.2; m1=m2=0. 
 

In the opposite case, where only differentiated cells produce feedback factors (n1=0; n2>0), the 

expressions or and simplify as follows. 

(Eqn. 2.4) 

 



56 

 

Let us first assume that the virus does not impair feedback production by infected cells, i.e. 

f=1. Now, we find that the virus infection does not reduce the number of tissue cells, thus 

leading to absence of virus-induced pathology. The number of differentiated cells remains 

identical compared to the level in the absence of the infection. Note that this result is 

independent of the rate of virus-induced cell death and also applies to cytopathic viruses. 

Virus-induced cell death is compensated for by feedback modulation. The number of stem 

cells, however, is increased by the infection, proportional to the degree of viral 

cytopathicity, ad. The higher the death rate of infected relative to uninfected cells, the larger 

the elevation of the stem cell population. These trends are also shown in the absence of the 

simplification b→∞ in Fig 2.2b. A higher number of stem cells means more stem cell 

divisions, which increases the chances of mutations. This in turn increases the chances of 

cancer initiation. Next, assume that the virus impairs the production of feedback factors in 

infected cells, i.e.f<1. In the extreme case, f=0, we find that both the differentiated and the 

stem cell populations increase towards infinity (Fig 2.2c). In other words, unbounded 

proliferation of stem cells is observed, which would correspond to a tumor. Interestingly, 

unbounded growth does not necessarily rely on any genetic alteration in the cells. If viral 

replication compromises the function of differentiated cells, resulting in the lack of 

feedback factor production, the tissue becomes dysregulated, leading to cancerous growth. 

If feedback factor production is not completely abolished but reduced (0<f<1), the cell 

populations rise towards a new steady state (Fig 2.2d), the level of which is determined by 

the value of f. While growth is not unbounded anymore, this can also be considered 

cancerous growth. In fact, many cancers are characterized by growth periods, followed by 

periods of stasis. 
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In the above analysis it was assumed that virus infection can reduce the level of feedback 

factor production (f<1). This is a reasonable assumption because viruses can compromise 

cellular function in a variety of ways. Theoretically, it is also possible that the presence of 

the virus enhances feedback factor production (f >1), e.g. by up-regulating gene expression. 

As is clear from the above expressions for and , this would reduce both the 

number of stem and differentiated cells, thus promoting tissue pathology. 

In summary, there is a tradeoff in the design of regulatory circuits in the context of 

viral infections. If feedback factors are produced mostly by stem cells, then stem cell 

homeostasis remains unaltered during viral infections, but maximal virus-induced tissue 

destruction is observed. In contrast, if feedback factors are produced mostly by 

differentiated cells, then tissue destruction will not be observed, but there is a high risk of 

developing cancer due to elevated stem cell replication. Therefore, the best design, i.e. the 

one most likely favored by evolution, will be a balance of feedback factor production by 

stem and differentiated cells that optimizes this tradeoff. It is currently not possible to 

calculate this optimal tradeoff. As can be seen from the full expressions for or 

and (Eqn. 2.3), a change in either parameter results in an equal change 

in  and . For example, a 2-fold increase in n1 leads to the same fold reduction in 

the values of and . That is, the number of stem cells during infection is reduced 

towards its pre-infection levels (thus reducing risk of carcinogenesis), and the number of 

differentiated cells is reduced below its pre-infection level by the same amount, thus 

increasing the degree of pathology. 
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The uncertain part is how to interpret this. Although a given change in the degree of 

feedback inhibition changes the number of stem cells by as much as it changes the number 

of differentiated cells, it is unclear how this change in homeostasis relates to disease 

development. For example it is possible that a 2-fold reduction in the number of stem cells 

only marginally reduces the chances to generate carcinogenic mutations, but that a 2-fold 

reduction in the number of differentiated tissue cells kills the organism. These types of 

considerations will determine the optimal balance between n1 and n2, and hence this is 

currently not possible to calculate. 

Feedback on self-renewal and cell division rate 

Here, we consider the additional negative feedback on the rate of cell division, i.e. m1>0 

and m2>0. Feedback factors can again be produced either by stem cells (m1) or 

differentiated cells (m2). This model is studied numerically because equilibrium 

expressions are very complex and not insightful and hence not written down here. The 

results described in the previous section still hold in this more complex situation. If the 

viral infection leads to increased cell growth, the growth rate is slower in the presence of 

this additional feedback (Fig 2.3). This makes sense because the feedback slows down the 

rate of cell division. Such a slow growth pattern in the presence of feedback on cell division 

has recently been described (Rodriguez-Brenes et al., 2011). 
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Fig. 2.3 Uncontrolled growth in the context of negative feedback on the cell division rate, according 

to model (2). Arrow indicates infection. Parameters were chosen as follows. b=10; n1=0; n2=1. p=0.6, 

r=0.5; a=0.05; a2=0.2; m1=m2=1; f=0; g=0. 

