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The advent of whole-genome expression profiling technology has made it 

possible to identify transcriptional dysregulation that contribute to or result from disease 

mechanisms and can also serve as biomarkers for disease.  However, expression-alone 

classification can be challenging in complex diseases due to factors such as genetic 
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heterogeneity across patients or noise in mRNA levels.  Moreover, it remains unclear 

how these marker genes interrelate within a larger functional network.   

We propose a novel approach to integrate gene expression with protein 

interactions to dissect cancer development and outcome.  The new prognostic markers are 

not individual genes or proteins, but as sets of coherently expressed genes whose 

products interact within a larger human protein interaction network.  In breast cancer, we 

show that this integrated strategy predict the risk of metastasis potential more accurately 

than previous approaches based only on gene expression.  More than being more 

reproducible and robust, our network markers also give molecular models for how the 

cancer susceptibility genes might be associated with cancer metastasis.   

We next apply this network-based analysis to develop a new system for accurately 

stratifying patients of chronic lymphocytic leukemia (CLL) at different risk levels of 

disease progression.  The network markers represent an array of disease pathways whose 

expression converge over time among patients regardless their initial risk levels, 

implicating novel understanding for cancer evolution and for the development of 

treatment strategies.  Besides incorporating protein interaction network into gene 

expression analyses, we also identify condition-responsive genes within canonical 

pathways to infer dysfunctional pathway activation.  Contrast to methods based on static 

pathway knowledge, our dynamic pathway markers lead to better clinical performance 

for various cancers, including leukemia, prostate cancer, breast cancer and lung cancer. 

  Another way to address the difficulties seen in gene expression studies is to 

obtain direct measurement of protein levels and states by quantitative mass spectrometry.  
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We develop a method to select protein markers based on the change in expression relative 

to the standard deviation of repeated measurements across experimental replicates.  In 

CLL disease progression, our protein markers are shown to be involved in the same 

pathways and more prognostic of newly diagnosed patients.  We further discuss strategies 

for targeted proteomic profiling with the guidance of protein interaction networks.



 
 

1 

1. INTRODUCTION 

Mapping the molecular mechanisms that drive neoplasm transformation and 

progression is critical to our understanding and treatment of cancer.  Over the past couple 

decades, enormous progress has revealed cancer to be a disease involving dynamic 

changes in the whole genome and disruptions of various cellular processes1.  Cancer cells 

of the same phenotype can exhibit a great range of genetic variability.  This complex and 

heterogeneous nature implies a manifestation of alterations more than only on genes or 

cells.  Instead, several lines of evidence indicate that distinct cellular pathways and 

microenvironmental factors collectively dictate malignant growth. 

In glioblastoma multiforme (GBM), for instance, nearly all the tumor samples in 

the cancer genome atlas GBM project2 harbored at least one genetic event in the 

RTK/RAS/PI3K oncogenic signaling pathway.  However, individual tumors exhibit 

diverse mechanisms for alteration of the pathway – mutation or homozygous deletion of 

the suppressor genes PTEN and NF1, amplification or mutation of the upstream receptor 

genes EGFR, ERBB2, PDGFRA and MET, or mutation of the core genes RAS and 

PI3K.  Studies in other cancer types3, 4 also suggested that different combinations of 

genetic alterations can incapacitate each trait that cancer cells must acquire toward their 

route to malignant transformation.  Furthermore, several oncogenic lesions in leukemia5 

had been shown to work cooperatively to drive the cell to tumorigenesis.  The 

interactions among molecular alterations that can give rise to cancer provoke a number of 

questions.  Can the large and diverse collection of cancer-associated genes be tied to the 

operations of a small group of regulatory pathways?  What types of cellular regulatory 
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pathways within a target cell must be disrupted in order to drive neoplasms?  What ways 

can the distinct regulatory pathways cooperate to direct the pathologic transition?  Is 

there a common set of dysregulated cellular pathways contributing to the disparate 

neoplasms arising in the human body?  To understand the structure of such mechanisms, 

it is helpful to dissect malignant transformation and progression based on a holistic view 

of biological systems.  

Until recently, cancer research has been necessarily conducted in a reductionist 

manner to focus on a specific gene or signaling pathway, limited primarily by the lack of 

technology and tools needed to interrogate at a higher level for interplay across these 

single components.  Enabled by the exponential development in high-throughput 

technologies within the past decade, Systems Biology provides a framework for 

assembling models of biological pathways from systematic measurements6, 7.  The 

extensive genomic, proteomic and other global cell measurements include, among many 

others, genomic sequences8, 9, gene expression and genotypic profiles10, DNA-binding 

profiles from chromatin immunoprecipitation11, and protein abundance from mass 

spectrometry12.  It is impossible to study a biological system as a whole without these 

systematic data.  On the other hand, it is also impossible to perform hypothesis-driven 

science on genome-wide measurements without the advance in computational analyses of 

the vast amount of data13.  Together, these developments in both experimental and 

computational methods have afforded a profound opportunity to characterize the 

differences between cancer cells and their normal counterpart through integrative systems 

approaches5, 14-20. 
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In addition to deciphering disease mechanisms, another crucial question in cancer 

research is to develop tools to diagnose cancer more accurately.  More than 100 distinct 

types of cancer have been documented, and subtypes of tumors can be found within 

specific organs1.  Precise classification and prognosis is critical for effective treatment 

plans, given that patients with the same type of cancer frequently respond very differently 

to the same treatment.  The advent of DNA microarrays has surged gene expression 

profiling to become the method of choice for identifying diagnostic biomarkers able to 

diagnose the severity of disease and predict future disease outcomes.  Markers are 

selected by scoring each individual gene for how well its expression pattern can 

discriminate between different classes of disease or between cases and controls.  The 

disease status of new patients is predicted using classifiers tuned to the expression levels 

of the markers.  Recent applications of gene expression profiling on molecular 

characterization and diagnosis of cancer is concisely summarized in Section 1.1. 

Despite their promise, gene-expression-based diagnostics continue to face serious 

challenges due to their questionable accuracy for predicting patient outcomes in some 

diseases21, 22.  Moreover, it is a common phenomenon that for the same disease different 

research groups each identified sets of gene markers but fail to observe an acceptable 

overlap between these gene signatures.  For example in breast cancer, two large-scale 

expression studies by van’t Veer et al.15 and Wang et al.23 each identified a set of 70 

gene markers that were of equivalent prognosis power, rivaling the performance of 

established criteria.  Strangely, however, these marker sets shared only three genes in 

common.  Furthermore, it is usually hard to explain functional relationships between 

those marker genes. 
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Problems are thought to arise due to at least two factors: cellular heterogeneity 

within tissues and genetic heterogeneity across patients.  The impact of cellular 

heterogeneity depends on the nature of the disease: for some diseases, such as B-cell 

lymphoma, the diseased cell population is very well defined such that it is possible to 

harvest a relatively pure cell population yielding a distinct expression signature.  In other 

diseases, such as breast cancer, it has been very difficult to cleanly separate tumor from 

normal cells, such that the resulting expression profile represents an average signal 

diluted over a mixed cell population. 

In contrast to cellular heterogeneity, genetic heterogeneity refers to the fact that 

the same genes may not be dysregulated in each patient.  For instance, patient A may 

have gene A dysregulated, patient B may have gene B dysregulated, patient C may have 

gene C dysregulated, and so on.  Given this disparity across patients who nevertheless 

may have the same clinical outcomes (e.g., aggressive cancer), classification algorithms 

have trouble because there is no single marker that is indicative of the status of all (or 

even most) patients. 

To address these problems and improve on gene-expression-based diagnostics, we 

and several groups are beginning to integrate patient expression profiles with system-

wide maps of the pathways in the cell24-40.  The rationale for including pathway 

information is that it provides an overarching layer of organization which can tie 

seemingly disparate expression responses together into a common pattern.  For instance, 

although any gene A, B, or C may indicate an aggressive form of disease, if we are given 

the knowledge that the protein products of genes A, B, and C form a coherent module—
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e.g., subunits of a common protein complex, successive enzymes in a metabolic pathway, 

or successive steps in a signal transduction cascade—this allows us to formulate new 

biomarker functions that take all of these proteins into account.  Some approaches based 

on known pathway knowledge are introduced in Section 1.2.  

Intuitively, one’s ability to classify disease states should be improved by 

introducing relevant pathway information.  However, a remaining hurdle to pathway-

based analysis is that the majority of human genes have not yet been assigned to a 

definitive pathway.  The recent availability of large protein networks provides one means 

to at least partially address these challenges.  Using protein–protein interaction networks 

derived from literature, the yeast two-hybrid system, or mass spectrometry, a number of 

approaches have been demonstrated for extracting relevant subnetworks based on 

coherent expression patterns of their genes41, 42 or on conservation of subnetworks across 

multiple species43.  Each subnetwork is suggestive of a distinct functional pathway or 

complex, yielding many known and novel pathway hypotheses in organisms for which 

sufficient protein interaction data have been measured.  Large protein networks have only 

recently become available for human44-47, enabling new opportunities for elucidating 

pathways involved in major diseases and pathologies24.  A brief review on the advances 

of high-throughput technologies in large-scale discovery of protein interactions within a 

cell is given in Section 1.3. 

In this dissertation, we first pursue a protein-network-based approach for 

identifying cancer pathway markers within gene expression profiles, which can be used 

to identify genetic alterations, to assess progression risk and predict the treatment need in 
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unknown samples.  The markers in question are not encoded as individual genes or 

proteins, but as subnetworks of interacting proteins within a larger human protein–protein 

interaction network.  In Chapter 2, we describe a novel algorithm which uses a genome-

wide protein interaction network as a systematic framework for the identification of 

protein complexes or signaling cascades playing a role in cancer formation and further 

progression.  Beyond charting molecular mechanisms underlying disease, we discuss how 

the identified molecular maps can be used to develop better diagnostic tools when 

different subtypes of cancer are known in advance in Chapter 3 or to identify patient 

subgroups of different risk profiles in Chapter 4.  In Chapter 3, we identify protein 

network markers of breast cancer metastasis and show that such a network-centric 

method has several advantages over previous analyses of differential expression on 

identification of susceptibility genes and prediction of metastatic likelihood in unknown 

samples.  We then integrate the patient survival data into the network-based approach to 

identify clinically relevant cancer subtypes in chronic lymphocytic leukemia (CLL) 

which has a very heterogeneous clinical course.  In Chapter 4, we show that the 

identified CLL subtypes and corresponding network markers can reliably predict the 

relative risk for disease progression.  From the profiles of longitudinal tumor samples, we 

find convergence in expression of these networks over time, regardless of the initial risk 

category at diagnosis.  This suggests that degenerate pathways may converge into 

common pathways that govern disease progression.  Besides extracting pathway 

information from unbiased protein interaction networks, we present another method for 

pathway marker selection that incorporates static literature-curated pathways in a 

condition-specific manner.  In Chapter 5, we demonstrate that our dynamic-pathway 
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based approach outperforms previous analyses of differential expression in classifying 

samples across seven different cancer datasets, including lung cancer, prostate cancer, 

breast cancer and acute leukemia.  In all, we demonstrate that effectively incorporating 

pathway information into expression-based disease diagnosis can provide better 

discriminative and more biologically defensible models. 

Another reason for the discrepancy seen in gene expression studies is that mRNA 

measurements are often noisy and do not necessarily correlate with the activity of the 

corresponding protein.  A solution to this difficulty is to obtain direct measurements of 

protein levels and states.  The revolutionized generation of large-scale proteomic tools 

that are based on chromatography and mass spectrometry enable the identification of 

proteins and simultaneous measurement of their abundances, and can also identify when 

they have complex secondary modifications.  In Chapter 6, we present a method for 

quantitative measurements of protein expression using mass spectrometry. 

Conclusion on the findings and implication of both pathway-based diagnostics 

and protein expression profiling is given in Chapter 7.  We also discuss possible 

improvements on the proposed methods as well as potential directions for method 

extension and applications. 

1.1 Gene expression analyses in cancer systems biology  

With the help of high-throughput technologies, we now have vast amounts of data 

providing a global view of molecular events contributing to or associated with 

oncogenesis.  In the past decade, DNA microarrays, in particular, have made significant 

contribution to cancer research by generating global quantitative profiles of gene 
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expression in cancer in hundreds of large-scale experiments.  By comparing to the 

expression profiles from corresponding normal tissues, most tumors show a unique and 

recognizable expression pattern, i.e., one set of differentially expressed genes per tumor 

type.  Besides the “cancer vs. normal” studies, another common experimental design is to 

compare cancer samples based on their degree of progression, as determined by 

histological grade, invasiveness, or metastatic potential.  Known types and subtypes of 

cancer have been readily distinguished by their gene-expression patterns, and also new 

molecular subtypes of cancer have been discovered.  For many types of cancer, such 

“gene signatures” make it possible to develop expression-based classifications to 

diagnose the severity of disease and predict future disease outcomes.   

An increasing number of diagnostic markers of various disease states, outcomes, 

or responses to treatment have been identified through analysis of such genome-wide 

expression profiles (reviewed by Chung et al.48, Asyali et al.49, Quackenbush et al.50, and 

Cheang et al.51).  Marker genes are selected by scoring how well their expression levels 

can discriminate between different classes of disease.  This method has achieved >90% 

accuracy for some leukemias such as acute myeloid leukemia (AML) and acute 

lymphoblastic leukemia (ALL)14, even outperforming the conventional clinical risk 

factors.   

As many different tumors have been profiled for system-specific studies, 

scientists started to examine whether any patterns of gene expression are common among 

diverse tumor types.  One way is to seek for genes showing a statistically significant 

difference in expression level between tumor profiles which have the feature of interest 
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and tumor profiles which do not have that feature52, 53.  For example, Ramaswamy et al.53 

analyzed a set of expression profiles from metastatic adenocarcinoma of distinct origin 

and compared this set with a set of primary adenocarcinomas representing the same 

spectrum of tumor types.  Another idea is to investigate overlaps of the individual gene 

signatures from different profiles. Rhodes et al.54 assessed the intersection of multiple 

“cancer vs. normal” gene signatures from a diverse collection of microarray datasets to 

identify the genes that play a critical role in the neoplastic phenotype.  Tomlins et al.55 

defined several gene signatures related to prostate cancer progression by comparing any 

two stages.  They linked each pair-wise comparison to another microarray studies for 

prostate cancer if the two gene signatures shared significant proportion of differentially 

expressed genes.  Lamb et al.16 extend the similar pattern-matching idea to characterize 

the molecular signatures arising from specific pharmacological interventions in the cell.  

A tumor profile would be associated with a drug if its gene signature has a significant 

fraction of genes overlapped with the signature of the drug-response expression profile. 

In addition to the development of molecular diagnosis of cancer, these gene 

expression data have also been integrated with other types of information for the 

identification of oncogenes, tumor-suppressor genes, and even entire oncogenic 

pathways.  A highly recurrent gene fusion event, for instance, was identified in prostate 

cancer from gene expression profiles using an 'outlier' analysis approach17.  Copy-number 

data and gene expression profiles were successfully used in the identification of specific 

chromosomal amplifications in breast cancer19.  Another example is to use reference 

signatures of specific activated pathways to characterize tumors and establish drug 

sensitivity20.  Besides gene expression levels, DNA microarrays can also be used to 
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measure genomic variation across patient tumors.  Genome-wide SNP profiling and 

array-based comparative genomic hybridization were applied to the identification of 

germ-line and somatic lesions in several cancers, including leukemia5 and breast cancer18.   

1.2 Pathway-based expression analyses 

One of the main difficulties in gene expression profiling studies is to interpret the 

relationship between identified differentially expressed genes and the phenotype of 

interest.  Several approaches have been proposed to use external functional information 

for interpreting gene signatures26, 56.  Gene Ontology57 (GO database) is the most often 

used source of functional annotations.  A gene signature is examined against each of the 

predefined sets of genes representing different functions, to determine whether any set is 

overrepresented in the gene signature compared with all the genes in the expression 

study. 

The above simply-counting approach is reasonable but has some shortcomings, 

regarding its statistical significance, pointed out in several studies29, 30, 37.  Moreover, such 

posteriori analyses may miss the pathways which involves moderate effects that are not 

capture by the differentially expressed genes in the signature.  Furthermore, it has been 

shown that differentially expressed genes selected from a small number of samples can 

be highly variable58, 59.  However, the sufficient number of samples can be over 

thousands60.  Alternative approaches30, 37 are to consider the distribution of pathway 

genes in the entire gene list generated by ranking genes according to their evidence for 

differential expression.  The first innovative method Gene Set Enrichment Analysis 

(GSEA) has demonstrated that some coordinately dysfunctional processes could only be 
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uncovered when functionally related gene sets were examined in a priori fashion61. 

