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ARTICLE

Amazonian terrestrial water balance inferred
from satellite-observed water vapor isotopes
Mingjie Shi 1,2✉, John R. Worden 3✉, Adriana Bailey 4, David Noone5, Camille Risi6, Rong Fu7,

Sarah Worden7, Robert Herman 3, Vivienne Payne 3, Thomas Pagano3, Kevin Bowman1,3,

A. Anthony Bloom3, Sassan Saatchi3, Junjie Liu 3,8 & Joshua B. Fisher1,9

Atmospheric humidity and soil moisture in the Amazon forest are tightly coupled to the

region’s water balance, or the difference between two moisture fluxes, evapotranspiration

minus precipitation (ET-P). However, large and poorly characterized uncertainties in both

fluxes, and in their difference, make it challenging to evaluate spatiotemporal variations of

water balance and its dependence on ET or P. Here, we show that satellite observations of the

HDO/H2O ratio of water vapor are sensitive to spatiotemporal variations of ET-P over the

Amazon. When calibrated by basin-scale and mass-balance estimates of ET-P derived from

terrestrial water storage and river discharge measurements, the isotopic data demonstrate

that rainfall controls wet Amazon water balance variability, but ET becomes important in

regulating water balance and its variability in the dry Amazon. Changes in the drivers of ET,

such as above ground biomass, could therefore have a larger impact on soil moisture and

humidity in the dry (southern and eastern) Amazon relative to the wet Amazon.
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The Amazon biome typically receives rainfall exceeding
~2000 mm year−1 1. This rainfall depends on advected
oceanic moisture combined with (ET). ET can contribute

up to 30–40% of the atmospheric moisture during the dry
season2–4 and is important for the initiation of the seasonal
monsoon over the southern Amazon5. Characterizing the
moisture balance between ET and precipitation (or ET-P) and
how it is affected by climate and anthropogenic forcings is
therefore critical for evaluating the variability of forest dynamics
(e.g., carbon storage, forest structure, and composition) in both
the wet Amazon and the surrounding dry tropics. For example,
an initial increase in ET-P over the wet Amazon represents a local
loss in soil moisture but an increase in atmospheric humidity.
This humidity becomes a source of rainfall for local and down-
wind forests3, which helps to maintain photosynthesis and forest
growth in the dry tropics1,6. However, a continuous local water
balance deficiency (i.e., a long-term increase in ET-P), could
induce forest biomass reduction in these areas with soil moisture
loss7–9.

Because ET-P is equivalent to the change in water storage and
river discharge, it can be quantified using satellite gravity-
based terrestrial water storage (TWS) and river discharge
measurements10–12 (“Methods”). However, limited spatial reso-
lution of the gravity measurements and limited accuracy of the
river measurements mean that these water balance estimates have
very coarse spatial resolution of about 800 × 800 km2 (i.e., river-
basin scale)10. Furthermore, they can only be derived in the wet
Amazon, where discharge measurements are representative of
river basins of similar spatial resolution to the gravity measure-
ments. Water balance can also be quantified using precipitation
and ET products from remote sensing or reanalysis. However,
quantifying the uncertainties of these products can also be
challenging13, since their accuracies and precision vary with cloud
cover14,15 and rainfall.

Here, we describe the relationship between the deuterium
content of water vapor (in this case the number of HDO mole-
cules to the number of H2O molecules or HDO/H2O ratio) and
its relationship to ET and precipitation. Satellite observations of
HDO/H2O ratio have been used for evaluating the primary
moisture sources and dynamics affecting the tropical and sub-
tropical water cycle5,16–21. The deuterium content of a mea-
surement is traditionally given in parts per thousand relative to
the deuterium content of ocean water (i.e., δD; “Methods”).
Consequently, a value of zero means the measurement has the
same deuterium content as the ocean and a value of −1000
permil means the measured air parcel has no deuterium. Pre-
cipitation and mixing processes change the atmosphere’s deu-
terium content and its bulk moisture content; thus, δD covaries,
to zeroth order, with specific humidity. However, the exact nature
of this covariance depends on which precipitation or mixing
process is dominant (Fig. 1)17,22. During a rainfall event, the
deuterium content is gradually depleted, broadly following what
is called a Rayleigh distillation23. In contrast, when the free tro-
posphere mixes with evapo-transpired water vapor in the
boundary layer, the deuterium content increases5. Furthermore,
since transpiration and the complete evaporation of intercepted
water from forest canopies produce little-to-no net fractionation,
water vapor sourced from heavily vegetated areas is typically
more enriched than water vapor originating from the
ocean17,21,24.

The degree to which isotopic variations follow one or the other
of these precipitation or evaporation relationships is readily
quantified by normalizing the δD to a reference water vapor
concentration. This normalization removes the dependence of the
HDO/H2O ratio on H2O (Fig. 1a). Comparing observations to
mixing models can then provide an additional constraint on the

origin of the observed vapor and its variability21,22,25,26. Research
using model simulations27 has found that normalizing the
observed HDO/H2O ratio in vapor to a reference value of 0.004
volume mixing ratio (VMR), typical of free-tropospheric con-
centrations (“Methods”), creates a linear proxy for ET-P27,28 over
the tropical ocean. We call this proxy δD_004 and use it to
quantify water balance as discussed next.