 

 

 

Infection of stem cells 

 

So far, it was assumed that only differentiated cells become infected. Here it will be 

assumed that stem cells can also become infected. This has been documented to occur in 

retroviruses and other viruses (Banerjee et al., 2010), although typically the virus does not 

tend to be very active in stem cells but can be transmitted by cell division. The following 

model describes stem cell infection. 

(Eqn. 2.6) 
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Now there are two infected cell populations instead of one. The infected differentiated cells 

are denoted by Id, while the infected stem cells are denoted by Is. Both populations die with 

rate ad and as, respectively. Infection of differentiated and stem cells occurs with a rate 

bd and bs, respectively, and the rate of virus production is assumed to be different in stem 

and differentiated cells, expressed by the factor η. We will only consider feedback on 

differentiation, described by p’=p/(n1S+fsn1Is+n2D+fdn2Id+1). The difference compared to 

model (2) is that virus infection can not only inhibit feedback production in differentiated 

cells but also in stem cells, described by parameters fd and fs, respectively. This model gives 

rise to equilibrium expressions that are too complex to obtain, so the model is explored 

numerically. 

In model (2), which only took account of differentiated cell infection, there were two basic 

outcomes. Either the infection was not established or the infection was established in 

which case the dynamics converged to the internal equilibrium. With stem cell infection, 

there are two internal equilibria (Fig 2.4). In one case, all populations persist, as before (Fig 

2.4a). In the alternative case, the population of uninfected stem cells goes extinct and only 

infected stem cells persist (Fig 2.4b). Consequently, the number of uninfected differentiated 

cells also goes extinct. Extinction of uninfected cells occurs because of indirect competition 

(Holt, 1977). Both infected and uninfected stem cells proliferate, and their population sizes 

are regulated by the production of negative feedback signals. While proliferation is 

assumed to occur with the same rate in both populations, the infected cell population gains 

at the expense of the uninfected cell population due to the process of infection. Hence, the 

infected cells can grow to higher levels and produce more negative feedback signals than 
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the uninfected cell population, which is consequently driven to extinction through 

feedback-induced terminal differentiation and death. 

 

Fig. 2.4  Two different virus persistence equilibria in the stem cell infection model (6), illustrated for case 

wheren1=1 and n2=0. Arrows indicate infection. (a) Either both uninfected and infected cells persist or (b) 

only infected cells persist and the uninfected cells go extinct. Parameters were chosen as follows. 

bd=10;bs=0.5; p=0.6, r=0.5; a=0.05; ad=0.2; m1=m2=0; fs=fd=1, η=1. (a) as=0.2 (b) as=0. 

 

 

 

Fig. 2.5 explores numerically under which conditions these two outcomes are 

achieved. Two parameters were varied: the rate of stem cell infection, bs, and the rate of 

infected stem cell death, as. Simulations were run until the population of uninfected stem 

cells either reached equilibrium (persistence) or declined to extinction. The outcome was 
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coded by different colors and symbols, with blue (x) indicating persistence and red (+) 

extinction. In many virus infections, it is thought that there is a correlation between the 

rate of virus production and the death rate of infected cells. Hence, in Fig. 2.5, we assumed 

that the parameters η and as are positively correlated, i.e. a higher rate of virus production 

leads to a higher rate of cell death in the infected stem cells. As seen in Fig. 2.5, a higher rate 

of stem cell infection (higher bs) and a lower death rate of infected cells (lower as) promote 

the extinction of uninfected stem cells. As mentioned above, stem cell infecting viruses tend 

to be characterized by a relatively low replicative activity in the stem cells, indicating a low 

degree of cell killing. Hence, it is likely that such viruses will lead to the infection of the 

whole stem cell population (Fig. 2.5). 

 

Fig. 2.5 Whether uninfected stem cells persist or not in the stem cell infection model (6) depends on 

parameters, which is explored numerically. The rate of stem cell infection, bs, and the death rate of 

infected stem cells, as, was varied and the outcome is coded by different colors and symbols. 

Persistence of uninfected stem cells is shown in blue (x), and extinction in red (+). Parameters were 

chosen as follows. bd=10; p=0.6, r=0.5; a=0.05; ad=0.2; m1=m2=0; fs=fd=1, η=as. 

 

 

In order to examine the impact of the infection on tissue homeostasis, let us therefore first 

assume that the virus is weakly cytopathic in stem cells (i.e. small value of as) and that 

hence all stem cells are infected. Now the expression for Sfrac and Dfrac do not depend on the 



63 

 

infection rates anymore, because all susceptible cells are infected and virus spread is 

driven only by the division of infected cells. For the case n1=0 and n2>0, we obtain: 

 

If the value of as is small relative to r, this converges to 

 

which is identical to expression (5) above. For the case n1>0 and n2=0, we obtain: 

 

If the value of as is small relative to r, this converges to 

 

This is similar to expression (4) above, with the addition that feedback signal impairment 

in stem cells, fs, now influences the outcome of infection. Thus, if the virus impairs feedback 

factor production in stem cells, uncontrolled cellular growth is possible in this scenario as 

well, brought about by compromised feedback regulation in the absence of genetic 

transformation of cells. 

