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ABSTRACT OF THE DISSERTATION 

Environmental and genetic risk factors for susceptibility and  

progression in Parkinson’s disease 

by 

Kimberly Carol Paul 

Doctor of Philosophy in Epidemiology 

University of California, Los Angeles, 2016 

Professor Beate R. Ritz, Chair 

 

 Parkinson’s disease (PD) is one of the most common neurodegenerative disorders and has 

a complex multifactorial etiology, likely involving not only exposure to environmental toxins but 

also an underlying genetic susceptibility.  Several major molecular pathways are implicated in 

PD pathogenesis; many, including impaired ubiquitin-proteasome system, mitochondrial 

dysfunction, and neuroinflammation, involve oxidative stress as an underlying mechanism.  

Further, the course and severity of symptom progression is highly variable, and oxidative stress 

related pathways may be involved in symptom progression. 

 Widely used organophosphate (OP) pesticides can induce oxidative stress and are reported 

to increase PD risk, and may be involved in symptom progression.  Additionally, two single 

nucleotide polymorphisms (SNPs) from the PON1 gene influence the ability to metabolize OPs. 

Nitric oxide synthase (NOS) genes are candidates for PD because NOS enzymes produce nitric 

oxide (NO), a pro-oxidant that can damage neurons.  The NFE2L2 and PPARGC1α genes 
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encode for important transcription factors that activate multiple antioxidant defense mechanisms 

in response to oxidative stress. 

 In the Parkinson’s Environment and Gene (PEG) case control study, we investigated 8 

NOS SNPs and interactions with both household and ambient agricultural OP exposures assessed 

with geographic information system (GIS) and PD susceptibility with logistic regression models.  

In the patient only cohort, we employed repeated-measures regression to assess associations 

between ambient OP exposure and/or PON1 L55M genotypes and symptom progression.  And 

finally, we investigated the influence of haplotypes for NFE2L2 and PPARGC1α and their 

interactions with exposures to the pesticides maneb and paraquat (MB/PQ) on PD occurrence 

(using logistic regression models) and also on progression of motor symptoms and cognitive 

decline in patients followed prospectively (repeated measures models). 

 In comparing PD in homozygous variant carriers of NOS2A rs1060826 versus homozygous 

wildtype or heterozygotes, we estimate an adjusted OR of 1.51 (95% CI=0.95, 2.41). When 

considering interactions between NOS1 rs2682826 and OP exposure from household use, the OR 

for frequent OP use alone 1.30 (95% CI=0.72, 2.34) and for the CT+TT genotype alone 0.89 

(95% CI= 0.58, 1.39), and frequent OP use combined with the CT+TT genotype was 2.84 (95% 

CI=1.49, 5.40) (interaction p-value 0.04).  Similar results were seen for ambient OP exposure.  

Interactions between OP exposure and 3 other NOS1 SNPs and a genetic risk score combining all 

NOS1 SNPs reached statistical significance.  

 High OP exposures were associated with faster progression of both motor (UPDRS=0.002) 

and cognitive scores (MMSE p=0.008).  The PON1 55MM genotype was associated with worse 

cognitive scores and faster progression of motor (UPDRS=0.01) and depressive symptoms (GDS 

p=0.008).  We also found the PON1 L55M variant to interact with OP exposures in influencing
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MMSE cognitive scores (p=0.02). 

 Two NFE2L2 haplotypes were associated with significant increases in the risk of 

developing PD (p<0.04) and with faster cognitive decline (MMSE p<0.0006).  None of the 

PPARGC1α haplotypes were marginally associated with PD risk.  However, one haplotype 

interacted with MB/PQ exposure (p=0.03), such that highly exposed haplotype carriers showed 

no increased risk of PD while these pesticides increased PD risk in wildtype haplotype carriers.  

Additionally, three PPARGC1α haplotypes were associated with differing rates of motor 

symptom progression. 

 The observations are consistent with the hypothesis that oxidative stress-inducing 

mechanisms influence PD risk and progression.
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1. Background and Introduction 

1.1 Dissertation Objectives 

 The aim of this dissertation is to investigate the influence of environmental and genetic 

factors believed to play a role in oxidative stress and Parkinson’s disease (PD) susceptibility and 

progression.  Briefly, the first project examines the risk of PD associated with ambient 

organophosphate (OP) pesticide exposure and how this risk is mediated by genetic variation in 

the nitric oxide synthase (NOS) genes.  The second project examines whether ambient OP 

exposure and the PON1 L55M genotype, which is involved in detoxifying OP pesticides, act 

together to influence the rate of motor, cognitive, and mood symptom progression in PD.  The 

third project investigates the influence of common variants in the genes NFE2L2 and 

PPARGC1α, genes which encode transcription factors involved in regulating endogenous 

antioxidant enzymes, on PD susceptibility and progression of symptoms, and assesses gene 

variant-pesticide interactions specifically with oxidative stress inducing co-exposures to the 

pesticides maneb and paraquat (MB/PQ). 

1.2 Parkinson’s disease background 

 PD is the second most common neurodegenerative disorder, characterized by the 

progressive depletion of dopaminergic neurons in the substantia nigra of the brain and the 

development of aberrant protein aggregates, Lewy bodies.  PD affects approximately 1% of 

individuals over the age of 60, with around 1 million prevalent cases in the USA and 7 to 10 

million worldwide, and 60,000 new cases identified every year (PDF.org 2014).  With more 

people living longer and age as a risk factor for PD, the number of people with PD is expected to 

increase in the coming years.   PD diagnosis is based on clinical assessment, with the presence of 

at least two of the four cardinal features, resting tremor, rigidity, bradykinesia, and postural 
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instability.  Non-motor symptoms associated with the disease include cognitive impairment and 

depression.  The progressive nature of the disease leads to eventual decline in both motor and 

non-motor symptoms; as symptoms become more pronounced, they result in disability and loss 

in quality of life, such as difficulty walking, talking, or completing other simple tasks (Global PD 

Survey 2002). 

 Genetic and environmental factors alone can cause Parkinsonism, as seen with rare 

mutations in several genes linked to familial PD (Schiesling et al. 2008) and exposure to the 

toxic metabolite of MPTP (Langston 1985). However, the majority of PD cases are idiopathic, 

with a complex multifactorial etiology, likely involving not only exposure to environmental 

toxins but also genetic susceptibility.  Several major molecular pathways are implicated in PD 

pathogenesis; many, including impaired ubiquitin-proteasome system (UPS), mitochondrial 

dysfunction, and neuroinflammation, involve oxidative stress as an underlying mechanism 

(Jenner 2003; Dauer and Przedborski 2003; Hwang et al 2013), inspiring investigators to focus 

on factors related to reactive oxygen or nitrogen species (ROS/RNS), such as nitric oxide (NO), 

antioxidants, or certain pesticide metabolites (Ryan et al. 2013).   

 Many environmental risk factors for PD have been proposed and investigated.  Pesticide 

exposure has been associated with an increase risk in PD in many studies, with a meta-analysis 

of 19 studies reporting a pooled odds ratio of 1.94 (95% CI=1.49, 2.53) (Priyadarshi et al, 2000).  

Coffee consumption and smoking have also been widely associated with a decreased risk of PD, 

with some studies showing dietary factors and estrogen are also associated with PD risk (Lau and 

Breteler, 2006).  Mutations in a number of genes have been linked to monogenic PD, including 

SNCA, Parkin, PINK1, DJ-1, and LRRK2, however, these are rare and make up only a small 

percent of PD cases (Lau and Breteler, 2006).  In idiopathic PD, many candidate gene studies 
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have been done, investigating genes involved in dopamine metabolism, mitochondrial function, 

toxin metabolism, as well as genes linked to other neurodegenerative diseases (Lau and Breteler, 

2006).  Genome-wide association studies have also identified variants in SNCA, GBA, the HLA 

region, among others (Nalls et al 2014). 

  

2. Organophosphate Pesticide Exposures, Nitric Oxide Synthase Gene Variants, and 

Gene–Pesticide Interactions in a Case-Control Study of Parkinson’s Disease 

2.1 Introduction  

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the progressive 

depletion of dopaminergic neurons in the substantia nigra of the brain.  Both genetic and 

environmental factors alone can cause Parkinsonism, as seen with rare mutations in several genes 

linked to familial PD (Schiesling et al. 2008) and exposure to the toxic metabolite of MPTP 

(Langston 1985). Idiopathic PD however is believed to result from multiple etiologies most of 

which likely require not only exposure to environmental toxins but also an underlying genetic 

susceptibility (Schapira 2006).  Several major molecular pathways are implicated in PD 

pathogenesis, including mitochondrial dysfunction resulting from or in oxidative/nitrosative 

stress (Dauer and Przedborski 2003), inspiring investigators to focus on reactive oxygen or 

nitrogen species (ROS/RNS) such as nitric oxide or certain pesticide metabolites (Ryan et al. 

2013).  Although a number of genetic variants and environmental factors have been consistently 

implicated in PD etiology, rarely have reported gene-environment interactions been replicated, 

including those for nitric oxide synthase gene variants and pesticide exposures. 

Nitric oxide (NO), a chemical messenger and free radical by-product of reactions 

catalyzed by nitric oxide synthase (NOS) enzymes, is essential for numerous physiologic 
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processes, including neurotransmission, but is also a pro-oxidant capable of contributing to 

oxidative/nitrosative stress and damaging an array of cell types, including dopaminergic neurons 

(Kavya et al. 2006).  Three genes encode NOS enzymes: NOS1 on chr 12 encodes neuronal NOS 

(nNOS), NOS2A on chr 17 encodes inducible NOS (iNOS), and NOS3 on chr 5 encodes 

endothelial NOS (eNOS).  NOS1 and NOS2A are of particular interest in PD due to their 

expression in the brain (Licinio et al. 1999).  A number of single nucleotide polymorphisms 

(SNPs) in the NOS1 and NOS2A genes have previously been linked to PD risk, but few reports 

implicated the same SNPs (Hague et al. 2004; Hancock et al. 2008; Huerta et al. 2007; Levecque 

et al. 2003; Schulte et al. 2006).  While the functionality of these SNPs is still unknown and the 

epidemiologic evidence inconclusive, much stronger support for an involvement of NOS in 

neurotoxicity is provided by laboratory studies.  In animal models inhibition of nNOS prevents 

MPTP-induced Parkinsonism in both baboons and mice (Hantraye et al. 1996; Schulz et al. 

1995), and MPTP-induced neuronal damage is diminished in mice lacking either the NOS1 or the 

NOS2A gene (Liberatore et al. 1999; Przedborski et al. 1996). Post mortem studies also found 

higher levels of NO in the nigrostriatal region in PD brains (Hunot et al. 1996). 

Organophosphates (OP), pesticides commonly used agriculturally and until recently in 

households, have long been investigated in relation to PD, not only due to neurotoxicity through 

action on acetylcholinesterase, their primary target, but also the ability to induce oxidative stress 

through increased production of reactive oxygen species (Bagchi et al. 1995; Lukaszewicz-

Hussain 2010).   With evidence that both NO and pesticide exposures are contributing to 

neuronal damage through the same pathways, we speculate that they may act synergistically to 

increase PD risk.  For example, OP induced oxidative stress alone has the potential to lead to 

mitochondrial complex I dysfunction and as a result further generation of superoxides; however 
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superoxides readily react with nitric oxide to form peroxynitrite (NO3
-), a more potent toxicant 

able to irreversibly inhibit mitochondrial respiration (Dauer and Przedborski 2003; Kavya et al. 

2006; Lukaszewicz-Hussain 2010).  Adding more complexity, variations in two functional SNPs 

of the PON1 gene are known to influence the ability to metabolize and detoxify OPs and 

influence PD risk (Lee et al. 2013).  Statistical interactions between NOS1 SNPs and home 

pesticide use in PD were first seen in a North American family study (Hancock et al. 2008).  

Here, we will attempt to replicate this reported finding for household pesticide use, examining 

interactions with household pesticide exposures, and also to contribute new information about 

the interaction with OP pesticides specifically, both from household use and ambient exposure to 

agricultural pesticides, and with other NOS1 genetic variants, while also taking into account 

increased susceptibility due to PON1 status.  

2.2 Materials and Methods 

All procedures described were approved by the University of California at Los Angeles (UCLA) 

Human Subjects Committee and informed consent was obtained from all participants. 

Participant recruitment 

We enrolled incident PD patients along with population-based controls between January 

2001 and December 2010 from three highly agricultural central California counties (Kern, 

Tulare, Fresno) known for the high use of agricultural pesticides.  Detailed participant 

recruitment (Costello et al. 2009; Wang et al. 2011) and case definition criteria (Jacob et al. 

2010; Kang et al. 2005) have been previously described and published. 

Briefly, of the 1,167 PD patients initially identified through large medical groups, 

neurologists, and public service announcements, 604 did not meet eligibility criteria for the 
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following reasons: 397 were not diagnosed with PD within 3 years prior to recruitment, 134 lived 

outside the tri-counties, and 73 did not have PD.  From the 563 potential cases, 90 could not be 

examined by our movement disorder specialist (JB), 56 declined or moved away, 34 became too 

ill or died prior to the scheduled appointment; of 473 examined by us (JB), 94 did not meet 

published criteria for idiopathic PD (Hughes et al. 1992), an additional 13 were reclassified as 

not having PD during follow-up (Ritz et al. 2012), and 6 participants withdrew between 

examination and interview.  Of the remaining 360 cases, 357 provided information and biologic 

samples necessary for inclusion in at least one of our analyses. 

To be eligible as population-based controls, participants must have been over the age of 

35, having lived within one of the three counties for at least 5 years prior to enrolment, and not 

have a diagnosis of PD.  We identified potentially eligible population-based controls from the 

same tri-county area initially through both Medicare enrollee lists (2001) and publicly available 

residential tax-collector records (2001-2010) (Kern, Fresno, and Tulare County Tax Assessor), 

and after 2001 only through residential tax-collector records. We used two sampling strategies to 

increase enrolment success and representativeness of the source population: 1) random selection 

from the Medicare enrollee lists and of residential parcels (identified from the tax-collector 

records) followed by mail or phone enrolment and 2) random selection of clustered households 

(five per cluster, identified through the tax-collector records) we visited in person to enroll 

eligible controls; these enrolment methods have been described in detail in more detail 

previously (Costello et al. 2009; Wang et al. 2011).  

 From the first sampling method, we contacted 1,212 potentially eligible controls. Of these 

individuals, 457 were ineligible: 409 were younger than 35 years of age, 44 too ill to participate, 

and 4 primarily resided outside the study area. Of the 755 eligible population controls, 409 
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declined participation, were too ill or moved before an interview was possible; resulting in the 

enrolment of 346 population controls. From the second sampling strategy, 4,756 individuals 

were screened, of which 3,515 were ineligible (88% of these were out of the age range) and 634 

of the eligible controls declined participation; 607 population controls were enrolled, but 183 of 

them completed only an abbreviated interview and did not contribute all data needed for this 

analysis. Additionally, an early mailing (for which the number of eligible participants who 

declined was not known) produced 62 controls.  Of the 832 recruited controls, 337 were 

excluded because they lacked NOS genotyping data.  Thus, in total only 495 controls provided 

information and biologic samples necessary for inclusion in at least one of the analyses, 333 

originating from the first control recruitment effort. 

Pesticide exposure assessment 

Cases and controls were interviewed by telephone to obtain information on demographic 

characteristics, risk factors, and included detailed questions on home pesticide use and lifetime 

occupational and residential histories.  During the interview, participants provided information 

on chemical use in the home, lawn, or garden. More detail on this exposure assessment has been 

published (Narayan et al. 2013).   Briefly, participants were asked to recall names of chemicals 

or products if possible, or partial product names, manufacturer names (e.g. Raid), targets (e.g. 

weed control, plant disease, ants, spiders, etc.), or formulation of products (e.g. liquid, granules, 

bait, etc.).  This interview data was supplemented with information about ingredients from the 

California Department of Pesticide Regulation (CDPR) product label database (CDPR 2013b).  

The active ingredient (chemical contributing the largest percentage to a product’s composition) 

was then categorized into chemical classes, again using the CDPR product label database.  

Interviewers additionally asked about frequency of use (none or rarely (once a year or less), 
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sometimes (2-11 times a year), or regularly (more than once a month)) during four different 

periods: young adult (16-24), adult (25-<45), middle age (45-<65) and senior (≥65).  Only use by 

the participant themselves was considered.     

We assessed lifetime home pesticide use by calculating a weighted average frequency of 

use (Narayan et al. 2013).  For each pesticide class we multiplied the midpoint of the frequency 

category by years in each age period up to 10 years before index date (date of diagnosis or 

interview), summed across age periods, and divided by the total number of years between ages 

16 to 10 years prior to index date.  Those with an average frequency of use of any reported 

pesticide class above or equal to the pesticide class specific median found in exposed controls 

were considered “frequent users” of any pesticide and those with an average frequency of use 

below the median for all pesticides as “occasional users” for the ‘any household pesticide use’ 

exposure assessment.  For household use of OPs, those with an average frequency above or equal 

to the OP use median found in exposed controls were considered “frequent users” of OPs and 

those with an average use below the median to all pesticides as “occasional users”.  We then 

classified participants in mutually exclusive groups, as “frequent users” of OP pesticides, as 

described above, “frequent users” of other non-OP pesticides, those who did not frequently use 

OPs but did use other pesticides frequently, and “occasional users” of pesticides; in primary 

analysis for household OP use, we excluded “frequent users” of other non-OP pesticides, only 

comparing “frequent users” of OP pesticides to “occasional users”, comparisons using “frequent 

users” of non-OPs were included in secondary analyses. 

