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Abstract

Corporate Default Prediction

by

Xingwei Wu
Doctor of Philosophy in Engineering - Industrial Engineering and Operations Research

University of California, Berkeley

Professor Xin Guo, Chair

In the literature of predicting corporate default, it is an ad-hoc process to select the predictors
and different models often use different predictors. We study the predictors of U.S corporate
default by Forward Stepwise and Lasso model selection methods. Out of 30 candidate default
predictors that have been used in the default-predicting literature, we identify a set of eight
default predictors that have strong effects in predicting default using the U.S corporate default
data from 1984-2009. We compare the eight default predictors’ predicting effect over the past
three major economic recessions and find that the recession in early 1990 and the recent sub-
prime mortgage crisis share some common default characteristics, while the recession in 2000
is different from the other two. We then present a decision-based default prediction framework
where we incorporate the default forecaster’s loss utility into default classification and derive an
optimal decision rule for this classification problem. By combining the default forecaster’s loss
utility into Support Vector Machines(SVMs), we show that minimizing the utility adjusted hinge
loss is consistent with minimizing utility adjusted classification loss. Our empirical classification
result of the decision-based Support Vector Machines demonstrates more classification accu-
racy and flexibilities in meeting different default forecasters’ goals in comparison to traditional
statistical methods.
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Chapter 1

Introduction

Corporate credit risk is the risk of financial losses due to unexpected changes in the
credit quality of a counter-party in a financial agreement. Examples of credit quality changes
are agency downgrades, failure to service debt obligation, filing for bankruptcy.

At the center of corporate credit risk is the probability of default, by which we mean
any type of failure to honor a financial agreement. Default is a rare event. Prior to default, it is
difficult to differentiate between firms that will default and those that will not. One approach
is to make probabilistic assessments of the likelihood of default. According to Moody’s KMV
[22], the typical firm has a default probability of around 2% in any year. However, there are
considerable variations in default probabilities across firms. For example, the odds of a firm with
a AAA rating defaulting are only about 0.02% annually. A single A-rated firm has odds of around
0.1% annually, five times higher than a AAA. At the bottom of the rating scale, a CCC-rated
firm’s odds of defaulting are 4%, 200 times the odds of a AAA-rated firm. The loss suffered by
a lender or counter-party in the event of default is usually significant and is determined largely
by the details of the particular contract or obligation. For example, from Moody’s KMV [22],
typical loss rates in the event of default for senior secured bonds, subordinated bonds and zero
coupon bonds are 49%, 68%, and 81%, respectively.

Given the recent financial crisis, stressed by the incorrect assessment of the default risk
and the correlation imbedded in corporate loans, bonds and derivatives, study of firms’ credit
risk has assumed increased importance to the financial industry and regulatory agency. The
first part of this dissertation is devoted to review of major results in corporate default modeling
and empirical literature. In the second part of the dissertation, we conduct empirical study
on corporate default predictors using statistical model selection methods and then presents a
decision-based default prediction framework that takes into accounts of the default forecaster’s
utility in predicting default. This new approach has the potential of providing more predic-
tion accuracy and modeling flexibilities when compared with traditional statistical prediction
methods.
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Chapter 2

Single Firm Default

Single firm default prediction is about studying, modeling and understanding the de-
fault behavior of a single obligor without interacting with other firms. Four major modeling
methods in the literature are: Structural Model, Reduced Form Model, Incomplete Information
Model and Statistical Model.

2.1 Structural Model

The fundamental of the structural model, which goes back to Black & Scholes (1973)
[14] and Merton (1974) [66], is that corporate liabilities are contingent claims on the assets of a
firm. The default time in the structure model is usually characterized as the first hitting time
of the firm’s asset value to a given boundary determined by the firm’s capital structure. The
default time is in general a predictable stopping time in the structural model when asset process
is modeled by a continuous Markov process.

2.1.1 Merton Model

The progenitor of structural model is established by Merton (1974), which proposed a
mechanism for the default of a firm in terms of the relationship between its assets and liabilities.

Consider a firm whose asset value follows some stochastic process Vt. The firm finances
itself by equity and debt. In Merton’s model, it consists of one single debt obligation or zero-
coupon bond with face value B and maturity T. The value at time t of equity and debt is denoted
by Et and Bt. The asset value of the firm is Vt = Et +Bt, 0 ≤ t ≤ T . Merton assumes that the
firm cannot pay out dividends or issue new debt. Default occurs if the firm misses a payment
to its debt holders, which in Merton model can occur only at the maturity T of the bond. At
the maturity time T,

ET = (VT −B)+,

BT = min(VT , B) = B − (B − VT )+.

This implies that ET , the value of the firm’s equity at time T ET , is equal to the payoff of a
European call option on T, and the value of the firm’s debt at maturity equals the nominal value
of the liabilities minus the pay-off of an European put option on VT with exercise price B.

In the Merton Model, it is assumed that the process Vt follows a geometric Brownian
motion under the real-world measure:

dVt = µV Vtdt+ σV VtdWt, (2.1)
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and the default probability is given by:

P (VT ≤ B) = P (lnVT ≤ lnB) = Φ(
ln(B/V0)− (µV − 1

2σ
2
V )T

σV
√
T

). (2.2)

Under the risk-neutral probability measure Vt follows dVt = rVtdt+σV VtdW
′
t . The equity value

at current time given by Black-Scholes call option formula C is:

E0 = C(σV , T, B, r, V0) = V0φ(d+)− e−rTBφ(d−), (2.3)

where r is the risk free interest rate, φ is cumulative distribution function of Gaussian distribution
and

d± =
(r ± 1

2σ
2
V )T − lnL

σV
√
T

.

The value of the corresponding bonds at time 0 is:

B0 = Be−rT − P (σV , T, B, r, V0) = V0 − V0φ(d+) + e−rTBφ(d−). (2.4)

The value of equity and bond (2.3) (2.4) together proves the market value identity

V0 = E0 +B0. (2.5)

While both equity and debt values depend on the firm’s leverage ratio, equation (2.5)
shows that their sum does not. This demonstrates that Modigliani & Miller (1958) [67] the-
orem holds also in the presence of default, which asserts that the market value of the firm is
independent of its leverage. See Rubinstein (2003, 2006) [74] [75] for a discussion.

One widely applied structural forecasting model is a particular application of Merton’s
model that is developed by the Moody’ KMV corporation, which is referred to as the KMV-
Merton model. The KMV-Merton model applies the framework of Merton and recognizes that
neither the underlying value of the firm nor its volatility are directly observable. Under the
model’s assumptions both can be inferred from the value of equity, the volatility of equity
and several other observable variables by solving two nonlinear simultaneous equations. After
inferring these values, the model specifies that the probability of default is the normal cumulative
density function of a z-score (distance to default) depending on the firm’s underlying value, the
firm’s volatility and the face value of the firm’s debt.

The KMV-Merton model uses two important equations. The first is the Black-Scholes-
Merton equation (2.3). The second relates the volatility of the firm’s value to the volatility of
its equity. Under Merton’s assumptions the value of equity is a function of the value of the firm
and time, so it follows from Ito’s lemma that:

σE = (
V

E
)N(d1)σV . (2.6)

The KMV-Merton model basically uses these two nonlinear equations (2.3) and (2.6) to translate
the value and volatility of a firm’s equity into an implied probability of default. The first step
in implementing the KMV-Merton model is to estimate σE from either historical stock returns
data or from option implied volatility data. The second step is to choose a forecasting horizon
and a measure of the face value of the firm’s debt. For example, it is common to use historical
returns data to estimate σE , assume a forecasting horizon of one year (T = 1), and take the
book value of the firm’s total liabilities to be the face value of the firm’s debt. The third step is
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to collect values of the risk-free rate and the market equity of the firm. After performing these
three steps, values for each of the variables in the nonlinear equations are obtained except for V
and σV , the total value of the firm and the volatility of firm value respectively. The fourth step
is to simultaneously solve equations numerically (2.3) and (2.6) for values of V and σV . Then,
the distance to default defined as the number of standard deviations the expected asset value
at maturity away from the default asset value can be calculated as:

DD =
ln(V/F ) + (µ− 0.5σ2

V )T

σV
√
T

. (2.7)

The corresponding implied probability of default (Expected Default Frequency, EDF) is: πKMV =
N(−DD).

The actual model that Moody’s KMV uses is proprietary that it is a generalization of
the Merton model that allows for various classes and maturities of debt. And instead of using
the cumulative normal distribution to convert DD to default probability, Moody’s KMV uses its
large historical database to estimate the empirical distribution of changes in distances to default
and to calculate the default probability based on the empirical distribution. Finally, KMV also
makes proprietary adjustments to the accounting information it uses to calculate the face value
of debt.

2.1.2 First-passage Model

In the Merton approach, firm value can dwindle to almost nothing without triggering
default. This is unfavorable to bondholders. Bond indenture provisions often include safety
covenants that give bond investors the right to reorganize a firm if its value falls below a given
barrier. Black and Cox (1976)[13] propose a structural model where an obligor defaults when
the value of its assets hits below a certain barrier. This is the so-called first-passage-time model.
In this class of model, default occurs when the asset-value process crosses for the first time a
default threshold B.

Suppose the default barrier D is a constant valued in (0, V0). The default time τ is a
continuous random variable valued in (0,∞] given by

τ = inf{t ≥ 0 : Vt ≤ D}.

Under the Black-Scholes setting with asset dynamics (2.1), default probabilities are calculated
as:

P (T ) = P (MT < D) = P (min
s≤T

(ms+ σWs) < ln(D/V0)),

where Mt = mins≤T Vs is the running low of firm asset value, which has a inverse Gaussian
distribution.

2.1.3 Exogenous V.S. Endogenous Default Boundaries

In Merton’s model, the term structure of credit spreads implied by the structural
model asymptotically approaches zero with maturity time T tends to zero. This contradicts
with empirical evidence that spread still exists in the very short term maturity. This discrepancy
follows from three structural model properties: the firm asset value follows a geometric brownian
motion which is continuous and predictable; the firm asset value grows at a positive risk-free
rate; the capital structure is constant.
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To address the credit spread discrepancy, different structural default models have been
proposed. Longstaff and Schwartz (1995) [63] assume that the firm defaults when its asset value
first V falls beneath a proportion β of debt principal value P :

Vex−boundary = βP,

where the risk free interest rate follows Vasicek dynamics, and firm-value follows geometric
Brownian motion.,

Collin-Dufresne and Goldstein (2001) [19] assume that the firm maintains a target
capital structure and the exogenous default threshold changes dynamically over time, as a mean-
reverting process:

dkt = λ(yt − v − kt)dt.

In the endogenous default model, the default boundary is that which maximizes equity
value. It is determined not only by debt principal, but also by the riskiness of the firm’s activities,
the maturity of debt issued, payout levels, default costs, and corporate tax rates. Leland and
Toft (1996) [61] formulate the endogenous default model as an optimal stopping problem, and
solve it for the optimal capital structure and default policy. The model specifications are as
follows:

• the asset process is modeled as a geometric Brownian motion, Vt = eZ(t), where Zt =
Z0 +mt+ σWt, Wt is a standard Brownian motion and the growth rate µ = m+ σ2/2;

• the firm generates cash flow at the rate δVt at time t;

• the debt of the firm is modeled as a consol bond with coupon rate C > 0, and tax rate
θ ∈ (0, 1), tax shield θC;

• all agents are assumed to be risk-neutral, and discount cash flows at a fixed interest rate
r.

The initial value of equity to the shareholders is:

F (V0, C, τ) = E[

∫ τ

0
e−rt(δVt + (θ − 1)C)dt],

where τ is a liquidation policy chosen by the equity shareholders.
Equity shareholders would therefore choose the liquidation policy solving the optimiza-

tion problem
S0 = sup

τ∈Γ
F (V0, C, τ).

The optimal liquidation time shown in Leland and Toft (1996) [61] is:

τ(VB) = inf{t : Vt ≤ VB},

where VB = (1−θ)Cγ(r−µ)
r(1+γ)δ and γ = m+

√
m2+2rσ2

σ2 .

2.1.4 Empirical Study

There are several inconsistent conclusion regarding testing of KMV models. Kealhofer
(2003) [54] conducted “power test” and “intra-cohort analysis” using default data of non-financial
firm with public debt ratings from 1979 to 1990 and show that:
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• KMV-Merton model is a more accurate predictor of default than agency debt ratings
(S&P);

• EDFs contain all the information in S&P ratings, and correctly predicted nearly 80% per-
cent of the sub-investment grade rating changes six months in advance and approximately
65% of the investment-grade rating change.

Using default data (total 1,449 firm defaults) for the period 1980-2003 from the Altman
default database and default lists in Moody’s website, Bharath (2006) [11] compare the KMV-
Merton model to a similar but much simpler alternative. However, they find that:

• KMV-Merton model does not produce a sufficient statistic for the probability of default.
It performs slightly worse as a predictor in hazard models and in out of sample forecasts;

• several other forecasting variables (log(Market Equity), Log(Face Debt), 1/σE , equity
excess return over past year, NI/TA) are also important predictors, and fitted hazard
model values outperform KMV-Merton default probabilities out of sample;

• implied default probabilities from credit default swaps (CDS spread data of 1998 to 2003
from www.credittrade.com) and corporate bond yield spreads (bond data of 1971-1997
extracted from the Lehman Brothers Fixed Income Database) are only weakly correlated
with KMV-Merton default probabilities after adjusting for agency ratings, bond charac-
teristics, and our alternative predictor;

• the distance to default functional form is useful, while solving the simultaneous nonlinear
equations required by the KMV-Merton model is not.

Leland (2004) [60] examines the default probabilities predicted by two types of struc-
tural models: exogenous default boundaries and endogenous default boundaries. He tests the
ability of these models to capture the actual average default frequencies across bonds with differ-
ent ratings reported in Moody’s (2001) corporate bond default data, 1970-2000. When default
costs and recovery rates are matched, Leland finds that

• exogenous and endogenous default boundary models fit observed default frequencies equally
well. The models predict longer-term default frequencies quite accurately both for invest-
ment grade and non-investment grade bonds. Shorter-term default frequencies tend to
be underestimated, suggesting that a jump component should be included in asset value
dynamics.

Eom, Helwege and Huang (2004) [38] test five structural models of corporate bond
pricing: Merton (1974), Geske (1977), Longstaff and Schwartz (1995), Leland and Toft (1996),
and Collin-Dufresne and Goldstein (2001). Using a sample of 182 noncallable bond prices from
firms with simple capital structures during the period 1986-1997, they find that:

• all the structural models tend to generate extremely low spreads on the bonds that the
models consider safe and to generate very high spreads on the bonds considered to be
very risky. Both Merton and Geske models share a tendency toward under-estimation of
corporate bond spreads on average, but Geske model is less severe suggesting that the
endogenous default boundary of Geske model is a major improvement and that the option
to make coupon payments in distress helps to improve the spread prediction. Leland and
Toft over-predicts spreads on average (especially shorter-maturity bond), owing largely to
the assumption of a continuous coupon. The correlation between credit spread and interest
rate in Longstaff and Schwartz, and Collin-Dufresne and Goldstein is not very important
empirically, and their models on overage underestimate the spread;
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• future research should be on raising spreads on the safer bonds without raising spreads too
much for the riskiest bonds. The modeling of the coupon and the recovery rate assumption
are important factors that affects the variance of the spread prediction.

2.2 Reduced Form Model

Structural models have two drawbacks when calibrated with the real world data: first,
the firm’s asset value process is not directly observable; second, the default event in structural
model comes without any surprise (predictable default time) which implies credit spreads should
be close to zero on short maturity debt which is inconsistent with historical market credit spread
data.

In contrast, reduced form models are developed to avoid modeling the firm’s unobserv-
able asset value process. Reduced form models go back to Lando (1994, 1998) [55] [56], Jarrow
and Turnbull (1995) [72] and Duffie and Singleton (1999) [34]. In the reduced form model, it is
assumed that default occurs at a hazard rate, or intensity without any warning. The dynamics
of the default intensity are usually specified under the risk neutral probability.

More specifically, fixing a probability space (Ω,F , P ), there is an Rd-valued process Xt,
which represents macro-economical and firm-specific state variable. Let N i denote the default
process of firm i, i = 1, ...n, such that the default of the ith firm occurs when N i jumps from 0
to 1. The filtration is generated collectively by the information contained in the state variables
Ft = σ(Xs, 0 ≤ s ≤ t).

Let τ i denote the first jump time of N i with default intensity defined by the instan-
taneous default probability λit = limh↓0

P (t+h≥τ≥t|Gt)
h . Then the conditional and unconditional

distributions of τ i are given by

P (τ i > t|Ft) = exp(−
∫ t

0
λis(Xs)ds), t ∈ [0, T ],

P (τ i > t) = E[exp(−
∫ t

0
λis(Xs)ds)], t ∈ [0, T ].

The intensity function λit is Ft measurable and the realized history of the process λit
define a non-homogeneous poisson process N i stopped at its first jump. The process N is called
a Cox process, or doubly-stochastic point process.

2.2.1 Affine Default Intensity

Duffie and Kan (1996) [31] introduce a class of intensity models that have closed-form
solutions for q(T ) = P (τ ≤ T ). Assume that the risk factor X solves the stochastic differential
equation

dXt = µ(Xt)dt+ σ(Xt)dWt, (2.8)

where the coefficients are affine functions of the state variables:

• µ(x) = µ0 + µ1x, where µ0 ∈ Rd is a vector of constants and µ1 in Rd×d is a matrix of
constants;

• (σ(x)σ(X)T )ij = (σ0)ij + (σ1)ijx, where σ0 ∈ R and σ1 ∈ Rd×d are matrices of constants;

• W ∈ Rd is a standard Brownian motion under risk-neutral measure Q.
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Additionally the function Λ that maps the state variables X into the default intensity
is also assumed affine. The default probability is given by:

q(T ) = 1− exp(a(T )− b(T )X0), (2.9)

where the functions a(.), b(.) solve a system of ordinary differential equations.
The risk dynamics of (2.8) can be extended to include unexpected jumps

dXt = µ(Xt)dt+ σ(Xt)dWt + dJt,

where J is a pure jump process whose arrival intensity h(Xt) at time t is affine in Xt.