Therefore, the basic conclusions obtained for the model without stem cell infection 

hold. The only difference is that impairment of feedback factor production in stem cells can 

also contribute to uncontrolled cancerous growth. Note, however, that viral persistence in 
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stem cells can further have other effects not accounted for in the model, such as the genetic 

transformation of cells, which can again promote the initiation of cancer in the long term. 

In contrast, if the value of as is larger and consequently both uninfected and infected 

stem cells persist, the situation is more complex. In principle, the conclusions reached from 

model (2) hold (Fig 2.6) but the population sizes of both the stem cells and the 

differentiated cells are lower, leading to tissue pathology due to a stem cell killing. Thus, in 

the cases when population levels were predicted to remain constant in the face of infection 

in model (2), infection can now reduce them due to virus-induced stem cell death (Fig 2.6) 

Since in most cases of stem cell infection the virus does not show significant replicative 

activity in stem cells, this scenario is not further explored. 

 

Fig. 2.6 Effect of the virus in the stem cell infection model (6) in the parameter regime where uninfected and 

infected cells coexist. (a) n1=0; n2=1 and (b) n1=1; n2=0. Basic properties shown in Fig. 2 still hold, but both 

the population of stem and differentiated cells can be lower due to virus-induced stem cell killing. Arrows 

indicate infection. The remaining parameters were chosen as follows. bd=10; bs=0.5; p=0.6, r=0.5; a=0.05; 

ad=0.2; as=0.02; m1=m2=0; fs=fd=1, η=1. 

 

To conclude, this section showed that taking into account stem cell infection does 

not lead to significant changes to our results derived from the model without stem cell 
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infection. In the biologically realistic scenario where the virus does not kill the stem cells 

with significant rates, the whole tissue stem cell population becomes infected, and the 

results regarding tissue homeostasis remain largely unchanged. In the less realistic 

scenario when the virus kills stem cells with relatively large rates, additional tissue 

pathology can occur due to stem cell death. Interestingly, this suggests that at least in the 

short term, the infection is less detrimental to the host if the entire stem cell population 

becomes infected, although the long-term cost can be a higher chance of genetic 

transformation and hence the development of cancer. 

 

Discussion and conclusion 

 

We investigated how the design of feedback control influences the tissue response 

to infection. An important difference was observed depending on whether the feedback 

factors are secreted from the differentiated cells or the stem cells. Secretion from stem cells 

only ensures that during a viral infection, the stem cell population remains constant, thus 

minimizing the risk of mutagenesis which could come about from increased levels of cell 

division. This, however, comes at the cost of maximally possible virus-induced tissue 

pathology. On the other hand, if feedback factors are secreted from differentiated cells only, 

then virus-induced tissue pathology is entirely absent because any cell death is 

compensated for by reduction of feedback inhibition. The price to pay is a significantly 

enhanced level of stem cell division, which could sharply increase stem cell mutagenesis 

and thus the incidence of cancer. Moreover, if the virus impairs cell function (Butel, 2000) 

such that feedback factors are produced at reduced levels, then excessive tissue growth is 



66 

 

observed, i.e. the organism develops cancer as a result of the disrupted feedback 

mechanisms by the virus. Therefore, it is likely that the optimal design (i.e. favored by 

selection) is the one where feedback factors are produced by both stem and differentiated 

cells at relative levels that optimize this tradeoff. The notion that in the context of tissue 

design there is a tradeoff between protection against pathology and protection against 

excess proliferation during infection provides a new perspective for understanding how 

tissue architecture relates to function. 

 

It is clear that there is an important connection between viral infections and cancer 

(Butel, 2000, Damania, 2007, Elgui de Oliveira, 2007 and Helt and Galloway, 2003). Viruses 

can carry oncogenes (Tarbouriech et al., 2006) and they are thought to induce cancer by 

causing mutations, typically by inserting themselves into the genome of the host (Helt and 

Galloway, 2003). Our model suggests a different mode of virus-induced carcinogenesis that 

does not rely on the generation of mutations in the cells (Banerjee et al., 2010). If the virus 

simply impairs cell function such that feedback factors in infected cells are not produced, 

then the corruption of this feedback itself can lead to unbounded cellular growth as long as 

the virus is present. 

This brings us to a caveat. If the basic reproductive ratio of the virus is greater than 

one, a persistent infection is established and the virus will remain in the host forever in the 

model. In this way, the growth of a tumor can be continuously driven by the corruption of 

feedback factor production. Our model does not include immune responses to infection, 

since this is beyond the scope of the current study. If immune responses are mounted, viral 

infections can potentially be cleared, as is the case for many infections. If a virus that is 
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eventually cleared impairs production of feedback factors, then the resulting cellular 

growth will only be temporary and stop once the infection has been removed by the 

immune system. In this case, whether the overabundance of cells persists in the long term 

depends on whether stem cells are infected or not. If stem cells are infected and can be 

removed by the immune system, the number of cells can be brought back to homeostatic 

levels. If only differentiated cells are infected, the excess stem cell population that resulted 

from proliferation cannot be removed because they are not visible to the immune system. 