Another study62 in diffuse large B-cell lymphoma (DLBL) used GSEA to show that the 

three subtypes of DLBL can be characterized by distinct biological processes. 

Segal et al.63 analyzed hundreds of gene sets in the context of a compendium of 

diverse cancer profiles, in order to address the commonalities and variations between 

different types of tumor.  They compiled gene sets from GO database and co-expressed 

clusters in microarray studies.  This analysis revealed that some gene sets were shared 

across many cancer types, whereas others were specific to cancer types or subtypes.  The 

resulted module map suggests several hypotheses for the biological processes underlying 

a specific cancer types.  Careful interpretation and validation of such functional linkage 

will be required to fully appreciate the value of the approach. 

In addition to explaining gene expression differences between phenotypes, the 

pathway information can be used in predicting new expression profiles of unknown 

disease states.  Some of these approaches represent pathway activity with a function 

summarizing the expression values of member genes25, 28, 34, 35; other approaches estimate 

probabilities of pathway activation based on the consistency of changes in gene 

expression40, 64, 65.  Others have engineered normal cells to activate pre-selected 

oncogenic pathways, in order to determine gene signatures that can distinguish tumor 

characteristics20, 66.  For example, Bild et al.20 over-expressed a panel of oncogenes, one 

at a time, in primary cultures of human mammary epithelial cells.  The goal was to link 

each oncogene with a distinct set of dysregulated genes.  Given these links, they showed 
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that the expression profile of a new tumor sample could be analyzed in order to identify 

which oncogenes had been activated. 

1.3 Protein interaction networks  

Proteins regulate and mediate many of the processes in the cell.  In most cases, 

they act in concert with other proteins as part of pathways or larger molecular assemblies 

called complexes.  Systematic discovery of protein interactions can help us to understand 

all the possible reactions or catalytic steps underlying cellular behavior.  In the past 

several decades, these physical associations were mainly discovered by small-scale 

methods such as co-immunoprecipitation and FRET microscopy67.  Only a small number 

of protein interactions could be revealed in one experiment.  Recently, high-throughput 

techniques like yeast two-hybrid (Y2H)68 and tandem affinity purification coupled with 

mass spectrometry (TAP-MS)69 accumulate our knowledge of protein interactions at the 

level of the whole proteome, resulting in the generation of a large number of protein 

interactions (see Figure 1.1 and a recent review by Cusick et al.70).   

In TAP-MS studies proteins are used as bait in a co-immunoprecipitation assay 

and the pulled down proteins are separated and identified using mass spectrometry.  Y2H 

is a technique which is based on the functional reconstitution of an intact transcription 

factor that activates reporter gene expression.  Both Y2H and TAP-MS have been used to 

generate large interaction networks for different species.  Presently, genome-scale 

protein-protein interaction networks are available for the bacteria: H. pylori71 and E. 

coli72; for the model eukaryotes: S. cerevisiae69, 73-75, C. elegans76, and D. melanogaste77; 

and finally for human46, 47.  Recently, a combination of experimental methods have also 
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been proved useful in determining protein interactions in a condition- specific manner on 

a large scale.  Bouwmeester et al.78 used an integrated approach of proteomic pathway 

analysis via tandem affinity purification and loss functional analysis with RNA 

interference to identify new tumor necrosis factor pathway interactions.  The tandem 

affinity purification method is a sensitive and selective method for reconstructing 

interaction maps of particular signal transduction pathways that may have therapeutic 

significance. 

Usually in a protein interaction network, nodes denote proteins and there exists a 

link between two nodes if the corresponding proteins interact with each other.  Large-

scale protein networks can be visualized by many software tools, such as Cytoscape79, 

NAViGaTOR80, and VisANT81.  Cytoscape is selected to be used in this thesis because of 

the wealth of publicly available plugins for many types of integration, visualization, and 

query of biological networks and other types of functional genomic data (Figure 1.2).  It 

combines the ability to view and manipulate genome-sized graphs of cellular pathways 

and an extensible architecture such that new search tools can be added dynamically. 
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Figure 1.1. Overview of the two high-throughput techniques for protein-protein interactions 
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Figure 1.2. Graphical user interface of Cytoscape.  

Each window showcases a different analysis or visualization of protein interaction networks and 
integrated data. 
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2. PINNACLE 

− Protein InteractioN Network Aided Classification Engine 

To provide a systematic and integrative framework for incorporating data of 

cancer disease mechanisms and outputting predictions of cancer outcome, we develop a 

new method to identify dysfunctional pathways or protein complexes contributing to 

disease phenotypes from patients’ gene expression profiles with a view of protein 

interaction networks (Figure 2.1).  To obtain a proteome-wide human protein interaction 

network, one can assemble a pooled data set of more than 50,000 interactions among 

more than 10,00 proteins for both protein-protein interactions and protein-DNA binding, 

integrated from yeast two-hybrid experiments46, 47, predicted interactions via orthology 

and co-citation45, and curation of the literature44, 82-86.  To integrate the expression and 

network datasets, we overlay the expression values of each gene on its corresponding 

protein in the network and searched for subnetworks whose activities across the tumor 

samples are highly discriminative of tumor phenotypes or associated with patient 

survival.  This process involved several scoring and search steps, as illustrated in Figure 

2.2 and described further in below.  

Briefly, a candidate subnetwork was first scored to assess its activity in each 

sample, defined by averaging its normalized gene expression values.  This step yielded an 

activity score per subnetwork per sample.  Second, the predictive potential of a candidate 

subnetwork was computed based on the statistic of choice between its activity score and 

the clinical variable of interest.  Significantly predictive subnetworks were identified by 

comparing their predictive potentials to those of random networks.  The selected 
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subnetworks provide an array of small models for the underlying disease mechanisms.   

Meanwhile, the corresponding activity scores can be used to identify distinct signatures 

associated with different risk groups of patients and further enable the development of 

advanced prognostics for newly diagnosed patients (Figure 2.1). 

2.1 Scoring subnetworks 

A subnetwork is defined as a gene set that induces a single connected component 

in the protein-protein interaction network.  Given a particular subnetwork M, let a 

represent its vector of activity scores over the tumor samples, and let c represent the 

corresponding vector of clinical variables of interest (for examples, different disease 

status or survival times).  To derive a, expression values gij are normalized to z-

transformed scores zij which for each gene i have mean μ=0 and standard deviation σ=1 

over all samples j (Figure 2.2).  The normalized expression value zij can be interpreted as 

the fold change of gi in sample j compared to a virtual basal expression of the gene.  The 

individual zij of each member gene in the subnetwork are averaged into a combined z-

score which is designated the activity ai.  By summarizing the fold changes of each 

member in the subnetwork for a sample j, we hope to transform the heterogeneity of gene 

expression to a robust signal at pathway activity (Figure 2.3). 

Many types of statistic could be used to score the relationship between a and c.  If 

c is a discrete variable, for example two distinct tumor subtypes or drug-responsive 

versus non-responsive, one can use discriminative statistics such as mutual information87, 

t-score88 or Wilcoxon signed-rank score89,  to quantify how different the activity score a 

of a subnetwork are between the two disease status of c over all patients.  If c is a 
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continuous variable, for example the time length of relapse from primary tumor removal, 

one can evaluate the association between a and c by correlation metrics such as Pearson’s 

product-moment coefficient90, Spearman’s rank coefficient91 or proportional hazards 

models92.  In this thesis, we demonstrate the usage of three statistics, mutual information, 

Cox proportional hazards, and t-score, as the predictive score function S(M) to access the 

prognostic power of a subnetwork M on the clinical variable of interest c in Chapters 3, 

4 and 5, respectively. 

2.2 Searching for significant subnetworks 

Given the predictive score function S, a greedy search is performed to identify 

subnetworks within the protein interaction network for which the scores are locally 

maximal.  Candidate subnetworks are seeded with a single protein and iteratively 

expanded.  At each iteration, the search considers addition of a protein from the 

neighbors of proteins in the current subnetwork.  An addition that yields the maximal 

score increase is adopted.  After each addition, the search considers deletion of each 

protein from the current subnetwork (except those proteins essential to subnetwork 

connectivity), and deletions that yield higher score are accepted.  The search stops when 

no addition increases the score over a specified improvement rate r.  The parameter r may 

be chosen by users to avoid over-fitting to the expression data used. 

To assess the significance of the identified subnetworks, three tests of significance 

are performed.  For the first test, a global test, we perform the same search procedure 

over 100 random trials in which the expression vectors of individual genes are randomly 

permuted on the network.  Such permutation disrupts the correlation between expression 
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and interaction.  The S score of each real subnetwork is indexed on the “global” null 

distribution of all S scores of random subnetworks.  The second test, a local test, indexes 

each S score on a “local” null distribution, estimated from the scores of 100 random 

subnetworks initialized from the same seed protein as the real subnetwork.  Third, we test 

whether the S score with the true disease state is stronger than that obtained with random 

assignments of groups to patients30.  For the random model, these assignments are 

permuted in 20,000 trials, yielding a null distribution of S scores for each trial; the real S 

score of each subnetwork is indexed on this null distribution.  Significant subnetworks 

are selected which satisfy all three tests with desired p1, p2 and p3 (user-defined), 

according to the three different null distributions of S. 

2.3 Software availability  

The network-based method is implemented as a Cytoscape plugin named 

PinnacleZ and can be downloaded at http://chianti.ucsd.edu/cyto_web/plugins/index.php.  

The current version supports two types of predictive score function S(M) for searching 

subnetworks discriminative of disease phenotypes, mutual information and t-score.  

Source codes can also be reached at 

http://chianti.ucsd.edu/svn/csplugins/trunk/ucsd/slotia/pinnaclez/src/pinnaclez/ for further 

extension.  The PinnacleZ plugin has been proved to be useful in identification of 

susceptibility subnetworks in diseases other than cancer93. 
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Figure 2.1. Identification of protein subnetwork markers and prognosis of disease severity. 

Gene expression profiles from patient samples of known clinical history are overlaid onto a 
protein interaction network. Iterative exploration of all possible protein subnetworks generates a 
set of subnetwork markers whose activity scores across patient samples are statistically 
significantly associated with survival times or discriminative between disease states. The selected 
protein subnetworks provide potential insights into the molecular mechanisms involved in disease 
progression, allowing ones to discover novel disease genes or pathways. The corresponding 
subnetwork activity scores identify distinct activity signatures associated with different risk 
groups that are then used to develop prognostics for newly diagnosed patients. 
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Figure 2.2. Schematic overview of subnetwork identification.  

Protein interaction networks are used to assign sets of genes to discrete subnetworks. Gene 
expression profiles of tissue samples drawn from each type of cancer (i.e., metastatic or non-
metastatic) are transformed into a “subnetwork activity matrix”. For a given subnetwork Mk in the 
interaction network, the activity is a combined z-score derived from the expression of its 
individual genes. After overlaying the expression vector of each gene on its corresponding protein 
in the interaction network, subnetworks with discriminative activities are found via a greedy 
search. Significant subnetworks are selected based on null distributions estimated from permuted 
subnetworks (see Section 2.2). Subnetworks are then used to identify disease genes, and the 
subnetwork activity matrix is used to train a classifier for prognosis of newly diagnosed patients. 
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Figure 2.3. Combined activity captures two genes of heterogeneous expression. 
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3. NETWORK-BASED CLASSIFICATION OF BREAST CANCER 

METASTASIS 

Mapping the pathways that give rise to metastasis is one of the key challenges of 

breast cancer research.  Recently, several large-scale studies have shed light on this 

problem through analysis of gene expression profiles to identify markers correlated with 

metastasis.  Here, we apply a protein-network-based approach that identifies markers not 

as individual genes but as subnetworks extracted from protein interaction databases.  The 

resulting subnetworks provide novel hypotheses for pathways involved in tumor 

progression.  Although genes with known breast cancer mutations are typically not 

detected through analysis of differential expression, they play a central role in the protein 

network by interconnecting many differentially-expressed genes.  We find that the 

subnetwork markers are more reproducible than individual marker genes selected without 

network information, and that they achieve higher accuracy in the classification of 

metastatic versus non-metastatic tumors. 

3.1 Background and significance 

Distant metastases are the main cause of death among breast cancer patients94. 

Clinical and pathological risk factors, such as patient age, tumor size, and steroid receptor 

status, are commonly used to assess the likelihood of metastasis development.  When 

metastasis is likely, aggressive adjuvant therapy can be prescribed which has led to 

significant decreases in breast cancer mortality rates94.  However, for the majority of 

patients with intermediate-risk breast cancer, the traditional factors are not strongly 

predictive23. Accordingly, approximately 70% to 80% of lymph-node-negative patients 
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may undergo adjuvant chemotherapy that is in fact unnecessary15.  Moreover, it is 

believed that many of the current risk factors are likely to be secondary manifestations 

rather than primary mechanisms of disease.  An ongoing challenge is to identify new 

prognostic markers that are more directly related to disease and that can more accurately 

predict the risk of metastasis in individual patients. 

In recent years, an increasing number of disease markers have been identified 

through analysis of genome-wide expression profiles14, 53, 95, 96.  Marker sets are selected 

by scoring each individual gene for how well its expression pattern can discriminate 

between different classes of disease.  In breast cancer, two large-scale expression studies 

by van’t Veer et al.15 and Wang et al.23 each identified a set of ~70 gene markers that 

were 60-70% accurate for prediction of metastasis, rivaling the performance of clinical 

criteria15, 23.  Strangely, however, these marker sets shared only three genes in common, 

with the first set of markers predicting metastasis less successfully when scoring patients 

from the second study, and vice versa60.  One possible explanation for the different 

marker sets is that changes in expression of the relatively few genes governing metastatic 

potential may be subtle compared to those of the downstream effectors which may vary 

considerably from patient to patient17, 21, 97.  

Due to these types of difficulties, many groups have hypothesized that a more 

effective means of marker identification may be to combine gene expression 

measurements over groups of genes that fall within common pathways.  Several 

approaches have been proposed to score known pathways by the coherency of expression 

changes among their member genes26, 27, 29-31, 37, 98.  Known pathways are drawn from 
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sources such as the Gene Ontology57 and KEGG99 databases.  Recently, pathway-based 

analysis has been extended to perform classification of expression profiles and applied to 

discriminate irradiated from non-irradiated yeast cells100.  However, a remaining hurdle 

to pathway-based analysis is that the majority of human genes have not yet been assigned 

to a definitive pathway. 

The recent availability of large protein networks provides one means to at least 

partially address these challenges.  Using protein-protein interaction networks derived 

from literature, the yeast two-hybrid system, or mass spectrometry (reviewed in 

Mendelsohn et al.101), a number of approaches have been demonstrated for extracting 

relevant subnetworks based on coherent expression patterns of their genes41, 42, 102 or on 

conservation of subnetworks across multiple species43.  Each subnetwork is suggestive of 

a distinct functional pathway or complex, yielding many known and novel pathway 

hypotheses in organisms for which sufficient protein interaction data have been 

measured.  Large protein networks have only recently become available for human44-47, 

103, enabling new opportunities for elucidating pathways involved in major diseases and 

pathologies24. 

Here, we pursue a protein-network-based approach for identifying markers of 

metastasis within gene expression profiles, which can be used to identify genetic 

alterations and to predict the likelihood of metastasis in unknown samples.  The markers 

in question are not encoded as individual genes or proteins but as subnetworks of 

interacting proteins within a larger human protein-protein interaction network.  We find 

that the network-based method has several advantages over previous analyses of 
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differential expression.  First, the resulting subnetworks provide models of the molecular 

mechanisms underlying metastasis.  Second, although genes with known breast cancer 

mutations are typically not detected through analysis of differential expression, such as 

P53, KRAS, HRAS, HER-2/neu and PIK3CA, they play a central role in the protein 

network by interconnecting many expression-responsive genes.  Third, the identified 

subnetworks are significantly more reproducible between different breast cancer cohorts 

than individual marker genes selected without network information.  Finally, network-

based classification achieves higher accuracy in prediction, as ascertained by selecting 

markers from one dataset and applying them to a second independent validation dataset.  