2.2.2 Empirical Study

Shumway (2001) [78] uses a hazard rate approach to calibrate the reduced form model.
He concludes that:

• the hazard model is identical to the logistic regression model, and is identical to the
binomial likelihood function obtained by treating annual bankruptcy indicator variable as
independent binomials;

• single-period bankruptcy classification models give biased and inconsistent probability
estimates while hazard models produce consistent estimates;

• about half of the accounting ratios that have been used in previous models are not statis-
tically significant bankruptcy predictor;

• several market-driven variables are strongly related to bankruptcy probability, including
market size, past stock returns, and the idiosyncratic standard deviation of stock returns.

Chava, Jarrow (2004) [17] follow Shumway’s approach and investigate the forecasting
accuracy of bankruptcy hazard rate models for U.S. companies over the time period 1962-1999
(1461 bankruptcies) using both yearly and monthly observation intervals. They estimate the
hazard rate model with explanatory variables:

• Altman’s (1968) WC/TA, RE/TA, EBIT/TA, ME/TL, SL/TA;

• Zmijewski’s Variable (1984) NI/TA, TL/TA, CA/CL;

• Shumway (2001) NI/TA, TL/TA, relative size, excess monthly return, stock volatility.

They conclude that:

• Shumway (2001) model has superior forecasting performance as opposed to Altman (1968)
and Zmijewski (1984);

• it is important to include industry effects (4 digit SIC codes) in hazard rate estimation.
Industry groupings are significant affect both the intercept and slope coefficients in fore-
casting;

• bankruptcy prediction is markedly improved using monthly observation intervals;

• accounting variables add little predictive power when market variables are already in-
cluded.
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More recently, Duffie, Saita and Wang (2007) [33] build a multi-period hazard model
with stochastic covariates for US Industrial firms. Based on over 390,000 firm-months of data
spanning 1980 to 2004, they conclude that:

• the term structure of conditional future default probabilities depends on a firm’s distance
to default (a volatility-adjusted measure of leverage), on the firm’s trailing stock return,
on trailing S&P 500 returns, and on US interest rates.

The stochastic explanatory variables they use for the default intensity are:

• distance to default;

• trailing one-year stock return;

• three-month treasury bill rate;

• trailing one-year return on the S$P 500 index.

2.3 Incomplete Information Model

Incomplete information default models build an intrinsic connection between structural
models and reduced form models. By taking into accounts the incomplete information available
to the market, structural models with predictable stopping time can be transformed into reduced
form models with inaccessible stopping time.

2.3.1 Information with Noise

Duffie and Lando (2001) [32] introduce the notion of incomplete account information.
In their model, bond investors receive information about the firm’s asset process at selected
times t1, t2, ..., with ti < ti+1 and at each observation time there is a noisy accounting report of
assets, given by V̂t (Vt is the true asset value.) log V̂t and log Vt are joint normal and suppose
that Y (t) = log V̂t = Z(t) + U(t), where U(t) is normally distributed and independent of Z(t).

The information filtration Ht available to the market is defined by:

Ht = σ(Y (t1), ..., Y (tn), 1τ≤s : 0 ≤ s ≤ t),

for the largest n such that tn ≤ t, where τ = τ(VB). The density of the true asset value Z(t)
conditional on the noise observation Yt and on τ > t is given by:

g(x|y, z0, t) =
b(x|y, z0, t)∫ +∞

ṽ b(z|y, z0, t)dz
,

where b(x|Yt, z0, t)dx = P (τ > t, Zt ∈ dx|Yt) for x > ṽ is given by:

b(x|Yt, z0, t) =
ψ(z0 − ṽ, x− ṽ, σ

√
t)ΦU (Yt − x)ΦZ(x)

ΦY (Yt)

where ψ(z0, x, σ
√
t) is the probability that min {Zs : 0 ≤ s ≤ t} > 0 conditional on Z starting at

some given level z0 at time 0 and ending at some level x at a given time t. The Ht-conditional
probability p(t, s) = P (τ > s|Ht) of survival to some future time s > t is:

p(t, s) =

∫ +∞

ṽ
(1− π(s− t, x− ṽ))g(x|Yt, z0, t)dx,
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where π(t, x) denotes the probability of first passage of a Brownian motion with drift m and
volatility parameter σ from an initial condition x > 0 to a level below 0 before time t. The
default intensity λt = limh↓0

P (τ≤t+h|Ft)
h is given by:

λt(ω) =
1

2
σ2fx(t, ṽ, ω), 0 < t ≤ τ,

where f(t, ., ω) is the conditional density of the Ht conditional distribution of Zt.

2.3.2 Partial and Delayed Information

A work by Cétin, Jarrow and Protter (2004) [16] generalize Duffie and Lando’s reduce
form model by constructing an economy where the market only sees a reduction of the manager’s
information set. The reduced information makes default a surprise to the market, therefore there
exists a default intensity process. The model specifications are as follows.

Let X be the cash balances of the firm, normalized by the value of the money market
account, with the following dynamics:

dXt = σdWt,

and X0 = x > 0.
Define g(t) = sup{s ≤ t : Xs = 0}, and the random time g(t) corresponds to the last

time (before t) that cash balances hit zero. Let

τα = inf{t > 0 : t− g(t) ≥ α2

2
, where Xs < 0 for s ∈ (g(t−), t)}

be the first time that the firm’s cash balances have continued to be negative for at least α2/2
units of time.

Default occurs the first time after τα that the cash balances double in magnitude.
Define the default time τ to be:

τ := inf{t > τα : Xt = 2Xτα}.

The market does not see the firm’s cash balances. Instead, until the firm has had prolonged
negative cash balances for a certain time, that is, until random time τα, the market only knows
when the firm has positive cash balances or when it has negative or zero cash balances, and
whether the cash balances are above or below the default threshold 2Xτα . Define a new process:

Yt =

{
Xt t < τα

2Xτα −Xt t ≥ τα

And τ = inf{t ≥ τα : Yt = 0}. Let

sign(x) =

{
1 x > 0
−1 x ≤ 0

Set Gt = σ{sign(Ys); s ≤ t} be the complete and right continuous filtration which is the infor-
mation set observed by the market.

Within this model, Cétin, Jarrow and Protter (2004) [16] show that τ is equivalent to

τ = inf{t > 0 : 4Mt ≥ α},



12

where Mt = E[ 2√
πYt

] is the Azéma’s martingale with respect to Gt. Therefore, τ is a jump time

of Azéma martingale, hence it is totally inaccessible in the filtration Gt. Define Nt = 1{t≥τ}. By
Doob-Meyer decomposition, there exists a continuous, increasing, and predictable process At,
such that Nt − At is a G martingale which has only one jump at τ of size 1. The process At is
called G compensator of τ .

More recently, Guo, Jarrow and Zeng (2009) [47] rigorously define incomplete informa-
tion considered in all these models with the notion of “delayed filtrations”. They characterize
two distinct types of delayed information, continuous and discrete: the first generated by a time
change of filtrations and the second by finitely many marked point process.

2.4 Statistical Model

2.4.1 Linear Discriminant Analysis and Altman’s Z-Socre

Altman (1968) [4] assesses the quality of financial ratio analysis and developes Z-
score for corporate bankruptcy prediction. A set of financial and economic ratios are used for
constructing the Z-score where a multiple discriminant statistical methodology is employed.

Linear Discriminant Analysis (LDA) is a statistical technique used to classify an obser-
vation into one of several pre-defined groups dependent upon the observation’s characteristics.
It is used primarily to classify and to predict when the dependent variable is qualitative, for
instance, gender or bankruptcy.

The first step of LDA is to establish explicit group classification, e.g., bankruptcy and
non-bankruptcy. After establishing the groups, a training data set of objects with labels and
individual characteristics is collected for the classification purpose. LDA attempts to derive a
linear combination of these characteristics (discriminant function) to best discriminates between
groups. In the distress/bankruptcy prediction case, the discriminant function is of the form:

Z = v1X1 + v2X2 + ...+ vnXn,

which transforms the individual characteristics variables Xi, i = 1, 2, ..., p to a single discriminant
score (z-value) used to classify the object. The LDA computes the discriminant coefficients vi, i =
1, 2, ..., p under the assumption that the class prior distribution has a multivariate Gaussian
density.

After the initial groups are defined and firms selected, five financial ratio variables are
served as the prediction variables Xi, i=1,2,...,5. They are:

• X1: Working Capital/Total Assets;

• X2: Retained Earnings/Total Assets;

• X3: Earnings Before Interest and Taxes/Total Assets;

• X4: Market Value of Equity/Book Value of Total Debt;

• X5: Sales/Total Assets.

The final discriminant function is as follows:

Z = 0.012X1 + 0.014X2 + 0.033X3 + 0.006X4 + 0.999X5. (2.10)

An updated z-score model, ZETA model, (see Altman (2001) [6]) is created by Altman, Halde-
man and Narayanan (1977) [7] to accommodate the change in the size, financial profile/accounting
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of business failures. An adjustment to the basic data is made to accommodate important ac-
counting modifications, such as: capitalization of leases, reserves, minority interests and other li-
abilities on the balance sheet, captive finance companies and other non-consolidated subsidiaries,
goodwill and intangibles and capitalized research and development costs, capitalized interest and
certain other deferred charges. A seven-variable model is constructed which not only classifies
the test sample well, but also proves the most reliable in various validation procedures. The new
discriminant variables are X1: return on assets measured by the earnings before interest and
taxes/total assets; X2: stability of earnings measured by a normalized measure of the standard
error of estimate around a five to ten-year trend in X1; X3: debt service measured by the interest
coverage ratio (EBIT/total interests payment); X4: cumulative profitability measured by the
firm’s retained earnings/total assets; X5: liquidity measured by current ratio; X6: capitalization
measure by common equity/total capital; X7: size measure by total asset.

2.4.2 Logistic Regression Model

Ohlson (1980) [69] proposes a logistic regression model for bankruptcy prediction: Let
Xi denote a vector of predictors for the ith observation; let β be a vector of unknown parameters,
and let P (Xi, β) denote the probability of bankruptcy for any given Xi, i = 1, 2, ..., p and β. For
any specific function P, the maximum likelihood estimates of β1, β2, ..., βp are obtained by solving:

max
β

l(β),

where l(β) =
∑

i∈S1
logP (Xi, β) +

∑
i∈S2

log(1−P (Xi)). S1 is the set of bankrupt firms and S2

is the set of non-bankrupt firms. P is chosen to be the logistic function P = (1 + exp{−βTXi}).
Ohlson identifies four basic factors as being statistically significant in affecting the prob-

ability of failure within one year. These are: 1) the size of the company: log(total assets/GNP
price-level index); 2) a measure of the financial structure: total liabilities/total assets, working
capital/total assets, current liabilities/current assets, an indicator variable equal one if total lia-
bilities exceeds total assets; 3) a measure of performance: net income/total assets; 4) a measure
of current liquidity: funds provided by operations/total liability.

Lau (1987) [59] uses a logistic predictive models by assuming all firms will enter one of
J=5 states. He uses five financial states instead of failing/non-failing dichotomy to approximate
the continuum of corporate financial health, and estimate the probabilities that a firm will enter
each of the five financial states. The five financial states are 0: financial stability; 1: omitting or
reducing dividend payments; 2: technical default and default on loan payments; 3: protection
under Chapter 11 of the bankruptcy act; 4: bankruptcy and liquidation.

Each firm’s default likelihood is predicted by K=10 explanatory variables x1, ..., x10;
the probability pj that a given firm will eventually enter state j is computed as

pj = exp(Zj)/
5∑
j=1

exp(Zj),

where Zj = bj,1x1 + bj,2x2 + ...+ bj,10x10, j=1,2...,5.
Ten explanatory variables are: 1. loan restrictive terms; 2. industry normalized debt-

to-equity ratio; 3. working-capital flow to total debt ratio; 4. trend of common stock prices; 5.
industry normalized operating expenses to sales ratio; 6. distribution of common stock dividends;
7. liquidation of operating assets; 8. trend of capital expenditure; 9. trend of working-capital
flow; 10. omission or reduction of dividend payments.
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2.4.3 Empirical Study

Altman (1968) [4] uses a training data set consisting of 66 manufacturing corporations
from 1946-1965 with 33 firms in each of the two groups: bankruptcy and non-bankruptcy. Non-
bankruptcy group consists of a paired sample of manufacturing firms randomly stratified by
industry and by size. Financial statement data is derived from one annual reporting period
prior to bankruptcy.

The LDA model claims to be very accurate in classifying 95 % of the total sample
correctly. The Type I error is proved to be only 6% while the Type II error is even lower at 3%.
Altman (2000) [5] conducts three subsequent tests where he examines 86 distressed companies
from 1969-1975, 110 bankrupts from 1976-1995 and 120 from 1997-1999. He finds that the
Z-Score model, using a cutoff score of 2.675, is between 82% and 94% accurate.

The major findings of Altman (1968, 2000) [4] [5] are:

• the discriminant model correctly predicts bankruptcy in the sample, and is accurate in out
of sample test;

• bankruptcy can be accurately predicted up to two years prior to actual failure with the
accuracy diminishing rapidly after the second year;

The limitation of Altman (1968, 2000) [4] [5] is the sample data set used to construct the model,
which consists of only 66 manufacturing firms from 1946-1965.

Using logistic regression model, Ohlson (1980) [69] finds that:

• previous studies appear to have overstated the predictive power of models developed and
tested, especially if one employs predictors derived from statements which are released
after the date of bankruptcy;

• a significant improvement in goodness-of-fit is more likely to occur by augmenting the
accounting-based data with market price data.

The data set used in Ohlson (1980) [69] includes 105 bankruptcy firms and 2058 non-
bankruptcy firms from 1970 to 1976.

Lau (1987) [59] uses a data set consisting of 350 firms in state 0, and 20, 15, 10, 5 firms
in states 1, 2, 3, 4, respectively, selected from year 1971-1980. Lau finds that:

• instead of having a dichotomic classification of bankruptcy/non-bankruptcy state, financial
distress can be modeled using five different financial states.

Recently, Campbell, Hilscher and Szilagyi (2008) [15] also use the logistic regression
approach to construct their default prediction model. They adopt a broader failure indicator:
bankruptcy filing, delisted for financial reasons, or receives a D rating. (January 1963- December
2003), and the whole sample universe consists of 800 bankruptcies, 1,600 failures and predictor
variables for 1.7 million firm months.

In their model, market value version of explanatory variables of Shumway (2001), Chava
and Jarrow (2004), lagged information and liquidity measure are added to the logistic regression:
Pt−1(Yit = 1) = 1

1+exp{−α−βxi,t−1} . They conclude that:

• their model has greater explanatory power than Shumway (2001) and Chava and Jarrow
(2004), and have meaningful empirical advantages over the bankruptcy risk scores proposed
by Altman (1968) and Ohlson (1980).

• failure risk cannot be adequately summarized by a measure of KMV’s distance to default.
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More recently, Davydenko (2009) [29] studies whether default is triggered by low mar-
ket asset values (economic distress) or by liquidity shortage (financial distress) with the logis-
tic regression model. He studies the determinants of the timing of default using a sample of
speculative-grade bond issuers with observed market values of equity, bonds, and bank debt.
Default events include bankruptcy fillings, bond payment omissions, and successful distressed
bond exchange offers. He uses bond, loan, and equity prices with the debt structure data to
estimate monthly market values of total debt and equity. The list of defaults is based on the
May 2006 issue of Moody’s Default Risk Service (DRS) database. The final sample consists of
806 high-yield (junk) firms including 213 firms that defaulted 225 times and 593 non-default
between 1997 and 2005. He finds that:

• low firm market asset value/debt (V/D) is the most important single determinant of de-
fault. Lack of liquidity (quick ratio) provides some additional predicative power, particu-
larly when additional equity/debt finance is costly. These effects dominate Z-Score, other
accounting-based predictors;

• at the best average default barrier LB = V/D = 0.72, 30% of firms are misclassified (Type
1 or 2 error);

• other firm-specific variables also help to explain default barrier: Firm liquidity, volatil-
ity, liquidation value etc. Liquidity factor is more important when external financing
(equity/debt cost) is high.

The logistic regression variables Davydenko includes are:

• market variables: Market Assets/Face Debt, Asset Volatility, log (Total Asset), Industry
Distress, Risk-free rate;

• accounting variables: Quick Ratio, Cash Shortage, Cash Short if restricted/unrestricted,
Coupon Rate, Payout Ratio, Debt Maturity, Replacement Cost/TA, Normalized number
of issues of Bonds, Log(Time at Risk).
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Chapter 3

Multi-Firm Default

Defaults of firms in the economy will cluster if there are common factors that affect
individual firms’ default risk. What factors cause the economy-wide default rate to change over
time, and why does it vary as much as it does? Individual companies are linked via industry-
specific and general economic conditions. As a result, the default events of companies are
correlated. Besides a common dependence on the economic and industry environment, a sudden
large variation in the credit risk of one issuer will propagate to other issuers and cause spread
jumps across firms, which is called the contagious effect.

One of the most important open questions in financial markets is modeling correlation
of multi-firm default. An understanding of this correlation is important to banks, traders, and
other operatives in corporate-debt markets with respect for portfolio management. It is also of
interests to regulators. The Basel Committee on Banking Supervision has repeatedly urged a
move towards a system in which the capital adequacy requirements of banks are based on the
overall credit-riskiness of the banks’ aggregate portfolios.

