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Designing Conversational Agents to Promote Collaboration and Systems Thinking in High 

School Science Discussion 

by 

Ha Nguyen 

Doctor of Philosophy in Education 

University of California, Irvine, 2022 

Associate Professor, June Ahn, Co-chair 

Professor Rossella Santagata, Co-chair 

 

This dissertation consists of four studies that explore how high school students interact 

with and learn from two designs of a text-based conversational agent (chatbot) during small-

group science discussions with peers and the agents. The agents utilize natural language 

processing to send prompts to promote students’ understanding of ecosystems concepts and 

collaboration. The two agent designs differ in appearances and linguistic styles to resemble a less 

knowledgeable peer and an expert. The first two studies explore how students interacted with 

the agents as social partners. In Study 1, I found that interactions with the less-knowledgeable-

peer agent generally contained more sequences of questioning and transactive exchange, which 

provided opportunities for reflection and reasoning. In Study 2, I examined how student groups 

attempted to remedy interactions with the agents in case the agents failed to interpret students’ 

intent, similar to how students would repair conversations with human partners. Student groups 

more often reframed and explained their reasoning to the less-knowledgeable-peer than the 

expert agent. Furthermore, such interactions were positively correlated with higher counts of 
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systems thinking statements, which indicated an enhanced understanding of interconnections 

between human and natural systems. Study 3 presents a case study to illustrate how interactions 

with the agents varied with group compositions: emergent, mixed, and expanding prior 

science knowledge. In Study 4, I built on studies 1-3 to examine how students learned from the 

agents, using interaction patterns with the agents as mediators. Results confirm the affordances 

of certain interaction dynamics, such as transactive exchange, to deepen systems understanding. 

Overall, the studies provide converging evidence on the utility of agent designs to support 

interactions that are enriching for learning. I discuss implications for designing conversational 

agents as social partners to promote collaboration and systems thinking, with applications to 

other learning contexts. 
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CHAPTER 1 INTRODUCTION 
 

Classroom discussion plays a central role in the production and exchange of disciplinary 

knowledge. Supporting students to articulate their understanding of concepts, reflect on learning, 

and build on one another’s ideas in group discussions can deepen students’ conceptual 

understanding and foster academically productive talk (Dyke, Adamson, et al., 2013; Dyke, 

Howley, et al., 2013). However, in small-group settings, teachers may not always have the time, 

resources, or expertise to facilitate discussion in every group.  

A potential solution to this challenge is the integration of conversational agents into 

individual and group settings to facilitate learning interactions (Adamson et al., 2014; Diziol et 

al., 2010; Dyke, Adamson, et al., 2013; Dyke, Howley, et al., 2013; Walker et al., 2014b). 

Conversational agents are dialogue systems that provide learning support for students through 

natural language understanding (Kerly et al., 2008). Graesser and colleagues (2016), for 

example, have developed agent systems (e.g., AutoTutor) that included different arrangements to 

provide knowledge scaffolds for learners in subjects spanning reading, writing, and science. 

These arrangements included one-on-one dialogues between an agent and a student or trialogues 

between two agents and a human student. In other systems, agents can provide suggestions for 

idea generation in group discussions or guide peer tutors to reason through how to support their 

human tutees (Kumar et al., 2011; Tegos & Demetriadis, 2017; Walker et al., 2011). 

Researchers have explored different agent designs, for example, as a less knowledgeable 

tutee or a mentor, to promote interactions conducive to deeper learning (Biswas et al., 2010; 

Graesser, 2016). These designs build on the Human-Computer Interaction research that users 

subconsciously treat computer agents as social actors (Nass et al., 1995), and may thus interact 

differently with agent designs (Kim, 2007; Liew et al., 2013; Rosenberg-Kima et al., 2008). For 
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example, students with emergent knowledge may be more responsive to scaffolds from an 

expert-like agent, and consequently learn more from the interactions (Graesser, 2016). 

However, there has been little consideration of agent designs in group settings, 

particularly regarding how such designs may influence the content of and participation in group 

discussions. Unlike individual interactions with an agent, student groups might ignore or abuse 

the agent (Kumar et al., 2011). Thus, in this dissertation, I examine how different designs of a 

text-based agent (chatbot) can facilitate student-agent interactions and learning in group 

settings. The agent focuses on providing conceptual and participatory prompts to help students 

develop systems thinking, or understanding of complex relationships within a marine ecosystem. 

Study Context 

The design focus of the conversational agents (to facilitate systems thinking and 

collaboration) is grounded in a multi-year partnership between a local state park, education 

researchers, biology researchers, and local school districts in Southern California. The agent was 

integrated into one of the state park’s high school environmental science programs, called 

Marine Science Exploration (MSE). During the 2018-2019 school year, this program served 

2,600 youth, with over 70% of participants from Title 1 schools and 46% of students reporting 

speaking a language other than English at home.  

The MSE program consisted of eight lessons to engage students in a participatory science 

curriculum to learn about systems concepts. Participatory science anchors scientific concepts in 

local contexts to enrich student interest in authentic, student-driven education (McKinley et al., 

2017). The MSE program grounded its curriculum in protecting the biodiversity in the state 

park’s marine conservation area. In the past century, natural events and human actions have 

threatened the ocean habitats with climate change, pollution, and overfishing, among others. The 
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park thus created the marine protected area to reduce the impacts from those threats. In the MSE 

program, students explored whether the existing regulations in the park’s marine conservation 

area helped to increase the park’s biodiversity. Several scientific practices were integrated 

throughout the curriculum. Students first developed relational models showing how different 

factors impacted species diversity, engaged in data collection and analysis, and presented their 

findings to the state park stakeholders. Students applied these practices in an authentic context 

and developed their science identities in the process (Brown et al., 2005). 

The program design intentionally created opportunities for group discussions around 

making sense of data. Written and spoken discourse is an important channel to construct science 

literacy. As individuals interact, they draw on existing knowledge and social repertoires to assert 

and develop identities (Bransford et al., 2000). For example, early in the curriculum (lesson 3), 

students brainstormed the elements and processes that might affect the marine ecosystem after 

learning about the marine conservation area. In classroom observations of those lessons, 

however, the research team noticed that not all students participated equally in the discussions. 

This participation pattern could be due to students’ varying levels of domain knowledge (Hogan 

et al., 1999). Furthermore, students tended to get fixated on certain ideas and linear relationships 

(e.g., overfishing reduces fish), instead of thinking about more complex processes in the system. 

The idea of a conversational agent came to me as a solution to improve students’ 

discussion quality. The agent can embed itself in student discussions and provide conceptual and 

participation nudges as students collaboratively build a concept map of the marine ecosystem. 

Drawing from prior work with one-on-one interactions between students and an agent (Biswas et 

al., 2010, 2016; Kim & Baylor, 2016), I test two designs: a less knowledgeable peer and an 

expert agent. The agents send similar prompts to promote systems thinking and collaboration but 



 

4 
 

differ in appearances and linguistic styles. The dissertation investigates how students interact 

with and learn from the agents, and how these interactions may vary between student groups. 

I draw from research in human-computer interactions, knowledge construction, and 

systems thinking to inform agent designs and analytical decisions. The agent designs stem from 

frameworks of Computers as Social Actors (Nass et al., 1995) to assume that humans 

subconsciously treat computer systems as human actors based on design cues. Thus, designs of 

the agents as a less knowledgeable peer versus an expert can facilitate different interactions, as if 

students were interacting with a human counterpart. Drawing from knowledge construction 

frameworks (Scardamalia & Bereiter, 1991; van Aalst, 2009), I break down interactions with the 

agents into their content and students’ participation patterns. This is because how people interact 

with others in discussions contributes to knowledge building efforts and helps group knowledge 

become more structured over time. Finally, I hypothesize that the different interaction patterns 

and content with the agents support learning in different ways. For this, I draw from systems 

thinking frameworks (Hmelo-Silver et al., 2017; Snapir et al., 2017) to analyze students’ 

learning, as indicated by group discussions and learning outcomes following agent interactions. 

These theoretical frameworks—human-agent interactions, discussion moves in knowledge 

construction, and systems thinking—are common threads throughout the dissertation studies. 

Dissertation Overview 

This dissertation includes six chapters: Introduction, chapters reporting each of the four 

studies, and Conclusion. I embed the Literature reviews and Methods sections within each 

chapter. I explore the following questions: 

1. how student groups interact with different agent designs (Studies 1, 2) 
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2. how groups’ interactions vary with different group compositions, i.e., students with 

emergent, mixed, and expanding prior domain knowledge (Study 3) 

3. how agent designs promote learning for individual students, accounting for students’ 

prior domain knowledge (Study 4) 

Table 1.1 
Overview of Dissertation Studies 

 Areas of investigation Sample Analytic 
procedures 

Status 

Study 1 Groups’ discussion moves: 
• Reasoning 
• Transactive exchange 
• Responsiveness to 

agents  

n = 52  
(18 groups) 
Within-
subject 
design 

Sequential pattern 
mining; Wilcoxon 
signed-rank test 

Revised from Nguyen, H. 
(2022). Let’s Teach Kibot: 
Discovering Discussion Patterns 
between Student Groups and 
Two Conversational Agent 
Designs. British Journal of 
Educational Technology. 
http://doi.org/10.1111/bjet.13219 

Study 2 Groups’ discussion moves: 
• Conversation repair 

strategies (e.g., 
reframe, repeat, 
explain) 

Groups’ systems thinking, as 
indicated by chat logs 

n = 52  
(18 groups) 
Within-
subject 
design 

Wilcoxon signed-
rank test; 
Pearson’s 
correlation 

Revised from Nguyen, H. (June, 
2022). Learners’ Reactions to 
Chatbot Communication 
Breakdowns: Insights into 
Fostering Learning. In 2nd 
Annual Meeting of 
the International Society of the 
Learning Sciences. International 
Society of the Learning 
Sciences.  

Study 3 Case study of groups’ 
discussion: 

• Reasoning 
• Transactive exchange 
• Responsiveness to 

agents 
Group compositions, as 
indicated by systems thinking 
pre-test 

n = 9  
(3 groups) 
Within-
subject 
design 

Qualitative 
analysis; 
Epistemic 
network analysis 

Revised from Nguyen, H. 
(2021). Exploring Group 
Discussion with Conversational 
Agents Using Epistemic 
Network Analysis. 
Communications in Computer 
and Information Science, 1522 
CCIS, 378–394. 
https://doi.org/10.1007/978-3-
030-93859-8_25 

Study 4 Individuals’ systems thinking 
(differences from pre to post-
test) 
Discussion moves as mediators  

• Reasoning 
• Transactive exchange 
• Questioning 

n = 172  
(36 groups) 
Between-
subject 
design 

Multilevel linear 
regression 
 

Not yet submitted 

 
Data sources for the dissertation came from two study designs, involving a total of 224 

students in grade 9. The first was a within-subject design, in which students in groups of two to 
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three interacted with both the less-knowledgeable-peer and the expert agent in a learning task. 

The second design involved a randomized cluster design where student groups were randomly 

assigned to interact with either the peer or the expert agent in the same learning task. Data 

included students’ chat logs with one another and with the agents and pretest and posttest that 

captured systems thinking. In addition, I administered a survey following interactions with the 

agents to examine students’ perceptions of the agents and validate the agent designs. Table 1.1 

provides an overview of the studies, areas of investigation, samples, and analytic procedures. 

In Studies 1 and 2, I explored how student groups interacted with the two agents as 

social partners. Data drew from student messages (N = 1,764) from 18 groups (52 students in 

grade 9, ages 14-15). Study 1 focuses on the sequences of interaction to understand larger 

patterns of knowledge construction (Chen et al., 2017; Knight & Littleton, 2015). Student 

messages received codes for causal reasoning, transactive exchange (i.e., building on prior ideas 

by themselves and peers), and responsiveness to the agents. Results indicated no differences 

between agents in how often each discussion move occurred. Sequential pattern mining 

suggested that the less-knowledgeable-peer agent prompted groups to show questioning and 

building on others’ ideas, similar to how students may act as peer tutors to the agent. Meanwhile, 

sequences with the expert agent resembled student-teacher exchange, where groups responded to 

the agent’s nudges and then provided reasoning. Questioning and explaining sequences may 

promote exploratory learning and the construction of more coherent knowledge over time.  

In Study 2, I examined how student groups attempted to fix conversational breakdowns 

with the agents, similar to how students would repair the exchange with human partners. 

Breakdowns happened when the agents failed to interpret users’ intent, leading to frustration and 

potential abandonment of the interactions. I found that learner groups were generally tolerant of 
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the agents: the most common strategies were to repeat, reframe, or explain their intent, as 

opposed to quitting the interactions. Groups rephrased and provided explanations during 

communication breakdowns with the less-knowledgeable-peer agent more often than the expert 

version. The frequencies of explanations during breakdowns were positively associated with 

indicators of deeper systems understanding in students’ group chats. 

Study 3 presents a case study to delve into the link between group compositions and 

interactions with the different agent designs. Embedding the agents in group discussions 

introduces interesting dynamics, since students with varying levels of prior domain knowledge 

may show different behaviors of help-seeking and help-giving from peers and the agents. Data 

came from the chat logs of three student groups (n = 9) with emergent, mixed, and expanding 

prior knowledge of systems thinking. The groups interacted with both agents.  

To explore the different discussion patterns that students displayed, I used epistemic 

network analysis (ENA), a network analysis technique that visualized connections among co-

occurring codes (Shaffer et al., 2016). In this case study, I examined the differences in discussion 

between emergent, mixed, and expanding groups and between the agent conditions in each 

group. Overall, the expanding groups engaged in more claim-making in tandem with building on 

prior ideas when interacting with the less-knowledgeable-peer agent, compared to the expert 

agent. Meanwhile, the emergent group showed more syntheses of previous ideas when 

responding to the expert agent. These results illustrate the importance of considering group 

compositions in examining interactions with learning agents. 

Study 4 builds on the previous three studies to explore the pathways between agent 

conditions, interactions with agents, and individual student learning. Participants included 

172 students ages 13-14. Students were randomly assigned to groups, and all members within the 
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group interacted with one another and with no agent, a less knowledgeable peer, or an expert 

agent. Results reveal that agents deepened students’ understanding of systems mechanisms by 

increasing their transactive exchange. Furthermore, comparisons of student groups based on 

pretest compositions (groups with high versus low variation at pretest) suggest that the less-

knowledgeable-peer agent might encourage more balanced participation in transactive exchange 

for heterogeneous groups, compared to the expert agent. 

Implications 

Implications for Design. Together, the studies illustrate how designs of agents can 

position them as social partners in collaborative learning environments. Traditionally, agents 

serve as facilitators, providing conceptual hints and participation nudges. In the dissertation 

studies, I find that student groups showed more questioning sequences and explanations to the 

less-knowledgeable-peer agent as if they were assisting another peer. These findings illustrate 

how nuances in the agents’ designs can facilitate varied interactions in student groups.  

In the studies, students and agents co-create scientific concept maps. The agents’ role is 

to promote ideation and elaboration instead of evaluation. This task structure may promote more 

knowledge construction and less hierarchical divisions of labor than tasks with predefined 

procedures. Thus, a direction for future work is to explore other design paradigms (beyond peer-

expert) in an array of settings, for example, with different task structures and group sizes.  

Implications for Learning. I find that interactions with the agents, such as building on 

previous ideas in transactive exchange or providing explanations, can enhance students’ learning 

of systems concepts at the individual and group levels. This finding aligns with observations of 

productive discussion patterns in peer and teacher-led discussions. Furthermore, interaction 

patterns with the agents varied with group compositions along baseline knowledge. The 
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discussion patterns that the studies uncovered thus broaden the interaction moments that learning 

systems and teachers may consider to promote productive discussion in heterogeneous groups. 

Implications for Implementation. As intelligent systems become increasingly prevalent 

in home and educational settings, questions about how to implement these digital learning tools 

at scale become pertinent. The agents in this study have been used in both face-to-face and 

hybrid learning (i.e., face-to-face and virtual within the same lessons), thus illustrating their 

scalability in different settings. To consider at-scale implementation, I further discuss the design 

principles for the agent talk moves, such as focusing on elaboration and transactive exchange 

without being tied to specific domain concepts, as one way to easily adapt the agents to other 

subjects such as argumentation and English Language Arts.  
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Nguyen, H. (2022). Let’s Teach Kibot: Discovering Discussion Patterns between Student 

Groups and Two Conversational Agent Designs. British Journal of Educational 
Technology. http://doi.org/10.1111/bjet.13219 

 
Abstract 

Conversational agents can deepen reasoning and encourage students to build on others’ 

knowledge in collaborative learning. Embedding agents in group work, however, presents 

challenges where groups may ignore the agents and calls for designs where students perceive 

agents as learning partners. This study examines group interactions with two text-based agents 

(i.e., chatbots) that posed as an expert and a less knowledgeable peer in a high school marine 

biology lesson. Student messages (N = 1,764) from 18 groups (52 students ages 14-15) received 

codes for reasoning, building on prior ideas, and responsiveness to the agents. Results indicate 

no differences between agents in how often each discussion move occurred. Interestingly, 

sequential pattern mining suggests that groups showed more sequences of questioning and 

building on others’ ideas with the less-knowledgeable-peer agent, similar to how students may 

act as peer tutors to the agent. Meanwhile, sequences with the expert agent resembled student-

teacher exchange, where groups responded to the agent’s nudges and then provided reasoning. 

Findings illustrate the affordances of embedding humanized features in technology designs to 

promote discussion. 
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Introduction 

Collaborative knowledge construction, where students negotiate ideas to deepen group 

understanding, plays a central role in the exchange and production of scientific knowledge 

(Scardamalia & Bereiter, 1993). However, simply inviting students to the discussion does not 

always yield productive learning (Dillenbourg, 2002). Conversational agents—dialogue systems 

that provide learning support through natural language interactions—can serve as a potential 

solution to facilitate discussion (Adamson et al., 2014; Diziol et al., 2010; Dyke, Adamson, et al., 

2013; Walker et al., 2014). 

To make agents more engaging to students, designers have experimented with agents’ 

appearances and linguistic features to simulate characteristics from familiar figures, such as 

mentors and tutees (Chen et al., 2020; Graesser, 2016; Y. Kim & Baylor, 2006). These profiles 

may prime users to display respective conversational norms as if they were getting hints from a 

knowledgeable tutor or giving help to an inexperienced tutee (Graesser, 2016). 

However, researchers have mostly considered agent designs in individual settings, where 

a student interacts with one or several agents (Biswas et al., 2016; Y. Kim & Baylor, 2016). 

Different from individual contexts, researchers have observed that student groups may ignore or 

abuse the agents (Kumar et al., 2010). Exploring variations in groups’ interactions with agent 

profiles thus sheds light on how to best support groups’ social and learning needs. 

This study explored these interactions in a within-subject design, where 18 student 

groups (n students = 52, ages 14-15) in 9th-grade science classes chatted with one another and 

with two text-based agents: a less knowledgeable peer and an expert. Students’ messages 

received codes for causal reasoning, transactive exchange where students built on prior ideas, 

and responsiveness to the agents. Analyses examined how student groups’ frequencies and 
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sequences of interactions differed between agents. This analytical focus assumed that the 

frequencies and sequences of discussion moves were related to knowledge construction and 

knowledge acquisition in science classrooms (Chen et al., 2017; Wise & Chiu, 2011).  

Theoretical Background 

Designing effective conversational agents (CAs) calls for understanding how to promote 

knowledge construction and human-computer interactions. The current research thus builds on 

frameworks in knowledge construction (Hewitt & Scardamalia, 1998; Scardamalia & Bereiter, 

1993; Weinberger & Fischer, 2006) and examples of CAs in education (e.g., Adamson et al., 

2014; Dyke, Adamson, et al., 2013). 

Reasoning and Transactivity in Knowledge Construction 

Knowledge construction is a key facet of science discussion. This process involves 

students actively sharing ideas and building on others’ work to advance collective understanding 

(Hmelo-Silver & Barrows, 2008; Hoadley & Kilner, 2005; Muhonen et al., 2017; Scardamalia & 

Bereiter, 1993; Stahl et al., 2014). Students negotiate a fit between their ideas and those of 

others, with a focus on explanations and causal mechanisms (Hewitt & Scardamalia, 1998; van 

Aalst, 2009). In the process, they construct reasoning and extend others’ ideas through social 

exchange (Weinberger & Fischer, 2006). 

Students develop and balance reasoning in working on communal tasks (Weinberger & 

Fischer, 2006). For example, when constructing a scientific concept map together, they assert 

and reformulate ideas about connections among concepts, challenge others to find evidence, or 

pose questions to elicit explanations. Exploring how students make claims, employ reasoning, 

and use questions to guide queries provides insights into jointly constructed understanding 

(Hmelo-Silver & Barrows, 2008).  
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Knowledge construction is inherently social, with many opportunities for students to 

build on others’ contributions (Hewitt & Scardamalia, 1998; Weinberger & Fischer, 2006). In 

their seminal work on computer-supported knowledge-building environments, Hewitt and 

Scardamalia (1998) called for systems that provided access to different modes of participation 

and idea artifacts, such as written text, diagrams, and drawings. These artifacts can detail idea 

evolution and encourage students to acknowledge, extend, and challenge others’ queries. 

The extent to which students refer to prior ideas in discussion is termed transactivity 

(Teasley, 1997). Students may showcase lower-order transactivity, where they externalize their 

ideas or request clarification without elaboration of others’ reasoning. Meanwhile, higher-order 

transactivity involves integration and counter-arguments of others’ contributions (Teasley, 1997; 

Wen et al., 2016). Effective knowledge construction environments should foster higher-order 

transactivity, which has been linked to enhanced individual and group learning (Adamson et al., 

2014; C. Rosé et al., 2008; Wen et al., 2016).  

The responsibility to promote knowledge construction does not rest solely with the 

learners, but also on the learning facilitators (Gillies, 2014; Scardamalia & Bereiter, 1993). 

Facilitators can call on certain students to initiate discussion moves. They can invite collective 

reasoning and support students to build on ideas (Hmelo-Silver & Barrows, 2008; Muhonen et 

al., 2017). Emergent research has explored how CAs can adopt these facilitative roles. 

Designs of Conversational Agents 

CAs can facilitate knowledge construction in real time (Adamson et al., 2014; Dyke, 

Howley, et al., 2013; Tegos & Demetriadis, 2017). Using natural language understanding, the 

agents process students’ unfolding conversations to propose relevant prompts. Agents have 

shown promise in encouraging transactive exchange and learning (Howley et al., 2013; Kumar et 
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al., 2011). However, researchers have also documented cases where groups abused or ignored 

the agents (Kumar et al., 2010). CAs built on mechanical, task-oriented paradigms may not fit 

into group interactions that also value socio-emotional exchange (Kumar et al., 2010). Socially 

capable agents that display verbal cues such as self-disclosure, reassurance, and complements 

have been associated with effective support in tutoring, compared to agents without these 

features (Kumar et al., 2010; Romero et al., 2017).  

These design cues build on the Computers-Are-Social-Actors (CASA) paradigm (Nass et 

al., 1994). The CASA paradigm suggests that users of computer systems often associate the 

computers with characteristics traditionally reserved for human partners, such as trust, reciprocity, 

and competence (Gong, 2008; Pearson et al., 2006; Zhou et al., 2019). Users enact social norms, 

for example, reciprocating help if the computers offer support or stereotyping that an agent is 

extroverted based on its assumed tone and gender (S. Kim et al., 2019; Lee & Nass, 2003; Moon 

& Nass, 1996; Nass et al., 1997; Nass & Moon, 2000).  

Applying the CASA paradigm to learning settings offers design opportunities for CAs. 

The verbal and physical cues of the agents can align with prototypes of learning partners in 

human-human interactions. Researchers have particularly explored the potential of agents as a 

peer and an expert (Biswas et al., 2016; Chen et al., 2020; Graesser, 2016; Y. Kim & Baylor, 

2006; Rosenberg-Kima et al., 2008). A peer agent possesses comparable knowledge levels and 

discourse to those of the learners (Y. Kim & Baylor, 2006). The profile builds on the similarity-

attraction effect (Byrne & Nelson, 1965), which suggests that users would find agents that 

resemble their appearance, knowledge, or interest more appealing. A related design is the learn-

through-teaching model (Biswas et al., 2016), where students acquire knowledge through 

explaining and giving feedback to an agent with less knowledge than them. Meanwhile, an 
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expert or tutor agent appears to possess more advanced expertise. Students may perceive this 

design as more competent, and consequently, treat the agent as a teacher and seek feedback from 

the agent (Biswas et al., 2016; Y. Kim, 2007; Liew et al., 2013).  

Students’ Interactions Vary with Agent Designs 

Students may demonstrate different behaviors and learning outcomes when interacting 

with different agents (Heidig & Clarebout, 2011). For example, young learners ages 5-7 showed 

slightly more affective facial displays when interacting with a robot that behaved as a peer, while 

acquiring more vocabulary from interactions with a tutor robot (Chen et al., 2020).  

Emergent work has explored interaction sequences between students and agents (Howley 

et al., 2013; Jeong et al., 2008; Kinnebrew et al., 2014). The focus on interaction processes 

overlaps with knowledge construction’s emphasis on cycles of idea formulation and refinement 

(Scardamalia & Bereiter, 1993). Howley et al. (2013) examined groups’ exchange in three 

conditions: an agent that provided direct nudges for transactivity, an agent with indirect nudges, 

and no agent. The sequence analyses revealed consistent off-task periods in the indirect nudge 

condition when the agents’ prompts were untimely. This finding called for redesigning the agent 

to promote transactive exchange at more opportune moments (Howley et al., 2013).  

Analyses of interaction patterns can reveal how the peer versus expert agent contributes 

to knowledge construction. If students treat the agents as social partners (Nass et al., 1994), they 

may demonstrate behaviors similar to how they interact with teachers versus peers in tutoring 

(Almasi, 1995; King et al., 1998; Roscoe & Chi, 2007). Students verbalize thinking through 

questions and subsequent explanations more frequently when acting as peer tutors, compared to 

when they respond to teachers (Almasi, 1995; Berghmans et al., 2013; King et al., 1998).  
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Interaction sequences may also vary with the assumed roles. For instance, questioning in 

teacher-led discussions assumes that teachers are the knowledge providers, and students simply 

respond to the teachers’ prompts (Hogan et al., 1999; Scardamalia & Bereiter, 1991). In contrast, 

when students give hints to a peer, the peer’s answers may trigger more varied response 

sequences from the student tutors, from feedback and explanation to further questioning. 

Interactions with peers and teachers can both generate more complex conceptual reasoning, but 

they likely involve different sequences (Hogan et al., 1999). Sustained sharing of queries, 

followed by idea co-construction by the group, helps to articulate gaps in the groups’ knowledge 

towards more structured understanding. In comparison, interactions with teachers can be 

productive if students respond to teachers’ questions with idea elaboration. 