 Ambient pesticide exposure resulting from commercial applications to agricultural crops 

was estimated using a geographic information system (GIS) based computer model, which links 

geocoded lifetime residential and occupational address histories of participants, California state 
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mandated pesticide use report (CA-PUR) data (CDPR 2013a), which include information on all 

agricultural pesticide applications and the date, location, and amount applied, and land use 

surveys from California’s Department of Water Resources (CDWR 2013), which provides the 

exact location of specific crops.  We provide a brief description here and a more detailed and 

technical discussion of the GIS method has been published (Cockburn et al. 2011).   For all 

pesticides, we summed the pounds of chemical applied per year per acre within a 500-m radius 

buffer of each address.  For each participant, we then calculated a study period average for each 

chemical from 1974 to 10 years prior to the participant’s index year by summing the year-

specific averages and dividing that sum by the total number of years in the relevant time period.  

If a participant was missing geocode location information for any given year, we used simple 

imputation, substituting the individual’s average value from their recorded years.  CA-PUR data 

indicated that the study population was exposed to 36 different chemicals classified as OPs based 

on information from CDPR and the pesticide action network (PAN) pesticide database (Kegley 

et al. 2014) (see supplemental material, table 2-S1, for a complete list).  Exposures over the same 

time period at both residential and occupational addresses were included, and each participant 

could have been exposed at both locations, only one, or neither.  We dichotomized exposure to 

each of the individual OP chemicals based on each chemical’s median level in exposed controls, 

and then summed the number of OP chemicals that each participant was exposed to above the 

median, counting chemical exposures from both residence and occupation; we then classified OP 

exposure based on the exposure distribution of the OP sum from the controls in the following 

manner:  high exposure, exposed to > 11 OP chemicals (top quartile in exposed controls), 

none/low exposure:  0-11 OP chemicals. 

In addition to using CA-PUR data to estimate ambient exposure at each occupational 
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location, direct occupational exposure was derived from a job exposure matrix (JEM), where 

participants’ level of exposure was estimated for each reported occupation (Liew et al. 2014).  

However, JEM based occupational exposure was not used for our primary analysis, as exposures 

to the specific pesticides of interest here, OPs, could not be estimated, but was included as a 

covariate to control for other sources of pesticide exposure. 

SNP selection and genotyping methods 

Altogether 8 SNPs from NOS1 and NOS2A were selected, NOS1 rs2682826 and 

rs1047735 and NOS2A rs1060826 based on previous PD research (Hague et al. 2004; Hancock et 

al. 2008; Levecque et al. 2003) and NOS1 rs3741475, rs3741480, and rs816353 and NOS2A 

rs2297518, and rs3730013 to optimize gene coverage. 

 Participants provided blood or saliva samples for genetic analyses, which were stored 

and processed at the UCLA Biologic Specimen Core Facility.  Several collaborative research 

projects performed genotyping of our samples for these SNPs; this led to a different number of 

participants with data available for each SNP.  NOS1 SNPs rs1047735, rs2682826, and 

rs3741475 and NOS2A SNPs rs1060826, rs2297518, and rs3730013 genotyping was conducted 

at Stanford Human Genome Center; PCR assays were conducted with TaqMan Universal Master 

Mix (Applied Biosystems), primers and probes were designed based on the NCBI DNA 

sequence and purchased from ABI (Applied Biosystems, Foster City, CA, USA).  Fluorescence 

data files from each plate were analyzed by automated allele calling software (ABI Prism 7900 

HT Sequence Detection System 2.1).  Fill in genotyping for additional cases and controls 

recruited later in the study for each of these SNPs except rs3741475 was performed at the UCLA 

Genomics Core Facility using the Applied Biosystems SNPlex array (Tobler et al. 2005).  NOS1 
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rs3741480 and rs816353 genotyping was performed at the University of Washington’s SF 

Functional Genomics and Bioinformatics Core Laboratory using the Fluidigm BioMark HD 

system (Fluidigm Corporation, South San Francisco, CA).  All SNPs had a call rate over 98.5% 

except for rs1047735 (97%), rs3741480 (93%), and rs816353 (93%).  Additionally, PON1 

genotyping was conducted at the UCLA Genomics Core using pyrosequencing for L55M 

(rs854560), and for Q192R (rs662) using the Fluidigm BioMark HD system at the University of 

Washington.  PON1 metabolizing status was based on published report (O’Leary et al. 2005); 

briefly, “slower” metabolizers are considered those with a MM genotype at L55M and QQ or QR 

at Q192R, other genotypes are considered “faster” metabolizers. 

To safeguard against systematic genotype errors due to using different genotyping centers 

for fill-in genotyping of NOS1 SNPs rs1047735, rs2682826, and NOS2A SNPs rs1060826, 

rs2297518, and rs3730013, 97 participants were included in both genotyping experiments; they 

provided an interlaboratory genotype call rate concordance of 99.8% (1 discordant call at 

rs2682826 for 1 participant). This is in addition to the 5-10% duplicate samples included in each 

individual experiment used to confirm quality genotyping.  Additionally, for each of the 5 SNPs, 

we used logistic regression to examine whether genotype could predict the centers where 

genotyping was performed, assuming an allelic model (comparing the minor allele to the major 

allele), and using the control population only; we found no statistically significant associations 

by center suggesting no systemic error by center (data not shown).  

NOS1 Genetic Risk Score 

 We created a genetic risk score (GRS) based on the 5 NOS1 SNPs genotyped.  The score 

counts the minor alleles, such that participants homozygous for the minor allele received a 2, 
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heterozygous participants a 1, and those homozygous wild type a 0, at each locus, for a total 

range of 0 to 10.  In sensitivity analyses, we examined an alternate GRS based on 3 NOS1 SNPs 

only (rs2682826, rs1047735, and rs3741480, total range 0 to 6), excluding rs816353, as it is in 

moderate LD (=0.6) with rs1047735 and was not in Hardy-Weinberg equilibrium, and 

rs3741475, as it is in moderate LD (=0.6) with rs2682826. 

Statistical methods 

We examined Hardy-Weinberg equilibrium in control participants for all polymorphisms 

using a chi-square test, and checked LD between each SNP.  We used unconditional logistic 

regression to calculate odds ratios (ORs) and 95% confidence intervals (CIs) for SNP marginal 

effects assuming a recessive genetic model (homozygous for the minor allele versus any major 

allele) for NOS2A rs1060826 and a dominant model (any minor allele versus homozygous for the 

major allele) for NOS1 rs1047735 and rs2682826 to compare with prior report (Levecque et al. 

2003). As previous model selection was not based on functional significance, for these SNPs and 

all other SNPs for which we had no a-priori genetic hypotheses, we additionally assumed an 

additive genetic model (where each copy of the variant allele increases the risk by the same 

amount). We also adjusted for potential confounders including sex, age (continuous), cigarette 

smoking status (ever/never), European ancestry (yes, exclusively European ancestry / no, any 

non-European ancestry), education (<12 years, 12 years, >12 years), and PON1 metabolizing 

status (“faster” or “slower” metabolizers; (O’Leary et al. 2005)).   

Gene-environment interactions were assessed with NOS1 rs2682826 and pesticide use 

due to previous report (Hancock et al. 2008) during primary analysis.  Statistical interactions 

were assessed by introducing a multiplicative interaction term (e.g. product term: gene x 
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pesticide) into a logistic model that relied on a dominant genetic model.  We also conducted 

secondary, exploratory analyses, assessing interactions between all other NOS SNPs and OP 

exposure, assuming a dominant genetic model, and between the genetic risk score and OP 

exposure. 

A multiple test correction was not implemented, as the SNPs under analyses were 

selected based on previous research reports that supported associations with PD. Gene-gene 

interaction analyses between NOS SNPs and PON1 status were not performed, as we did not 

have an a-priori hypothesis supporting this relationship and concerns about sufficient power 

given both the lack of marginal genetic effects and our sample size (≥80% power to detect 

interaction OR of 3.2 or above).       

We conducted sensitivity analyses for SNP marginal effects restricting to participants 

with European ancestry only and adjusting for PD family history (PD in a first degree relative: 

yes/no).  For gene-environment analyses, in sensitivity analysis we mutually adjusted for 

household OP pesticide use, ambient OP exposure and occupational exposures derived from our 

JEM.  We also assessed the interaction between household use of non-OP pesticides and NOS 

rs2682826.  

Power calculations were performed using Quanto version 1.2.4 (Gauderman and 

Morrison 2006), LD using Haploview (Barrett et al. 2005) and all other analyses using SAS 9.3 

(SAS Institute Inc., Cary, NC). 

2.3 Results 

 Study participants were predominantly of European ancestry, over the age of 65, and did 

not report a family history of PD (table 2-1).  Cases had a higher proportion of males, never 
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smokers, and slower PON1 metabolizer’s (table 2-1); note, 121 participants (48 cases (13%) and 

73 controls (15%)) were missing PON1 genotyping and thus PON1 metabolizer status.  Cases 

were more likely to have frequently used household pesticides (OR = 1.69, 95% CI: 1.21, 2.36 

for any pesticide use, and OR = 2.05, 95% CI: 1.30, 3.24 for OP use specifically), and to have 

had high ambient exposure to agricultural OP pesticides (OR = 2.99, 95% CI: 1.92, 4.65; see 

supplemental material, table 2-S1).  All models controlled for age, sex, smoking status, European 

ancestry, education, and PON1 metabolizer status. 

The population was in Hardy-Weinberg equilibrium for all SNPs evaluated (p >0.05), 

except for rs816353 (p=0.02) (table 2-2), and the SNPs in each gene were in low to moderate LD 

with each other (NOS1 values ranging from 0.27 to 0.59, for NOS2A from less than 0.10 to 0.30) 

(data not shown).   For NOS2A rs1060826, cases were more likely to have a homozygous variant 

(OR=1.56, 95% CI 1.10, 2.38 without PON1 adjustment and OR = 1.51; 95% CI: 0.95, 2.41 with 

PON1 adjustment) (table 2-2).  We did not find any other SNPs to be significantly associated 

with PD, aside from NOS1 rs1047735 based on an additive model without adjustment for PON1; 

however, we did not detect an association with the a-priori selected recessive model (Leveqcue 

et al. 2003) (table 2-2).  When restricting analyses to participants of European ancestry only, 

results did not change (data not shown).   

Investigating NOS1 rs2682826 and any household pesticide, we estimated a non-

significant interaction based on the p-value of the product term (p-value=0.18; supplemental 

material, table 2-S2).  When we limited to household OP use specifically (excluding those with 

frequent use on non-OP pesticides), the product term reached statistical significance (p-

value=0.04); the genetic variant in occasional users of household pesticides did not contribute to 

an increased risk of PD, in contrast to frequent OP users, where OP exposed variant T allele 
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carriers were at increased risk compared to the wildtype (ORCC+OP use=1.30, 95% CI=0.72, 2.34 vs. 

ORCT/TT+OP use=2.84, 95% CI=1.49, 5.40; table 2-3, supplemental material, figure 2-S1).  When we 

limited household pesticide use to only non-OP pesticides (excluding those with frequent use of 

OP pesticides), we did not see a significant interaction (interaction p-value=0.66; supplemental 

material table 2-S2).  Results for ambient OP exposures were similar to those seen with 

household OP use; again the genetic variant in those with no/low ambient OP exposure did not 

influence PD risk (ORCC =0.99, 95% CI=0.70, 1.40), while high ambient OP exposure in the 

wildtype population was associated with an increased PD risk (ORCC+OP exp =2.42, 95% CI=1.27, 

4.61), and those with a variant allele highly exposed to ambient OPs were at the highest risk 

(ORCT/TT+OP exp =4.83, 95% CI=2.39, 9.73; table 2-3) (interaction p-value=0.15).  

In secondary, exploratory analysis, we detected 3 other significant statistical interactions 

between NOS1 SNPs, rs1047735, rs816353, and 3741480, and ambient OP exposure (table 2-3).  

For each SNP, we detected a moderate pesticide association in homozygous wildtype carriers, 

comparing those highly exposed to ambient OPs with a wildtype genotype to those with no/low 

exposure and a wildtype genotype (ORs range from 1.43 (95% CI=0.69, 2.96) to 2.07 (95% 

CI=1.09, 3.91); table 2-3); while highly, exposed variant allele carriers were at the highest risk 

when compared with those with no/low exposure and a wildtype genotype (ORs range from 3.78 

(95% CI=2.04, 6.99) to 5.42 (95% CI=2.54, 11.52); table 2-3).  Similar trends are seen also with 

the household OP use; though only the product term with rs3741480 reached statistical 

significance; we detected no increase to moderate non-significant increases in risk when 

comparing frequent use of OP pesticides to occasional use in wildtype carriers (ORs range from 

0.93 (95% CI=0.44, 1.99) to 1.62 (95% CI=0.88, 2.98); table 2-3) and the highest risk was found 

in variant allele carriers who frequently used OP pesticides compared to wildtype occasional 
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users (ORs range from 1.90 (95% CI=1.06, 3.41) to 2.31 (95% CI=1.22, 4.37); table 2-3). We 

also detected interactions using the genetic risk scores (GRS), again based on the product term 

between the GRS, which we treated as a linear variable, and the pesticide exposure indicators (p-

values for interaction ranged from 0.01 to 0.09; see supplemental material, table 2-S3).  For 

example, for the 5 SNP NOS1 GRS (range 0-10 variant alleles) and ambient OP exposure, no 

significant risk increase was detected per additional variant allele copies in those with none or 

low exposure (ORper 1 variant allele=1.04, 95% CI=0.97, 1.12), as seen with each individual SNP, while in 

those highly exposed to ambient OP exposure, there was a significant increase in risk per each 

additional variant allele copy (ORper 1 variant allele+OP exp=1.90, 95% CI=1.04, 3.43). 

Investigating NOS2 SNPs, we did not detect any marginal associations except for NOS2A 

rs1060826 (table 2-2) or significant interactions with pesticide exposure, based on the p-value of 

the product term (data not shown).  Mutually adjusting for household OP pesticide use, ambient 

OP exposures, ambient maneb and paraquat exposures, occupational exposures to pesticides 

(JEM), and other NOS SNPs and limiting to participants of European ancestry only changed the 

estimates minimally (<10%; data not shown). 

2.4 Discussion  

 In this investigation, we identified a positive marginal association with NOS2A SNP 

rs1060826 and PD.  Importantly, we also identified multiple NOS1 -pesticide interactions, 

providing support for the involvement of OP pesticides in PD, especially in genetically 

susceptible subpopulations.  

Animal models of PD suggest that environmental factors and aging together induce 

oxidative stress, and depending on genetic background and a biological system’s antioxidant 
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capacities this can lead to cell death or survival (Varçin et al. 2012).  Some PD related genes 

might induce oxidative/nitrosative stress, such as NOS via regulating NO, while others modulate 

cell survival following exposure to oxidative stressors, such as PON1 and other metabolic or 

antioxidant gene products.  In our population, while controlling for PON1, OP exposure was 

positively associated with PD, and variation in multiple regions throughout the NOS1 gene 

further modified this association.  This is consistent with the hypothesis that NO and pesticides 

act synergistically to influence PD risk, with reactive oxygen or nitrogen species (ROS/RNS) 

from multiple sources acting in a potentiating manner, overwhelming the balance between pro-

oxidants and the antioxidant capability of dopamine neurons. 

Our population-based case-control study provided a unique opportunity to investigate 

NOS genes while adjusting for the contributions of PON1 on OP metabolism and assess their 

role in modifying the effect of OP pesticide exposures in PD. Consistent with the NCI-NHGRI 

Working Group on Replication in Association Studies criteria for high quality replications of 

association results (Group 2007), our study provides an independent population, similarity and 

improvement in exposure assessment, and adequate sample size (≥80% power to detect 

previously reported marginal effect sizes, and OP interaction ORs ≥2.3, given summary 

parameters based on previous report (Hancock et al. 2008; Levecque et al. 2003)). Additionally, 

we estimated pesticide exposure from multiple sources – household and agricultural uses – and 

the observed associations mutually corroborated each other.  

PD is a commonly misdiagnosed disease (Meara et al. 1999; Wermuth et al. 2012).  

Different from most epidemiology studies, our PD cases were all seen and well characterized by 

UCLA movement disorder specialists at least once and 70% were followed many years for 

disease progression (Ritz et al. 2012), minimizing bias from disease misclassification.  
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Additionally, population controls were drawn from the same region as the cases, likely providing 

adequate representativeness of the source population.   