3.1 Structural Model

3.1.1 Asset Correlation

Zhou (2001) [83] provides a basic theoretical model for default correlations based on
first-passage-times. He modeled the pair-wise default correlation between two firms by the joint
probability of a two-dimensional stochastic process passing a boundary. Two assumptions are
made in his paper:

Assumption 1 : Let V1 and V2 denote the total asset values of firm 1 and firm 2. The
dynamics of V1 and V2 are given by the following vector stochastic process:(

d ln(V1)
d ln(V2)

)
=

(
µ1

µ2

)
+ Ω

(
dz1

dz2

)
,

where µ1 and µ2 are constant drift terms, z1 and z2 are two independent standard Brownian
motions, and Ω is a constant 2 x 2 matrix:

Ω ∗ Ω′ =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
.

The coefficient, ρ = Corr(d ln(V1), d ln(V2)), is the correlation between the movements in the
asset values of the two firms.
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Assumption 2 : The default of a firm is triggered by a decline in its asset value. For
each firm i, there exists a time-dependent value Ci(t) such that the firm continues to operate and
meets its contractual obligations as long as Vi(t) > Ci(t). However, if Vi(t) falls below threshold
level Ci(t), the firm defaults. Assume Ci(t) = eλitKi.

Under this setting, Zhou shows that the default rate of an individual firm is

P (Di(t) = 1) = Φ(− Zi√
t
− µi − λi

σi

√
t) + e

2(λi−µi)Zi
σi Φ(− Zi√

t
+
µi − λi
σi

√
t),

where Zi =
ln(Vi,0/Ki)

σi
. And the joint default probability can be calculated based on Planar

Diffusions theory.
Hull, Predescu and White (2006) [49] extended the structural form approach and used

correlated asset processes. It assumes the underlying Geometric Brownian motion is:

dWt = αi(t)dB(t) +
√

1− αi(t)2dMi(t)

where B(t) and Mi(t) are independent brownian motion, and the variable αi defines how sensitive
the default probability of company i is to the common factor B(t). Under this setting, the
correlation between the processes followed by the assets of firm i and j is αi(t)αj(t) at time t.

3.1.2 Empirical Study

Zhou (2001) [83] uses 1970-1993 default rates for various rating categories from Moody’s
default studies, the default correlations between rating categories was calculated from Z-score
implied by historical default rates. He finds that:

• default correlations are generally very small over short horizons, and first increase and
then slowly decrease with time;

• high credit quality implies a low default correlation over typical horizons;

• the time of peak default correlation depends on the credit quality of the underlying firms.

On the other hand, Düllmann, Scheicher and Schmieder (2007) [36] find that:

• there exists substantial time variation in asset correlations both for the market model and
the sector model. The median inferred asset correlation in the market model ranges from
4% to 16% during sample period from 1996 to 2004. For the sector model, the inferred
intra-sector asset correlations are only about 2 percentage points higher than the inferred
asset correlations in the market model and exhibit a similar time pattern;

• upturns in the stock market tend to increase asset correlations and downturns in stock
market tend to decrease asset correlations;

• a finer sector classification may lead to more precise sector correlation estimates;

• it is desirable to apply a single-factor model with borrower(size)-dependent correlations
than a multi-factor model with sector-dependent correlations.

The data set used in Düllmann, Scheicher and Schmieder (2007) contains monthly time
series of Moody’s KMV asset values for around 2000 European firms from 1996 to 2004.
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In the market model(single factor), correlation is modeled by a single common risk
factor defined as the returns of the aggregate portfolio of all firms in the sample:

Xi = ρiY +
√

1− ρ2
i εi.

In the sector model(multi-factor), systematic risk factors are linked to industry sectors. The
intra-sector asset correlations are defined as the median of the (individual) asset correlations in
ever y sector. The inter-sector correlations are calculated as the sample correlations between
the time series of two sector-index returns. Asset correlations in the sector model fundamentally
differ from correlations in the market model that they are always aggregated at sector level,
whereas the market model contains individual pairwise correlations with the market index:

Xi = ρs(i)Ys(i) +
√

1− ρ2
s(i)εi,

where Xi is the normalized asset return of borrower i in sector s(i). Y is the market asset return
index and Ys(i) are asset return index of sector s(i). εi are the independent idiosyncratic risk
component.

Zhang, Zhu and Lee (2008) [81] find that

• default-implied asset correlations range from 5% to around 30% in the sample data set,
depending on the grouping of the underlying borrowers;

• borrowers with higher ratings, or lower EDF values, tend to have higher asset correlations.
This supports the intuition that larger firms tend to have larger systematic risk, and tend
to be more closely correlated with the performance of the economy than do smaller firms;

• asset correlations manifest themselves more in default clustering during periods of deteri-
orating credit quality, which reflects the cyclical nature of defaults in an economy.

The data set is from Moody’s KMV historical default database, consisting of 16,268
publicly traded U.S. non-financial firms from 1981 to 2006. This period has several economic
cycles and high default episodes. The probabilities of default come from the Moody’s KMV
EDF. Because it is more difficult to track default history for small firms and missing defaults
can lead to significant downward bias in realized default correlation, small firms are excluded in
the study, which reduces the sample size to 5,040 firms with 524,891 firm-month observations.

Default-implied asset correlation is calculated as follows:

• group borrowers in groups i, i=1,...,n. Assume all borrowers in the same group have the
same default probability. p̂i and p̂j are the estimated default probabilities for borrowers
in group i and j. p̂ij is the estimated joint default frequency between borrowers in group i
and borrower in group j;

• for each time period, a realization of pi, pj , and pij can be observed. Assume each realiza-
tion across time is from the same distribution;

• p̂i and p̂ij are estimated by:

pi =
∑
t

wti
Dt
i

N t
i

, and

pij =
∑
t

wtij
Dt
iD

t
j

N t
iN

t
j

,
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where wti , w
t
ij are the weight associated to the relative importance of the sample in given

year t. Dt are the number of defaults in a given year t, and Nt are the total number of
borrowers at the beginning of year t.

After the estimated joint default probability is calculated, the asset correlation can be implied
from the bivariate normal distribution under the structural model setting.

Akhavein, Kocagil and Neugebauer (2005) [3] study intra-industry and inter-industry
asset correlations following the Fitch industry categorizations. They find that:

• inter-industry asset correlations are relatively smaller than intra-industry asset correla-
tions;

• intra-industry as well as inter-industry asset correlations vary across different industries;

• there are notable empirical differences between intra-industry and inter-industry asset
correlations.

The data set includes 66,740 yearly observations comprising of 7,886 firms and 1,039
defaults from January 1970 to December 2004. Issuers are categorized by eight broad letter rating
categories (AAA, AA, A, BBB, BB, B, CCC, Default). Issuers are classified into one of Fitch’s
twenty-five industry categorizations. Asset correlation is derived using three methodologies:

• asset correlations based on default correlation,

• asset correlations based on rating transitions,

• asset correlations based on equity market information.

3.2 Reduced Form Model

3.2.1 Conditional Independence

The reduced form model has the convenient features that conditioning on the state
variables, defaults become independent events, and default correlation arises due to the common
influence of these state variables.

Suppose that the default times τ1, ...τk of k given names have respective intensity
process λ1, ..., λk, and are doubly stochastic. Conditioned on the information in the driving
filtration Ft = σ(Xs, 0 ≤ s ≤ t), where Xs represents macro-economical and firm-specific state
variables that determine the respective intensities, the event times τ1, ..., τk are independent.
Note the only source of correlation of the default times is via the correlation of the intensities.

The conditional independence assumption makes the computation of the joint distri-
bution of default time simple. Consider the joint survival event τ1 ≥ t1, ..., τk ≥ tk, without loss
of generality, assuming t1 ≤ t2 ≤ ... ≤ tk. For any current time t < t1,

P (τ1 ≥ t1, ..., τk ≥ tk|Ft) = Et(e
−

∫ tk
t µ(s)ds),

where µ(t) =
∑

i,ti>t
λi(t).
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3.2.2 Counterparty Risk and Contagion Default

Bernanke (1983) [10] discusses and studies the contagious effects of the bank failures
in the context the Great Depression and concludes that the financial industry collapse of the
early 1930’s has a propagate effect on the economy. Lang and Stulz (1992) [58] study the intra-
industry effect of bankruptcy announcement and conclude that there is a significant contagious
effect for highly leveled industries and a competitive effect for highly concentrated industries
with low leverage.

Jarrow and Yu (2001) [50] argue that a default intensity that depends linearly on a set
of smoothly varying macroeconomic variables is unlikely to account for the clustering of defaults
around an economic recession. They introduce a concept of counter-party risk into their default
risk modeling, where each firm has a unique counter-party structure that arises from its relation
with other firms in the economy in which the default of a firm’s counter-party might affect its
own default probability.

Suppose that the filtration is generated collectively by the information contained in the
state variables Xt and the default processes N i

t , i = 1, 2, ..., I:

Ft = FXt ∨ F1
t ∨ ... ∨ FIt ,

where
FXt = σ(Xs, 0 ≤ s ≤ t),F it = σ(N i

s, 0 ≤ s ≤ t),

are the filtrations generated by Xt and N i
t , respectively.

Define a new filtration Git as follows. First, let the filtration generated by the default
processes of all firms other than that of the ith be denoted by

F−it = F1
t ∨ ... ∨ F i−1

t ∨ F i+1
t ∨ ... ∨ FIt .

Then, let
Git = F it ∨ FXT ∗ ∨ F−iT ∗ .

Gi0 contains complete information on the state variables and the default processes of all firms
other than that of the ith, all the way up to time T ∗.

Let τ i denote the first jump time of N i. Then the conditional and unconditional
distributions of τ i are given by

P (τ i > t|Gi0) = exp(−
∫ t

0
λisds), t ∈ [0, T ∗],

P (τ i > t) = E[exp(−
∫ t

0
λisds)], t ∈ [0, T ∗].

The intensity function λit is Gi0 measurable and the realized history of the process λit define a non-
homogeneous poisson process N i. Under this counter-party framework, the joint distribution of
several first jump times are no longer independent conditioning on the complete history of the
state variables.

To account for the cluster effect in large portfolios of defaultable securities Davis and
Lo (2001) [27] introduce a contagion model , where they use binary random variables for the
default state of each firm. These random variables are a function of a common set of independent
identically distributed binary random variables. More specifically, let Zi, i = 1, ..., n be random
variables such that Zi = 1 if firm i defaults and Zi = 0 otherwise. Then the number of defaults
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is
N = Z1 + Z2 + ...+ Zn.

In Davis and Lo’s model, the value of Zi is determined as follows. For i=1,...,n and j=1,..., n
with j 6= i let Xi, Yi,j be independent Bernoulli random variables,

Zi = Xi + (1−Xi) ∗ (1−
∏
j 6=i

(1−XjYji)).

The idea behind the contagion model is that firm may default due to endogenous factor (Xi = 1),
or may be infected by default of firm j (Xj = 1). The random variable Yji determines whether
infection takes place or not.

Let F (n, k, p, q) denote the probability mass distribution of the random variable N, i.e.
F (n, k, p, q) = P (N = k), its distribution function F is given by

F (n, k, p, q) = Cnkα
pq
nk,

where

αpq = pk(1− p)n−k(1− q)k(n−k) +
k−1∑
i=1

Cki p
i(1− p)n−i ∗ (1− (1− q)i)k−i(1− q)i(n−k).

Collin-Dufresne, Goldstein and Helwege (2003) [20] propose a reduced-form model
where jump-to-default is priced which generates a market-wide jump in credit spreads. While
the framework is consistent with a counter-party risk interpretation it is interpreted as updating
of beliefs due to an unexpected event.

Their contagion-risk model is based on updating of beliefs and goes as follows: N firms
with default intensities that are equal to λHi if the economy is in state H, or λLi if the economy
is in state L. State H and state L represent the economic conditions. Investors do not know
whether the economy is in state H or L, but form a prior pH(t) = P (H|Ft), where Ft represents
all information investors have available at time t. The Ft-default intensity is:

¯λi(t) = pH(t)λHi + (1− pH(t))λLi .

Applying Bayes’ rule, the updating process for pH(t) can be calculated as:

dpH(t) = pH(t)(1− pH(t))
N∑
i=1

λHi − λLi
λ̄i(t)

(d1τi≤t − λ̄i(t)1τi>tdt).

To capture the contagion effect, Azizpour and Giesecke (2008) [9] propose a top-down
reduced form model. The default events are modeled as a realization of a marked point process
(Tn, Dn), where Tn represents a date with at least one default incidence and Dn is the number
of defaults at Tn. Tn is assumed to be a non-explosive counting process Nt with intensity λt,
where:

dλt = κ(c− λt)dt+ σ
√
λtdWt + δdLt.

Here κ > 0, c > 0, σ ≥ 0 and λ0 > 0. Dn is drawn from a fixed distribution independently, and
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L is a response jump process given by

L =
N∑
n=1

l(Dn).

Suppose the observation filtration G is generated by the market point process (Tn, Dn) and a
process X of explanatory covariates. Take X to be of the form Xt = u(Yt, t), with u: R×R+ → R
and Y is a standard-Brownian motion independent of the Dn. The covariates need not bear
information about the Brownian motion W driving λ, in which case W must be filtered from
the observations.

Papageorgiou and Sircar (2008) [70] propose a hybrid of top-down and bottom-up
reduced-form approaches to model the default intensity. They first group the original set of
firms into homogeneous groups according to their 5-years CDS spread, where they assume that
firms in the same group share the same default intensity process. They then incorporate a
fast mean-reverting stochastic volatility in the default intensity to help explain the fat tail of
portfolio loss distribution. Their model goes as follows:

• the default intensity process shared by all firms of the homogeneous group i, λi = (λit)t≥0

is given by
λit = Xi

t + ciZy, i = 1, ..., k.

the idiosyncratic factors X1, ..., Xk are independent from each other and independent of
the systematic factor X. The process X1, ..., Xk and Z are non-negative almost surely;

• fix a group i (i=1,...,k). The dynamics of Xi and Z are given by:

dXi
t = αi(x̄i −Xi

t)dt+ fi(Y
i
t )
√
Xi
tdW

i
t ,

dY i
t =

1

ε
Xi
t(ȳi − Y i

t )dt+
vi
√

2
√
ε
√
Xi
t

dW Y i

t ,

dZt = αz(z̄ − Zt)dt+ σz
√
ZtdW

Z
t ,

where the Wiener process WZ is independent of W i and W Y i .

They find that by separating firms of similar credit risk and modeling their aggregate
credit risk within their homogeneous group, more accurate estimates of their default probabilities
can be obtained than assuming the existence of a unique idiosyncratic risk.

3.2.3 Frailty Model

Duffie, Eckner, Horel and Saita (2008) [30] develop a new model of corporate default
intensities in the presence of a time-varying latent frailty factors. The frailty model is built as
follows: for a given firm i, let Uit be the observable default-prediction covariates that are specific
to firm i. Also let Vt be observable macro-economic covariates. Finally, define an unobservable
macro-economic covariate Yt with “frailty” influence on default events, so that

λit = exp(α+ < β, Vit > + < γ,Uit > +Yt).

Here Yt is assumed to follow Ornstein-Uhlenbeck (OU) process such that: dYt = −κYtdt+ dBt.
Because Yt is not observable, its posterior probability distribution is estimated from the available
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information set Ft which includes the prior history of the observable covariates (Us, Vs) : s ≤ t
and also includes previous observations of the periods of survival and times D of default of all
firms.

Suppose that the frailty process Y is independent of the observable covariate process
W = (U, V ), with respect to the econometrician’s limited filtration (Ft), the likelihood for the
default data set is then:

L(η, θ|W,D) =

∫
L(η, θ|W, y,D)pY (y)dy

= L(η|W )

∫
L(θ|W, y,D)pY (y)dy, (3.1)

where η is the parameter describing the dynamics of the covariate process W and θ = (β, γ, κ).
pY (.) is the unconditional probability density of the path of the unobserved frailty process Y.
L(θ|W, y,D) is calculated in Duffie, Saita, and Wang (2007) [33].

3.2.4 Empirical Study

Lucas (1995) [64] uses data from Moody’s Investor Service covering twenty-four years
of data from 1970 through 1993 to compute the default correlation between companies in rating
classes. He concludes that:

• it is important to note that historical statistics describe only observed or realized phenom-
ena, not the true underlying correlation. Also, since default rates are small in the higher
rating categories and small over short time periods, the limited length of the time series
becomes a problem;

• the empirical analysis depends upon the true underlying default probability for each rating
category remaining the same over time. But the evidence reveals that default probability
and correlation are not stationary. It is hard to determine whether historical fluctuations in
default rates are caused by default correlation or simply by changes in default probability;

• it is very hard to say anything about default correlation among and between specific in-
dustries. Calculated intra-industry default correlation will be lower if a particular industry
enjoyed generally good business results in the time period studied relative to its inherent
risk. Calculated default correlation would be higher if the specific industry experienced
unfavorable business conditions sometime during the time period. The true exante corre-
lation is unobservable, and efforts need to be put to infer default correlation from other
channels such as stock prices;

• default correlation is found to be generally low and it decreases as ratings increase; default
correlation is also found generally to increase with time at first, and then to decrease with
time.