In either scenario, the growth that occurred during the presence of the infection can 

significantly promote accumulation of mutations due to the relatively large number of cell 

divisions, thus increasing the chances of genetic transformation. There are many viruses 

that establish persistent infections and that are not cleared, a large fraction of which is 

probably unknown because they do not cause any overt symptoms. Such viruses could pose 

an oncogenic danger if they interfere with feedback factor production in infected cells, even 

if they cannot genetically transform cells. 

 

Methods 

 

The results reported in this paper are based on the analysis of ordinary differential 

equations (ODEs). They were analyzed by a combination of analytical and numerical 

techniques. Numerical simulations were performed with Matlab, using the Runge-Kutta 4th 

order ODE solver. In the simulations, parameters were chosen for illustrative purposes 

only. Currently, the parameters connected to feedback-mediated tissue regulation are not 
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known, so measured parameters cannot be used. In addition, the paper is conceptual in 

nature rather than describing the dynamics of one particular virus infection. 

 

References: 

Anderson, R.M., and R.M. May. 1991. Infectious Diseases of Humans. Oxford: Oxford 

University Press. 

Banerjee, P., L. Crawford, E. Samuelson, and G. Feuer. 2010. Hematopoietic stem cells and 

retroviral infection. Retrovirology 7:8 

Butel., J.S. 2000. Viral carcinogenesis: revelation of molecular mechanisms and etiology of 

human disease. Carcinogenesis 21:405–426 

Crosnier, C., D. Stamataki, and J. Lewis. 2006. Organizing cell renewal in the intestine: stem 

cells, signals and combinatorial control. Nature Review Genetics, 7:349–359 

Daluiski, A.,  T. Engstrand, M.E. Bahamonde, L.W. Gamer, E. Agius, S.L. Stevenson, K. Cox, V. 

Rosen, and K.M. Lyons. 2001. Bone morphogenetic protein-3 is a negative regulator 

of bone density. Nature Genetics, 27:84–88 

Damania, B. 2007. DNA tumor viruses and human cancer. Trends in Microbiology, 15:38–

44 

Elgjo, K. and K.L. Reichelt. 2004. Chalones: from aqueous extracts to oligopeptides. Cell 

Cycle 3:1208–1211 

D. Elgui de Oliveira, D. 2007. DNA viruses in human cancer: an integrated overview on 

fundamental mechanisms of viral carcinogenesis. Cancer Letters 247:182–196 

Helt, A.M. and D.A. Galloway. 2003. Mechanisms by which DNA tumor virus oncoproteins 

target the Rb family of pocket proteins. Carcinogenesis 24:159–169 



69 

 

R.D. Holt. 1977. Predation, apparent competition and the structure of prey communities. 

Theoretical Population Biology 12:197–229 

Lander, A.D., K.K. Gokoffski, F.Y. Wan, Q. Nie, A.L. Calof. 2009. Cell lineages and the logic of 

proliferative control PLoS Biology, 7:e15 

Lo, W.C., C.S. Chou, K.K. Gokoffski, F.Y. Wan, A.D. Lander, A.L. Calof, and Q. Nie. 2009. 

Feedback regulation in multistage cell lineages. Mathematical Bioscience and 

Engineering 6:59–82 

McPherron, A.C., A.M. Lawler, S.J. Lee. 1997. Regulation of skeletal muscle mass in mice by a 

new TGF-beta superfamily member Nature 387:83–90 

Nowak, M.A., and R.M. May. 2000. Virus Dynamics: Mathematical Principles of Immunology 

and Virology. Oxford: Oxford University Press 

Perelson., A.S. 2002. Modelling viral and immune system dynamics. Nature Reviews 

Immunology 2: 28–36 

Rodriguez-Brenes, I.A.,  N.L. Komarova, and D. Wodarz. 2011. Evolutionary dynamics of 

feedback escape and the development of stem-cell-driven cancers. Proceedings of 

the National Academy of Sciences, USA 108:18983–18988 

Tarbouriech, N., F. Ruggiero, M. de Turenne-Tessier, T. Ooka, and W.P. Burmeister. 2006. 

Structure of the Epstein-Barr virus oncogene BARF1. Journal of Molecular Biology, 

359:667–678 

Tzeng, Y.S., H. Li, Y.L. Kang, W.C. Chen, W.C. Cheng, D.M. Lai. 2011. Loss of Cxcl12/Sdf-1 in 

adult mice decreases the quiescent state of hematopoietic stem/progenitor cells and 

alters the pattern of hematopoietic regeneration after myelosuppression Blood 

117:–439 



70 

 

Wu, H.H., S. Ivkovic, R.C. Murray, S. Jaramillo, K.M. Lyons, J.E. Johnson, and A.L. Calof. 2003. 