The vast majority of previous epidemiologic studies investigating pesticides have relied 

solely on self-reported information for home pesticide use, a method prone to differential recall 

error, as the degree to which study participants may forget details, or misreport their past 

pesticide use may differ between cases and controls. We improved and enriched our self-reported 

measure of gardening, yard, and indoor uses with the information about active ingredients 

provided in the California Department of Pesticide Regulation’s (CDPR) product label database 

that lists all household products registered in CA for use.  Thus, we only partially depended on 

recall for home pesticide exposure assessment, as participants did not need to report specific 

chemicals but products or types of products.  In addition, we assessed ambient exposures with a 

geographic information system approach that integrates state mandated pesticide use reports 

(PUR), land use data, and address information.  This GIS-driven and pesticide record based 

ambient exposure assessment approach does not rely on participant recall. However, our ambient 

pesticide exposure method does not account for factors such as wind patterns at the time of 

application, geographic features which may influence pesticide drift, and the assumption that the 

participant was at the recorded location during the relevant time period; thus we did not 

eliminate the possibility of exposure misclassification.  Our two exposure measures are 

unrelated, as household use was not influenced by nearby agricultural applications; nevertheless 

we saw similar patterns when assessing gene-environment interactions.   

A comparison of the previously reported NOS SNP marginal associations is presented in 

table 2-4 (those SNPs not included were not investigated previously).  There are inconsistencies 

in the reported marginal associations of the NOS SNPs.  Additionally, none of these SNP regions 
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have emerged from PD GWA studies (Nalls et al. 2014).  Although evidence for an involvement 

of NOS2A rs1060826 in PD susceptibility was relatively consistent in many candidate gene 

studies, there is no clear direction in the association, though a positive association as seen in our 

population has been published before (Hancock et al. 2008).  We also did not replicate previous 

positive marginal associations reported for NOS1 rs1047735 or rs2682826.  Gene-pesticide 

interactions with NOS1 rs2682826 were first described in a study of 169 families, the authors 

report a positive association between ever pesticide use (in the home, garden, or work) among 

those with the homozygous wildtype genotype (OR=3.52, 95% CI=1.87, 6.95), but no 

association between pesticide use and PD in those with a variant allele (Hancock et al. 2008).  

This is in contrast to the associations we report for NOS1 rs2682826, where we found positive 

associations among the OP exposed variant carriers, with smaller or no pesticide associations in 

the homozygous wildtype carriers (table 2-3).  There may be a number of explanations for these 

discrepancies.  For instance, marginal genetic associations ignore environmental exposures.  If 

an environmental factor is necessary for a genetic variant to influence disease risk, populations 

with genetic variant carriers who are also exposed to the environmental factor are better able to 

detect gene-disease associations; on the other hand not accounting for such environmental risk 

factors can result in varying consistency for reports of marginal associations (Ott 2004). This 

issue seems particularly important for the NOS1 rs2682826, for which gene-environment 

interactions have been hypothesized and reported for both cigarette smoking (Levecque et al. 

2003) and pesticide exposure (Hancock et al. 2008).  Additionally, an inadequate reference 

population, disease misclassification, insufficient power, study population heterogeneity, and 

population stratification may also result in between-study inconsistencies (Ioannidis 2007).   

We found strong associations for PD in participants with certain NOS1 genotypes 
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exposed to commonly used OP pesticides through two independent sources – home and 

agricultural use - consistent with the importance of oxidative stress-inducing mechanisms in 

combination with increased vulnerability due to low PON1 OP metabolizer capacity.  Our 

findings support a role for NOS2A genetic variants in PD susceptibility and NOS1 as a modifier 

of associations with PD in OP pesticide exposed populations. 
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2.5 Tables 

Table 2-1. General Characteristics of the study population, 
n=852. 

 
Characteristic 

Cases 
(n=357) 

Controls 
(n=495) 

Age of PD diagnosis, median (range) 70 (34-88)   
Age at interview, median (range) 72 (37-90) 68 (35-94) 
Male sex, n (%) 204 (0.57) 243 (0.49) 
First degree relative with PD, n (%)     

No 304 (0.85) 450 (0.91) 
Yes 53 (0.15) 45 (0.09) 

Cigarette smoking, n (%)     
Never 188 (0.53) 227 (0.46) 
Ex 150 (0.42) 221 (0.45) 
Current 19 (0.05) 47 (0.09) 

European ancestry, n (%)     
Yes 288 (0.81) 441 (0.89) 
No 69 (0.19) 54 (0.11) 

Education, n (%)     
0 to <12 years 65 (0.18) 43 (0.09) 
12 years 95 (0.27) 101 (0.20) 
>12 years 197 (0.55) 351 (0.71) 

PON1 metabolizer status, n (%)a     
Faster 264 (0.85) 376 (0.89) 
Slower 45 (0.15) 46 (0.11) 

a121 participants missing PON1 genotypes, 48 cases (13%) and 73 
controls (15%) 
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Table 2-2. Marginal estimates (ORs and 95% CIs) for genetic variation in NOS1 and NOS2A SNPs in association with PD; 
assuming an additive genetic model unless otherwise specified. 

        
Model 1: No 

PON1 
Adjustment 

  Model 2a: PON1 
Adjustment     

SNP  Genotype Cases n (%) Controls n 
(%) 

Adjusted ORb 
(95% CI) 

p 
value 

Adjusted ORb 
(95% CI) 

p 
value 

SNP 
HWE  

p valuec 
NOS1 rs1047735d CC 155 (0.45) 211 (0.51) 1.00   1.00     
  CT 143 (0.41) 176 (0.42) 1.28 (1.02, 1.60)   1.18 (0.92, 1.52)     
  TT 49 (0.14) 30 (0.07) 1.63 (1.04, 2.55) 0.04 1.39 (0.84, 2.29) 0.20   

  CT/TT vs 
CC   

 
1.20 (0.90, 1.61) 0.22 1.07 (0.78, 1.47) 0.68 0.41 

NOS1 rs2682826d CC 178 (0.50) 231 (0.51) 1.00   1.00     
  CT 154 (0.43) 198 (0.44) 1.08 (0.85, 1.36)   1.13 (0.87, 1.46)     
  TT 24 (0.07) 26 (0.06) 1.16 (0.72, 1.85) 0.54 1.28 (0.76, 2.14) 0.36   

  CT/TT vs 
CC     1.05 (0.79, 1.39) 0.74 1.11 (0.81, 1.52) 0.51 0.06 

NOS1 rs3741475 CC 167 (0.64) 165 (0.64) 1.00   1.00     
  CT 84 (0.32) 84 (0.33) 1.07 (0.78, 1.48)   0.99 (0.69, 1.41)     
  TT 11 (0.04) 7 (0.03) 1.15 (0.61, 2.18) 0.66 0.97 (0.47, 2.00) 0.94 0.34 
NOS1 rs3741480 TT 93 (0.33) 138 (0.33) 1.00   1.00     
  TC 130 (0.46) 215 (0.51) 0.90 (0.72, 1.12)   0.90 (0.72, 1.12)     
  CC 58 (0.21) 69 (0.16) 0.81 (0.52, 1.27) 0.36 0.81 (0.52, 1.27) 0.36 0.33 
NOS1 rs816353 GG 89 (0.32) 143 (0.34) 1.00   1.00     
  TG 141 (0.50) 225 (0.53) 1.21 (0.96, 1.53)   1.21 (0.96, 1.53)     
  TT 51 (0.18) 54 (0.13) 1.47 (0.93, 2.33) 0.10 1.47 (0.92, 2.33) 0.10 0.02 
NOS2A rs1060826e GG 129 (0.36) 179 (0.42) 1.00   1.00     
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  AG 170 (0.48) 204 (0.48) 1.28 (1.03, 1.59)   1.26 (0.99, 1.59)     
  AA 57 (0.16) 46 (0.11) 1.63 (1.06, 2.52) 0.03 1.58 (0.99, 2.53) 0.06   

  AA vs 
GG/AG   

  
1.56 (1.01, 2.38) 0.04 1.51 (0.95, 2.41) 0.08 0.28 

NOS2A rs2297518 GG 238 (0.67) 268 (0.62) 1.00   1.00     
  AG 108 (0.30) 138 (0.32) 0.84 (0.65, 1.08)   0.78 (0.59, 1.03)     
  AA 9 (0.03) 25 (0.06) 0.70 (0.42, 1.17) 0.18 0.61 (0.35, 1.06) 0.08 0.20 
NOS2A rs3730013 CC 156 (0.44) 193 (0.46) 1.00   1.00     
  CT 161 (0.45) 190 (0.45) 0.99 (0.79, 1.24)   1.02 (0.80, 1.30)     
  TT 39 (0.11) 39 (0.09) 0.99 (0.63, 1.55) 0.96 1.04 (0.64, 1.69) 0.88 0.43 

a121 participants missing PON1 genotype, 48 cases (13%) and 73 controls (15%) 
bAdditionally adjusted for age (continuous), sex, ever smoked, education, and European ancestry indicator 
cHWE p-value based on control population only 
dAdditionally assumed dominant genetic model due to prior report 
eAdditionally assumed recessive genetic model due to prior report
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Table 2-3.  Interaction, main, and joint effect estimates for NOS1 SNPs and OP exposure in association with PD. 

       Homozygous 
wildtype    Variant allele 

carrier     

SNP 
Major/ 
Minor 
allele 

Exposure 
Category 

Cases / 
Controls 

Adj ORa  
(95% CL) 

p 
value 

Cases / 
Controls 

Adj ORa  
(95% CL) 

p 
value 

p for 
interaction 

    Household OP Useb             
NOS1  
rs2682826 C/T Occasional 

Use 81/109 1.00 (ref)   70/104 0.89 (0.58, 
1.39) 0.62   

    Frequent Use 32/39 1.30 (0.72, 
2.34) 0.39 41/22 2.84 (1.49, 

5.40) 0.002 0.04 

NOS1 
rs1047735 C/T Occasional 

Use 82/107 1.00 (ref)   64/96 0.82 (0.52, 
1.28) 0.39   

    Frequent Use 33/33 1.62 (0.88, 
2.98) 0.12 38/23 2.31 (1.22, 

4.37) 0.01 0.21 

NOS1 
rs816353 G/T Occasional 

Use 51/80 1.00 (ref)   85/154 0.86 (0.55, 
1.34) 0.5   

    Frequent Use 19/27 1.22 (0.60, 
2.51) 0.58 49/40 2.01 (1.12, 

3.59) 0.02 0.14 

NOS1 
rs3741480 T/C Occasional 

Use 83/161 1.00 (ref)   53/74 0.73 (0.46, 
1.14) 0.16   

    Frequent Use 53/40 0.93 (0.44, 
1.99) 0.85 15/26 1.90 (1.06, 

3.41) 0.03 0.02 

NOS1 
rs3741475 C/T Occasional 

Use 86/84 1.00 (ref)   33/43 0.70 (0.39, 
1.25) 0.23   

    Frequent Use 32/25 1.59 (0.83, 
3.07) 0.17 21/6 3.46 (1.28, 

9.37) 0.01 0.07 

   Ambient OP Exposurec             
NOS1  
rs2682826 C/T None/Low 117/169 1.00 (ref)   116/162 0.99 (0.70, 

1.40) 0.96   
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    High 33/18 2.42 (1.27, 
4.61) 0.01 43/12 4.83 (2.39, 

9.73) <.0001 0.15 

NOS1 
rs1047735 C/T None/Low 114/155 1.00 (ref)   112/156 0.93 (0.65, 

1.32) 0.67   

    High 32/19 2.07 (1.09, 
3.91) 0.03 42/10 5.42 (2.54, 

11.52) <.0001 0.04 

NOS1 
rs816353 G/T None/Low 72/118 1.00 (ref)   142/245 0.95 (0.66, 

1.36) 0.77   

    High 17/17 1.59 (0.76, 
3.32) 0.22 50/19 4.24 (2.30, 

7.83) <.0001 0.03 

NOS1 
rs3741480 T/C None/Low 139/250 1.00 (ref)   75/112 0.83 (0.57, 

1.19) 0.3   

    High 49/19 1.43 (0.69, 
2.96) 0.33 18/18 3.78 (2.04, 

6.99) <.0001 0.01 

NOS1 
rs3741475 C/T None/Low 111/114 1.00 (ref)   56/64 0.86 (0.54, 

1.36) 0.52   

    High 38/14 2.93 (1.48, 
5.80) 0.002 25/5 4.52 (1.61, 

12.64) 0.004 0.36 
aAdjusted for age (continuous), sex, ever-smoked, European ancestry, education, and PON1 status. 
bParticipants with an average frequency of household OP use per year during ages 16-<10 years prior to index age that was at or 
above the median average use in exposed controls were assigned to the "Frequent Use" category. Those in the "Occasional Use" 
category had an average frequency of use per year during ages 16-<10 years prior to index age that was below the median for any 
household pesticide (excluded subjects who did not frequently use OPs but frequently used other pesticides). 
cAmbient pesticide exposure, counting total number of OPs exposed to (above the median level seen in exposed controls) at both 
occupation and residence, from 1974 (year of CA-PUR implementation) to 10 years before diagnosis or interview. Cut point based 
on top quartile in exposed controls
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Table 2-4. Comparison of SNP marginal effects from previous investigation. 

Study Population Cases Controls NOS1 rs1047735 NOS1 rs2682826 NOS2A rs1060826 
 OR (95% CI)  OR (95% CI)  OR (95% CI) 

Levecque et al. (2003) French 209 488 1.20 (0.85, 1.69)a 1.53 (1.08, 2.16)a 0.50 (0.29, 0.86)b 

Hague et al. (2004) Finnish 147 137 No association 
(p=0.63)c 

No association 
(p=0.25)c 0.50 (0.27, 0.93)b 

Schulte et al. (2006) German 340 680 N/A N/A 0.89 (0.61, 1.30)b 
Huerta et al. (2007) Asturias 450 200 N/A No associationc No associationc 

Hancock et al. (2008) US 
Caucasians 169 families 

Positive association, 
minor allele (A) 
over-transmittedd  

Positive association, 
minor allele (T) 
over-transmittedd 

Positive association, 
minor allele (A) 
over-transmittedd 

Abbreviations: N/A Not applicable because not investigated 
aDominant genetic model, CT+TT vs CC 
bRecessive genetic model, AA vs GG+GA 
cOR and 95% CI not provided 
dFamily based transmission-disequilibrium tests were used to examine association between SNPs with PD, comparing the 
distributions of alleles transmitted to affected offspring to alleles not transmitted (Hancock et al. 2008).  Over-transmission of the 
minor allele indicates the minor allele at a given locus was transmitted to those with PD more than expected, and represents a 
positive or “risk” association between the allele and PD.
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2.6 Supplement 
 

Supplemental Material, Table 2-S1. Pesticide list and adjusted odds ratios. 