3.2 Overview of subnetwork marker identification 

We applied a protein-network-based approach to analyze the expression profiles 

of the two cohorts of breast cancer patients previously reported by van de Vijver et al.104 

and Wang et al.23.  Both sets of expression profiles had been obtained from primary 

breast tumors but hybridized to different microarray platforms (Agilent oligonucleotide 

Hu25K microarrays and Affymetrix HG-U133a GeneChips, respectively).  We restricted 

our analysis to the 8,141 genes present in both datasets.  For 78 patients in van de Vijver 

et al.104 and 106 in Wang et al.23, metastasis had been detected during follow-up visits 

within five years of surgery.  Profiles for these patients were assigned to the class 

“Metastatic,” while profiles for the remaining 217 and 180 patients were labeled “Non-

metastatic.”  To obtain a corresponding human protein-protein interaction network, we 

assembled a pooled data set consisting of 57,235 interactions among 11,203 proteins, 
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integrated from yeast two-hybrid experiments46, 47, predicted interactions via orthology 

and co-citation45, and curation of the literature44, 82, 84. 

To integrate the expression and network data sets, we overlaid the expression 

values of each gene on its corresponding protein in the network and searched for 

subnetworks whose activities across the patients were highly discriminative of metastasis.  

This process involved several scoring and search steps, as illustrated in Figure 3.1.  

Briefly, a candidate subnetwork was first scored to assess its activity in each patient, 

defined by averaging its normalized gene expression values.  This step yielded 295 and 

286 activity scores per subnetwork, corresponding to the numbers of breast cancer 

patients in the two datasets, respectively.  Second, the discriminative potential of a 

candidate subnetwork was computed based on the mutual information between its 

activity score and the Metastatic/Non-metastatic disease status over all patients (see 

below).  Significantly discriminative subnetworks were identified by comparing their 

discriminative potentials to those of random networks. 

Chapter 2 provides the general overview of the method framework but there are 

couple details specific to this breast cancer study.   Given a particular subnetwork M, let a 

represent its vector of activity scores over the tumor samples, and let c represent the 

corresponding vector of class labels (metastatic or non-metastatic).  In this study, we 

define the discriminative score S(M) as MI(a′,c), the mutual information MI between a′, a 

discretized form of a, and c: 

 

S(M) = MI( ′ a ,c) =  p(x, y)log p(x, y)
p(x) p(y)y ∈c

∑
x ∈ ′ a 
∑

 



29 
 

   

where x and y enumerate values of a and c respectively, p(x, y) is the joint probability 

density function (pdf) of a′ and c, and p(x) and p(y) are the marginal pdfs of a′ and c.  To 

derive a′ from a, activity levels are discretized into   91)samples of #(2log =+  equally-

spaced bins105.  A rationale for using MI in cancer classification is to capture potential 

heterogeneity of expression in cancer patients17 i.e., differences not only in the mean but 

in the variance of expression.  For examples of the computation of MI see Figure 3.2.  

The particular gene set maximizing S(M) is regarded as optimal for classification.  When 

assessing the significance of the identified subnetworks, for the random models we use 

gamma-distribution106 to estimate the null distribution of MI in the statistical tests.  

Sgnificant subnetworks are selected which satisfy all three tests with p1<0.05, p2<0.05 

and p3<0.00005, according to the three different null distributions of S. 

When we search the subnetworks in the vast interaction network, at each iteration, 

the search considers addition of a protein from the neighbors of proteins in the current 

subnetwork and within a specified network distance d from the seed.   Given that the 

median distance between any two proteins in the human protein-protein interaction 

network is five (i.e., the network diameter is 10), we set d=2 to provide a sufficient 

number of neighbors while keeping the search local.  The improvement ratio r is chosen 

as 0.05 to avoid over-fitting to the expression data used.  The majority of searches 

terminate due to the constraint on r; increasing the value of d has only marginal effect on 

the results. 



30 
 

   

3.3 Subnetwork markers correspond to the hallmarks of cancer 

A total of 149 and 243 discriminative subnetworks were identified in the van de 

Vijver et al.104 and Wang et al.23 data sets (consisting of 618 and 906 genes, respectively, 

and based on a panel of three separate tests for statistical significance—see Section 2.2).  

A compendium including all of these subnetworks is available online via the CellCircuits 

database107 (www.cellcircuits.org), which provides each subnetwork in both graphical 

(GIF) and machine-readable (SIF) formats.  Each significant subnetwork may be viewed 

as a putative marker for breast cancer metastasis that is not based on a single gene but 

rather on the aggregate behavior of genes connected in a functional network.  This feature 

is a significant departure from conventional expression-alone analysis, which does not 

provide functional insight into the identified markers. 

In all, 47.3% (van de Vijver et al.104) and 65.4% (Wang et al.23) of the 

discriminative subnetworks were enriched for proteins functioning in a common 

Biological Process as annotated by the Gene Ontology database57 (hypergeometric test 

with a False Discovery Rate of 5%).  To test whether this functional enrichment might be 

solely due to network topology, we extracted 1000 random subnetworks of the same size 

as the identified discriminative subnetworks but without regard to the expression profiles.  

In the two sets of random subnetworks, 25.4 ± 0.6% and 26.5 ± 0.1% (mean ± stdev) 

were enriched for proteins with a common Biological Process.  Our higher rate suggests 

that integrating protein networks with cancer expression profiles is able to identify 

proteins coordinately functioning in pathways.  Among the discriminative subnetworks, 

66 identified from van de Vijver et al.104 and 153 identified from Wang et al.23 

http://www.cellcircuits.org/�
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corresponded to signaling of cell growth and survival, cell proliferation and replication, 

apoptosis, cell and tissue remodeling, circulation and coagulation, or metabolism (see 

Figure 3.3 for some example subnetworks; see CellCircuits database for all functional 

annotations).  Together, these processes contribute to the major events that have been 

implicated in the progression of cancer1.  Many extracellular matrix and inflammatory 

proteins related to tumor aggression, such as matrix metallopeptidase 9 (MMP9 in 

Figure 3.3d) and interleukins (Figure 3.3h), were also included in the identified 

subnetworks.  Approximately 88% of the 149 subnetworks identified from van de Vijver 

et al.104 had higher activity levels in metastatic breast tumors than in non-metastatic ones, 

whereas the 243 subnetworks identified from Wang et al.23 were split roughly equally in 

their direction of activity change (124 vs. 119). 

3.4 Subnetwork markers have increased reproducibility across datasets 

Next, we examined the agreement between markers identified from the two breast 

cancer cohorts using our network-based approach.  As shown in Figure 3.4a, the 

subnetwork markers were significantly more reproducible between data sets than were 

individual marker genes selected without network information (12.7% versus 1.3%).  In 

terms of biological function, extracellular signal-regulated kinase 1 (MAPK3) was 

reproducible as a central node in subnetworks identified from both datasets (Figure 3.4c 

versus Figure 3.4d).  Figure 3.4e and Figure 3.4f illustrate two other subnetworks that 

were discriminative in both datasets, although there was less consistency in the 

expression levels of genes comprising these subnetworks.  For instance, PKMYT1 is 

significantly differentially expressed in van de Vijver et al.104 but not Wang et al.23 
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(Figure 3.4e; diamond versus circle), while CD44 is significantly differentially expressed 

in Wang et al.23 but not van de Vijver et al.104 (Figure 3.4f).  However, by aggregating 

the expression ratios of these genes with their network neighbors, the subnetworks 

containing these genes are found to be significant in both datasets.   

One concern is that the increased overlap between subnetwork markers might be 

expected, given that the number of all possible subnetworks is smaller than the number of 

gene sets (selected irrespective of the network).  However, the observed overlap between 

subnetworks was also significantly greater than that achieved among 1000 same-size sets 

of connected subnetworks chosen at random (p<0.002).  Another question is why, even 

using subnetworks, the percentage overlap is not larger.  One reason may be the 

difference in clinical design of the two datasets.  While all of patients in Wang et al.23 

had lymph-node-negative breast cancer, approximately half of the patients in van de 

Vijver et al.104 were lymph-node-positive and underwent adjuvant therapy before 

expression profiling.  Another explanation may be the difference in microarray platforms 

or the incompleteness of the protein-protein interaction network, which covered only 

~40% of the gene expression levels measured in either study.  

3.5 Subnetwork markers increase the classification accuracy of metastasis 

We next tested the predictive performance of subnetwork markers during 

classification of a new expression profile as Metastatic or Non-metastatic.  To use the 

subnetworks for classification, the expression levels of the genes in each subnetwork 

were averaged to compute a subnetwork activity score, in the same way the activity score 

was computed in identifying the subnetwork markers originally (see above).  These 
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activity scores were then used as feature values by a classifier based on logistic 

regression.   

Logistic regression models108 are trained on the subnetwork activity matrix 

(significant subnetworks versus patient samples).  Subnetwork markers are selected using 

the whole first dataset (van de Vijver et al.104) and then tested on the second dataset 

(Wang et al.23; or vice versa).  To measure unbiased classification performance, the 

patient samples in the second dataset are divided into five subsets of equal size: three 

subsets are used as the training set to build the classifier using markers from the first 

dataset; one subset is used as the validation set; and one subset is used as the test set.  The 

p-value of discriminative power to classify training samples (p3) is used to rank 

subnetwork markers, after which the logistic regression model is built by adding markers 

sequentially in increasing order of p-value.  The number of markers used in the classifier 

is optimized by evaluating its Area Under ROC Curve (AUC, see Swets et al.109 for 

details) on the validation set.  The final classification performance is reported as the AUC 

on the test set using the optimized classifier.  Each of the five patient subsets in the 

second dataset is evaluated in turn as the test set, with the other four sets providing 

training and validation.  The averaged AUC values among the five test sets are reported 

as a final classification performance. 

At a fixed sensitivity of 90%, the subnetwork markers achieved 70.1% (van de 

Vijver et al.104) and 72.2% (Wang et al.23) accuracy, measured as the percentage of 

correct classifications using the technique of five-fold cross validation within each 

dataset.  This accuracy compares favorably with those reported in the original studies23, 
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104 (62% and 63%; see Table 3.1).  In this five-fold cross validation, one fifth of the 

samples were designated as “test” data and withheld during classifier training (in which 

the relative weights of each subnetwork feature are determined).  However, the 

subnetwork features themselves were identified using all microarray samples prior to 

classification, which introduces possible circularity into the validation procedure.   

To achieve an unbiased evaluation of subnetwork performance, we further tested 

the subnetwork markers selected from one cohort of breast cancer patients as predictors 

of metastasis on the other cohort.  This same cross-dataset analysis was also run using 

individual marker genes according to the conventional method (controlled for size by 

providing the classifier with the set of 618 or 906 top discriminative genes in van de 

Vijver et al.104 or Wang et al.23, respectively, which is the same number of genes covered 

by the subnetwork markers).  Similar to the procedure for the subnetwork markers, five-

fold cross-validation was performed on one dataset using the genes selected from the 

other dataset. 

At 90% sensitivity, the subnetwork markers from van de Vijver et al.104 achieved 

48.8% accuracy in classifying samples in Wang et al.23; 55.8% accuracy for the 

reciprocal test.  The single-gene markers achieved 45.3% and 41.5% accuracies, 

respectively.  Although all marker sets have decreased performance in predicting 

metastasis in an independent dataset, the accuracies remain significantly higher than 

random guesses (31.2% and 39.7%, respectively).  To show that the better performance 

was not dependent on the chosen classification algorithm, we evaluated the markers by 

Support Vector Machines110 (SVM) which led to the same trends (Figure 3.5). 
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To capture performance over the entire range of sensitivity/specificity values, we 

also analyzed the classifiers using the AUC metric (Area Under ROC Curve).  As shown 

in Figure 3.4b and Figure 3.6, the subnetwork markers significantly outperformed the 

single-gene markers in both datasets.  Subnetwork classification performance was also 

higher than classifiers built on random subnetworks (p = 0.046 and 0.012 against 1000 

sets of same-sized random subnetworks on van de Vijver et al.104 and Wang et al.23, 

respectively); strangely, performance of the conventional classifiers was not (p = 0.124 

and 0.174, respectively). 

Finally, we compared the classification performance of the subnetwork markers 

with markers based on predefined groups of functionally-related genes (Figure 3.4b).  

These included 1,446 sets of functionally-related genes extracted from the Gene 

Ontology Database57 and 522 from the Molecular Signatures Database111 (v1.0).  Neither 

of these functionally-related groupings performed as well as either the subnetwork 

markers or individual genes.  This finding might indicate that some of the functional 

groupings relevant to breast cancer metastasis have not yet been curated in the current 

pathway databases. 

Beyond achieving better performance, the discriminative subnetworks lend 

insight into the biological basis for why samples are classified as metastatic or non-

metastatic.  For instance, a single cell-cycle-related subnetwork was identified from 

Wang et al.23 that could be used to predict the metastatic outcome of ~60% of patients in 

van de Vijver et al.104 (Figure 3.4g).  Thioredoxin (TXN), which was not differentially-

expressed, mediated interconnections among many cell mobility and DNA replication 



36 
 

   

proteins that were differentially expressed in Wang et al.23, forming subnetworks that 

were informative for metastasis in van de Vijver et al.104 (see Figure 3.4h for the TXN 

core motif shared in multiple subnetworks).  Conversely, several subnetworks identified 

from van de Vijver et al.104, such as the RAD54L-related proteasome (Figure 3.4i) and a 

Ras-related subnetwork (RAB1A and RAB11A; Figure 3.4j), were predictive for patients 

in Wang et al.23.   

3.6 Subnetwork markers are informative of non-discriminative disease genes 

Unlike conventional expression clustering or classification methods, network-

based analyses can implicate proteins with low discriminative potential (e.g., those that 

are not differentially-expressed) if such proteins participate in a subnetwork whose 

overall activity is discriminative.  Such proteins can arise within a significant subnetwork 

if they are essential for maintaining its integrity, i.e., they are required to interconnect 

many higher-scoring proteins.  This property is important for discovery of disease-

causing genes, because the phenotypic changes most indicative of breast cancer 

metastasis need not be regulated at the level of expression112. 

Overall, 85.9% and 96.7% of the significant subnetworks contained at least one 

protein that was not significantly differentially expressed in metastasis (p > 0.05 from a 

two-tailed t-test).  Many well-established prognostic markers of breast cancer disease 

outcome, such as HER-2/neu (ERBB2), Myc, and cyclin D1, were not present in gene 

signatures from conventional expression-alone analysis15 but played a central role in the 

discriminative subnetworks by interconnecting many expression-responsive genes (see 

Figures 3.3c and 3.3j for examples and Figure 3.7 for all).  Other examples are the 
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SMAD family and the phosphoinositide-3-kinase catalytic subunit (PIK3CA) (Figures 

3.3e-f, 3.3i and 3.3k): Changes in SMAD phosphorylation have been linked to breast 

cancer metastasis113, and somatic mutations in PIK3CA are associated with constitutive 

up-regulation of kinase activity in ~30% of breast cancers114, 115.  

To evaluate the power of a network-based method to uncover disease genes, we 

assembled a list of 60 breast cancer susceptibility genes that had been reported as such in 

previous literature and were also represented in our expression datasets116-118 (the 

complete list is provided in Table 3.2).  We found that 32 out of 149 discriminative 

subnetworks from van de Vijver et al.104 and 27 out of 243 from Wang et al.23 contained 

at least one known cancer susceptibility gene (7 and 5 subnetworks, respectively, 

contained two or more known susceptibility genes).  Some notable examples are RAD51 

and TP53 shown in Figure 3.3a; ESR1 and TP53 in Figure 3.3b; ERBB2 in Figure 

3.3c; BRCA1 in Figure 3.3f; ESR1, BRCA1 and CYP1A1 in Figure 3.3g; PIK3CA and 

HRAS in Figure 3.3i; GSTT1 in Figure 3.3j and KRAS and PIK3CA in Figure 3.3k. 

We compared these levels of enrichment to a conventional expression-alone 

analysis which did not incorporate information on pathway structure.  As shown in 

Figures 3.8a and 3.8b, subnetworks were significantly enriched with cancer 

susceptibility genes, in contrast to genes identified by a conventional analysis.  Disease 

genes that can only be detected using network information include TP53, KRAS, HRAS, 

ERBB2 and PIK3CA.   