In sum, researchers have examined different designs of CAs in individual settings (e.g., 

Biswas et al., 2016; Chen et al., 2020; Graesser, 2016; Y. Kim & Baylor, 2006; Rosenberg-Kima 

et al., 2008), but not yet in collaborative contexts. Understanding groups’ interactions with 

different agent designs can contribute to creating agents that promote behaviors conducive to 

learning in collaborative settings. In this work, I explore student interactions with two text-based 

agents: a less knowledgeable peer and an expert. Instead of exploring the whole discussion 

history or separate discussion moves, I focus on interaction sequences as an intermediate unit to 

understand larger patterns of knowledge construction. The following questions guide this work: 

RQ1. What discussion moves do student groups leverage in agent interactions? How do 

groups’ discussion moves differ between the less-knowledgeable-peer and expert agent?  

RQ2. How do sequences of discussion moves (e.g., progression of questioning, 

reasoning, and elaboration) differ between agent conditions? 

 



 

19 
 

Methodology 

Study Setting 

The current study is part of a multi-year partnership between a local state park, education 

and biology researchers, and local teachers in the southwestern United States. The agents were 

integrated into the state park’s environmental program, entitled Marine Science Exploration 

(MSE). The MSE program consisted of eight lessons to engage high school students in a 

participatory science curriculum that anchored scientific concepts in local contexts (McKinley et 

al., 2017). The MSE program centered around the state park’s marine protected area, which was 

created to reduce threats from human-driven climate change, pollution, and overfishing. During 

the program, students learned about systems elements within the local marine ecosystem.  

In observing those lessons, the park educators and teachers noticed that not all students 

participated equally in discussions. Students also focused on linear links (e.g., fish eat plankton), 

instead of complex system processes (e.g., ocean acidification influences phytoplankton’s 

abundance, disrupting food chains). The author and the state park developed the text-based CAs 

(Kibot less-knowledgeable-peer and Kibot expert) to address these challenges.  

Participants 

Participants were 18 groups of two to three (52 students, two 9th-grade classes) taught by 

the same science teachers in a public high school in the southwestern U.S. The school served a 

diverse student population that was 46% White, 38% Latinx, and 9% Asian in 2019-20. Students 

were participating in the MSE program during their science class time. The school had a one-to-

one laptop policy, and students were familiar with using chat windows. The 60-minute lesson 

occurred when the school was enacting social distancing due to the COVID-19 pandemic. Students 

mostly relied on the chat interface instead of verbal interactions as they interacted with the agents.  
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Learning Task 

The agents were embedded into a modeling lesson early in the MSE program. After 

learning about the marine protected area, students worked in groups of two or three to create a 

concept map of the park’s marine ecosystems. Students focused on how changes in an element 

affected other elements and processes, for example, building connections between kelp, habitat, 

and biodiversity. Students communicated through a chat window (Figure 2.1). Their messages 

were compared to an underlying “expert” map (described further below). To establish content 

validity, five park educators and six university marine biology researchers collaborated through 

three iterations to refine the expert map. Matched connections between students’ and experts’ 

answers appeared on the web interface next to students’ chats (panel A, Figure 2.1). The agents 

kept track of the chats and provided prompts to help groups reflect on missing connections.  

On average, groups interacted with each agent for 12.5 minutes, SD = 1.2. The interaction 

order with the agents was randomized to minimize practice effect with the second agent. Half of 

the student groups started with the less-knowledgeable-peer agent, while the other half started with 

the expert agent, and switched halfway through the lesson. Appendix 2.1 illustrates the switching 

from the expert to the less-knowledgeable-peer agent, where the agent’s appearance and linguistic 

styles change accordingly.  

Figure 2.1 
Example Interface and Agent Talk Moves 

 
Notes. Panel A: Concept maps from students’ chat; panel B: less-knowledgeable-peer condition; 
panel C: expert condition 
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Agent’s Prompt Designs 

Focus on Causal Reasoning  

The agents’ prompts focus on dimensions of scientific reasoning: element, evidence, and 

causal coherence (Kang et al., 2014; Nguyen & Santagata, 2020). Element captures living 

organisms, (e.g., fish), non-living components (e.g., sun), and processes (e.g., global warming). 

Evidence describes how students use empirical data or experiences to support ideas. Finally, 

causal coherence refers to how students connect concepts to scientific ideas in a logical chain of 

reasoning, such as emphasizing feedback loops within systems.  

The agents use natural language processing to parse students’ messages and select the 

appropriate responses that promote element, evidence, and causal coherence. Using the Python’s 

package “spaCy” dependency parser (Honnibal & Montani, 2017), the agents segment students’ 

chats into subjects and objects. For example, a message like “fish decreases plankton” gets 

parsed into “fish” (the subject) and “plankton” (the object).  

The agents compare students’ concept maps (the subject-object pair) and the expert maps 

using two algorithms: (1) fuzzy matching with Levenshtein-based string similarity and (2) word 

embedding. Levenshtein distance measures the distance between a student’s answer versus the 

expert map by counting the number of edits to turn one string into the other. The fuzzy matching 

disregards the punctuation and word order. 

A limitation to string similarity approaches is that they do not capture cases where terms 

fall under similar domains but may not be exactly similar. For this, the agents calculate the 

similarity between students’ and expert maps using word embeddings with spaCy (Honnibal & 

Montani, 2017). The subject and object from student answers are turned into high-dimensional 

vectors that capture their contexts (i.e., the words they are surrounded by). Shorter distances 
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between a vector that represents a student’s term and a vector for the expert answer would 

indicate higher similarity. If the semantic similarity is above .80, the terms are considered similar 

to the experts’ terms. The .80 threshold was determined through user testing and calculating the 

range of semantic similarity values between users’ responses and expert terms.  

If there exists a missing link between a term that students mention and an expert’s term, 

the agents provide hints for the missing terms. If students miss the hints, the agents follow up 

with a prompt that explicitly mentions the link between the target element and existing elements 

in students’ concept maps. To foster use of evidence, the agents ask for students’ reasoning. To 

promote causal coherence, the agents order the hints so that students finish all connections 

among existing terms, before moving onto another. Table 2.1 outlines these agents’ prompts. 

Focus on Transactivity  

The agents utilize transactive talk moves (Dyke, Howley, et al., 2013). After every five 

talk turns, agents invite students to explain, elaborate on a previous statement (made by 

themselves or others), or discuss why they agree or disagree with peers. Within groups, based on 

the chat counts per student, the agents direct the transactive nudges at those who have 

participated the least in the conversation. Figure 2.1 provides example chats. 

The Less-knowledgeable-peer and Expert Agents 

Following examples from one-to-one agent-student interactions (Biswas et al., 2010; 

Chen et al., 2020; Y. Kim & Baylor, 2006), this study tests two key designs: less-knowledgeable-

peer and expert agents. The agents send the same prompts, but these prompts differ in their 

wording and agents’ expressions to display different emotions and competence. Competence and 

emotions have been linked to students’ affective experiences and cognitive engagement (Y. Kim 

& Baylor, 2006).  
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The Less-Knowledgeable-Peer Agent  

The less-knowledgeable-peer agent builds on the learn-through-teaching paradigm to 

represent a peer with lower levels of knowledge (Biswas et al., 2010). The agent explicitly states 

that it is learning from student chat. To simulate the agent’s learning, the chat includes a 

“knowledge bar” that gets updated with each new link students make in the concept map. The 

agent uses colloquial expressions to ask students to explain concepts in ways that expand its 

knowledge and sends animated texts when students build a correct systems connection. The 

agent shows multiple social expressions, such as excitement, confusion, and appreciation. The 

animations change with these emotions, for instance, frowning when confused. 

The Expert Agent  

The expert agent is portrayed as a scientist. The agent enters the group chat by asking 

students if they are ready to learn. This agent can also answer students’ questions to define terms 

students may include in the concept map. The expert agent speaks in a formal tone and holds a 

static expression throughout the interactions with the students. To avoid situations where 

students abuse the expert agent for hints, if students ask for hints or questions beyond term 

definitions, both agents encourage students to discuss the questions with their group members 

instead of providing answers. 

To validate the agent designs, the author conducted semi-structured focus groups with 

five user groups of three to four each (n = 17 participants, each session lasted about 15 minutes). 

Participants were a convenience sample of high school (n = 4), college students (n = 2), college 

graduates (n = 7), and park educators (n = 4). Participants interacted with each agent for 10 

minutes and rated the agents on their role (peer or expert), emotion, and competence. All 

participants identified the agents’ characteristics as intended.  
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Table 2.1 
Examples of the Agents’ Talk Moves 

Talk move Description Less-Knowledgeable-Peer  Expert Kibot 

Reasoning (Graesser, 2016; Nguyen & Santagata, 2020) 

Hint Encourage students to 
think about missing 
systems elements 

I'm learning so much from you! 
Here's something I still don't 
understand: What's the role of 
plankton in this system? 

Great! Now think about: 
What's the role of plankton 
in this system? 

Prompt Prompt students to think 
about connection with a 
term they haven’t 
mentioned (if students 
miss the Hint) 

Ooh I have an idea, is 
photosynthesis [missing term] 
connected to plankton [existing 
term in students’ map] in any 
way? 

That sounds good. How is 
photosynthesis [missing 
term] connected to plankton 
[existing term in students’ 
map]? 

Evidence Ask students to provide 
evidence to explain their 
systems connections 

Explain to me, why do you 
think so? 

Can you provide evidence for 
your answers? 

Transactivity (Fiacco & Rosé, 2018; Teasley, 1997) 

Elaborate Ask students to elaborate 
on ideas 

Learning is hard! LifeisGood 
[student username], can you 
explain your thinking to me? 

LifeisGood [student 
username], what do you 
think? 

Agree/ 
Disagree 

Ask students to critique 
peer’s ideas 

LifeisGood [student username], 
help me out. Should we agree 
or disagree with your friends? 
Why? 

LifeisGood [student 
username], do you agree or 
disagree with what your 
friends just said? Why? 

Uncertainty Encourage group 
discussion when students 
ask for hint or express 
confusion 

I am not sure. Can someone in 
the group help? 

I can’t tell you the answer. 
Why don’t you discuss with 
your peers and let me know? 

Opinion conformity Show alignment with 
students’ ideas to elicit 
idea elaboration 

I love that. What do you all 
think? 

That’s a great idea. What 
about others in the group? 

Concept Definition 

Define concepts Define concepts in the 
ecosystems (only expert 
agent) 

 Student: What’s kelp? 
Agent: They’re basically 
huge seaweed? Kelps live in 
dense groupings and provide 
food and shelter for other 
marine animals 

Social Expressions (Sebo et al., 2020) 

Acknowledgement Acknowledge students’ 
responses 

[animated image] You’re 
awesome! 

Good job. 
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Excitement Show excitement at the 
groups’ progress (only 
less-knowledgeable 
agent, accompanied by 
changes in expression) 

Look at the progress we’ve 
made! We’re so closed to 
finishing all interactions. 

 

Confusion Show confusion and ask 
for students’ elaboration 
(only less-knowledgeable 
agent, accompanied by 
changes in expression) 

I am confused. Why isn’t this 
connection between 
phytoplankton and 
photosynthesis the other way 
around? 

 

Small talk Social conversations 
about common topics 
(sports, hobbies, agents’ 
gender, background)  

I love all types of sports! But 
baseball is my favorite. Have 
you noticed the cap I’m 
wearing? 

I don’t really watch sports. 
Does studying planktons 
under the microscope count?  

Fallback Fallback when Kibot 
can’t parse student text 
for 5 turns 

Sorry I'm learning. Can you 
break your ideas down for me? 
Start with something simple, 
'Global warming increases 
temperature', and provide your 
reasons. 

I didn’t catch that. Can you 
rephrase what you said, 
starting with a simple 
sentence, like 'Global 
warming increases 
temperature', and then 
provide reasoning? 

 Notes. Explanations are provided in brackets. 
 

Observing how test users interacted with the agents surfaced additional talk moves to 

improve the conversation flow, including small talk (e.g., discussion about the agents’ favorite 

sports) and opinion conformity (e.g., “I love that! What do others in the groups think”). Table 2.1 

presents examples of all agents’ talk moves, grouped under Reasoning, Transactivity, Concepts, 

and Social Expressions. 

Data Sources 

The main data source came from students’ chat logs. Each row of the log consisted of a 

message, group ID, student username, timestamp, and agent condition (less-knowledgeable-peer 

or expert). The agents’ messages were retained for context but were not included in the analyses. 

There were two coding iterations for discussion moves. The first iteration built on prior 

frameworks in knowledge construction (Fiacco & Rosé, 2018; Teasley, 1997; Weinberger & 

Fischer, 2006).  Each message was coded for how students constructed their reasoning and 



 

26 
 

engaged in transactive exchange. The reasoning dimension describes how students produce 

claims, reasoning to warrant claims, and questions to guide the group discussion. Reasoning 

consists of evidence from scientific facts, observations, or personal experiences, with logical 

connections for how such evidence may support claims (Nguyen & Santagata, 2020; Weinberger 

& Fischer, 2006).  

The transactive dimension accounts for the social aspects of knowledge construction and 

consists of transactive and externalizing moves (Roschelle & Teasley, 1995; Weinberger & 

Fischer, 2006). Transactive acts can be broken down into different moves, for example, when 

students accept the contributions of a partner, assume the perspectives of a partner, or challenge 

and modify a partner’s stances (Weinberger & Fischer, 2006). These moves are distinguished 

from externalizing when students revisit their ideas (Teasley, 1997). 

In the second iteration, the author excluded or merged codes with low occurrences and 

used a bottom-up approach to develop emergent codes. First, I observed that most of the 

transactive moves from students were to integrate their partners’ perspectives into their answers, 

and there was only one occurrence where they challenged another partner’s ideas. Thus, these 

codes were merged under the transactive category. Second, responsiveness emerged as another 

category, to denote when students responded to nudges by the agents.  

The codes were dichotomous (1 for occurrence, 0 for non-occurrence). Each message 

could receive codes for multiple categories, for instance, if a message showed both reasoning and 

transactive talk. Table 2.2 presents the final coding scheme. Once the coding scheme was 

established, the author and a research assistant separately coded 20% of the data and achieved 

acceptable agreement across dimensions (reasoning: Cohen’s k = .98; transactivity: Cohen’s k = 

.92; responsiveness: k = 1). 
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Table 2.2 
Coding Scheme for Students’ Chat 

Code Description Example 
Reasoning   

Claim A statement about an idea or concept Fish decreases plankton 
Reasoning Evidence or explanation to support a 

claim 
… because plankton is abundant in the ocean 
and is easy food source. 

Questioning Guiding questions for the discussion If the water temperature changes what would 
happen? 

Transactivity   
Externalizing Articulate one’s own prior thoughts 

to groups 
As I mentioned, I think we should also regulate 
CO2 emissions. 

Transactive Integrate, apply, or challenge 
perspectives of a peer’s prior ideas 

I agree, whales decrease fish because fish is 
whales’ s food source. Whales eat plankton too. 

Responsiveness Students respond to agent’s prompts. Kibot: What would happen if CO2 increase? 
imastar: There’ll be more acidification. 

 
Analytical Strategies 

Student group was the unit of analysis. Group-level analyses align with the study’s 

theoretical focus on how groups’ ideas evolve in knowledge construction (Chen et al., 2017; 

Scardamalia & Bereiter, 1993). Analyses at the individual level were less suitable due to the 

small occurrences of chat moves per individual (M = 6 utterances per individual per agent). 

Interaction sequences emerging from such a small number of utterances may be less meaningful. 

The Limitations section outlines the constraints of this analytical decision in more detail. 

As a robustness check for group-level analyses, I examined whether individuals equitably 

contributed to the discussion. I manually pulled out all chat sequences that involved questioning, 

which can be a marker that differentiates mentor-led and peer tutoring (Hogan et al., 1999). Of 

those, I calculated the proportions of sequences where multiple students contributed. Group 

exchange constituted the majority of sequences (64.5%; 40 out of 62 sequences). 

Discussion Moves and Differences Between Agent Conditions 

The first research question examined differences between agent conditions in occurrences 

of discussion moves for reasoning (claim, reasoning, questioning), transactivity (externalize, 

transactive), and responsiveness to agents. Student groups did not differ in the number of 



 

28 
 

messages they sent between agent conditions. On average, groups sent 16.21 messages, SD = 

16.01 in the peer condition, while they sent 20.64 messages, SD = 32.05 in the expert condition 

(W = 302.5, p = .52). Due to the high standard deviations, to normalize interaction patterns 

between groups, I calculated the ratios of each move’s occurrences out of all messages that each 

group sent, and used Wilcoxon signed-rank tests to examine whether there was a significant 

difference between conditions for the ratios. To account for multiple comparisons, I used 

Benjamini-Hochberg corrections with the false discovery rate of .05. 

Differences in Sequential Patterns 

To answer RQ2, I applied sequential pattern mining to examine differences in the 

sequences of discussion moves between agent conditions. The same codes for discussion moves 

were arranged in the temporal order in which they occurred. The rules for the sequential patterns 

were identified using R’s arulesSequences packages (Buchta et al., 2020). The package used the 

cSPADE algorithm (Zaki, 2000) to identify the temporal association of an event and a 

subsequent one based on frequencies of occurrences. In this study, the students’ chat logs formed 

a set of sequences (e.g., one sequence per student group per condition), and each sequence 

contained a set of reasoning, transactive, and responsive moves. For example, if sequence S1 

started with “claim”, there would be some likelihood that “reasoning” would follow “claim” 

within the same sequence and form the pattern claim -> reasoning.  

The study considers three metrics (support, confidence, and lift) to capture the likelihood 

of a sequential pattern and identify candidate sequences for subsequent analyses. Support, 

ranging between 0 and 1, describes the proportion that a specific pattern occurred out of all 

sessions. For example, a support value of .10 for a sequence such as “claim => reasoning” 

suggests that this pattern occurred in 10% of the sequences. Confidence, also ranging between 0 
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and 1, indicates the likelihood of a discussion move B to follow A, once A occurred. A 

confidence value of .25 for the same “claim => reasoning” sequence, for instance, would indicate 

that if we see “claim” in a message, there is a 25% chance that “reasoning” would appear in 

subsequent messages within the same talk window. Finally, lift shows the support for a pattern 

(e.g., A->B), divided by the support for A times the support for B. A lift value greater than 1 

suggests a positive likelihood that a pattern would occur, relative to chance occurrences of 

observing A and B independently. Using the same example sequence of “claim => reasoning”, a 

lift value greater than 1 would imply that the presence of “claim” has increased the probability 

that “reasoning” would occur in subsequent messages. Prior work has noted that a high value of 

lift may indicate added values, since they have high correlations with domain experts’ judgment 

of interesting patterns (Bazaldua et al., 2014; Merceron & Yacef, 2008).  

The thresholds for the parameters were set as follows: support at .25, confidence at .50, 

and lift at 1.25. These thresholds helped capture a wider range of sequences than setting high 

support and confidence thresholds (that occurred frequently but may not have high lift values). 

The findings present the highest lift-value sequential patterns for each agent condition. For 

example, the top sequences in the expert agent condition were questioning, followed by another 

question with a lift value of 1.73. Findings focus on lift values to indicate levels of 

interestingness and include excerpts from student discussions to illustrate the patterns.  

The discussion within a sequential pattern fell within a 1-minute window to capture 

relevant contexts. For robustness check, I examined the top sequences (by lift values) for 

window sizes of two, three, and five minutes (Appendix 2.3). The sequences differed slightly but 

had consistent patterns across sizes. For instance, for all sizes, sequences in interaction with the 

less-knowledgeable-peer agent frequently involved questions and elaboration. 
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To explore the differences between agent conditions, I calculated the occurrences of the 

top patterns for each student group. Wilcoxon tests were used to determine whether occurrences 

differed by agents, with pattern occurrences as the dependent variables and the agent conditions 

as the independent variable. The tests used Benjamini-Hochberg corrections (false discovery rate 

of .05) to account for multiple comparisons.  

Finally, in the study’s within-subject design, groups started with an agent and switched to 

the other agent halfway through the lesson. Thus, I compared the interaction patterns with each 

agent in relation to which agent a student group started the learning task with. These analyses 

explored whether interactions with each agent remained consistent regardless of the starting agent.  

Findings 

Frequencies of Discussion Moves 

The descriptive statistics present an overview of students’ interactions. Within conditions, 

students sent the most claims (peer: 264 messages; expert: 316), followed by externalizing their 

own ideas (peer: 172; expert: 173), responsiveness (peer: 101; expert: 114), transactive exchange 

to build on peers’ ideas (peer: 93; expert: 96), and questioning (peer: 89; expert: 73). Reasoning 

had the lowest occurrences (peer: 60; expert: 72). 

Wilcoxon tests suggest no substantial difference between conditions in the ratio of 

occurrence for reasoning, transactivity, or responsiveness (Table 2.3). These findings indicate 

that the agent designs might have resulted in similar levels of engagement for student groups. 

Additionally, Mann-Whitney tests suggest that discussion moves were consistent regardless of 

the agent profile groups started with. Recall that groups started with an agent (less-

knowledgeable-peer or expert) and switched to the other during the lesson. The starting agent 

profiles did not significantly influence the frequencies of discussion moves (Appendix 2.2).  
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Table 2.3 
Wilcoxon Results for Ratios of Groups’ Discussion Moves 

Code Mpeer SDpeer Mexpert SDexpert W p adjusted-p 
Reasoning        

Claim .36 .49 .31 .30 428.50 .91 .95 
Reasoning .20 .21 .16 .15 124.50 .69 .95 
Questioning .22 .22 .25 .28 75.50 .95 .95 

Transactivity        
Externalizing (self’s ideas) .39 .16 .35 .10 127.50 .57 .95 
Transactive (prior ideas, friend) .21 .11 .19 .12 122.50 .47 .95 

Responsiveness .25 .15 .23 .13 123.00 .88 .95 
 
Questioning Sequences with the Less-Knowledgeable-Peer Agent 

The second question explores the temporality in groups’ interactions. Table 2.4 lists the 

top patterns for each agent condition, ranked by lift values to indicate interestingness. For 

example, the two sequences with the highest lift values in the less-knowledgeable-peer condition 

were (1) questioning, followed by externalizing one’s ideas and questioning; and (2) reasoning 

and responding to agent, followed by transactive exchange.  

Meanwhile, the top two sequences in the expert condition were (1) questioning, followed 

by another question; and (2) responding to agent and building on one’s idea, followed by 

transactive exchange. Out of the top five sequences in the less-knowledgeable-peer condition, 

three involved questioning the agent and elaborating on ideas. Consider excerpt 1, when students 

posed a question and continued to build on prior ideas with more questioning. 

S1: what kills fish? 

S1: if there were plastic there what would happen 

Kibot: I am not sure. What do you think would happen? 

S1: plastic kills fish because fish gets stuck. Does plastic kill fish? 

S1 began his interaction with Kibot less-knowledgeable-peer with open-ended questions. In 

response, Kibot expressed uncertainty to invite students to articulate their thinking. This 
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utterance prompted S1 to provide an answer to his prior questions and to follow with another 

question about the same concept.  

A related pattern is for students to co-construct several causal links related to a common 

construct, and then pose questions (Transactive-multiple -> Question). For example, in the 

following excerpt (excerpt 2), students S2 and S3 were discussing links between global warming, 

ocean temperature, oxygen, fish, and planktons. Their exchange ended with a question regarding 

the chain of connections they just discussed (high temperature ® O2 ® fish).  Such pattern of 

claim-making and transactive exchange, followed by questioning was present in many groups in 

the less-knowledgeable-peer condition (n occurrences = 10). 

S3: Global warming decreases oxygen. 

S2: Yeah, because warm water holds less O2. 

S2: And O2 is important because fish needs O2. 

S3: zooplankton increases O2 because zooplankton creates O2. 

S2: I think phytoplankton does.  

S2: How does higher temperature effect fish? 

Meanwhile, the sequences with the highest lift values in the expert condition mostly 

consisted of responsiveness and elaboration of previous ideas. These patterns consisted of 

students answering the agent’s prompts to articulate claims, provide explanations, or build on 

ideas from peers. Excerpt 3 illustrates this sequence: 

Kibot: What would happen to elements in this system if ocean temperature increases? 

S4: Higher temperature would influence the habitat because fish only lives in a certain 

temperature range. 
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S5: Agreed, so fish would die off if the temperature is too high. Higher temperature also 

influences the habitat by releasing more O2. 

Table 2.4 
Top 5 Sequences per Condition, by Lift Values 

Less-knowledgeable-peer agent  Lift Support Confidence n (peer) n (expert) 
Question => Externalize; Question 1.54 .33 .60 12 6 
Reasoning; Responsiveness => Transactive 1.50 .28 1.00 10 8 
Question => Transactive 1.50 .28 1.00 10 0 
Transactive (multiple) => Question 1.50 .28 1.00 10 2 
Responsiveness; Externalize => Transactive 1.50 .33 1.00 12 16 
Expert agent  Lift Support Confidence n (peer) n (expert) 
Question => Question  1.73 .29 .71 12 10 
Responsiveness; Externalize => Transactive 1.42 .47 1.00 12 16 
Externalize; Responsiveness => Transactive 1.42 .29 1.00 10 10 
Externalize; Transactive; Responsiveness => Transactive 1.42 .35 1.00 6 12 
Responsiveness (multiple) => Transactive 1.30 .35 1.00 12 12 

Notes. “;” = co-occurring moves within a message; “=>” shows sequences. Lift = probability of occurrences, relative 
to chance. Support = proportion of occurrences. Confidence = likelihood of pattern B to follow A, once A occurred.  
 
Table 2.5 
Wilcoxon Results for Between-Agent Differences in Sequence Occurrences 

 Code Mpeer SDpeer Mexpert SDexpert W p adjusted p 
1 Question => Externalize; 

Question 
.67 .49 .33 .59 216 .05 .09 

2 Reasoning; Responsiveness 
=> Transactive 

.56 .51 .47 .62 170 .53 .71 

3 Question => Transactive .56 .62 0 0 224 .0004*** .003** 
4 Transactive (multiple) => 

Question 
.56 .51 .17 .38 206 .01* .03* 

5 Responsiveness; Externalize 
=> Transactive 

.67 .59 1.00 .37 99 .05 .09 

6 Question => Question .67 .59 .63 .50 147 .92 1.00 
7 Externalize; Responsiveness 

=> Transactive 
.56 .70 .63 .50 128 .55 .71 

8 Externalize; Transactive; 
Responsiveness => 
Transactive 

.33 .49 .75 .45 84 .02* .06 

9 Responsiveness (multiple) 
=> Transactive 

.67 .49 .67 .49 162 1.00 1.00 

Notes: *: .05, **: .01, ***: .001. “Respond agent; Externalize => Transactive” appeared for both conditions 
 

Wilcoxon tests provide evidence of differences in the occurrences of questioning 

sequences between agent conditions (questioning -> transactive; Mpeer = .56, SDpeer = .62; Mexpert 

= 0, SDexpert = 0; adjusted p = .003; transactive (multiple) -> questioning; Mpeer = .56, SDpeer = 

.51; Mexpert = .17, SDexpert = .38; adjusted p = .03). Table 2.5 presents the results. 
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The top sequences for each agent were consistent regardless of the agent student groups 

started with (Appendix 2.4). In groups who started with or switched to the less-knowledgeable-

peer agent during the lesson, the top sequences with this agent primarily involved questioning. In 

comparison, most sequences with the expert agent included transactive and responsive moves. 