Pesticide 
CDPR Chem 

Code / 
Category 

Cases 
(n=306) 
[n (%)] 

Controls 
(n=397) 
[n (%)] 

 Adj ORa  
(95% CI) 

P 
value 

Household Pesticides         

Any Pesticideb Occasional 
Use 151 (0.49) 207 (0.60) 1.00 (ref) -- 

  Frequent Use 155 (0.51) 138 (0.40) 1.69 (1.21, 2.36) 0.002 

OP Pesticidesb Occasional 
Use 151 (0.67) 207 (0.78) 1.00 (ref) -- 

  Frequent Use 73 (0.33) 57 (0.22) 2.05 (1.30, 3.24) 0.002 
Ambient Organophosphates         
OP Exposure 
Indicatorc >11 OPs 76 (0.25) 37 (0.09) 2.99 (1.92, 4.65) <.0001 

Monocrotophos 52 64 (0.21) 44 (0.11) 2.00 (1.29, 3.09) 0.002 
Bensulide 70 5 (0.02) 5 (0.01) 1.56 (0.44, 5.49) 0.49 
Dicrotophosd 72 5 (0.02) 2 (0.01) --   

Trichlorfon 88 35 (0.11) 15 (0.04) 3.01 (1.58, 5.73) 0.0008 

Carbophenothion 110 25 (0.08) 15 (0.04) 2.36 (1.20, 4.64) 0.01 

Ddvp 187 6 (0.02) 5 (0.01) 1.81 (0.54, 6.01) 0.34 
S,S,S-Tributyl 
Phosphorotrithioate 190 57 (0.19) 49 (0.12) 1.53 (0.99, 2.35) 0.06 

Dioxathion 192 18 (0.06) 8 (0.02) 3.00 (1.26, 7.12) 0.01 
Diazinon 198 97 (0.32) 106 (0.27) 1.18 (0.84, 1.67) 0.34 
Dimethoate 216 137 (0.45) 99 (0.25) 2.38 (1.71, 3.33) <.0001 
Disulfoton 230 50 (0.16) 35 (0.09) 1.91 (1.19, 3.09) 0.008 
Chlorpyrifos 253 62 (0.2) 71 (0.18) 1.17 (0.79, 1.73) 0.44 
Ethion 268 46 (0.15) 20 (0.05) 2.94 (1.66, 5.21) 0.0002 
Merphos 293 51 (0.17) 28 (0.07) 2.51 (1.52, 4.17) 0.0003 
Azinphos-Methyl 314 69 (0.23) 69 (0.17) 1.34 (0.91, 1.97) 0.14 

Phosmet 335 70 (0.23) 71 (0.18) 1.29 (0.88, 1.90) 0.19 

Malathion 367 90 (0.29) 63 (0.16) 1.99 (1.36, 2.90) 0.0004 
Oxydemeton-
Methyl 382 71 (0.23) 40 (0.1) 2.58 (1.67, 3.99) <.0001 

Methyl Parathion 394 25 (0.08) 19 (0.05) 1.43 (0.74, 2.77) 0.28 
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Naled 418 81 (0.26) 57 (0.14) 2.08 (1.41, 3.08) 0.0002 
Parathion 459 102 (0.33) 83 (0.21) 1.82 (1.28, 2.59) 0.0009 
Phorate 478 58 (0.19) 43 (0.11) 1.82 (1.16, 2.84) 0.009 
Phosalone 479 25 (0.08) 11 (0.03) 3.15 (1.51, 6.58) 0.002 
Mevinphos 480 56 (0.18) 37 (0.09) 2.11 (1.34, 3.34) 0.001 
Phosphamidon 482 11 (0.04) 5 (0.01) 3.16 (1.05, 9.44) 0.04 
Sulfotep 558 5 (0.02) 9 (0.02) 0.87 (0.29, 2.64) 0.8 
Demeton 566 32 (0.10) 22 (0.06) 1.90 (1.06, 3.40) 0.03 
Teppd 577 3 (0.01) 1 (0.003) --   
Ethephon 1626 64 (0.21) 52 (0.13) 1.64 (1.08, 2.50) 0.02 
Leptophos 1676 9 (0.03) 7 (0.02) 1.95 (0.71, 5.36) 0.19 
Acephate 1685 88 (0.29) 51 (0.13) 2.57 (1.72, 3.82) <.0001 
Methidathion 1689 76 (0.25) 64 (0.16) 1.65 (1.12, 2.42) 0.01 
Methamidophos 1697 36 (0.12) 28 (0.07) 1.59 (0.93, 2.73) 0.09 
Dialifor 1799 20 (0.07) 7 (0.02) 3.63 (1.48, 8.94) 0.005 
Fenamiphos 1857 21 (0.07) 15 (0.04) 1.65 (0.81, 3.34) 0.17 
Profenofos 2042 35 (0.11) 19 (0.05) 2.37 (1.30, 4.31) 0.005 
aAdjusted for age (continuous), sex, ever-smoked, European ancestry indicator, education, 
and PON1 status (O’Leary et al. 2005) . 
bParticipants with an average frequency of household OP use per year during ages 16-<10 
years prior to index age that was at or above the median average use in exposed controls 
were assigned to the "Frequent Use" category. Those in the "Occasional Use" category had 
an average frequency of use per year during ages 16-<10 years prior to index age that was 
below the median for any household pesticide (excluded subjects who did not frequently use 
OPs but frequently used other pesticides, 82 cases and 81 controls). 52 controls missing 
household pesticide use information. 
cAmbient pesticide exposure, counting total number of OPs exposed to (above the median 
level seen in exposed controls) at both occupation and residence, from 1974 (year of CA-
PUR implementation) to 10 years before diagnosis or interview. Cut point based on top 
quartile in exposed controls. No cases (n=306) or controls (n=397) missing ambient pesticide 
exposure information. 
dNo OR calculated due to small numbers 
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Supplemental Material, Table 2-S2.  Interaction and joint effect estimates between NOS1 rs2682826 and household 
pesticide exposure in association with PD.  
  Homozygous Wild Type (CC) Variant Carrier (CT+TT) 

Pesticide Exposure Cases 
 n (%) 

Controls 
n (%) 

Adj ORa   
(95% CI) 

p 
value 

Cases 
 n (%) 

Controls 
n (%) 

Adj ORa   
(95% CI) 

p 
value 

Any Household Pesticide Useb               
Occasional Use 81 (0.54) 109 (0.59) 1.00   70 (0.45) 104 (0.60) 0.88 (0.57-1.36) 0.56 
Frequent Use 68 (0.46) 76 (0.41) 1.32 (0.83-2.11) 0.24 87 (0.55) 69 (0.40) 1.80 (0.15-2.84) 0.01 
p value for interaction             0.18 
Household non-OP Pesticide Usec               
Occasional Use 81 (0.69) 109 (0.75) 1.00   70 (0.60) 104 (0.69) 0.87 (0.56-1.35) 0.53 
Frequent Use (non-OPs) 36 (0.31) 37 (0.25) 1.33 (0.75-2.36) 0.33 46 (0.40) 47 (0.31) 1.38 (0.82, 2.32) 0.23 
p value for interaction       0.66 
aAdjusted for age (continuous), sex, ever-smoked, minority status, and PON1 status (O’Leary et al. 2005) . 
bParticipants with an average frequency of household OP use per year during ages 16-<10 years prior to index age that was at or 
above the median average use in exposed controls were assigned to the "Frequent Use" category. Those in the "Occasional Use" 
category had an average frequency of use per year during ages 16-<10 years prior to index age that was below the median for any 
household pesticide (excluded subjects who did not frequently use OPs but frequently used other pesticides). 
c"Frequent Use (non-OPs)" and "Occasional Use" same as described above except those in the "Frequent Use (non-OPs)" had an 
average frequency use per year to any non-OP pesticides at or above the median in exposed controls (e.g excluding frequent users 
of OPs).                                                                       
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Supplemental Material, Table 2-S3. Effect estimates of NOS1 genetic risk score (per allele) and OP 
exposure in association with PD. 

  Adj ORa  
(95% CL) 

p 
value 

Adj ORa  
(95% CL) 

p 
value 

p for 
interaction 

5 SNP NOS1 Genetic Risk Score (GRS) 
Ambient OP Exposure None/Low High   
GRS (per 1 variant  allele)b 1.04 (0.97, 1.12) 0.26 1.90 (1.04, 3.43) 0.03 0.01 
Household OP Use Occasional Use Frequent Use   
GRS (per 1 variant  allele)b 1.00 (0.91, 1.10) 0.98 1.45 (0.80, 2.63) 0.22 0.07 

3 SNP NOS1 Genetic Risk Score (GRS) 
Ambient OP Exposure None/Low High   
GRS (per 1 variant  allele)b 1.06 (0.95, 1.18) 0.33 2.20 (1.27, 3.80) 0.42 0.01 
Household OP Use Occasional Use Frequent Use   
GRS (per 1 variant  allele)b 1.00 (0.87, 1.16) 0.95 1.63 (0.93, 2.87) 0.09 0.09 
aAdjusted for age (continuous), sex, ever-smoked, European ancestry, education, and PON1 status (O'Leary, 
2005).   
bRange for 5 SNP GRS 0-10 variant alleles, for 3 SNP GRS 0-6 variant alleles; treated as linear variables 
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1-A NOS1 rs2682826 and household OP use 

1-B NOS1 rs2682826 and ambient OP exposure  

Supplemental Material, Figure 2-S1. Interaction between NOS1 rs2682826 and 
(A) household OP use (excluding frequent users of non-OP pesticides) and (B) 
ambient OP exposure.  The figure displays the adjusted odds ratio (OR) and 95% 
confidence intervals for the joint and main effect estimates of OPs and 
rs2682826. P-value for interaction between (A) household OP use and rs2682826, 
0.04.and (B) and ambient OP exposure and rs2682826, 0.15.  Adjusted for age, 
sex, smoking status, European ancestry, education and PON1 metabolizing status. 
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3. Organophosphate pesticide exposure and PON1 L55M in Parkinson’s disease 

progression 

3.1 Introduction 

Parkinson’s disease (PD), a progressive neurodegenerative disorder with selective 

degeneration of dopaminergic neurons and related motor symptoms, has many important non-

motor features that contribute to its phenotype and functional decline, most prominently 

cognitive impairment and neuropsychiatric symptoms (Post et al. 2007).  Dementia in PD 

patients is estimated to be as much as 2-6-fold more common than in unaffected individuals; up 

to 75% of PD patients who live more than 10 years after diagnosis are expected to develop 

dementia, while depression affects up to half of all PD patients (Aarsland and Kurz 2010).  Over 

the course of disease, the severity and/or frequency of motor and non-motor symptoms increase 

and health related quality of life becomes a major concern for patients and caregivers (Santos-

García and de la Fuente-Fernández 2013). Yet, very little is known about factors contributing to 

the course and progression of these disease features. 

Pesticide exposures have consistently been associated with the development of PD 

(Freire and Koifman 2012), but to date no epidemiologic studies have investigated the influence 

of pesticides on PD symptom progression. Pesticide exposures can induce oxidative stress and 

mitochondrial dysfunction and impair the ubiquitin-proteasome system, mechanisms that have 

been related to neuronal cell death in PD (Rhodes et al. 2013; Terry 2012).  For these same 

reasons, it is possible that these exposures may also contribute to faster symptom progression.  

Organophosphate (OP) insecticides are among the most commonly used pesticides agriculturally.  

The National Health and Nutrition Examination Survey (NHANES), 1999-2000, found that more 
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than 50% of participants in this national population sample had measurable levels of OP 

pesticide metabolites in their urine (NHANES 2011).  OPs have long been investigated in 

relation to PD susceptibility both due to neurotoxic action and their ability to induce oxidative 

stress among other mechanisms (Bagchi et al. 1995; Lukaszewicz-Hussain 2010; Terry 2012).    

Additionally, OPs have been associated with other PD related non-motor symptoms.  In 

general populations, OP pesticides have been reported as contributing to cognitive impairment, 

inducing deficits in signal detection, information processing, attention, and memory among 

others, and been linked to depression and suicide (Jaga and Dharmani 2007; London et al. 2005; 

Terry 2012; Zaganas et al. 2013).  Animal studies have provided some support for these 

observations, finding that chronic, low level OP exposure (1) is associated with sensorimotor 

gating, spatial learning, recognition memory, cognitive flexibility and sustained attention (Terry 

2012), and (2) influences serotonin levels, possibly explaining how OP exposures may influence 

mood (London et al. 2005).  

Many OP pesticides are activated to a toxic analog (oxon) by cytochrome P450 (Costa et 

al. 2003), and the oxon is subsequently detoxified by the paraoxonase activity of the PON1 

hydrolyzing enzyme (Costa, Lucio G., Furlong 2007).  Activity of PON1 is influenced by 

common single nucleotide polymorphisms (SNPs) in the PON1 gene, including PON1 L55M 

(rs854560). PON1 L55M has been shown to directly influence PON1 levels and activity (Brophy 

et al. 2001; Garin et al. 1997; Mackness et al. 1993).  We have previously reported that this 

variant modifies PD risk related to OP exposures (Lee et al. 2013), and there is evidence for a 

role of PON1 in Alzheimer’s and vascular dementia, potentially through its anti-atherosclerotic 

function (Wehr et al. 2009; Zhub et al. 2015).   PON1 also is an arylesterase, responsible for 

metabolism of aromatic esters (Cervellati et al. 2014). Both paraoxonase and arylesterase 
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activities of the protein are responsible for the anti-inflammatory and antioxidant activities of 

high density lipoprotein (HDL) and PON1 has been shown to prevent LDL oxidation in-vitro 

(Cervellati et al. 2014).   

Here, we will investigate whether ambient agricultural OP exposure assessed with a 

geographic information system (GIS) that employed pesticide use reports and land use 

information, and PON1 L55M genetic variation act together to influence the rate of motor, 

cognitive, and mood symptom progression in PD. We will rely on a prospectively followed 

population-based cohort of Parkinson’s patients from three highly agricultural Central California 

counties, followed on average for more than seven years into their disease course. 

3.2 Methods 

All procedures described were approved by the University of California at Los Angeles (UCLA) 

Human Subjects Committee and informed consent was obtained from all participants. 

Study Population 

This longitudinal cohort includes 246 PD patients recruited as part of the Parkinson’s 

Environment and Gene (PEG) population-based case-control study in Central California.  More 

detail on recruitment methods (Costello et al. 2009; Gatto et al. 2010) and case definition criteria 

(Kang et al. 2005) for the case-control study and the longitudinal cohort (Ritz et al. 2012) have 

been published previously.  Briefly, 373 incident, idiopathic PD patients, diagnosed within 3 

years of recruitment, compose the base population for this longitudinal cohort.  All patients were 

seen by movement disorder specialists (JB, YB) at least once at baseline, many on multiple 

occasions, and confirmed as having probable idiopathic PD based on published criteria (Hughes 

et al. 1992).  At the first follow-up after baseline, 108 patients (29%) were lost to follow-up (64 
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were deceased, 6 too ill, 17 withdrew, and 21 could not be re-contacted).  We successfully re-

examined 265 (71%) patients during follow-up, and 13 of these participants were re-classified as 

not having idiopathic PD upon examination.  Of the remaining 252 PD patients, 246 provided the 

data necessary for this investigation.  Of these patients, 65 (26%) participated in 2 exams (3.6 

years of mean follow-up, 5.9 years into disease), 174 (71%) in 3 exams (5.7 years of mean 

follow-up, 7.6 years into disease), and 7 (3%) participants in 4 exams (6.3 years of mean follow-

up, 8.0 years into disease). 

Assessment of PD Progression 

 Trained interviewers collected detailed information on demographic and risk factors and 

for each participant UCLA movement disorder specialists conducted physical examinations at 

baseline and during each follow-up to assess progression.  Specifically, motor symptoms were 

assessed with the Unified Parkinson’s Disease Rating Scale (UPDRS) part III, which assesses 

speech, facial expression, tremor, rigidity, hand, arm, and leg movements, posture, gait, postural 

stability, and bradykinesia.  If possible, patients were examined off PD medications (82% of the 

baseline exams and 80% of follow-up exams).  For patients who we could only examine on 

medication, we estimated an off-score by adding the difference of the whole study population’s 

mean off- and mean on- scores at the time of exam to the patient’s on-score (Ritz et al. 2012).  

Cognitive function was assessed at each exam with the Mini-Mental State Exam (MMSE), a 

widely used 30-point instrument that tests for orientation, attention, memory, language, and 

visual-spatial skills.  For 3 patients at baseline and 6 during the first follow-up exam, we had to 

substitute the in-person MMSE with a 26-point telephone version of the MMSE and applied 

validated weights to make these scores comparable as recommended (Newkirk et al. 2004).  

Finally, we used the Short Form Geriatric Depression Scale (GDS) to measure depression 
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symptoms with 15 questions it has been widely used and validated in older populations (Burke et 

al. 2015).   We previously validated the GDS in our PD population, finding high sensitivity and 

positive predictive value compared with the Structured Clinical Interview for DSM Disorders 

(SCID) and Patient Health Questionnaire (PHQ-9) instruments (Thompson et al. 2011).   

Organophosphate Exposure Assessment 

 We estimated ambient exposure to OP pesticides, primarily from commercial agricultural 

application, using a geographic information system (GIS) based computer model which links 

California state mandated pesticide use reports (CA-PUR) for all commercial pesticide 

application since 1974 that contain information on date, location, type and amount of pesticide 

applied (CDPR 2013), with land use surveys providing the location of specific crops (CDWR 

2013), and with geocoded lifetime address histories for each of our participants (both residential 

and occupational addresses).  A total of 36 pesticides considered OPs in the pesticide action 

network (PAN) pesticide database (Kegley et al. 2014) contributed to our OP exposure measure; 

for a more detailed description see (Paul et al. 2015).  Briefly, for each pesticide, we summed the 

pounds of pesticide applied per year and per acre within a 500-m buffer of each address to create 

a study-period (1974-baseline interview) specific exposure summing pounds applied each year 

and dividing by the number of years in the time period.  Both residential and occupational 

addresses were included, and participants could have been exposed at both locations, one, or 

neither.  We dichotomized exposure to each chemical according to the chemical-specific median 

pounds per acre in the exposed and counted the number of OP chemicals each participant was 

exposed to; we used this count to characterize participants as highly exposed (top quartile of 

count) or low/moderately exposed. 
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PON1 L55M Genotyping 

 Participants provided blood or saliva samples for genetic analyses, which were stored and 

processed at the UCLA Biologic Specimen Core Facility. PON1 L55M (rs854560) genotyping 

was conducted at the UCLA Genotyping and Sequencing Core Facility using pyrosequencing, 

which achieved a 100% call rate.  The 55MM genotype (TT, homozygous variant) was used to 

designate “slower” PON1 metabolizing as observed in human serum analyses of PON1 that 

showed that metabolizing activity is slowest in homozygous variants (O’Leary et al. 2005); also, 

we previously reported a positive interaction between the SNP and OP exposures for PD in our 

study (Lee et al. 2013; Manthripragada et al. 2010). 