Finally, we also examined the enrichment of the discriminative subnetworks for a 

recently-published list of 122 genes with somatic mutations associated with breast 
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cancer119 (71 of these were represented in the expression datasets we examined).  Genes 

in this list were determined by DNA sequencing to have mutations in at least one of 

eleven breast cancer cell lines, with no cancer cell line having more than six mutant genes 

in common with any other cancer.  A total of 11 mutations mapped to proteins found in 

the discriminative subnetworks (see Figures 3.8c-e for examples).  Although still higher 

than the conventional method in van de Vijver et al.104 (Figure 3.9a), this enrichment 

was not significant by either approach (p = 0.434 for subnetwork markers and 0.914 for 

single-gene markers).  One explanation could be that the cancer cell lines capture a 

different disease state than that found in the population of patients surveyed by 

microarray profiling.  Only two genes (p53 and BRCA1) reported in the sequencing study 

were linked with breast cancer in OMIM118, perhaps because the newly-discovered 

mutations are rare or not genetically transmissible. 
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Figure 3.1. Schematic overview of subnetwork identification.   

Protein-protein interaction networks are used to assign sets of genes to discrete subnetworks. 
Gene expression profiles of tissue samples drawn from each type of cancer (i.e., metastatic or 
non-metastatic) are transformed into a “subnetwork activity matrix”. For a given subnetwork Mk 
in the interaction network, the activity is a combined z-score derived from the expression of its 
individual genes. After overlaying the expression vector of each gene on its corresponding protein 
in the interaction network, subnetworks with discriminative activities are found via a greedy 
search. Significant subnetworks are selected based on null distributions estimated from permuted 
subnetworks (see Methods). Subnetworks are then used to identify disease genes, and the 
subnetwork activity matrix is also used to train a classifier.  
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Figure 3.2. Mutual Information between activities and class labels. 
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Figure 3.3. Subnetwork enriched for the hallmarks of cancer. 

Example discriminative subnetworks from van de Vijver et al.104 are shown in (a-e), while those 
from Wang et al.23 are shown in (f-k). Nodes and links represent human proteins and protein 
interactions, respectively. The color of each node scales with the change in expression of the 
corresponding gene for metastatic versus non-metastatic cancer. The shape of each node indicates 
whether its gene is significantly differentially-expressed (diamond; p < 0.05 from a two-tailed t-
test) or not (circle). The predominant cellular functions are indicated next to each module. Known 
breast cancer susceptibility genes are marked by a blue asterisk.  
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Figure 3.4. Marker reproducibility and metastasis prediction performance.  

(a) Agreement in markers selected from the van de Vijver et al.104 data set versus those selected 
from Wang et al.23. Blue bars chart the magnitude of overlap on the left axis; the red line charts 
the hypergeometric p-values of overlap on the right axis. The first “single-gene” analysis was 
performed by using the same number of top discriminative genes as the number of genes covered 
by subnetwork markers. The second “single-gene” analysis was performed by using the same 
number of top discriminative genes as those in the gene signatures published in van de Vijver et 
al.104 and Wang et al.23. (b) Area Under Curve (AUC) classification performance of subnetworks, 
individual genes, or modules from GO or MSigDB. The blue line charts the performance of 
markers selected based on the Wang et al.23 dataset and tested on the van de Vijver et al.104 
dataset; the pink line represents the reciprocal test. The performance of the 1000 random 
subnetworks is denoted by its mean±stdev. (c-d) Erk1 (MAPK3) subnetworks in van de Vijver et 
al.104 and Wang et al.23 (e-f) Example network motifs shared between subnetworks selected from 
the two cohorts. The left-hand side motif is from van de Vijver et al.104 and the right-hand side is 
from Wang et al.23 (g-h) Examples of highly predictive subnetwork markers from Wang et al.23 
(i-j) Examples of highly predictive subnetwork markers from van de Vijver et al.104  
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Figure 3.5. Classification performance by using SVM.  

Exp. 1 shows the averaged accuracy of markers selected based on the Wang et al.23 dataset and 
tested on the van de Vijver et al.104 dataset in a 5-fold CV; Exp. 2 represents the reciprocal test 
(mean±stderr). LIBSVM was trained in the similar way as the logistic regression classifiers in 
Figure 3.4b. The RGF kernel was used with the default parameter setting except the choice of the 
cost parameter for generalization. The cost parameter was tuned to optimize the accuracy on the 
validation set. 
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Figure 3.6. Sensitivity and specificity of classifiers using subnetwork markers or single-gene 
markers in Figure 3.4b.   

The corresponding specificity at fixed sensitivity of classifiers using markers based on the Wang et 
al.23 dataset and tested on the van de Vijver et al.104 dataset (a); (b) represents the reciprocal test. 
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Figure 3.7. Subnetwork markers containing HER-2/neu (ERBB2), Myc, or cyclin D1 
(CCND1). 

Nodes and links represent human proteins and protein interactions, respectively. The colour of 
each node scales with the change in expression of the corresponding gene for metastatic versus 
non-metastatic cancer. The shape of each node indicates whether its gene is differentially-
expressed: a diamond is significantly differentially-expressed (p < 0.05 from a two-tailed t-test) 
while a circle is not. The predominant cellular functions are indicated next to each module. 
Known breast cancer susceptibility genes are marked by a blue asterisk. 
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Figure 3.8. Detection of 60 known disease genes in breast cancer. 

The enrichment of disease genes is shown for subnetworks or individual genes selected from van 
de Vijver et al.104 (a) or Wang et al.23 (b). Blue bars chart the percentage of disease genes among 
all genes covered in the markers on the left axis; the red line charts the hypergeometric p-values 
of enrichment on the right axis. Numbers above the bars are the recovery rates of the known 
susceptibility genes in each marker set. (c-e) Example discriminative subnetworks containing 
genes with breast cancer mutations listed in Sjoblom et al.45 Mutation genes are marked by a plus 
sign. 
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Figure 3.9. Detection of 71 genes with somatic mutations associated with breast cancer in 
Sjoblom et al.119.  

The enrichment of disease genes is shown for subnetworks selected from van de Vijver et al.104 (a) 
or Wang et al.23 (b). Blue bars chart the percentage of disease genes on the left axis; the red line 
charts the hypergeometric p-values of enrichment on the right axis. 
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Table 3.1. Classification accuracies of the 70-gene selected by van’t Veer et al. and 76-gene 
selected by Wang et al. in their original studies. 

Extracted from Table 2 in van de Vijver et al.104; patients who were part of the previous study 
(van’t Veer et al.15) for selecting the 70 genes were excluded.  

 Gold standards 

Metastatic Non metastatic 

Prediction  Metastatic 39 (TP) 65 (FP) 

Non metastatic 3 (FN) 73 (TN) 

Total 42 138 

Sensitivity = (TP/TP+FN) = 93% 

Specificity = (TN/TN+FP) = 53% 

Accuracy = (TP+TN) / (TP+FP+FN+TN) = 62 % 

 

Extracted from Table5 in Wang et al.23 

 Gold standards 

Metastatic Non metastatic 

Prediction  Metastatic 52 (TP) 60 (FP) 

Non metastatic 4 (FN) 55 (TN) 

Total 56 115 

Sensitivity = 93% 

Specificity = 48% 

Accuracy = 63 % 
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Table 3.2. List of 60 breast cancer susceptibility genes. 

Gene Entrez Locus Recorded in OMIM 

BRCA1 672 17q21 Y 

BRCA2 675 13q12.3 Y 

TP53 7157 17p13.1 Y 

ESR1 2099 6q25.1 Y 

PPM1D 8493 17q22-q23 Y 

PIK3CA 5290 3q26.3 Y 

SLC22A18(BWSCR1A) 5002 11p15.5 Y 

RB1CC1 9821 8q11 Y 

AR 367 Xq11-q12 Y 

RAD54L 8438 1p32 Y 

CDH1 999 16q22.1 Y 

KRAS2 3845 12p12.1 Y 

PHB 5245 17q21 Y 

ATM  472 11q22-q23  

PTEN 5728 10q23.3  

STK11 6794 19p13.3  

HRAS 3265 11p15.5  

NAT1 9 8p23.1-p21.3  

NAT2 10 8p22  

GSTM1 2944 1p13.3  

GSTP1 2950 11q13  

GSTT1 2952 22q11.23  

CYP1A1 1543 15q22-q24  

CYP1B1 1545 2p21  

CYP17A1 1586 10q24.3  

CYP19A1 1588 15q21.1  

PGR 5241 11q22-q23  

COMT 1312 22q11.21  

UGT1A1 54658 2q37  

TNF 7124 6q21.3  

HFE 3077 6q21.3  

TFRC 7037 3q29  
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Table 3.2. Continued 

VDR 7421 12q13.11  

APC 324 5q21-q22  

APOE 348 19q13.2  

CYP2E1 1571 10q24.3  

HSD17B1(EDH17B2) 3292 17q11-q21  

ERBB2(HER2) 2064 17q21.1  

CHEK2 11200 22q12.1  

XRCC1 7515 19q13.2  

XRCC3 7517 14q32.3  

RAD51 5888 15q15.1  

LIG4 3981 13q33-q34  

SOD2 6648 6q25.3  

PPARG 5468 3q25  

ITGB3 3690 17q21.32  

ITGA2 3673 5q23-q31  

MMP3 4314 11q22.3  

TGFB1 7040 19q13.1  

HSPA1L 3305 6q21.3  

HSPA1B 3304 6q21.3  

DPYD(DHP) 1806 1p22  

TYMS(TS) 7298 18p11.32  

CYP2C8 1558 10q23.33  

BARD1 580 2q34-q35  

NCOA3 8202 20q12  

LOH11CR2A(BCSC-1) 4013 11q23  

NCOA6(ASC2) 23054 20q11  

TSG101 7251 11p15.2-p15.1  

TK1 7083 17q23.2-q25.3  



 
 

51 

4. NETWORK-BASED ANALYSIS OF CHRONIC LYMPHOCYTIC 

LEUKEMIA IDENTIFIES PATHWAYS THAT CONTRIBUTE TO 

DISEASE EVOLUTION 

The clinical course of chronic lymphocytic leukemia (CLL) is heterogeneous.  

Gene expression profiling of CLL cells has the potential to discriminate subgroups of 

patients at different risks for disease progression and immanent therapy.  Here, we 

develop a new system for stratifying patients at different risk levels, based on analysis of 

CLL gene expression profiles in the context of defined protein interaction networks.  We 

find that gene expression profiles of protein interaction networks can discriminate CLL 

patients who are at different risks for requiring treatment after tissue collection.  We 

identify 38 networks that can stratify patients more accurately than established markers.  

In addition to their predictive power, the networks represent an array of disease pathways 

and suggest novel molecular mechanisms governing CLL progression.  We also find 

increased similarity in expression of these networks over time, regardless of the initial 

risk category at diagnosis.  These results suggest that degenerate pathways may converge 

into common pathways that govern disease progression.  Presently, decisions about the 

need for therapy are based on the time of diagnosis— our results, based on the time of 

tissue sampling, have implications for understanding cancer evolution and for the 

development of novel treatment strategies for patients with CLL. 

4.1 Background and significance 

Chronic lymphocytic leukemia (CLL), the most common leukemia in the western 

world, is characterized by accumulation of monoclonal B cells in the blood, marrow, and 



52 
 

   

secondary lymphoid tissues.  The clinical course of patients with CLL is highly variable.  

Some patients are free of symptoms for many years, during which time treatment is 

typically not necessary.  For others the disease is relatively aggressive and requires 

therapy soon after diagnosis.  Because standard therapies are associated with potential 

morbidity and are not considered curative, current recommendations are to withhold 

treatment until the patient manifests disease-related complications or clear evidence of 

disease progression 120.   

Several prognostic markers have been defined that can identify patients with poor 

prognosis at early stages of the disease.  For example, patients segregate into two major 

subgroups based on whether their leukemia cells express immunoglobulin heavy chain 

variable region (IGHV) genes that have incurred somatic mutations121.  Patients with 

CLL cells that express IGHV lacking mutations generally have a more aggressive clinical 

course than patients with CLL cells that express IGHV that have incurred somatic 

mutations122, 123.  Similarly, patients that have CLL B cells that express high-levels of 

CD38 or the zeta-associated protein of 70 kD (ZAP-70) progress on average more rapidly 

than those with CLL cells that have low or undetectable levels of these proteins122, 124-129.  

For many cancers, an increasing number of prognostic markers have been 

identified through analysis of genome-wide expression profiles14, 53, 95, 96, 130-135.  Marker 

sets are selected by scoring each individual gene for how well its expression pattern 

discriminates between different classes of disease.  Several microarray studies have 

reported sets of genes that are useful as surrogate markers for known prognostic factors in 

CLL, such as the IGHV mutational status 132, 136-141.  Other studies have instead correlated 
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gene expression levels directly with median time of patient survival or progression-free 

survival142, 143. 

Despite their promise, expression-based biomarkers continue to face serious 

challenges due to their variable accuracy for predicting patient outcomes22.  In addition, 

the marker sets obtained by different research groups often share few genes in common.  

Two landmark studies, Rosenwald et al. (2001) and Klein et al. (2001), each identified 

approximately 100 genes that were expressed differentially by CLL cells with mutated 

versus unmutated IGHV.  However, only four marker genes were identified in common 

between studies.  One reason for this discrepancy may be genetic heterogeneity across 

patients, referring to the fact that different genes may be dysregulated in different patients 

2-4.  Another reason is that changes in expression of the relatively few genes governing 

disease progression may be subtle compared to those of the downstream effectors, which 

can vary considerably from patient to patient 17, 60, 97. 

As an alternative approach for identifying disease markers, several groups have 

integrated gene expression measurements over sets of genes that encode proteins known 

to interact within protein networks or pathway databases28-33, 37, 98.  Such prognostic 

profiles are not listings of individual genes or proteins, but the aggregate expression of 

subnetworks of genes or proteins within a vast interaction network.  These subnetworks 

can identify gene expression differences between different populations of patients that 

account for their diverse clinical behavior and— unlike conventional analysis— the roles 

of these genes in disease are interpretable in the context of networks and pathways. 
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Here, we pursue a network-based analysis of gene expression profiles to 

discriminate between groups of patients with disparate risks for CLL progression.  The 

clinical characterization of patients, blood sample preparation, and microarray processing 

all follow the unified protocol implemented by the Microarray Innovations in LEukemia 

(MILE) program144-146, which has proposed standards for microarray-based assays in the 

diagnosis and sub-classification of leukemia.  Unlike conventional prognosis using 

known factors or gene markers, we make no assumptions about the time of oncogenesis.  

Rather, the data lead us to propose an alternative clinical variable to assess patients’ risk 

of treatment need, based on the treatment-free survival from the date of tumor sampling 

rather than from the date of diagnosis.  From an initial cohort of 130 patients, we identify 

38 prognostic subnetworks that can reliably predict the relative risk for disease 

progression from the time of sample collection.  The prognosis power of these 

subnetworks is validated on a second cohort of patients in the MILE study and on a 

published data from CLL patients outside the MILE program.  From our own serial 

samples as well as a published longitudinal study of CLL patients, we find evidence that 

the subnetwork signatures may evolve over time in the low-risk patient population, 

converging on a high-risk profile just prior to onset of severe disease.   

4.2 Gene expression profiling of peripheral blood from CLL patients 

We profiled genome-wide mRNA expression of leukemia-cell samples of 130 

CLL patients registered at the Moores Cancer Center (La Jolla, CA, USA) on Affymetrix 

HG-U133 plus 2 GeneChips (referred to as the UCSD cohort).  Lymphocytes were 

purified from the peripheral blood samples of patients that had not received treatment on 
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the dates of blood withdrawn, as per the MILE protocol145.  Expression data were 

gathered from samples found to have a CLL cell population with greater than 90% 

CD5+CD19+, as assessed via flow cytometry.  Total RNA was isolated and hybridized to 

Affymetrix HG-U133+2 GeneChips.  An independent cohort of 17 patients was selected 

from 2 European sites in the MILE study (Rome and Munich) and their gene expression 

profiles were obtained using the same protocol as the UCSD cohort.  Of the total of 

20,606 genes represented on the microarray, a total of 15,348 had expression levels that 

were reliably detected in at least 8 patients (5% of the cohort). 

4.3 IGHV mutation status cannot reliably predict treatment-free survival from 

sample collection  

As in most CLL studies, the time from diagnosis (DX) to sample collection (SC) 

(abbreviated as DX→SC) varied significantly among the 130 patients in the UCSD 

cohort (Figure 4.1A).  Since leukemia samples were obtained at various times after 

diagnosis, but prior to therapy, only about 40% of the cohort was sampled within one 

year of diagnosis and a large proportion (16.9%) of the patients had samples collected 

five years or more after diagnosis.  As expected, patients with leukocytes that used 

unmutated IGHV had a shorter median time from diagnosis (DX) to therapy (TX) 

(abbreviated as DX→TX)  than did patients with leukocytes that used mutated IGHV (p-

value = 10-5 in Figure 4.2).  However, the IGHV mutation status was not predictive of 

the time from sample collection to therapy (abbreviated as SC→TX) for patients whose 

SC was more than a year after DX (p-value = 0.16 in Figure 4.1B), reflecting perhaps the 

fact that IGHV mutation status is a static marker not evolving over time.  Therefore, even 
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patients who have CLL cells that use mutated IGHV ultimately may require therapy even 

though they continue to have the so-called “good” prognostic feature. 