These results align with patterns from the overall sample and suggest that randomizing the 

starting agents and switching agents did not substantially impact interaction sequences.  

In sum, the sequences illustrate interesting patterns, such as when groups in the less-

knowledgeable-peer condition posed questions, explained ideas, and posed questions again. Such 

sequences may suggest “quizzing” behaviors, one that may facilitate knowledge construction.  

Discussion 

Designing for Knowledge Construction 

This study explored how student groups demonstrated reasoning, transactive exchange, 

and responsiveness in interaction with one another and with two conversational agents. Claim-

making, externalizing one’s ideas, and responsiveness to the agents were the most frequent 

moves. Findings about students’ responsiveness are noteworthy because student groups in prior 

work tended to ignore learning agents (Kumar et al., 2010). A potential explanation for this 

finding is that the content of the agents’ prompts adapted to group discussions to maintain 

conversation coherence, and thus, responding to the agents may have been less disruptive. 

Consider the following excerpt: 

S6: the fish eat zooplankton 

S6: zooplankton gets eaten by fish 

Kibot: What would happen to other elements in this system if whales decrease?  

S7: if the whales go extinct there will be more fish 
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S6: do sharks eat fish 

S8: why would whales eat fish 

S7: whales eat plankton too 

Here, the students started their concept map by linking fish and zooplankton. The agent kept 

track of those connections and cued “whales”, an element linked to both “fish” and 

“zooplankton”. The conversation flowed naturally to include the target relationships (whales -> 

fish; whales -> zooplankton) and other predators to “fish” such as “sharks”. As another example, 

if after five talk turns following the hint about “whales”, students have not created the intended 

connections, the agent will ask more explicit prompts, e.g., “Would fish increase or decrease if 

there were more whales?” The missing connections are linked to recently created terms in the 

concept map (“fish”), thus maintaining conversation coherence.  

Adaptivity also manifests in agents’ awareness of ongoing group dynamics. The agents 

keep track of each student’s participation rates to engage the least active students, e.g., “S2, help 

me out. Do you agree or disagree with your friends?”. Recognition of group dynamics positions 

agents as ingroup members and reduces users’ potential antagonistic treatment of the agents, 

such as ignoring or abusing the agents (Sebo et al., 2020). 

Furthermore, the combination of visual and verbal cues may have “humanized” the 

agents and made the interactions more engaging (Feine et al., 2019; Go & Sundar, 2019; 

Muresan & Pohl, 2019). The agents assume roles as an expert or a less-knowledgeable peer and 

have human-like visual features such as eyes, expressions, and clothing to reflect these profiles. 

For example, the expert agent wears an “expert” tag on a white coat, while the less-

knowledgeable-peer agent shows dynamic expressions such as confusion and excitement to 

reflect its younger profile (Figure 2.1). These visual cues can be helpful because people tend to 
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reason with anthropomorphized agents in ways they act with humans (Malle et al., 2016; Nass & 

Moon, 2000). Users may subsequently take on responsibilities as a tutor to the less-

knowledgeable-peer agent or a tutee to the expert agent. 

Previous agents in learning domains have mostly focused on conceptual prompts (Heidig 

& Clarebout, 2011; Y. Kim & Baylor, 2016). The agents in this study employ additional social 

verbal cues, including small talk, acknowledgment, uncertainty, and opinion conformity (Table 

2.1). In expressing uncertainty, for instance, the less-knowledgeable-peer agent reveals its 

vulnerability to invite for students’ idea elaboration. Students may be more willing to respond to 

the agents when they recognize the agents’ humanlike characteristics through the social cues and 

position the agents as conversational partners (Feine et al., 2019).  

Questioning Sequences with the Less-Knowledgeable-Peer Agent 

Examination of sequences with high lift values suggests that student groups enacted 

distinct conversational norms with the two agents. Responses to the expert agent were followed 

by transactive exchange, similar to how students might react to a teacher’s prompts. Meanwhile, 

several groups showed “quizzing” behaviors with the less-knowledgeable-peer agent. The 

questions that students raised in interaction with the agents resemble Socratic questioning, which 

aims to probe others’ thinking and determine what is known and not known (Paul & Elder, 

2007). This style of communication has often been adopted by teachers as a form of instructional 

scaffolding to generate students’ exploratory discourse and scientific inquiries (Hogan & 

Pressley, 1997).  

The questioning sequences resemble interactions that support learning in peer tutoring. 

Tutors rely on elaborated explanations and questioning to guide tutees’ thinking (Graesser & 

Person, 1994). Excerpts from the current work illustrate how questioning sequences might 
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involve multiple students, instead of one student’s interactions with the agent. Prior work with 

one-to-one intelligent tutors has employed the learn-through-teaching framework, where students 

iteratively taught and tested CAs (Biswas et al., 2010, 2016; Kinnebrew et al., 2014). These 

patterns can be extended to collaborative settings, where efforts to teach the agent no longer rest 

with an individual. Through these efforts, groups coordinate attention around the same concepts. 

Questioning can benefit student tutors by providing opportunities for tutors to reflect on 

their knowledge and move towards knowledge construction (Berghmans et al., 2013; King et al., 

1998). Excerpt 2 in this study exemplifies complex connections that span across systems 

elements in the concept map. The small number of sequences that contained questioning in this 

study often contained elaborated explanations from the questioners and group members. 

Sustained sharing of queries and explanations contributes to more complex scientific reasoning 

over time (Hogan et al., 1999).  

Currently, the agents only respond to students’ questions with general answers such as 

“I’m not sure. Can someone in the group explain?” to prompt for elaboration. Future iterations 

can introduce a mix of general prompts and responses that contain alternative conceptions to 

engage students in idea elaboration. These prompts can trigger episodes of tutor’s questioning, 

guidance, and feedback, which can enhance tutor’s learning gains (P. A. Cohen et al., 1982; 

Graesser et al., 1995). 

Limitations and Future Directions  

The limitations of this study can guide future investigations. First, analyses were at the 

group instead of individual level. Agent designs may differ with group dynamics and individual 

behaviors (Sebo et al., 2020). In a case study with the same Kibot agents (Study 3), I found that 

groups composed of students with expanding, mixed, and emergent prior science understanding 
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interacted with the agents differently. The emergent group primarily showed responsiveness to 

the expert agent, whereas the expanding group showed more transactive exchange with the less-

knowledgeable-peer agent. Incorporating group and individual dynamics into sequential pattern 

mining would require more complex analyses, such as multilevel models with large samples. 

Future studies can employ these analyses and consider additional variables that may influence 

knowledge construction, such as domain understanding, perceptions of agents, and participation 

tendency. Second, the within-subject design did not allow for linking interaction sequences to 

learning outcomes. Future research can apply between-subject designs to explore the pathways 

between agents, reasoning and transactivity, and learning performance.  

Third, I used timestamps to determine the window size for sequential pattern mining and 

found that the notable sequential patterns were consistent across window sizes. An alternate 

segmentation approach can be based on idea units in the group chats. For example, if one 

segmented a unit around the idea of the food web, we might see longer sequences of claim-

making. However, this approach may also be problematic in this study’s context, because 

students were talking about related connections. Consecutive utterances such as “fish eat 

plankton”, “fish consume kelp”, and “more zooplankton decreases phytoplankton” could be 

treated as three separate idea units or one unit of related links. Thus, future work could 

experiment with other approaches to segment discourse for sequence mining. 

Overall, findings broaden the design space for learning technologies in collaborative 

contexts. The sequences uncovered by this research can be applied towards developing agent 

adaptivity. Future systems can adapt designs to promote appropriate discussion moves and 

sequences, given dynamic learning goals and groups’ knowledge and collaboration states. 
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Furthermore, future work can examine longitudinal interactions with agents to determine 

whether the observed interaction sequences can be sustained, and their implications for learning. 

Conclusion 

This study examines the design of two agent prototypes to facilitate students’ reasoning, 

transactivity, and responsiveness to the agents. Findings illustrate that design tweaks in agents’ 

appearances and linguistic styles can facilitate different discussion sequences, including groups’ 

questioning and explaining to the less-knowledgeable-peer agent. These sequences can promote 

students’ reflection and idea elaboration. As intelligent systems become increasingly prevalent in 

collaborative learning, we need to consider how student groups interact with such systems. This 

work illustrates how embedding humanness in agents’ designs, such as in the form of a less 

knowledgeable peer or an expert, can support this vision. 
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Appendix 
 

Appendix 2.1 
Agent Switching (Halfway through the Lesson) 

 
Notes. The within-subject design switches agents halfway through the activity so that each 
student group interacts with both agents. In entering the conversation, the agents reintroduce the 
learning task so that groups stay on task. The example conversation in the figure illustrates that 
students acknowledge the agent switching (panel A) and are aware of the task (build the concept 
map; panel B). The less-knowledgeable-agent Kibot also guides students back to the task (e.g., 
“Hey I’m wondering, how does kelp influence this ecosystem?”) 
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Appendix 2.2 
Proportions of Discussion Moves for Groups Starting with Less-knowledgeable-peer versus 
Expert Agent 

Code M1 SD1 M2 SD2 Mann-Whitney’s U p adjusted-p 
Interactions with the less-knowledgeable-peer agent 
Reasoning        

Claim .37 .14 .32 .18 162 1 1 
Reasoning .13 .15 .27 .23 136 .78 1 
Questioning .28 .29 .16 .09 98 1 1 

Transactivity        
Externalizing (self’s ideas) .45 .16 .33 .14 162 1 1 
Transactive (prior ideas, friend) .22 .14 .21 .08 153 .78 1 

Responsiveness .25 .17 .24 .14 136 .78 1 
Interactions with the expert agent        
Reasoning        

Claim .41 .22 .30 .19 161 .57 .78 
Reasoning .16 .09 .16 .22 144 .55 .78 
Questioning .34 .41 .19 .19 44 .28 .78 

Transactivity        
Externalizing (self’s ideas) .38 .09 .31 .11 144 .55 .78 
Transactive (prior ideas, friend) .18 .13 .21 .12 153 .78 .78 

Responsiveness .20 .11 .26 .15 105 .77 .78 
Notes. M1 = groups starting with the less-knowledgeable-peer agent, M2 = starting with the expert agent. This table 
shows that there was no difference in the ratio of occurrence for discussion moves in interactions with each agent 
(less knowledgeable peer and expert) between M1 and M2 (i.e., groups that started with either agent condition). 
 
  



 

47 
 

Appendix 2.3 
Robustness Checks: Top 5 Discussion Sequences for Different Window Sizes 

2-minute window 3-minute window 5-minute window 
Less-knowledgeable-peer agent   
Externalize => Transactive Question => Externalize Externalize (multiple) => 

Transactive 
Responsiveness => Transactive Transactive => Responsiveness  Responsiveness => Question 
Question => Externalize; Question Question => Transactive Question => Transactive 
Question => Transactive Externalize (multiple) => 

Transactive 
Externalize => Transactive 

Transactive (multiple) => Question Responsiveness => Transactive Responsiveness => Externalize 
Expert agent   
Question -> Question Responsiveness; Question => 

Question 
Externalize; Transactive => 
Transactive 

Externalize; Responsiveness => 
Transactive 

Externalize; Responsiveness => 
Responsiveness 

Externalize; Transactive => 
Responsiveness 

Externalize => Responsiveness Externalize; Transactive => 
Transactive 

Externalize; Responsiveness => 
Externalize 

Responsiveness (multiple) => 
Transactive 

Externalize (multiple) => 
Transactive 

Externalize; Responsiveness = > 
Transactive 

Externalize => Transactive Responsiveness (multiple) => 
Transactive 

Externalize => Responsiveness; 
Reasoning 

Notes. Sequences are organized by decreasing lift values (minimum lift values >1). 
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Appendix 2.4 
Top Sequences for Groups Starting with Less-knowledgeable-peer versus Expert Agent 

Interactions with the less-knowledgeable-peer (LKP) agent 
Start with LKP agent Start with expert agent and switch to LKP agent 
1. Question; Externalize => Question 
2. Question => Transactive 
3. Responsiveness => Reasoning 
4. Transactive (multiple) => Question 
5. Reasoning; Responsiveness => Transactive 

1. Responsiveness; Externalize => Transactive 
2. Transactive (multiple) => Question 
3. Question; Externalize => Question 
4. Responsiveness; Externalize => Question 
5. Question (multiple) => Externalize 

Interactions with the expert agent 
Start with LKP agent and switch to expert Start with expert agent 
1. Responsiveness; Externalize => Transactive 
2. Externalize; Responsiveness => Transactive 
3. Transactive => Responsiveness 
4. Externalize; Transactive => Responsiveness 
5. Responsiveness (multiple) => Transactive 

1. Externalize => Externalize 
2. Externalize => Transactive 
3. Externalize; Reasoning => Responsiveness 
4. Transactive => Responsiveness 
5. Externalize; Transactive; Responsiveness => Transactive 

Notes. Top 5 sequences per group ordered by highest lift (minimum threshold of 1), support (minimum threshold of 
.25), and confidence values (minimum threshold of .5). Lift = probability of sequence occurrences, compared to 
chance. Support = proportion of occurrences. Confidence = likelihood of pattern B to follow A, once A occurred.  
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CHAPTER 3 CONVERSATIONAL REPAIRS WITH AGENTS 
 

An earlier version of this chapter will appear in: 
Nguyen, H. (June, 2022). Learners’ Reactions to Chatbot Communication Breakdowns: 

Insights into Fostering Learning. In 2nd Annual Meeting of the International Society of 
the Learning Sciences. (Online). International Society of the Learning Sciences.  

 
Abstract 

Text-based conversational agents (i.e., chatbots) can promote productive discussions and 

learning. However, agents sometimes fail to interpret users’ intent, leading to communication 

breakdowns. To alleviate these issues, researchers have experimented with agent designs that 

may increase users’ willingness to fix communication breakdowns. This study explores the 

affordances of varying agent designs (as a less knowledgeable peer versus an expert) to prompt 

learners’ strategies to repair breakdowns. Data sources drew from the chat logs of 18 groups (52 

high school learners) in science discussions with one another and with the agents. Results 

suggest that groups rephrased and provided explanations during communication breakdowns 

with the peer agent more often than the expert version. There existed a positive association 

between how often groups explained to the agents during breakdowns and indicators of deeper 

learning in the group chats. Findings illustrate the affordances of designs that enact certain 

communication strategies—ones that also enrich learning. 
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Introduction 

Text-based pedagogical agents (i.e., chatbots) have shown promise in facilitating 

discussions to promote productive talk moves and enrich learning (Dyke, Howley, et al., 2013; S. 

Kim et al., 2020). These systems apply natural language processing of textual and speech input to 

provide scaffolds for idea articulation, knowledge construction, and argumentation (Y. Kim & 

Baylor, 2016). Despite their promises, researchers have documented cases where users ignore the 

agents’ hints or abandon the conversations (Kumar et al., 2010). Communication breakdowns are 

a potential reason for such disengagement. Breakdowns occur when the agents fail to interpret the 

users’ intent and respond appropriately. Breakdowns can reduce users’ trust in the systems and 

willingness to interact with agents (Chaves & Gerosa, 2019).  

To alleviate breakdowns, researchers have explored ways to improve the agents’ natural 

language understanding and designed responses to increase users’ willingness to correct the agents 

when the conversations fail (Adamson et al., 2014; Ashktorab et al., 2019; Engelhardt et al., 2017; 

M. K. Lee et al., 2010). Another strategy is to develop agent designs with varied personalities and 

characteristics to prime users’ expectations for social interactions (Biswas et al., 2016; Chaves & 

Gerosa, 2019; Y. Kim & Baylor, 2016; S. Lee et al., 2019).  

I built on this prior work to develop two agent designs (a less knowledgeable peer and an 

expert). The less-knowledgeable-peer agent enacted a learn-by-teaching paradigm, where learners 

enhanced knowledge through idea explanation to the agent (Biswas et al., 2016). Meanwhile, the 

expert persona resembled an authority figure to monitor the discussion (Y. Kim, 2007; Y. Kim & 

Baylor, 2016). The agents were integrated into a group modeling activity as part of a high school 

environmental science project. The agents scaffolded learners to collaboratively reason through 

connections within a marine ecosystem (described further in the Methodology section). As learners 
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chatted with one another and responded to the agents, breakdowns might happen when the agents 

could not parse the chat intent correctly. For example, in response to clarification requests from 

learners (“What do you mean?”), the agents might repeat the main learning task instead of 

clarifying a prior utterance. 

In this study, I explored the strategies that learners used when such breakdowns occurred. 

I further examined how these strategies differed in group interactions with the two agent designs. 

Understanding how learner groups approached communication breakdowns with the different 

designs provides insights for agent development to sustain learner engagement and enrich learning.  

Background 

Human-agent Collaboration in Learning Interactions 

The design of the agents in this study is guided by knowledge building frameworks, which 

propose that learners construct increasingly coherent understanding through idea sharing and 

critiques of group artifacts (Scardamalia & Bereiter, 1993). Agents can serve as facilitators of 

knowledge building. They can prompt learners who are less active to voice opinions, identify areas 

of misunderstanding, and ask for elaboration of peers’ ideas to advance the group’s knowledge. 

These discourse practices have been linked to enhanced learning (Dyke, Adamson, et al., 2013; S. 

Kim et al., 2020). In previous work (Study 1), I found that learners were overall responsive to 

agents’ prompts, and these prompts advanced the group discussion towards idea elaboration. 

Agents can also directly collaborate with learners, such as when agents offer ideas and 

learners critique the agent’s understanding, pose questions, or provide explanations to the agents. 

Research on one-on-one interactions between a student and a pedagogical agent suggests that such 

human-agent interactions can contribute to learning (Biswas et al., 2016; Graesser, 2016). As an 

example, Biswas and colleagues (2016) found that learners in middle school classrooms deepened 
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learning from interactions with a less knowledgeable tutee agent, where the learners iteratively 

taught and quizzed the agent to gauge their understanding.  

In sum, collaboration in agent-facilitated group discussions can occur through both human-

human and human-agent interactions. Prior research has focused on questions such as how agents 

facilitate interactions among human users or how individuals reacted to the agents in one-on-one 

exchange. However, to avoid situations where groups abuse or ignore the agents (Kumar et al., 

2010), it is important to examine group-agent collaboration, particularly how groups position the 

agents in knowledge building processes. The current study taps into this question, with particular 

regards to how groups react to breakdowns in student-agent communication. 

Breakdowns and User Repair Strategies 

Despite their promises, agents can encounter breakdowns, when the agents cannot 

comprehend the language interactions in users’ input and fail to complete the expected tasks (Feine 

et al., 2019; Følstad et al., 2018; Gnewuch et al., 2017). Breakdowns can have a detrimental impact 

on users’ interactions with the agents. Users may reduce their trust in the agents, become less 

willing to continue using them, or abandon the tasks altogether (Luger & Sellen, 2016). 

Breakdowns can worsen issues already observed in interactions between student groups and the 

agents, such as when groups ignore the agent’s hints (Kumar et al., 2010). 

However, breakdowns also provide opportunities for learners to reflect on gaps in their 

understanding and engage in knowledge building (Roscoe & Chi, 2007). When an agent 

misinterprets an utterance because it represents a conceptual misunderstanding that the agent does 

not recognize, learners can self-repair the misunderstanding or turn to others in the group to co-

construct more coherent explanations. Researchers have documented a range of repair strategies 

in human-human and human-computer interactions (Ashktorab et al., 2019; Brennan, 1998; Clark 
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& Brennan, 1991; Yu et al., 2016). For instance, the speakers (i.e., users) can initiate repairs by 

repeating ideas, rephrasing the utterances, or explaining their intent (Clark & Brennan, 1991).  

These repair strategies have different implications for learning. Simply repeating or 

paraphrasing ideas do not produce new knowledge (Teasley, 1995). However, learners enrich 

understanding through constructive activities such as self-explaining or explaining to others (Chi, 

2000; Davis, 2010; Roscoe & Chi, 2007). These activities encourage learners to collaboratively 

integrate new knowledge with old knowledge and link concepts from different sources, thus 

repairing existing knowledge and broadening understanding (Chi, 2009; Davis, 2010). These 

knowledge creation processes can make individuals’ and groups’ knowledge more structured. 

Repair Strategies and Learning Implications for Systems Thinking 

Explaining ideas can enrich systems thinking, defined as the ability to recognize and 

explain structures and relationships within complex systems (Snapir et al., 2017). Systems thinking 

is an important concept in the curricular context of the current study. Students cannot develop a 

comprehensive understanding of the local marine ecosystem, without understanding how 

components within and across this system interact and how these interactions influence the 

system’s functions (Yoon et al., 2016).  

To track students’ development of systems thinking, researchers have further broken down 

this concept into different categories, such as Components, Mechanisms, and Phenomena (Hmelo-

Silver et al., 2017; Snapir et al., 2017). Components denote a system’s elements, such as fish and 

kelp forest in a marine ecosystem. Mechanisms describe the causal links among components, such 

as how overfishing reduces fish populations. Phenomena capture the central patterns that students 

are trying to explain. An example phenomenon is the increase in biodiversity as fishing regulation 

becomes effective. The categories of Components, Mechanisms, and Phenomena can provide 
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insights into the sophistication of systems thinking. Whereas emergent learners tend to emphasize 

separate components, systems experts more often focus on the coherent links between components, 

mechanisms, and phenomena when discussing systems (Hmelo-Silver & Pfeffer, 2004). 

Students can enrich their systems thinking through self-explaining the relations within a 

system or collaboratively explaining ideas in group discussions (Jacobson & Wilensky, 2006). 

Explanations may invite students to articulate the components and mechanisms of the systems, 

incorporate data and scientific phenomena, and iteratively refine their assumptions towards a more 

coherent understanding (Hogan et al., 1999; Jordan et al., 2013; Nguyen & Santagata, 2020; 

Scardamalia & Bereiter, 1993). When verbally prompted for explanations, students who are 

describing how a system functions generally increase their reasoning about mechanisms and 

processes, instead of just focusing on components (Danish et al., 2017). 

Agent Designs to Facilitate User-initiated Repairs 

It follows that the conversational agents—as the listeners—can facilitate certain repair 

strategies that may promote explanations and other student talk moves conducive to learning. 

Listeners can request that the user rephrase their utterances (e.g., “I don’t understand. Can you 

rephrase?”), provide options (e.g., “Here are what I can help you with: Pick A, B, or C”), apologize 

(e.g., “Sorry, I don’t understand”), and ask for feedback (e.g., “My algorithm classifies this as food 

because it contains the word bread. Did you mean something else?”; Ashktorab et al., 2019; 

Engelhardt et al., 2017; M. K. Lee et al., 2010). The assumption behind these strategies is that 

humanlike, social behaviors such as apologies and feedback requests would make users more 

tolerant of breakdowns and more likely to engage in user-initiated repairs (Engelhardt et al., 2017).  

Researchers have experimented with varying personas in appearances, personalities, and 

roles to adapt to users’ underlying expectations and enact social norms in interactions with 
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technologies like agents, voice interfaces, or robots (Chen et al., 2020; Kim, 2007; Kim & Baylor, 

2016; M. K. Lee et al., 2010; Rosenberg-Kima et al., 2008). For example, in a study on human-

robot interactions, M. K. Lee et al. (2010) found that users who perceived human-robot interactions 

as relational preferred apologetic repairs. Meanwhile, those who saw the interactions as 

transactional preferred compensation in the form of a coupon or a refund. This research illustrates 

that minimal design cues can prompt users to enact social interactions similar to how they may 

treat a human counterpart. Thus, agent designs to enact norms such as sociability or responsiveness 

might facilitate different user-initiated repair strategies.  

Research Questions 

In this study, I drew from research on the exchange between individual learners and 

pedagogical agents (Biswas et al., 2010, 2016; Kim & Baylor, 2016) to explore collaboration with 

a less knowledgeable peer versus an expert agent. The less-knowledge-peer version facilitates 

more idea articulation, explanation, and knowledge regulation (Biswas et al., 2010; Graesser, 

2016). Meanwhile, learners might respond differently to an expert profile that is assumed to 

possess a higher level of expertise (Graesser, 2016). The following questions guided the research: 

RQ1. What reactions do learner groups have when the agent misunderstands their intent 

or fails to address the intents sufficiently? How do these reactions correlate with evidence of 

groups’ learning? 

RQ2. To what extent do learner groups’ reactions vary with different agent designs?  

Methodology 

This study presents a quantitative content analysis of group-agent interactions. I compared 

the differences in repair strategies between agent designs and examined the correlations between 

the occurrences of these strategies and group learning. 
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Study Context 

The study took place within a high school science curriculum in the southwestern United 

States. The program engaged learners in field exploration and modeling to understand how 

restrictions on human impacts influenced local, coastal habitats. In groups of two or three, learners 

built a concept map that explained how regulations within a marine protected area might impact 

biodiversity. To deepen learners’ systems thinking, the agents (nicknamed Kibot) were introduced 

into the activity to provide nudges around Components, Mechanisms, and Phenomena (Hmelo-

Silver et al., 2017; Snapir et al., 2017).  

Interactions with Kibot occurred early in the curriculum. Learners watched an introductory 

video about the marine protected area (MPA) and chatted on a Web interface about the components 

and mechanisms to explain biodiversity in the MPA. As the chat unfolded, Kibot’s backend parsed 

the messages into relationship pairs to form a concept map. For instance, “fish eat plankton” would 

be parsed as {fish; plankton} and form a link between fish and plankton on the concept map 

(Figure 3.1). The agents kept track of the evolving concept maps to provide nudges for learner 

groups in the same chat window.  

The current research employed a within-subject design, where learner groups talked to both 

agent versions. Groups randomly started with one prototype (less knowledgeable peer or expert) 

and switched halfway during a class period. The order of interaction was randomized to reduce 

practice effect when learners interacted with the second agent. Each conversation per agent lasted 

12.5 minutes on average. 

The agents facilitated systems thinking elements through an array of scaffolds that have 

shown promise in collaborative discussions (Dyke, Adamson, et al., 2013; Dyke, Howley, et al., 

2013; Howley et al., 2013). As learners worked in groups to construct a concept map of the marine 
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ecosystem, Kibot asked them to elaborate on ideas (e.g., “Can you explain more?”), provided direct 

prompts for additional mechanisms (e.g., “If plastic pollution increases, what would happen to the 

habitat?”), and nudged learners to build on peers’ ideas (e.g., “Do you agree with Erin? Why or 

why not?”). The prompts adapted to the current state of the groups’ concept maps by parsing 

learners’ chats in real time and providing hints that aligned with an underlying expert concept map. 

I outline details for the algorithm behind Kibot and the conceptual nudges in related work (Study 

1). Of interest in this study is how these scaffolds varied with different agent designs. The 

underlying purposes of the agents’ prompts (e.g., to nudge for transactive exchange) were similar, 

but the speeches and appearances of the agents varied. 