Statistical Methods 

 To evaluate differences in baseline demographics and symptom characteristics between OP 

exposure groups and PON1 metabolizing status we used either chi-square or student’s two-tailed 

t-tests.  We used repeated-measures regression analyses (Proc MIXED; SAS 9.4, SAS Institute, 

Cary, NC) to investigate between-subject and within-subject (time-dependent/progression) 

associations between OP exposure and PON1 and progression scores (MMSE, UPDRS, GDS) 

over follow-up.  We selected a variance components correlation structure for within-subject 

associations.  Including interaction terms between exposures and age (in lieu of follow-up time 

due to collinearity) allows us to estimate the difference in annual change in score for the three 

different outcome measures according to exposure; age refers to the age at each exam, centered 

at the mean age at time of baseline exam (68.9 years).   In order to explore the influence of OP 

exposure and PON1 L55M genotypes, we relied on longitudinal models containing OP exposure 

alone, L55M alone, OP exposure with the OP*PON1 interaction, and finally a model with OP 
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and PON1 and the OP*PON1 interaction.  The regression coefficient (β) for the interaction terms 

with age represents the difference in annual change in outcome score (UPDRS, MMSE, or 

GDS), for example the yearly difference in score between OP exposed and unexposed subjects. 

In each model we also adjusted for sex, European ancestry (yes/no), years of education, smoking 

status (ever/never), and PD duration prior to baseline interview (0-3 years).  We used SAS 9.4 

(SAS Institute Inc., Cary, NC) for all analysis. 

3.3 Results 

 Both demographic characteristics and baseline health indicators were similar by OP 

exposure and PON1 metabolizing status, although those most highly OP exposed were more 

likely to be male and have lower baseline MMSE scores (Table 3-1).  Patients enrolled at 

baseline who were too ill or died before a second exam was conducted were significantly older, 

had less years of education, worse baseline exam scores (MMSE, UPDRS, GDS), and a lower 

proportion of PON1 slower metabolizers than patients we re-enrolled for at least one follow-up 

exam; however, they were similar in terms of PD duration, sex, smoking status, European 

ancestry, and OP exposure status.  Participants not ill or deceased but lost to follow-up for other 

reasons were not statistically different from enrolled patients in terms of demographic factors, 

baseline exam scores, OP exposure, or PON1 status. 

 Using repeated measures linear regression models and controlling for age, sex, smoking, 

European ancestry, and education, we found that the highly OP exposed group of patients 

exhibited a significantly faster annual decline in MMSE, this was true across all models (OP*age 

β=-0.08 to -0.07, p=0.007 to 0.01).  This estimated effect size for OP exposure across time was 

greater than that associated with aging alone (age β=-0.06 to -0.07).  Slower PON1 metabolizer 
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status was associated with a lower MMSE score in model 2, containing only PON1 associations 

(PON1 β=-0.80, p=0.0003) and model 3, including OP exposure over time (PON1 β=-0.53, 

p=0.06), the interaction term with OP exposure in this model also indicates that slower 

metabolism and OP exposure together contributed to lower MMSE scores (PON1*OP β=-1.42, 

p=0.02), this interaction remained significant in model 4, in which we included the PON1*age 

term (PON1*OP β=-1.45, p=0.02); see table 3-2.  The predicted decline in MMSE score across 

age by high OP exposure and PON1 status is visualized in figure 3-1a. 

 For the UPDRS-III, higher scores represent worse motor symptoms; again, across all 

models, high OP exposure was associated with significantly faster motor decline, (OP*age 

β=0.41 to 0.42, p=0.004 to 0.003), three times the effect size of the aging term (age β=0.09 to 

0.15, p=0.09 to 0.003).  Additionally, across all models, slower PON1 metabolizing status was 

associated with a higher UPDRS score, with faster progression for models allowing for variation 

over time (PON1*age β=0.29, p=0.01, models 2 and 4), and a lower between subject UPDRS 

score in model 3 that did not allow the score to vary over time by PON1 status (β=2.46, p=0.08); 

we did not see evidence for an interaction between PON1 metabolizing status and OP exposure 

and UPDRS; see table 3-2 and figure 3-1b.  OP exposure was not associated with changes in 

GDS measured depressive symptom scores in our population (table 3-2 and figure 3-1c); 

however, in both models allowing for variation in score over time by PON1, slower PON1 

metabolizers experienced a faster increase in GDS score (PON1*age β=0.09, p=0.008, models 2 

and 4).  When treating age as a random effect, to account for the differences in follow-up time 

between exams and age at time of exams, and the intercept in each model as a random effect, to 

account for differences in baseline exam scores, effect estimates were similar (for example, 

Model 3 and MMSE: age*OP β=-0.08, p=0.03, age β=-0.06, p=<.0001, OP β=0.08, p=0.80, 
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PON1 β=-0.36, p=0.33, PON1*OP β=-1.72, p=0.02). 

3.4 Discussion 

 The rate and patterns of PD symptoms during disease progression are highly variable.  

Considerable motor and non-motor symptoms may accumulate over time and contribute strongly 

to disability and diminished quality of life (Global Parkinson’s Disease Survey Steering 

Committee 2002; Poewe and Mahlknecht 2009); within a few years of diagnosis, some patients 

become wheelchair bound, cognitively impaired, severely depressed, and/or experience many 

other non-motor symptoms. In contrast other patients are spared major disabilities until later in 

disease progression.  Although there is a notable knowledge gap regarding factors that contribute 

to or modify this heterogeneity of phenotype and severity, there are few longitudinal population-

based PD cohorts, and investigators are just beginning to examine what may have an influence.  

Here, for the first time, we present evidence that long-term organophosphate pesticide exposure 

and/or PON1 L55M slow metabolizer status are associated with PD symptom progression in 

three major domains – motor, cognitive, and mood-related symptom decline.  

We found that high cumulative OP exposure, PON1 slower metabolizer status (55MM), 

and the interactions between these two factors were associated with faster decline or lower 

MMSE scores (PON1) over follow-up.  Further, the estimated effect size for OP exposure across 

time was greater than the one associated with aging alone, meaning that those highly exposed to 

OP pesticides are expected to experience a decline in MMSE score more than twice as fast as in 

the comparison group (visualized in figure 3-1a).  For PON1 metabolizer status, slower 

metabolism alone also predicted lower MMSE scores, and, moreover, appeared to interact with 

OP exposure (p=0.02), such that slow PON1 metabolizer patients with higher OP exposures had 
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lower MMSE scores.  We did not associate PON1 with faster cognitive decline during follow-up, 

possibly indicating that any PON1 effect on cognition had already occurred by the time of our 

baseline exam.  We saw similar results for the UPDRS-III, where the highly OP exposed patients 

showed a faster increase in UPDRS over time, nearly three times or more that of aging.  Further, 

slower PON1 metabolizing status alone predicted higher UPDRS scores, with faster motor 

function decline during follow-up (models allowing the PON1 effect to vary with time). We did 

not find PON1 to modify the effect of OP exposure on motor score (p=0.72), which might 

suggest that OP exposure and PON1 influence motor progression independently or that we did 

not have enough sample size to estimate such an interaction.  In our population, aging was 

associated with a decline in depressive symptoms as measured by the GDS, a trajectory 

consistent with prior PD research showing that younger patients experience more depression, 

likely resulting from a greater perceived negative quality of life (Cummings 1992; Giladi et al. 

2000).  Although OP exposure does not appear to play a role in the depressive symptoms score in 

our PD population, again, slow PON1 metabolizer status was associated with a faster rate of 

developing depressive symptoms, suggesting PON1 influences depression independent of OP 

metabolism. 

Organophosphate pesticides are designed to inhibit acetylcholinesterase enzyme activity, 

resulting in an excess of cholinergic stimulation acutely affecting the motor and central nervous 

system of targeted insects (Terry 2012). Additionally, cell toxicity may also result from the 

induction of mitochondrial dysfunction and oxidative stress, with some evidence that low-level 

chronic exposures may have lasting toxic effects (Terry 2012; Zaganas et al. 2013).  That PD 

patients chronically exposed to OP pesticides at low ambient levels experience faster cognitive 

decline is supported by a growing body of evidence that links long-term pesticide exposure to 
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memory, learning, and attention deficits, as well as dementia and Alzheimer’s disease (AD) 

among others (Hayden et al. 2010; Terry 2012; Zaganas et al. 2013).  A few reports associated 

pesticide exposure with AD. Including a large cohort investigation (n=3,084, with 500 dementia 

cases and 344 AD cases) in Cache County, UT, which found occupational pesticide exposure to 

be associated with an increased risk of dementia (hazard ratio (HR) =1.38, 95% CI=1.09, 1.76) 

and AD (HR=1.53, 95% CI=1.05, 2.23)(Hayden et al. 2010). This study replicated a French 

study of 1,507 elderly whose cognitive performance was worse among those occupationally 

exposed to pesticides (insecticides, herbicides, or fungicides); analysis in men showed a 

significant association between AD and occupational exposure (relative risk (RR) =2.39, 95% 

CI=1.02, 5.63)(Baldi et al. 2003).  Although OP exposure has not been investigated relative to 

motor symptom decline, OP exposure has widely been associated with PD susceptibility 

(Alavanja et al. 2004; Wirdefeldt et al. 2011).  It is possible that the same biologic pathways play 

a role for PD progression and susceptibility, namely oxidative stress and mitochondrial 

dysfunction (Bagchi et al. 1995; Terry 2012). 

PON1 is important for OP metabolism and specifically detoxification.  The L55M SNP 

modified the risk of developing PD after OP exposure in our study (Lee et al. 2013; 

Manthripragada et al. 2010).  Here, we newly followed these PD patients from baseline (early 

after their diagnosis) to document decline over the course of disease. We found that this same 

variant seems to modify OP exposure associations related to cognitive decline.  Furthermore, the 

55MM genotype, which results in lower PON1 activity, alone also predicts lower MMSE, higher 

UPDRS, and higher GDS scores.  Beyond its function for OP metabolism, PON1, as a 

component of high density lipoproteins (HDL), acts in an anti-oxidant and anti-atherosclerotic 

fashion preventing low density lipoproteins (LDL) from being oxidized (Zhao et al. 2012). 
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Which of these functions contribute to cognitive decline in PD or both remains unclear; though 

multiple independent investigations associate PON1 with AD and vascular dementia, both by 

examining genomic variation and with enzyme activity (Alam et al. 2014).  This suggests that 

PON1 influences cognitive outcomes not solely via its OP metabolism function.  A recent meta-

analysis of 69 studies associated L55M, as one of four polymorphisms apart from APOE, with 

vascular dementia (Zhub et al. 2015), numerous studies found serum PON1 activity decreased in 

dementia or AD patients, and one reported that MMSE scores were dependent on PON1 activity 

(Bednarska-Makaruk et al. 2013; Dantoine et al. 2002; Erlich et al. 2006; Helbecque et al. 2004; 

Sato and Morishita 2015; Wehr et al. 2009).  Although this provides biological plausibility for 

PON1’s contributions to cognitive decline in PD aside from OP metabolism, based on current 

epidemiologic research, PON1 alone may not be related to PD development in the absence of OP 

exposure (Liu et al. 2012). 

Mechanisms for motor symptom decline in PD are not well understood, and further 

research is needed to establish any role for PON1.  Yet, several findings suggest a role of lipid 

and cholesterol metabolism in not only vascular dementia and AD - as discussed - but also PD 

pathogenesis (De Lau et al. 2006; Reiss et al. 2004). Multiple case-control and cohort studies 

have implicated lower levels of cholesterol with increased PD risk (De Lau et al. 2006; Huang et 

al. 2007; Simon et al. 2007), yet again by what mechanism is unknown.  Interestingly, in vitro 

studies show alpha-synuclein, a primary component of the aberrant protein aggregations in Lewy 

bodies of PD patients, is closely associated with cholesterol-enriched lipid rafts in the cell 

membranes, and alpha-synuclein oligomerization may be regulated by fatty acids (Welch and 

Yuan 2003).  Further, the concentration of coenzyme Q10, an electron acceptor in the 

mitochondrial respiratory chain and a powerful antioxidant, is highly dependent on cholesterol 
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(Johansen et al. 1991; Kaikkonen et al. 1999).  Given the importance of oxidative stress and 

mitochondrial dysfunction in PD pathogenesis, it is possible that cholesterol, and in turn PON1, 

is influencing motor symptom progression through coenzyme Q10 or alpha-synuclein oligomers.  

Finally, multiple studies associated lower PON1 activity with an increased risk of depression 

(Barim et al. 2009; Bortolasci et al. 2014; Rice et al. 2009), including a large cohort of British 

women in which slower PON1 metabolism as measured by the Q192R SNP was associated with 

increased depression risk (OR=1.22, 95% CI=1.05, 1.41) (Lawlor et al. 2007). This has also been 

attributed to the antioxidant and anti-inflammatory mechanisms of PON1.  

 As expected in a cohort of very elderly subjects, we were unable to follow all PD patients 

enrolled at baseline.  There was loss to follow-up due to death and illness, these patients at 

baseline were older and had worse MMSE, UPDRS, and GDS exam scores, consequently 

selection bias is possible.  Additionally, with our ambient pesticide exposure assessment, we did 

not account for meteorological factors that may influence pesticide drift and we had to assume 

that study participants were at their residential or occupational location during relevant periods; 

thus, exposure misclassification cannot be excluded.  Lastly, although we do not have follow-up 

data for a non-PD population, and thus we cannot tell whether the longitudinal findings are 

specific to PD or whether the same type of symptom progression would be observed in a non PD 

affected population with similar risk factors to ours, this investigation still provides important 

potential insights into PD symptom and cognitive decline.   

Our study is one of less than a handful of population-based prospective PD patient 

cohorts worldwide and the only one to date to collect environmental and occupational exposure 

data.  All of our patients were seen in person and examined by UCLA movement disorder 

specialists (mainly JB, YB) to confirm diagnosis and assess progression; follow-up began early 
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in disease course (within 3 years of diagnosis); and due to our population-based design, our 

results are more generalizable to PD populations than patient cohorts assembled at tertiary care 

centers.  In terms of exposure assessment, the majority of epidemiologic studies to date rely on 

self-reported pesticide exposure, a method prone to recall error, as participants may forget or be 

unaware of pesticide use.  Our pesticide exposure assessment relied on a GIS tool and pesticide 

use and land use records that do not rely on participant recall, and also allow us to investigate 

specific pesticides or chemical classes of interest, like OPs, providing a good population and 

opportunity to investigate environmental exposures.      

 Although our findings need to be re-examined and replicated in future studies, this study 

provides support for the involvement of both OP pesticides and PON1 in PD motor and non-

motor progression.  Given the importance of symptom progression for patients’ health related 

quality of life and for predicting mortality (Forsaa et al. 2010), addressing this knowledge gap 

and identifying modifiable predictors for rate or severity of symptoms during disease course is 

important for both patients and for developing preventive measures.  
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3.5 Tables 

Table 3-1. Baseline demographic characteristics and follow-up information by ambient OP exposure, PON1 metabolizing 
status, and enrollment status. 