4.4 Transcriptional activity converges between patients of different IGHV status as 

disease advances 

Next, we examined the relationship between sample collection time and the 

expression profiling data. Given the large variation in the time length of DX→TX across 

the patient population, we normalized every patient’s sample collection time relative to 

the DX→TX interval and designated this as the relative sampling time (RST, Figure 

4.1C).  Some patients were sampled at a relatively early disease stage (RST <20%; green 

bars in Figure 4.1C) whereas others were sampled at a relatively disease stage (RST 

≥80%; red bars in Figure 4.1C).  We then compared the expression profiles of CLL cells 

with unmutated versus mutated IGHV and that were collected at similar RST.  The 

comparison showed that the level of differential gene expression between the two 

subgroups became lower as RST approached TX (Figure 4.1D), suggesting that 

transcriptional differences between CLL cells of different IGHV mutation status 

converge with disease progression.  Interestingly, the expression levels of only 279 genes 

differed significantly between early versus late RST for CLL cells that used unmutated 

IGHV, but 1103 genes differed in expression levels between early versus late RST for 

CLL cells that used mutated IGHV (FDR ≤20% from a two-tailed t-test; upper inset in 

Figure 4.1C).   
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4.5 Previous microarray studies yield gene markers of equivalent or less predictive 

power as IGHV status 

We next sought to evaluate whether sets of marker genes proposed by previous 

studies are prognostic of SC→TX.  On the UCSD cohort, five of ten CLL marker sets  

published previously (see Section 4.1) were able to separate the patients into two risk 

groups with an acceptable difference on their median times of DX→TX ( p-value ≤ 0.01 

in five-fold cross validation in Figure 4.1E, see Section 4.10).  However, none of them 

reached the same statistical significance as did the IGHV mutation status.  Moreover, 

only two gene sets, both of which were from studies that took SC into consideration, 

showed prognostic power on SC→TX (the right-most two sets of bars in Figure 4.1E). 

4.6 Protein networks stratify CLL patients into different risk groups 

Figure 4.3 shows the overall process of network-based disease prognostics, which 

involves identification of informative subnetworks (Figure 4.3A), clustering of patients 

into subgroups on the basis of their subnetwork activities (Figure 4.3B), and Kaplan–

Meier survival analysis to assign low-risk and high-risk labels to each subgroup (Figure 

4.3C). To obtain a human protein interaction network, we assembled a pooled data set 

comprising 45,526 experimentally-validated interactions among 9,800 human proteins, 

integrated from yeast two-hybrid experiments46, 47 46, 47 and curation of the literature for 

both protein-protein and protein-DNA binding 44, 82, 84-86, 147.  Of the total of 15,348 genes 

reliably detected in CLL, a total of 7,589 are covered in the protein network.  We 

overlaid the expression values of each gene on its corresponding protein in the network, 
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allowing us to consider subnetworks of connected genes whose expression profiles could 

be aggregated into subnetwork “activity” scores (see Section 4.9).   

Using this framework, we searched for subnetworks whose activities across the 

130 patients in the UCSD cohort were associated with the treatment-free survival 

SC→TX.  A total of 38 prognostic subnetworks were identified from this cohort covering 

a total of 230 genes and based on a panel of three separate tests for statistical significance 

(see Section 2.2; see Figure 4.4 for example subnetworks).  The prognostic subnetworks 

included proteins involved in WNT signaling148 (Figure 4.4A), resistance to apoptosis149 

(Figure 4.4B) or cell metabolism150, 151 (Figure 4.4Q), all of which are known factors in 

CLL pathogenesis.  Clustering of the patients by subnetwork activity resulted in one 

cluster of 54 patients for which the median treatment-free survival was low and a second 

cluster of 76 patients for which the median SC→TX was substantially higher (Figure 

4.5A).   

We found that the low- and high- risk groups had a strong association with IGHV 

status: Among all low-risk patients, ~63% had CLL cells that used mutated IGHV (with 

less than 98% germ-line sequence homology), versus ~40% for high-risk patients 

(association p-value = 0.008 using a Fisher’s exact test, Figure 4.5C).  On the other hand, 

over one-third of the patients in each group were categorized differently by the 

subnetwork profiles than by their IGHV mutation status.  Interestingly, we found that the 

low-risk group could be further divided into two clear subgroups, designated low-risk I 

and II, with very different subnetwork activity profiles (Figure 4.5A).  The low-risk I 

patients, whose subnetwork profiles were almost perfectly anti-correlated with those of 
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the high-risk patients, were also associated with longest treatment-free survival SC→TX 

(Figure 4.5B). 

Twenty-two of the 38 significant subnetworks had increased activity in the 

defined high-risk group (referred to as pro-onconets; see Figures 4.4A-O for examples) 

whereas the other 16 had decreased activity (referred to as anti-onconets; see Figures 

4.4P-T for examples).  Among the protein functions significantly enriched within the 38 

subnetworks, the majority related to cell metabolism (45.4%), cell survival, proliferation 

or death (36.7%), and cell signal transduction (13.2%, Figure 4.5D).  Several key 

signaling proteins implicated in CLL literature, such as MAPK/ERK, TGFβ, CREB and 

WNT, were involved in regulation of multiple subnetworks (Figure 4.5E; p-value ≤ 

5×10-4 from NCBI DAVID analysis).   

4.7 Predicting the timing of therapy from the date of sample collection 

We next explored the power of the subnetwork markers to make predictions for 

individual patients.  For this purpose, a patient’s average gene expression level was 

calculated for each of the 38 subnetworks; the list of 38 average levels was designated as 

the patient’s subnetwork profile.  This profile was predicted as “high-risk” if it correlated 

with the average subnetwork profiles of the high-risk group better than those of the low-

risk group.  Conversely, the patient subnetwork profile was predicted as “low-risk” if it 

better correlated with the average subnetwork profiles of the low-risk group (see Section 

4.10). 

Cross validation within the UCSD cohort showed good predictive performance 

(p-value = 3.5×10-6; red lines in Figure 4.6A).  We used a five-fold cross validation 
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procedure in which four-fifths of patients were randomly selected for subnetwork 

identification, and the prediction accuracy of these subnetworks was tested on the 

remaining one-fifth of patients (see Section 4.10).  A similar cross validation procedure 

was applied using individual gene expression markers instead of subnetworks.  Although 

these gene-based markers also held prognostic value (p-value = 5.24×10-4; green lines in 

Figure 4.6A), they were significantly less robust than the network-based approach at 

predicting risk for disease progression.  Both prognostics compared favorably with either 

the IGHV mutation status (p-value = 0.01) or those reported in previous microarray 

studies (Figure 4.1E). 

Although cross validation is a useful starting point, it can inflate estimates of 

accuracy since both the training and testing phases are performed on the same cohort of 

patients.  Therefore, we also examined the data collected from the independent cohort of 

17 CLL patients evaluated at other sites participating in the MILE study in Europe 

(referred as the European cohort).  The activity signatures of the 38 subnetworks 

identified from the UCSD cohort were able to deliver a robust prognosis on the European 

cohort (p-value = 0.027, Figure 4.6B).  However, the gene expression markers failed to 

correctly identify European patients who were at high risk (p-value = 0.714, Figure 

4.6B).  Use of the IGHV mutation status also failed to segregate these patients (p-value = 

0.681 in Figure 4.7).  Strikingly, these markers actually mis-segregated the high risk 

patients into a subgroup that had a longer treatment-free survival than that of the other 

patients (Figures 4.6B and 4.7).  Furthermore, none of the ten previously-published gene 

marker sets could stratify patients in this European cohort into subgroups that differed 

significantly in their intervals of SC→TX. 
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As yet another independent test of prediction accuracy, we examined an external 

data set drawn from a previous study outside of the MILE program152.  The subnetwork 

signature was validated to stratify patients on the Friedman et al.152 independent patient 

cohort (p-value = 0.035 in Figure 4.6C).  However, neither the individual gene 

expression markers nor the IGHV mutation status were indicative of SC→TX of this 

patient cohort. 

4.8 Convergence of dynamic cll subnetwork transcriptome with disease progression 

Thus far, patients were sampled at only one time point.  To investigate the 

correlation between dynamic subnetwork activities and CLL progression, we sought to 

examine the overall activity changes of all the 38 subnetworks in a previous genome-

wide longitudinal expression study in CLL142 (Figure 4.8A).  In this study, 13 patients 

were profiled at each of two time points, one obtained at diagnosis and the other just prior 

to therapy.  On average, more than half of the pro-onconets increased in activity between 

the time of diagnosis and the time of therapy.  Conversely, the anti-onconets decreased in 

activity over the course of the disease.  Remarkably, among the 22 pro-onconets, eleven 

showed significant activity induction prior to therapy (p-value ≤ 0.05 from a paired t-test 

in Figures 4.4A, 4.4C-D, 4.4G, 4.4I-L, 4.4N and 4.4O); three of the 16 anti-onconets 

were significantly repressed prior to treatment (Figures 4.4R-T). 

Using our own longitudinal samples, we next measured expression changes of the 

genes implicated in those significant onconets indicative of the disease course of the 

patients in Fernandez et al.142 (Figure 4.8B, see Section 4.11).  Leukemia cells of 

fourteen UCSD patients were sampled serially, at two different time points after DX but 
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prior to TX, and probed using RT-PCR against a panel of 22 genes.  Genes were selected 

based on their involvement in the predictive subnetworks (pro- or anti-onconets) related 

to cell cycle (Figures 4.4C and D), MYC regulation (Figures 4.4E-F and 4.4N), G-

protein signaling (Figures 4.4I and 4.4L), macromolecule metabolism (Figures 4.4G-H 

and 4.4S) or apoptosis (Figures 4.4R and 4.4T). 

We found that genes involved in pro-onconets increased expression over time in 

most patients (Figure 4.8B).  Conversely, genes in anti-onconets decreased expression 

over time in approximately half of the patients but, strikingly, increased expression in 

almost as many others.  Interestingly, the expression pattern of one patient (Patient 14 in 

Figure 4.8B) was completely opposite those of the others. 

To determine whether the activity changes inferred from transcription have a 

functional effect on CLL progression, we selected a MYC-associated subnetwork 

involved in cell cycle (Figure 4.4E), as an example, to examine the serial protein 

expression in sixteen CLL patients (thirteen patients are the same as in Figure 4.8B; see 

Section 4.12 for flow cytometry in Figure 4.9A and immuno-blotting).  Most patients 

had elevated protein expression level on MYC (Figure 4.9B) and its interacting partner 

CSNK2A1 over time (Figure 4.9C); TNFRSF7, another member gene in the same 

subnetwork, also showed higher probability of increasing protein expression (2:1 patient 

ratio of increased versus decreased expression in the middle panel of Figure 4.9B).  Five 

of the sixteen patients had both MYC and TNFRSF7 proteins expressed at higher level in 

the later-stage samples (Patients 1-3, 6 and 15 in Figure 4.9B).  Another metabolism-
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related subnetwork gene MCP showed a slight but persistent elevation in protein 

expression as disease progressed (Figure 4.9B). 

4.9 Scoring, searching, and pruning subnetworks 

A subnetwork is defined as a gene set that induces a single connected component 

in the protein interaction network.  Given a particular subnetwork M, let a represent its 

vector of activity scores over the patients, and let T represent the corresponding vector of 

treatment-free survival (SC→TX).  To derive a, expression values gij are normalized to z-

transformed scores zij which for each gene i have μ=0 and σ=1 over all samples j (Figure 

2.2). The individual zij of each member gene in the subnetwork are averaged into a 

combined z-score, which is designated the activity aj.  The predictive score S(M) is an 

estimation of the statistical significance of a as the sole predictor variable on a patient’s 

treatment need in a Cox proportional hazard model on T: 

 

H(t)
H0(t)

= eka

, where H(t) is the hazard function at time t and H0(t) is the 

baseline hazard for an individual when the value of a equals zero.  S(M) is defined as –log 

p-value of a χ2 test on the above model of the hazard over a null model of only the 

baseline hazard.  Given the predictive score function S, a greedy search is performed to 

identify subnetworks within the protein interaction network for which the scores are 

locally maximal.  Candidate subnetworks are seeded with a single protein and iteratively 

expanded, with every protein serving as a seed in a separate search.  At each iteration, the 

search considers addition of a protein from the neighbors of proteins in the current 

subnetwork.  The addition that yields the maximal score increase is adopted.  After each 
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addition, the search considers deletion of each protein from the current subnetwork 

(except those proteins essential to subnetwork connectivity), and deletions that yield 

higher score are accepted.  The search ends when no addition or deletion increases the 

score over a specified improvement rate r.  The parameter r is chosen as 0.1 to avoid 

over-fitting to the expression data used.  To assess the significance of the identified 

subnetworks, three tests of significance are performed.  In this study, significant 

subnetworks are selected that satisfy all three tests with p1<0.05, p2<0.05, and p3<5×10-

5.  See Section 2.2 for details on estimation of a null distribution of S by permuting the 

network and expression data as well as mergence of overlapped subnetworks. 

4.10 Prognosis evaluation 

Given a set of subnetwork markers, patient samples in a training set are clustered 

into two subgroups by a 2-means clustering method based on similarity in activity.  The 

two clusters of the training samples are labeled as low- or high- risk groups according to 

their treatment-free survival curves in a Kaplan–Meier analysis.  A nearest shrunken 

centroid classifier153 is then trained on the subnetwork activity matrix (significant 

subnetworks versus patient samples) with the risk labels learned from the clustering 

analysis.  For a new patient of unknown prognosis, the expression profile is first 

transformed into a subnetwork activity profile in the same way as for the training 

samples.  The nearest shrunken centroid classifier assigns the new activity profile to one 

of the two risk groups whose shrunken mean activity of subnetworks over training 

samples is more similar to the activity of the new sample.  For gene markers, similar risk 
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stratification and outcome prediction procedures are performed on the original gene 

expression matrix. 

Subnetwork and gene markers were evaluated using two approaches: (1) cross 

validation within the UCSD cohort and (2) an independent validation using the UCSD 

cohort as training data and the European cohort and the cohort in Friedman et al152 as test 

data.  In the cross validation, one-fifth of the UCSD samples were designated as ‘test' 

data and withheld during risk group assignment and classifier training.  Subnetwork 

markers and top gene markers were identified using only the training data.  Each of the 

five patient subsets in the UCSD cohort was evaluated in turn as the test set, while 

training on the other four sets.  The risk-group predictions among the five test sets were 

pooled to plot two treatment-free survival curves in a Kaplan–Meier analysis.  In the 

second validation approach, subnetwork markers or top gene markers were selected using 

the whole UCSD data set.  Patients in the European cohort or the cohort in Friedman et 

al152 were assigned to one of the two risk groups by the classifier learned from the UCSD 

cohort.  In both validation schemes, a log-rank test was used to estimate the significance 

level of the difference between the survival curves in a Kaplan–Meier analysis. 

4.11 Real time PCR for serial gene expression  

Total RNA was prepared from frozen PBMCs using Trizol (Invitrogen).  Two 

micrograms of RNA was reversely transcribed using SuperScript III First-Strand 

Synthesis System (Invitrogen).  Expression levels of each gene were measured in 

triplicates by iQ5 Real-Time PCR Detection System (Bio-Rad) using SYBR Green 

(Invitrogen) with the primers listed in the Table 4.1.  Fold change of a gene in two 
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subsequent samples of the same patient was calculated using the Pfaffl method 154 where 

β-actin was used as the reference gene to normalize the expression levels across different 

samples. 

4.12 Protein expression analysis using flow cytometry and immuno-blotting 

Single-cell suspensions were first stained for surface expression with PE-labeled 

CD5 and FITC-labeled CD19 antibodies (Pharmingen) to gate on leukemia B-cells.  For 

MYC expression, cells were then underwent fixation and permeabilization using the 

Fix&Perm kit (Caltag) and stained with APC-labeled monoclonal human c-MYC 

antibody (Cell Signaling).  For TNFRSF7 and MCP expression, cells were stained with 

PE-labeled CD27 (Abnova) and APC-labeled CD46 (Abnova) monoclonal antibodies, 

respectively.  Flow cytometry analyses were performed using FACScalibur (Becton-

Dickinson) with FLOWJO software (Tree Star).  The difference in median fluorescence 

intensity (MFI) between real and isotope stains (referred as δMFI) was used to quantify 

the protein expression (Figure 4.9A).  Immuno-blotting was performed using antibodies 

specific for CSNK2A1 (Abnova) and β-actin (Santa Cruz) on lysates from primary CLL 

cells. 