The less knowledgeable peer agent (panel C, Figure 3.1) resembled a peer with equivalent 

or less knowledge. This agent introduced itself as someone who had never been to the park and 

would benefit from any knowledge that the learners could provide. An example prompt for 

students’ elaboration is “I’m still learning. Can you explain to me what you meant?” Similar to 

previous work with one-on-one pedagogical agents (Y. Kim & Baylor, 2006), the agent embraced 

different expressions, such as holding a lightbulb when thinking or frowning when confused. 

The expert agent (panel B, Figure 3.1) introduced itself as someone with scientific expertise. 

This version used more formal language in its questioning and prompting, and held the same 

expression throughout the conversation. To nudge students for elaboration or linking concepts in 

their concept maps, the expert agent framed the task as “checking to make sure you understand” or 

“show me what you know”. Because the expert agent was portrayed as someone with expertise, 

learners might be more likely to turn to this agent and abuse its hints. To balance interactions 

between the peer and expert agents, when learners asked the expert agent for hints, I programmed 

the reply to be “Ah, that’s a simple question. Why don’t we discuss in groups and answer it by 
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yourself?” Meanwhile, the peer agent would respond with statements such as “I don’t know. Can 

you find out and tell me?” In other words, the two agents provided equivalent prompts.  

Figure 3.1 provides illustrations of the concept maps and the agent designs, and features an 

instance of communication breakdowns where the agents cannot parse the link between regulation 

and overfishing in the beginning (chat by student “dragonslayer”). Students attempted to alert the 

agent (calling “Kibot?”) and explain the purpose of the protected area (reducing overfishing to 

protect the fish populations). As another example of communication breakdowns, students may 

mistakenly describe the direction of a connection (e.g., stating that fossil fuel burning decreases 

CO2 instead of increasing CO2). In this case, the agents might show the correct relationship 

(“increase”), and students might attempt to reconcile the discrepancy by repeating their utterances. 

Participants and Data Sources 

Participants in Study 2 were the same as Study 1. Participants included 18 groups of two 

or three (52 learners) from two ninth-grade classes taught by the same science teacher in a public 

high school. About half of the students were White and half were Latinx. The school enacted a 

one-to-one laptop policy. Learners had no prior experience with learning agents but had experience 

using technology to build concept maps. Because of the COVID-19 pandemic, learners were 

maintaining distance and primarily relying on the chat windows in group discussions. 

Figure 3.1 
Kibot Interface and Example Talks. Notes: Breakdowns Happened in the First 3 Lines 
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Data sources came from the group chat logs. The analyses were at the group level 

(involving 2-3 learners) due to the small number of utterances for individual learners. Analyses of 

chats at this level also allowed us to link group discourse to the concept maps they co-constructed. 

Analytical Procedures 

To answer RQ1 about communication repair strategies, I analyzed the chat data in two 

iterations. In the first iteration, I manually identified instances of communication breakdowns 

where the components or mechanisms in the group chats did not appear in the system-generated 

concept maps, even though those mechanisms would be conceptually correct. These instances 

would indicate circumstances where the agent’s natural language understanding did not perform 

satisfactorily. During such circumstances, after five talk turns where the agent could not parse 

users’ chats, the agents would prompt the users to provide further information, with statements 

such as “I didn’t catch that. Can you explain to me what you mean?” (the expert version), or “I’m 

still learning. Can you explain to me what you mean?” (the less-knowledgeable-peer version). 

These agents’ utterances provided another way to identify when conversational breakdowns 

happened (e.g., 5 chat turns before agents’ prompts for further information).  

Before coding, to avoid researchers’ bias, I removed the agent conditions from the chat 

(e.g., marking a chat as Group 1/ Session 1 instead of Group 1/ Expert). I drew on the extant 

research in interactions with customer service agents to identify additional codes for user reactions 

to agents’ failures: reframing to continue the conversation and quitting (Kvale et al., 2019). Within 

each category, there were finer-grained reactions, such as repeating, rephrasing, or rephrasing 

and explaining. I coded 5% of the data to validate the initial categories. In this stage, I also 

identified additional codes, such as reframing by imitating a prior agent’s nudge or expressing 

frustration. The former code suggests that learners adopt the agent’s scaffolds as models of 
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productive talk (Dyke, Adamson, et al., 2013), while the latter indicates instances where 

breakdowns hinder student-agent interactions (Feine et al., 2019; Kumar et al., 2010).  

In the second iteration, I coded 20% of the data to examine code stability. To establish 

inter-rater reliability, I trained a second coder on the coding scheme. The coders separately coded 

the same data subset and achieved an acceptable agreement with the author’s codes (Cohen’s 𝜅 = 

.77). I coded the rest of the data. Table 3.1 presents the codebook. 

Table 3.1  
Coding Scheme for Reaction to Agent’s Communication Breakdowns 

Codes Definitions Examples 
Repeat (reframe) Repeat a prior utterance S1: Overfishing decreases fish. 

S2: Hello? Overfishing decreases fish. 
Rephrase (reframe) Reframe an utterance by 

changing the wording or adding 
words (without changing overall 
meaning) 

S1: Overfishing decreases fish. 
S1: When humans hunt fish and fish too much, 
the fish population decreases. 

Rephrase by 
imitating the agent’s 
talk (reframe) 

Reframe an utterance using 
similar sentence structures to the 
agents’ nudges 

Kibot: S2, what would happen if we overfish? 
S1: Overfishing decreases fish. 
S3: What would happen to the fish populations if 
we overfish? 

Rephrase and explain 
(reframe) 

Provide additional explanations 
to clarify intent 

S1: Overfishing decreases fish. 
S1: When we overfish, fish populations may not 
have as much time to reproduce. So the fish 
population decreases overall. 

Frustration (quit) Express frustration at the 
breakdowns 

S1: Urgh, why doesn’t it connect overfishing to 
fish? OR S2: Kibot you’re dumb. 

Change topics (quit, 
switch subject) 

Switch to a new idea unrelated 
to the current ideas 

S1: Overfishing decreases fish. 
S2: Phytoplankton increases zooplankton. 

 
Table 3.2  
Coding Scheme for Systems Thinking in Groups’ Chat 

Codes Definitions Examples 
C-C Identify relationship between components Fish lives in coral reefs.  
C-M Identify mechanisms by elaborating on 

connections between components 
Kelp relies on photosynthesis.  

C-P Identify structures in relation to phenomena Regulation reduces overfishing.  
C-M-P Identify components, links among them, and 

connections to phenomena 
Regulation reduces overfishing. If there is less 
overfishing, there will be more biodiversity.  

 
To link repair strategies to group learning, I analyzed the chat data for evidence of systems 

thinking. The chat data evidenced group knowledge construction because all learners were 

providing systems thinking statements within the chat sessions, with small variations between 

individuals. The data here included all students’ interactions with the agents, instead of just 
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utterances related to conversational breakdowns. Each group had two artifacts for analysis: one 

iteratively formed from chats with the less knowledgeable peer agent, and one with the expert 

version. Utterances were coded for Components, Mechanisms, and Phenomena, building on prior 

work with similar contexts around biodiversity (e.g., Hmelo-Silver et al., 2017). 

The codes included Component-Component (C-C) to suggest simple, structural links 

between two systems elements. A statement coded as Component-Mechanism (C-M) or 

Component-Phenomena (C-P) would indicate links between components and the underlying 

mechanisms or phenomena of biodiversity, respectively (Table 3.2). An utterance that shows a 

coherent link among Components, Mechanisms, and Phenomena (C-M-P; as opposed to 

mentioning only components) would indicate attention to macro-level output and deeper systems 

thinking. To establish inter-rater reliability, the same coders from RQ1 coded all data separately. 

We reached a high agreement (Cohen’s 𝜅 = .90) and resolved differences through discussion. 

To answer RQ1 about how learners reacted to communication breakdowns, I calculated the 

frequencies of each repair strategy. I then linked the frequencies of repair strategies to counts of 

systems thinking statements by calculating Pearson’s correlations between the repair strategy 

frequencies and the counts of C-C, C-M, C-P, and C-M-P connections.  

To understand how the repair strategies differed between agent conditions (RQ2), I used 

the Wilcoxon signed-rank tests (for paired observations) to compare the repair strategies and 

counts of systems thinking codes between agent conditions. The Wilcoxon test was more 

appropriate when the data were non-normal. Briefly speaking, this test ranks the differences 

between pairs of observations for the same subject (i.e., learner group), and the test statistic (V) 

denotes the sum of ranks assigned to positive differences. To account for multiple comparisons, I 

used the Benjamini-Hochberg procedure to calculate the adjusted p values.  
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Results 

RQ1: Learners’ Repair Strategies are Correlated with Sophisticated Systems Thinking  

Overall, 15% of the sessions included an attempt to fix the communication (n = 271 out of 

1,764 total messages). The most frequent repair strategies were rephrasing (n = 124; 46%), 

followed by repeating (n = 44; 16%) and providing explanations (n = 43; 16%). In comparison, 

there were few instances of imitating the agent’s talks (n = 21; 8%), switching topics (n = 26; 

10%), and frustration (n = 13; 5%). For example, to reframe a statement such as “sea urchins bring 

down the population of kelp”, students might say “sea urchins are bad for kelp”. Meanwhile, to 

provide explanations for the same statement, students might add that “kelp is the food source of 

urchins”. To examine the appropriateness of the group-level analyses, I further checked the 

proportions of repair moves that involved an individual versus multiple students. Thirty-eight 

percent of the repairs happened when multiple individuals joined in to correct the agents, indicating 

that exchange with the agents involved groups as well as individuals. 

Consistent with prior frameworks (Chi, 2009; Davis, 2010), I found that group interactions 

that included a higher number of explanation repairs had more C-M-P statements, or statements 

with coherence among Components, Mechanisms, and Phenomena, r(34) = .53, p = .01. The 

following excerpt can help to contextualize the finding. 

S1: ocean acidification decreases biodiversity. 

S1: does ocean acidification decrease biodiversity? 

S1: how do I 

Kibot (peer): I’m learning so much from you! If there is something I did not catch, you can 

explain it to me? 

S2: ocean aci [acidification] decreases biodiversity because it kills a lot of species 
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In this excerpt, the students S1 and S2 were trying to build a connection between ocean 

acidification and biodiversity. Because this link did not exist in the underlying expert map, Kibot 

did not parse the connection correctly. S1 attempted to reframe the connection (from a statement 

in the first line to a question in the second line), while S2 provided an explanation for this link in 

response to Kibot (“… because it kills a lot of species”). This excerpt illustrates how explaining 

behaviors serve as a form of constructive knowledge building, where learners link the components 

and bring in additional reasoning to make their ideas more coherent. 

To examine whether explaining behaviors only occurred in conversation breakdowns or 

throughout the interactions with the agents, I conducted a qualitative examination of the chat logs 

for learners in groups with a high number of C-M-P statements. I observed that learners in these 

groups used explanations throughout and not just when the agent failed to respond. This suggests 

that groups that employed explanations to discuss systems’ components, mechanisms, and 

phenomena throughout their interactions might have also used the same strategy to repair 

breakdowns with the agents. 

RQ2: Groups Used more Reframing and Explaining in Response to the Peer Agent 

To examine the differences between agent conditions, I ran a series of Wilcoxon signed-

rank tests to compare how the counts of repair strategies differed when the same learner groups 

interacted with the peer versus the expert agents (Table 3.3). Groups used more reframing and 

explaining in interaction with the less-knowledgeable-peer agent, compared to the expert agent 

(reframing: M expert = 1.50, SD = 1.54; M peer = 4.09, SD = 3.60, p = .01; explaining: M expert 

= .80, SD = 1.67; M peer = 1.17; SD = 1.06, p = .02). This may indicate a higher tolerance for the 

less-knowledgeable-peer agent’s mistakes and willingness to correct conversational breakdowns, 

compared to the expert agent. 



 

64 
 

Next, I compared the counts of systems thinking statements (C-C, C-M, C-P, or C-M-P) 

in interactions with the agents throughout the group conversations. There were more statements 

that connected Components-Mechanisms-Phenomena (C-M-P) in interactions with the less 

knowledgeable peer version than with the expert agent (M expert = 1.73; SD = 2.10; M peer = 

3.36; SD = 1.75, p < .01). 

These findings echo results from RQ1 about the positive correlation between explaining 

and evidence of systems thinking. Groups might have used more explanations in interactions with 

the less knowledgeable peer agent, and such explanations were correlated with a higher number of 

complex systems thinking statements. 

Table 3.3 
Repair Strategies Within Groups Within a Chat Session 

Code Expert  Peer     
 M SD M SD V p Adjusted p 

Reframe         
Repeat .95 1.32 1.09 1.38 218 .76 .86 
Rephrase 1.50 1.54 4.09 3.60 130 .01* .045* 
Imitate .65 .75 .35 .57 280 .16 .38 
Explain .80 1.67 1.17 1.06 142 .02* .045* 

Frustration .30 .73 .30 .88 235 .86 .86 
Switch topics .70 1.17 .52 .67 221 .81 .86 
Notes. * p < .05; ** p < .01; *** p < .001. 
 

Discussion 

Repair Strategies Can Enrich Learning 

Failure to respond to user intent and maintain dialogues is a common challenge that may 

hinder user engagement and trust (Kvale et al., 2019; Luger & Sellen, 2016). The low abandonment 

rate in the current work is thus encouraging, with evidence that learner groups most often 

rephrased, repeated, and elaborated on their ideas.  

Overall, I found that student groups most often employed reframing and repeating prior 

utterances to repair breakdowns with the agents. These behaviors are also observed in the usage of 

voice interfaces (Myers et al., 2018). However, repeating information may not adequately promote 
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learning by itself (Teasley, 1995). Findings thus raise questions about how we can design agents 

and their responses to encourage repair strategies that are more conducive to learning. Prompting 

for users’ explanations is one strategy that has proven effective (Kvale et al., 2019). Other studies 

have also explored the utility of rewards (M. K. Lee et al., 2010) or increasing feedback 

transparency by showing the underlying agent’s algorithms (Ashktorab et al., 2019). These design 

ideas offer promising ground for future research in collaborative learning. 

Additionally, I found a positive correlation between providing explanations during 

communication breakdowns and higher-level systems thinking throughout the group interactions. 

This finding illuminates how explaining to the agents to clarify misunderstanding can offer 

learners the opportunities to reason about systems concepts, particularly probing into the 

mechanisms they have not thought about (Danish et al., 2017). These processes can contribute to 

deeper learning by prompting individuals to identify gaps in their knowledge (Chi, 2009; Jordan 

et al., 2013). Such processes also help to make systems thinking more coherent, building towards 

a hierarchical understanding of visible and hidden processes instead of simple, linear links among 

components (Jordan et al., 2013; Snapir et al., 2017). 

Explanations can be either self-initiated or part of a group’s knowledge building efforts. In 

these instances, the interactions extend from one-to-one (i.e., agent and an individual learner) and 

human-human exchange (i.e., group discussion) to interactive group-computer knowledge 

building. These findings contribute to the notion of human-AI collaboration to consider the 

interplay between an AI agent (the agent) and multiple group members, where each party takes 

action in lieu of the responses from their partners. Positioning the agents as conversational partners 

can broaden the design scope of their appearances and dialogues. For example, in addition to 
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giving nudges for the articulation of concepts and learner participation, the agents can also foster 

relationships with learner groups and contribute to constructing groups’ knowledge artifacts. 

Agent Designs Foster Different Repair Strategies 

Conversational breakdowns are common due to the complex nature of human language. In 

response, researchers have developed language processing pipelines and responsive agent designs 

to increase users’ tolerance of and willingness to continue engaging with the technology 

(Ashktorab et al., 2019; Chaves & Gerosa, 2019; Yu et al., 2016). The current work examined the 

affordances of design tweaks in agents’ appearances and linguistic styles to facilitate different 

repair strategies. 

It is possible that if learners were too focused on fixing their exchange with the agents, they 

would miss opportunities to develop their concept maps and deepen systems thinking. For this, I 

compared the counts of systems thinking statements in the overall groups’ chat logs. Within 

groups, the conversations with the two agent designs did not differ significantly in the number of 

links between Components and Mechanisms or Components and Phenomena. However, 

conversations between agents differed in the counts of Components, Mechanisms, and Phenomena 

statements, suggesting more complex systems thinking with the less knowledgeable peer agent.  

These findings can be linked to the learn-by-teaching paradigm, which creates 

opportunities for learners to seek information to teach an agent and identify gaps in their 

knowledge through testing the agent (Biswas et al., 2010). Prior work has found that a learn-by-

teaching agent can promote systems learning more than an expert agent that provides feedback 

(Biswas et al., 2016). Findings from the current study echo this past literature and illustrate that 

unintentional moments of conversational breakdowns are not necessarily detrimental to learning. 
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These moments can support idea elaboration and knowledge construction, if the agent’s language 

and designs can prime learners for certain cues, such as taking on the role of an explainer.  

Limitations & Future Work 

The limitations of the current study can provide directions for future work. First, due to the 

small sample size, analyses were for groups and not at the individual level. While these analyses 

align with the theoretical framework for knowledge building and co-evolution of group idea 

artifacts (Scardamalia & Bereiter, 1993), future work can examine the relations between repair 

strategies and learning artifacts for individuals and include covariates such as learner 

demographics and baseline understanding. Such analyses can reveal the extent to which repair 

strategies and learning outcomes differ for different student groups.  

Analyses can also explore the pathways between agent condition, repair strategies, and 

evidence of enhanced learning. Follow-up work can explore the interplay between these variables 

in groups with mixed preferences. For instance, what would learning look like in groups where 

one individual focuses on providing explanations to the agents, while others just ignore it?   

Second, the interactions between learner groups and the agents were constrained within the 

agent designs and the brief time of one class period. It is possible that if conversational breakdowns 

persist in extended interactions, learners may show different behaviors, such as more frustration 

rather than attempting to fix the interactions. Replication studies that vary the length of agent 

interactions, student populations, subject matters, or agent designs (beyond peer and expert 

personalities) can help to explain how repair strategies may vary with different study settings. 

Conclusion 

In this study, I explored the strategies that learner groups utilized to fix communication 

breakdowns with two agents in science learning domains. Findings highlight the positive link 
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between providing explanations and deeper systems thinking. I found that groups varied in 

interactions with the agent designs. They provided more reframing and explaining to the less 

knowledgeable peer agent, compared to the expert agent. These findings suggest that 

communication strategies are related to the agents’ characteristics, particularly if such designs can 

prime learners for social interactions. Results illustrate affordances of learning technology designs 

to engage learners to explain and co-construct knowledge, even during conversational breakdowns 

with the technology. They serve as a starting point for future work on the interactions of designs, 

user preferences, and learning. 
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Abstract 

Conversational agents—dialogue systems that provide learning support to students in real 

time—have shown promise in facilitating science discussions. To enact conversation norms, the 

appearances, personalities, or tones of the agents often resemble personas that students are 

familiar with, such as peers or mentors. This study uses epistemic network analysis (ENA) to 

explore how students interacted with two agent designs, a less knowledgeable peer and an expert, 

in collaborative settings. ENA visualizes co-occurring discussion moves in student interactions 

as networks and compares the differences in discussion networks between the two agents. Data 

came from the chat logs of three student groups with emergent, mixed, and expanding prior 

domain knowledge. The groups interacted with both prototypes. The chat logs received 

qualitative codes for discussion types, including claim-making, reasoning, building on prior 

ideas, and responsiveness to the agents. ENA visualized the differences in discussions between 

groups and between the agent conditions. Overall, the expanding groups engaged in more claim-

making in tandem with building on prior ideas when interacting with the less knowledgeable 

peer agent, compared to the expert agent. Meanwhile, the emergent group showed more 

syntheses of previous ideas when responding to the expert agent. Findings illuminate the design 

space for adapting agent designs to group settings to facilitate productive exchange, for example, 

fading scaffolds in groups with higher levels of prior knowledge. 
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Introduction 

A fundamental challenge in science education in the United States is the promotion of 

sustained interest and participation in scientific practices (Zacharia & Barton, 2004). Engaging in 

collaborative discussion offers ways for students to build on the knowledge of others, gain 

agency, and develop interest in science (Hoadley & Kilner, 2005; Scardamalia & Bereiter, 1993; 

Stahl et al., 2014). Conversational agents such as the text-based chatbots in this study have 

shown particular promise in facilitating discussion (Dyke et al., 2013; Kumar et al., 2011; Tegos 

& Demtriadis, 2017). These agents use natural language understanding of text and speech to 

provide suggestions that enrich idea generation, argumentation, and conceptual knowledge. 

A key goal in designing conversational agents is to make them more conducive to 

discussion and subsequent learning (Kim & Baylor, 2016; Seering et al., 2019; Walker et al., 

2014). The agent’s appearances, tones, and gestures may enact human characteristics such as 

friendliness, competence, or sociability, to prime users to demonstrate conversational norms as if 

they were interacting with human partners (Moon & Nass, 1996; Nass et al., 1994). Agents can 

adopt the appearance and lingo of a mentor, teacher, or peer in educational contexts to simulate 

classroom norms (Kim & Baylor, 2006, 2016; Graesser, 2016; Liew et al., 2013). Learners with 

emergent understanding may seek help from a mentor agent, whereas learners with expanding 

knowledge may deepen their knowledge through giving help to a peer agent (Graesser, 2016). 

However, considerations of agent designs have mostly been applied to individual 

interactions between a student and an agent and not to collaborative contexts. In the latter case, 

students’ interactions with the agents may vary with group dynamics (Oliveira & Sadler, 2008). 

This is because the hints and questions from the agents may get ignored in groups where 

elaboration is not the norm (Kumar et al., 2011). A factor that may influence such group 
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dynamics is knowledge composition (Saleh et al., 2005; Webb & Farivar, 1994). For example, 

students with emerging or average knowledge may not participate as much when the 

conversation is dominated by peers with expanding knowledge. 

The current case study explores how students’ interactions with conversational agents 

vary in three student groups of emergent, mixed, and expanding prior knowledge within a high 

school science curriculum. The group classification is based on students’ pretest of science 

domain: emergent (all three students scored below average), mixed (at least one above average), 

and expanding (all above average). This exploratory study serves to illuminate the dynamics in 

discussion with an agent, and not to recommend a way to group students based on baseline 

understanding. I draw from prior agent designs in individual tutoring settings to test two 

prototypes: a less knowledgeable peer and an expert agent (Graesser, 2016; Kim & Baylor, 

2016). In a within-subject design, student groups (each consisting of two to three 9th graders) 

interacted with both prototypes in randomized orders, as they built a concept map of the marine 

ecosystems. The following questions guided the research: 

RQ1. How do students’ collaborative discussion patterns vary with different group 

compositions, based on prior domain knowledge? 

RQ2. Within student groups, how do discussion patterns differ when interacting with the 

less knowledgeable peer versus the expert agents? 

Overall, students in the mixed and expanding groups showed more connection between 

making claims, providing reasoning, and building on prior ideas, compared to the group with 

emergent knowledge. The groups also showed distinct patterns when interacting with the two 

agents. Students in groups with expanding levels of prior knowledge appeared to engage in more 

reasoning and claim-making when interacting with the less knowledgeable peer version, 
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compared to the expert version. Meanwhile, those in the group with emergent knowledge levels 

showed more reasoning and elaboration on prior ideas when responding to the expert agent.  

These findings illuminate how responses to agent designs vary with group composition. 

This understanding has important design and learning implications. From a design perspective, 

findings contribute to research on developing agent personas that can be perceived as natural 

social partners and encourage productive conversational norms. From a learning perspective, 

designers of education technology and facilitators may examine the diverse patterns that student 

groups display. Such considerations help to identify patterns that are conducive to knowledge 

construction and assist the development of adaptive learning scaffolds for different students. 

Background 

Conversational Agents to Promote Collaboration 

Engaging in knowledge building efforts, where students collaboratively share ideas and 

build on one another’s knowledge, is an important process to enrich science understanding 

(Hoadley & Kilner, 2005; Scardamalia & Bereiter, 1993). Through social exchange, individuals 

outline their personal and sociocultural experiences, discuss, negotiate, and develop a shared 

understanding of learning phenomena (Muhonen et al., 2017; Stahl et al., 2014). 

Students engage in a range of knowledge building discussion moves, from stating claims 

to elaborating on and expanding shared knowledge (Gillies et al., 2014). This wide array of 

discussion moves presents opportunities for teachers to support different participation structures. 

For example, teachers can decide which students may initiate questions or propose actions, ask 

questions to redirect student attention, or propose tasks for students to build on one another’s 

ideas and artifacts (Chi et al., 2001; Hewitt & Scardamalia, 1998). These participation structures 
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shift knowledge building from teachers as the sole transmitter of knowledge to students and the 

tools that they engage with (Scardamalia & Bereiter, 1993; Hewitt & Scardamalia, 1998). 

Conversational agents can foster knowledge building communities, similar to teachers’ 

facilitation. These agents use natural language understanding to process students’ talks and 

provide in-time nudges for conceptual understanding and participation. More than tools to enrich 

student discourse, agents can serve as active participants in group conversations. Agents can 

propose prompts for the groups to explain, contrast, and support their ideas, thus fostering 

different discussion moves (Dyke et al., 2013). 

Less Knowledgeable Peer and Expert Agent Designs 

Researchers have underscored the importance of designing agents to facilitate natural 

human-computer interactions. Designs that replicate human behaviors or social norms can 

influence users’ perceptions. In turn, users display social behaviors when interacting with the 

computer agents (Nass et al., 1994). Users may engage in social norms such as gender 

stereotyping or reciprocating help with the machines, even with small interface cues or when 

they acknowledge that machines may not have underlying feelings (Moon & Nass, 1996). 

Two distinct agent profiles have emerged in learning contexts: peer and expert agent. The 

peer agent profile is based on the similarity-attraction effect (Byrne & Nelson, 1965), which 

suggests that learners would be attracted to agents that parallel them in appearance, knowledge, 

or interest (Liew et al., 2013). In a study where researchers assigned students to work with 

computers whose characteristics either aligned with or mismatched students’ personalities, 

students agreed more with the personality that was similar to their own and found it more 

attractive and intelligent (Nass et al., 1995). A related design is the less knowledgeable agent 

(Biswas et al., 2016), where users are responsible for explaining target concepts to an agent with 
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presumably limited knowledge. From these interactions, students may deepen reasoning and 

understanding of the target concepts. 

Meanwhile, students may attribute more trust to agents whom they perceive to possess 

higher knowledge levels, in ways that are similar to how they would interact with a teacher or 

domain expert (Chaiken & Maheswaran, 1994). This conjecture has led to the designs of expert-

like agents—characters that are more knowledgeable and employ talk moves that simulate the 

human instructors (Heidig & Clarebout, 2011). 

User perceptions and responses to agent designs can be leveraged in designing agents to 

produce optimal learning and interests (Chen et al., 2020; Graesser, 2016). For example, agent 

designs can adapt to learners’ domain knowledge (Graesser, 2016). Learners with emergent 

understanding and skills may benefit from interacting with the expert-like agent. Meanwhile, 

learners with expanding knowledge may attempt to teach the peer agent. Such interactions 

provide opportunities for learners to acquire alternative viewpoints and deepen knowledge. 