Using month-end bond price for the period January 1973-March 1998 from Warga
Fixed Income Database, Collin-Dufresne, Goldstein and Helwege (2003) [20] find:

• credit events of large firms generate a market wide increase in credit spreads and a signif-
icant “flight-to-quality” response in the Treasury market;

• the risk premium associated with jump-to-default risk for a typical investment grade firm
has an upper bound of a few basis points per year, but the risk premium for contagion-risk
may be considerably larger.
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Defaults of firms in the economy will cluster if there are common factors that affect
individual firms’ default risk. The questions are: what factors cause the economy-wide default
rate to change over time, and why does it vary as much as it does? Das, Freed and Geng (2006)
[24] study the underlying determinants of default probabilities and provide a statistical model to
model the time-variation in default probabilities and default correlations. The data set consists
of issuer-level default probabilities of almost all U.S. public non-financial firms for the period
1987-2000. In this paper, default probability is calculated under the structural model of Merton:

PD = 1− φ(DTD),

where φ(.) is the standard normal pdf, and DTD is the “distance to default”:

DTD =
ln(V/D) + (µv − 0.5σ2

v)T

σv
√
T

.

In practice, DTD is often computed (as in Moody’s KMV) as:

DTD =
1−D/V
σv
√
T

.

This model identifies two of the three primary determinants of the default probability for an
individual firm:

• debt ratio D/V ;

• firm asset volatility σv;

• firm asset return µv.

Differentiate the Distance to Default, one has:

∆(DTD) ≈ −1

σv
√
T

∆(D/V )− 1−D/V
σ2
vT

∆(σv
√
T ),

indicating that at low debt levels, the DTD is more sensitive to changes in volatility than to
changes in debt levels. Over the sample period, for high grade firms, the impact of the change
in volatility is 3.7 times the impact of the change in debt value, and for low grade firms, it is
1.8 times.

The correlation between PDs of two firms will depend on the correlation between the
underlying determinants of the default probabilities. The authors classify the sample by rating
as well as by sub-periods (1/87-6/90, 7/90-12/93, 1/94-6/97, and 7/97-10/00). The median
correlation between pairs of firms is calculated. Several observations in their paper are:

• the median correlation between firms for the default determinants is positive. For high
grade and medium grade firms, the highest correlation is between the volatilities of firm;

• differences between the rating classes is driven mostly by differences in correlation between
volatilities;

• over time for each rating class, correlations between firm returns are the most stable, while
the correlations between volatilities are the highest in Period I and IV when the level of
volatility itself is high across economy.

Das, Freed and Geng (2006) [24] find that:
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• across bond rating category, the default probability increases by more than 100% between
times of low default risk and times of high default risk;

• when default probabilities rise, so do their correlations. Correlations rise from close to
zero to levels of 17-38% that are much higher than correlations between asset returns;

• the joint credit risk varies because both default probabilities and default correlations vary
with economic conditions. Market-wide volatility plays an important role in determining
the time-variation in joint default risk. Clustering of defaults occurs during times of high
volatility because both default probabilities and correlation between defaults increase;

• both default probabilities and default correlations are related to firm asset volatility. Struc-
tural models of joint default risk should explicitly model correlations of volatilities, along
with the correlations between firm returns;

• both the default intensity process of individual firms and the correlation between the inten-
sity processes between pairs of firms can be modeled with regimes based on an aggregate
economy-wide default level.

Das, Duffie, Kapadia and Saita (2007) [23] test the intensity-based approach under
which firms’ default times are correlated only as implied by the correlation of factors determining
their default intensities. They show that:

• the data do not support the joint hypothesis of well-specified default intensities and the
conditional dependence assumption;

• the conditional dependence assumption is violated in the presence of contagion or frailty;

• some evidence of default clustering exceeding that implied by the doubly stochastic model
with the given intensities is found.

Azizpour and Giesecke (2008) [9] use default timing data from Moody’s Default Risk
Service which provides detailed issue and issuer information on industry, rating, date and type
of default, and other items. The sample period is January 1970 to October 2006. An issuer is
included in the data set if it is not a sovereign and has a senior rating, which is an issuer-level
rating generated by Moody’s from ratings of particular debt obligations. As of October 2006,
the data set includes a total of 6048 firms, of which 3215 are investment grade rated issuers. A
“default” is a credit event in any of the following Moody’s default categories: (1) A missed or
delayed disbursement of interest or principal, including delayed payments made within a grace
period; (2) Bankruptcy (Section 77, Chapter 10, Chapter 11, Chapter 7, Prepackaged Chapter
11), administration, legal receivership, or other legal blocks to the timely payment of interest
or principal; (3) A distressed exchange occurs where: (i) the issuer offers debt holders a new
security or package of securities that amount to a diminished financial obligation; or (ii) the
exchange had the apparent purpose of helping the borrower avoid default. A repeated default
by the same issuer is included in the set of events if it was not within a year of the initial event
and the issuer’s rating was raised above Caa after the initial default.

They explore the role of contagion, i.e., the default of a firm having a direct impact
on the conditional default rates of the surviving firms, channeled through the complex web of
contractual relationships in the economy. They develop filtered maximum likelihood estimators
and goodness-of-fit tests for point processes to measure the additional impact of contagion on
default rates, over and beyond that due to firms’ exposure to observable or unobservable (frailty)
risk factors.
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The parameter vector to be estimated is (θ, γ, υ), where θ = (κ, c, σ, δ, λ0, w) is the
intensity parameters, w represents the parameters of the weight function L, γ is the parameter
of the distribution Dn, and υ is the parameter of the distribution of X. The likelihood function
for the sample period [0,τ ] of the data is given:

Lτ (θ, γ, υ|Nτ , T,D,X) = fτ (Nτ , T ; θ|D,X)g(D; γ)pτ (X; υ)

where fτ (.|D,X) is the conditional density of the event data count Nτ and the event date
vector T = (T1, ..., TNτ ). g(., γ) is the probability function of D, and pτ (., υ) is the density of
the covariates path over [0, τ ]. The three terms can be maximized separately to give the full
likelihood estimates.

Instead of estimating a parametric model for g(., γ), Dn is described by their empirical
distribution. The covariate model pτ (., υ) is made precise. An equivalent probability measure is
developed to evaluate the density fτ (.|D,X), which transforms the counting process (N ;F) into
a standard F-Poisson process. The density is then expressed in terms of a conditional expec-
tation under the equivalent measure of the Radon-Nikodym derivative, given the observations.
For U.S. firms during 1970-2006, they find that

• strong evidence that contagion represents a significant additional source of default clus-
tering;

• contagion and frailty phenomena are found to be roughly equally important for explaining
the default clustering in the data that is not captured by a traditional doubly stochastic
model, in which firms’ default times are correlated only as implied by the correlation of
observable risk factors determining their default intensities.

Using data set containing 402,434 firm-months of data between January 1979 and
March 2004, Duffie, Eckner, Horel and Saita (2008) [30] find that:

• significant evidence exists among U.S. corporates of a common unobserved source of default
risk that increases default correlation and extreme portfolio loss risk above and beyond that
implied by observable common and correlated macroeconomic and firm-specific sources of
default risk;

• the posterior distribution of the frailty variable shows that the expected rate of corporate
defaults was much higher in 1989-1990 and 2001-2002, and much lower during the mid-
nineties and in 2003-2004, than those implied by an analogous model without frailty;

• an out-of-sample test for data between 1980 and 2003 indicates that a model without
frailty significantly underestimates the probability of extreme positive as well as negative
events in portfolios of corporate credits, while a model with frailty gives a more accurate
assessment of credit risk on the portfolio level.

3.3 Copula Model

In statistics, a copula is used as a general way of formulating a multivariate distribution
in such a way that various general types of dependence can be represented. More specifically,
the dependence between real-valued random variables X1, ...Xn is completely described by their
joint distribution function

F (x1, ..., xn) = P (X1 ≤ x1, ..., Xn ≤ xn)
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The idea of splitting F into a part which describes the dependence structure and a part which
describe the marginal behavior leads to the concept of copula. The following lemma is the
fundamental key for copula.

Lemma 1. Let X be a random variable with distribution function F. For α ∈ (0, 1) Define:

F−1(α) = inf{x|F (x) ≥ α}

1.For any standard-uniformly distributed U ∼ U(0, 1), we have F−1(U) ∼ F .
2.If F is continuous, then the random variable F(X) is uniformly distributed, i.e. F (X) ∼
U(0, 1).

Definition 2. Suppose a random vector X = (X1, ..., Xn) have continuous marginal distributions
F1, ..., Fn, the copula C of the random vector (X1, ..., Xn) or the multivariate distribution F is
defined as follows:

F (x1, ..., xn) = P (X1 ≤ x1, ..., Xn ≤ xn)

= P (F1(X1) ≤ F1(x1), ..., Fn(Xn) ≤ Fn(xn))

≡ C(F1(x1), ..., Fn(xn))

C is a distribution function of multivariate uniform distribution.

The following is the well-known Sklar’s Theorem:

Theorem 3. Suppose X1, ..., Xd are random variables with continuous marginal distribution
function F1, ..., Fd and joint distribution function F, then exists a unique copula C such that for
all x = (x1, ..., xd) ∈ Rd:

F (x1, ..., xd) = C(F1(x1), ..., Fd(xd)).

Conversely, given any marginal distribution function F1, ..., Fd and copula C, F defined above is
a d-variate distribution function with marginal F1, ...Fd

With this recipe, multivariate distributions can be constructed by adding to the marginal
distributions a copula function with a pre-described interdependence structure. On the other
hand, we can also construct a copula C from any joint distribution with continuous marginal
distribution F1, ..., Fd.

Theorem 4. If (X1, ..., Xn) has copula C and T1, ..., Tn are increasing continuous functions,
then (T1(X1), ..., Tn(Xn)) also has copula C.

3.3.1 Copula Functions

Li (2000) [62] uses a bivariate normal copula with correlation γ to capture the depen-
dence structure between two survival times with marginal distributions FA and FB:

P (TA < s, TB < t) = Φ2(Φ−1(FA(s)),Φ−1(FB(t)), γ).

Suppose that the one year default probability for security A and B are P (Z ≤ ZA) and P (Z ≤
ZB), where Z is a standard normal random variable and ZA and ZB are predetermined asset
levels. If ρ is the asset correlation, the joint default probability for credit A and B is calculated
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as follows:

P (Z ≤ ZA, Z ≤ ZB) =

∫ ZA

−∞

∫ ZB

−∞
φ2(x, y|ρ)dxdy = Φ2(ZA, ZB, ρ),

where φ2(x, y|ρ) is the standard bivariate normal density function with correlation coefficient ρ,
and Φ2 is the bivariate cumulative normal distribution function.

Li (2000)[62] concludes that CreditMetrics uses a bivariate normal copula function
with the asset correlation as the correlation parameter in the copula function. Thus, to generate
survival times of two credit risks, one can use a bivariate normal copula function with correlation
parameter equal to the CreditMetrics asset correlation. Note that this correlation parameter is
not the correlation coefficient between the two survival times which is in general much smaller
than the asset correlation. Also, using asset correlation, one can construct high dimensional
normal copula functions to model the credit portfolio of any size.

Giesecke (2003) [42] uses a bivariate exponential copula to model the correlated default.
The idea is to let defaults of firms be driven by firm-specific as well as economy-wide shock events.
Suppose there are poisson processes N1, N2 and N with respective intensities λ1, λ2, andλ. Λi
is the idiosyncratic shock intensity of firm i, while λ is the intensity of a macro-economic shock
affecting both firms simultaneously. Define the default time τi of firm i by:

τi = inf{t ≥ 0 : Ni(t) +N(t) > 0}.

Then the survive time distribution is:

si(t) = P (τi > t) = P [Ni(t) +N(t) = 0] = e−(λi+λ)t.

The joint survival probability is:

s(t, u) = P (τ1 ≥ t, τ2 ≥ u)

= P (N1(t) = 0, N2(u) = 0, N(t ∨ u) = 0)

= e−(λ1+λ)t−(λ2+λ)u+λ(t∧u)

= s1(t)s2(t) min(eλt, eλu). (3.2)

There exists a unique function Cτ such that:

s(t, u) = Cτ (s1(t), s2(u)).

Let θi = λ
λi+λ

, one has:

Cτ (u, v) = s(s−1
1 (u), s−1

2 (v)) = min(vu1−θ1 , uv1−θ2).

The parameter vector θ = (θ1, θ2) controls the degree of dependence between the default times.
If the firms default independently, then θ1 = θ2 = 0 and one gets Cτ = uv, the product copula.
If the firms are perfectly positively correlated, then θ1 = θ2 = 1 and Cτ (u, v) = u ∧ v. Note
that because of the Frechet upper bound of copula, i.e., uv ≤ Cτ ≤ u ∧ v the default can only
be positively related.

Other copulas that have been used in the literatures are:

Student’s t copula: Let Tρ,v be the standardized multivariate Student’s t distribution
with ν degrees of freedom and correlation matrix ρ. The multi-variate Student’s t copula is then
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defined as follows:
C(µ1, ..., µn; ρ, ν) = Tρ,ν(t−1

ν (µ1), ..., t−1
ν (µn)),

where t−1
ν is the inverse of the cumulative distribution function of a univariate Student’s t

distribution with ν degree of freedom. See Daul, Giorgi, Lindskog and McNeil (2003) [26].
Gumbel copula:

C(µ1, ..., µn) = exp[−(

n∑
i=1

(−lnµi)α)1/α],

where α is the parameter determining the tail dependence of the distribution. See Gumbel
(1960) [45].

Clayton copula:

C(µ1, ..., µn) = [

n∑
i=1

µ−αi − n+ 1]−1/α,

where α is the parameter determining the tail dependence of the distribution. See Clayton [18].

3.3.2 Empirical Study

Das and Geng (2004)[25] undertake an empirical examination of the joint stochastic
process of default risk over the period 1987 to 2000 using copulas functions. The data set
comprises 600 issuers classified into six rating classes tracked by Moody from 1987 to 2000.
Moody has monthly PDs for each issuer. The default intensity is calculated as: λit = −ln(1 −
PDit). They find that:

• the skewed double-exponential distribution is the best choice for the marginal distribution
of each issuer’s hazard rate process, and combines well the normal, Gumbel, Clayton and
Student’s t copulas in the joint dependence relationship;

• a regime-switching model of the intensity process better represents the properties of cor-
related default than a jump model.

Embrechts (2009) [37] has his comments on application of copula models: “The meta-
Gaussian model becomes enormously popular, in the end causing problems because the market
too strongly believed in it. The Gaussian-copula is the worst invention ever for credit risk
management. Currently various more realistic versions have been worked out replacing the
Gauss-copula by a finite mixture of Gaussians or even an infinite mixture leading to elliptical
copulas. Unfortunately, most of these models are inherently static and fail to incorporate the
dynamics of markets, especially distress. The 2007 subprime crisis around the pricing of CDO
is a very clear proof of this.”

According to Nassim Nicholas Taleb, “People got very excited about the Gaussian
copula because of its mathematical elegance, but the thing never worked. Co-association be-
tween securities is not measurable using correlation; in other words because past history is not
predictive of the future, anything that relies on correlation is charlatanism.”
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3.4 Graphical Model

3.4.1 Voter Model

Giesecke and Weber (2004, 2006) [43] [44] introduce a Voter model in which firms
interact with their business partners in a lattice-type economy.

Suppose the economy consists of a collection F of firms, an arbitrary firm i ∈ F interacts
with a collection N(i) ⊆ F |{i} of business partners (neighbors). Define the neighborhood N(i) of
a firm i by N(i) = j : |j − i| = 1. A firm’s interaction with its neighbors is symmetric, meaning
j ∈ N(i) ⇐ i ∈ N(j). The dimension d of the lattice can be interpreted as the degree of
complexity of the business partner network.

They associate each firm i ∈ Zd with a state variable ξ(i) ∈ 0, 1, which describes the
firm’s liquidity state with respect to the interaction with its business partners N(i). ξ(i) =
1 means that firm i’s liquidity reserves are stressed and might be insufficient to honor due
obligations. ξ(i) = 0 means that firm i is financially healthy and honors its obligations to
business partners timely. Assume that a transition of firm i from liquidity state ξ(i) to state
1−ξ(i) is an unpredictable Poisson event. After a unit-exponential waiting time, a firm i adopts
the liquidity state of one of its 2d business partners which is chosen with uniform probability
1
2d . The evolution of firms’ liquidity state over time is modeled by a continuous-time Markov

process (ηt)t≥0 with state space X = 0, 1Z
d

and transition rate c given by

c(i,ξ) =


1
2d

∑
j∈N(i) ξ(j) if ξ(i) = 0,

1
2d

∑
j∈N(i)[1− ξ(j)], if ξ(i) = 1.

The continuous-time Markov process describing the joint evolution of firm’s liquidity state con-
verges as time approaches infinity. The macro-economic business environment in the steady state
is described by a random vector with given distribution and the influence of both contagion and
cyclical effects are modeled on the firms.

3.4.2 Markov Random Field

Filiz, Guo, Morton and Sturmfels (2008) [39] propose a graphical Ising model for cor-
related defaults. The model has an intuitive graphic structure and in a very special homogenous
case, the loss distribution for one period version is just a summation of binomial random vari-
ables. It can represent any given marginal distribution for single firms and pairwise correlation
matrix.

Ising Model: Give an undirected graph G(V, E), where each node of the graph cor-
responds to a binary random variable Xi. The joint probability distribution of the random
variable X := (X1, ...XV ) is given by

p(x1, x2, x3, ..xv; η) =
1

Z
∗ exp{(

∑
s∈V

ηsxs +
∑

(s,t)∈E

ηs,txsxt)}

where ηs, ηs,t ∈ R are parameters and Z is the normalization constant known.
They show that:

Theorem 5. Assume any given set of statistics Pi,Pu,v from some probability distribution on
M binary random variables. Then, there exists a unique set of parameters ηi, ηuv such that the
single and double node marginals implied in the Ising model match Pi,Pu,v.
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To analyze the model, they impose further structure on the Ising model. Take M =
N + S, where nodes 1,2,...,N represent individual firms and N+1,...,N+S represent individual
industry sectors, the joint probability distribution for (X1, ..., XN ) is defined as:

P (X1 = x1, ..., XN = xN ) :=
∑

s∈{0,1}S
Q(X1 = x1, ..., XN = xN , XN+1 = s1, ..., XN+S = sN+S).