4.13 Discussion 

In this study, we find that the resulting subnetworks provide models charting the 

molecular mechanisms underlying CLL disease progression.  For example, MAPK/ERK 

signaling cascade has 20 member genes found in our subnetworks.  Activation of ERK 

functions in cellular proliferation and differentiation155, 156.  Aberrations in the 

MAPK/ERK cascade have been implicated in a high proportion of human cancers157, 158 
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and its deregulation leads to the generation of mitogenic signals in essentially all 

hematologic malignancies159, 160.  The observations of the five MYC-participating 

subnetworks and the 14 CREB target genes included in the subnetworks also suggest the 

impact of MAPK/ERK signaling on CLL disease progression, given that MAPK can 

phosporylate MYC and CREB.  Another prominent signaling protein is TGFβ, which 

induces apoptosis in numerous cell types161.  It acts as an antiproliferative factor at early 

stages of oncogenesis; however later it enhances tumor progression.  The participation of 

TGFβ in several pro-onconets implies its promoting role in tumor progression, consistent 

with the observation that in vitro addition of TGFβ does not increase spontaneous 

apoptosis of B cells in CLL patients162, 163, but rather serves as an endogenous growth 

inhibitor164.  Same number of pro-onconets and anti-onconets in our subnetwork 

signature include genes involved in TGFβ signaling, supporting the potential dual role of 

TGFβ in CLL development and progression. 

Although genes with known cancer mutations, such as MYC and TGFβ, are 

typically not detected through analysis of differential expression, they play a central role 

in the protein network by interconnecting many expression-responsive genes.  We 

observed that many known cancer genes were connected with each other inside a 

subnetwork.  In all, ~27% of the genes in CLL subnetworks (62 of 230 genes total) were 

of known cancer contribution (hypergeometric p = 2×10-15 in Figure 4.10, see 

SUPPLEMENTAL METHODS).  This fraction was very high compared to 

conventional expression analysis, for which we found 16.5% of genes (38 of top 230 

genes) were of known cancer contribution.  This higher enrichment was not due solely to 
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the bias of using a literature-curated network (compare to random networks in Figure 

4.10).  As one explanation for why network analysis performs better, we found that the 

majority of the cancer genes identified by network analysis (49 of 62) did not exhibit an 

altered expression pattern as disease progressed (p > 0.01 from an uni-variate Cox hazard 

model on SC→TX).  Rather, they were included in the subnetwork s because of their 

connectivity—i.e., they were required to interconnect many expression-responsive genes 

(Figure 4.4). 

The inferior reproducibility of gene-expression based prognosis, not only did the 

top candidate genes analyzed in this study but also the gene sets published previously, 

may provide evidences to a long-discussed hypothesis that CLL is caused by complex 

interactions among different pathways and factors165.  The concordant changes of the 

subnetworks in two series of longitudinal patient samples, one from our site and one from 

a previous study in Spain142, demonstrate the utilization of subnetwork markers in 

studying molecular pathways involved in cancer progression.  

Many of the prognosis indicators used for segregating CLL patients into different 

risk categories for disease progression define subgroups that differ in the median times 

from diagnosis to initial therapy.  However, many patients are asymptomatic at diagnosis, 

but are detected through incidental laboratory findings.  Some patients who receive 

infrequent medical evaluations may have undetected CLL for years prior to diagnosis, 

potentially shortening the interval between diagnosis and initial therapy.  The established 

clinical staging systems are most useful in predicting outcomes in patients with advanced 

disease166.  Patients who are asymptomatic at diagnosis have the greatest requirement for 
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biomarkers that can predict whether the disease will be indolent or aggressive.  Taking 

such uncertainties and needs into consideration, we sought to identify prognostic markers 

that reliably could predict the time from sample collection to initial treatment.  Unlike 

many prior microarray studies, which segregated patients using established prognostic 

markers, we instead focused on defining markers associated with the treatment-free 

survival intervals of patients.  This joint learning of gene expression profiles and clinical 

variables, often categorized as semi-supervised learning167, 168, identifies prognostic 

markers and risk groups simultaneously and has higher potential in research on diseases 

in which patient subtyping is critical for effective treatment, but precise classification is 

still under development.  

The success of correlating treatment-free survival from the date of sample 

collection with CLL subnetwork transcriptome suggests the association between inner 

cell states and the disease stages.  The idea of cancer as an evolutionary process is not 

new169, 170, but little attention has been drawn on the applications of understanding and 

predicting neoplastic progression.  The association observed here between treatment-free 

survival and the subnetwork transcriptome supports the notion that transcriptional activity 

of these subnetworks contributes to, or results from, the dynamic evolution of leukemic 

cells.  With proper normalization on the diverse clinical courses between patients, we 

find considerable differential gene expression between CLL cells that use mutated IGHV 

versus unmutated IGHV at diagnosis that fads as the disease progresses to the point of 

requiring therapy.  That the transcriptome difference fades when the two subgroups 

progress, albeit at different rates, supports the idea of cancer evolution.  Putting these 

together, we re-challenge the “two distinct disease” hypothesis and speculate that 1) the 
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CLL disease transcriptome evolves over time to reach a state associated with disease 

requiring treatment, 2) leukemia cells that use unmutated IGHV have a higher risk for 

rapid evolution to develop the transcriptome associated with disease requiring treatment, 

and 3) the transcriptome of leukemia cells that use mutated IGHV transforms gradually to 

a subnetwork transcriptome similar to that of leukemia cells that use unmutated IGHV 

prior to therapy.  Regardless of their IGHV mutation status, our serial patient samples as 

well as those in a previous longitudinal CLL study both demonstrate elevated expression 

of the pro-onconets and declining expression of the anti-onconets in the identified 

subnetwork signature over time, further suggesting that degenerate pathways may 

converge into common pathways that govern disease progression.  
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Figure 4.1. Disparity between the date of diagnosis (DX) and the date of tumor sample 
collection (SC) for patient stratification.  

(A) A histogram of the time from DX to SC is shown for the 130 patients in the UCSD cohort. 
(B) Survival analysis on SC→TX of the patients whose DX→SC > 1 year versus DX→SC < 1 
year with regard to the two risk groups defined by IGHV mutation status [blue samples versus 
yellow samples in (A)]. (C) Distribution of relative sampling time (DX→SC normalized by the 
total time DX→TX) among the 130 patients. Upper inset tabulates the number of differentially 
expressed genes between early- and late-stage patients among each IGHV subgroup. (D) Gene 
expression differences between IGHV subgroups at different stages of CLL. (E) Survival 
analyses of all 130 UCSD patients using a panel of previously-published marker sets. Bars chart 
the p-value of the difference between the low- and high-risk groups, defined by each marker set 
reported previously.  Each marker set is evaluated on both DX→TX (blue bars) and SC→TX (red 
bars). 
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Figure 4.2. Survival analysis on DX→TX of the UCSD patients with regard to the two risk 
groups defined by IGHV mutation status. 
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Figure 4.3. Schematic overview of subnetwork identification and definition of risk groups.  

The expression profile of each gene is projected onto its corresponding protein in a protein-
protein interaction network. A greedy search is performed to find subnetworks for which the 
activities are associated with the time from Sample Collection to Treatment (SC →TX). 
Significant subnetworks are selected based on null distributions estimated from permuted data. 
Subnetworks are used to identify disease genes, and the subnetwork activity is used to 
characterize the signatures of different risk groups. (B) K-means clustering segregates patients by 
their distinct subnetwork activity patterns.  (C) Patient clusters are assigned high versus low risk 
based on median treatment-free probabilities in a Kaplan–Meier analysis. 
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Figure 4.4. Example subnetworks of CLL disease progression enriched for the hallmarks of 
cancer.  

(A-O) are pro-onconets and (P-T) are anti-onconets. Nodes and links represent human proteins 
and protein physical interactions, respectively. Blue links indicate protein-protein interactions; 
black arrows indicate protein-DNA binding. The color of each node scales with the change in 
gene expression in patients of shorter treatment-free survival intervals versus longer: red 
represents upregulation in patients of shorter intervals whereas green represents down-regulation. 
The predominant cellular functions are indicated next to each subnetwork. Known cancer 
susceptibility genes are marked by a black asterisk. Genes of names marked in red/green are 
further probed for serial expression in an additional patient cohort (red is genes in pro-onconets 
and green in anti-onconets). 
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Figure 4.5. Subnetwork signatures of CLL disease progression.  

(A) Activity of the 38 significant subnetworks (rows) across the 130 patients (columns). The 
color of each block scales with the activity level of a subnetwork in a particular patient. Patients 
are clustered into high/low risk groups and subnetworks are clustered into three functional 
categories (proliferation and death, signaling, and metabolism). Blue bars above the heatmap 
show the treatment-free survival time of each patient. (B) Kaplan–Meier analysis yields 
treatment-free probabilities with regard to the three risk groups defined by subnetwork activity 
patterns. (C) Comparison of patient stratification by subnetwork prognosis versus IGHV mutation 
status. (D) Distribution of the predominant cellular functions associated with the 38 subnetworks. 
Related functions are clustered into categories named on the outer circle. The marked functions in 
the inner circle are associated with at least 2% of the subnetworks. See Figure 4.11 for all 
enriched functions. (E) Top enriched signaling cascades. Bars show numbers of the 38 
subnetworks which have member genes involved in each pathway. 
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Figure 4.6. Prognosis of new patients.  

(A) Five-fold cross validation on the 130 patients from UCSD. Survival analyses on SC→TX are 
shown for both the low (dashed lines) and high (solid lines) risk groups predicted by subnetwork 
signatures (red lines) or by gene signatures (green lines). (B-C) Survival curves on SC→TX for 
the 17 European patients (B) or for the patient cohort in Friedman et al152 (C). The two risk 
groups are predicted by two sets of markers developed on the UCSD cohort, including the 38 
subnetworks (red lines) and the top 230 genes (green lines). 
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Figure 4.7. Survival analysis on SC→TX of the European cohort with regard to the two risk 
groups defined by IGHV mutation status. 
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Figure 4.8. Serial expression of example subnetwork genes and the subnetwork signature 
along disease progression.  

(A) Subnetwork activity changes in serial samples of thirteen patients from Fernandez et al.142 
Rows and columns represent subnetworks and patients, respectively. The color of each block 
scales with the activity change in a subnetwork from the early-stage sample to the progressed 
sample of a particular patient. The heatmap of patient #9 is separately displayed due to its 
contrasting pattern versus the other 12 patients. The average change column illustrates the 
averaged activity change in a subnetwork across patients: the column of an asterik sign represents 
the average of all the 13 patients and the other one excludes patient #9. The right-most column 
denotes the prognosis power of the 38 subnetworks on UCSD samples (the coefficient of each 
subnetwork as the predictor in an uni-variate Cox hazard model on SC→TX). The subnetworks 
that are significantly differentially activated between early-stage and progressed samples in 
Fernandez et al.142 (p-value < 0.05 from a one-tailed t-test) are indicated by the figure panels in 
which they are displayed (3C, 3I, etc.). (B) Gene expression changes in serial samples of fourteen 
additional patients registered at UCSD. Rows and columns represent genes and patients, 
respectively. The color of each block scales with the log2-transformed ratio of a gene in the 
earlier sample as compared to the later sample of a particular patient. The “average” rows 
illustrate the averaged expression change of genes in similar subnetworks across patients. Genes 
participating in similar subnetworks are clustered together and the figures of the corresponding 
subnetworks are indexed next to each cluster. 
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Figure 4.9. Serial protein expression of example subnetwork genes during disease 
progression.  

(A) Example of protein expression quantification using median florescence intensity measured by 
flow cytometry. (B) Protein expression changes of MYC, TNFRSF7 and MCP in serial samples 
of sixteen patients registered at UCSD.  Bars chart the log2-transformed δMFI ratio of a protein 
in the earlier sample as compared to the later sample of a particular patient (see Section 4.12).  A 
threshold value of ±0.2 is selected to highlight patients of differential protein expression over 
time. (C) Immuno-blotting of CSNK2A1 in serial samples of five patients.  Bars chart log2-
transformed ratio of CSNK2A1 expression (normalized by β-actin) in the earlier sample as 
compared to the later sample of a particular patient. 
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Figure 4.10. Cancer gene enrichment in each marker set. 
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Figure 4.11. Predominant cellular functions associated with the 38 subnetworks. 

Pie charts the relative frequency of each cellular function listed on the right. 

 



 
 

84 

5. INFERRING PATHWAY ACTIVITY TOWARD PRECISE 

DISEASE CLASSIFICATION 

The advent of microarray technology has made it possible to classify disease 

states based on gene expression profiles of patients.  Typically, marker genes are selected 

by measuring the power of their expression profiles to discriminate among patients of 

different disease states.  However, expression-based classification can be challenging in 

complex diseases due to factors such as cellular heterogeneity within a tissue sample and 

genetic heterogeneity across patients.  A promising technique for coping with these 

challenges is to incorporate pathway information into the disease classification procedure 

in order to classify disease based on the activity of entire signaling pathways or protein 

complexes rather than the expression levels of individual genes or proteins. 

We propose a new classification method based on pathway activities inferred for 

each patient.  For each pathway, an activity level is summarized from the gene expression 

levels of its condition-responsive genes (CORGs), defined as the subset of genes in the 

pathway whose combined expression delivers optimal discriminative power for the 

disease phenotype.  We show that classifiers using pathway activity achieve better 

performance than classifiers based on individual gene expression, for both simple and 

complex case-control studies including differentiation of perturbed from non-perturbed 

cells and subtyping of several different kinds of cancer.  Moreover, the new method 

outperforms several previous approaches which use a static (i.e., non-conditional) 

definition of pathways.  Within a pathway, the identified CORGs may facilitate the 
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development of better diagnostic markers and the discovery of core alterations in human 

disease. 

5.1 Background and significance 

Analysis of genome-wide expression profiles has become a widespread technique 

for identifying diagnostic markers of various disease states, outcomes, or responses to 

treatment14, 15, 23, 53, 95.  Markers are selected by scoring each individual gene for how well 

its expression pattern can discriminate between different classes of disease or between 

cases and controls.  The disease status of new patients is predicted using classifiers tuned 

to the expression levels of the marker genes.   

One challenge of expression-based classification is that cellular heterogeneity 

within tissues and genetic heterogeneity across patients in complex diseases may weaken 

the discriminative power of individual genes17, 21, 61, 97.  In addition, marker genes are 

typically selected independently although proteins are known to function coordinately 

within protein complexes, signaling cascades, and higher-order cellular processes.  Thus, 

the resulting expression-based classifiers may contain unnecessarily many marker genes 

with redundant information which may lead to decreased classification performance171. 

Due to these types of difficulties, several groups have hypothesized that a more 

effective means of marker identification may be to combine gene expression 

measurements over groups of genes that fall within common pathways25-27, 29, 30, 37, 98.  

The pre-defined functional groupings of genes are drawn from canonical pathways 

curated from literature resources such as the Gene Ontology57 and KEGG databases99 or 

experimentally-defined gene lists from microarray studies20, 30, 37.  Recently, pathway-
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based analysis has been extended to perform disease classification of expression profiles.  

Some approaches use gene expression parametrically by representing pathway activity 

with a function summarizing the expression values of member genes34, 172, while others 

estimate probabilities of pathway activation based on the consistency of changes in gene 

expression64, 65.  Alternative approaches engineer normal cells to activate pre-selected 

oncogenic pathways to determine gene signatures which can distinguish tumor 

characteristics20, 66.  These methods have demonstrated classification accuracies that are 

comparable to conventional gene-based classifiers, while providing a strong biological 

interpretation for why the expression profile is associated with a particular type of disease 

(i.e., based on the pathways found to be perturbed).  On the other hand, a potential 

shortcoming of current pathway-based classifiers is that the pre-defined set of genes 

making up a pathway may be derived from conditions irrelevant to the disease of interest.  

Moreover, not all the member genes in a perturbed pathway are typically altered at the 

mRNA level. 