Agent Designs Influence Human-Agent Interactions 

The content of user replies also varies with how users perceive the agent (Kim & Baylor, 

2006, 2016; Rosenberg-Kima et al., 2008; Kim et al., 2019; Chen et al., 2020). For example, 

users rated a casual tone agent as friendlier and provided more elaborate survey responses to the 

agent than one that relied on a formal questionnaire style (Kim et al., 2019). In an exchange with 

learning robots, learners who interacted with a robot that behaved as a peer showed more 

affective displays, compared to a robot that resembled a tutor (Chen et al., 2020).   

Research from human-human tutoring interaction lends further insights into the potential 

differences in the content of students’ responses to the different agent profiles. In inquiry-driven 

classrooms, teachers tend to use questions to elicit students’ thinking, and students reply to 
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teachers’ elicitations, elaborate on their thinking, or offer argumentation (Chin, 2006). In peer 

tutoring, rather than only focusing on providing explanations, students may also express 

emotions such as triumph, anger, and confusion around the learning problems (Agne & Muller, 

2019). They also pose provoking questions to their partners (King et al., 1998). Thus, we may 

expect different discussion patterns with the agent profiles. For example, students may engage in 

more explanation and argumentation with the expert agent, while being open to brainstorming 

ideas when it comes to discussing with the peer agent.  

In addition, embedding the agents in group discussions introduces an additional, 

interesting dynamic. Students with different levels of domain knowledge may interact with each 

other and with the agents in varied ways. In mixed-knowledge groups, students with higher 

levels of domain knowledge tend to become the “mentors” who provide help and explanations to 

other students. In turn, the peers with emergent understanding can benefit from spontaneous 

help-seeking (Saleh et al., 2005; Webb & Farivar, 1994). We can thus explore whether students 

with expanding knowledge will dominate the conversations in interactions with a less 

knowledgeable peer agent, or if other students (e.g., those with emergent knowledge) will also 

see the agent with limited domain knowledge and engage in elaborative talk with the agent. 

How can we analyze the content of group discussions to reveal differences in interactions 

between agent profiles? Education researchers have focused on the types of argumentative 

discourse students make, the vocabulary and conversational topics they engage in, and their 

contributions to group discussions (Howley et al., 2013; Rosé et al., 2008). Researchers of group 

discourse have also examined how discussion moves can co-occur within the same 

conversational windows (Gašević et al., 2019; Shaffer et al., 2016). Analyses of co-occurring 

moves can reveal key insights to formulate the epistemic structure of the discussions. For 
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example, co-occurrences between claim and evidence making within the same message may 

suggest a more coherent argument than a message with only claims. To understand broader 

patterns of students’ interactions, the current research thus analyzes discussion patterns as co-

occurring moves, instead of separate counts of talks. 

Hypotheses 

In this work, I compared discussion patterns with two conversational agents (a less 

knowledgeable peer and an expert) within and between groups with different domain knowledge. 

My hypotheses were built on prior work on interactions between individual students and agents 

(Biswas et al., 2016; Graesser, 2016). I hypothesized that students with emergent knowledge 

would likely engage in more help-seeking from the expert agent, whereas those in the expanding 

knowledge groups would provide more help-giving to the less knowledgeable peer agent. 

H1. Between groups, groups with expanding content knowledge will engage in more 

explaining to the less knowledgeable peer agent than groups with emergent content knowledge. 

H2. Within groups, the expanding group will be more responsive to the less 

knowledgeable peer agent than the expert agent, similar to behaviors observed in peer tutoring 

where students with expanding knowledge dominate the discussions. In contrast, the emergent 

group will be more responsive to the expert agent than the less knowledgeable peer agent. 

Methodology 

This study presents a qualitative discourse analysis of students’ discussion moves with one 

another and the conversational agents. The analyses focused on three purposefully sampled student 

groups of emergent, mixed, and expanding prior knowledge in science. I applied ENA (Shaffer et 

al., 2016) to study the differences between group compositions and agent conditions. ENA 

visualizes student interactions as networks, where each discussion move is a node and co-occurring 
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discussion moves are connected. The choice of ENA builds on an understanding of collaborative 

learning not as isolated elements, but as relationships among those elements to form systemic 

understanding (Shaffer et al., 2016). 

Study Settings 

This research is situated in a high school marine biology program that is part of a multi-

year partnership between a local state park, education and biology researchers, and local school 

districts in the southwestern United States. The state park has been working for several years to 

study how a coastal marine protected area responds to reduced human impacts. Early in the 

curriculum, students were asked to brainstorm the elements and processes that might affect the 

marine habitats. In groups of two to three, students engaged in a virtual chat with each other and 

with the agents. The goal of the chat was to build a concept map of the marine ecosystem and to 

reason through the connections in the concept map. 

Agent Design 

The agent designs are detailed in Study 1. The agents applied natural language processing 

to parse students’ messages into subject-object pairs that represented relationships within the 

marine ecosystem, and compared students’ answers to an expert concept map. The main goals of 

the agents’ prompts were to (1) help students think about missing relationships, and (2) 

encourage the less active participants to partake in the discussion.  

In this study, similar to procedures in Studies 1 and 2, student groups interacted with both 

the less knowledgeable peer and the expert agents. The interaction order with the agents was 

randomized. Half of the student groups started with the peer agent, while the other half started 

with the expert agent, and switched halfway through the activity. 
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The Less Knowledgeable Peer Agent. The agent was designed to resemble a peer with 

lower knowledge levels. This agent was not presented as learning from the chat. The agent used 

colloquial expressions to ask the students to “explain” concepts and discuss with peers to teach 

the agent. Similar to work in one-on-one tutoring (Kim & Baylor, 2016), the peer agent 

expressed emotions through changing its facial expressions, e.g., holding a lightbulb when 

suggesting ideas about connections in the students’ concept maps. 

The Expert Agent. The expert agent was designed to resemble a scientist with mastery of 

the content knowledge. This agent used a formal tone. Contrary to the less knowledgeable peer 

agent that changed its expressions, the expert agent kept the same expression throughout the 

chats. The agent asked students to explain concepts to prove their understanding. 

Participants 

Participants were from the same sample as Studies 1 and 2. The sample involved ninth-

grade students in two classes taught by the same science teachers in a public high school in the 

southwestern U.S. The school served a diverse student population that was majorly White and 

Hispanic/Latino in the 2019-20 school year. The students were participating in the marine science 

program during their normal environmental science class. The school had a one-to-one laptop 

policy, and students were familiar with using chat windows to converse with one another. Students 

had experiences with collaborative group work in their science class but reported limited 

experiences with learning chatbots before the lessons. 

Prior to seeing the agent interface or interacting with the agents in groups, all participants 

individually answered a pretest. The pretest aimed to capture students’ science domain knowledge 

of the MPA. In the pretest, students answered three open-ended questions about the marine 

ecosystem and the role of fishing regulation. The questions were as follows: 
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(1) How do marine protected areas affect fish populations and other things in the ocean? 

List all the connections you can think of. 

(2) What are some ways we can improve ocean biodiversity? 

(3) After the Marine Protected Area is introduced, we see an increase in the number of 

fish, particularly sheepshead and kelp bass. What do you think contributes to this 

increase? Explain your answer. 

The pretest’s scoring scheme was consistent with the curriculum’s focus on systems 

thinking, or understanding of relationships and functions of complex systems (detailed in Study 

2). Student responses were scored as the sum of correct statements about the systems’ components, 

mechanisms (relationships among components), and central phenomena of biodiversity. The 

scores were then ranked, and groups were categorized as emergent (all three students scored below 

average), mixed (at least one above average), and expanding (all above average).  

Using purposeful random sampling (Patton, 2014), I randomly selected one group from 

each prior knowledge category for this study’s analysis. The Emergent Group consisted of a female 

and two male students. The Mixed group had three female students, and the Expanding group had 

one female and two male students. The goal of the analysis is to understand potential variances in 

groups’ interactions and to inform future design iterations of the agents. 

Data Sources 

The main data source came from the three groups’ chat logs with the agents. Each chat per 

prototype (peer or expert) lasted 12.5 minutes on average (Emergent: 12 minutes with peer; 11 

minutes with expert; Mixed: 14 minutes with expert; 12 minutes with peer; Expanding: 14 minutes 

with peer; 12 minutes with expert).  
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The unit of code was a single chat message (total N = 407 utterances; each group had 136 

messages on average, SD = 23.5 messages). I used a priori codes for the types of contribution to 

the group’s knowledge building (Kumpulainen & Wary, 2002; Muhonen et al., 2017). 

Additionally, I conducted a close reading of the group chats to devise emergent codes. An 

additional code (Respond to Kibot) emerged in this stage to note whether a student’s utterance 

was self-initiated or in response to the agent’s nudges. Although there were other codes included 

in prior frameworks, such as emotion (Muhonen et al., 2017) or questioning (Study 1), for this 

study’s sample, these codes had fewer than three occurrences per agent and were thus excluded 

from the final analyses. Table 4.1 provides examples of the codes.  

To establish reliability, a research assistant and I separately coded 20% of the chat and 

showed substantial agreement with the original codes, average Cohen’s 𝜅 = .96. I coded the rest 

of the data. Each chat message received a dichotomous code for whether the code was present 

(coded as 1) or not (coded as 0). This means that a message can receive more than one code if 

multiple discussion moves existed, e.g., if students built on friends’ ideas while making claims. 

Procedures 

In this study, I applied Epistemic Network Analysis (ENA) in the rENA package 

(Marquart et al., 2018) to examine the co-occurrences of codes within a moving chat window of 

three. Discussion types were considered to be associated if they appeared in the same sliding text 

window (e.g., a window of size three measures co-occurrences within three consecutive texts).  

In ENA, co-occurrences of discourse types formed a binary matrix (1: occur; 0: not 

occur). Then, the package normalized the co-occurrence matrix and applied singular value 

decomposition (SVD) to reduce the dimension of vectors to two dimensions that explained the 

most variance in the data. ENA allowed for visualizations of the discussion network for each 
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group. Each code (e.g., claim, reasoning, response to Kibot) became a node in the diagram, with 

lines indicating that the two nodes co-occurred within the chat windows. ENA also allowed for 

visualizing subtraction networks, that is, the differences between the epistemic networks for each 

condition per group. The visualization subtracted the connection weight of each network node 

and indicated a larger connection between discourse types by showing thicker, darker lines. 

Table 4.1.  
Coding Scheme for Student Discussion 

Code Definition Example 
Claim Statement links systems elements Kelp provides habitat. 

Reasoning 

Statement draws from pre-
existing knowledge, scientific 
facts and data, or evidence in the 
lesson 

plastic pollution reduces fish 
population because it contaminates 
their habitat 

Build on self 
(Externalize) 

Statement draws on previous 
ideas a student has stated 

A: Sea urchins increase kelp. 
A: Sea urchins decrease kelp 
because they eat a lot of kelp. 

Build on friend 
(Transactive) 

Statement draws on previous 
ideas that peers have stated 

A: Plastic pollution should be 
banned. 
B: Yes, because it harms the 
animals. 

Respond to Kibot Statement in response to the 
agent’s nudges 

Kibot: What do you think, A? Do 
you agree or disagree? 
A: I agree because a ban should let 
fewer people into that area and there 
will be less overfishing. 

 
To answer RQ1 about the potential differences in students’ interactions with the 

conversational agents between the emergent, mixed, and expanding groups, I first ran ENA with 

students in groups as the unit of analyses for all utterances (i.e., both agent prototypes). Analyses 

plotted the subtraction networks for group pairs (e.g., emergent-mixed, mixed-expanding, 

expanding-emergent) to highlight differences between groups’ discussion networks.  

To answer RQ2 about how students’ discussions might differ when interacting with the 

agent prototypes, I conducted ENA within each group. Individual students’ chat occurrences 

within groups within conditions constituted the unit of analyses.  

Results 
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Between-group Differences in Discussion Network 

The first research question examines the extent to which group discussion networks varied 

prior domain knowledge of systems thinking, as indicated by students’ pretest scores. I created 

subtraction networks (Figure 4.1) and compared the connections between discussion types 

between groups. Each dot in the figure represents an individual student, the squares denote the 

centroid (or the mean of the group in high-dimensional space), and the colors indicate the groups 

they belong to (i.e., black for Emergent, purple for Mixed, and blue for Expanding).  

For example, consider the top right panel comparing the Mixed and Expanding groups in 

Figure 4.1. The lines are the “leftovers” after subtracting the networks of the two groups. The 

purple line between “reasoning” and “buildonFriend” (transactive exchange) suggests that when 

comparing the Mixed and Expanding groups, the Mixed group had more connections between 

the two discussion moves. Meanwhile, the blue lines suggest that the Expanding group had 

relatively more co-occurrences between “claim” and “buildonFriend”, “claim” and “respond to 

Kibot”, and “claim” and “buildonSelf” (externalize). 

Overall, students in the expanding groups appeared to show more complex discussion 

moves. For example, when comparing groups Mixed and Emergent (left panel, Figure 4.1), the 

purple line in Figure 4.1 suggests a link between Reasoning and Transactive exchange (build on 

friends’ ideas). This indicates that individuals in group Mixed (the group with relatively higher 

domain knowledge) showed more connections in these discussion moves. Similarly, the blue 

lines in the central and right panel (Figure 4.1) show that group Expanding showed more 

connections between Claims and Externalize (build on self’s ideas) compared to the other 

groups. To illustrate, consider the following excerpt from the Emergent group. 

Kibot: What would happen if kelp increases? 
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S1: Fish increase/zooplankton increase/phytoplankton increase. 

S2. Pollution increases/ fish increases. 

S1: Global warming increases/ water temperature increases. 

Kibot: Why do you think so? 

S3: When the temperature rises it affects the fish. 

Figure 4.1 
Between-group Comparisons (ENA Subtraction Networks) for group Emergent (black), Mixed 
(purple), and Expanding (blue). 

 
Notes. Dots present individual students, and lines present co-occurrences between discussion moves. The darker 
colors of the lines show differences in co-occurrences between groups.  

In this exchange, students were mostly making claims without providing reasoning for 

their answers. They also did not explicitly mention previous ideas to build on. In contrast, the 

following excerpt from the Expanding group illustrates how S5 built on his friend’s idea 

(“regulation increases fish”) to give explanations and inquired about a related relationship 

(breeding-fish). 

Kibot: What would happen if regulation increases? 
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S4: Regulation increases fish. 

S5: Regulation increases fish because it protects the fish from overfishing. 

S5: Does breeding increase fish? 

In sum, group comparisons reveal that students in expanding groups appeared to show 

more connection between making statements, reasoning, and engaging in transactive exchange, 

compared to the emergent group. 

Within-group Differences in Interactions with the Agents 

The observed differences in interactions between groups suggest that there may exist 

variations with group composition. The second research question explores these differences 

using another grain size: within-group shifts in interactions between the less knowledgeable peer 

and the expert agent. To answer this question, I used ENA to compare the discussion networks 

between the agent conditions for each group (Figures 4.2-4.4; red lines indicate more 

connections for the expert agent; blue lines indicate the less knowledgeable peer agent). 

Overall, the most noticeable difference between the less-knowledgeable-peer and expert 

discussion networks for the Emergent group is the connection between Externalize and Respond 

to Kibot in the expert condition, compared to the less-knowledgeable-peer condition (Figure 4.2). 

This observation is based on the red line in the right panel of Figure 4.2, showing that the expert 

group (red lines) had more co-occurrences of “buildonSelf” and “respondKibot” when 

subtracting the two networks in the left panel. While this group mostly stated simple claims, 

within a 3-utterance chat window, students more frequently built on prior claims when 

responding to nudges from the expert agent than those from the less-knowledgeable-peer agent. 

Meanwhile, the Expanding group (Figure 4.3) demonstrated more discussion connections 

in the less knowledgeable peer condition, compared to the expert agent. Individuals made more 
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links between Claim – Respond to Kibot; Claim – Externalize; and Respond to Kibot – 

Transactive, as highlighted by the blue lines for the peer condition. Take the following excerpt 

from the Expanding group as an example of co-occurrences for Respond to Kibot – Transactive: 

S6: Regulation decreases plastic pollution. 

Kibot (peer): Ah, regulation can reduce plastic pollution! S5, what other ways do humans 

influence the ecosystem? 

S4: CO2 emissions increase global warming. 

S5: Other ways we influence the ocean ecosystem is burning of fossil fuels, so there 

should be regulation for that too. 

In this excerpt, the less knowledgeable peer agent was encouraging S5 to build on S6’s 

idea around regulation. In response, S4 and S5 brought up related concepts (“CO2 emissions”, 

“global warming”, “fossil fuel burning”). S5 specifically linked the ideas under discussion 

(“regulation”) in her response. 

Figure 4.2 

Comparisons of Emergent group between Expert (Red) and Peer (Blue) Agents 

 
Notes. Dots present individual students, and lines present co-occurrences between discussion moves. Right panel: 
The darker colors of the lines show differences in co-occurrences between agent conditions.  

Figure 4.3 
Comparisons of Expanding group between Expert (Red) and Peer (Blue) Agents 
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Notes. Dots present individual students, and lines present co-occurrences between discussion moves. Right panel: 
The darker colors of the lines show differences in co-occurrences between agent conditions.  

 
Figure 4.4 
Comparisons of Mixed group between Expert (Red) and Peer (Blue) Agents 

 
Notes. Dots present individual students, and lines present co-occurrences between discussion moves. Right panel: 
The darker colors of the lines show differences in co-occurrences between agent conditions.  

Interestingly, the Mixed group (Figure 4.4) showed mixed patterns in comparisons of the 

agent prototypes. Similar to the Expanding group, this group showed more connections between 

Respond to Kibot – Transactive and Respond to Kibot – Reasoning in the less-knowledgeable-

peer condition. At the same time, individuals in this group showed more links between 

Externalize – Transactive in the expert condition (right panel, Figure 4.4). Notably, the 
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coordinates of individual students for the expert agent (red dots) were close to one another. This 

shows that interactions with this agent might have been similar for individuals within the group.  

Discussion 

Grouping Arrangements Showed Different Discussion Patterns 

In this research, I examined grouping based on prior domain knowledge as one factor that 

may be associated with group interactions. Overall, students in groups with expanding prior 

domain knowledge showed more reasoning and claim-making, in combination with elaboration 

on prior ideas. Transactive exchange, where students build on each other’s knowledge to co-

construct ideas, is a key practice in knowledge building (Hewitt & Scardamalia, 1998). Such 

exchange allows students to discuss the concepts at hand in depth to advance individual learning 

(Van Boxtel et al., 2000; Yang et al., 2016). Note that the focus of the study on knowledge 

composition is not to recommend one grouping model over others (e.g., heterogeneous versus 

homogenous grouping). Rather, I was interested in exploring the potential differences in group 

interactions to provide insights for future agent designs and research directions. 

Findings of the different interaction patterns between the groups may suggest the design 

needs to provide further scaffolds on knowledge building for certain groups, instead of providing 

nudges at similar intervals across groups. Scaffolds can be reflective prompts that explicitly 

guide students to think about how they are putting their ideas together and present the group as a 

community (Yang et al., 2016). These prompts may help students to focus on knowledge 

building goals and improve the quality of the group discussions over time.  

Another direction is to provide prompts that adapt to groups’ ongoing discourse. The 

Kibot agents gave conceptual hints that adapted to the groups’ knowledge states, through 

comparing their ongoing concept maps with an underlying expert map. To emphasize equal 
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participation, the agents constantly directed their nudges at the less active participants. However, 

students’ uptake of the nudges varied. It is possible that the agents’ nudges were not opportune 

or sufficient to prompt groups with emergent understanding to engage in discussions.  

Other systems have attempted to address this issue by using natural language processing 

to categorize students’ chats and dynamically select the agents’ messages from candidate talk 

moves (Adamson & Rosé, 2012; Adamson et al., 2014). Researchers have found the promise of 

such dynamic conversational systems among different age groups, including high school and 

college students (Adamson et al., 2014). The adaptive talk moves can also be combined with 

fading when students monitor their learning to decide on the gradual removal of learning 

scaffolds (Wecker & Fischer, 2011). Fading talk moves can help students to internalize 

collaborative discussion strategies (Vogel et al., 2017). Future empirical work can explore how 

conversational agents can be integrated into these adaptive systems to support learners within the 

same classrooms or discussion groups.  

Group Interactions Diverged with the Agent Designs 

Findings around grouping arrangements warrant the need for investigating how student 

groups’ exchange varies with agent designs. Both designs are assumed to elicit scientific 

discourse from students. Each agent’s introductions frame students’ role as an explainer (expert 

agent: “Show me what you know”; less knowledgeable peer agent: “I’m here to learn with you.”). 

Explicit framing of students’ role discussion may encourage engagement and improved 

outcomes across groups with different domain knowledge (Saleh et al., 2005). 

Interestingly, findings from the current study reveal that interactions with the two agent 

designs were not similar across groups with different domain knowledge compositions. Students 

in the emergent group more frequently provided reasoning when responding to the expert 
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version. Meanwhile, those in the expanding groups engaged in more transactive exchange with 

the less knowledgeable peer agent. These findings overlap with hypotheses around student-agent 

interactions in one-on-one tutoring systems (Graesser, 2016). Students with expanding levels of 

understanding may engage in deeper elaboration of ideas when they are trying to provide help 

for a less capable peer agent, and those with emergent domain knowledge may more frequently 

respond to nudges from the expert agent. 

Analyses of data from the mixed group suggest that these patterns were likely taken up 

by the group, as opposed to being instigated by an individual. This means that the students with 

emergent knowledge also became explainers to the less knowledgeable peer agent. Thus, 

combining the two agent designs may result in a richer set of discussion patterns in the mixed 

group. A follow-up analysis can follow a larger sample of heterogeneous groups and explore 

which types of social dynamics may support shared interaction norms. Future work can also 

formally test the pathways between agent conditions, student interactions, and learning outcomes 

while accounting for different group compositions. 

Conclusion 

Prior work has explored design paradigms in learning exchange between individual 

students and conversational agents (Kim & Baylor, 2016; Liew et al., 2013). Interactions likely 

diverge in group settings, where individuals are influenced by the participation norms from 

others in the group. The current study illustrates how interactions are embedded within social 

structures such as group compositions of prior knowledge. Analyses suggest the affordances of 

ENA in comparing group interactions across dimensions of group compositions and agent 

designs.  
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A limitation to the current research is that it only presents a small sample of cases. Future 

research can examine whether these patterns exist in a larger sample, particularly in groups with 

mixed knowledge bases. Iterations of this work will apply other research designs, such as 

between-subject designs, to examine the pathway between varied group interactions and student 

learning. These analyses can also account for variables such as students’ gender, social status, 

and participation. 

In addition, student interactions with the conversational agents were brief because they 

were constrained within one class period. A direction for future exploration is to track how the 

observed interactive patterns evolve, as students gain more exposure to the agents’ nudges. 

Another direction is to examine whether students transfer the discussion moves to another task 

without the appearance of the agents. Finally, the current research focuses on students’ prior 

domain knowledge. Future work can consider adaptive designs that account for evolving group 

interactions and students’ knowledge states. 

Overall, this study reveals interaction dynamics when collaborative agents are embedded 

in group discussions. The patterns that this research uncovers broaden the design space for 

learning systems. They also suggest the learning moments that facilitators such as teachers and 

conversational agents may consider to develop appropriate support for productive discourse 

across group compositions. 
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CHAPTER 5 SYSTEMS THINKING WITH AGENTS 
 
Abstract 

Conversational agents can facilitate learning discussions, by applying natural language 

understanding to process students’ discourse. Agents can assume the personalities of figures such 

as peers or mentors, to promote help-giving actions similar to human interactions. In this study, I 

explore how and for whom different agent designs can facilitate discussion patterns and systems 

thinking in small-group discussions. Participants included 172 students in 9th grade (ages 13-14). 

Participants were randomly assigned to groups of five students and interacted with no agent, an 

expert agent, or a less knowledgeable peer agent. Results suggest that both agents facilitated 

learning of systems mechanisms by enhancing transactive exchange, where students built on 

prior ideas. I also found differences in the agents’ effects on discussion and learning outcomes 

based on groups’ variation in systems thinking pretest. These findings have implications for the 

design and application of collaborative learning agents. 

Keywords. collaborative learning, systems thinking, conversational agents, multilevel model  
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Introduction 

Small-group discussions have been associated with positive attitudes and learning 

outcomes (Lou et al., 1996). Educators frequently employ group discussions to teach about 

complex systems that involve multiple components and interrelationships (Jordan et al., 2013; 

Nguyen & Santagata, 2020; Yoon, 2007). However, students do not always participate equitably 

in group discussions. Discussions are often dominated by students who are more active or 

possess a higher level of domain knowledge (Saleh et al., 2007; Yun & Kim, 2015). In addition, 

unfacilitated group discussions can veer off-task (Hogan et al., 1999). In response, researchers 

have developed conversational agents (also known as pedagogical agents) that can provide real-

time nudges for participation and on-task knowledge development (Adamson et al., 2014; Dyke, 

Adamson, et al., 2013; Tegos & Demetriadis, 2017).  

Agents can pose as companions, assistants, or mentors to promote learning interactions 

(Kim et al., 2020; Kim & Baylor, 2006, 2016; Nguyen, 2021). This line of research with 

individual learners assumes that intentional agent designs can prime users to show responses 

such as help-giving and help-seeking, similar to human-human conversations (Nass et al., 1995). 

Productive interactions from agent-facilitated discussions can facilitate students’ learning 

(Howley et al., 2013; Kinnebrew et al., 2014; Ogan, Finkelstein, Mayfield, et al., 2012). 

However, there is little research that has examined how varying agent designs might impact 

interactions and learning outcomes in small-group discussions. This understanding can provide 

insights into the mechanisms in which technologies such as conversational agents can support 

productive discussion moves and learning. 

In this study, I explore how different conversational agent designs can facilitate 

discussion patterns and learning about marine ecosystems. The two designs include an expert and 
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a less knowledgeable peer agent. Drawing on prior evidence that students with different baseline 

understanding may interact in group discussions in varied ways (Nguyen, 2021), I examine how 

the paths between agent conditions, discussion patterns, and learning outcomes differed along 

different values of individuals’ and groups’ baseline understanding. To answer these questions, I 

employ a randomized experimental design with 172 students, where students randomly joined 

groups and interacted as a group with different agent conditions (58 in no-agent, 59 in expert, 55 

in less-knowledgeable-peer condition).  

Background 

This study focuses on the link between conversational agent designs, discussion patterns, 

and learning. To ground this discussion, I draw from research in science education to outline the 

learning outcome: enhanced systems thinking to understand a marine ecosystem. I further review 

the discussion moves that contribute to this outcome and how agents may support these moves. 