It is assumed that each firm belongs to a particular sector j = 1, 2, ..., S such that firm
nodes 1,...N are partitioned into S subsets with Nj elements, i.e. N =

∑S
j=1Nj . The parameters

ηi and ηuv as follows:

• each firm node i has a single edge connecting to its respective sector node;

• for any particular sector node j, all firm nodes that connect to it have the same node
weight ηFj and same edge weight ηFSj ;

• sector nodes are allowed to have different node weights ηSj and they connect to each other
with different edge weights ηN+u,N+v.

Under this graphical structure, the probability distribution for (X1, ..., XN ) becomes:

P (X1 = x1, ..., XN = xN ) =
1

ZS

∑
s∈{0,1}S

exp(
S∑
j=1

sjηSj + sjnjηFSj + njηFj )

exp(
∑

(u,v):u,v∈1,...,S

susvηN+u,N+v), (3.3)

where nj :=
∑

i:ηi,N+j
xi is the number of defaulting firms in sector j, and ZS is a normalization

constant.
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Part II
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Given the recent financial crisis, stressed by the incorrect assessment of the default
risk and correlation imbedded in corporate loans, bonds and derivatives, the study of firms’
credit risk has assumed increased importance to the financial industry and regulatory agency.
We conduct our research on corporate default under the reduced form framework and focus on
predicting firm default using historical default data and firms’ fundamental, market performance
and macro-economic data.

For purpose of statistical prediction of default, it is crucial to estimate and to compare
the performance of different models in order to choose the best one that has the least prediction
errors. However, in the literature, it is an ad-hoc process to select the predictors and different
models often have different predictors. Some literature even get contradicting results. For
example, Shumway (2001) [78] finds that half of the accounting ratios used in Altman (1968) [4]
and Zmijewski (1984) [84] are poor predictors and several previously neglected market-driven
variables (firm’s market size, past stock return and the idiosyncratic standard deviation of
stock return) are strongly related to default/bankruptcy probability. Chava, Jarrow (2004)
also conclude that Shumway (2001) model has superior forecasting performance as opposed to
Altman (1968) and Zmijewski (1984) and that accounting variables add little predictive power
when market variables are already included.

These ad-hoc approaches and contradicting results in the literatures motivate us to
study the predictors of corporate defaults. Given a large set of corporate default predictors
x1, x2, ..., xp, the problems raised here are:

• with a large number of predictors, how can we determine a smaller subset of default
predictors that have strong effects in predicting default?

• having specified the refined set of predictors, how can we build a default predicting model
that is able to take into accounts the default forecasters’ utility?

In this dissertation research, the two problems are studied. We conduct empirical
studies on statistical default predicting models with different predictors and find an optimal
set of default predictors. We then present a new methodology to predict and to classify firm
defaults.
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Chapter 4

Statistical Model Selection

In this chapter, we study the predictors of U.S corporate default by forward stepwise
and lasso model selection methods under the logistic regression setting. Out of 30 candidate
default predictors that have been used in the default-predicting literature, we identify a set of
eight default predictors that have strong effects in predicting default using the U.S corporate
default data from 1984-2009. We compare the eight default predictors’ predicting effect over the
past three major economic recessions and find that the recession in early 1990 and the recent
sub-prime mortgage crisis share some common default characteristics, while the recession in
2000 is different from the other two.

4.1 Data

The empirical analysis is based on corporate default data from Mergent Fixed Income
Securities Database (FISD), COMPUSTAT and CRSP database. FISD is a comprehensive
database of publicly-offered U.S. corporate debt. FISD contains issue details and default status
from 1984 to present, and provides details on debt issues and the issuers. COMPUSTAT and
CRSP database contains U.S firms’ fundamental and market performance data.

FISD records default as occurring when a debt issue either violates a bond covenant
(technical default), misses an interest or principal payment, or files for bankruptcy (either Chap-
ter 11 reorganization or Chapter 7 liquidation). The default data set which our analysis is based
on has 4238 recorded issue defaults from 1984 to 2009, of which 3619 (85%) defaults file for
bankruptcy, 284 (6.7%) miss an interest payment, 37 (0.8%) miss principal payment, 19 (0.4%)
violate bond covenant and 279 (7.1%) miss a default type.

We construct and clean our firm level default data by implementing the following three
steps: first, we combine and integrate the defaulted issues with the same ISSUER ID into firm
level defaults in FISD database at the time of default. We treat consecutive defaults of one firm
within a one year time window as one default event and use the first default date within one
year as the default event date of that year.1 This leaves us with total of 1644 defaults at the
firm level. Secondly, since firms often default together with their wholly-owned subsidiaries, we
manually analyze default cases within the same corporate family within one year and use the
parent company’s consolidated financial information to analyze the default for the corporate
family. This leaves us with a total of 1424 defaults at the firm level, Thirdly, by mapping six
digit cusip numbers, we link the default firm data in FISD with stock data from CRSP and then
to accounting data from COMPUSTAT by the linking table of permco to gvkey. This leaves us

1Davydenko (2009) [29] uses a two year time window; Lando (2010) [57] uses a one month time window.
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with 657 defaulted cases from 1984 to 2009. Finally, because of the too big too fail nature of
the financial industry and lack of business operating measures, we restrict our default sample
to non-financial firms with four digits SIC code less than 6000 or greater than 7000 and get the
default sample consists of 461 defaulted firms with 483 default cases from 1984 to 2009 during
which we can get CRSP and COMPUSTAT data for at least one year before defaults.

Our controlled data sample is limited to U.S junk (speculative grade) firms (rated BB+
and below by Moody’s and S&P), since firms with investment grades rarely default.2 The control
sample includes 844 non-financial junk firms that did not default during 1984 to 2009. Thus,
the overall sample consists of 1305 junk firms, including 461 firms that defaulted 483 times, with
total 5979 firm-year observation and an average of 230 firm observations per year from January
1984 to December 2009. Table 4.1 and Figure 4.1 display the number of default firms by year.

Years Number of junk firms Number of defaults Default rate

1984 2 0 0.00%
1985 3 0 0.00%
1986 6 2 33.33%
1987 5 2 40.00%
1988 8 3 37.50%
1989 26 6 23.08%
1990 39 12 30.77%
1991 51 18 35.29%
1992 88 22 25.00%
1993 110 11 10.00%
1994 145 4 2.76%
1995 192 9 4.69%
1996 274 17 6.20%
1997 324 14 4.32%
1998 386 22 5.70%
1999 453 39 8.61%
2000 452 50 11.06%
2001 450 80 17.78%
2002 436 48 11.01%
2003 423 31 7.33%
2004 425 16 3.76%
2005 393 14 3.56%
2006 358 5 1.40%
2007 331 6 1.81%
2008 303 18 5.94%
2009 296 34 11.49%

1984-2009 5979 483 8.08%

Table 4.1: Number of Defaults by Year

2Collin-Dufresne, Goldstein, and Helwege (2003) [20] notice that since 1937, only four firms with
investment-grades from Moody’s have defaulted on their bonds.
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Figure 4.1: Annual Default Numbers

4.2 Econometric Model

In this section, we describe the logistic regression settings and the forward stepwise
and lasso model selection methods that we use.

4.2.1 Regression Specification

We follow the empirical method in default literature and use the logistic regression
model to predict one year ahead default probabilities, conditioned on the value of default pre-
dictors, both firm-specific and common. We denote:

• the firm-specific default predictors of firm i at the end of year t: xkit, k = 1, 2, ...p, where
p is the number of firm-specific predictors;

• the common default predictors at the end of year t: zlt, l = 1, 2, ...q, where q is the number
of common predictors;

• the default event of firm i at the end of year t: yit with yit = 1 if firm i defaults at year t,
yit = 0 if it does not;

• the default probability of firm i during year t: pit,

with t = 1, 2, ..., T .
With the logistic regression specification, the default probability is modeled as a linear

function of the default predictors xkit, i.e.,

logit(pi(t+1)) = log(
pi(t+1)

1− pi(t+1)
) = α+ β1x

1
it + ...+ βpx

p
it + γ1z

1
t + ...+ γqz

q
t , (4.1)
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where α, βi, γj are parameters to be estimated, i = 1, 2, ...p, j = 1, 2, ..., q.
This is a panel data regression. Provided that the default predictors are constructed

as financial ratios and returns and that distressed non-financial firms are homogeneous, we
assume that the default predictor coefficients βk, γl, k = 1, 2, ...p, l = 1, 2..., q are constant both
cross-section and cross-time, as in the majority of empirical default prediction literature.

Note that (4.1) implies

pi(t+1) =
1

1 + eα+
∑p
k=1 βkx

k
it+

∑q
l=1 γlz

l
t

.

Assume that firms default independently conditioned on the default predictors xkit and zlt. The
likelihood of all default events is

T∏
t=1

Nt∏
i=1

pyitit (1− pit)(1−yit). (4.2)

Note that we only look at the non-investment grade firms, the total number of firm observations
Nt at each year varies, and the panel data is unbalanced.

Taking log yields the log likelihood:

l(α, β, γ) =
T∑
t=1

Nt∑
i=1

(yit log pit + (1− yit) log(1− pit))

=
T∑
t=1

Nt∑
i=1

(1− yit)(α+

p∑
k=1

βkx
k
it +

q∑
l=1

γlx
l
t)

− log(1 + eα+
∑p
k=1 βkx

k
it+

∑q
l=1 γlz

l
t). (4.3)

To minimize the convex negative log-likelihood function −l(α, β, γ), one can take the
first order derivative with respect to α, β, γ and solve the score equation using Newton-Raphson
method.

4.2.2 Model Selection

For the purpose of predicting firm default using historical default data, it is important
to estimate and to compare the performance of different models in order to choose the best one
that has the least predicting errors in the sense of negative log-likelihood in the logistic regression
settings. With a large number of predictors, we often would like to determine a smaller subset
that exhibit the strongest predicting effects. We introduce two model selection methods for this
purpose.

Forward Stepwise Selection

Recall that all subset selection finds the subset out of all p+ q predictors that gives the
smallest prediction error by enumerating all possible subsets. However, as p+ q gets as large as
30, searching through all possible subsets becomes very slow and even infeasible. Instead, one
needs to seek a good path through them, and forward stepwise selection is one such approach.

Forward stepwise selection starts with the intercept, and then sequentially adds into
the model the predictor that most reduces the prediction error. In our logistic regression case,



38

the prediction error is characterized by the out of sample negative loglikeliood estimated by 10
fold cross-validation.

Forward stepwise selection is a greedy algorithm, producing a nested sequence of mod-
els. It is computationally more attractive comparing to all-subset selection, however it often
leads to locally optimal solutions rather than globally optimal solutions.

The Lasso

The Lasso variable selection technique is proposed by Tibshirani (1996)[79]. The Lasso
minimizes the loss function subject to the sum of the absolute value of the coefficients being
less than a constant. The lasso does not focus on subsets but defines a continuous shrinking
operation. Because of the nature of this L1 norm constraint it tends to produce some coefficients
that are exactly 0 and hence gives interpretable models. Moreover, the Lasso enjoys some of the
favorable properties of both subset selection and ridge regression in the sense that it produces
interpretable models like subset selection and exhibits the stability of ridge regression.

The lasso estimate for logistic regression is defined:

α̂lasso, β̂lasso, γ̂lasso = arg min
α,β,γ

−l(α, β, γ)

subject to:

p∑
k=1

|βk|+
q∑
l=1

|γl| ≤ t, (4.4)

where t ≥ 0 is a tuning parameter, and l(α, β, γ) is in (4.3). Like in the forward stepwise
selection, the tuning parameter is adaptively chose to minimize predicted negative loglikeliood
estimated by 10 fold cross-validation.

The Lasso problem can also be written in the equivalent Lagrangian form

α̂lasso, β̂lasso, γ̂lasso = arg min
α,β,γ

−l(α, β, γ) + λ(

p∑
k=1

|βk|+
q∑
l=1

|γl|).

Computation of the solution to equation (4.4) is a quadratic programming problem
with linear inequality constraints. We adopt the coordinate descent algorithm developed by
Friedman, Hastie and Tibshirani (2010) [40] to solve the lasso estimation problem.

4.3 Empirical Results

Under the logistic model specifications introduced in Section 4.2, we select and con-
struct 30 candidate default predictors that have been often used in the default-predicting liter-
ature (Table A.2). Out of 30 candidate default predictors that have been used in the default-
predicting literature, we identify a set of eight default predictors that have strong effects in
predicting default using the U.S corporate default data from 1984-2009. We also compare the
eight default predictors’ predicting effect over the past three major economic recessions and find
that the recession in early 1990 and the recent sub-prime mortgage crisis share some common
default characteristics, while the recession in 2000 is different from the other two.

In order to construct default predictors, we combine yearly accounting data from COM-
PUSTAT with monthly equity market data from CRSP. Abbreviation and data source descrip-
tions are in Table A.1. The 30 candidate predictors are grouped into nine categories that capture
default causal factors at the individual firm and macro-economy level: Size, Capital structure,
Growth, Profitability, Debt Coverage, Liquidity, Business Operations, Market Performance, and
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Macro-Factor. We construct measures of firm size as: log(Sale), log(TA) and RSIZE; firms’
capital structure is characterized by: ME/BD, ME/TA, TL/TA and SD/BD; Sale Gth, NI Gth
and OM CH represents firm’s growth traits; RE/TA, EBIT/TA and NI/TA describe firm’s prof-
itability; ICR and NI/TL gauges firm’s debt coverage; WC/TA, CR, CH/TA, QR are liquidity
measures; INVT/SALE, AR/SALE and SALE/TA depicts business operations; market perfor-
mance is characterized by SRT and SIGMA; SPRET, T90RET, TSPRD, GDP CH, IPI CH and
CPI CH are macro-level factors that are common across firms. Table 4.2 shows the summary
statistics for the 30 default predictors.

Default Firms Non-Default Firms
Category Predictor Mean Median Std.Dev 5% 95% Mean Median Std.Dev 5% 95%

Size log(Sale) 6.018 6.040 1.757 3.476 8.708 6.879 6.837 1.343 4.755 9.136
log(TA) 6.264 6.103 1.562 3.654 8.945 7.109 7.003 1.192 5.316 9.258

RSIZE(e-07) 1.599 0.444 3.841 0.052 6.768 2.208 0.903 4.014 0.170 9.049

Capital Structure ME/BD 1.471 0.158 14.396 0.012 3.010 16.527 1.310 304.822 0.121 12.487
ME/TA 0.308 0.104 0.696 0.010 1.152 0.759 0.525 0.934 0.065 2.163
TL/TA 1.099 0.930 0.684 0.547 2.031 0.733 0.689 0.310 0.397 1.212
SD/BD 0.352 0.155 0.385 0 1 0.104 0.031 0.191 0 0.511

Growth SALE Gth 0.232 0 1.429 -0.426 1.542 0.256 0.077 2.666 -0.223 0.841
NI Gth -7.635 -0.913 27.998 -33.408 1.016 -0.871 0.092 25.623 -6.671 4.539
OM CH -0.432 -0.015 26.995 -0.387 0.496 0.263 0 12.844 -0.136 0.145

Profitability RE/TA -0.991 -0.306 3.567 -3.992 0.138 -0.080 0.029 0.532 -0.906 0.387
EBIT/TA -0.087 -0.017 0.296 -0.526 0.098 0.058 0.066 0.101 -0.090 0.177

NI/TA -0.290 -0.137 0.502 -1.098 0.032 -0.014 0.016 0.198 -0.226 0.109

Debt Coverage ICR -1.246 -0.246 5.432 -7.607 2.278 4.338 1.829 38.026 -2.297 12.569
NI/TL -0.228 -0.145 0.299 -0.759 0.040 0.001 0.023 0.481 -0.274 0.223

Liquidity WC/TA -0.167 -0.006 0.564 -1.222 0.393 0.137 0.122 0.193 -0.082 0.445
CR 1.311 0.962 1.772 0.124 3.302 1.912 1.645 1.571 0.605 3.927

CH/TA 0.064 0.031 0.094 0.001 0.232 0.067 0.038 0.082 0.002 0.227
QR 0.912 0.614 1.439 0.085 2.695 1.395 1.094 1.508 0.345 3.250

Business Operations INVT/SALE 0.107 0.072 0.163 0 0.312 0.117 0.083 1.114 0 0.273
AR/SALE 0.158 0.133 0.156 0.009 0.363 0.232 0.139 5.980 0.014 0.314
SALE/TA 1.174 0.960 1.088 0.140 2.927 1.062 0.876 0.845 0.204 2.632

Market Performance SRT -0.463 -0.625 0.640 -0.964 0.409 0.153 0.033 0.835 -0.738 1.328
SIGMA 0.248 0.220 0.147 0.096 0.510 0.150 0.126 0.127 0.055 0.302

Macro-Factor SPRET 0.038 0.035 0.210 -0.385 0.310 0.076 0.090 0.195 -0.234 0.310
T90RET 0.049 0.051 0.019 0.013 0.084 0.041 0.048 0.018 0.012 0.062
TSPRD 0.031 0.058 0.079 -0.128 0.130 0.026 0.037 0.073 -0.128 0.130

GDP CH 0.029 0.036 0.016 0 0.048 0.030 0.031 0.013 0 0.048
IPI CH 0.022 0.033 0.032 -0.034 0.059 0.027 0.032 0.029 -0.034 0.072
CPI CH 0.027 0.027 0.013 0.001 0.047 0.025 0.025 0.010 0.016 0.041

Table 4.2: Summary Statistics

4.3.1 Model Selection Results

To identify a subset of default predictors from the 30 candidates that has the best
predicting effect, we use the forward stepwise and lasso subset model selection method. Forward
stepwise selection is a discrete selection procedure during which a predictor is either added or
dropped from the model, and lasso continuous shrinks the coefficients and retains predictors
that have the strongest effects. The loss function is a negative loglikeliood and we use 10 fold
cross-validation to estimate out of sample negative loglikeliood. The whole data from 1984 to
2009 is used to run the model selection procedure. Figure 4.2 shows the 10 fold cross-validation
model selection procedure. Forward stepwise selects 15 predictors as the best predicting model,
while lasso identifies 9 predictors as the best model.
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Figure 4.2: 10 Fold Cross-Validation: Forward Stepwise and Lasso

Because post-model selection statistical inference is misguided due to extra uncertainty
introduced during the model selection step, we use bootstrap to deal with the issue. The standard
errors of regression coefficients of the best models are estimated by bootstrapping 1000 samples
and are shown in the parentheses. The regression results are in Table 4.3. We find that:

• forward stepwise and lasso identify predictors in Size, Capital Structure, Profitability,
Liquidity, Market Performance and Macro-Factor, while there are no predictors selected
in Debt Coverage and Business Operations. Forward stepwise selects 15 predictors as the
best predicting model, while lasso identifies 9 predictors. However, 8 out the 9 predictors
that lasso selects are also in forward stepwise selection result. They are: log(TA), ME/TA,
SD/BD, EBIT/TA, WC/TA, SRT, SIGMA and T90RET;

• due to the shrinkage effect of lasso, all the coefficients from lasso model selection are
smaller than their counter-parts in forward stepwise model selection, except for SD/BD.
In forward stepwise selection, SD/BD has a coefficient of 1.062, while in lasso SD/BD has
a coefficient of 1.206. The unexpected increase in the coefficient of SD/BD after shrinkage
may indicate its strong effect in predicting default;

• Comparing the results of the two model selection, it seems the Lasso yields a more concise
and stable model. The standard errors of the coefficients of the 9 predictors estimated
by bootstrapping from lasso are uniformly smaller than the ones from forward stepwise
selection, the standard errors of the other 21 predictors not selected by lasso are all very
small. The coefficients of all the 9 predictors that lasso identifies have the sign matching
the economical intuition. However, for the forward stepwise selection, the signs of RSIZE
and GDP CH are counter-intuitive, which might be caused by multi-collinearity with other
identified predictors.