In this work, we show that satellite measurements of HDO/
H2O ratio of water vapor reflects the spatial, seasonal, and
interannual variability (IAV) of ET-P over the Amazon, as
opposed to either flux alone, mitigating uncertainty related to
taking the difference of two very large fluxes. These isotopic
measurements are derived from thermal infrared radiances
measured by the Atmospheric Infrared Sounder (AIRS) instru-
ment. The AIRS measurements span 2002 through the present
and are accurately calibrated over this time period relative to
ground and aircraft data29, making them suitable for quantifying
the HDO/H2O ratio of tropospheric vapor from seasonal to
decadal time scales. We calibrate the isotopic data to ET-P at
river-basin scales using satellite gravity-based TWS and river
discharge (herein TWS/discharge) measurements (“Methods”),
and quantify their spatial biases and precision using a global
climate model enabled with water isotopes. We then quantify the
relationship between precipitation and water balance in the wet
and dry Amazon in order to evaluate if ET or precipitation
variability is the primary factor controlling seasonal water balance
variability.

Results
Quantifying ET-P and its uncertainties from AIRS deuterium
measurement. We use monthly gridded AIRS deuterium mea-
surements during 2003–2015 (“Methods”) and corresponding
δD_004 estimates (“Methods”) to analyze seasonal, interannual,
and spatial variability in ET-P for the Amazon (Table S1) and
surrounding regions. The measurements have a monthly uncer-
tainty of ~4 permil with no observable changes in the calibration
over the observational time period30, making the record suitable
for evaluating seasonal to decadal changes in the tropospheric
HDO/H2O ratio. Figure 2a demonstrates how the AIRS δD_004
varies with ET-P, estimated from TWS and river discharge data.
We show these relationships for three regions: the northeastern,
southeastern, and western parts of the Amazon, which are large
enough to be resolved by TWS retrievals from the Gravity
Recovery and Climate Experiment (GRACE) observations.
Because advection from the Atlantic Ocean during the rainy
season typically enters the Amazon from the northeast and then
circulates along the Andes towards the south31, we also use these
regions to evaluate how changes in moisture sources affect the
δD_004 versus ET-P relationship.

The comparisons demonstrate linearity between the ET-P
estimates from TWS/discharge and AIRS δD_004. Differences in
the slope and offset between the three regions are likely due to the
fact that areas nearer the ocean are more dependent on the less
enriched ocean moisture source while areas farther inland have a
larger ET signal with correspondingly higher deuterium
content21. Based on these results, we conclude that we can use
river-basin-scale comparisons to quantify ET-P from δD_004
(“Methods”), so long as we account for spatial variations in the
regression coefficients that project δD_004 to ET-P across the
Amazon.

Quantifying uncertainty of ET-P variability based on δD_004
using the isotope enabled Community Atmosphere Model. We
use the isotope enabled Community Atmosphere Model Version
5 (herein iCAM; “Methods”) to (1) further demonstrate that we
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expect a linear relationship between δD_004 and ET-P and (2)
quantify uncertainties in our method of using regressions of
TWS/discharge and AIRS δD_004 at river-basin scales to estimate
ET-P across the Amazon. Figure 2b shows ET-P versus δD_004 in
iCAM for the same regions shown in Fig. 2a. As with the
observed relationships between AIRS δD_004 and TWS/dis-
charge, the modeled relationships are linear (correlation coeffi-
cients of 0.84 or higher) for the wet Amazon. However, observed
ET-P is largely negative throughout the year over the wet tropics
(i.e., in river basins close to the Atlantic and in northwestern
Amazon), whereas iCAM has ET-P being positive for ~1/3 of the
year. Because of these large differences, we cannot use iCAM as a

way to calibrate the δD_004 proxy. Instead, we use the iCAM
model to evalute uncertainties in the proxy and whether seasonal
changes in dynamics and moisture sources change the ET-P and
δD_004 relationship. We quantify this uncertainty as the root-
mean square (RMS) difference between the iCAM ET-P simula-
tion and the ET-P derived from the ET-P and δD_004 relation-
ships from iCAM (i.e., the residual standard deviation of the
regressions shown in Fig. 2b). Because the uncertainty in the
AIRS deuterium data is relatively small for monthly averages (~4
per mil)30, the primary source of scatter in Fig. 2b is likely the
variable sources of ET and precipitation or the isotopic physics
used in iCAM. However, other processes not well modeled by

Fig. 1 The diagram of water vapor and δD (δD_004) dynamics. a The processes influencing δD_004 variability, shown on a plot of water vapor volume
mixing ratio (y-axis) versus δD (x-axis). For a constant water vapor volume mixing ratio (4mmol mol−1, flat gray line labeled “Reference VMR”), variations
in the hydrogen isotope ratio (δD_004, shown in the Figure as δD004) represent the shifting importance of precipitation vs. evapotranspiration (ET-P). The
precise scaling of δD_004 to ET-P will be modified by the efficiency of rainout (i.e., the efficiency with which cloud condensate is converted to rain) and by
the source of moisture to the atmosphere. For example, the two-sided black arrow shows the expected range of δD_004 if oceanic evaporation is the sole
source of moisture to the atmosphere (blue line) and condensate formed during convection is immediately removed from the atmosphere by precipitation
(red line). The intersection of the blue and red lines with the “Reference VMR” line explicitly shows the expected δD_004 values if P= 0 or ET= 0,
respectively. As the contribution of transpiration to atmospheric moistening increases (green line), the δD_004 range will extend to the right, causing the
expected δD_004 value to be higher when P= 0. Contrastingly, as either rain evaporation (purple dashed line) or remote moisture convergence (orange
line) becomes important, the δD_004 range will extend to lower isotope ratios, causing the expected δD_004 value to be lower when ET= 0. Decreasing
the efficiency with which condensate forms precipitation (pink dotted line) will, in comparison, increase the expected δD_004 value when ET= 0, limiting
the expected δD_004 range for a given set of ET-P states. b The schematic illustrates the key processes in (a).