Systems Thinking 

Systems thinking entails knowledge of systems’ structures, the relationships between 

those structures, and the functions that they serve (Hmelo-Silver et al., 2017; Liu & Hmelo-

Silver, 2009; Snapir et al., 2017). Systems thinking is important because systems are ubiquitous 

at both micro-level such as cells and macro-level such as ecosystems (Yoon et al., 2016). For 

example, interactions between organisms in habitats and across species can be described as 

systems of multiple components, interrelations, and processes (Hmelo-Silver, Duncan, et al., 

2007; Wilensky & Resnick, 1999). Changes in a component, such as a surge in the amount of 

human-induced carbon dioxide (CO2) in the atmosphere, can lead to ocean acidification and 

negatively impact other marine organisms.  
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Researchers have conceptualized systems thinking to help students understand key 

concepts and processes (Danish et al., 2017; Hmelo-Silver et al., 2017; Hmelo-Silver, Marathe, 

et al., 2007; Liu & Hmelo-Silver, 2009). Hmelo-Silver et al. (2017) proposed a framework that 

includes Components (elements within the system), Mechanisms (the processes and interactions 

happening between components), and Phenomena (the system’s macro patterns). Within the 

context of marine ecosystems, examples of Components may include descriptions of components 

and their locations (e.g., “habitat contains fish”). Mechanisms describe the relationships between 

multiple components, for example, photosynthesis will increase with an increase in 

phytoplankton. Finally, Phenomena may refer to biodiversity, for instance, connecting processes 

of habitat destruction, invasive species, and overfishing to biodiversity loss. 

Developing a coherent understanding of Components, Mechanisms, and Phenomena can 

be challenging. Learners tend to emphasize the visible components of a system more often than 

invisible, interrelated processes and focus on linear, simple causal mechanisms (Gellert, 1962; 

Wilensky & Resnick, 1999). Complex causal links, in comparison, may involve several implicit 

mechanisms that impact components in different directions (Jacobson & Wilensky, 2006). For 

instance, ocean acidification increases photosynthesis (through increases in carbon) and 

phytoplankton. At the same time, acidification prevents certain phytoplankton from creating their 

calcium carbonate skeletons, thus reducing the number of those organisms.  

Group Discussions Promote Systems Thinking 

Group discussions can promote systems thinking by facilitating rich interactions about 

systems with peers and experts (Jacobson & Wilensky, 2006; Paus et al., 2012; Scardamalia & 

Bereiter, 1993; Yoon, 2007). Complex systems behaviors emerge through iterative knowledge 

construction, where students examine others’ ideas to refine their assumptions and contribute to 



 

101 
 

high-level ideas. Researchers have identified discussion moves that contribute to systems 

thinking, with a particular focus on idea formation, transactive exchange, and questioning 

(Cohen, 1994; Dyke, Howley, et al., 2013; Michaels et al., 2008; Oliveira & Sadler, 2008; 

Resnick et al., 2010; van Aalst, 2009; Yoon, 2007).  

Students create claims and hypotheses to articulate their understanding and simulate 

relationships within systems. Students provide evidence from scientific facts and personal 

experiences to justify those claims (Hogan et al., 1999; Jacobson & Wilensky, 2006), and extend 

and challenge peers’ statements to revise their claims (Oliveira & Sadler, 2008; Webb, 1982). In 

the process of building on peers’ ideas, students engage in transactive exchange, enriching prior 

group reasoning through collective efforts. 

Transactive exchange differentiates knowledge construction from knowledge sharing and 

contributes to more coherent systems understanding (Dyke, Howley, et al., 2013; Fu et al., 2016; 

Teasley, 1997; van Aalst, 2009). Idea synthesis requires elaboration on previous ideas by 

justifying these ideas with logical reasoning and evidence (Michaels et al., 2008). Students 

engage with peers’ ideas with more complexity and show enhanced learning when iteratively 

probed to explain their thinking (Michaels et al., 2008; Paus et al., 2012). Resnick et al. (2010) 

have identified talk moves that promote transactive exchange, for instance, asking students to 

elaborate or add to a peer’s contribution (e.g., “Say more”) and to explain why they agree or 

disagree with another statement (e.g., “Do you agree or disagree? Why?”). Such discussion 

moves sustain inquiry-driven discourse and produce relevant knowledge for all group members 

(Fu et al., 2016). 

Discussions can further benefit from questions that prompt students to consider the 

underlying mechanisms that lead to the observed systems’ behaviors (King, 1999; Mäkitalo et 
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al., 2005; Webb, 1989). Reflective questions are open-ended, to elicit information and generate 

alternative perspectives for follow-up discussions (Aguiar et al., 2010; Chin & Osborne, 2010; 

Gillies, 2016; Hmelo-Silver & Barrows, 2008; Hogan et al., 1999; King, 1999). Questions also 

highlight gaps in the groups’ knowledge, as students attempt to connect with others’ ideas. In 

one study, Chin & Osborne (2010) analyzed the written arguments of 29 student groups and 

found that successful groups focused on asking questions about key concepts during discussions. 

These authors argued that questions might contribute to more structured group understanding by 

probing into alternative perspectives, eliciting elaboration, and clarifying uncertainties.  

Prior domain knowledge might influence the dynamics of group discussions (Cohen, 

1994; Gillies, 2003; Lou et al., 1996; Peterson et al., 1981). Compared to students with average 

knowledge, students with emergent and expanding prior knowledge tend to benefit more from 

spontaneous peer tutoring in small-group interactions (Cohen, 1994; Peterson et al., 1981). 

Students with emergent prior knowledge may learn from peers’ explanations, while those with 

expanding knowledge may benefit from restructuring their understanding to provide explanations 

to others (Cohen, 1994; Wittrock, 1989). Further, students with expanding knowledge more 

frequently lead discussions (Yun & Kim, 2015). Researchers have thus developed learning 

systems and task structures to promote more equitable participation and support specific 

discussion moves that contribute to learning for all students. 

Conversational Agents Enrich Discussions 

Conversational agents can facilitate systems thinking (Biswas et al., 2016; Kinnebrew et 

al., 2014; Tegos & Demetriadis, 2017). For example, Biswas and colleagues (2010) developed 

two agents (a tutee and a mentor) in a learning system called Betty’s Brain to help students 

construct concept maps. In one-on-one interactions with the agents, students iteratively built the 
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concept maps, quizzed the tutee agent, and received feedback from the mentor agent to refine 

incorrect connections. Other researchers have developed more open-ended systems. Instead of 

giving feedback, the agents prompted students to elaborate on ideas and provide argumentation 

based on peers’ ideas (Dyke, Adamson, et al., 2013; Dyke, Howley, et al., 2013). 

These agents’ prompts can promote discussions. As an example, Adamson et al. (2014) 

integrated into collaborative settings an agent that asked students to revoice ideas and found that 

the agent precipitated discussions where students revoice assertions more frequently. Scholars 

have developed agents to promote transactive exchange for students to build on and challenge 

each other’s ideas (Howley et al., 2014), foster relationships (Ogan, Finkelstein, Mayfield, et al., 

2012; Rosé et al., 2015), and regulate individual and group efforts (Harley et al., 2012, 2017). 

Previous work has primarily explored agents’ impact from cognitive perspectives, such as 

the extent to which the agents promote learning (Adamson et al., 2014; Liew et al., 2013). 

Scholars have also applied research in human-computer interaction to consider the design of 

student-agent interactions. This line of work primarily builds on the Computers as Social Actors 

(CASA) principle to position agents as social partners (Moon & Nass, 1996; Nass et al., 1995; 

Nass & Moon, 2000). This principle suggests that subtle design cues can prime users to show 

conversational norms with computer systems in ways that resemble human-human interactions.  

For example, researchers have hypothesized that students with expanding knowledge 

may provide more explanation to teach a less competent agent, compared to an expert prototype 

(Graesser, 2016). In one study, female engineering students demonstrated higher interest and 

efficacy in engineering after one-on-one interactions with an agent that resembled a peer than a 

knowledgeable agent (Rosenberg-Kima et al., 2008). The authors argued that these students 

potentially related better to the peer agent’s values and knowledge states.  
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There are limited examples of varying agent designs in collaborative settings. Nguyen 

(Study 1) analyzed high school students’ interactions with two agents (an expert and a less 

knowledgeable peer). Student groups showed different interaction sequences with the agents. 

Groups more frequently posed questions to test a less experienced peer agent’s knowledge and 

then built on prior group exchange to explain concepts, compared to exchange with an expert 

agent. This research illustrates that different designs might promote varied discussion dynamics. 

In sum, conversational agents have shown promise in promoting discussion moves. 

However, limited research has linked agent designs to discussion moves and examined the 

learning implications of these associations. Discussion patterns can influence students’ learning 

(Jacobson & Wilensky, 2006; Kim et al., 2020). Exploratory discourse, such as posing questions 

and building on prior ideas, can deepen knowledge over time (King, 1999; Mäkitalo et al., 2005; 

Webb, 1989). Responding to the agents’ nudges—similar to how students may interact with a 

teacher—can help to construct more complex reasoning if such interactions span beyond 

superficial exchange (Hogan et al., 1999). It is thus crucial to explore the link between agent 

designs, discussion moves, and learning outcomes in group settings. 

Research Questions 

This study employed a cluster-randomized design to explore the effectiveness of different 

agent designs on learning. Students were randomly assigned to groups, and the groups chatted with 

no agent, an expert agent, or a less knowledgeable agent. I examined the following questions: 

RQ1. To what extent do conversational agents promote systems understanding?  

RQ2. To what extent do conversational agents facilitate discussion patterns such as idea 

formation, transactive exchange, and questioning? To what extent is there a difference between 

the expert and less-knowledgeable-peer agents in facilitating discussion patterns? 
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RQ3. Do discussion patterns serve as a mechanism through which conversational agents 

affect systems understanding? 

RQ4. How do agents’ effects on systems thinking and discussion patterns differ with 

group compositions, based on students’ prior domain knowledge? 

I hypothesized that students interacting with the agents would show higher levels of 

systems understanding, particularly in terms of systems mechanisms (H1). This hypothesis drew 

from prior work on the positive association between agent integration and students’ learning 

(Dyke et al., 2013; Tegos & Demetriadis, 2017), and on the specific focus on systems 

relationships of the agents in this study (Nguyen, 2021). Furthermore, students who interact with 

the agents would engage in more transactive exchange and ideation (H2a; Dyke et al., 2013; 

Rosé et al., 2015). Students who interact with the less-knowledgeable-peer agents would pose 

more questions, compared to the other conditions (H2b, based on sequences of quizzing the peer 

agent in prior investigations; Study 1). For RQ3, I hypothesized that discussion patterns would 

mediate the relationship between agents and systems thinking (H3). These patterns have been 

identified as key factors to promote productive discussion and learning (Hogan et al., 1999; 

Oliveira & Sadler, 2008; Wilensky & Resnick, 1999). RQ4 presents an exploratory analysis that 

may provide insights into the designs of agents to support different group dynamics. 

Methodology 

Study Settings 

The context of this work was a high school environmental science program, representing 

a multi-year partnership between a local state park, education and biology researchers, and local 

school districts in the southwestern United States. The state park had been studying how reduced 

human impacts in a marine protected area might increase biodiversity. The environmental 
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science program was an educational outreach to deepen students’ understanding of local 

biodiversity phenomena. The program consisted of eight lessons, where students learned about 

the marine protected area (MPA) and explored the elements and processes that might affect 

biodiversity. Students collected and analyzed data on fish and water quality to give 

recommendations to the park on the effectiveness of the MPA. The learning tasks with the agents 

took place in lesson 3, where students worked in small groups to build concept maps of the 

marine ecosystem. The agents helped students reason through the connections in their maps. 

Agent Designs 

The agent designs were detailed in Study 1. Using natural language processing, the 

agents grouped students’ chats into subject-object pairs to represent connections within the 

marine ecosystem (e.g., “kelp”-“photosynthesis”), compared students’ maps to an expert map, 

and provided hints to promote articulation of systems mechanisms and participation in the 

discussions. In a between-subject design, student groups interacted with an expert agent, a less 

knowledgeable peer agent, or no agent. Both agents were text-based and appeared as robots with 

human characteristics. The agents’ prompts had the same underlying functions, but they used 

different visual and verbal cues. Figure 5.1 shows the interface and the experiment conditions. 

The Expert Agent. The expert agent had a “scientist” tag on its coat, and introduced itself 

as a bot who “accompanies scientists in the field, and has learned about ocean-related concepts”. 

This agent challenged students to show what they knew about ocean ecosystems. For example, 

the agent framed its elaborative prompts as “Tell me more to make sure you understand” or 

“Why don’t you talk to your friends to see if you both agree?” The agent referred to the 

knowledge bar that showed how many connections the groups had built, and sent prompts to 

acknowledge students’ efforts, for example, “Keep going” or “Good progress”. 
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The Less Knowledgeable Peer Agent. Meanwhile, the less knowledgeable peer agent 

resembled a peer who has “never been to the ocean” and “is ready to learn with the group”. This 

agent framed its prompts as “I don’t understand. Can you explain more?” or “Can you build on 

what your friends just said to help me understand?” The agent referred to the knowledge bar with 

prompts such as “You’re doing great! The more connections you name, the more I learn”. 

Similar to prior work with one-on-one tutoring systems to animate the peer agents (e.g., Kim & 

Baylor, 2016), the agent changed its facial expressions when it was confused (“frowning”), came 

up with an idea (“holding a lightbulb”), or acknowledged the group (“smile”). 

In sum, the agents sent the same conceptual nudges to students at similar frequencies. 

However, their design and vocabulary varied to give impressions of different levels of competence. 

The agent designs were validated through user testing and semi-structured focus groups with 17 

participants (convenience sample of high school students, researchers, and college graduates). All 

participants identified the agents’ roles, competence, and emotions as intended. 

Participants 

Participants came from six 9th grade classes in a high school in the southwestern U.S. All 

participants were taught by the same marine science teacher, who had a long-term partnership 

with the state park in the MPA program. The school had a diverse student population (47.2% 

White, 38.1% Hispanic, 8% Asian; 23.5% on free and reduced lunch in the 2020-21 school year). 

Students completed the task in small groups (average size of five), with roughly equal numbers 

of students assigned to each condition. Three students had the pretest missing and were excluded 

from analyses, final N = 36 groups (172 students); no agent: 11 groups (58 students); expert: 12 

groups (59 students); and less knowledgeable peer: 13 groups (55 students). Female students 

accounted for 52% of the sample. 
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Figure 5.1. 
The Agents’ Interface.  

 
Notes. Panel A: Concept maps of the ecosystem, dynamically created from students’ chats; panel B: no-agent 
condition with just introduction of the task; panel C: expert; panel D: less-knowledgeable-peer  
 
Power Analyses 

Before data collection, I conducted a power analysis using the PowerUp tool (Dong & 

Maynard, 2013) for a 2-level cluster random assignment design (5 students per group, group 

effects are random). Because students were nested within discussion groups, there might be 

unobserved effects at the group level that violated the independence of observation assumptions 

and overestimated the coefficients in the linear models (Raudenbush & Bryk, 2002). Thus, I 

fitted multilevel models to predict individual learning. I specified power of .80, ⍺ = .05, 
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proportion of variance in outcome between groups (ICC) of .10. The power analysis suggested 

that we would need 51 groups (255 students) to detect a minimum relevant effect size (MRES) of 

.30 (i.e., difference in posttest learning of at least 30%) and 20 groups (100 students) for an 

MRES of .50. Thus, the study’s sample was sufficient to detect medium to large effects but could 

be underpowered to detect smaller effects. 

Procedures 

The day before the conversational agent (CA) activity, students completed a 15-minute 

pretest on systems thinking. During the CA activity, students were randomly assigned to a group 

chat with others. Students engaged in a 25-minute chat with each other (no agent; control 

condition) or with other students plus the agent as an expert (treatment 1) or a less 

knowledgeable peer (treatment 2). The goal of the discussion was to build a concept map to 

describe the marine ecosystem. After 25 minutes, a pop-up window guided students to a posttest 

on systems thinking. The posttest was similar to the pretest. 

Instruments 

        Data from this study came from students’ pretest and posttest on systems thinking, group 

chat logs, and a survey on students’ group investment.  

Systems Thinking. The pretest and posttest captured students’ systems thinking through 

four open-ended questions about the effects of the marine protected areas on components, 

interrelations among those components, and ways in which students thought they could improve 

biodiversity. An example is: “After the Protected Area is introduced, we see an increase in the 

number of kelp bass. What do you think contributes to this increase? Explain your answer.” 

I developed a coding scheme for systems thinking based on the Components-

Mechanisms-Phenomena framework (Danish et al., 2017; Hmelo-Silver et al., 2017). 
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Components indicate elements or properties of elements (e.g., “fish lives in coral reef”). 

Mechanisms describe the interactions between system elements and involve mechanistic 

reasoning (e.g., “if there is more fish, the zooplankton will get eaten”). Similar to Danish et al. 

(2017), I did not include Phenomena as a separate category. This is because the assessment 

explicitly mentioned the central phenomenon of biodiversity, and students frequently described 

phenomenon-related mechanisms in their responses (e.g., “Monitoring habitat improves 

biodiversity”). Thus, descriptions of mechanisms related to biodiversity phenomena were 

counted toward Mechanisms. Table 5.1 shows the codebook. The scores for each component 

were the sum of statements that counted towards the components. 

To establish inter-rater reliability, the author and a second coder went through three 

iterations. The agent conditions were removed from the coding sample to avoid researchers’ bias. 

The first iteration was based on 5% of the data. Upon resolving disagreements and iterating with 

another 5% of the data to establish the coding scheme, the two coders reviewed another 20% of 

the data in the third iteration. We established high agreement in the third iteration (Components: 

Cohen’s 𝜅 = .96; Mechanisms: 𝜅 = .93). The author coded the rest of the data. 

Discussion Patterns. The group chats received codes for idea formation, transactive 

exchange, elaborative questions, procedural questions, and off-task talks (Table 5.2). These 

codes were developed through two iterations of going through data samples and building on prior 

work (Chin & Osborne, 2010; Fiacco & Rosé, 2018; Hmelo-Silver & Barrows, 2008; Roschelle 

& Teasley, 1995; Teasley, 1997; van Aalst, 2009; Weinberger & Fischer, 2006). 

Idea formation indicates how students create claims or conjectures about systems 

connections. Claims are statements that assert facts or describe components and relationships 

within the marine ecosystems, for instance, “more fossil fuel burning releases CO2”. Conjectures 
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are hypotheses that students propose, for example, “I guess fish will not increase right away, 

because it takes time to reproduce”. 

Transactive exchange focuses on knowledge construction efforts (Roschelle & Teasley, 

1995; Weinberger & Fischer, 2006). Students may build on their previous moves (externalize) or 

build on peers’ ideas (transactive). Transactive acts occur when students assume a partner’s 

perspectives or modify previous ideas with elaboration, challenges, and reasoning (Weinberger 

& Fischer, 2006). Such elaboration can incorporate the use of evidence from observations, 

personal experiences, and facts (Nguyen & Santagata, 2020). Codes for transactive exchange do 

not overlap with idea formation. An utterance would be coded under transactive exchange if it is 

related to a prior idea in the discussion, and “claim” if it is a new idea.  

Elaborative questions occur when students elicit elaboration ( “What happens next?”). 

Meanwhile, procedural questions request confirmation about stated connections (confirmatory, 

e.g., “Does fish decrease kelp?”) or the learning tasks (task; e.g., “How to make the lines 

appear?”). Questions were separated into different categories, because elaborative questions may 

be more conducive to high-level reasoning and enriched learning (Hogan et al., 1999).  

Finally, the off-task talks capture instances when the chats were not related to the concept 

map building task. Off-task discussions can distract students from the task (Hogan et al., 1999). 

At the same time, off-task conversations such as complaining and exclamations can build rapport 

in tutoring contexts in both human-human and human-agent exchange (Ogan, Finkelstein, 

Mayfield, et al., 2012; Ogan, Finkelstein, Walker, et al., 2012). 

Researchers have included metacognitive codes such as monitoring progress or setting 

new goals (Fu et al., 2016; van Aalst, 2009). However, these codes had few occurrences in the 

sample (12 occurrences, .4% of total chat utterances). It is possible that the short learning task 
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did not enable planning as we might observe in multi-session learning activities. Thus, these 

codes were not included in the final analysis. The author and a second coder achieved acceptable 

agreement across dimensions on a sample of 11% of the data (Table 5.2). The coders divided the 

data in half for coding and resolved uncertain cases through weekly discussions over one month. 

Table 5.1. 
Systems Thinking Coding Scheme 

Category Definition Example 
Components Describe location of components Fish lives in coral reefs. 
 

Describe properties of components Kelp forest consists of multiple kelp. 

Mechanisms Describe properties of components 
in relation to mechanisms 

Larger kelp forest allows fish to build larger 
habitat.  

Identify components that take part 
in a mechanism 

Oxygen production is due to photosynthesis 
from phytoplankton.  

Describe the mechanisms in which  
two components interact 

When there are more predators more fish will 
get eaten, so the number of fish goes down.  

Describe the sequences of 
mechanisms (chain-forward) 

With ocean acidification there is more carbon 
being dissolved in the water. Phytoplankton 
use the carbon for photosynthesis. 

Table 5.2. 
Codes for Group Chat included in the Analysis 

Code Description Example N k 
Idea Formation   

Claim State an idea or concept Fish decreases plankton 1886 .91 
Conjectures Propose hypotheses about 

systems connections 
I don’t think fish will increase right 
away. 

12 .76 

Elaborative Question    
Elaborative Ask for elaboration on 

connections within systems 
What would happen to phytoplankton 
if there is more CO2 in the ocean? 

38 .72 

Procedural Questions    
Confirmatory Inquire about stated systems 

connections to resolve 
uncertainties 

Does more fish mean more 
planktons? 

44 .73 

Task-related Gather information about the 
learning task/ the interface 

How do I get the arrows to appear? 18 1 

Transactive     
Externalize Elaborate on one’s own prior 

thoughts to groups 
As I mentioned, I think we should 
also regulate CO2 emissions. 

245 .95 

Transactive 
 

Integrate or challenge peers’ 
prior ideas to expand 
responses 

Example 1: What she said. Whales 
decrease fish because fish is whales’ 
s food source. Whales eat plankton. 

351 .88 

  Example 2: I don’t think so. It’s kelp 
that increases photosynthesis, not the 
other way around.  

  

Off-task     
Off-task State something unrelated to 

the task, complain, or react 
to off-task exchange 

Example 1: Do you believe in aliens? 
Example 2: Ughhh boring 
Example 3: lol 

172 1 
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The codes were dichotomous (1 for occurrence, 0 for non-occurrence). For the analysis, I 

calculated the sum of items under each discussion pattern. The relatively high correlations of 

subcodes under each discussion pattern, e.g., r(170) for externalize -transactive code = .84, p < 

.001 (Appendix A5.1) provide evidence of convergent validity to group the items. 

Analytic Strategies 

In this study, students were nested within discussion groups and may thus be correlated 

with one another. Multilevel models that consider groups’ random effects can account for this 

nesting. To determine whether multilevel models were necessary, I calculated the intraclass 

correlation coefficients (ICCs) for outcome variables of systems thinking and discussion patterns 

in unconditional models (just group random effects; no covariates). ICCs (range 0, 1) describe 

the proportion of variance between individuals that can be attributed to their discussion groups, 

with values closer to 1 suggesting higher variance between groups. The ICCs were small for the 

systems thinking posttest (.02 for Components, .08 for Mechanisms) and had a wide range for 

the discussion patterns (.08 for idea formation, .19 for elaborative questions, .10 for procedural 

questions, .04 for transactive exchange, and .32 for off-task). The larger ICCs justified the 

decision for the multilevel models, since ignoring the nested structure with even small ICCs can 

lead to increased Type I errors (Siddiqui et al., 1996).  

To answer RQ1 about the effects of agent designs on systems thinking, I fitted multilevel 

models to predict posttest scores of Components and Mechanisms. At the student level, the 

models included students’ gender, pretest scores for Components and Mechanisms, and the 

classes they were in (e.g., Period 1-6). At the group level, the model included the agent 

conditions, with the no-agent condition as the reference group. I modeled the group-level 
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coefficients as random effects to indicate that individuals within groups were not independent 

from one another. The model equation took the form: 

yij = 𝛽0 + 𝛽1Agent_Conditionij + 𝛽kXkij + Uj + Rij (1) 

In equation (1), i refers to individual students and j refers to the discussion groups. X is a vector 

of covariates (e.g., gender, pretest scores for Components and Mechanisms, class). U captures 

the random effect of the discussion groups with estimated variance τ2, and R denotes the student-

level error with estimated variance σ2. Additionally, I fitted a model with interaction terms 

between individuals’ pretest Mechanisms scores and the agent conditions. This model examined 

whether the agent had differential effects depending on baseline mechanistic understanding. All 

continuous variables were z-score standardized before entering the models. 

Similar to RQ1, to answer RQ2 about the link between agent conditions and discussion 

patterns, I fitted multilevel models with the agent conditions as the predictor for each pattern: 

idea formation, elaborative question, procedural question, transactive exchange, and off-task. An 

additional model included the interaction between pretest Mechanisms scores and agent 

conditions. This model examined potential variances in the impact of agent conditions based on 

baseline Mechanisms understanding. Covariates for the models were similar to those in RQ1.  

RQ3 formally examined whether discussion patterns mediated the impact of agents on 

systems thinking. Researchers have found mediating effects of collaborative elaboration on 

individuals’ conceptual understanding (Paus et al., 2012). For RQ3, I fitted a multilevel 

mediation model that included the agent conditions with direct paths to systems thinking posttest 

scores and indirect paths through transactive exchange. Transactive exchange was selected 

because this discussion pattern was moderately correlated with systems thinking scores (Table 



 

115 
 

5.3). The model included random effects of discussion groups. Students’ gender, pretest scores, 

and classes were covariates. 

RQ4 presented an exploratory analysis of the relationship between group compositions 

(based on expanding and emergent prior knowledge), agent conditions, and learning outcomes. I 

built on the multilevel models in RQ1 to fit a model that included an interaction term between 

agent conditions and groups’ standard deviation at pretest. Groups with higher deviation may 

present more heterogeneous grouping based on prior domain knowledge. This analysis aimed to 

understand how agents’ impact on discussion and learning might differ with group compositions. 

For robustness checks, I considered alternative models that also allowed the individuals’ 

pretest systems understanding to vary (i.e., random slope). This means that the effect of 

independent variables such as baseline understanding on posttest scores varied with discussion 

groups. However, a series of likelihood ratio tests comparing the random slope and random 

intercept models suggested that the random slope models did not significantly improve model 

fits. As a result, I reported results from the simpler random-intercept models as the final models 

(Appendix A5.2). I adopted Lorah’s (2018) guidelines for reporting variance in multilevel 

models. I calculated R2 as the proportional reduction in variance at the student level when 

comparing the unconditional model and the tested models (Snijders & Bosker, 2012). From the 

R2 values, I calculated the effect size related to the variance explained by the models (Lorah, 

2018), with .02, .15, .35 suggesting small, medium, and large effects (Cohen, 1992). Following 

Selya et al. (2012), the effect size of the agent condition predictor can be estimated as: 

fb2 = !!"
# "	!!#

$"	!!"
#  (2) 

In this equation, 𝑅%&'  represents the proportion of variance of outcome explained by all predictors 

in the full model (including agent condition), and 𝑅%' is the proportion of variance of outcome in 
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a reduced model (similar to the full model, excluding the effect of agent conditions). 𝑅%&' -𝑅%' thus 

denotes the additional proportion of variance of outcome explained by agent conditions. 