Autoregulation of neurogenesis by GDF11. Neuron 37:197–207 

Yamasaki, K.,  N. Toriu, Y. Hanakawa, Y. Shirakata, K. Sayama, A. Takayanagi, M. Ohtsubo, S. 

Gamou, N. Shimizu, M. Fujii, K. Miyazono, and K. Hashimoto. 2003. Keratinocyte 

growth inhibition by high-dose epidermal growth factor is mediated by 

transforming growth factor beta autoinduction: a negative feedback mechanism for 

keratinocyte growth. Journal of Investigative Dermatology 120: 1030–1037 

Zur Hausen, H. 2009. The search for infectious causes of human cancers: where and why. 

Virology 392:1–10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



71 

 

Chapter 3: An agent-based model of HIV coinfection 

 

Introduction 

 

Mathematical modeling of virus dynamics has yielded key insights into the 

principles that govern the in vivo spread of viral infections through target cell populations 

(Nowak and May 2000; Perelson 2002). A relatively unexplored topic in the field of virus 

dynamics is multiple infection, or coinfection- the simultaneous infection of target cells 

with more than one copy or strain of a given virus. An important consequence of 

coinfection is the probability of an increased burst size in coinfected cells, i.e. an increased 

viral output over the lifespan of multiply infected cells compared to singly infected cells. 

There are several mechanisms by which coinfection may lead to increased viral output, 

including recombination leading to fitter genotypes, activation of latently infected cells, and 

viral complementation. (See Wodarz and Levy 2011 for a detailed discussion of the effects 

of multiple infection on the dynamics of viral evolution and escape.) Previous modeling 

work has shown that an increased burst size in multiply infected cells can have profound 

consequences on the outcome of viral infections (Cummings et al., 2012), and we wish to 

further this work by investigating how multiple infection influences the dynamics of 

infection spread in a spatially-structured system. 

Traditionally, mathematical models of viral infection assume that a single free virus 

infects a host cell. However, recent in vitro and ex vivo studies clearly indicate that it is 

possible for multiple virions to infect a single target cell (Hubner et al., 2009; Levy et al., 

2004; Del Portillo et al., 2011). This multiple infection of target cells is a critical mechanism 
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by which genetic recombination is achieved, as it is the only way to bring multiple strains 

of a virus in contact with one another inside a host cell (Jung et al., 2002). In particular, 

studies of human immunodeficiency virus (HIV) have demonstrated that the multiple 

infection of CD4+ T cells, the natural target of HIV, can occur in local microenvironments 

through cell-mediated formation of virological synapses that allow for the direct and 

efficient transfer of  up to thousands of virus particles from donor to target cell (Sattentau, 

2008; Chen et al., 2007). Cell-mediated transfer of virus has been well documented in other 

viral infections as well, a notable example being human T cell leukemia virus- type 1(HTLV-

1), which relies almost exclusively on the cell-mediated transfer of virus in order to infect 

new cells (Igakura et al., 2003). In the case of HIV, it has been proposed that the direct 

transfer of virus represents a mechanism by which the virus evades exposure to 

neutralizing antibodies (Jolly, 2011; Hubner et al., 2009). While the relative contributions 

of cell-free and cell-associated viral transfer to the overall spread of infection are not yet 

known, previous mathematical modeling indicates that the two types of transfer contribute 

roughly equally to the spread of infection in vitro (Komarova et al., 2013). Despite the 

importance of cell-mediated transfer to the progression of viral infection, much remains 

unknown about the principles that govern this process. 

One of the major barriers to understanding the evolutionary dynamics of viral 

infections is that the majority of virus-host interactions in the body cannot be observed 

directly, and these interactions vary extensively according to the local microenvironment 

within a tissue type as well as the particular composition of the immune cell types within a 

tissue (Douek et al., 2003). One particular challenge with HIV has been attempting to 

characterize the role that coinfection plays in the establishment of new infections in 
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lymphatic tissues as the virus is disseminated throughout the body. Lymphatic tissues are 

known to be a major reservoir where new virus is produced, stored, and released into the 

peripheral blood (Fauci et al 1996; Haase 1999). Cell-mediated viral transfer requires close 

proximity between donor and target cell for many minutes at a time, and such conditions 

are only met in somewhat static tissue environments (such as lymph tissue, thymus, and 

the spleen) they are unlikely to occur in the peripheral blood, where cellular adhesion is 

counteracted by a high flow rate. Accordingly, coinfection events should be most efficient, 

and occur most frequently, in tissues with a static or semi-static structure. 

Multiple infection is of critical interest to an increased understanding of the 

underlying dynamics of viral replication and spread in vivo. In this study, we will explore 

an agent-based model (ABM) that allows us to simulate the local microenvironments of 

target cells in both tissue and peripheral blood, and investigate the consequences of 

multiple infection, as well as an increased burst size in multiply infected cells, on the 

dynamics of early viral spread. The goal is to achieve a better understanding of the role that 

coinfection plays in the early stages of disease progression, by identifying how infection 

establishment and outcomes are influenced by multiple infections of target cells. This will 

be done by comparing the outcomes of a mass-action type cellular environment to those of 

a spatially structured environment of equal size. We hypothesize that in environments 

where cell movement is spatially limited and the conditions for sustained cell-to-cell 

contact are possible, viral coinfection will fundamentally alter the infection dynamics 

predicted by models that do not account for the possibility of increased output in multiply 

infected cells. 
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Results 

 

We begin by describing a basic model of virus dynamics for an agent-based model. 