Here, we propose a novel gene-expression-based diagnostic that incorporates 

pathway information in a condition-specific manner (Pathway Activity inference using 

Condition-responsive genes, PAC).  The markers are encoded not as individual genes, 

nor as static literature-curated pathways, but as subsets of condition-responsive co-

functional genes (Condition-Responsive Genes, CORGs).  To optimally discriminate 

samples of different phenotypes, we identify CORGs from each static pathway in the 

context of the specific disease in question.  The combined expression levels of the 

CORGs are treated as the pathway “activity” and used to build classifiers for predicting 

the disease status of new patients.  We show that our pathway-based approach 
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outperforms previous analyses of differential expression in classifying samples across 

seven different datasets.  Moreover, we show that pathway activities inferred using only 

CORGs lead to better classification performance as compared to pathway activities 

inferred using various types of summary statistics of all genes which participate in a 

common pathway.  The resulting pathway markers and their CORGs also provide models 

of the molecular mechanisms which define the disease of interest. 

5.2 Datasets 

We obtained previously-published mRNA expression datasets covering seven 

different disease classification scenarios: 24 expression profiles of HeLa cells after 

stimulation by Tumor Necrosis Factor (TNF)173, expression profiles of 62 primary 

prostate tumors and 41 normal prostate specimen174, expression profiles of 143 acute 

lymphoblastic leukemia (ALL) patients175, breast cancer expression profiles for 295 

patients from the Netherlands104 and 286 patients from the USA23, and lung cancer 

expression profiles for 86 patients from Michigan176 and 62 patients from Boston177.   

Each dataset was divided into two populations of distinct phenotypes as per the 

original publications (Table 5.1).  For the TNF study173, 12 samples had normal IkB 

proteins (labeled “Wildtype”) and 12 samples expressed mutant IkB blocking NF-kB 

signaling (labeled “Mutant”).  For the prostate cancer study174, 62 samples were retrieved 

from primary tumors (labeled “Cancer”) and 41 samples were from normal prostate 

specimen (labeled “Normal”).  For the ALL study175, 79 patients suffered from one 

subtype resulting from a t(12;21)(p12,q22) reciprocal translocation (labeled “TEL-

AML1”) and the other 64 patients showed hyperdiploid hyperdip >50 (labeled “HH”).  
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For the two breast cancer datasets, metastasis had been detected in 78104 and 10623 

patients during follow-up visits within five and seven years after surgery (labeled 

“Metastatic”); the remaining 217 and 180 patients were still metastasis free (labeled 

“Non-metastatic”).  For the two lung cancer datasets, we defined the two phenotype 

populations according to37, who labeled 24 patients in the Michigan dataset and 31 

patients in the Boston dataset as having a “Poor” prognosis, while the remaining 62 and 

31 patients were labeled as having a “Good” prognosis. 

For pathway information, we used the C2 functional set downloaded from 

MsigDB v1.037.  This set includes 472 canonical metabolic and signaling pathways 

pooled from eight manually-curated databases along with 50 co-expressed gene clusters 

obtained from various microarray studies.  Each pathway or gene cluster defines a set of 

genes (gene clusters are henceforth also called “pathways”).  In total, the available 

pathways covered 5602 genes, most but not all of which were measured in the seven gene 

expression datasets, due to the various array platforms used. 

5.3 Condition-responsive gene identification and pathway activity inference 

To integrate the expression and pathway data sets, we overlaid the expression 

values of each gene on its corresponding protein in each pathway.  Within each pathway, 

we searched for a subset of member genes whose combined expression across the 

samples were highly discriminative of the phenotypes of interest (Figure 5.1).  For a 

particular gene set G, let a represent its vector of activity scores over the samples in a 

study, and let c represent the corresponding vector of class labels (e.g. good vs. poor 

prognosis).  To derive a, expression values gij are normalized to z-transformed scores zij 
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which for each gene i have mean µ=0 and standard deviation σ=1 over all samples j.  The 

individual zij of each member gene in the gene set are averaged into a combined z-score 

which is designated the activity aj (the square root of the number of member genes is 

used in the denominator to stabilize the variance of the mean).  Many types of statistic, 

such as the Wilcoxon score or Pearson correlation, could be used to score the relationship 

between a and c.  In this study, we defined the discriminative score S(G) as the t-test 

statistic178 derived on a between groups of samples defined by c. 

For a given pathway, a greedy search was performed to identify a subset of 

member genes in the pathway for which S(G) was locally maximal.  We refer to this 

subset as the set of “condition-responsive genes” (CORGs) representing the majority of 

the pathway activation under the relevant conditions.  To identify the CORG set, member 

genes were first ranked by their t-test scores, in ascending order if the average t-score 

among all member genes was negative, and in descending order otherwise.  The CORG 

set G was initialized to contain only the top member gene and iteratively expanded.  At 

each iteration, addition of the gene with the next best t-test score was considered, and the 

search was terminated when no addition increased the discriminative score S(G).  The 

activity vector a of the final CORG set was regarded as the pathway activity across the 

samples. 

5.4 Previous gene-set ranking approaches and other pathway-based classification 

methods 

We also used a method proposed by Tian et al.30 to assess the probability of a 

pathway being altered in disease based on the correlation between the expression of all its 
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member genes and the disease phenotype.  For each pathway P in MsigDB, Tian et al. 

calculated a score T by averaging the t-test statistic scores of all member genes.  Higher T 

was indicative of stronger pathway correlation with the disease status.  The top 10% of 

pathways (52 pathways) in each dataset were selected for further analysis and for 

classification.  The decision whether a pathway has been disrupted by disease was 

assessed on the basis of the discriminating power of the member genes between the 

groups of interest (using a t-test statistic).  However, there may be some signatures of 

pathway disruption that are independent of the classification task at hand.  To detect such 

signatures, a number of statistical functions17, 179 can be adopted in the framework of Tian 

et al.  Unlike the t-test, these functions are designed to detect perturbed patterns rather 

than mean expression changes. 

To compare our PAC with other activity inference schemes, we implemented 

three other expression summarization methods, including a principal component analysis 

(PCA) similar to that used in Bild et al.20 and the mean and median approaches used in 

Guo et al.172.  Bild et al. used the first principal component of the expression of the 

member genes to represent the activation of a given pathway, while Guo et al. 

summarized the expression levels of member genes by using simple statistics like mean 

and median.  

5.5 Marker robustness evaluation 

For each dataset, 100 alternative two-fold splits were generated of each mRNA 

expression profile in the dataset.  Pathways were ranked on each fold using the method of 

Tian et al.30, and CORGs for each pathway were identified using the samples in a single 
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fold.  Individual genes were also ranked by their discriminative power on each fold.  The 

robustness was estimated as the average degree of overlap among top pathways/genes 

derived from the two folds of samples across the 100 splits. 

5.6 Classification evaluation 

Logistic regression models108 were trained on both the pathway activity matrix 

(pathways versus samples) and the original gene expression matrix (genes versus 

samples—i.e., conventional gene-based classification).  For within-dataset experiments, 

the expression samples in a dataset were divided so that four-fifths of the samples were 

used as the training set to build the classifier, and one fifth were used as the test set (five-

fold cross validation).  Each of the five subsets in the dataset was evaluated in turn as the 

test set and withheld during marker selection (including CORG identification) and 

classifier training.  In order to train a generalized classifier and to minimize over-fitting, 

we further split the training set into three smaller subsets of equal size: two subsets were 

used as the marker selection set to rank markers (pathways or genes) as well as identify 

CORGs (pathways only), and one subset was used as the validation set for assessing 

which marker set was significant for classification.  Thus the CORGs might be different 

for a specific pathway, depending on the samples used in the marker selection set.  

Pathways or genes were ranked by the p-value of discriminative power to classify 

samples in the marker selection set, after which the logistic regression model was built by 

adding markers sequentially in increasing order of p-value (sequential selection).  The 

number of markers used in the classifier was optimized by evaluating its Area Under 

ROC Curve (AUC, see Swets et al.109 for details) on the validation set.  The AUC metric 
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captured performance over the entire range of sensitivity/specificity values.  The final 

classification performance was reported as the AUC on the test set using the classifier 

optimized from the validation set.  For unbiased evaluation, we generated 100 alternative 

five-fold splits of samples in each dataset and ran cross validation on each split.  The 

final reported AUC values were averaged across 500 randomly selected ways of 

partitioning the data into four-fifths training and one-fifth test samples. 

For cross-dataset experiments, markers (pathways or genes) were selected using 

the whole first dataset and then tested on the second dataset (or vice versa).  CORG 

identification was also performed on the first dataset.  As for the within-dataset 

experiments, the patient samples in the second dataset were divided into five subsets of 

equal size: four subsets were designated as the “training” set to build the classifier using 

markers from the first dataset, and one subset was held for testing.  One hundred 

alternative five-fold splits were generated to partition samples in the second dataset into 

four-fifths for training and one-fifth for testing.  Therefore, we learned 500 classifiers for 

each of these two datasets, in which each classifier was associated with its own pathway 

marker set.  The averaged AUC values among the 500 classifiers built on the second 

dataset were reported as the final classification performance for each marker set 

identified from the first dataset.  Among the 500 classifiers, the pathway marker set used 

in classification could be different depending on which training samples were used in the 

second dataset.  However, the CORGs of each pathway were the same across these 500 

classifiers because the identification was done using the whole first dataset. 
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In this study, for pathway-based classifiers, the input marker set was defined as 

the top 10% of pathways in MSigDB ranked by Tian et al.30 using a designated training 

set.  In order to compare pathway and gene based methods in a fair manner that controls 

for the number of genes used, we provided the gene-based classifiers with the same 

number of top ranked genes as the number of CORGs pooled from the significant 

pathways selected by Tian et al.30. 

5.7 Pathway markers amplify signals over multiple weak gene markers 

We first tested the robustness of the pathway markers selected by the method of 

Tian et al.30.  The agreement between the significant pathways was higher than that 

between the individually scored gene markers (Figure 5.2).  The CORGs within the top 

pathways were also more consistent than individually scored gene markers in different 

subsets of samples.  The observed robustness of CORGs might imply that some non-

differentially expressed genes, which are often dropped in conventional analysis, do have 

associations with the disease of interest. 

We hypothesized that pathway information could be used to restrict the search 

space for truly perturbed genes whose aggregated expression is more predictive for 

disease status than individually considered.  We began by analyzing the breast and lung 

cancer datasets (four datasets in total), since each dataset has available two separate 

cohorts of patients studied by different researchers.  The top 10% of pathways were 

selected for each of the four datasets (see Section 5.3).  We identified the CORGs for 

each top pathway and aggregated their expression levels into a single activity value for 

each sample.  By design, the inferred pathway activities had more discriminative power 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2563693/#s2�
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in distinguishing samples with different disease phenotypes than did the individual 

expression levels of the member CORGs (PAC versus CORGs in Figures 5.3A, 5.3C, 

5.3E, and 5.3G).  However, the discriminative power fell when the pathway activity was 

inferred using not only the CORGs but all member genes associated with each pathway 

(PAC_all in Figures 5.3A, 5.3C, 5.3E, and 5.3G).  This result suggests that, as might be 

expected, not all genes in a significant pathway are transcriptionally altered or associated 

with the phenotype of interest. 

We then compared our pathway markers to the individual gene markers selected 

without pathway information.  We found that the PAC activity scores outperformed 

individual gene markers in terms of discriminating samples with different disease 

phenotypes in both the source datasets used for marker identification (PAC versus Genes 

in Figures 5.3A, 5.3C, 5.3E, and 5.3G) and the independent verification datasets 

(Figures 5.3B, 5.3D, 5.3F, and 5.3H).  In the verification datasets, the CORGs 

demonstrated almost the same discriminative power as did the top genes, although the top 

genes were more powerful in the original datasets.  These comparisons suggest that 

aggregating the perturbed genes in a pathway leads to a better marker for discriminating 

disease phenotypes.  Although the expression of a single gene might not be a strong 

predictor, pathway integration provides a means to amplify individual weak signals at the 

transcriptional level. 

5.8 Pathway markers increase the classification accuracy 

We next tested that the inferred pathway activity levels could be used in the 

classification of disease status for a new expression profile.  To use pathway information 
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for classification, pathway activities were used as feature values in a classifier based on 

logistic regression.  The technique of five-fold cross validation was applied to test the 

predictive power of the pathway markers (see Section 5.6).  In each run of cross 

validation, we only considered the top 10% of pathway markers selected by Tian et al.30 

using the designated training data. 

As shown in Figure 5.4A, our pathway-based classifiers (PAC) significantly 

outperformed the conventional gene-based classifiers (Gene).  The improved 

performance was not simply due to grouping multiple gene expression measurements, as 

shown by comparing our performance with that of random groups of genes 

(PAC_random; averaged AUCs of 1000 sets of same-size random gene sets as the 

significant pathways).  Classifiers using pathway activity inferred by the mean or median 

of the member gene expression180 or the 1st principle component (PCA)20 had higher 

predictive power than those using random gene sets (PAC_random), but only comparable 

power to the conventional gene-based classifiers. These results indicate that there are at 

least two critical factors in developing an advanced molecular diagnostic: (1) a 

biologically meaningful definition of pathways and (2) inference of condition-specific 

pathway activity. 

Next, we tested the reproducibility of the pathway markers selected across 

different microarray platforms or different cohorts of patients.  For this purpose, we used 

expression profiles of the two lung cancer datasets and the two breast cancer datasets 

generated from different groups.  For each cancer, significant pathways and their CORGs 

were identified using the whole first dataset and then tested on the second dataset, or vice 
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versa (Figure 5.4B).  Our pathway-based classifiers again significantly outperformed the 

gene-based classifiers. 

To show that the better performance of PAC was not dependent on the chosen 

classification algorithm, we evaluated all markers and pathway activity inference 

methods using three additional classification approaches: k-nearest neighbors, naïve 

Bayes, and linear discriminative analysis.  Moreover, forward selection method was also 

employed to show our superior performance was not beneficial from the feature selection 

method used.  All further analyses demonstrated the same trends, i.e., our CORG-based 

pathway classifiers outperformed other gene-based and pathway-based classifiers 

(Figures 5.5 and 5.6). 

5.9 Pathway markers and their corgs provide biologically informative models for 

lung cancer prognosis 

Beyond achieving better classification performance, the discriminative pathway 

markers and their CORGs can lend insight into the biological basis for why samples are 

classified as a specific disease status.  As an example, we examined the pathway markers 

selected in the above two cross-dataset experiments for classification of lung cancer 

prognosis (for a similar analysis of breast cancer metastasis, see Table 5.2 and Figure 

5.7).  We counted the frequency with which each pathway in MSigDB was selected over 

the 500 classifiers, and we identified the top most frequent pathways having over 100 

occurrences (Table 5.3). 

Pathways involved in glucose metabolism (“Glycolysis” in Table 5.3) and 

estrogen signaling (“Breast cancer estrogen signaling” and “Estrogen receptor modulators 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2563693/figure/pcbi-1000217-g003/�
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2563693/#pcbi.1000217.s004�
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2563693/#pcbi.1000217.s005�
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2563693/#pcbi.1000217.s002�
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2563693/table/pcbi-1000217-t001/�
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down-regulated genes”) were frequently used in classifying lung cancer patients, and 

over-expression of these pathways had poor prognosis in both datasets (Figure 5.8). 

Constitutively up-regulated glycolysis has been observed in most primary and metastatic 

cancers and further explored to develop potential therapeutic targets181-183. Up-regulated 

glycolysis enables unconstrained proliferation and invasion and may lead to a more 

aggressive type of lung cancer182.  Estrogen signaling has been known to promote cell 

proliferation and suppresses apoptosis, and its role in the late steps of lung metastasis has 

recently been suggested184.  As shown in Table 5.3, many pathways could be represented 

by CORGs of the size from two to four, although some required more than eight genes 

(Figure 5.9).  Especially for larger CORG sets, it would be computationally infeasible to 

identify these combinations to have maximal discriminative power in the absence of prior 

pathway knowledge. 
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Figure 5.1. A schematic diagram of key gene identification and activity inference.  

Selected significant pathways are further subject to CORG identification corresponding to the 
phenotype of interest.  Gene expression profiles of patient samples drawn from each subtype of 
diseases (e.g., good or poor prognosis) are transformed into a “pathway activity matrix”.  For a 
given pathway, the activity is a combined z-score derived from the expression of its individual 
key genes.  After overlaying the expression vector of each gene on its corresponding protein in 
the pathway, key genes which yield most discriminative activities are found via a greedy search 
based on their individual power (see Section 5.3).  The pathway activity matrix is then used to 
train a classifier.  