Because the analyses tested multiple hypotheses, I calculated adjusted p-values using the 

Benjamini and Hochberg procedure, which controlled for the proportions of all significant tests 

that are false. The raw p-values obtained from the hypotheses tested (agent conditions and 

interaction terms) were combined into a vector, ranked and ordered ascendingly, and multiplied 

by m/k where m is the number of independent tests and k is the position of the p-value in the list. 

I used the R packages “lmerTest” and “nlme” (Kuznetsova et al., 2015; Pinheiro et al., 

2017) to fit the multilevel models and “emmeans” (Lenth et al., 2019) to conduct pairwise 

comparisons of agent conditions from the fitted models. The p-values in the multilevel models 

were calculated using Satterthwaite approximations. This approximation approach produced 

Type-I error rates close to the acceptable threshold of .05 for smaller samples (Luke, 2017). The 

mediation analyses used “mediate” (Tingley et al., 2014) which tested the significance of indirect 

effects through discussion patterns using bootstrapping procedures. The analyses averaged the 

indirect effects and their confidence intervals from 1,000 bootstrapped samples. 

Extensions. I explored the impact of group solidarity, or how individuals identified their 

closeness with the discussion groups. Group solidarity might impact how individuals approach 

tasks, for example, affecting how often they engage in the discussion (Leach et al., 2008; Ogan et 

al., 2011). Because group solidarity is not the focus of this study, this exploratory analysis is 

presented in Appendix A5.3 as potential extensions in future work. 

Furthermore, because Components and Mechanisms posttests were moderately correlated 

(Table 5.3), I fitted a multivariate multilevel model that accounted for the covariance between 

these two dependent variables (Appendix A5.4). Overall, results from the univariate and 
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multivariate models did not substantially differ. A similar, multivariate multilevel model to 

simultaneously predict discussion patterns failed to converge.  

Results 

Descriptive Statistics 

Table 5.3 presents the descriptive statistics for systems thinking and discussion patterns 

for the overall sample, as well as the correlations between these variables. Students included 

about 2 statements that described components at post-test (M = 1.97, SD = .92). On average, 

students mentioned 4.11 mechanisms (SD = 1.78). Students generally sent more chat messages to 

establish ideas (M = 10.72, SD = 7.97) than providing transactive exchange (M = 3.37, SD = 

3.50), procedural questions (M = .35, SD = .84), or elaborative questions (M = .22, SD = .68). 

There were also few instances of off-task chats (M = .97, SD = 4.09). 

In terms of correlations, Components and Mechanisms posttests were positively 

correlated, r(170) = .55, p < .001. Idea formation and transactive exchange were also positively 

correlated, r(170) = .48, p < .001. Transactive exchange was significantly correlated with both 

Components, r(170) = .24, p < .01 and Mechanisms, r(170) = .30, p < .001. More idea formation 

utterances were linked to higher Components posttest scores, r(170) = .15, p = .04. More off-task 

utterances were associated with a lower score for Mechanisms, r(170) = -.18, p = .02. 

Table 5.3. 
Descriptive Statistics and Correlations of Posttest and Outcome Measures 

 C M Idea EQ PQ Trans OT S M SD Range 
Component I 1        1.97 .92 0, 4 
Mechanism (M) .55*** 1       4.11 1.78 0, 9 
Idea .15* .12 1      10.72 7.97 0, 42 
Elaborative 
Question (EQ) 

.09 .07 -.04 1     .22 .68 0, 5 

Procedural 
Question (PQ) 

-.01 -.05 .06 .30*** 1    .35 .84 0, 5 

Transact (Trans) .24** .30*** .48*** .11 .05 1   3.37 3.50 0, 15 
Off-task (OT) -.08 -.18* .02 .16* .12 -.08 1  .97 4.09 0, 32 

Note. * p < .05, ** p < .01, *** p < .001. 
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Table 5.4. 
Systems Thinking and Discussion Patterns by Agent Conditions 

 No Agent Expert Peer Kruskal-Wallis test p 
Components     

M (SD) 1.97 (.91) 2.13 (.87) 1.78 (.83) .08 
Median (Min, Max) 2.00 (0, 4) 2.00 (1, 4) 2.00 (0, 4)  

Mechanisms     
M (SD) 3.69 (1.59) 4.46 (1.62) 4.18 (2.06) .06 
Median (Min, Max) 4 (0, 8) 4 (2, 9) 4 (0, 9)  

Ideation     
M (SD)     12.14 (9.21)          10.18 (7.36)          9.80 (7.08)      .50 
Median (Min, Max) 10 (1, 42) 8 (0, 29) 9.50 (0, 36)  

Elaborative Question     
M (SD) .22 (.56) .16 (.55) .27 (.90) .56 
Median (Min, Max) 0 (0, 3) 0 (0, 3) 0 (0, 5)  

Procedural Question     
M (SD) .56 (1.07) .21 (.61) .29 (.73) .06 
Median (Min, Max) 0 (0, 5) 0 (0, 3) 0 (0, 4)  

Transactive Exchange     
M (SD)      2.49 (3.18)            3.53 (3.53)            4.11 (3.64)       .01* 
*Median (Min, Max) 2 (0, 15) 2.5 (0, 14) 3 (0, 15)  

Off-task talks     
M (SD) 2.22 (6.61) .13 (.46) .59 (2.16) .17 
Median (Min, Max) 0 (0, 32) 0 (0, 3) 0 (0, 12)  

Note. * p < .05, ** p < .01, *** p < .001. 
 
RQ1. Effects of Agent Conditions on Systems Thinking 

Table 5.4 presents the descriptive statistics for systems thinking posttests across the agent 

conditions. To evaluate the effect of agent conditions, I fitted two univariate multilevel models to 

predict Components and Mechanisms posttests. The first models included agent condition as the 

predictor variable (Table 5.5). The ICC values were .04, indicating that discussion group 

membership accounted for 4% of the variance in Components and Mechanisms posttest scores. 

The f2 values of .52 and .23 mean that the models explained 52% and 23% of the variance in 

posttest Components and Mechanisms, respectively, suggesting a large and medium effect size. 

Table 5.5 presents the results. The intercept presents the average standardized scores for a 

student in Period 1, who was a male with average standardized pretest scores and did not interact 

with an agent. I found positive effects of the agent conditions for Mechanisms posttest for both 

the expert (𝛽 = .48, SE = .18, t = 2.75, p = .01, adjusted p = .04) and less-knowledgeable-peer 
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conditions (𝛽 = .50, SE = .20, t = 2.64, p = .01, adjusted p = .04). The f2 values of agent 

condition is .06 (small effect), suggesting that 6% of the variance in posttest Mechanisms, 

beyond what was accounted for by group membership, can be attributed to agent conditions. 

Pairwise comparisons of the marginal means for Mechanisms with Tukey adjustment suggested 

differences between the agents and the control condition, but did not provide evidence for 

differences between the two agents; control: M = -.35, SE = .14, expert: M = .13, SE = .14, peer: 

M = .18, SE = .13, expert-control p = .03, peer-control p = .04, expert-peer p = .97. There was no 

significant difference in Components posttests for agent conditions, relative to the no-agent 

condition (expert: 𝛽 = .18, SE = .17, t = 1.07, p = .30, peer: 𝛽 = -.06, SE = .18, t = -.31, p = .75). 

I further explored the interaction between agent conditions and Mechanisms pretests 

(Table 5.5). The coefficients for the interaction terms were not significant for Components and 

Mechanisms posttests. The model fit did not significantly improve when adding the interaction 

terms, Components 𝜒2(2) = 3.81, p = .58, Mechanisms 𝜒2(2) = 1.04, p = .59. Thus, results did 

not provide evidence that the effects of agents on posttest differed by baseline understanding. 

Table 5.5. 
Effects of Agent Conditions on Systems Thinking 

 Components Mechanisms Components Mechanisms 
Fixed effect Coeff. (SE) Coeff. (SE) Coeff. (SE) Coeff. (SE) 
Intercept -.25 (.23) -.53 (.25)* -.15 (.21) -.45 (.22)* 
Expert .18 (.17) .48 (.18)* .20 (.15) .44 (.17)** 
Peer -.06 (.18) .50 (.20)* -.05 (.17) .48 (.19)** 
Pre-Components .45 (.10)*** .15 (.11) .45 (.10)*** .14 (.11) 
Pre-Mechanisms .22 (.10)* .35 (.11)** .28 (.13)* .29 (.14)* 
Pre-Mechanisms*Expert   -.08 (.16) .08 (.18) 
Pre-Mechanisms*Peer   -.15 (.16) .18 (.18) 
Random effect Coeff. (SE) Coeff. (SE) Coeff. (SE) Coeff. (SE) 
Between-group var(Uj) .03 (.01) .03 (.01) .02 (.01) .03 (.01) 
Within-group var(Rij) .63 (.04) .78 (.05) .64 (.04) .78 (.05) 
f2 .52 .23 .52 .23 

Note. * p < .05, ** p < .01, *** p < .001. The coefficients are standardized. Reference group = No Agent. For all 
models, covariates included individuals’ gender and classrooms’ fixed effects 
 
RQ2. Effects of Agent Conditions on Discussion Patterns 
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Similar to RQ1, I fitted univariate multilevel models that included the discussion patterns 

as outcome variables. The estimates and standard errors are reported in Table 5.6. The between 

and within-group variances suggest that individual differences accounted for a larger proportion 

of variance in the outcome variables than group differences. The higher ICC values (e.g., .23 for 

off-task exchange and .17 for elaborative questions) suggest the potential existence of 

unobserved contextual factors at the discussion group level for those variables. The f2 values 

indicate a small effect size of the models in explaining the variance at the student level for 

ideation, transactive exchange, and off-task talks. 

Table 5.6. 
Effects of Agent Conditions on Discussion Patterns 

 Ideation Elaborative Ques Procedural Ques Transactive Off-Task 
Fixed effect Coeff. (SE) Coeff. (SE) Coeff. (SE) Coeff. (SE) Coeff. (SE) 
Intercept -1.30 (.32)*** -.09 (.32) .01 (.29) -.73 (.25)** .18 (.31) 
Expert -.09 (.18) .01 (.25) -.37 (.22) .36 (.18)* -.41 (.25) 
Peer .11 (.19) .22 (.27) -.37 (.24) .56 (.19)** -.30 (.27) 
Random effect Est. (SE) Est. (SE) Est. (SE) Est. (SE) Est. (SE) 
Between-group var(Uj) .02 (.01) .17 (.02) .08 (.02) .01 (.01) .23 (.04) 
Within-group var(Rij) .88 (.07) .83 (.05) .90 (.05) .90 (.05) .58 (.04) 
f2 .12 .01 .01 .10 .11 

Note. * p < .05, ** p < .01, *** p < .001. The coefficients are standardized. Reference group = No Agent. For all 
models, covariates included individuals’ gender, Mechanisms pretest, and classrooms’ fixed effects. 
 
Table 5.7. 
Interaction Effects with Individual Pretest Scores on Transactive Exchange 

 Model 1 Model 2 Model 3 
 Coeff. (SE) Coeff. (SE) Coeff. (SE) 
Intercept -.73 (.25)** -.67 (.25)** -.75 (.24)** 
Expert .36 (.18)* .23 (.18) .26 (.18) 

Less knowledgeable peer (Peer) .56 (.19)** .53 (.20)** .53 (.20)* 
Pretest (Mechanisms) .28 (.12)* -.08 (.15) .36 (.08)*** 
Expert x Pretest  .37 (.19)+  
Peer x Pretest  .16 (.19)  
Solidarity    
Expert x Solidarity    
Peer x Solidarity    
Group Variation   -.25 (.14)+ 

Expert x Group Variation   .44 (.20)* 
Peer x Group Variation   .20 (.21) 
Between-group Var .01 (.01) .01 (.01) .01 (.01) 
Within-group Var .90 (.05) .90 (.05) .92 (.05) 
f2 .10 .10 .10 

Note. + p < .10, * p < .05, ** p < .01, *** p < .001. Coefficients are standardized. Reference group = No Agent. 
Covariates included individuals’ gender, classrooms, and pretest. Models accounted for groups’ random effects.  
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There were positive effects for transactive exchange for students who interacted with the 

less-knowledgeable-peer agent, relative to the no-agent condition, 𝛽 = .56, SE = .19, t = 2.83, p = 

.01, adjusted p =.04. There were also positive associations between transactive exchange and the 

expert agent condition, compared to the no-agent condition, 𝛽 = .36, SE = .18, t = 1.96, p = .05, 

adjusted p = .15. The f2 values of agent condition is .02 (small effect), showing that 2% of the 

variance in transactive exchange was attributable to agent conditions. Pairwise comparisons of 

estimated means suggest no significant differences between agent conditions (expert: M = .07, 

SE = .13, less knowledgeable peer: M = .27, SE = .14, p = .38). 

Using the no-agent condition as the reference group, I found no differences by agent 

conditions for the other discussion patterns. Pairwise comparisons of the estimated means of 

discussion patterns did not reveal significant differences between the agent conditions. Overall, 

students in different agent conditions did not differ significantly in their frequencies of forming 

ideas, posing questions, or going off-task. 

Interaction with Baseline Understanding. Next, I explored whether the effects of 

agents varied with individuals’ baseline understanding. Following the finding that agent 

conditions had a positive association with transactive exchange, I fitted a multilevel model with 

transactive exchange as the outcome variable (Model 2; Table 5.7). Predictors included 

Mechanisms pretest, agent conditions, and interaction term Mechanisms pretest*Condition. The 

coefficient for the interaction between Mechanisms pretest and the expert agent had a moderate 

effect size, 𝛽 = .37, SE = .19, t = 1.95, p = .05, adjusted p = .15, suggesting that the effect of the 

expert agent might be larger for students with higher pretest scores. The model with the 

interaction term did not have improved fit, 𝜒2(2) = 3.80, p = .15. This analysis, therefore, does 

not provide evidence that agents’ effects on transactive exchange differed with pretest. 
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RQ3. Mechanisms through which Agent Conditions Affect Systems Thinking 

To examine the pathways between agent conditions, discussion patterns, and systems 

thinking, I fitted a multilevel model that included transactive exchange as the mediator. The no-

agent condition was set as the reference group. I focused on Mechanisms as the outcome of 

interest, as there were significant effects of agent conditions on this variable (RQ1). The variable 

selection also aligned with the study’s focus on enriching more complex mechanistic reasoning. 

Results suggest that the effect of the agents on Mechanisms posttests was mediated via 

transactive exchange. There was a significant direct effect between the expert agent and the 

Mechanisms scores, 𝛽 = .40 [.04, .78], p = .03. The indirect effect via transactive exchange for 

the expert agent was also significant, 𝛽 = .06 [.00, .17], p = .04. The coefficients between the 

less-knowledgeable-peer condition and transactive exchange and between transactive exchange 

and Mechanisms post-test scores were significant, leading to an indirect effect of .10 [95% CI 

.02, .23], p = .01. There was a significant, moderate direct path from the peer agent condition to 

post-test scores, 𝛽 = .39 [.05, .79], p = .04. Overall, these results suggest that the effects of the 

two agents on Mechanisms’ understanding can be partially explained by the higher counts of 

transactive exchange. Figure 5.2 shows the mediation model. To illustrate this finding, consider 

the following excerpt from a group’s interaction with the peer agent. 

Kibot: what would happen to the components you’ve listed if kelp increases? 

A.R.: photosynthesis decreases 

Kibot: what do others think? Do you agree or disagree with what A.R. said? 

C.D.: If there is an increase in kelp, there is also an increase in photosynthesis since kelp 

is a plant and a primary producer, it gets its energy from the sun and do photosynthesis, 

C.D.: an increase in kelp and photosynthesis increases the levels of oxygen and pH  
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Figure 5.2. 
Mediation Model of Agent Conditions, Transactive Exchange, and Mechanisms. * p < .05 

 

Here, the agent was prompting students to think about components that related to kelp and 

provided a follow-up for transactive exchange (“what do others think”). Student C.D. responded 

by challenging her friend’s claim that “photosynthesis decreases”, providing reasoning that kelp 

served as a producer, and further elaborating on her ideas by listing the connections with O2 and 

pH levels. The agent’s prompts and students’ responsiveness to such prompts provided the 

opportunity to approach systems mechanisms coherently (kelp to photosynthesis to O2 and pH).  

RQ4: Group Compositions, Systems Thinking, and Discussion  

Groups composed of different levels of prior knowledge might show different interaction 

patterns with the agents (Nguyen, 2021). Thus, I examined how discussion groups’ variance (as 

indicated by the standard deviation in baseline understanding) might moderate the effects of 

agent conditions on learning. I found that for Mechanisms, the positive impact of the expert 

agent on posttest scores was larger in groups with higher deviations in pretest scores, compared 

to the no-agent group,  𝛽 = .44, SE = .19, t = 2.36, p = .02, adjusted p = .08 (Table 5.8). The 

model with the interaction term had improved fit compared to the one without, 𝜒2(2) = 5.97, p = 

.05. The coefficients can be interpreted as follows: The average student in the no-agent condition 

had a standardized Mechanisms posttest of -.58 (the intercept). Those who interacted with the 

expert agent at the average group variation had a standardized score of -.10 (intercept + 
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coefficient for “expert”). Every standardized unit increase in group variation would be associated 

with a .44 standardized unit increase in Mechanisms posttest in the expert agent condition.  

To contextualize these findings, I examined the transactive exchange in three groups with 

high deviations in baseline understanding (i.e., group’s SD in pretest above the mean of all 

groups). For these groups, transactive exchange often occurred in episodes of three to five chat 

turns. Transactive episodes were predominately initiated by students who scored above average 

at pretest (21/29 episodes, 72%; 6/6 in the first group, 12/18 in the second, 3/5 in the third). 

Consider the following excerpt at the beginning of a group chat: 

A.B.: zooplankton eats phytoplankton 

A.B.: sea otters eat fish 

M.H.: sea otters eat sea urchins 

S.S.: that [sea otters eating sea urchins] helps kelp because sea urchins eat kelp 

M.H.: and that is good because kelp helps photosynthesis 

This group consisted of two individuals with emergent prior knowledge (A.B. and S.D.) 

and three individuals with expanding prior knowledge (M.H., S.S., E.P.). The excerpt illustrates 

how the group discussed concepts coherently, as all components were related to one another. 

Students S.S. and M.H. demonstrated transactive exchange, building on M.H.’s claim about sea 

otters and sea urchins to connect the discussion with kelp. Here, the transactive occurrences were 

driven by M.H. and S.S., who scored higher at baseline. As this discussion progressed, students 

with emergent baseline knowledge also participated in transactive exchange, although at lower 

frequencies: S.D. (transactive exchange counts = 2), A.B. (1), compared to M.H. (9), S.S. (10), 

E.P. (4). In comparison, the effect of the less-knowledgeable-peer agent on Mechanisms posttest 

and transactive exchange did not differ with groups’ variation in posttest scores. To understand 
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this result, I examined the discussion patterns in the groups with high variation (above mean of 

all groups) in the less-knowledgeable-peer agent condition.  

Table 5.8. 
Interaction with Group Compositions for Mechanisms Posttests 

 Components Mechanisms 
Fixed effect Coeff. (SE) Coeff. (SE) 
Intercept -.29 (.22) -.58 (.24)* 
Expert .19 (.16) .48 (.17)** 
Peer -.08 (.17) .46 (.19)** 
Group Variation .08 (.12) -.19 (.13) 
Expert*Group Variation .00 (.17) .44 (.19)* 
Peer*Group Variation .18 (.18) .35 (.20) 
Random effect Coeff. (SE) Coeff. (SE) 
Between-group variance .01 (.01) .01 (.01) 
Within-group variance .61 (.04) .71 (.05) 
f2 .61 .39 

Note. * p < .05, ** p < .01, *** p < .001. The coefficients are standardized. Reference group = No Agent. For all 
models, covariates included individuals’ pretest, gender, and classrooms’ fixed effects 
 
Table 5.9. 
Descriptive Statistics for Systems Thinking and Transactive Exchange, by Pretest 

 No agent Expert Less knowledgeable peer 
(Group) Low Var. High Var. Low Var. High Var. Low Var. High Var. 
Components 1.91 (.73) 2.04 (1.09) 2.21 (.80) 1.94 (1.00) 1.77 (.81) 1.80 (.89) 
Mechanisms 3.88 (1.45) 3.44 (1.74) 4.21 (1.49) 5.06 (1.80) 4.20 (2.04) 4.15 (2.13) 
Transactive 2.66 (3.29) 2.30 (3.09) 3.33 (3.25) 4.22 (4.15) 3.89 (3.59) 4.50 (3.79) 
(Individual) Lower Avg. Higher Avg. Lower Avg. Higher Avg. Lower Avg. Higher Avg. 
Components 1.59 (.71) 2.41 (.93)** 1.88 (.70) 2.50 (.95)** 1.56 (.64) 2.33 (1.05)* 
Mechanisms 3.19 (1.51) 4.26 (1.51)** 4.00 (1.22) 5.15 (1.85)** 3.64 (1.77) 5.60 (2.20)** 
Transactive 1.83 (1.84) 3.22 (4.17) 2.70 (2.32) 4.41 (4.00)* 3.42 (2.74) 6.00 (5.08) 

Note. * p < .05, ** p < .01. Comparisons of values within conditions. Grouping variables included Higher and 
Lower than average for group SD (Group), and higher and lower than average for individual pretest (Individual). 
 

Similar to interactions with the expert agent, transactive exchange occurred in episodes. 

Different from the expert condition, however, it appeared that students with emergent prior 

knowledge were as likely to initiate transactive episodes. The majority of the episodes were 

initiated by individuals who scored below average for the pretest (29/46 episodes, 63%; 3/5 in 

the first group, 12/17 in the second, 4/9 in the third, 10/15 in the fourth). An explanation for the 

differences between the agent conditions is that the less knowledgeable peer condition might 

encourage more balanced initiative taking in transactive exchange.  
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A follow-up analysis that focused on transactive exchange provided evidence for the 

qualitative observations. I fitted a univariate multilevel model predicting transactive exchange 

and included an interaction between groups’ standard deviation in pretest and agent conditions. 

Results indicate that the positive effect of the expert agent on transactive exchange was larger 

among groups with higher variation in Mechanisms pretests, 𝛽 = .44, SE = .20, t = 2.26, p = .03, 

adjusted p = .09 (Model 3, Table 5.7). The model with the interaction term also had improved fit 

relative to the one without, 𝜒2(2) = 5.98, p = .05. Comparisons of the average values for 

transactive exchange suggest that there were no differences in the number of transactive 

exchange based on individuals’ pretest (higher or lower than average) for the less knowledgeable 

peer condition (Table 5.9). Meanwhile, students who scored higher than average at pretest 

produced significantly more transactive exchange than their counterparts in the expert condition, 

M = 4.41, SD = 4.00, compared to M = 2.70, SD = 2.32, p = .03. 

Discussion 

Agents Support Mechanistic Understanding 

Articulating relationships within systems is challenging for learners, who tend to focus on 

separate components (Gellert, 1962; Hmelo-Silver, Marathe, et al., 2007; Wilensky & Resnick, 

1999). In this work, I explore the potential of two conversational agent designs, an expert and a 

less knowledgeable peer, to support students to engage in productive discussion and deepen 

understanding of relationships among components.  

The first research question investigates the effects of the agents on students’ 

understanding of Components and Mechanisms. Results suggest that the agents can support more 

articulations of systems mechanisms at posttests. Both agents have a positive association with the 

number of systems mechanisms students articulated at posttest, compared to no-agent groups. 
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This finding shows that intentionally designed prompts on conceptual understanding might have 

a positive effect on systems understanding. The agents pose explicit prompts for students to 

develop hypotheses about systems relationships, for example, “What would happen to other 

components in the system if regulation increases?” Furthermore, the agents’ effects on 

Mechanisms posttests do not vary with individual Mechanisms pretest. This finding indicates 

that the agents appear to support students of varying baseline understanding.  

The second question explores how agents might impact students’ discussion patterns. 

Researchers have suggested that agents might promote productive talk moves, such as idea 

articulation, reasoning, and transactive exchange (Dyke, Adamson, et al., 2013; Dyke, Howley, 

et al., 2013; Kumar et al., 2010). Findings from the current work provide evidence that students 

in groups with agents (particularly the less knowledgeable peer agent) produce more transactive 

exchange. The agents’ prompts focus on productive talk moves, asking students to elaborate on 

what they just stated or to contribute to another student’s contribution (Resnick et al., 2010). For 

example, the less knowledgeable peer phrases its prompts as “I didn’t understand that. Can you 

explain to me what you mean?” These prompts focus on reasoning and elaboration, which might 

have encouraged students to engage with ideas with more complexity. Findings of the positive 

impacts of the agents on transactive exchange are in line with prior work with agents with 

different designs, for instance, posing as humans or chat boxes (Dyke, Adamson, et al., 2013; 

Rosé et al., 2015; Tegos & Demetriadis, 2017). Thus, findings suggest the robustness of agents’ 

transactive prompts on students’ exchange with or without human representations. 

The mediation analysis provides further evidence for the path through which agents may 

support systems understanding. Both agents have a significant, indirect effect on Mechanisms’ 

posttest scores through transactive exchange. This means that the increased transactive exchange 
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in interaction with the agents can enhance the articulation of systems mechanisms. Students who 

engage in transactive exchange build on previous ideas in the discussions, thereby making their 

understanding more structured over time (Oliveira & Sadler, 2008; Teasley, 1997).  

Results do not provide evidence that the experimental conditions differ in other 

discussion patterns, namely idea formation, elaborative and procedural questions, or off-task 

exchange, after accounting for students’ baseline understanding, gender, and classes. These 

results are potentially due to the prompt design of the agents. The agents focus on idea 

elaboration and group participation, instead of questioning or building rapport with users through 

off-task exchange. Claim-making (without building on previous utterances) is the most common 

discussion pattern across all conditions. Students use claims to build out their concept maps, with 

or without agents’ prompts. This finding aligns with previous observations of group discussions, 

where sharing ideas is a common discussion move (van Aalst, 2009; Yun & Kim, 2015). 

In addition, the number of elaborative questions is small and does not differ significantly 

across conditions. This finding is different from my hypothesis that students would engage in 

more quizzing with the less knowledgeable peer agent and thus provide more elaborative 

questions in this agent condition. Elaborative questions can foster explanation and deeper 

reasoning towards knowledge advancement (Hogan et al., 1999). An explanation is that 

elaborative questioning is not an explicit focus of the agents’ prompts. Other researchers have 

developed collaboration scripts that ask students to pose questions to peers within discussions, 

instead of just responding to the agents’ prompts (Radkowitsch et al., 2020, 2021; Vogel et al., 

2017; Walker et al., 2014). Such explicit prompts may be related to a higher number of 

elaborative questions among students. 
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Finally, I explore how frequencies of off-task utterances might differ across agent 

conditions. I hypothesize that the agents could gear students back to the learning task in case of 

irrelevant utterances and improve learning. This hypothesis is partially supported by the negative 

correlations between off-task utterances and Mechanisms posttest, r(170) = -.18, p = .02. 