The model consists of an 5�5 square grid, with each space containing either an uninfected 

cell denoted 6, an infected cell denoted ', or nothing. In this model, viral infection spreads 

according to the law of mass action, with “perfect mixing” of all infected and uninfected 

cells. According to this rule, each infected cell has an equal probability of infecting any 

other cell in the grid, and so the radius of infection is equal to 5, the length of the grid. 

Infected cells have a corresponding rate of infection, denoted β.Infected and uninfected 

cells die according to their respective death rates, where the death rate of infected cells is 

assumed to be greater than that of uninfected cells. In addition, all cells in this model are 

singly infected, as we will only consider multiple infection events later on. These conditions 

approximate the cellular environment found in the peripheral blood, where flow is high 

and cell-to-cell contact is limited. We do not track free virus directly, as it can be assumed 

to be proportional to the number of infected cells (see Nowak and May 2000). While the 

assumptions underlying this simplified scenario are likely to be violated, it allows for a 

direct comparison of the ABM model with differential equation models whose solutions can 

be determined analytically. Under perfect mixing conditions, the ABM model can be 

described by the following ordinary differential equation (ODE) model, a classic predator-

prey model that has been described previously (Nowak and May 2000; Perelson 2002). In 

this model the population of infected cells, ', is generated from uninfected cells, 6: 

(Eqn. 3.1) 

#7

#8
= 9 − 
6 −

:7;

"
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#;

#8
= �6'/� − �'  

In this model, � is equal to the total grid size, i.e. 5�5 = �. 9 is an input term that 

represents the production of new uninfected cells. Infection of target cells occurs with rate 

β, and a successful infection generates one new singly infected cell. The death rates of 

uninfected and infected cells are denoted by 
 and � respectively, with the assumption that 

� > 
 in all scenarios, i.e. infected cells have a higher death rate than uninfected cells. Note 

that the infection term, �6'/�, is a simple logistic function- infected cells grow 

exponentially when the total number of infected cells is low, and eventually saturate at 

some equilibrium level. This behavior is shown in Fig. 3.1, which compares ABM and ODE 

outcomes for an 5�5 grid with 5 = 100 and � = 10,000 (model parameters and initial 

conditions are kept constant across simulations).  

 

Fig 3.1 Outcomes of ODE and ABM model are roughly the same for the simplest case scenario where perfect 

mixing of cells occurs. Parameters are as follows: 
 = 0.02, � = 0.01, � = 0.05, 9 = 0.1 Initial conditions=36 

infected cells. 
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Now we wish to explore the model under the assumption that any given cell can 

become infected with more than one virus particle, resulting in a cell containing up to n 

total virus particles and an ,thly infected cell. If we assume that multiply infected cells are 

present, we can then further assume that viral cooperation in multiply infected cells- 

leading to an increased burst size- is either present or absent.  

We will first address coinfection assuming there is no viral cooperation. In the 

absence of any cooperative effects that increase viral output in multiply infected cells, the 

model outcomes reduce to the those of the previous non-cooperative mass action model- 

cells grow exponentially at low viral loads, with the sum of all infected cells-from singly to 

nthly infected-equal at steady state to the singly infected cell population from the simplest 

case scenario (not shown).  

Next, we will explore the model under the assumption that there is some degree of 

viral cooperation present in multiply infected cells. This is formulated in the model by an 

increased viral output in any cell containing two or more virions. In the first part of the 

investigation we will assume that two viruses per cell are sufficient for complementation 

and/or cooperation to occur, but this increased burst size is constant- it does not increase 

with any further multiplicity of infection (this alternative scenario will be discussed later 

on). The outcome of an increase in burst size for multiply infected cells is shown in Fig. 3.2 

for the mass-action scenario, where the radius of infection for a given cell is not limited. 
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Fig. 3.2 Outcome of agent-based model under perfect mixing conditions when an increased burst size in 

multiply infected cells is accounted for. Early viral load is unaffected by increased burst size. Parameters are 

as follows 
 = 0.001, � = 0.01, � = 0.3, 9 = 0.1 

 

An increased burst size in multiply infected cells does not fundamentally alter the 

exponential growth pattern of infected cells, and growth at low viral loads is nearly 

identical for different burst sizes. The explanation for this outcome is that in a perfectly 

mixed system, coinfection events are rare when infected cells are rare, as the likelihood of 

infecting an already infected cell becomes very small. Although multiply infected cells are 

expected to increase the rate at which infection spreads, they make up only a small 

proportion of the total number of infected cells in the early stages of infection. A slightly 

increased infection rate is only observed at higher viral loads, when the infection has 

spread through the system and a modest population of coinfected cells has been generated. 