Fig. 2 The regressions of ET-P on δD_004 from both observations and iCAM. a represents the regressions of TWS/discharge on AIRS δD_004 and b
represents the regressions of ET-P on δD_004 from iCAM during 2013–2015. Here, we use observations and iCAM output at a monthly time scale. Basins
close to the Atlantic are river basins 1, 3, 10, and 12 from Fig. 3b; basins in the Northwest are basins 5, 8, 9,13, and 14; basins in the Southeast are basins 2,
4, 6, 7, and 11. For each region, we calculate the area-weighted average of ET-P from TWS/discharge, AIRS δD_004, and ET-P and δD_004 from iCAM for
all months during 2003–2015. Here, the region comprised of basins close to the Atlantic has a higher slope than the other regions, according to both the
observations and iCAM, indicating a different moisture source.
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iCAM could also affect the scatter; these include variations in
cloud microphysical processes and changes in the depth of con-
vection resulting in variations in moisture flux convergence
(Fig. 1). All these processes are discussed in the “Methods” and
are shown to have a negligible impact on the precision of the
deuterium-based ET-P estimates from AIRS. The scatter shown
in Fig. 2b represents the uncertainty on the seasonal variability of
the δD_004-based ET-P estimates. The overall accuracy is
bounded by the TWS/discharge measurements as discussed next.

Accuracy of ET-P Estimates. We estimate the accuracy of the ET-
P estimates based on the AIRS δD_004 data as the RMS error in
the fit between the monthly based TWS/discharge versus AIRS
δD_004 estimates of ET-P and TWS/discharge suggested ET-P. We
use TWS/discharge for this purpose because GRACE TWS is
precision limited at river-basin scales and its uncertainties have
been quantified in the literature10. The accuracy is shown in
Table 1 for five groups of river basins described in the “Methods”.
We assess the accuracy through comparisons with different ET-P
esimates derived from different ET and precipitation remote sen-
sing and reanalysis products (“Methods”; Table S2). Results from
Group 1, composed of river basins 3, 10, and 12 (which are shown
in Fig. 3b and named in Table S1), are discussed as an example,
because these three basins do not have any missing values for the
river discharge measurements during 2003–2015. We find that the
RMS errors in the fit between the ET-P estimates derived from

different moisture flux products and AIRS δD_004 are generally
larger but within a factor of two of the RMS errors in the fit derived
from TWS/discharge and AIRS δD_004 (Table S2). This suggests
that our choice of using TWS/discharge data to calibrate the AIRS
δD_004 proxy and our estimate of its accuracy are reasonable.

Seasonality of ET-P based on δD_004 measurements. Figure 3a
shows the monthly average AIRS δD_004-based ET-P estimates
from Group 1, which is composed of river basins 3, 10, and 12
(Fig. 3b and Table S1). We compare these estimates to (1) ET-P
from TWS/discharge, (2) eight other ET-P estimates calculated
from the same moisture flux products used for assessing accuracy
in Table S2, (3) an ET-P estimate using the regression coefficients
from the TWS/discharge–δD_004 comparison, and (4) a similar
ET-P estimates using AIRS δD_004 versus the mean of the eight
other ET-P calculations from Table S2. The pink shading
describes the uncertainty in the deuterium-based ET-P variability;
as discussed earlier, this uncertainty is calculated using the iCAM
simulations. Across all five groups of river basins (defined in the
“Methods”), the uncertainties range from ~32 to 41mm month−1

(Table 2). We find that the seasonality of the deuterium-based
ET-P estimates agrees best with the ET-P obtained from TWS/
discharge; however, noticeable differences are seen in the early
and late part of the wet season (December and May). The com-
parisons demonstrate that the deuterium-based ET-P estimates
can resolve monthly variations in ET-P26–28.

Table 1 The regression coefficient and standard error of the regression coefficient, intercept, correlation coefficient, and the
root-mean square (RMS) error in the fit (mm month−1) between ET-P and δD_004 in the 5 river basin groups: Group 1 (basins 3,
10 and 12), Group 2 (basins 1, 13, and 14), Group 3 (basins 5, 8, and 9), Group 4 (basins 4, 6, and 11), and Group 5 (basins 2
and 7).

Group number Regression coefficient ± standard error of the regression coefficient Intercept Correlation coefficient Error in the fit (mm month−1)

1 2.62 ± 0.13 353.60 ± 23.06 0.85 43.11
2 1.66 ± 0.09 172.67 ± 17.60 0.84 35.86
3 1.91 ± 0.12 239.62 ± 21.86 0.82 54.86
4 1.91 ± 0.12 258.93 ± 19.99 0.80 52.89
5 2.86 ± 0.20 383.40 ± 32.08 0.78 77.85

The calculations are based on ET-P estimated with GRACE TWS and river discharge (TWS/discharge; mm month−1) and δD_004 (per mil) from AIRS during 2003–2015.