Figure 4.3 and Table 4.4 shows the sequences of the predictors that are added during
the model selection procedure. For forward stepwise selection, predictors that are added in the
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earlier stage decrease the negative log-likelihood loss more compared with ones that are added
later. For lasso, as reducing the L1 penalty λ, predictors that are added in the earlier stage have
better negative log-likelihood - L1 norm penalty trade-off. For both of the two model selection
procedures, predictors that are closer to the top of the selection sequences indicate stronger
effects in predicting default.

Comparing the two sequences, we find that: a). WC/TA from liquidity measure are
ranked 2nd and 1st in both procedures. This confirms its significance in predicting defaults; b).
EBIT/TA, SRT, log(TA) and SD/BD are both ranked among the top 6 important predictors;
c). The most important macro-level predictor is T90RET, whose value determines the difficulty
level of firms’ short-term financing; d). bExcept for TL/TA that does not appear in the forward
stepwise model, all other 8 predictors selected by lasso are in the forward stepwise’s first 9
predictors, which shows a very high consistency in ranking default predictors.

Figure 4.3: Predictor Selection Procedure

4.3.2 Prediction Results

The model selection results of forward stepwise and lasso demonstrate the relative im-
portance of different default predictors in predicting default. It is also of great importance to
compare the default prediction result based on the output of the default predicting models. In
this section, we compare the 10 fold out of sample prediction results of the two best models se-
lected by forward stepwise and lasso. From Table 4.3, forward stepwise selection achieves smaller
out of sample mean negative log-likelihood than lasso. However, for the purpose of predicting
defaults, a good measure of prediction accuracy should be based on actual classification result.

In our default prediction scenario, we label a default event as positive and a non-
default event as negative. The output from our default prediction models are firm default
probabilities. By specifying a threshold value of default probabilities, we classify each firm into
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Category Predictor Forward Subset Selection Lasso

Size log(Sale)
(0.019)

log(TA) -0.442 -0.220
(0.060) (0.044)

RSIZE(e-07) 0.054
(0.016) (0.000)

Capital Structure ME/BD
(0.000)

ME/TA -0.635 -0.179
(0.147) (0.030)

TL/TA 0.412
(0.138)

SD/BD 1.062 1.206
(0.237) (0.193)

Growth SALE Gth
(0.001)

NI Gth -0.002
(0.002) (0.000)

OM CH -0.006
(0.007) (0.000)

Profitability RE/TA -0.169
(0.073) (0.006)

EBIT/TA -2.279 -2.276
(0.458) (0.386)

NI/TA
(0.179)

Debt Coverage ICR
(0.000)

NI/TL
(0.003)

Liquidity WC/TA -1.253 -0.849
(0.228) (0.192)

CR
(0.001)

CH/TA
(0.001)

QR
(0.000)

Business Operations INVT/SALE
(0.003)

AR/SALE
(0.001)

SALE/TA
(0.003)

Market Performance SRT -1.157 -0.793
(0.145) (0.083)

SIGMA 1.822 1.556
(0.449) (0.365)

Macro-Factor SPRET
(0.000)

T90RET 21.060 12.008
(4.078) (2.627)

TSPRD
(0.024)

GDP CH 21.101
(8.647) (0.116)

IPI CH -14.251
(4.095) (0.006)

CPI CH 10.807
(6.113) (0.232)

Constant -1.455 -2.211
(0.495) (0.372)

Mean Negative loglikelihood 0.385 0.401

Number of Observations (firm years) 5979 5979

Table 4.3: Model Selection
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Selection Sequence Forward Stepwise Lasso

1 SRT(Market Performance) WC/TA(Liquidity)

2 WC/TA(Liquidity) SD/BD(Capital Structure)

3 log(TA)(Size) EBIT/TA(Profitability)

4 EBIT/TA(Profitability) TL/TA(Capital Structure)

5 T90RET(Macro-Factor) SRT(Market Performance)

6 SD/BD(Capital Structure) log(TA)(Size)

7 ME/TA(Capital Structure) SIGMA(Market Performance)

8 SIGMA(Market Performance) T90RET(Macro-Factor)

9 RSIZE(Size) ME/TA(Capital Structure)

10 IPI CH(Macro-Factor) -

11 RE/TA(Profitability) -

12 GDP CH(Macro-Factor) -

13 OM CH(Growth) -

14 NI Gth(Growth) -

15 CPI CH(Macro-Factor) -

Table 4.4: Selection Sequence

default (positive) or non-default(negative), and by varying the threshold, we construct different
classification criterion from the default probabilities. There are four possible outcomes from the
binary classifier: If the outcome from a prediction is positive (default) and the actual value is
also positive (default), then it is called a true positive prediction; however if the actual value
is negative (non-default) then it is said to be a false positive prediction. Conversely, a true
negative has occurred when both the prediction outcome and the actual value are negative, and
false negative is when the prediction outcome is negative while the actual value is positive. True
positive rate is the ratio between the number of true positive instances and the total number of
positive instances in the sample, and false positive rate is the ratio between the number of false
positive instances and the total number of negative instances.

We introduce the Receiver Operating Characteristic (ROC) curve, a graphical plot of
true positive rate versus false positive rate for a binary classifier system as its discrimination
threshold varies. ROC curve provides a comprehensive and visually attractive way to summarize
the accuracy of predictions. The area under the ROC curve (AUC) is equal to the probability
that a classifier will rank a randomly chosen positive instance higher than a randomly chosen
negative one. The area under the ROC curve is closely related to the MannCWhitney U test,
which tests whether positives are ranked higher than negatives. A random classifier has an area
of 0.5, while an ideal one has an area of 1 where the ROC curve passes near the upper left
corner of the diagram. Figure 4.4 displays the ROC curve for the forward stepwise and lasso
out of sample default prediction models. The AUC under the lasso curve is 0.8812, greater than
0.8795 of AUC under forward stepwise curve, which demonstrates a more precise overall default
classification results of lasso model.

The ROC curve in Figure 4.4 can be used to choose the optimal operating point (OOP),
a particular threshold at which the classifier gives the best trade-off between the costs of failing
to detect positives against the costs of raising false alarms. Assuming that the decision maker
is indifferent between the cost of misclassifying positive and negative case (In Section 5 we will
discuss and vary this assumption.), the optimal operating point is the point which lies on a 45
degree line closest to the north-west corner (0,1) of the ROC curve. The red circle points in
Figure 4.4 display the OOPs of forward stepwise and lasso prediction models. The OOP of the
forward stepwise model is 7.6%, and the OOP of the lasso model is 9.2%, which means that if we
classify the firms with predicted default probabilities above 7.6% for the forward stepwise model
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and above 9.2% for the lasso model as defaulting firms, we can achieve the best classification
result. For the forward stepwise model, the false positive rate is 18.85% and the true positive
rate is 81.37% at OOP, while for the lasso model, the false positive rate is 15.27% and the true
positive rate is 77.64%. We can see that at the OOPs the lasso model is more conservative in
making default judgements than the forward stepwise model.

Figure 4.4: Receiver Operating Characteristic Curve

4.3.3 Default In Recessions

In section 4.3.1, we conclude with eight default predictors that are selected and ranked
high by both forward stepwise and lasso model selection methods. Because defaults tend to
cluster during the economic downturn and are rare events during the economic boom, it is
important to investigate and to understand the predicting abilities of the predictors over eco-
nomic recession periods. During the sample periods 1984-2009, according to National Bureau of
Economic Research, U.S has gone through three economic recessions: the early 1990s recession
caused by a combination of the debt accumulation of the 1980s, the 1990 oil price shock and the
savings and loans crisis; the early 2000s recession accompanied by speculative dot-come bub-
ble and September 11th attack; and the recent sub-prime mortgage crisis lead by national-wide
over-leverage through derivatives written by financial institutions. We split our data sample into
periods corresponding to the durations of the three recessions, and run the logistic regressions
with the eight default predictors as the regressors. While the test conducted here is subject to
the post-model selection inference issue, our goal is to identify and to compare predicting effects
of default predictors over the three recession periods rather than making inferences on default
predictors.

Table 4.5 displays the regression result. There are several observations from Table 4.5:
First, the signs of coefficients of the eight predictors match economic intuitions with no vari-
ations over the three recession periods. This re-assures the validity of our default prediction
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model. Second, all eight predictors enjoy persistent significance in predicting default over re-
cessions, except for SRT, SIGMA in the 1990s recession and log(TA), SD/BD in the sub-prime
mortgage crisis. The absolute value of coefficient and t-statistics of log(TA) both decrease over
the three recessions suggesting that the size of firm is playing a less and less important role
in predicting default. This is consistent what were witnessed during the recent financial crisis:
giant corporations like Lehman Brothers, General Motors, Circuit City, etc, collapse together
with small firms. SRT and SIGMA are not significant during the 1990s recession and the ab-
solute coefficient values of SRT and SIGMA increase over time, because the financial market
is getting more efficient today than it was in the 1990s and default risk is priced in the equity
return. The fact that SD/BD is not a significant predictor for the sub-prime mortgage crisis
highlights the huge impact of the sub-prime mortgage crisis when firms default due to both the
maturity of short-term debt and the interest payment of long term debt.Third, judging from
the coefficient values and the significance level of predictors, the 1990s recession and the sub-
prime mortgage crisis share some common predictor characteristics, while the 2000s recession
is different. ME/TA, EBIT/TA and T90RET explain a greater portion of default risk for the
1990s and sub-prime mortgage recessions than for the 2000s recession. This could be explained
by the same over-leverage nature of the 1990s and 2007s recessions. Firms with more levered
capital structures(less ME/TA) and less earning abilities are more subjected to default risk,
accentuated by the more significant impact of short term interest rate. Moreover, WC/TA is
more significant in the 2000s tech bubble recession than in the other two.
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Chapter 5

Decision-Based Default Prediction

Why does one care about predicting corporate default? Because one needs to use the
predictions to make decisions. For instance, bankers decide whether or not to issue a loan to
a firm based on the firm’s default probability; distress debt investors select their investments
according to their default likelihood judgement; insurers choose on which firm to write a Credit
Default Swap (CDS) based on firms’ default probabilities; speculators on corporate default
events make their bets relying on their default predictions.

For different groups of decision makers, significance of judging defaults accurately
varies: for some ones the error of judging a default firm as a non-default, i.e. false negative
error, is more significant than judging a non-default firm as a default, i.e. false positive error,
while for others the opposite is true, and according to the characteristics of particular firms,
decision makers may also put different weights, which could be proportional to the size of the
firm for instance, on each default judgement. Therefore, it is very important to take into ac-
count the decision maker’s loss utility when calibrating and using prediction models. However,
in the default literature, decision makers’ loss utility is usually ignored with only the negative
log-likelihood loss function and maximum likelihood estimation method for model calibration.
Maximum likelihood estimators have nice properties such as consistency and efficiency, but it is
not the best choice when the underlying probabilistic model assumptions may be wrong and/or
there are other objectives more than maximizing the likelihood.

In this chapter, we present a decision-based default prediction framework where we
incorporate the default forecaster’s loss utility into default classification and derive an optimal
decision rule for this classification problem.

5.1 Optimal Decision Rules

Let random variable Y ∈ {1,−1} represent default, where Y = 1 means default and
Y = −1 means non-default, and random variables X = (X1, X2, ..., Xp) taking values in X
represent default predictor, where p is the number of default predictors in the model. Assume
that the data sets (xi, yi), i = 1, ..., n, are generated independently by an unknown distribution
P on X × Y . Also denote the conditional distribution P (Y = 1|X = x) as p(x), the marginal
distribution function of X as PX(x), and the marginal distribution function of Y as PY (y).
Note that here we do not differentiate firm-specific and common predictors, but express them
all as X, and we suppress the firm and time subscript by assuming the firms are homogenous
and default samples are taken from a distribution which is time-stationary conditioned on the
default predictors.
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We introduce a decision-based prediction model designed to minimize the loss (or max-
imize the gain) according to the decision-makers’ utility-preference. Specifically, denote the
decision maker’s default prediction as

I{f(x)≥0} =

{
1, f(x) ≥ 0,
−1, f(x) < 0,

where f(x) : Rp → R is a decision function adopted by the decision-maker given the value of
default predictors x. Specifically, when the decision-maker observes a data point x for which
f(x) ≥ 0, he or she would consider the data point x as a default; when the decision-maker
observes a data point x for which f(x) < 0, he or she would consider the data point x as a
non-default.

The 0-1 classification loss function is defined by:

Lclass(y, f(x)) = (
I{f(x)≥0} − y

2
)2.

Note that: when the decision maker makes a right prediction, Lclass(y, f(x)) = 0, otherwise,
Lclass(y, f(x)) = 1.

Because significance of judging defaults accurately varies for different groups of decision
makers, we associate the decision maker’s each prediction with a loss utility as:

π(x, y) : Rp+1 → R+.

The loss utility servers as a weight function to penalize undesirable prediction error. Incorpo-
rating this loss utility into the 0-1 classification loss function, we write our loss function as:

Lπclass(y, f(x)) = π(x, y)(
I{f(x)≥0} − y

2
)2.

Let RLπclass,P (f) = EP [Lπclass(Y, f(X))], where EP [.] means taking expectation under
probability measure P . The default prediction goal is therefore to minimize the expect loss over
all functions f(x) : Rp → R:

min
f(x):Rp→R

: RLπclass,P (f).

Lemma 6. RLπclass,P (f) =
∫
f(x)<0(π(x, 1) + π(x,−1))(p(x)− π(x,−1)

π(x,1)+π(x,−1))dPX(x)



49

Proof.

RLπclass,P (f) = EP [Lπclass(Y, f(X))]

= EP [π(X,Y )(
I{f(X)≥0} − Y

2
)2]

= EPX [EPY [π(X,Y )(
I{f(X)≥0} − Y

2
)2|X]]

= EPX [π(X, 1)(
I{f(X)≥0} − 1

2
)2 ∗ p(x) +

π(X,−1)(
I{f(X)≥0} + 1

2
)2 ∗ (1− p(x))]

=

∫
f(x)<0

π(x, 1)p(x)dPX(x) +

∫
f(x)≥0

π(x,−1)(1− p(x))dPX(x)

=

∫
X
π(x,−1)(1− p(x))dPX(x) +∫

f(x)<0
(π(x, 1) + π(x,−1))(p(x)− π(x,−1)

π(x, 1) + π(x,−1)
)dPX(x).

Proposition 7. The decision function f∗(x) minimizes RLπclass,P (.) if and only if ∀x ∈ X :

(p(x)− π(x,−1)

π(x, 1) + π(x,−1)
)I{f∗(x)≥0} ≥ 0.

Proof. First we show the sufficient condition. Assume that a decision function f∗(x) satisfies

(p(x)− π(x,−1)
π(x,1)+π(x,−1))I{f∗(x)≥0} ≥ 0,∀x ∈ X . For any other decision function f(x), according to

Lemma 6, we have:

RLπclass,P (f∗)−RLπclass,P (f) =

∫
f∗(x)<0

(π(x, 1) + π(x,−1))(p(x)− π(x,−1)

π(x, 1) + π(x,−1)
)dPX(x)−∫

f(x)<0
(π(x, 1) + π(x,−1))(p(x)− π(x,−1)

π(x, 1) + π(x,−1)
)dPX(x).