       In order to investigate coinfection under conditions where space and mixing are 

limiting to cellular interactions, we will next add a “nearest-neighbor” rule that assumes 

infected cells can only spread infection to nearby targets. Each infected cell has a given 
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radius, (, of cells which it is capable of infecting, and cells outside this radius cannot be 

infected. In the most limiting nearest-neighbor case, where ( = 1, there are 8 possible 

target cells for each infected cell. When ( = �, the length of the grid, there is no restriction 

to cellular interactions and the model reduces to the mass action outcome. At an 

intermediate radius (eg. ( = 3) we expect outcomes to demonstrate properties that are 

intermediate between mass action and nearest-neighbor type simulations. 

Outcomes for the nearest neighbor model are shown in Fig. 3.3 for an intermediate 

radius of infection case, with ( = 2. The plot includes outcomes for a model of coinfection 

with and without cooperation. Model parameters and grid size are identical to all previous 

mass action simulations. A log plot is shown in Fig. 3.3a, followed by square root plot in Fig. 

3.3b to demonstrate the pattern of surface growth. 
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B  

Fig. 3.3 Outcome of agent-based model for an intermediate radius of infection, r=2. Infection spreads 

according to the square of the total number of infected cells (Fig. 3.3b) indicating surface growth. In addition, 

an increased burst size in multiply infected cells leads to acceleration in the spread of the infection relative to 

the scenario where no increased burst size is considered. Parameters are as follows 
 = 0.001, � = 0.01, � =

0.3, 9 = 0.1 

 

Notice that the growth of infected cells in the nearest neighbor simulation is roughly linear 

in the square root plot. This pattern is indicative of surface growth, where the growth is 

proportional to the square root of the current number of infected cells. Recall that for low 

viral loads, the mass action model of coinfection predicts an exponential growth rate for 

infected cells, one that is unaffected by the addition of cooperative interactions. This can be 

attributed to the rarity of coinfection at low viral loads, and an infected cell population 

dominated by singly infected cells. If any degree of spatial limitation is imposed on the 

spread of infection, however, the relative proportion of multiply infected cells to singly 

infected cells at low viral loads is dramatically increased with the addition of viral 

cooperative effects. See figure 3.4 for simulations that include modest cooperative viral 

interactions for both a mass action and nearest-neighbors simulation. The reason for this 
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outcome is as follows. At low viral loads, infected cells in a nearest neighbor system will 

begin to infect a small pool of nearby cells, and coinfection events are more common when 

the number of possible targets is low. As coinfection events occur more rapidly in this 

system, multiply infected cells will make up a large fraction of the infected cell population 

after only a short time in nearest-neighbor conditions. This is in contrast to the mass action 

simulations, where singly infected cells dominate at low viral loads.  
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                       B  

Fig. 3.4 Model outcomes for perfect mixing (Fig. 3.4a) and nearest neighbors (Fig. 3.4b) simulations with a 

10% increased burst size in multiply infected cells. The proportion of cells that are multiply infected at low 

viral loads is much larger in the nearest neighbors setting relative to the perfect mixing scenario. Parameters 

are as follows 
 = 0.001, � = 0.01, � = 0.3, 9 = 0.1 

 

This property can also be described as an increase in the average burst size of infected cells 

as the overall proportion of multiply infected cells increases.  

A large proportion of coinfected cells at low viral loads can have several 

consequences on the spread of infection. Coinfection can act as a “boost” to the 

establishment of infection by driving up the overall infection rate of the infected cell 

population. Simulations in an intermediate mixing neighborhood indicated that even a 

relatively modest 5% increase in the burst size of multiply infected cells can provide such a 

boost (Fig. 3.6). 
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Fig 3.5 Outcome of infection under initial conditions where establishment of infection is not certain. Infection 

fails to establish in the model where no increased burst size in multiply infected cells is considered, at an 

intermediate infection radius of r=5. Under identical conditions, a small increased burst size in multiply 

infected cells can lead to establishment of infection. Parameters are as follows 
 = 0.001, � = 0.01, � =

0.3, 9 = 0.1,  Initial number of infected cells = 4. 

 

We wanted to understand how the relationship between initial viral load and 

likelihood of an infection becoming established would be influenced by an increased burst 

size in multiply infected cells. We compared these outcomes at several different initial 

infection sizes, ranging from a single initially infected cell to 25 initially infected cells. The 

extinction rate of the infection under each set of initial conditions was found. These 

simulations were explored in the strictest nearest neighbor settings, with r=1. Outcomes 

are shown in Fig. 3.7, for simulations with 1, 4, 9, or 25 initially infected cells, with a 5% 

increased burst size in multiply infected cells. 
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Fig 3.7 Probability of infection extinction for initial conditions ranging from one initially infected cell to 25 

initially infected cells. Accounting for an increased burst size in multiply infected cells leads to a decreased 

probability of infection extinction for all initial conditions. Parameters are as follows d=0.001, a=0.06, β= 0.1, 

L=0.1, r=1. 