Fig. 3 The seasonality of evapotranspiration minus precipitation (ET-P) in one of the Amazon sub-basin groups and the Amazon basin distribution.
a The seasonality of ET-P is from different ET and P data sources, TWS/discharge, and ET-P estimates based on AIRS δD_004 for the geographic area
composed of river basins 3, 10, and 12 (Group 1; “Methods”) during 2003–2015. Panel b shows the river basin distribution map for the Amazon. In a, we
use area-weighted averaging. We use two ET sources; one is from PT-JPL ET, the other is the latent heat flux of ERA5. We also use four precipitation
products: TRMM, GPCP, PERSIANN, and CRU. Other monthly data products include terrestrial water storage (TWS) from GRACE, river discharge from
Amazon river gauge measurements, and ET-P derived from AIRS δD_004. “ET-P Estimation” is the ET-P estimate from AIRS δD_004 based on the
regression against TWS/discharge. “ET-P Estimation with Mean” is an alternative estimate of ET-P from AIRS δD_004 based on regressing the isotopic
data against the average ET-P derived from the eight combinations of remote-sensing and reanalysis moist flux products. The pink shading represents the
suggested error in the fit between monthly ET-P and δD_004 from iCAM.
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Spatial variability of ET-P in tropical South America for wet
and dry seasons. We next demonstrate how the deuterium proxy
reflects the spatial as well as the seasonal variability of ET-P
across the Amazon and to a lesser extent the dry tropics of South
America. We first average monthly AIRS δD_004 data onto a
2.5° × 2.5° grid so that it is consistent with the spatial resolution of
precipitation from the Global Precipitation Climatology Project
(GPCP). These gridded data are then projected to ET-P using the
regression coefficients derived from comparing AIRS δD_004 to
TWS/discharge in the five river basin groups defined in the
Methods. The regression coefficients for any given grid are cal-
culated as a weighted mean of the basin-group-scale regression
coefficients, in which the weights depend on the linear distance
between the grid cell and the effective center of the river basin
groups. We then use this mapped ET-P to calculate the average
ET-P in the wetter months (January–June) and in the drier
months (July–December) during 2003–2019 (Fig. 4). The accu-
racy of the estimates based on this approach might be limited in
grid cells that have similar distance to a certain basin, but can
avoid extrapolation errors for regions outside the Amazon basin.

Because we can apply the same mapping to the iCAM
simulations, we quantify the uncertainty of extrapolating from
the basin-group scale to the entire gridded Amazon. The
difference between the iCAM simulations of ET-P and ET-P
estimates obtained from iCAM δD_004 (Table 2) shows that
there is a negligible impact to the uncertainty budget from this
mapping approach within the Amazon. However, deuterium-
based ET-P estimates for regions outside the Amazon are likely
biased low by about 40 mm month−1, probably because the dry
troposphere sub-tropical deuterium content is correlated with
that in the wet Amazon (“Methods”; Fig. S5). Consequently, care
should be taken in using the deuterium-based ET-P estimates
outside the Amazon (“Methods”).

Implications and discussion
The deuterium-based ET-P estimates during the wetter
(January–June) and drier (July–December) seasons are shown in
Fig. 4a–c. Here, the dry and wet seasons are separated by the
160 mm month−1 precipitation criterion that is suggested by

Table 2 The regression coefficient and standard error of the regression coefficient, intercept, correlation coefficient, and the
RMS error the in fit (mm month−1) between ET-P simulations and ET-P estimates based on simulated δD_004 for the same five
5 groups of Table 1.

Group number Regression coefficient ± standard
error of the regression coefficient

Intercept Correlation coefficient Error in the fit (mm month−1)

1 3.78 ± 0.12 698.69 ± 24.49 0.91 32.60
2 2.08 ± 0.09 359.90 ± 18.14 0.85 32.99
3 1.61 ± 0.07 292.95 ± 14.56 0.84 31.99
4 1.63 ± 0.09 280.95 ± 16.24 0.81 36.57
5 2.26 ± 0.11 401.71 ± 20.47 0.84 41.41

All the calculations use ET-P (mm month−1) and δD_004 (per mil) from iCAM during 2003–2015.

Fig. 4 The spatial pattern of ET-P and precipitation over the Amazon. Here, we show the ET-P (mm month−1) derived from the TWS/discharge versus
AIRS δD_004 relationship for a the wet season (January–June), b the dry season (July–December), and c the yearly average during 2013–2019. Mean
precipitation for d the wet season (January–June), e the dry season (July–December), and f the annual average is obtained from the monthly record of
GPCP during 2013–2019. The pink dots in panel c indicate the center of five basin groups (“Methods”). In Figures (d–f), we use the colder colors to indicate
areas with annual precipitation over 160mm month−1, which is the dry-to-wet criterion of the tropics as suggested by Guan et al. (2015).
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Guan et al. (2015) (the lightest blue in Fig. 4d–f). The spatial and
temporal variations in Fig. 4 indicate that ET becomes more
important for the water balance in the southern Amazon during
the drier part of the year, especially along the arc of deforestation,
which roughly aligns with the southern and eastern rivers shown
in Fig. 432. This result is consistent with recent research that
indicates an increasing contribution of ET to atmospheric
moisture for forest regions farther from the Atlantic, with the
largest contribution happening during the dry season3,5,17. This
relationship between water balance, ET, and precipitation can be
further demonstrated by regressing monthly gridded water bal-
ance estimates against precipitation. Here, we regress monthly
TWS/discharge versus AIRS δD_004-based ET-P estimates
against precipitation from the GPCP Version 2.333, one of
the rainfall estimates used in Fig. 3a. We then calculate the slope
between these data sets for 2003–2015. We only use a single
rainfall data set, since our objective is to demonstrate that
the slope of ET-P versus precipitation varies from the center of
the Amazon to the edges. Also, we find that GPCP is best cor-
related with ET-P relative to the other precipitation data sets.
Regions, in which the regression slope values between ET-P and
precipitation are less than −0.5, are primarily controlled by
precipitation variability. If the slope value is close to zero, then ET
and precipitation co-vary. Figure 5 indicates that precipitation
contributes most to ET-P variability in the wet (central) Amazon
but that ET becomes more important for water balance variability
in the transition between the wet and dry tropics. This result
confirms the importance of ET in maintaining atmospheric
humidity and precipitation in this region. A caveat is that esti-
mating the slope of ET-P versus precipitation using these data is
uncertain because of noise in both of the data sets. Figure 5 thus
most reliably demonstrates spatial variations between ET-P and
precipitation. Based on the results shown in Figs. 4 and 5, we
conclude that changes in forest structure along the arc of defor-
estation (roughly the region outside the southern and eastern
rivers shown in Fig. 4) have an outsized effect on terrestrial water
balance through changes in ET and hence are likely to affect
atmospheric moisture and subsequent rainfall in this region.