Characteristic 
Mean ± SD 

or n (%) 

Cohort 
(N=246) 

  OP Exposurea   PON1 Metabolizing 
Statusb 

  Lost to Follow-upc 

  None/ Low 
(N=197) 

High (N=49)   Fast/ Average 
(N=204) 

Slower 
(N=39) 

  Died/ Too Ill 
(n=70) 

Withdrew/ 
Unavailable 

(n=38) 

Demographics                     

Age at interview 68.9 ± 9.8   68.8 ± 10.1 69.1 ± 8.2   68.7 ± 9.5 69.5 ± 11.4   76.4 ± 6.0* 68.2 ± 13.4 

Age at Diagnosis  67.0 ±  9.9   67.0 ± 10.3 67.0 ± 8.1   66.8 ± 9.6 67.7 ± 11.5   74.3 ± 5.9* 66.0 ± 13.5 

PD Duration (y)                     

Prior to baseline 2.0 ± 1.5   2.0 ± 1.4 2.2 ± 2.0   2.1 ± 1.6 1.9 ± 1.4   2.3 ± 1.6 2.2 ± 1.4 

Last follow-up 7.5 ± 2.6   7.1 ± 2.7 7.1 ± 3.3   7.0 ± 2.7 7.5 ± 3.0   -- -- 

Follow-up (y) 5.2 ± 2.1   5.2 ± 2.1 5.2 ± 2.4   5.0 ± 2.1 5.8 ± 2.3   -- -- 

PD Family History 38 (0.15)   32 (0.16) 6 (0.12)   30 (0.15) 8 (0.21)   9 (0.13) 5 (0.13) 

European Ancestry 197 (0.81)   161 (0.82) 36 (0.73)   161 (0.79) 34 (0.87)   58 (0.83) 29 (0.76) 

Male 140 (0.57)   104 (0.53) 36 (0.73)*   116 (0.57) 22 (0.56)   40 (0.57) 23 (0.61) 

Ever Smoker 111 (0.45)   92 (0.47) 19 (0.39)   95 (0.47) 14 (0.36)   35 (0.50) 21 (0.55) 

Years of School 13.7 ± 4.4   13.9 ± 4.3 12.9 ± 4.8   13.8 ± 4.4 13.3 ± 3.6   12.4 ± 3.2* 13.6 ± 2.9 

Baseline Health Indicators                   

MMSE 28.1 ± 2.3   28.3 ± 2.1 27.5 ± 2.7*   28.2 ± 2.4 27.8 ± 1.8   26.4 ± 3.1* 27.8 ± 2.6 

GDS 3.2 ± 3.3   3.2 ± 3.3 3.2 ± 3.3   3.3 ± 3.4 2.6 ± 2.4   4.4 ± 3.0* 3.6 ± 2.8 
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UPDRS III, 19.6 ± 9.6   19.3 ± 9.2 21.0 ± 10.8   19.6 ± 9.3 19.0 ± 10.6   27.8 ± 14.0* 21.8 ± 10.7 

Levodopa Use 158 (0.68)   132 (0.71) 26 (0.58)   133 (0.69) 24 (0.63)   57 (0.84)* 23 (0.61) 

LD (mg/day) 283.4 ± 297.6   302.7 ± 289.3 221.7 ± 236.5   295.3 ± 288.0 240.1 ± 244.9   323.9 ± 211.4 250.7 ± 277.1 

LED (mg/day) 351.1 ± 264.8   372.8 ± 299.6 304.8 ± 234.4   363.7 ± 299.8 327.6 ± 221.6   370.4 ± 243.6 316.4 ± 297.8 

PD Subtype                     

Tremor 
Dominant 56 (0.23)  44 (0.22) 12 (0.24)  45 (0.22) 11 (0.28)  3 (0.04) 7 (0.18) 

PIGD Dominant 159 (0.65)   130 (0.66) 29 (0.59)   135 (0.66) 22 (0.56)   60 (0.86)* 27 (0.71) 

Intermediate 31 (0.13)   23 (0.12) 8 (0.16)   24 (0.12) 6 (0.15)   7 (0.10) 4 (0.11) 

Exposures of Interest                     

High OP Exposure 49 (0.20)  -- --  40 (0.20) 9 (0.23)  16 (0.23) 12 (0.32) 

Slower PON1 
Metabolizerb 39 (0.16)  30 (0.15) 9 (0.18)  -- --  3 (0.05)* 3 (0.08) 

 
*p-value<0.05 
aBased on PON1 rs854560 (Lee et al. 2013; O’Leary et al. 2005) 
bComparison group is the enrolled cohort (n=252)



	 	 48	

Abbreviations: MMSE = Mini-mental State Exam; UPDRS=Unified Parkinson's Disease Rating Scale; 
GDS= Geriatric Depression Scale 

Table 3-2. Repeated measures linear model results for three separate models, predicting 
change in 1) Mini-mental State Exam, 2) Unified Parkinson's Disease Rating Scale, and 
3) Geriatric Depression Scale. 

Characteristic 

Outcome 1:  
MMSE 

  Outcome 2:  
UPDRS 

  Outcome 3:  
GDS 

β 
Coefficient 

P 
value 

  β 
Coefficient 

P 
value 

  β 
Coefficient 

P 
value 

Model 1: OP Only                 

Age -0.06 <.0001   0.15 0.003   -0.04 0.009 

High OP Exposure -0.32 0.21   -0.77 0.54   0.11 0.74 

High OP Exposure*Age -0.07 0.0095   0.41 0.004   0.04 0.33 

Model 2: PON1 Only                 

Age -0.07 <.0001   0.14 0.006   -0.05 0.0007 

Slower PON1 Metabolizer -0.80 0.003   1.68 0.20   -0.28 0.45 

Slower PON1 
Metabolizer*Age 

-0.01 0.63   0.29 0.01   0.09 0.008 

Model 3: OP*age + PON1*OP                 

Age -0.06 <.0001   0.15 0.002   -0.04 0.009 

High OP Exposure -0.02 0.93   -1.00 0.47   0.17 0.65 

High OP Exposure*Age -0.08 0.007   0.42 0.003   0.04 0.33 

Slower PON1 Metabolizer -0.53 0.06   2.46 0.08   0.06 0.87 

High OP Exposure*Slower 
PON1 Metabolizer 

-1.42 0.02  0.59 0.85  -0.31 0.72 

Model 4: OP*age +PON1*age + PON1*OP               

Age -0.06 <.0001   0.09 0.09   -0.05 0.0004 

High OP Exposure -0.03 0.93   -0.96 0.49   0.18 0.63 

High OP Exposure*Age -0.08 0.007   0.42 0.003   0.04 0.32 

Slower PON1 Metabolizer -0.46 0.12   1.49 0.31   -0.25 0.54 

Slower PON1 
Metabolizer*Age 

-0.02 0.45   0.29 0.01   0.09 0.008 

High OP Exposure*Slower 
PON1 Metabolizer 

-1.45 0.02   1.10 0.72   -0.13 0.88 



	 	 49	

Models also controlled for PD duration prior to baseline, sex, European ancestry, years of schooling, and 
smoking status 

Results shown as regression coefficients (β); interaction term between OP exposure and age represents 
the difference in annual change in score between the high and low/no exposure groups for the three 
different exams, UPDRS, MMSE, and GDS. 
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 Model 1: OP*age Model 2: PON1*age Model 3: OP*age + 
OP*PON1 

Model 4: OP*age + 
PON1*age + OP*PON1 

A) 
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 Legend Models 1 and 2  Legend Models 3 and 4  

   Low OP Exposure    High OP 
Exposure 

  Low OP 
Exposure, Average PON1 
metabolizer 

   High OP 
Exposure, Average PON1 
metabolizer 
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Figure 3-1. Predicted progression of A) MMSE, B) UPDRS-III, and C) GDS scores in cohort by OP exposure and PON1 
metabolizing status by models. Given the mean years of schooling and PD duration prior to baseline, female, non-smoker, and European 
ancestry. 
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metabolizer 

   Slow PON1 
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4. NFE2L2, PPARGC1α, and Oxidative Stress in Parkinson’s disease susceptibility and 

progression 

4.1 Introduction 

 Parkinson’s disease (PD), the second most common neurodegenerative disease, is 

characterized by the progressive loss of dopaminergic neurons in substantia nigra region of the 

brain. Several major molecular pathways are implicated in cellular dysfunction and neuronal 

death in PD; many, including impaired ubiquitin-proteasome system (UPS), mitochondrial 

dysfunction, and neuroinflammation, involve oxidative stress as an underlying mechanism 

(Jenner 2003; Dauer and Przedborski 2003; Hwang et al 2013).  While it is not well understood 

whether and how oxidative stress contributes also to motor or non-motor symptom progression, a 

long history of post-mortem studies indicates increases in oxidative stress at the end stage of the 

illness when neuronal loss was marked, showing excess free radicals, increased iron levels, and 

decreased glutathione (GSH) among other markers (Jenner 2003). Furthermore, the influence 

that oxidative stress has may accelerate as cellular dysfunction (e.g. mitochondrial dysfunction, 

etc) accelerates and disease progresses. Similarly, a genetically determined inability to cope with 

oxidative stress may contribute and enhance the effects of exposure to toxicants that increase 

oxidative stress such as pesticides.   

  Cells have many antioxidant mechanisms to counteract reactive oxygen species 

(ROS)/oxidative stress, including a battery of endogenous antioxidant enzymes (Clark and 

Simon 2009).  Nuclear factor-erythroid 2 related factor 2 (Nrf2), encoded by the NFE2L2 gene, 

and peroxisome proliferator activator receptor γ coactivator 1α (PGC-1α), encoded by the 

PPARGC1α, are transcription factors involved in the regulation of many antioxidant enzymes in 
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response to oxidative stress and targets for neurodegenerative disease therapy (Clark and Simon 

2009).   

 Once activated by oxidative stress, Nrf2 binds to specific promoter regions of multiple 

cytoprotective genes to upregulate the transcription of antioxidant enzymes, including 

glutathione (GSH), one of the factors which may determine vulnerability of dopaminergic (DA) 

neurons to oxidative stress, and NAD(P)H quinone oxidoreductase-1 (NQO1), which exerts a 

protective effect against toxic DA metabolites implicated in PD pathogenesis (Hwang et al 

2013).  A functional NFE2L2 3-SNP promoter haplotype, associated with transcriptional activity, 

has been linked with both decreased risk of developing PD and older age of PD onset in a 

European case-control study (von Otter et al. 2010; von Otter et al. 2014).  Additionally, animal 

models provide support for NFE2L2 involvement in PD, Nrf2 deficient mice and neuronal 

cultures showed increased MPTP toxicity, the toxic metabolite known to acutely induce 

Parkinsonism in humans (Chen et al. 2009; Lee et al. 2003). On the other hand, over expression 

of Nrf2 protected against locomotor activity loss in Drosophila modeled Parkinsonism (Barone et 

al. 2011). 

 PGC-1α is believed to mediate the protective responses of many antioxidant enzymes 

located primarily in the mitochondria, of great interest for PD given that mitochondrial 

dysfunction has been strongly implicated in PD etiology (Clark and Simon 2009).  Further, PGC-

1α, a multifunctional protein, is also a critical regulator of metabolism, including the 

adipogenesis and gluconeogenesis pathways (Clark and Simon 2009); this again is compelling 

for PD as some research associated type 2-diabetes and glucose sensitivity with PD risk and 

symptom severity (Yang et al 2011).  In a population based genome-wide expression study, 

genes expressed in response to PGC-1α were less strongly expressed in PD patients (Zheng et al. 
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2010).  Moreover, a recent candidate gene study suggested the PPARGC1α SNPs rs6821591 and 

rs2970848 are associated with age at PD onset while rs8192678 and rs6821591 were linked to 

longevity (Clark et al. 2011).  Interestingly, PPARGC1α knockout mice experienced over 5 times 

the loss of DA neurons in response to MPTP exposure than wild-type mice (St-Pierre et al. 

2006). 

 Here we investigate the influence of variants in the NFE2L2 and PPARGC1α genes on PD 

onset and symptom progression, using haplotypes constructed from multiple SNPs, in our 

population-based study of PD patients and community controls. And further, we explore how 

genetic variants in these genes mediate the risk of PD associated with exposure to oxidative 

stress inducing pesticides, maneb and paraquat (MB/PQ), which have previously been linked to 

PD in our studies (Costello et al 2009). 

4.2 Methods 

Study Population 

 To investigate PD onset, we used 472 PD patients and 532 controls of European ancestry 

from the Parkinson’s Environment and Gene (PEG) population-based case-control study living 

in three agricultural Central California counties (Kern, Fresno, and Tulare) at time of enrollment 

between 2001-2015. Participants were considered eligible if they were 35 or older, had lived in 

California for at least 5 years, and were residing in one of the three counties at the time of 

enrollment. All patients were seen by study movement disorder specialists (JB, YB) at least once 

at baseline, many on multiple occasions, and confirmed as having probable idiopathic PD 

according to published criteria (Hughes et al, 1992).   

 Patients were recruited initially (from 2001-2007) through large medical groups, 
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neurologists, and public service announcements and from 2010-2015 through the state-mandated 

pilot California Parkinson’s Disease Registry (CAPDR), see figure 1.  During the first round 

(2001-2007) of patient recruitment, we identified 1,167 potential PD patients; 604 were not 

eligible (397 not diagnosed with PD within 3 years of recruitment, 134 did not live in the tri-

county study area, and 73 did not have PD). Of 563 potential cases, our movement disorder 

specialists were able to examine 473 patients, 94 did not meet criteria for idiopathic PD, 13 were 

reclassified as not having idiopathic PD during follow-up, and 6 subjects withdrew; 360 incident 

(diagnosed within 3 years) PD patients were enrolled.  For the second round of case recruitment 

(2010-2015), there were 4,672 registry recorded potential PD patients with an address in the tri-

county study area; we were able to contact and assess case reporting accuracy for 2,363.  Overall 

1,648 were found not to be eligible for our study (158 were diagnosed with PD more than 3 years 

before recruitment, 327 did not have PD, 935 were deceased, 156 were too ill, institutionalized, 

or unable to communicate/contact, and 92 lived outside the tri-county area), and 247 potential 

patients refused to participate.  Out of 581 potential cases, 472 were seen by our movement 

disorder specialists at the time of this analysis; 69 participants did not have idiopathic PD, and 

for 10 a PD diagnosis could not be established reliably, 13 were too ill, and 1 withdrew.  Thus 

during the second round, we enrolled 376 confirmed PD patients.  However, genotyping (2014) 

took place before the enrollment of 114 PD patients from this strategy, thus they are not included 

in analysis.  Additionally, to avoid issues of population stratification in genetic analyses, we 

excluded 150 patients of non-European ancestry, leaving 472 PD patients of European ancestry 

for analysis.  

 A total of 879 controls were enrolled from 2001-2011 in the same tri-county area and 

included in genotyping. Initially, we identified potential eligible controls through Medicare 
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enrollee lists (2001) but switched to publicly available residential tax-collector records after the 

Health Insurance Portability and Accountability Act (HIPPA) was implemented.  We employed 

two sampling strategies: 1) random selection of residential parcels and mail or phone enrollment 

and 2) clustered random selection of five households we visited in person (Wang et al, 2011). 

Using the first sampling strategy, we contacted 755 eligible control participants, 409 declined 

participation and 346 population controls were enrolled. Additionally, from an early mailing with 

an unknown number of eligible subjects who declined, we enrolled 62 controls.  We identified 

1,241 eligible population controls from the second sampling strategy, 634 declined participation 

and 607 individuals were enrolled, though 183 only completed an abbreviated interview and 77 

participants were not genotyped.  Of the 755 controls with the necessary data, we excluded 221 

participants of non-European ancestry, leaving 534 controls for analysis. 

 For our PD progression analyses, we relied on a prospective patient only cohort, which 

attempted to follow patients from the first round of recruitment (n=360) (for more detail see Ritz 

et al 2012).  Briefly, at first attempted re-contact, 108 patients (29%) could not be re-examined 

(64 were deceased, 6 too ill, 17 withdrew, and 21 could not be contacted).  Of the remaining 252 

patients, 11 did not provide the data necessary for the progression analyses, and we excluded 49 

participants of non-European ancestry.  Of the 192 patients included in the longitudinal analyses, 

37 participated in only two exams and 155 in three, for a mean follow-up of 5.3 years (SD=2.1) 

and an average of 7.3 years of PD duration (SD=2.8).  Figure 4-1 details the flow of recruitment 

for both the case-control and cohort studies.   

Data Collection 

 Trained interviewers recorded information on demographic and risk factors for all patients 
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and controls; physical exams for patients were performed by movement disorder specialists (JB, 

YB) at baseline and at each follow-up, confirming PD diagnosis and assessing disease 

progression.  Motor symptoms were assessed by the physicians with the Unified Parkinson’s 

Disease Rating Scale (UPDRS) part III.  A higher score indicates worse motor symptoms.  If 

possible, patients were examined off PD medications (82% of the baseline exams and 80% of 

follow-up exams).  For patients we could only examine on medication, we estimated an off-score 

by adding the difference of the whole study population’s mean off- and mean on- scores at the 

time of exam to the patient’s on-score (Ritz et al. 2012).  Cognitive function was assessed at each 

exam with the Mini-Mental State Exam (MMSE), a common 30-point test, including tests of 

orientation, attention, memory, language, and visual-spatial skills.  A lower score indicates worse 

cognitive performance.  A 26-point telephone version of the MMSE exam, validated to estimate 

the in-person MMSE, was administered in lieu of an in-person exam for 3 patients at baseline 

exams and 6 at the first follow-up; for these participants, validated weights were applied create 

scores comparable with the 30-point in-person interview (Newkirk et al, 2004). 

Maneb/Paraquat Pesticide Exposure 

  We estimated ambient exposure to pesticides, primarily from commercial agricultural 

application, using a geographic information system (GIS) based computer model.  More 

information on this method has been published (Cockburn et al. 2011). The model links 

California pesticide use reports (CA-PUR), which are state mandated for all commercial 

pesticide application since 1974 and contain information on date, location, type and amount of 

pesticide applied (CDPR 2013), with land use surveys providing the location of specific crops 

(CDWR 2013), and with geocoded lifetime address histories for each of our participants (both 

residential and occupational addresses).  For both maneb and paraquat, we summed the pounds 



	 	 58	

of each pesticide applied per year and per acre within a 500-m buffer of each address to create a 

study-period (1974- diagnosis or baseline interview (controls)) average exposure by summing 

the pounds applied each year and dividing by the number of years in the time period.  We 

dichotomized exposure to both maneb and paraquat according to the pesticide-specific median 

average exposure in the exposed control population.  We considered participants highly exposed 

to MB/PQ if they were exposed to the chemicals based on the dichotomized measure. 

SNP Selection and Genotyping 

 We selected three SNPs from the NFE2L2 gene, rs35652124, rs6706649, rs6721961 that 

make up a functional haplotype in the promoter region of the gene that has been associated with 

transcriptional activity (Marzec et al 2007; von Otter et al. 2010).  We inferred haplotype 

frequencies from the three SNPs (ordered rs35652124, rs6706649, rs6721961 based on genome 

location) using the PHASE haplotype software, which employs a Bayesian method, imputing a-

priori predictions about the patterns of haplotypes expected in natural populations (Stephens et 

al. 2001; Stephens and Donnelly 2003).  We further selected four PPARGC1α SNPs, three tag 

SNPs based on previous marginal genetic associations, rs6821591, rs2970848, and rs4235308, 

and one functional SNP, rs8192678 (Gly482Ser), where variants cause altered the protein 

sequence and structure for PGC-1α (Clark et al. 2011).  Again we used PHASE to impute 

PPARGC1α haplotypes for analysis (haplotype order rs6821591, rs8192678, rs2970848, 

rs4235308).  DNA was extracted from blood or saliva samples at the UCLA Biologic Specimen 

Core Facility.  Genotyping was done using the Fluidigm BioMark system (Fluidigm Corporation, 

South San Francisco, CA).  