Denote: A = {x ∈ X : f∗(x) < 0}, B = {x ∈ X : f(x) < 0} and C = A
⋂
B. Let A− C be the

set of all elements x which are members of A but not members of C and B −C be the set of all
elements x which are members of B but not members of C. We have:

RLπclass,P (f∗)−RLπclass,P (f) =

∫
A−C

(π(x, 1) + π(x,−1))(p(x)− π(x,−1)

π(x, 1) + π(x,−1)
)dPX(x)−∫

B−C
(π(x, 1) + π(x,−1))(p(x)− π(x,−1)

π(x, 1) + π(x,−1)
)dPX(x)

≤ 0.

The last inequality holds because ∀x ∈ A− C, p(x)− π(x,−1)
π(x,1)+π(x,−1) ≤ 0 and ∀x ∈ B − C, p(x)−

π(x,−1)
π(x,1)+π(x,−1) ≥ 0 and π(x, 1) + π(x,−1) > 0. This concludes the sufficient condition.

Second, we show the necessary condition by contradiction. Suppose that we have
an optimal decision function f∗(x) and that there exist a set G such that ∀x ∈ G, (p(x) −



50

π(x,−1)
π(x,1)+π(x,−1))I{f∗(x)≥0} < 0.

To establish contradiction, we construct another decision function f̃(x) from f∗(x)

such that: f̃(x) = f∗(x), ∀x /∈ G and (p(x) − π(x,−1)
π(x,1)+π(x,−1))I{f̃(x)≥0} ≥ 0,∀x ∈ G. Denote:

M = {x ∈ X : f∗(x) < 0}, N = {x ∈ X : f̃(x) < 0}. We have:

RLπclass,P (f̃)−RLπclass,P (f∗) =

∫
f̃(x)<0

(π(x, 1) + π(x,−1))(p(x)− π(x,−1)

π(x, 1) + π(x,−1)
)dPX(x)−∫

f∗(x)<0
(π(x, 1) + π(x,−1))(p(x)− π(x,−1)

π(x, 1) + π(x,−1)
)dPX(x)

=

∫
N

⋂
G

(π(x, 1) + π(x,−1))(p(x)− π(x,−1)

π(x, 1) + π(x,−1)
)dPX(x)−∫

M
⋂
G

(π(x, 1) + π(x,−1))(p(x)− π(x,−1)

π(x, 1) + π(x,−1)
)dPX(x)

< 0.

The last inequality holds because ∀x ∈ N
⋂
G, p(x)− π(x,−1)

π(x,1)+π(x,−1) ≤ 0 and ∀x ∈M
⋂
G, p(x)−

π(x,−1)
π(x,1)+π(x,−1) > 0 and π(x, 1) + π(x,−1) > 0.

Therefore, it contradicts with the optimality of f∗(x), which concludes the necessary
condition.

Corollary 8. For the optimal decision function f∗(x),

R∗Lπclass,P = RLπclass,P (f∗) =

∫
X

min{p(x)π(x, 1), (1− p(x))π(x,−1)}dPX(x)

Proof.

RLπclass,P (f∗) =

∫
f∗(x)<0

π(x, 1)p(x)dPX(x) +

∫
f∗(x)≥0

π(x,−1)(1− p(x))dPX(x)

=

∫
X

min{p(x)π(x, 1), (1− p(x))π(x,−1)}dPX(x).

The last equation holds because:

min{p(x)π(x, 1), (1− p(x))π(x,−1)} = π(x,−1)(1− p(x))

⇔ (p(x)− π(x,−1)

π(x, 1) + π(x,−1)
) ≥ 0

⇔ f∗(x) ≥ 0,

and

min{p(x)π(x, 1), (1− p(x))π(x,−1)} = π(x, 1)p(x)

⇔ (p(x)− π(x,−1)

π(x, 1) + π(x,−1)
) < 0

⇔ f∗(x) < 0.
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From Proposition 7, it is clear that if one has perfect knowledge of p(x) = P (Y = 1|X =

x), then a data point x is judged as default whenever p(x) > π(x,−1)
π(x,1)+π(x,−1) . However, in reality,

one often knows or understands neither the underlying distribution P (X,Y ) that generates the
data nor p(x) = P (Y = 1|X = x). Two practical solutions are: a) to estimate p(x) with

p̂(x) and then make prediction according whether p̂(x) ≥ π(x,−1)
π(x,1)+π(x,−1) ; b) to have an empirical

estimation RLπclass,E(f) = 1
n

∑n
i=1 L

π
class(yi, f(xi)) of the overall decision error RLπclass,P (f) and

then find an optimal decision function f∗E(x) that minimizes the empirical loss RLπclass,E(f).
In section 4.2.1, we adopt the logistic regression method mostly used in the literature

and assume a logistic form p(x) = 1
1+eαl+<βl,x>

, αl ∈ R, βl ∈ Rp and obtain the estimate p̂(x) with

maximum likelihood method. Assuming that the decision maker’s utility π(x, 1) = π(x,−1),
which means that the decision maker is indifferent to the false negative and false positive errors,
we obtain the optimal operating points (OOP) on the ROC curve (figure 4.4) for lasso and
forward stepwise models, which are 9.2% and 7.6% respectfully, to minimize the average out of
sample classification error. However, from proposition 7, we see that if π(x, 1) = π(x,−1), the
optimal operating point should be 50% if our estimate p̂(x) is a good approximate of p(x). The
optimal operating points we get for both lasso and forward stepwise model are far below 50%,
which shows that the logistic form estimate p̂(x) significantly underestimate the true default
probability, therefore the logistics regression may not be appropriate for estimating accurately
the default probability.

5.2 Empirical Risk Minimization

In the literature, one often relies on solution a) to obtain an estimation p̂(x) for a
logistic functional form p(x) = 1

1+eαl+<βl,x>
, αl ∈ R, βl ∈ Rp, and then make default prediction

with p̂(x) by specializing a default probability threshold h for new data points. However, besides
the issue of underestimating default probability shown in last section, this strategy has two other
drawbacks:

• the conditional independency assumption made when writing the default likelihood as a
product form may not be valid. There are on-going debates in the literature that this
assumption is valid with a suitable choice of default predictors, see Lando and Nielsen
(2010) [57];

• the objective of minimizing negative log-likelihood, is not consistent with the objective of
minimizing default prediction/judgement errors which may depend on the decision-maker’s
utilities.

Here we proceed following solution b): to have an empirical estimate

RLπclass,E(f) =
1

n

n∑
i=1

Lπclass(yi, f(xi)),

which approximates the overall decision error RLπclass,P (f) and find a f∗E(x) that minimizes the
empirical loss.

Note that even though the strong law of large number shows that for each f(x):
RLπclass,E(f)→ RLπclass,P (f), solving:

inf
f :Rp→R

RLπclass,E(f) (5.1)
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does not in general lead to an approximate minimizer of RLπclass,P (.), a phenomenon called
overfitting.

One common way to avoid overfitting is to choose a smaller set F of functions f(x) :
Rp → R that is assumed to contain a reasonably good approximation of the solution of R∗Lπclass,P .

Then, instead of minimizing RLπclass,E(.) over all functions, one minimizes only over F . This
empirical risk minimization approach often tends to produce the solution of the infinite-sample
version: R∗Lπclass,P,F = inff∈F RLπclass,P (f). (This equation holds if the set F is finite or if F can

be approximated by a finite set of functions). Therefore, we first restrict F to be all functions
f(x) = g(< β, x > +α), where g(.) : R→ R is an invertible function so that the approximation
error R∗Lπclass,P,F − R

∗
Lπclass,P

is small. Later, we extend F to a richer class of functions in the

reproducing kernel Hilbert spaces in section 6.3.
Note that:

g(< β, x > +α) ≥ 0⇔< β, x > +α ≥ g−1(0),

where g−1(x) = inf{y ∈ R : g(y) = x}. Therefore, it suffices to consider F = {f(x) =< β, x >
+α} for the classification purpose.

In essence, we formulate the problem toward minimizing the empirical risk:
RLπclass,E,F (f) = 1

n

∑n
i=1 L

π
class(yi, f(xi)) over F = {f : f(x) =< β, x > +α, β ∈ Rp, α ∈ R}.

That is:

min
α,β

:
1

n

n∑
i=1

π(xi, yi)(
I{<β,xi>+α≥0} − yi

2
)2. (5.2)

Proposition 9. The solution to formulation (5.2) is a polyhedron in Rp+1.

Proof. To solve the optimization problem (5.2), we introduce a dummy decision variable δi ∈
{−1, 1}, i = 1, 2, ..., n. The formulation (5.2) can be transformed to:

min
α,β,δ

:
1

n

n∑
i=1

π(xi, yi)(
δi − yi

2
)2 (5.3)

Such that:δiI{<β,xi>+α≥0} ≥ 0, i = 1, 2, ..., n,

δi ∈ {−1, 1}.

Note that in formulation (5.3), the objective function only involves decision variables δi. There-
fore, the problem is reduced to finding a feasible solution of α, β satisfying:

< β, xi > +α ≥ 0, for all i that δ∗i = 1,

< β, xi > +α < 0, for all i that δ∗i = −1,

where δ∗i ∈ {−1, 1} that minimizes the objective function. Therefore, the solution α, β to
formulation (5.2) is a Rp+1 polyhedron. Note that each solution α, β of formulation (5.2) defines
a separating hyperplane that minimizes the empirical classification error for the data points
xi, i = 1, ..., n: if < β, xi > +α ≥ 0, xi predicts as default; if < β, xi > +α < 0, xi predicts as
non-default.

However, two questions arising from here:

• the parameters β, α that minimize the empirical classification error is not unique. How to
define a truly optimal β∗, α∗ that minimizes out of sample prediction error?
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• the loss function Lπclass(yi, f(xi)) is non-differentiable and non-convex, solving the formula-
tion (5.2) is often NP-hard and computationally expensive. How to find other loss functions
that can be used to approximate Lπclass(yi, f(xi)) and has computational advantages?

In next chapter, we introduce the idea of “Support Vector” and “Hinge Loss function”
from Support Vector Machines (SVMs) developed by Cortes and Vapnik (1995) [21] to tackle
the two questions.
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Chapter 6

Support Vector Machines

In this chapter, we first introduce the idea of “Support Vector” and “Hinge Loss func-
tion” from Support Vector Machines (SVMs) developed by Cortes and Vapnik (1995) [21] and
then incorporate the decision maker’s loss utility π(x, y) into Support Vector Machines(SVMs),
and show that minimizing the utility adjusted hinge loss is consistent with minimizing utility
adjusted classification loss. Our empirical classification results of the decision-based SVMs de-
fault prediction framework demonstrates better classification accuracy and more flexibilities in
achieving different decision makers’ goals.

6.1 Support Vectors

Consider the problem of separating the set of training data xi ∈ Rp belonging to two
separate classes yi ∈ {−1, 1}, i=1, ..., n, with a hyperplane,

< β, x > +α = 0, (6.1)

where β ∈ Rp, α ∈ R.
The set of data is said to be optimally separated by the hyperplane if it is separated

without error and the distance between the closest data to the hyperplane is maximal. There
is some parameter redundancy in equation (6.1), and without loss of generality, we consider a
canonical hyperplane whose parameters β, α are constrained by:

min
i
| < β, x > +α| = 1. (6.2)

A separating hyperplane in the canonical form must satisfy the following constraints:

yi(< β, xi > +α) ≥ 1, i = 1, ..., n. (6.3)

The distance d(β, α;xi) of a data point xi from the hyperplane (β, α) is:

d(β, α, xi) =
| < β, xi > +α|

||β||
. (6.4)

There are many possible separating hyperplanes that can separate the data “well” and
minimize the loss, but under a given appropriate metric there is only one that maximizes the
distance between the hyperplanes and the nearest data point of each class, i.e., the optimal
separating hyperplane. Intuitively, we would expect the decision rule implied by this hyperplane
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generalize well as opposed to other hyperplanes. The optimal hyperplane is given by maximizing
the margin, ρ, subject to the constraints (6.3). The margin is given by:

ρ(β, α) = min
xi:yi=−1

d(β, α;xi) + min
xi:yi=1

d(β, α;xi)

= min
xi:yi=−1

| < β, xi > +α|
||β||

+ min
xi:yi=1

| < β, xi > +α|
||β||

=
1

||β||
( min
xi:yi=−1

| < β, xi > +α|+ min
xi:yi=1

| < β, xi > +α|)

=
2

||β||
, (6.5)

where the last equation holds because for the optimal separating hyperplane:

min
xi:yi=−1

| < β, xi > +α| = min
xi:yi=1

| < β, xi > +α| = min
xi:yi
| < β, xi > +α| = 1.

Hence the hyperplane that optimally separates the data is the one that solves the
following optimization problem:

min
β,α

1

2
||β||2 (6.6)

such that: yi(< β, xi > +α) ≥ 1, i = 1, 2, ..., n.

The optimization problem (6.6) is a quadratic programming subject to linear constraints, and
its optimal solution is uniquely given by the saddle point of its Lagrange function:

Φ(β, α, λ) =
1

2
||β||2 −

n∑
i=1

λi(yi(< β, xi > +α)− 1), (6.7)

where λ = (λ1, ..., λn) ≥ 0 ∈ Rn is the Lagrange multiplier. The lagrange function Φ(β, α, λ) has
to be minimized with respect to β, α and maximized with respect to λ ≥ 0. Since the original
objective function 6.6 is convex, strong duality enables the primal problem to be transformed
to its dual problem, given by:

max
λ

W (λ) = max
λ

(min
β,α

Φ(β, α, λ)). (6.8)

The minimum with respect to β and α of the Lagrangian, Φ(β, α, λ), is given by:

∂Φ

∂α
= 0⇒

n∑
i=1

λiyi = 0,

∂Φ

∂β
= 0⇒ β =

n∑
i=1

λiyixi.

Hence, the dual problem is:

max
λ

W (λ) = −1

2

n∑
i=1

n∑
j=1

λiλjyiyj < xi, xj > +
n∑
k=1

λk. (6.9)
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The solution to the dual problem is:

λ∗ = argmax
λ
−1

2

n∑
i=1

n∑
j=1

λiλjyiyj < xi, xj > +
n∑
k=1

λk, (6.10)

such that: λi ≥ 0, i = 1, 2, ..., n,

n∑
i=1

λiyi = 0.

Solving (6.10) determines the Lagrange multipliers and the optimal separating hyperplane is
given by:

β∗ =

n∑
i=1

λiyixi,

α∗ = −1

2
< β∗, xr, xl >,

where xr, xl are any data points from each class satisfying λr, λs > 0, yr = −1, yl = 1.
From Karush-Kuhn-Tucker conditions,

λ∗i (yi(< β∗, xi > +α∗)− 1) = 0, i = 1, ..., n,

and hence only the data points xsvi which satisfy:

yi(< β∗, xsvi > +α∗) = 1 (6.11)

will have non-zero Lagrange multipliers. These points xSV si satisfying (6.11) are called Support
Vectors (SVs).

If the data sets xi, i = 1, ..., n, are linearly separable, all the support vectors lie on the
margin and the number of support vectors can be very small compared to the number of total
data points. Consequently the hyperplane is determined by a small subset of the data points,
the other data points can be removed from the data sets and recalculating the hyperplane would
produce the same result. Therefore, support vectors can be used to summarize/compress the
information contained in the data set, especially,

||β∗||2 =
n∑
i=1

n∑
j=1

λ∗iλ
∗
jyiyj < xi, xj >=

∑
i∈SV s

∑
j∈SV s

λ∗iλ
∗
jyiyj < xi, xj >,

and because of strong duality,

||β∗||2 = 2W (λ∗) = 2 ∗
n∑
i=1

λ∗i −
n∑
i=1

n∑
j=1

λ∗iλ
∗
jyiyj < xi, xj >,

we have:

||β∗||2 =

n∑
i=1

λ∗i =
∑
i∈SV s

λ∗i .

When the data set is not linearly separable, the optimization problem (6.6) does not
have general solutions. In this case, introducing an additional loss function associated with
misclassification is appropriate. Cortes and Vapnik (1995) [21] introduce non-negative slack
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variables ξi ≥ 0, i = 1, ..., n and an empirical loss :

L(ξ) =
n∑
i=1

ξi,

where ξi is a continuous measure of the misclassification error. The optimization problem be-
comes:

min
β,α,ξ

:
1

2
||β||2 + C

n∑
i=1

ξi (6.12)

such that: yi(< β, xi > +α) ≥ 1− ξi, i = 1, 2, ..., n,

where C is a given regularization parameter which represents the trade-off between the margin
1
2 ||β||

2 and classification errors ξ. The Lagrangian of the optimization problem (6.12) is:

Φ(β, α, ξ, λ, µ) =
1

2
||β||2 + C

n∑
i=1

ξi −
n∑
i=1

λi(yi(< β, xi > +α)− 1 + ξi)−
n∑
i=1

µiξi,

where λ ≥ 0, µ ≥ 0 are the Lagrange multipliers. The Lagrangian has to be minimized with
respect to β, α, ξ and maximized with respect to λ ≥ 0, µ ≥ 0. The primal problem is a convex
optimization over linear constraints, and strong duality holds. The dual problem is given by:

max
λ,µ

W (λ, µ) = max
λ,µ

(min
β,α,ξ

Φ(β, α, ξ, λ, µ)).

The minimum with respect to β, α, ξ of the Lagrangian Φ(β, α, ξ, λ, µ) is:

∂Φ

∂α
= 0⇒

n∑
i=1

λiyi = 0,

∂Φ

∂β
= 0⇒ β =

n∑
i=1

λiyixi,

∂Φ

∂ξ
= 0⇒ λi + µi = C.