While we have demonstrated that the AIRS deuterium mea-
surements can be used to quantify the spatiotemporal Amazon
water balance at monthly to seasonal and interannual time scales,
further studies are needed to show that these relationships hold at
decadal time scales. The AIRS calibration shows extraordinary
stability30, and additional error reduction could also be obtained
through long-term averaging. Thus, these data could be used to
assess long-term changes in the water balance and determine if
observed changes in climatic and anthropogenic forcings have
affected the water balance over the same period. For example,
interannual variations in Atlantic sea surface temperature (SST)
affect drought and fire intensity34. Are these changes due to
increasing ET-P, decreasing soil moisture, or decreasing ET-P,
which reduces atmospheric humidity, or some combination of
both from previous and current years (e.g., their lagged effects35)?
Furthermore, are reductions in ET on the order of 10%36,37, as
inferred from satellite measurements and water-budget calcula-
tions, associated with increasing water use efficiency related to
CO2 fertilization38 or changes in forest structure related to fires,
logging, and agriculture11? Given the stability of the calibration,
the accuracy and precision of the data, and improved spatial
resolution relative to basin-scale water balance approaches, these
new deuterium-based estimates of ET-P have the potential to test
one or more of these hypothetical processes controlling changes
in Amazon carbon and water couplings and exchanges.

Methods
In this section, we further explain the methods for quantifying ET-P from δD_004,
report the data sources and their uncertainty, and describe the iCAM configuration
used in this study. Specifically, the following six sub-sections discuss (1) the
method of quantifying ET-P from non-isotopic data sources, (2) the use of the
tropospheric HDO/H2O ratio of water vapor for the estimation of ET-P, (3)
sampling biases associated with the AIRS HDO/H2O measurements, (4) the model
configuration of iCAM, (5) quantification of spatial variability and bias in the
deuterium-based ET-P proxy, and (6) quantification of the uncertainty of ET-P.

Quantifying ET-P from water balance, remote sensing of ET and P, and re-
analysis. We use two independent approaches to quantify evapotranspiration
minus precipitation (ET-P). One approach uses TWS retrievals from the GRACE
and river discharge measurements over the Amazon by following the equation:

ET� P ¼ �ΔW
Δt

� R; ð1Þ

where ET is evapotranspiration, P is precipitation, ΔWΔt is TWS change with time,
and R is runoff. Equation 1 is derived from the water balance equation, in which ΔW

Δt
is estimated by subtracting ET and R from P10. Here, we use three GRACE TWS
retrievals from the Center for Space Research (CSR), the GeoforschungsZentrum
Potsdam (GFZ), and the Jet Propulsion Laboratory (JPL), and calculate the
arithmetic mean of the three GRACE TWS retrievals39 to obtain ΔW

Δt . During
2003–2015, there are in total 12 one-month gaps and 3 two-month gaps for
GRACE TWS. We use spline interpolation to fill the gaps. The river discharge data
for each river basin (Fig. 3b and Table S1) are obtained from the Observation
Service for the geodynamical, Hydrological, and Biogeochemical control of erosion/
alteration and material transport in the Amazon, Orinoco and Congo basins (SO-
HYBAM) in-situ river-gauge discharge measurements spanning 2003–2015
(https://hybam.obs-mip.fr/). The missing records of SO-HYBAM during this time
period are less than 10% of the entire time period and mostly exist at the end of the
data time series; thus, the data gaps are excluded from data processing. Uncer-
tainties are not provided with these estimates and could be as large as 20% or more
for any given month10 based on measurements taken over well-instrumented areas
in the Western USA40. The value for R in Eq. 1 is the net river discharge, that is the
difference between the water leaving the basin and the water entering the basin10,41.

A second approach is to quantify ET-P by using independent estimates for ET
and for P. Here, we use four precipitation sources: the Global Precipitation
Climatology Project (GPCP) Version 2.3 at 2.5° × 2.5° and monthly spatiotemporal
resolution33, the Tropical Rainfall Measuring Mission (TRMM) research product
version 3B42 at 0.25° × 0.25 ° and 3-hourly spatiotemporal resolution42, the
Precipitation Estimation from Remotely Sensed Information derived from Artificial
Neural Networks (PERSIANN) version 1 at 0.25° × 0.25° and daily spatiotemporal
resolution43, and the Climate Research Unit (CRU) version 4 at 0.5° × 0.5° and
monthly spatiotemporal resolution44. Uncertainties for these precipitaiton products
can range from 30% to 50% at monthly time scales13, depending on the amount of
rain. We, therefore, take the mean of the four products and then calculate the
monthly precipitation over the different river basins shown in Fig. 3b. However,

Fig. 5 The regression slope coefficient between the ET-P (mm month−1)
estimates based on TWS/discharge versus AIRS δD_004 and GPCP
precipitation (mm month−1) during 2003–2015. Monthly ET-P estimates
and precipitation values are used for the calculation.
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this approach does not reduce biases that are a result of variable sensitivity of the
radar signal to rainfall amount45.