Statistical Methods 
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 We examined Hardy-Weinberg equilibrium in control participants for all polymorphisms 

using a chi-square test.  To evaluate differences between cases and controls and those followed 

versus those lost to follow-up in the cohort we used either chi-square (categorical variables) or 

student’s two-tailed t-tests (continuous variables).  For haplotype genetic analyses related to PD 

onset and progression, we relied on an allelic genetic model to examine the influence of 

haplotypes, that is we compared each haplotype to a single reference haplotype, as each 

individual has two haplotypes, one on each paired chromosome, the sample size is 2n.  For the 

NFE2L2 haplotype we set the reference level to the “TCT” haplotype, in order to assess the 

influence of the “TCG” haplotype, the most frequent in our population, which was previously 

reported as being related to PD risk (Von Otter et al, 2010).  As there were no a-priori 

hypotheses for the PPARGC1α haplotype, we used the most frequent haplotype “TAAT” as the 

reference.  For single SNP associations, we relied on an additive genetic model, where each copy 

of the variant allele increases the risk by the same amount, except for NFE2L2 rs6721961, where 

only two patients and four controls were homozygous for the variant, and we relied on a 

dominant genetic model (any minor allele versus homozygous for the major allele). 

 For PD susceptibility analyses, we used unconditional logistic regression to calculate odds 

ratios (ORs) and 95% confidence intervals (CIs).  Statistical interactions were assessed by 

introducing a multiplicative interaction term (e.g. product term: haplotype x pesticide) into the 

logistic model.  For PD progression, we used repeated-measures regression analyses (Proc 

MIXED; SAS 9.4, SAS Institute, Cary, NC) to investigate within-subject (time-

dependent/progression) associations between haplotypes and progression scores (MMSE, 

UPDRS) over follow-up.  We report the interaction term between haplotypes and age (in lieu of 

follow-up time due to collinearity), which allows us to estimate the difference in annual change 
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in score for the outcome measures according to haplotype groups; age refers to the age at each 

exam, centered at the mean age at time of baseline exam (68.9 years). 

 In all models, we adjusted for age (at interview for controls and diagnosis for patients), sex, 

smoking status (ever/never), and education (<12 years, 12 years, >12 years).  All analysis was 

performed with SAS 9.4 (SAS Institute Inc., Cary, NC). 

4.3 Results 

 Demographic characteristics of the case/control and patient cohort population can be found 

in table 4-1.  The PD patients were older, had less years of education, a lower proportion of 

smokers, and a higher proportion of males and maneb/paraquat pesticide exposure relative to the 

control population.  In the longitudinally followed population, the patients we followed were 

younger, had more years of education, and scored better on baseline PD symptom scores 

(UPDRS and MMSE) than patients lost to follow-up. 

 All SNPs investigated were in HWE in the control population. The individual SNP 

genotype frequencies and PD associations can be found in supplemental table 4-1; NFE2L2 

rs6721961 was the only SNP marginally associated with PD in our population (OR=0.67, 95% 

CI=0.49, 0.91).  Haplotype frequencies and associations with PD are displayed in table 4-2.  The 

NFE2L2 “CCG” haplotype was associated with a significant increase in risk of developing PD 

(OR=1.39, 95% CI=1.01, 1.91), and the “TCG” haplotype was associated with an even stronger 

risk increase (OR=1.50, 95% CI=1.11, 2.03) relative to the “TCT” haplotype in the case/control 

population (table 4-2).  The same two haplotypes, “TCG” and “CCG”, were also associated with 

significantly faster annual cognitive decline as measured with the MMSE in the PD patient only 

cohort (“TCG”: β=-0.101, SE=0.03, p=0.0003; “CCG”: β=-0.099, SE=0.02, p=0.0006) relative 
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to the “TCT” genotype (table 4-3). These associations will remain significant after a strict 

Bonferroni multiple testing correction.  Neither haplotype was associated with annual change in 

the UPDRS score. Individual SNP associations with progression are found in supplemental table 

4-2, the NFE2L2 rs6721961 GT/TT genotype was associated with slower cognitive decline 

(β=0.104, SE=0.03, p=0.0003) relative to the GG genotype and NFE2L2 rs6706649 CT/TT with 

slower motor symptom decline (β=-0.294, SE=0.12, p=0.018) relative to the CC genotype. 

 None of the PPARGC1α haplotypes were marginally associated with PD risk (table 4-2).   

Three PPARGC1α haplotypes however changed the rate of motor symptom progression, 

“TGAC”, “CGAC”, and “TAAC”, with patients carrying the “TGAC” and “TAAC” haplotypes 

showing worse annual motor symptom scores during follow-up (“TGAC”: β=0.376, SE=0.15, 

p=0.01; “TAAC”: β=0.337, SE=0.17, p=0.05) and “CGAC” retaining better scores (β=-0.352, 

SE=0.14, p=0.01) relative to the wildtype “TAAT” haplotype (table 3).  The “CGAT” haplotype 

was also suggestively associated with lower annual cognitive scores during follow-up (β=-0.051, 

SE=0.03, p=0.05) relative to the “TAAT” reference haplotype (table 3).  In single SNP analysis, 

the PPARGC1α rs6821591 CT and TT genotypes were associated with significantly worse 

annual motor relative to the CC genotype (TT: β=0.461, SE=0.14, p=0.001).  None of the other 

PPARGC1α SNPs were individually associated with progression. 

 Assessing the effects of PPARGC1α haplotypes in combination with MB/PQ exposure, we 

found statistical interactions with the “CGGT” (p=0.02) and possibly “CGAT” (p=0.08) 

haplotypes.  Consistent with the marginal analyses, we saw no associations for the PPARGC1α 

haplotypes and PD without pesticide exposure (table 4), and PD risk was increased for those 

MB/PQ exposed with the wildtype haplotype “TAAT” (OR=1.55, 95% CI=1.10, 2.20).  Across 

haplotypes, PD risk for high MB/PQ exposure is increased (OR=1.29, 95% CI=0.86, 1.94 to 



	 	 62	

OR=1.68, 95% CI=0.95, 2.98; table 4-4), except among carriers of the “CGGT” and “CGAT” 

haplotypes, which appeared to protect against PD risk from MB/PQ exposure i.e. there was no 

risk increase observed in highly MB/PQ exposed carriers of these haplotypes (OR=1.02, 95% 

CI=0.67, 1.55 and OR=1.05, 95% CI=0.69, 1.59; table 4-4).  The interactions between individual 

SNPs and MB/PQ are found in supplemental table 4-S3, where rs6821591 and rs8192678 also 

showed statistical interactions (p≤0.05), with the CC genotype of rs6821591 and GG genotype of 

rs8192678 similarly seeming to protect against PD risk from MB/PQ exposure. 

 We did not find significant statistical interactions between the NFE2L2 haplotypes and 

MB/PQ exposure, though again consistent with the marginal analyses, we estimated PD risk 

increases for the NFE2L2 haplotypes relative to reference “TCT” haplotype in those unexposed 

to MB/PQ (OR=1.71, 95% CI=0.98, 2.99 to OR=1.84, 95% CI=1.18, 2.87; supplemental table 4-

S4) and an increase of PD risk in MB/PQ exposed carriers with the “TCT” reference haplotype 

(OR=1.83, 95% CI=1.06, 3.17).  We also estimated increased risks of PD in those with both 

MB/PQ exposure and a risk haplotype (“TCG” and “CCG”), for example, participants with both 

the “TCG” haplotype and MB/PQ exposure were at the highest risk for PD (OR=2.36, 95% 

CI=1.51, 3.69) relative to the “TCT”-no/low exposure reference group.  Supplemental table 4-S4 

also shows the individual SNP and MB/PQ interactions, no individual SNP showed statistical 

interactions. 

4.4 Discussion 

 Oxidative stress and pathways associated with cellular oxidative stress like mitochondrial 

dysfunction are generally thought to contribute to PD etiology. Nrf2 and PGC-1α play a 

complementary and overlapping role in regulating the endogenous cellular antioxidant defense 
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system (Clark and Simon 2009).  Here, we provide support for the involvement of genetic 

haplotypes (“TCG” and “CCG”) in NFE2L2 with PD susceptibility based on our case/control 

data and importantly also found that they may contribute to faster cognitive decline in patients 

we were able to follow longitudinally. We also identified PPARGC1α as a mediator of MB/PQ 

pesticide exposure risk in PD and our longitudinal data of patients suggested a possible 

involvement in motor symptom progression as well for variants in this gene. 

  The three SNPs of our NFE2L2 promoter haplotype have been shown to influence 

functional activity, with rs6721961 affecting basal NFE2L2 expression (Marzec et al, 2007).  

Interestingly, in single SNP investigations in our data, rs6721961 was the only SNP associated 

with PD (supplemental table 4-S1), and showed a strong association with cognitive symptom 

progression (supplemental table 4-S2).     

 Although epidemiologic evidence for the role of NFE2L2 in PD is limited, our findings 

contradict those from a previous Polish case/control population that associated the “TCG” 

haplotype with protection against PD risk (OR=0.6, 95% CI=0.4, 0.9) (von Otter 2010); 

interestingly, this association lost magnitude and significance when combined with other 

European populations (OR=0.92, 95% CI=0.81, 1.04) (von Otter 2014).  Our results remained in 

the opposite direction of those previously reported when we compared the “TCG” to all other 

genotypes (OR=1.16, 95% CI=0.97, 1.38), as done in the European study (von Otter 2010; von 

Otter 2014).  Study population heterogeneity or disease misclassification may explain between-

study inconsistencies (Ioannidis 2007).  But it is also plausible that the differences in findings 

may have resulted from unaccounted for environmental factors which mediated the genetic 

response, given that Nrf2 is regulated and activated through oxidative stress related pathways.  

Our population was recruited from highly agricultural communities, and we have found a 
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number of specific pesticides to be positively associated with PD risk in our studies, many which 

may induce oxidative stress (Wang et al 2011; Ritz et al, 2016; Abdollahi et al. 2004).  In our 

population, NFE2L2 haplotypes did not appear to mediate exposure to MB/PQ (supplemental 

table 4-S3), pesticides previously associated with PD in our population and reactive oxygen 

species (ROS) production (Costello et al 2009; Uversky 2004).  While we did not estimate any 

statistical interactions, we did still associate the “TCG” and “CCG” haplotypes with an increased 

risk of PD in those without exposure to MB/PQ.  

 In our patient cohort, we detected strong associations between the NFE2L2 haplotypes, 

“TCG” and “CCG”, and faster cognitive symptom progression. Nrf2 is not only a therapy target 

for PD, but for several neurodegenerative diseases, including Alzheimer’s disease (AD) (Calkins 

et al 2009); cognitive decline and dementia in PD and AD are hypothesized to have overlapping 

etiologies, supported by observations that PD patients with dementia have a higher cortical 

amyloid-β (Aβ) plaques burden (a feature of AD) than PD patients without dementia (Gearing et 

al, 1995; Ross and Poirer, 2004).  Interestingly, the European researchers who reported on 

NFE2L2 and PD also found that an NFE2L2 haplotype was associated with faster progression of 

AD (von Otter et al, 2010), supporting the involvement of NFE2L2 in cognition decline. 

 We did not detect any marginal associations between the PPARGC1α haplotype, individual 

SNPs, and PD risk.  However, four of the eight haplotypes analyzed were associated with PD 

symptom progression, “CGAT” with faster cognitive decline and “TGAC”, “CGAC”, and 

“TAAC” with motor symptom progression relative the “TAAT” (wild-type) reference group. 

PGC-1α, like Nrf2, binds to antioxidant response elements (ARE), promoter regions of genes 

coding for antioxidant enzymes, to upregulate their transcription (Clark and Simon 2009).  PGC-

1α regulated antioxidant enzymes, however, exert their influence primarily on mitochondria 
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(Clark and Simon 2009).  Our results, therefore, seems to implicate mitochondrial related 

oxidative stress as relevant for PD progression.  Interestingly, the PPARGC1α haplotype 

“CGGT” also seems to mediate the risk of MB/PQ pesticide exposure in our case/control 

population, with the “CGGT” haplotype mitigating PD risk associated with high MB/PQ 

exposure relative to carriers of the most common “TAAT” haplotype who were not exposed to 

pesticides.  We have previously reported in our population that ambient agricultural MB/PQ 

exposure increases the risk of PD (Costello et al, 2009).  Paraquat has been widely used to create 

animal models of PD, and its cytyotoxicity is heavily related to ROS production (Uversky 2004); 

combination exposures (maneb and paraquat) have been shown to result in even greater PD-

related pathology in the animal models (Uversky 2004). Of particular note, MB/PQ pesticides 

have also been related to mitochondrial dysfunction (Czerniczyniec et al, 2011).  Again the 

involvement of PPARGC1α in PD risk related to MB/PQ exposure further implicates 

mitochondrial dysfunction and related ROS generation as an important mechanism for 

neurodegeneration in the dopaminergic system, in support of a growing body of evidence that 

PPARGC1α contributes to neurodegenerative disorders, including PD.  As mentioned earlier, 

two of the SNPs in our haplotype have previously been associated with age of PD onset and the 

other two with longevity; PPARGC1α is also associated with AD, Huntington’s disease, and 

amytrophic lateral sclerosis (ALS) (Clark et al, 2011; Tsunemi et al 2012; Rona-Voros et al 

2010; Cui et al 2006; Liang et al 2011).   

 The PEG case/control population provides many advantages that allow us to pose and 

investigate mechanistic hypotheses.  Most epidemiologic studies rely of self-reported 

information for pesticide exposure assessment, a method prone to differential recall error, and 

which generally does not allow for investigation of specific pesticides.  We assessed ambient 
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MB/PQ exposure with a geographic information system (GIS) approach utilizing state mandated 

pesticide use reports.  Thus we do not rely on participant recall for pesticide use, and are able to 

investigate specific chemicals.  Additionally, PD is a commonly misdiagnosed disease (Meara et 

al. 1999; Wermuth et al. 2012); our PD cases were all seen and well characterized by UCLA 

movement disorder specialists at least once and many multiple times as part of our patient 

cohort, minimizing bias from disease misclassification.  Additionally, the population controls 

were drawn from the same region as the cases, likely providing adequate representativeness of 

the source population.   

 Further, our prospectively followed patient cohort is one of less than a handful of 

population-based PD patient cohorts worldwide, and the first to our knowledge to investigate 

these genes.  We were able to follow patients on average more than seven years into disease.  

Although, as expected in a cohort of elderly patients, we were not able to follow-up all patients 

enrolled at baseline, mostly because the patient was too ill or deceased (n=70). Those lost to 

follow-up were older and scored worse on baseline health indicators UPDRS and MMSE (table 

1); consequently, selection bias is possible, though there were no differences in haplotype 

frequencies by follow-up status (supplemental table 4-S5). Additionally, given that we do not 

have follow-up data on a non-PD population, we cannot tell whether the longitudinal findings are 

specific to cognitive decline in PD or whether the same type of decline would be observed 

among a matched control population.  However, our study provides an independent population of 

adequate sample size (≥80% power to detect previously reported marginal effect sizes), and we 

were able to restrict to Caucasian participants of European ancestry to limit confounding by 

population stratification.   

 While, our findings need to be re-examined and replicated in future studies with larger 
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sample sizes and longer follow-up, our study provides support for the involvement of NFE2L2 in 

both PD susceptibility and cognitive symptom progression, and for PPARGC1α modifying PD 

risk in MB/PQ exposed subjects and possibly contributing to motor symptom progression, 

consistent with the importance of oxidative stress-inducing mechanisms in PD onset and 

progression. 
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4.5 Tables 

Table 4-1. Population exposure and characteristics of PEG study population with genotyping and European 
Ancestry only. 