  

A larger initial infection size correlates with a lower probability of extinction in both 

models, which is intuitive. When an increased burst size for multiply infected cells is 

included in the model, a lower extinction rate is predicted relative to the basic model. This 

indicates that under conditions where spatial mobility is limited, the establishment of 

infection is greater when multiply infected cells are present. This is in agreement with 

previous experimental work in temporal tracking of adenovirus plaque formation that 

suggests that establishment of infection is higher when multiply infected cells arise 

immediately upon infection (Hofacre et al., 2012). 

Finally, we will introduce a property of infection known as viral synapsing. Viral 

synapsing involves the formation of a synaptic bridge between two T cells, at least one of 

which is already infected, and the transfer of cytoplasmic virions from host to target cell. 
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The benefit of synapse formation is that it provides a mechanism by which cell-associated 

virus can infect new targets with a transfer rate of anywhere from 10-18,000x efficiency 

over free virus transmission (Chen, et al., 2007). While viral synapsing has been proposed 

as an essential process to the establishment and spread of HIV infection within tissues, the 

relative contributions of free-virus transfer vs. cell-associated virus transfer to the overall 

spread of infection remain unknown. We will assume only that cells participating in a 

synapse are unable to simultaneously undergo free virus transfer, and will further assume 

that the relative rate of synaptic transfer is identical that of free virus transfer, i.e. there is 

no time cost associated with synapsing. The process of synapsing is modeled by the 

transfer of a random number of viruses from a donor to target. The target cell may be 

either uninfected or infected. The minimum number of virions that can be transferred is 1, 

and the maximum number of virions that can be transferred is Vmax. The probability of a 

single virion being successfully transferred along the synapse is denoted Ptransfer.   

We will look at synapsing on its own, without the consideration of free virus 

transfer. The relative amount that free virus and cell-to-cell transfer contribute to total 

number of infection events is unknown, and so it is of little use to explicitly model the 

combined case. If the explicit formation of viral synapses is included in the model, the 

resulting infection growth pattern accelerates as burst size increases and as the efficiency 

of synaptic transfer (i.e. the relative number of viruses transferred per synapse) increases, 

as shown in Fig. 3.8 for mass action scenarios.   
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A  

B  

Fig. 3.8 Outcome of agent-based model considering synaptic transfer between cells only. In this model, 

acceleration of infection is observed in a manner similar to the nearest neighbor model. In fig. 3.8b, the 

probability of a successful transfer event between target and host is varied, with acceleration in growth of 

infection observed. Parameters are as follows 
 = 0.001, � = 0.01, � = 0.3, 9 = 0.1, Ptransfer=0.3 (fig 3.8a), 

Vmax =10. 
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The inclusion of synaptic transfer of virus to the model has the additional effect of 

increasing the relative amount of multiply infected cells in the overall population of 

infected cells. As the probability of synapsing is increased, the proportion of multiply 

infected cells increases relative to the singly infected cell populations. As discussed 

previously, this increase in the multiply infected cell population at low viral loads will 

result in an increase in the average burst size of infected cells and acceleration in overall 

infection growth rate. In essence, viral synapsing results in a similar effect as that of the 

nearest-neighbor conditions that have been previously discussed, leading to altered 

infection dynamics that result in a larger population of coinfected cells at low viral loads. 

This complements the nearest-neighbors results discussed earlier, and suggests that the 

acceleration of infection observed at different burst sizes will underestimate the number of 

multiply infected cells generated early on when synapsing is the dominant transfer mode. 

These results indicate that the dynamics of viral infection may be profoundly 

influenced by the properties of the local microenvironment. In regions of the body where 

cellular migration is limited and cells are mostly static, we find that coinfection events are 

common and multiply infected cells soon dominate the infected cell population at low viral 

loads, increasing the overall average replication rate of infected cells. This increases the 

probability that infection can be established in new locations, and will likely lead to 

increased recombination events that contribute to immune escape. We find that the 

inclusion of viral synaptic transfer to the model, making no assumption about spatial 

limitation, leads to a similar outcome- multiply infected cells are generated in higher 

proportions at lower viral loads, assuming synaptic transfer is more efficient than free 

virus transfer, which experimental evidence indicates is likely (Chen et al 2007; Komarova 
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et al., 2013). This indicates that in local microenvironments where space is limiting and/or 

the conditions for viral synapsing are present, we can predict a larger population of 

coinfected cells relative to singly infected cells. As discussed previously, this provides the 

conditions favorable to viral recombination and complementation, which will likely lead to 

increased viral output over the course of infection in these multiply infected cells. 

It would be of interest to further explore these outcomes in experimental systems 

where multiple infection is known to occur. Preliminary experiments indicate that an 

increased burst size in multiply infected cells is likely to occur via viral complementation 

and other cooperative effects (unpublished experimental data), and further experimental 

work will allow us to verify whether or not burst size of cells is higher in more spatially 

structured environments, where multiple infections and viral synapsing are best facilitated.  
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