We use a global ET product based on measurements from MODIS and
MERRA2, utilizing the ET algorithm of Priestley Taylor-Jet Propulsion Laboratory
(PT-JPL)46, which also forms the core global ET retrieval for NASA’s ECOSTRESS
mission47. The uncertainty of this product for the study area is ~24 mm month−1

based on comparisons with surface site measurements across the tropics48. Recent
ET estimates based on four ET algorithms (including PT-JPL) and meteorological
data from 25 flux towers over South America show that the correlation between
PT-JPL-estimated ET and ET obtained from measured energy balance fluxes (i.e.,
net radiation, soil heat flux, and sensible heat flux) is consistently higher than
correlations between other model-based and surface energy balance estimates at
most sites49. PT-JPL is also one of the algorithms with the lowest root-mean-square
error (RMSE = 0.89) across the 25 South American sites. For these reasons, we use
the PT-JPL ET to represent the direct remote sensing-based ET variability over the
Amazon.

To estimate a monthly climatology for the years between 2003 and 2015, we
calculate ET-P using TWS/discharge and ET and P products over the Obidos basin
(which is comprised of all the river basins in Fig. 3b except basins 2 and 7). We
choose the Obidos basin for this purpose as it covers a large area of the Amazon
(i.e., 475.8 Mha). Estimated monthly mean ET-P from TWS/discharge and from
ET and P products is −98 mm month−1 and −83 mm month−1, respectively.
These results are consistent with previous results from both local (i.e.,
meteorological station)50 and regional13,51 scales, showing that ET-P is ~ −100
mm month−1 over the Amazon.

Use of HDO/H2O ratio of free-tropospheric water vapor for quantifying ET-P.
In this study, we use atmospheric deuterium measurements from the AIRS and
follow the method in Bailey et al. (2017) to quantify ET-P variations. The deu-
terium content of a measurement is expressed in parts per thousand relative to the

deuterium content of ocean waters: δD ¼ 1000 Robs�Rstd
Rstd

� �
, where Robs is the

observed ratio of the number of HDO molecules to the number of H2
16O mole-

cules and Rstd is the number of HDO molecules relative to the number of H2
16O

molecules in Vienna Standard Mean Ocean Water (Rstd = 3.11 × 10−4).
As described extensively in previous research17,22, if precipitation is the sole

process modifying the moisture content of the atmosphere, the deuterium content
follows a well-established distillation, in which δD decreases proportionally with
changes in the natural logarithm of the water vapor VMR. Assuming all condensate
immediately precipitates, the change in δD with VMR follows the conventional
Rayleigh distillation, illustrated by the red curve in Fig. 1a. In contrast, when ET is
the sole process modifying the moisture content of the atmosphere, variations in
δD can be modeled as a simple mixing process, in which water vapor in contact
with the moisture source (i.e., the ocean or land surface) mixes with and moistens
the free troposphere (Fig. 1a, blue and green curves). Numerous observational
studies have shown that in most regions, the vast majority of isotopic observations
fall somewhere between the Rayleigh and mixing curves, reflecting the significant
role that both precipitation and ET play in regulating the atmosphere’s moisture
content17,26,52,53.

The metric δD_004—first introduced in a study demonstrating that satellite
measurements of water vapor isotopes can characterize variations in ET-P27—
quantifies the degree to which the atmosphere’s hydrogen isotope ratio matches a
precipitation-dominated or evaporation-dominated regime for a given water vapor
concentration. Essentially, it is a measure of where the isotope ratio falls along the
thin horizontal “Reference VMR” line in Fig. 1a.

To calculate δD_004 for each satellite observation, the observed HDO
concentration profile is linearly regressed with the collocated H2O concentration
profile between pressure levels of approximately 325–825 hPa—an altitude region
where the AIRS’ sensitivity to HDO is the largest29. The value of HDO for an H2O
VMR of 0.004 is then found (herein HDO_004):

HDO004 ¼ β0 þ β1 ´ 0:004 ð2Þ

where β0 and β1 are the intercept and slope relating the HDO and H2O profiles at a
given time and location. The HDO_004 concentration is then converted to delta
notation following:

δD004 ¼
HDO004

0:004 ´Rstd
� 1

� �
´ 1000 ð3Þ

The more ET-dominated the environment, the higher its δD_004, while the
more precipitation-dominated the environment, the lower its δD_004. However,
the exact sensitivity of δD_004 to shifts in ET-P depends on the characteristics of
the ET and precipitation processes in a particular region.

The double-headed black arrow in Fig. 1a represents the range of possible
δD_004 values for an idealized tropical environment in which the precipitating
atmosphere is perfectly pseudo-adiabatic (red curve), and the marine boundary
layer (with lifting condensation level dew point and δD values arbitrarily set at
20 °C and −72 permil, respectively) serves as the sole moisture source. However,
the δD_004 range will expand or shrink (as indicated by the other arrows in
Fig. 1a) depending on the characteristics of the moisture source, the efficiency of
the precipitation, and the ability of convection to draw on remote moisture.

One factor that will extend the upper end of the δD_004 range, for example, is
the relative contribution of transpiration to the total ET flux (green arrow). Because
transpiration, on balance, produces almost no isotopic fractionation, the δD_004
range of tropical terrestrial environments will extend towards the green curve in
Fig. 1.