    PD Case/Control Study   PD Progression Cohort 

Variable (Mean ± SD / n 
(%)) 

  PD Patients Controls P 
value 

  
PD Patients 
w/ follow-

up 

PD Patients 
lost to follow-

up P value 

  n=472 n=532   n=192 n=94 
Age (y)   69.40 ± 10.0 67.7 ± 11.7 0.01   67.5 ± 9.9 72.4 ± 10.6 0.0002 
Male   290 (0.61) 265 (0.50) 0.0002   107 (0.56) 54 (0.57) 0.78 
Ever Smoker   213 (0.45) 285 (0.54) 0.008   81 (0.42) 48 (0.51) 0.16 
Schooling                  
<12   40 (0.08) 34 (0.06) 

0.03 
  16 (0.08) 16 (0.17) 

0.07 12   122 (0.26) 107 (0.20)   56 (0.29) 28 (0.30) 
>12   310 (0.66) 391 (0.74)   120 (0.63) 50 (0.53) 
UPDRSa   21.04 ± 10.2 -- --   18.8 ± 9.0 24.1 ± 11.0 <.0001 
MMSEa   27.77 ± 2.6 -- --   28.3 ± 2.1 26.8 ± 3.0 <.0001 
High MB/PQ Exposure 252 (0.53) 249 (0.47) 0.04   102 (0.53) 47 (0.50) 0.62 

Abbreviations: OS=Oxidative Stress inducing pesticide; MB/PQ=Maneb/Paraquat pesticide 
aScores at Baseline (case/control study) interview 
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Table 4-2. NFE2L2 and PPARGC1A haplotypes and PD susceptibility marginal 
analysis in 472 PD cases and 532 controls, assumed allelic genetic model (2n). 

Haplotype Case Control OR (95% CI) P Value 

NFE2L2 
Promoter 
Haplotype 

TCT 91 (0.10) 138 (0.13) 1.00 (ref) -- 
TCG 467 (0.49) 477 (0.45) 1.50 (1.11, 2.03) 0.008 
CCG 279 (0.30) 319 (0.30) 1.39 (1.01, 1.91) 0.04 
TTG 107 (0.11) 130 (0.12) 1.29 (0.88, 1.87) 0.19 

  

PPARGC1A 
Haplotype 

TAAT 259 (0.27) 278 (0.26) 1.00 (ref) -- 
CGGC 148 (0.16) 156 (0.15) 0.99 (0.74, 1.32) 0.95 
CGGT 137 (0.15) 156 (0.15) 0.94 (0.70, 1.26) 0.68 
CGAT 122 (0.13) 154 (0.14) 0.85 (0.63, 1.14) 0.28 
TGAC 62 (0.07) 79 (0.08) 0.86 (0.59, 1.25) 0.43 
CGAC 78 (0.08) 78 (0.07) 1.03 (0.72, 1.48) 0.87 
TAAC 66 (0.07) 75 (0.07) 0.90 (0.62, 1.32) 0.60 
Other 72 (0.08) 88 (0.08) 0.89 (0.62, 1.27) 0.51 

Models also control for age, sex, smoking status, and education 
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Table 4-3. NFE2L2 and PPARGC1A haplotype and PD progression outcomes, UPDRS (motor score) 
and MMSE (cognitive score), using linear repeated measures model, assuming allelic genetic model 
(2n).  European ancestry only, n=192. 
        UPDRS   MMSE 

Haplotype n (%)   βa SE P Value   βa SE P Value 

NFE2L2 
Promotor 
Haplotype 

TCT 41 (0.11)   ref -- --   ref -- -- 
TCG 180 (0.47)   -0.069 0.14 0.62   -0.101 0.03 0.0003 
CCG 118 (0.31)   0.024 0.15 0.87   -0.099 0.03 0.0006 
TTG 45 (0.12)   -0.289 0.17 0.09   -0.056 0.03 0.09 

                      

PPARGC1A 
Haplotype 

TAAT 95 (0.25)   ref -- --   ref -- -- 
CGGC 61 (0.16)   -0.077 0.12 0.52   -0.017 0.02 0.48 
CGGT 61 (0.16)   -0.149 0.11 0.19   0.003 0.02 0.91 
CGAT 49 (0.13)   0.088 0.13 0.50   -0.051 0.03 0.05 
TGAC 28 (0.07)   0.376 0.15 0.01   -0.015 0.03 0.61 
CGAC 32 (0.08)   -0.352 0.14 0.01   0.005 0.03 0.87 
TAAC 24 (0.06)   0.337 0.17 0.05   -0.027 0.03 0.42 
Other 34 (0.09)   0.061 0.15 0.69   0.019 0.03 0.52 

Models control for age, sex, smoke, education, and PD duration prior to baseline (0-3 years) 
aβ represents interaction with age (centered) 
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Table 4-4. Maneb/Paraquat pesticide exposure-PPARGC1A haplotype/SNP interactions and PD susceptibility, assuming 
an additive genetic model for rs8192678 (n) and an allelic genetic model for the haplotype analysis (2n). 

  Main Effects   Joint Effects   
Interaction 

P Value Haplotype/ 
Genotype 

Haplotype effect with no/low pesticide 
exposure   High MB/PQ Exposure Across Haplotype 

levels   

Case / Control OR (95% CI) P Value   Case / Control OR (95% CI) P Value   
PPARGC1A Haplotype                 

TAAT 114/153 1.00 (ref) --   154/125 1.55 (1.10, 2.20) 0.01   -- 
CGGC 71/80 1.18 (0.78, 1.77) 0.44   77/76 1.29 (0.86, 1.94) 0.22   0.24 
CGGT 70/73 1.32 (0.87, 2.00) 0.19   67/83 1.05 (0.69, 1.59) 0.82   0.02 
CGAT 61/74 1.11 (0.73, 1.70) 0.63   61/80 1.02 (0.67, 1.55) 0.94   0.08 
TGAC 26/45 0.84 (0.49, 1.46) 0.55   35/34 1.32 (0.77, 2.26) 0.30   0.98 
CGAC 32/40 0.99 (0.58, 1.69) 0.97   46/38 1.63 (0.98, 2.70) 0.06   0.88 
TAAC 31/48 0.83 (0.49, 1.40) 0.48   35/27 1.68 (0.95, 2.98) 0.08   0.50 

Models control for age, sex, smoke, and education 



	 	 72	

 

Figure 4-1. PD patient recruitment flow diagram for both the case/control and cohort studies.
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 4.6 Supplement 

 

Supplemental Table 4-S1. Marginal NFE2L2 and PPARGC1A SNP associations with PD, assuming an additive genetic 
model unless otherwise specified. Caucasian only. 

SNP Haplo-
type 

Position 

Major 
/ 

Minor 
Allele 

Case (%) / 
Control 

(%) 

Ref 
Homozygous 

wildtype 

Case (%) / 
Control 

(%) 

OR (95% CI) 
Heterozygotes 

Case (%) / 
Control 

(%) 

OR (95% CI) 
Homozyogous 

variant 

P-
value 

NFE2 
rs35652124 

1 T / C 226 (0.49) / 
258 (0.49) 

1.00 (ref) 197 (0.43) / 
222 (0.42) 

1.00 (0.82, 
1.23) 

35 (0.08) / 
46 (0.09) 

1.01 (0.67, 1.51) 0.97 

NFE2 
rs6706649 

2 C / T 365 (0.78) / 
409 (0.77) 

1.00 (ref) 95 (0.20) / 
110 (0.21) 

0.94 (0.71, 
1.23) 

6 (0.01) /  
10 (0.02) 

0.88 (0.50, 1.52) 0.64 

NFE2 
rs6721961* 

3 G / T 379 (0.81) / 
397 (0.75) 

1.00 (ref) 87 (0.19) / 
130 (0.19) 

0.67 (0.49, 
0.91) 

2 (0.004) /  
4 (0.01) 

-- 0.01 

PPARGC1A 
rs6821591 

1 C/T 127 (0.27) / 
137 (0.26) 

1.00 (ref) 227 (0.49) / 
263 (0.50) 

1.01 (0.87, 
1.18) 

112 (0.24) / 
124 (0.24) 

1.02 (0.76, 1.38) 0.88 

PPARGC1A 
rs8192678 

2 G/A 205 (0.44) / 
235 (0.45) 

1.00 (ref) 200 (0.43) / 
233 (0.44) 

1.04 (0.89, 
1.22) 

60 (0.13) / 
58 (0.11) 

1.09 (0.79, 1.5) 0.60 

PPARGC1A 
rs2970848 

3 A/G 201 (0.43) / 
230 (0.43) 

1.00 (ref) 215 (0.46) / 
250 (0.47) 

0.96 (0.82, 
1.13) 

51 (0.11) / 
49 (0.09) 

0.92 (0.67, 1.27) 0.61 

PPARGC1A 
rs4235308 

4 T/C 175 (0.37) / 
202 (0.38) 

1.00 (ref) 214 (0.46) / 
248 (0.47) 

0.97 (0.83, 
1.13) 

78 (0.17) / 
77 (0.15) 

0.94 (0.69, 1.28) 0.69 

Models control for age, sex, smoking status, and education 
*Assumed dominant genetic model given sample size of homozygous variant genotype 
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Supplemental Table 4-S2. NFE2L2 and PPARGC1A SNPs and PD progression 
outcomes, UPDRS (motor score) and MMSE (cognitive score), using linear repeated 
measures model, assuming an additive genetic model.  European ancestry only, n=192. 

      UPDRS   MMSE 
Genotype n (%)   βa SE P Value   βa SE P Value 
PPARGC1A SNPs                 
 rs6821591                 

CC 55 (0.29)   ref -- --   ref -- -- 
CT 94 (0.49)   0.230 0.07 

0.001 
  0.010 0.01 

0.45 
TT 43 (0.22)   0.461 0.142   0.021 0.028 

rs8192678                 
GG 94 (0.49)   ref -- --   ref -- -- 
GA 76 (0.40)   0.092 0.08 

0.26 
  0.003 0.02 

0.83 
AA 22 (0.11)   0.185 0.163   0.007 0.032 

rs2970848                 
AA 79 (0.41)   ref -- --   ref -- -- 
AG 86 (0.45)   -0.112 0.07 

0.13 
  0.013 0.01 

0.35 
GG 27 (0.14)   -0.223 0.148   0.027 0.029 

rs4235308                 
TT 77 (0.40)   ref -- --   ref -- -- 
TC 79 (0.41)   0.034 0.06 

0.59 
  -0.003 0.01 

0.82 
CC 36 (0.19)   0.068 0.128   -0.006 0.025 

NFE2L2 
SNPs                   

 rs35652124                 
TT 77 (0.40)   ref -- --   ref -- -- 
TC 79 (0.41)   0.170 0.09 

0.07 
  -0.019 0.02 

0.24 
CC 36 (0.19)   0.340 0.18   -0.038 0.04 

rs6706649*                 
CC 150 (0.78)   ref -- --   ref -- -- 
CT 39 (0.20)   

-0.294 0.12 0.02 
  

-0.300 0.21 0.14 
TT 3 (0.02)     

rs6721961*                   
GG 152 (0.79)   ref -- --   ref -- -- 
GT 39 (0.20)   

0.082 0.14 0.23 
  

0.104 0.03 0.0003 
TT 1 (0.01)     

Models control for age, sex, smoke, education, and PD duration prior to baseline (0-3 years) 
*Assumed dominant genetic model given sample size of homozygous variant genotype 
aβ represents interaction with age (centered) 
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Supplemental Table 4-S3. Maneb/Paraquat pesticide exposure-PPARGC1A SNP interactions and PD susceptibility, 
assuming an additive genetic model. 
  Main Effects   Joint Effects   

Interaction 
P Value PPARGC1A 

Genotype 

Haplotype effect with no/low pesticide 
exposure   High MB/PQ Exposure Across Haplotype 

levels   

Case / Control OR (95% CI) P Value   Case / Control OR (95% CI) P Value   
 rs6821591                 

CC 59/64 1.00 (ref) --   68/73 0.82 (0.53, 1.28) 0.37   -- 
CT 114/135 0.78 (0.60, 1.02) 0.07   113/128 1.03 (0.72, 1.48) 0.87   0.01 
TT 43/80 0.61 (0.37, 1.03)   69/44 1.30 (0.83, 2.04) 0.26   

rs8192678                 

GG 95/116 1.00 (ref) --   110/119 1.01 (0.70, 1.45) 0.98   -- 
GA 98/130 0.87 (0.66, 1.15) 0.32   102/103 1.28 (0.92, 1.79) 0.14   0.05 
AA 22/34 0.76 (0.44, 1.31)   38/24 1.64 (1.02, 2.63) 0.04   

rs2970848                 

AA 84/129 1.00 (ref) --   117/101 1.62 (1.12, 2.34) 0.01   -- 
AG 110/126 1.23 (0.93, 1.63) 0.15   105/124 1.40 (1.00, 1.96) 0.05   0.08 
GG 23/26 1.52 (0.87, 2.65)   28/23 1.21 (0.75, 1.98) 0.44   

rs4235308                 

TT 88/106 1.00 (ref) --   87/96 1.11 (0.75, 1.62) 0.61   -- 
TC 90/128 0.95 (0.74, 1.22) 0.69   124/120 1.28 (0.92, 1.77) 0.15   0.30 
CC 47/39 0.90 (0.55, 1.49)   39/30 1.47 (0.93, 2.34) 0.10   

Models control for age, sex, smoke, and education 
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Supplemental Table 4-S4. Maneb/Paraquat pesticide exposure-NFE2L2 haplotype/SNP interactions and PD susceptibility, 
assuming an allelic model for the haplotype analysis (2n) and an additive genetic model (n) for SNPs unless otherwise 
specified. 

  Main Effect   Joint Effects   
Interaction 

P Value Haplotype/ 
Genotype 

Haplotype effect with no/low pesticide exposure 
  

High MB/PQ Exposure Across Haplotype 
levels   

Case / Control OR (95% CI) P Value   Case / Control  OR (95% CI) P Value   
NFE2L2 Promotor Haplotype, allelic genetic model (2n) 

TCT 36/74 1.00 (ref) --   55/64 1.83 (1.06, 3.17) 0.03   -- 
TCG 228/267 1.84 (1.18, 2.87) 0.007   239/210 2.36 (1.51, 3.69) 0.0002   0.25 
CCG 129/163 1.76 (1.10, 2.81) 0.02   150/156 2.09 (1.31, 3.32) 0.002   0.18 
TTG 47/62 1.71 (0.98, 2.99) 0.06   60/68 1.83 (1.07, 3.14) 0.028   0.17 

Individual SNP analysis, additive genetic model unless specified (n) 
 rs35652124                 

TT 102/143 1.00 (ref) --   124/115 1.36 (0.96, 1.94) 0.08   -- 
TC 97/114 1.05 (0.78, 1.40) 0.75   100/108 1.30 (0.94, 1.94) 0.11   0.65 
CC 13/23 1.10 (0.61, 1.97)   22/23 1.24 (0.76, 2.04) 0.39   

rs6706649                 
CC 173/227 1.00 (ref) --   192/182 1.33 (1.00, 1.78) 0.05   -- 
CT 43/48 1.02 (0.69, 1.52) 0.91   52/62 1.12 (0.76, 1.67) 0.56   0.49 
TT 2/7 1.05 (0.47, 2.32)   4/3 0.95 (0.46, 1.95) 0.88  

rs6721961* 
GG 184/210 1.00 (ref) --   195/187 1.14 (0.85, 1.52) 0.38   -- 

GT/TT 34/72 0.50 (0.31, 0.79) 0.003   55/62 0.98 (0.64, 1.49) 0.91   0.09 
Models control for age, sex, smoke, and education 
*Assumed dominant genetic model given sample size of homozygous variant genotype, see supplemental table 1 
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Supplemental Table 4-S5. Distribution of haplotypes 
among PD patients cohort 

  

  PD Patients 
w/ follow-up 

PD Patients 
lost to follow-

up 
Haplotype n (%) n (%) 

NFE2L2 
Promoter 
Haplotype 

TCT 41 (0.11) 19 (0.10) 
TCG 180 (0.47) 98 (0.52) 
CCG 118 (0.31) 48 (0.26) 
TTG 45 (0.12) 23 (0.12) 

        

PPARGC1A 
Haplotype 

TAAT 95 (0.25) 54 (0.29) 
CGGC 61 (0.16) 30 (0.16) 
CGGT 61 (0.16) 23 (0.12) 
CGAT 49 (0.13) 24 (0.13) 
TGAC 28 (0.07) 8 (0.04) 
CGAC 32 (0.08) 20 (0.11) 
TAAC 24 (0.06) 13 (0.07) 
Other 34 (0.09) 16 (0.08) 
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5 Conclusion and Public Health Implications 

 This dissertation examines environmental and genetic factors related to oxidative stress and 

both the risk of Parkinson’s disease and symptom progression in patients.  We found strong 

associations for PD in participants with certain NOS1 genotypes exposed to commonly used OP 

pesticides through two independent sources – home and agricultural use, consistent with NOS1 

as a modifier of associations with PD in OP pesticide exposed populations.  Among PD patients, 

we provide support for the involvement of both OP pesticides and PON1 in PD motor and non-

motor symptom progression.  And finally, we provide evidence for the involvement of NFE2L2 

in both PD susceptibility and cognitive symptom progression, and for PPARGC1α modifying PD 

risk in MB/PQ exposed subjects and possibly contributing to motor symptom progression.   

 PD is a major health concern for older adults, associated with significant morbidity and 

mortality, and threatens to become even more prominent with increasing life expectancy and the 

aging of populations.  Primary prevention is imperative for reducing this burden.  Further, given 

the importance of symptom progression for patients’ health related quality of life and for 

predicting mortality (Forsaa et al. 2010), identifying modifiable predictors for rate or severity of 

symptoms during disease course is important for both patients and for developing preventive 

measures.
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