Students who engage in fewer off-task utterances have higher Mechanisms posttest scores. 

Prior work also suggests a different dynamic, where off-task utterances smoothen 

interactions with friends and meaningfully contribute to individuals’ learning over time (Ogan, 

Finkelstein, Mayfield, et al., 2012; Ogan, Finkelstein, Walker, et al., 2012). In this study, 

students were randomly assigned to groups and not all students used their real names as 

usernames. As a result, the use of off-task exchange might be less salient than when students 

interact with known friends. Furthermore, the average number of off-task utterances was small 

and had a large deviation among individuals and between groups, suggesting that the use of off-

task exchange was not universal (M = .97, SD = 4.09; ICC = .32). Follow-up research with larger 

sample sizes and considerations of friendship in randomization (e.g., friends versus unknown 

individuals) can examine the role of off-task exchange as hindering or supporting discussions. 

The Effect of Agent on Transactive Exchange Varied with Group Baseline Understanding 

To understand the types of grouping arrangement that best support learning, I examine 

the interactions between agent conditions and groups’ baseline understanding of systems. 

Findings provide suggestions for future work. Among groups who interact with the expert agent, 

higher group variations at baseline understanding (i.e., a mix of expanding and emergent prior 

knowledge) have a larger effect on transactive exchange and Mechanisms posttest scores, 

compared to groups with lower variation in the same condition. 
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A qualitative examination of the data suggests that students with expanding prior 

knowledge tend to initiate transactive exchange more frequently in the expert agent condition, 

compared to the less knowledgeable peer condition. These students might be more willing to 

initiate exchange and structure their own knowledge (Gillies, 2003; Peterson et al., 1981). Such 

interactions resemble exchange in teacher-guided queries, where students with higher prior 

knowledge tend to dominate the discussions (Cohen, 1994; Yun & Kim, 2015).  

In comparison, group’s variation in prior knowledge is not a significant moderator of the 

relationship between the less knowledgeable peer agent and Mechanisms posttest. This agent 

potentially invites more balanced participation. Contributions to the discussions may be affected 

by students’ sense of how they are perceived by others. Whereas students with high rates of 

contribution to the discussions may associate their agency to contribute with “learning science”, 

those with lower rates of contribution tend to be more concerned with “being right” (Clarke et 

al., 2016). These findings expand observations from prior work (Tegos & Demetriadis, 2017), 

which has focused on the link between agent usage, transactive exchange, and learning 

outcomes, but has not considered the impact of group compositions.  

Overall, findings suggest the nuances in interactions with the agent designs and call for 

considerations of factors at the individual and group levels to promote equitable discussions. The 

posttest scores for systems thinking do not significantly differ between the two agent conditions. 

However, the agent conditions likely support different participation in transactive exchange in 

heterogeneous groups. Findings have practical implications for group arrangement and framing 

of learning tasks. In interactions with the expert agent, for instance, heterogeneous grouping 

might be beneficial. Students with expanding prior knowledge may initiate exchange and 

responsiveness with the agent, which are taken up by other members of the group. In 
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comparison, the less knowledgeable peer agent shows promise in engaging learners at different 

baseline understanding to initiate transactive exchange. These nuances highlight the potential of 

task framing for teacher facilitators, such as “learning together” with a less knowledgeable peer, 

versus “show me what you know” with an expert.  

Limitations 

Findings from this study should be considered in light of its limitations. First, the study’s 

sample size did not have enough power to detect small effects. Furthermore, the sample was 

limited to students from specific socioeconomic and demographic backgrounds within the same 

school. This sample size might have limited the ability to detect varying effects among 

subgroups, such as individuals’ baseline understanding. Thus, future work that replicates the 

study designs with a larger sample and different populations will provide understanding about 

how agents might impact students differentially as a result of their baseline knowledge. 

Additionally, larger sample sizes will also accommodate methodologies such as multilevel 

structural equation modeling, which allow for simultaneously testing multiple paths between 

agent conditions, discussion patterns, and learning outcomes. 

In addition, the models in this study included students’ gender as a covariate, but I did not 

find significant differences in posttest systems thinking or most students’ discussion patterns 

(except for off-task talks; Appendix A5.2). Thus, follow-up research can examine additional 

demographic variables (see work by Kim & Baylor, 2016) and the interaction of demographics 

variables at the group levels to examine additional dynamics in agent interactions. 

Furthermore, the analyses with grouping variables were exploratory in nature. The 

potential differences in how heterogeneous groups may support different participation patterns 

between agent conditions open up questions for future research. For example, follow-up 
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interviews with a subgroup of students may reveal insights into how marginalized students, such 

as those who do not identify with science or do not traditionally participate, are leading the 

discussions and participating in the conversations. Internalized perceptions of science 

participation, including questions about who can take part in the activities, might influence long-

term identification with the discipline (Archer et al., 2017). Thus, follow-up insights are valuable 

in facilitating the design of learning tasks and technology to promote equitable participation. 

Finally, the interactions with the agents were embedded in a single lesson that did not 

require intensive coordination with teachers. Emergent work has highlighted the importance of 

agent-teacher and agent-student collaboration in intelligent systems (Holstein et al., 2020). I 

intend to pursue this area in future work and examine how agents can be embedded into activities 

throughout the curriculum and provide additional insights to teachers, as well as incorporate 

teachers’ feedback to support students’ collaboration. 

Conclusion 

In this work, I explore the pathways in which different conversational agents (a less 

knowledgeable peer or an expert) can facilitate discussion and learning of complex systems, 

relative to the no-agent condition. Results highlight the potential of the two agents to deepen 

students’ mechanisms understanding through transactive exchange. These findings illuminate the 

application of agents in collaborative contexts, to encourage students to use reasoning to build on 

others’ ideas and foster complex systems thinking. They also call for future work on how agents’ 

impacts on learning might vary with group compositions. Findings highlight the nuances of 

framing designs and discussion tasks. They call for considerations of research in human-centered 

interaction and collaborative discourse to identify other discussion moves that the conversational 

agents can promote (beyond the expert-peer paradigm), design these agents, and study how the 
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agents may influence group dynamics and learning for different individuals and group 

arrangements. 
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Appendix 
 
Appendix A5.1 
Correlation of Discussion Patterns Codes and Subcodes 

 I EQ PQ CQ TQ Tr Ex T OT M SD Range 
Ideation (I) 1         10.72 7.97 0, 42 
Elaborative (EQ) -.04 1        .22 .68 0, 5 
Procedural (PQ) .06 .30** 1       .35 .84 0, 5 
Confirmatory (CQ) .01 .26** .90*** 1      .25 .75 0, 5 
Task ques. (TQ) .15* .14 .45*** .30** 1     .10 .36 0, 2 
Transactive (Tr) .48*** .11 .05 .02 .06 1    3.37 3.50 0, 15 
Externalize (E) .36*** .04 .00 -.01 .01 .84*** 1   1.99 2.02 0, 8 
Build on friends (T) .39*** .15 .08 .05 .10 .80*** .44*** 1  1.39 2.25 0, 11 
Off-task (OT) .01 .16* .12 .01 .27** -.08 -.02 -.12 1    

Note. Counts of claim and conjecture are summed because there were few instances of conjectures, M = .06, SD = .32, range 0-3. 
* p < .05, ** p < .01, *** p < .001. 
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Appendix A5.2 
Multilevel Models Predicting Systems Thinking and Discussion Patterns, Full Results 

 Systems Thinking Discussion Patterns 
 Components Mechanisms Idea Elaborative Q. Procedural Q. Transactive Off-task 
 Coeff. (SE) Coeff. (SE) Coeff. (SE) Coeff. (SE) Coeff. (SE) Coeff. (SE) Coeff. (SE) 
Intercept -.25 (.23) -.53 (.25)* -1.30 (.32)*** -.09 (.32) .01 (.29) -.73 (.25)** .18 (.31) 
Expert .18 (.17) .45 (.18)* -.09 (.18) .01 (.25) -.37 (.22) .35 (.18)* -.41 (.25) 
Peer -.06 (.18) .49 (.20)* .11 (.19) .22 (.27) -.37 (.24) .56 (.20)** -.30 (.27) 
Pretest (C) .45 (.10)*** .15 (.11) .33 (.14)* -.09 (.12) .10 (.12) .08 (.11) .03 (.10) 
Pretest (M) .22 (.10)* .35 (.11)** .02 (.07) .01 (.11) -.18 (.12) .28 (.12)*. -.07 (.09) 
Gender -.003 (.13) .09 (.14) -.06 (.15) -.18 (.15) .005 (.16) -.05 (.15) -.37 (.13)** 
Period 2 .41 (.24) .22 (.26) .41 (.25) .61 (.35) .36 (.31) .29 (.26) .67 (.35) 
Period 3 -.05 (.26) -.06 (.29) .71 (.28)* .42 (.37) .30 (.34) .49 (.29) .30 (.36) 
Period 4 .15 (.26) .29 (.29) 1.24 (.28)*** -.16 (.36) .23 (.33) .80 (.28)** -.01 (.36) 
Period 5 .14 (.26) .30 (.29) .95 (.29)** -.13 (.37) .07 (.34) .69 (.29)* .13 (.36) 
Period 6 .26 (.29) .29 (.36) .59 (.36) -.29 (.45) .39 (.42) .54 (.36) .04 (.43) 
Between-
group var. 

.03 (.01) .03 (.01) .01 (.01) .17 (.02) .08 (.02) .01 (.01) .23 (.04) 

Within-
group var. 

.63 (.04) .78 (.05) .88 (.07) .83 (.05) .94 (.05) .90 (.05) .58 (.04) 

Note. * p < .05, ** p < .01, *** p < .001. 
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Appendix A5.3 
Exploratory Analyses with Group Solidarity 
 

Solidarity reflects psychological bonds with the group and can influence how individuals 

approach group activities (Ellemers et al., 1999). Following the discussion task, students filled in 

a survey on group solidarity, to reflect their commitment to fellow group members. The survey 

items were adapted from Leach et al.’s (2008) measures of in-group identification. To assess 

solidarity, students answered three items on a 7-point Likert scale (strongly disagree to strongly 

agree). An example item is “I feel a bond with my discussion group”. I calculated the average of 

the items, with higher scores indicating higher group investment. The Cronbach’s alpha 

coefficient is .86 (95% CI: .83, .90), suggesting high internal consistency of the survey items. 

Figure A5.4 shows the distribution of the survey answers. On average, there was no significant 

difference in the scores for solidarity across conditions (no agent: M = 4.5, SD = 1.46, expert: M 

= 4.19, SD = 1.37, peer: M = 4.24, SD = 1.37, Kruskal Wallis’ test p = .41). 

Figure A5.4 
Group Investment Survey Answers, by Agent Conditions 

 
Interaction with Group Solidarity. 

I examined whether the relationship between agent conditions and transactive exchange 

varied with how students perceived their solidarity with the discussion groups. Perceived 
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solidarity can impact how individuals engage in group tasks (Leach et al., 2008; Ogan et al., 

2011). I fitted a multilevel model with transactive exchange as the outcome variable and 

included an interaction term between individuals’ perceived solidarity and the agent conditions 

(Model 2, Table A5.5). Covariates included students’ gender, pretest scores, and classes. 

The model with the interaction term had improved model fit compared to the model 

without one, 𝜒2(2) = 6.85, p = .03. The coefficient for the interaction term suggests that the 

positive effect of the less-knowledgeable-peer condition and transactive exchange was higher for 

individuals who perceived closer bonds with their groups, compared to those with lower 

solidarity in the same condition, 𝛽 = .43, SE = .18, t = 2.31, p = .02. An increase in perceived 

bonds with the groups was associated with a higher number of elaborations on discussion ideas 

in the less knowledgeable peer agent condition.  

Table A5.5 
Interaction Effects with Individual Pretest Scores on Transactive Exchange 

 Model 1 Model 2 
 Coeff. (SE) Coeff. (SE) 
Intercept -.73 (.25)** -.67 (.25)** 
Expert .29 (.18) .29 (.18) 

Less knowledgeable peer (Peer) .56 (.20)** .62 (.20)** 
Pretest (Mechanisms) .28 (.12)* .26 (.12)* 
Expert x Pretest   
Peer x Pretest   
Solidarity  -.08 (.12) 
Expert x Solidarity  .09 (.18) 
Peer x Solidarity  .43 (.18)* 
Between-group Var .01 (.01) .01 (.01) 
Within-group Var .90 (.05) .88 (.05) 

Note. + p < .10, * p < .05, ** p < .01, *** p < .001. The coefficients are standardized. Reference group = No Agent. 
Covariates included individuals’ gender, classrooms’ fixed effects, and Components and Mechanisms pretest scores. 
Models accounted for discussion groups’ random effects.  
 
Mediation Analyses: Interactions with Group Solidarity 

Based on findings that the effect of the agent conditions on transactive exchange varied 

with group solidarity for the less knowledgeable agent, I fitted an additional model to test the 

significance of the indirect effects of transactive exchange on Mechanisms understanding at 
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differing levels of group solidarity (Table A5.6). Group solidarity was the moderator on the 

effect of agent conditions on Mechanisms, through transactive exchange. I compared the 

estimates for individuals high in group solidarity (1 SD above mean in solidarity) and low in 

solidarity (1 SD below mean). I did not find significant differences in the direct and indirect 

effects of agent conditions on Mechanisms posttests along high and low solidarity thresholds. 

Table A5.6 
Moderated Mediation Model between Conditions and Mechanisms 

 Expert  Peer  
 High solidarity Low solidarity p  High solidarity Low solidarity p  
Indirect effect (Agent 
to Mechanisms 
through Transactive) 

.06 [-.02, .19] .03 [-.05, .14] .72 .17 [.01, .38]* .03 [-.06, .14] .12 

Direct effect (Agent 
to Mechanisms) 

.31 [-.15, .77] .53 [.09, 1]* .58 .39 [-.11, .94] .48 [.02, .97]* .95 

 
Discussion & Future Directions 

In sum, the exploratory analyses with group solidarity reveal potential differentiating 

effects of the less knowledgeable peer agent on transactive exchange based on a sense of 

solidarity. It is possible that the design of this agent heightened students’ sense of solidarity and 

subsequently enhanced knowledge construction efforts. This pattern is similar to peer tutoring 

interactions where increased rapport generates more productive learning exchange (Ogan et al., 

2011). Follow-up analyses, including interviews with individuals at high and low solidarity 

thresholds, may tease apart how individuals perceive their psychological bonds with the groups 

in each agent condition in more detail. Such analyses can also examine factors related to the 

learning task and the agent designs that affect these perceptions, and how perceptions of 

solidarity may influence individuals’ perceived efforts in group discussions. 
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Appendix A5.4 
Multivariate Multigroup Analyses 
Method Overview 

Multivariate analyses model multiple outcomes simultaneously and can be beneficial 

when outcomes are correlated. In addition, this approach allows for examining whether the effect 

of agents is stronger on some outcomes (e.g., Components) than others (e.g., Mechanisms). 

Researchers have applied multivariate multilevel models in education settings, for example, 

when students are nested within schools (Grilli et al., 2016; Kiwanuka et al., 2016; Snijders & 

Bosker, 2012). The fitted models followed the procedure for multivariate multilevel models 

outlined in Snijders and Bosker (2012). The values of the post-test Components and Mechanisms 

were stacked into a single outcome variable (yh). An indicator variable (i.e., dummy-coded, dh as 

1 or 0) was added to indicate whether the data referred to Components or Mechanisms. The 

model equation takes the form: 

yhij = 𝛽0dhij + 𝛽1Agent_Conditiondhij + 𝛽kXkijdhij + Ujdhij + Rijdhij (2) 

In equation (2), the subscripts h indicates the index of the dependent variable (Components or 

Mechanisms), i refers to individual students, and j refers to the discussion groups. X is a vector 

of covariates (e.g., gender, pretest scores for Components and Mechanisms, class). U captures 

the random effect of the discussion groups, and R denotes the residual errors (within-person). 

Additionally, I fitted a model with interaction terms between individuals’ pretest Mechanisms 

scores and the agent conditions. This model examined whether the agent had differential effects 

depending on baseline mechanistic understanding. All continuous variables were standardized. 

Results 

To evaluate the effect of agent conditions, I fitted a multivariate multilevel model to 

predict the posttest scores in Components and Mechanisms. The correlation coefficients were .66 
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at the group level and .60 at the student level. This particularly shows that the random group 

effects for Components and Mechanisms were substantially correlated, pointing at contextual 

factors at the group levels that might help explain both variables. 

Overall, the magnitude and size of the estimates were similar between the univariate and 

multivariate models. There were positive effects of the agent conditions for Mechanisms posttest 

for both the expert (𝛽 = .49, SE = .17, t = 2.96, p = .003) and less-knowledgeable-peer conditions 

(𝛽 = .55, SE = .17, t = 3.14, p = .002). Follow-up pairwise comparisons of the marginal means 

for Mechanisms did not provide evidence for differences between the two agents; expert: M = 

.16, SE = .12, peer: M = .21, SE = .13, p = .99. There was no significant difference in 

Components posttests for agent conditions, relative to the no-agent condition (expert: 𝛽 = .19, SE 

= .16, t = 1.14, p = .25, peer: 𝛽 = .09, SE = .17, t = .54, p = .59). 

The interaction model between agent conditions and Mechanisms pretests (Model 2) did 

not reveal significant interaction terms. The correlation coefficients at the group and student 

levels were still substantial (.58 and .47, respectively). Overall, this result does not provide 

evidence that the effects of agents on posttest differed by baseline understanding.  

Table 5.5. 
Effects of Agent Conditions on Systems Thinking 

 Model 1 Model 2 
 Components Mechanisms Components Mechanisms 
Fixed effect Coeff. (SE) Coeff. (SE) Coeff. (SE) Coeff. (SE) 
Intercept -.11 (.24) -.37 (.14)* -.15 (.21) -.45 (.22)* 
Expert .19 (.16) .49 (.17)** .20 (.15) .44 (.17)** 
Peer .09 (.17) .55 (.17)** -.05 (.17) .48 (.19)** 
Pre-Components .44 (.09)*** .08 (.09) .45 (.10)*** .14 (.11) 
Pre-Mechanisms .18 (.09)* .40 (.09)*** .28 (.13)* .29 (.14)* 
Pre-Mechanisms*Expert   -.08 (.16) .08 (.18) 
Pre-Mechanisms*Peer   -.15 (.16) .18 (.18) 
Random effect Coeff. (SE) Coeff. (SE) Coeff. (SE) Coeff. (SE) 
Between-group var(Uhj) .02 (.01) .006 (.002) .02 (.01) .006 (.002) 
Covariance cov(U1j, U2j) .01 (.003)  .01 (.003)  
Within-group var(Rhij) .64 (.04) .76 (.06) .61 (.04) .75 (.05) 
Covariance cov(R1ij, R2ij) .42 (.03)  .32 (.03)  

Note. * p < .05, ** p < .01, *** p < .001. The coefficients are standardized. Reference group = No Agent. For all 
models, covariates included individuals’ gender and classrooms’ fixed effects 
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CHAPTER 6 CONCLUSION 
 

This dissertation explores how students interact with and learn from conversational 

agents in scientific discussions. The explorations focus on two designs associated with 

facilitating learning interactions: an expert and a less knowledgeable peer agent (H. Chen et al., 

2020; Kim & Baylor, 2016). Analyses of student interactions with one another and with the 

agents focus on occurrences of discussion moves, as well as their orders and co-occurrences 

towards larger knowledge construction patterns (B. Chen et al., 2017). Data draw from the chat 

logs from a total of 224 students, student surveys, and group artifacts (i.e., the concept maps 

students created). The studies come from two experiments: a within-subject design where 

students interacted with both agents (Studies 1-3), and a randomized cluster design where 

students interacted with no agent, an expert agent, or a less knowledgeable peer agent (Study 4). 

The first study examines the sequences of group interactions with the agent designs. In 

a within-subject design, students in groups of two to three interacted with both the less-

knowledgeable-peer and the expert-agent in a learning task (n = 52). There were no differences 

between agents in the frequencies of discussion moves. However, the sequence analyses revealed 

distinct patterns between the agents. Groups tended to show questioning and building on prior 

ideas with the less knowledgeable peer agent, whereas interaction sequences with the expert 

agent often involved responsiveness and reasoning. These patterns suggest that the agents might 

affect students’ participation in discussion and subsequent learning in different ways.  

In Study 2, I examine how student groups fixed conversational breakdowns with the 

agents. The study uses the same data sample and data sources as the first study. Breakdowns in 

conversations can negatively impact users’ perceptions of and future usage of conversational 

agents. I found that learner groups generally attempted to fix the conversations during 
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breakdowns, by repeating, reframing, and explaining their utterances. In particular, groups who 

more frequently employed explanations during breakdowns showed higher numbers of high-

level systems thinking statements in their group chats. Furthermore, rephrasing and explanations 

were more common during interactions with the less knowledgeable peer agent.  

Study 3 presents a case study to explore how groups of emergent, mixed, and 

expanding knowledge interacted with the agent designs. Data come from the chat logs of three 

student groups (n = 9) with emergent, mixed, and expanding knowledge of systems thinking. I 

found different patterns across groups. The expanding groups engaged in more transactive 

exchange and claim-making with the less knowledgeable peer agent. In comparison, the 

emergent group appeared to build on prior ideas more in response to the expert agent. These 

results illustrate the importance of considering group compositions in examining learning 

interactions and build towards Study 4. 

Study 4 examines the pathways between agent conditions, interactions with agents, 

and student learning. Participants include 172 students ages 13-14 (36 groups). Students were 

randomly assigned to groups, where they built a concept map of the marine ecosystem with no 

agent, an expert agent, or a less knowledgeable peer agent. I found that the agents had a positive 

association with students’ understanding of systems mechanisms, compared to the no-agent 

condition. This benefit was largely driven by students’ increases in transactive exchange when 

interacting with the agents. Exploratory analyses further indicated potential differences in 

transactive exchange and Mechanisms understanding, along groups’ variations in pretest scores. 

This finding highlights the need to consider designs that not only facilitate learning, but also 

equitable participation in discussion across student groups. I draw from these findings to discuss 

the study’s implications and future directions. 
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Learning Implications 

I found that the agents might deepen students’ conceptual understanding, such as learning 

of systems mechanisms. A mechanism behind this effect is that the agents invite for productive 

talk moves, such as using reasoning and explanations to build on previous ideas in the group 

discussions. These findings contribute to emergent work on agents’ interactions in collaborative 

contexts, by showing the pathway through which different agent designs might support learning 

(Adamson et al., 2014; Dyke, Howley, et al., 2013; Tegos & Demetriadis, 2017). 

A direction for future work is to examine other pathways in which different agent designs 

can support discussions and learning in other domains, for example, in argumentation in English 

Language Arts or project-based design in Engineering. While the learning activity with the 

agents in this study took place in school settings, there is potential for future work to integrate 

the agents in informal learning activities such as museum simulations, to facilitate collaborative 

meaning-making of scientific phenomena. 

Furthermore, the two agent designs might have supported different participation patterns 

in transactive exchange, with implications for how much students learned from the experience. 

In particular, students from different baseline knowledge more equally initiated and engaged in 

transactive exchange with the less knowledgeable peer agent, who framed the task as “learning 

together”, compared to the expert agent with prompts such as “show me what you know”. I 

hypothesize that the expert agent’s prompts might have discouraged students who are more 

concerned with providing the correct responses (Clarke et al., 2016). These findings have 

implications for teachers and technology designers to frame the learning tasks to promote more 

equitable participation.  
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They also call for follow-up work that provides insights into how students from 

marginalized backgrounds, such as those with emergent knowledge or reservations about 

participation in scientific practices, perceive different agent designs and their contributions to the 

discussions. Such analyses may shed light on how learning designs can frame legitimate 

participation in scientific practices. Legitimate participation refers to opportunities for students to 

position themselves as active participants to engage in scientific practices and dialogues in 

classroom communities, as opposed to simply reciting facts and procedures from teachers 

(Lehrer & Schauble, 2006). To enact visions of instructional practices that legitimize students’ 

participation (Kang et al., 2016; Stroupe, 2017), future work can examine the agent designs that 

effectively prompt students to discuss ideas, help students connect learning problems to lived 

experiences, and use students’ ideas as resources to adapt participation prompts and learning 

tasks over time. 

Design Implications 

In this work, I explore the expert-less knowledgeable peer agents as one design paradigm 

that has been associated with productive help-seeking and help-giving in learning contexts 

(Graesser, 2016). Prior research has traditionally framed agents as facilitators or nudge providers 

(Dyke, Adamson, et al., 2013; Heidig & Clarebout, 2011; Rosé et al., 2015). However, findings 

from this dissertation illustrate that students might perceive agents as social partners in learning 

exchange. For example, student groups engaged in spontaneous questioning sequences with the 

less knowledgeable peer agent, and were generally tolerant of conversational breakdowns and 

attempted to fix such breakdowns. These findings illuminate how intentionally designed 

appearances and prompts for the agents can promote emergent social interactions.  
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Findings also call for considerations of design paradigms beyond expert and peer. 

Researchers have considered the feasibility of conversational agents as creative partners and co-

storytellers (Ligthart et al., 2020; Sun et al., 2017). Applying these designs to collaborative 

contexts would require considerations of group dynamics within learning contexts, including 

how students perceive their relationships with peers and with the agents. Future work can turn to 

emergent research of agents in online communities. For example, agents can take on the role of 

an antagonist who uses off-task chats to build rapport with users, a storyteller that requires users 

to interact to advance plots, or an authority figure that constructs group norms (Seering et al., 

2019). Such innovative designs might blur the positioning of agents as group outsiders and build 

towards more agile agent-human collaboration. 

Implementation Implications 

Conversational agents have gained increasing presence in the school and home 

environments. A follow-up question from the dissertation is how to implement this technology to 

support productive participation and learning at scale. In terms of technical design, the agents’ 

interface and prompts can easily adapt to other contexts. The expert concept map that the agents 

base their prompts on can be swapped out with content from other domains to show relationships 

among concepts. Because the agents focus on facilitating idea elaboration rather than evaluation, 

existing transactive exchange and reasoning prompts are versatile in other learning situations.  

More importantly, teachers’ coordination needs to be considered for the agents to be 

integrated at scale. In this dissertation, the students and agents interacted in a single learning 

activity. Prior research with intelligent tutoring systems has demonstrated that such technology is 

most effective when it is used consistently and accounts for specific teacher routines (Holstein et 

al., 2019, 2017). Thus, an area of research that I will pursue is to understand how agents can 
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provide ongoing feedback to teachers about students’ discussions, coordinate with teachers to 

deploy collaborative prompts, evaluate the uptake and effectiveness of such prompts on students’ 

learning, and encourage more equitable participation.   

Together, the studies in this dissertation illustrate the potential of conversational agents in 

promoting productive discussion moves and scientific understanding. They also illuminate 

emergent interaction patterns associated with different agent designs. These findings reveal the 

need to design learning technology with considerations of the desired learning outcomes and 

interaction patterns, the unique social dynamics in different settings, and the interactions of 

individual and group factors for students to consider the agents as learning partners.  
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