The low end of the δD_004 range tends to depend on the characteristics of
precipitation. If, as is typical, the efficiency with which cloud water forms
precipitation is less than 100%54, isotopic depletion during precipitation will not be
as great (pink arrow). However, if rain evaporation occurs, reducing the efficiency
with which precipitation reaches the surface, and if the evaporated fraction of the
rain is small, the isotopic depletion will be larger (purple arrow). Importantly,
evaporation has a depleting effect on the vapor only if the rain evaporated fraction
is very small (first order approximation in Worden et al. 2007). Otherwise, rain
evaporation has an enriching effect on the water vapor55–57. Microphysical
processes within different regions of the atmospheric profile may thus have
somewhat canceling effects on the δD_004 sensitivity to ET-P.

In comparison, the convergence of remote moisture unambiguously extends the
δD_004 range to lower values (Fig. 1, orange arrow)17. Greater isotopic depletion is
the result of convection incorporating ever-more rained out moisture. Indeed,
idealized modeling studies indicate that the degree to which convection relies on
remote moisture (as opposed to local ET) is an important factor determining
tropical precipitation isotope ratios58. Consequently, one might expect that regions
of the Amazon that lie farthest inland, whose local moisture is sourced from
vegetated surfaces3,5, and whose non-local moisture must travel a longer distance
from the Atlantic coast, are more likely to exhibit a larger δD_004 sensitivity to
shifts in ET-P. This suspicion is supported by the enhanced range in precipitation
isotope ratios found over inland areas of the Amazon Basin (compared to coastal
areas) between the precipitation-dominated wet and evaporation-dominated dry
seasons59.

Characterization of AIRS measurements and quantifying the clear sky sam-
pling bias of AIRS on δD_004 estimates. The deuterium content of free tro-
pospheric water vapor used in this analysis is derived from spectral radiances
measured by the NASA AIRS satellite instrument29. The current record spans the
time period 2002 through the present. The precision of a single observation of the
integrated free-tropospheric deuterium content in the tropics is approximately 25
permil29. Single-day averages over a ~2° latitude × 2° longitude area have an
uncertainty of ~8 permil. The uncertainties in the data are somewhat correlated
primarily due to the effects of temperature on the deuterium content retrieval60.
However, further averaging is possible at monthly to seasonal time scales such that
we expect the accuracy of averaged values at monthly time scales to be better than
~4 permil. This is because temperature acts in an almost random manner over
monthly time scales.

As discussed in the next sub-section and demonstrated in previous studies21,61,
the a priori constraint and averaging kernel must be applied to model-simulated
atmospheric fields before comparison to the AIRS data. However, we find there is
no observable impact on our conclusions from this linear operation because the
sensitivity of the AIRS measurement is sufficient to resolve the tropospheric
deuterium content. The AIRS deuterium content retrievals shown here infer the
HDO/H2O ratio while also retrieving interfering effects such as cloud optical depth,
atmospheric and surface temperature, and other trace gases that radiatively absorb
and emit in the same 8 μm band. Cloud interference is therefore accounted for in
the measurement. Nevertheless, because low sensitivity measurements are not used
in this analysis, and because the effect of clouds in the middle and upper
troposphere is to reduce the sensitivity of the measurement, the data used in this
investigation may still have a clear sky bias.

To evaluate this possible bias, we use large-eddy simulations (LES) enabled with
isotopic physic55,62. We consider two simulations of radiative-convective
equilibrium: one without any large-scale vertical velocity and one with large-scale
ascent, with the large-scale vertical velocity profile peaking at 500 hPa with a value
of −60 hPa d−1. The simulations are run with a horizontal resolution of 750 m,
which allows us to explicitly simulate convective clouds and their associated
updrafts and downdrafts55. Ten snapshots of the simulations, corresponding to the
last 10 days of the simulation, are analyzed here.

To emulate what the AIRS satellite would sample if it was flying in the LES
atmosphere, we randomly sample 49 locations in each of the 10 snapshots. We
calculate the average cloud water path in a 15 × 15 km pixel around each of these
locations, corresponding to the AIRS footprint. If the cloud water path is higher
than a threshold, the pixel is discarded as cloudy. Otherwise, it is considered clear-
sky, and we calculate the average humidity and δD profiles over the pixel. Finally,
we average the humidity and δD profiles over all the clear-sky pixels. We compare
these profiles to the domain-mean values (Fig. S1 in Supplementary).

We find that the humidity and δD profiles averaged over clear-sky pixels differ
from those in the domain-mean by less than a few percentages and permil,
respectively. This is the case even in the strong convective conditions that are
simulated in the case with large-scale ascent. When looking at δD_004, the
difference is even smaller: the difference is only 0.04 permil and 0.7 permil for the
case without and with large-scale ascent, respectively. Therefore, we can safely
conclude that the effect of the clear-sky sampling bias can be neglected, likely
because humidity and δD vary at spatial horizontal scales that are much larger than
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the size of a cloud, due to very strong mixing between the clouds and their
environment63.

iCAM description and model-based simulations of deuterium content. We use
the isotope-enabled Community Atmospheric Model Version 5 (herein iCAM),
which includes isotopic physics routines and is able to simulate the modern dis-
tribution of water isotopologues in vapor and precipitation64. Comparison between
iCAM δD simulations65 and SCIAMACHY δD observations18 in the tropics
indicate a depleted bias, which could be associated with the difference between the
temporal or spatial sampling of SCIAMACHY and the spatiotemporal resolution of
the iCAM simulations. Nevertheless, iCAM is capable of simulating the spatial
gradients of the isotopic distribution in the atmosphere, with fidelity65, and thus
can be used for quantifying uncertainties in ET-P estimates based on δD_004. In
this study, we use the SST during 2002–2017 to drive iCAM at the 1.9° latitude
×2.5° longitude spatial resolution. We archive the monthly global output and
perform analyses over the Amazon.