Hence, the dual problem can be written as:

max
λ

W (λ) = −1

2

n∑
i=1

n∑
j=1

λiλjyiyj < xi, xj > +

n∑
k=1

λk, (6.13)

such that: 0 ≤ λi ≤ C, i = 1, 2, ..., n,

n∑
i=1

λiyi = 0.

The solution to this dual problem is identical to the separable case except for a modification of
the bounds for the Lagrange multipliers. The hyper-parameter C introduces additional capacity
control over the linear classifier, and can be directly related to a regularization parameter. C
must be chosen to reflect the knowledge of the noise in the data, and cross-validation is usually
used to determine the value of C.
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6.2 Hinge Loss and Classification Loss

In our decision-based default prediction, we modify the loss L(ξ) =
∑n

i=1 ξi defined by
Cortes and Vapnik (1995) [21] and incorporate the decision maker’s utility π(x, y) ≥ 0 into the
loss and formulate the problem as:

min
β,α,ξ

:
1

2
||β||2 + C

n∑
i=1

π(xi, yi)ξi (6.14)

such that: yi(< β, xi > +α) ≥ 1− ξi, i = 1, 2, ..., n,

ξi ≥ 0, i = 1, 2, ..., n,

where π(x, y) : Rp+1 → R+ is given by the decision maker. And the dual problem becomes:

max
λ

W (λ) = −1

2

n∑
i=1

n∑
j=1

λiλjyiyj < xi, xj > +
n∑
k=1

λk, (6.15)

such that: 0 ≤ λi ≤ Cπ(xi, yi), i = 1, 2, ..., n,

n∑
i=1

λiyi = 0.

Note that in formulation (6.14), yi(< β, xi > +α) ≥ 1 − ξi can be written as ξi ≥
1− yi(< β, xi > +α), and since ξ ≥ 0, we see that the slack variables must satisfy:

ξi ≥ (1− yi(< β, xi > +α)+ = Lhinge(yi, < β, xi > +α),

where Lhinge(y, t) = (1 − yt)+, y ∈ {−1,+1}, t ∈ R is called hinge loss and is convex in t. The
objective function in formulation (6.14) becomes minimal in ξi if the above inequality is actually
an equality. Therefore, minimizing formulation (6.14) is equivalent to minimizing:

min
β,α

:
1

2
||β||2 + C ′

1

n

n∑
i=1

Lπhinge(yi, < β, xi > +α), (6.16)

where C ′ = Cn and
Lπhinge(y, f(x)) = π(x, y)(1− y(f(x))+.

Here we incorporate the decision maker’s utility into the hinge loss. We see here that
SVMs work toward minimizing the empirical loss plus a regularization penalty term. Recall that
in section 5.1, our goal is to minimize the decision-based classification errors Lπclass(y, f(x)) =

π(x, y)(
I{f(x)≥0}−y

2 )2. Since Lπclass(y, f(x)) is non-convex, we introduce Lπhinge(y, f(x)) as a sur-
rogate loss for Lπclass(y, f(x)) and obtain a dual optimization problem that is a convex quadratic
programming with linear constraints. But the question left is that: is minimizing the hinge type
decision loss Lπclass(y, f(x)) consistent with minimizing the 0-1 classification error Lπclass(y, f(x))?

Zhang (2004)[82] establishes the relation that for every measurable function f : Rp →
R:

RLclass,P (f)−R∗Lclass,P ≤ RLhinge,P (f)−R∗Lhinge,P .

Here we show that this relation still holds after we incorporate the decision maker’s
utilities π(x, y), and therefore Lπhinge(y, f(x)) is a reasonable surrogate for Lπclass(y, f(x)).
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Proposition 10. Given a joint distribution P on X × Y,X ∈ Rp, Y ∈ {−1, 1} and a positive
function π(x, y) : Rp+1 → R+. For any measurable function f(x) : Rp → R, let Lπclass(y, x, f(x)) =

π(x, y)(
I{f(x)≥0}−y

2 )2 and Lπhinge(y, x, f(x)) = π(x, y)(1− y(f(x))+, we have:

RLπclass,P (f)−R∗Lπclass,P ≤ RLπhinge,P (f)−R∗Lπhinge,P ,

where RL,P (f) = EP [L(Y, f(X))] and R∗L,P = inff EP [L(Y, f(X))].

Proof. For f(x) : Rp → [−1, 1], we have:

RLπhinge,P,[−1,1](f) = EP [π(x, y)(1− yf(x))+]

=

∫
X

((1− f(x))π(x, 1)p(x) + (1 + f(x))π(x,−1)(1− p(x)))dPX(x)

=

∫
X

((π(x, 1)− π(x,−1))p(x) + π(x,−1))dPX(x)

+

∫
X
f(x)(π(x, 1) + π(x,−1))(

π(x,−1)

π(x, 1) + π(x,−1)
− p(x))dPX(x),

where p(x) = P (Y = 1|X = x).

Let f∗class(x) : Rp → {1,−1} be such that: (p(x) − π(x,−1)
π(x,1)+π(x,−1))f∗class(x) ≥ 0.. Then

f∗class(x) minimizes RLπclass,P (.), by proposition 7. Moreover, over all functions: f(x) : Rp →
[−1, 1], we see

R∗Lπhinge,P,[−1,1] = RLπhinge,P (f∗class(x)).

Note that for the hinge loss with utilities Lπhinge(y, x, t) = π(x, y)(1− yt)+, y ∈ {−1,+1}, t ∈ R:

Lπhinge(y, x,−1) ≤ Lπhinge(y, x, t),∀t ≤ −1,

and
Lπhinge(y, x, 1) ≤ Lπhinge(y, x, t),∀t ≥ 1.

Therefore,
R∗Lπhinge,P = R∗Lπhinge,P,[−1,1] = RLπhinge,P (f∗class(x)),

and for all functions f(x) : Rp → R, we have:

RLπhinge,P (f̃)−R∗Lπhinge,P ≤ RLπhinge,P (f)−R∗Lπhinge,P ,

where f̃ is:

f̃(x) =


f(−1), x < −1;
f(x), −1 ≤ x ≤ 1;
f(1), x > 1.

Note that for all functions f(x) : Rp → R, for the classification error, we also have:

RLπclass,P (f̃)−R∗Lπclass,P = RLπclass,P (f)−R∗Lπclass,P .

Therefore, it suffices to proof the proposition for f(x) : Rp → [−1, 1], in which case we have:

RLπhinge,P (f)−R∗Lπhinge,P =

∫
X

(f(x)−f∗class(x))(π(x, 1)+π(x,−1))(
π(x,−1)

π(x, 1) + π(x,−1)
−p(x))dPX(x).
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By proposition 7,

RLπclass,P (f)−R∗Lπclass,P =

∫
X

(I
{0,1}
f(x)<0 − I

{0,1}
f∗class(x)<0)(π(x, 1) + π(x,−1))

(p(x)− π(x,−1)

π(x, 1) + π(x,−1)
)dPX(x), (6.17)

where I
{0,1}
{.} is the usual indicator function.

Since π(x, 1) + π(x,−1) ≥ 0, the last step is to show that

(I
{0,1}
f(x)<0−I

{0,1}
f∗class(x)<0)(p(x)− π(x,−1)

π(x, 1) + π(x,−1)
) ≤ (f(x)−f∗class(x))(

π(x,−1)

π(x, 1) + π(x,−1)
−p(x)),

for all x, f(x) : Rp → [−1, 1].

Noting that f∗class(x) : Rp → {1,−1} satisfying (p(x)− π(x,−1)
π(x,1)+π(x,−1))f∗class(x) ≥ 0, the

above inequality holds.

Remark: note that if
∫
{X×Y } π(x, y)dP{X×Y }(x, y)=1, π(x, y) =

dQ{X×Y }(x,y)

dP{X×Y }(x,y) can be

treated as the Radon-Nikodym derivative of measure Q with respect to measure P , where
EP [π(X,Y )L(Y, f(X))] = EQ[L(Y, f(x))], and therefore Proposition 10 follows naturally by the
inequality established in Zhang (2004)[82].

6.3 Feature Space and Kernel Functions

Support Vector Machines can map input data xi ∈ Rp into a higher dimensional feature
space Rq, q ≥ p by choosing a mapping function: φ : Rp → Rq. Support Vector Machines
then work in the feature space and constructs an optimal separating hyperplane in this higher
dimensional space. Since the calculation for finding the optimal separating hyperplane in the
feature space involves only evaluating the inner product < φ(xi), φ(xj) >, it turns out that
using a group of functions called “kernel”, K(., .), the calculations can be performed in the input
space Rp instead of the potential high (infinity) dimensional feature space where K(xi, xj) =<
φ(xi), φ(xj) >.

Kernel functions that are usually used in Support Vector Machines are:

• Polynomial: K(xi, xj) =< xi, xj >
d;

• Gaussian Radial Basis: K(xi, xj) = exp(− ||xi−xj ||
2

2σ2 );

• Multi-Layer Perceptron: K(xi, xj) = tanh(ρ < xi, xj > +%).

Working in the feature space with kernel functions K(., .), the optimization prob-
lem (6.18) becomes:

max
λ

W (λ) = −1

2

n∑
i=1

n∑
j=1

λiλjyiyjK(xi, xj) +
n∑
k=1

λk, (6.18)

s.t: 0 ≤ λi ≤ Cπ(xi, yi), i = 1, 2, ..., n,

n∑
i=1

λiyi = 0.
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Solving the above optimization problem determines the Lagrange multipliers λ∗, and the optimal
separating hyperplane in the feature space is given by:∑

i∈SV s
λ∗i yiK(xi, x) + α∗,

where α∗ = −1
2

∑
i∈SV s λ

∗
i yi(K(xi, xr) + K(xi, xl)), and xr, xl are any data points from each

class satisfying λ∗r , λ
∗
s > 0, yr = −1, yl = 1.

6.4 Empirical Results

In this section, we use the same default data set as in section 4.3 to conduct our
empirical test of the decision-based SVMs default prediction model (6.14) and compare the
result with results obtained from logistics regression and linear discriminant methods that are
used in the literature. The empirical result in this section demonstrates that the decision-
based SVMs models can achieve better prediction accuracy and are flexible in taking accounts
of decision makers’ utility. Model inputs are the eight predictors identified in section 4.3.1:
log(TA), ME/TA, SD/BD, EBIT/TA, WC/TA, SRT, SIGMA, T90RET. Defaults are classified
as positive and non-defaults are classified as negative. 10 fold cross-validation is used to estimate
the penalty parameter C and the hyper-parameters of the kernel functions. All classification
results are out of sample predictions obtained from 10 fold cross-validation.

Table 6.1 shows the classification results with constant unity utility associated with
the classification loss. SVMs models have overall better prediction results measured by correct
rate(correctly classified samples/total samples) than logistics and linear discriminant models,
with SVMs with Gaussian kernel achieving the best correct rate of 0.9339. SVMs models are
conservative in judging default cases and obtain lower sensitivity (correctly classified positive
samples/total true positive samples) but higher Positive Predictive Rate (correctly classified
positive samples/positive classified samples). This is because we weight positive and negative
classification error equally here but the default and non-default groups are unbalanced with
default rate being 8.07%. For decision makers like speculators for corporate default events,
SVMs results may be desirable here.

In Table 6.2, we modify the decision maker’s utility to assume a utility penalty to the
false negative errors, i.e., errors arising from judging a default case as a non-default. Specifically,
we let π(x, 1) = 2(1 − α), π(x,−1) = 2α, where α = 0.0808 is the sample default rate. As a
result, more default alarms are raised and sensitivities of SVMs models increase significantly
while positive predictive rates decrease to low levels. Overall correct rates of SVMs remain
above 0.8 and SVMs with Gaussian kernel have the least utility error, which is calculated as
(falsely classified positive samples*π(x, 1)+falsely classified negative samples*π(x,−1))/total
samples. The classification results here could be desirable for decision makers like credit risk
managers.

During the recent financial crisis, big asset firms, like Lehman Brothers, General
Motors, Delta Airlines etc., defaulted and their impact is enormous. We assume a further
utility penalty to the false negative errors on big asset firms. Specifically, we let π(x, 1) =
2(1 − α)x1µ , π(x,−1) = 2α, where x1 is the log asset value, µ is the sample average of log asset
values and α is the sample default rate. Table 6.3 displays the classification result. Sensitivity
II is sensitivity calculated for predicting firms with log asset values above the sample average.
Sensitivity III is sensitivity calculated for predicting firms with log asset values above 90th per-
cent sample quantile. SVMs with Gaussian kernel capture 78.91% and 79.31% of default events
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for firms with above average log asset values and for firms with 90th percent quantile log asset
value respectively.

In Table 6.4, in order to capture the extremely rare events of defaults for firms with
huge asset, we add significantly more penalty to the false negative errors, i.e., let π(x, 1) =
2(1− α)x1µ ∗ 10 if x1 ≥ q90th, π(x, 1) = 2(1− α)x1µ otherwise,and π(x,−1) = 2α, where x1 is the
log asset value, µ is the sample average of log asset values, q90th is the 90th percent quantile of
sample log asset values and α is the sample default rate. Sensitivity III in Table 6.4 is increased
significantly. SVMs with quadratic kernel captures 96.55% of these rare events, comparing with
only 34.48% and 13.79% of logistics regression and linear discriminant analysis respectively.

The empirical test in this section only serves as an example to demonstrate the predic-
tion result of SVMs and the idea to incorporate the decision maker’s utility in predictions. More
utility functions can be assumed according to the decision maker’s interest. For example, one
may be more interested in predicting defaults during bad economic times, therefore, we could
associate an extra penalty to data with weak economic value in x and let the prediction model
put more “effort” to remember (fit) those data in the hope that the prediction model can gen-
eralize better when encountering similar cases in the future. This is actually a utility-adjusted
regularization idea.
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Chapter 7

Conclusion

In the literature of predicting corporate default, it is an ad-hoc process to select the
predictors and different models often use different predictors. We study the predictors of U.S
corporate default by forward stepwise and Lasso model selection methods. Using the U.S corpo-
rate default data from 1984-2009, we identify a set of eight default predictors that have strong
effects in predicting default out of 30 candidate default predictors that have been used in the
major default-predicting literature. They are: log(TA), ME/TA, SD/BD, EBIT/TA, WC/TA,
SRT, SIGMA and T90RET.

By comparing the eight default predictors’ predicting effects during the past three
economic recessions, we find that: the predicting effects of firm size log(TA) are decreasing over
the three recessions, which coincides with what we have witnessed during the recent financial
crisis: giant corporations like Lehman Brothers, General Motors, etc, collapse together with
small firms; market variables SRT and SIGMA are not significant during the 1990s recession
and the absolute coefficient values of SRT and SIGMA are increasing over time reflecting the fact
that the financial market are getting more efficient today than it was in the 1990s and default
risk is priced in the equity return; ME/TA, EBIT/TA and T90RET explain a greater portion
of default risk for the 1990s and sub-prime mortgage recessions than for the 2000s recession and
WC/TA is more significant in the 2000s tech bubble recession than in the other two.

Having identified the set of default predictors, we move on to present a default predic-
tion methodology where we incorporate the decision maker’s loss utility π(x, y) : Rp+1 → R+

into the loss function of default classification. We show that the decision function f∗(x) that

minimizes RLπclass,P (.) if and only if: (p(x) − π(x,−1)
π(x,1)+π(x,−1))f∗(x) ≥ 0. Comparing the optimal

operating points (OOP) on the ROC curve (figure 4.4) of logistic regression results, we find that
the logistic estimate p̂(x) significantly underestimate the true default probability and therefore
may not be appropriate for the purpose of estimating accurately the default probability.

We later incorporate the decision maker’s loss utility π(x, y) into Support Vector Ma-
chines(SVMs), and show that minimizing the utility adjusted hinge loss is consistent with min-
imizing utility adjusted classification loss. Our empirical classification results of the decision-
based SVMs default prediction framework demonstrates better classification accuracy and more
flexibilities in meeting different decision makers’ goals.

The idea of incorporating utilities into model calibration is analogous to regularization
idea in the sense that we let the prediction model put more “effort” to remember (fit) those
data which are important to us in the hope that the prediction model can generalize well when
encountering similar cases in the future. This idea can be generalized to other fields beside
default prediction.
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Appendix A

Abbreviation Description Database Input

ME Market Value of Equity Compustat: PRCCM*CSHO

BD Book Value of Total Debt Compustat: DLC+DLTT

TA Total Asset Compustat: AT

TL Total Liability Compustat: LT

SD Short Term Debt Compustat: DLC

SALE Sales Compustat: SALE

NI Net Income Compustat: IB

RE Retained Earnings Compustat: RE

EBIT Earnings Before Interest and Taxes Compustat: EBIT

ICR Interest Coverage Ratio Compustat: EBIT/XINT

WC Working Capital Compustat: ACT-LCT

AR Account Receivable Compustat: RECT

INVT Inventories Compustat: INVT

CR Current Ratio Compustat: ACT/LCT

CH Cash Compustat: CH

QR Quick Ratio Compustat: (ACT-INVT)/LCT

OM CH Change in Operating Margin Compustat: OIBDP/SALE

SRT Trailing One Year Stock Return CRSP Monthly Stock

SIGMA One Year Monthly Stock Volatility CRSP Monthly Stock

RSIZE Relative Market Value of Equity ME/(NYSE, AMEX, NASDAQ Market Value)

SPRET Trailing One Year S&P 500 Return CRSP Monthly Stock

T90RET 90 Days Treasury Bill Rate Global Insight

GDP CH Gross Domestic Production Global Insight

IPI CH Industrial Production Index Global Insight

CPI CH Consumer Price Index Global Insight

TSPRD 1 to 10 Year Treasury Spread Global Insight

Table A.1: Abbreviation and Data Source
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