For simulating δD_004 with the model, the mean AIRS averaging kernel and a
priori constraint for the corresponding time periods, latitude, and longitude are
applied to the HDO/H2O ratio from iCAM to account for the regularization and
vertical resolution of the AIRS instrument. However, we find that because the AIRS
sensitivity is sufficient to resolve the free troposphere, the application of the averaging
kernel and a priori do not substantively change the vertical profile of iCAM δD29.

Quantifying the spatial representativeness of the deuterium-based ET-P
proxy beyond the Amazon. One way to evaluate how well δD_004 can quantify ET-
P in the tropics is to quantify the correlations between δD_004 and ET-P in one small
region (e.g., a 2° × 2° grid cell) and between δD_004 in this region and ET-P in other
regions. This allows us to determine if the observed δD_004 is representative of ET-P
over that region and also to provide a measure of the spatial resolution of the ET-P
estimate. We use δD_004 from AIRS and ET-P obtained from PT-JPL ET and the
mean precipitation of GPCP, TRMM, PERSIANN, and CRU as well as the δD_004
and ET-P from iCAM. Here, we choose three ~2° × 2° regions in river basins 10 and 6
and in Venezuela, representing relatively wet (basin 10 and Venezuela) and dry (basin
6) areas of Amazonia. This analysis shows that the largest correlations between
δD_004 and ET-P from remote sensing are in the wet tropics (Fig. S3), whereas
δD_004 in the dry tropics is mostly correlated with ET-P in the wet tropics (Fig. S5).
In other words, the highest correlation coefficient in Fig. S5 is not in the selected ~2° ×
2° region, but in the regions north of 16°S and 61°W, likely because of the transport of
air from the wet tropics into the dry tropics. The correlations become negative in the
Northern Hemisphere (Figs. S3 and S5). Simulations from iCAM suggest the same
conclusion, even though there are spatial pattern differences of δD_004, ET, and
precipitation between iCAM and observations. We will investigate in a subsequent
manuscript if the use of deuterium in the boundary layer better represents nearby
variations in ET-P in the dry tropics, which we might expect as previous studies
suggest a strong relationship of continental recycling with near-surface deuterium
content of water vapor21. Based on this test, we suggest caution in interpreting
variations in δD_004 with respect to ET-P in the mountain regions or in the dry
tropics. The new deuterium proxy can at least resolve ET-P in the northern part of
South America (e.g., the Venezuela/Guyana region; Fig. S4) as well as in the eastern,
western, and southwestern part of the Amazon, as indicated by the skill in which the
deuterium proxy can fit ET-P in these regions. The deuterium proxy can quantify ET-
P in the south but additional analysis is needed to determine if this proxy has more
information content than current approaches. A more refined estimate with finer
spatial resolution could be quantified using the AIRS averaging kernel matrix66, but
this is beyond the scope of this paper.

Quantifying the uncertainty of ET-P with remote sensing observations and
atmosphere models. We quantify the spatial accuracy of the deuterium-based ET-
P estimates through comparison with different remote sensing products, re-ana-
lysis, TWS and discharge data, and iCAM. The GRACE TWS uncertainty is
~25 mm for an 800 km averaging radius10. To retain the accuracy of GRACE TWS
and quantify the ET-P uncertainty at the same time, we, therefore, group the 14
river basins of Fig. 3b into five groups: Group 1 (basins 3, 10, and 12), Group 2
(basins 1, 13, and 14), Group 3 (basins 5, 8, and 9), Group 4 (basins 4, 6, and 11),
and Group 5 (basins 2 and 7). For each group, we quantify the regression coeffi-
cient and its standard error, intercept, correlation coefficient, and the RMS error in
the fit (mm month−1) between ET-P and δD 004 from the different model and data
sources. All comparisons are carried out using monthly data or monthly model
output (Tables 1 and 2).

For each ET-P calculation in Table S2, we calculate the RMS error in the fit
between an ET-P calculation and a corresponding ET-P estimation based on the
ΑΙRS δD_004 versus ET-P relationship. The different precipitation products are
discussed in the previous section of “Methods”. It is noted that the ET obtained
from Priestley-Taylor algorithm46 and from ERA-Interim suggest similar daily ET
values (i.e., ~3.5 and ~3.2 mm day−1, respectively) and similar deviations from the
mean of the reference datasets over the Amazon67. Here, the “reference datasets”
refers to a combination of observational-based ET estimates, ET products from
land surface model output, and ET from atmospheric reanalyses67. We also
estimate the ET based on the fifth generation ECMWF re-analysis (ERA5) by using

the latent heat flux (J m−2 day−1) from ERA5, which is then converted to ET (mm
month−1; herein ERAET). Thus, we have nine distinct estimates of ET-P based on
different combinations (Table S2), and calculate the RMS error in the fit between
these nine ET-P and ET-P estimates based on AIRS δD_004. By using the de-
seasonalized time series in Table S2, we also quantify the RMS error in the fit based
on the IAV of ET-P and AIRS δD_004 in Table S3. Here, de-seasonalized variables
are obtained by subtracting the multi-year mean of each month from
corresponding month of the time series. In addition, the RMS error in the fit
between the ET-P estimates from ET-P–δD_004 relationship and ET-P simulation
are calculated with iCAM output (Table S4). These different comparisons are used
to demonstrate the uncertainties in the seasonality and IAV of the δD_004 based
ET-P estimates.

Data availability
The source data used to generate all plots and graphs and the plotting scripts are
provided at https://zenodo.org/record/6404457#.YkaWWm7MJEI. Due to the large size
of the raw data and iCAM output, these files were not deposited in a public repository,
but are available from the corresponding authors on reasonable request.
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