99 
 

   

 

Figure 5.2. Marker reproducibility of pathway-based and gene-based selection in (a) NF-kB 
dataset, (b) ALL dataset, (c) Prostate dataset, (d) Netherlands dataset, (e) USA dataset, (f) 
Michigan dataset and (g) Boston dataset.  

Blue and yellow lines chart the magnitude of overlap among top n markers for pathways ranked 
by Tian et al 30 and genes ranked by conventional t-test, respectively. Purple lines chart the 
magnitude of overlap among member CORGs for the top n pathways.  The performance of the 
100 alternative splits is denoted by its mean. 
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Figure 5.3. Discriminative power of pathway and gene markers in the breast and lung 
cancer datasets.  

Mean absolute t-scores against phenotypes were compared between four marker sets in the 
training set, which was used to rank markers (a and c for the two breast cancer datasets and e and 
g for the two lung cancer datasets), or in an independent test set (b, d, f and h).  Pathway markers 
were ranked by using their absolute t-scores from a two-tail t-test on activity levels (see S(G) in 
Section 5.3) in the training dataset between the two phenotypes of interest.  Pathway activities 
were estimated using only CORGs (PAC) or all member genes (PAC_all).  The individual 
predictive power of CORGs in the top pathways was also evaluated using the same t-test on their 
gene expression levels (CORGs).  A similar analysis was performed using the same number of 
top discriminative genes as the number of CORGs covered by the pathway markers (Genes). 
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Figure 5.4. Classification accuracy (a) within- and (b) across- datasets.   

Bar chart of Area Under Curve (AUC) classification performance of CORG-based pathway 
markers (PAC), conventional pathway markers (Mean, Median, and PCA) and individual genes 
(Gene; same number of top discriminative genes as the number of CORGs in pathway markers).  
Classification performance is summarized as mean±ste of AUC over 100 runs of 5-fold cross-
validation within a dataset.  To compute PAC_random, the AUC values of 1000 sets of random 
gene sets were averaged.  Numbers above the red bars are log (p-value) from a Wilcoxon signed-
ranked test on the 500 AUCs of “PAC” against those of “Gene” (only the ones with p-value < 
0.05 are shown).  The p-values measure the significance of difference between PAC and gene-
based classification. 
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Figure 5.5. Classification accuracy within- and across- datasets using different classifiers. 

 (a) k-nearest neighbor with k = 3, (b) k-nearest neighbor with k = 5, (c) naïve bayes and (d) 
linear discriminative analysis.  Bar chart of classification accuracy in (a) and (b) and Area Under 
Curve (AUC) performance in (c) and (d).  Classification performance is summarized as mean±ste 
of accuracy/AUC over 100 runs of 5-fold cross-validation within a dataset.  Numbers above the 
red bars are log (p-value) from a Wilcoxon signed-ranked test on the 500 accuracies/AUCs of 
“PAC” against those of “Gene” (only the ones with p-value < 0.05 are shown). 
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Figure 5.6. Classification accuracy within- and across- datasets using sequential selection 
(SEQ) or forward selection (FWD). 
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Figure 5.7. Pathway activity of the top frequently-used markers in the two breast cancer 
datasets.  

Activities were inferred from CORGs identified from each dataset.  Green/red blocks indicate 
pathways (rows) that are up-/down- regulated in patients (columns) of specific phenotype (above 
color bars: pink and green indicate metastasis and non-metastasis, respectively). Pathways are 
clustered based on the similarity of their activities across patients. 
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Figure 5.8. Pathway activity of the top frequently-used markers in the two lung cancer 
datasets.   

Activities were inferred from CORGs identified from each dataset. Green/red blocks indicate 
pathways (rows) that are up-/down- regulated in patients (columns) of specific prognosis (above 
color bars: pink and green indicate poor and good prognosis, respectively). Pathways are 
clustered based on the similarity of their activities across patients. 
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Figure 5.9. Distribution of numbers of CORGs in top 10% pathways. 
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Table 5.1. The seven data sets used in method evaluation. 

Name Publication Number of samples in each class 

NF-kB Tian et al. 2005a173 
Wildtype: 12 samples 

Mutant: 12 samples 

Prostate cancer Lapointe et al. 2004174 
Normal: 41 samples 

Cancer: 62 samples 

Leukemia Yeoh et al. 2002175 
TEL-AML1: 79 samples 

HH: 64 samples 

Breast_Netherland van de Vijver et al. 2002104 
Metastatic: 78 samples 

Non-metastatic: 217 samples 

Breast_USA Wang et al. 200523 
Metastatic: 106 samples 

Non-metastatic: 180 samples 

Lung_Boston Beer et al. 2002176 
Poor prognosis: 31 samples 

Good prognosis: 31 samples 

Lung_Michigan Bhattacharjee et al. 2001177 
Poor prognosis: 24 samples 

Good prognosis: 62 samples 
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Table 5.2. Frequently selected pathway markers for breast cancer prognosis. 

Pathway Name Frequency # genes * CORGs 

From Netherlands to USA    

Cyclin regulated genes 416/500 2/13 E2F1  CCNE2 

IL7 pathway 200/500 3/16 BCL2  STAT5A IL7 

Cell cycle 197/500 3/84 E2F1 ESPL1 CCNB2 

ActinY pathway 142/500 3/19 PIR PSMA7 ACTR3 

GNF female genes 123/500 3/85 RPS4X RPS6 RPL6 

    

From USA to Netherlands    

Cell Cycle 500/500 4/84 CCNE2 ESPL1 MAD2L1 
CDK2 

Brentani  cell cycle 282/500 4/86 CCNE2 MAD2L1 CDK2 
MXD1 

Cyclin regulated genes 280/500 3/13 CCNE2 CDK2 CCNA2 

KRAS up-regulated genes 202/500 3/84 TUFT1 P4HA2 COL4A1
  

Cell cycle checkpoint II genes 200/500 2/10 CCNE2 FANCG 

Glutamine down-regulated genes 167/500 6/313 
TCEB1 KPNA2 CYCS 
TMED9 UTP18 
MORF4L2 

MMP/Cytokine connection 148/500 5/15 DEAF1 TNFRSF1B CD44 
IL1B TGFB2 

Leucine down-regulated genes 136/500 6/180 TCEB1 KPNA2 CYCS 
TDG CCT6A CSE1L 

IL22 pathway 124/500 3/13 SOCS3 STAT5A STAT3 

Rapamycin down-regulated genes 111/500 4/229 STAU1 CYCS RAE1 
MORF4L2 

* The number of CORGs and member genes are specified. 

** Pathways/Genes in italics are shared between datasets 
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Table 5.3. Frequently selected pathway markers for lung cancer prognosis. 

Pathway Name Frequency # genes* CORGs 

From Michigan to Boston    

Glutamine up-regulated genes 433/500 5/313 NP LDHA BZW1 TUBA1 
LAMB3 

Gluconeogenesis 247/500 2/32 LDHA ENO2 

Glycolysis 245/500 3/22 ENO2 PGK1 ALDOA 

Breast cancer estrogen signaling 203/500 3/101 VEGF KRT18 KRT19 

Glycolysis and gluconeogenesis 176/500 5/55 GAPD LDHA ENO2 
ALDH3B2 ALDH3B1 

Estrogen receptor modulators 
down-regulated genes 138/500 4/74 ARHE STC1 KRT7 

COPEB 

Leucine down-regulated genes 134.500 
4/180 

 
NP LDHA TUBA1 CCNA2 

B lymphocyte pathway 102/500 4/11 CR2 ITGAL HLA-DRA 
CR1 

    

From Boston to Michigan    

Breast cancer estrogen signaling 481/500 6/101 KRT18 KRT19 GAPD MT3 
CDKN2A TFF1 

Pyrimidine metabolism 258/500 3/45 POLR2E NP RRM1 

Glycolysis 258/500 2/22 ENO2 PGK1 

MTA3 pathway 238/500 3/16 TUBA1 GAPD MTA1 

Insulin up-regulated genes 165/500 10/235 

PGAM1 ARF4 ARCN1 
DNCL1 EIF2S2 PSMA6 
YWHAH PSMA3 ZNF9 
CLNS1A 

P53 hypoxia pathway 148/500 3/20 FHL2 IGFBP3 HIF1A 

Glutamine down-regulated genes 133/500 4/313 PGAM1 ERH PAICS 
BZW1 

p53 signalling 114/500 6/101 
HIF1A FADD GAPD 
APEX1 CDKN2A 
CSNK2B 

Estrogen receptor modulators 
down-regulated genes 108/500 3/74 KRT7 DUSP4 MMD 

NFKB up-regulated genes 103/500 2/111 KRT7 GBP1 

* The number of CORGs and member genes are specified. 

** Pathways/Genes in italics are shared between datasets 
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6. DISSECTING DISEASE PROGRESSION OF CHRONIC 

LYMPHOCYTIC LEUKEMIA USING AN INTEGRATED 

QUANTITATIVE PROTEOMIC AND GENOMIC ANALYSIS  

The clinical course of patients with chronic lymphocytic leukemia (CLL) is 

heterogeneous.  Mapping the pathways that lead to variable courses in progression is one 

of the key challenges of CLL research.  Microarray studies have highlighted differences 

in mRNA levels found between such CLL subgroups; however, different study identifies 

a different set of marker genes.  One reason for the discrepancy seen in gene array studies 

is that mRNA measurements are often noise and do not necessarily correlated with the 

activity of the corresponding proteins.  

 To address this limitation, we applied a shotgun proteomic method using iTRAQ 

isobaric tags combined with LC-MS/MS to study differential expression at protein level 

in CLL patients of different prognosis.  A total of 2556 proteins were uniquely identified 

in at least 2 of the 5 pairs of aggressive and indolent CLL patients.  Different from 

conventional analyses that select marker proteins based on fold changes, we developed a 

method, Significance Analysis of Mass spectrum based protein quantification (pSAM), 

that assigns a score to each protein on the basis of change in expression relative to the 

standard deviation of repeated measurements across replicate MS/MS runs.  Between the 

two CLL subtypes, pSAM identified 69 proteins of significantly changed expression.  We 

demonstrated that the protein markers selected by pSAM have 2 times higher chance to 

function in a same pathway than those selected by conventional fold-change methods.  

Moreover, our protein markers are of a more correlated change on gene expression and of 
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a more robust expression pattern across different cohorts of patients.  Furthermore, the 

MS2 measurements enabled by iTRAQ regents were shown to be more sensitive and 

reliable than previous MS1 measurements using oxygen isotopes. 

We next showed that protein differential expression is coherent with their 

interaction. By incorporating protein interaction networks into gene and protein 

expression of aggressive and indolent CLL patients, we identified several differentially 

expressed subnetworks of consistent or variable changes between genes and proteins.  

Some subnetworks support known notations of the mechanisms underlying disease 

progression; while others provide novel hypotheses that are currently testing using 

immunoblotting and knockdown assays in lab.  We also proposed strategies for utilizing 

comprehensive gene expression, limited protein expression and interaction networks to 

predict the differential expression of proteins that have not been measured in the shotgun 

proteomic analysis.  The prediction can then be used to guide the design of next targeted 

proteomic experiments. 

6.1 Background and significance 

The advent of the whole-genome microarray technology has made mRNA 

expression profiling become the method of choice for identifying gene markers able to 

diagnose the severity of disease and predict future disease outcome.  However, for some 

cancers, mRNA-based classification has yet to achieve high accuracy.  For example, two 

large-scale breast cancer studies15, 23 each identified sets of ~70 gene markers that were 

only 60-70% accurate for prediction of metastatic versus non-metastatic tumors and 

shared only three genes in common.  One reason for these problems is that mRNA 
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measurements are often noisy and do not necessarily correlate with the activity of the 

corresponding protein.  A solution to this difficulty is to obtain direct measurements of 

protein levels and states.  Proteins are relevant biomarkers because of their easy assay in 

the clinic practice.  Furthermore, proteins are the proximal cause of most pathology and 

are the targets of most drugs.  Genome-wide discovery of protein biomarkers has been 

held back due to the lack of an established method that is sensitive, quantitative, and 

applicable to mammalian cells. 

From the genome and transcriptome sequences, we have been presented 

opportunities to derive a relatively complete list of proteins, by extending genes, thus 

revolutionizing the field of proteomics.  Recent advances in mass spectrometry based 

protein-profiling technologies185 have allowed a high throughput systemic analysis of the 

cellular machinery.  Although mass spectrometry is effective in the identification of 

peptides but not of complete proteins, by matching mass spectra to genomic sequences186, 

the high-performance combinations of chromatography and tandem mass spectrometry 

(MS/MS) enable the identification of a growing number of proteins and can also identify 

when they have complex secondary modifications187-189.  Quantitative analysis of protein 

and peptide constituents can be achieved by isotopic labeling of proteins and peptides, 

such as 16O/18O oxygen isotopes190, Isotope Coated Affinity Tags (ICAT)191, stable 

isotope labeling by amino acids in cell culture (SILAC)192, and isobaric tag for relative 

and absolute quantification (iTRAQ)193, 194, or by label-free quantification of derived 

mass spectra. 
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Quantitative MS/MS holds great promise for disease diagnosis, as a method for 

rapidly identifying proteins whose expression levels or modification states are 

significantly altered between diseased and normal individuals (i.e., protein biomarkers of 

disease)195-197.  As with many instruments, a key challenge of mass-spectrometry-based 

proteomics is to increase measurement sensitivity—i.e., the lower limit of detection for 

protein abundance.  Another set of issues involves biological and technical 

reproducibility.  Even if the protein identifications and abundances are reproducible over 

different measurements of the same sample (technical replicates), they may be less so 

when the entire experiment is repeated over multiple individuals or cell/tissue isolation 

steps (biological replicates).  In complex conditions such as cancer, it is likely that the 

same disease can be achieved by many different combinations of aberrant proteins, and 

that this particular combination differs from patient to patient.  These issues, and 

especially the difficulties posed by biological variability across patients, make 

identification of protein biomarkers a hard problem. 

To date, the above challenges have been addressed for MS/MS predominantly 

through new chemistry, hardware, and intelligent post-processing198-200.  Here, we 

describe a promising alternative statistical method, called Significance Analysis of Mass 

spectrum based protein quantification (pSAM), to clean and interpret raw protein 

measurements from shotgun proteomic experiments.  To identify proteins of statistically 

significant expression changes between phenotypes of interest, pSAM carries out 

spectrum specific z-tests and computes a discriminative score for each protein, which is a 

summary statistic from all assigned spectrums.  We first apply pSAM to identify proteins 

that are differentially expressed between CLL patients of different progression risk levels.  

http://en.wikipedia.org/wiki/Student%27s_t-test�
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Using multidimensional LC-ESI-tandem mass spectrometry with iTRAQ labeling, we 

profile fifteen CLL patients, five individuals of each of the three risk groups, across 

which more than 3,000 proteins are identified.  The same individuals have also been 

profiled with mRNA expression arrays.  We then perform comparative analyses between 

expression of mRNA versus protein to identify proteins of correlated mRNA expression 

as well as proteins of no mRNA differential expression, i.e. those who can only be 

detected by proteomic analyses.  We further propose strategies to develop follow-up 

targeted proteomics analysis by leveraging the substantial information present in protein 

interaction networks.   

6.2 MS-based shotgun proteomics with isobaric tag for relative and absolute 

quantification  

Analogous to the shotgun sequencing approach in genomics, the most widely used 

method for protein identification is referred to as MS-based shotgun proteomics201.  In a 

shotgun proteomic experiment, protein samples are first digested with trypsin.  The 

labeled peptides are separated by multidimensional liquid chromatography (LC), and the 

resolved peptides are subjected to an electric potential, which causes a spray to be 

formed, leading to the desolvation and ionization of the peptides (electrospray ionization; 

ESI).  Mass to charge (m/z) ratios are measured from peptide ions in the mass 

spectrometer (MS).  Specific ions are selected, depending on the sampling technique 

used, for a physical collision into smaller fragment ions and subsequently measured in the 

second mass analyser in tandem mass spectrometry (MS/MS). 
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MS/MS fragment ion information from the second stage (MS2) contains sequence 

information that can be compared with sequences from in silicon digested protein 

sequence databases for peptide and subsequent protein identification.  For binary isotopic 

labeling or label-free quantification, the peak areas or intensities observed in the MS 

spectra of eluted peptides in the first stage (MS1) are used to quantify relative peptide 

abundance.  However, overlapping spectra of the same peptides from different samples 

require further analytical techniques to deconvolute the resulting spectrum and the 

associated protein/peptide abundances202, increasing the likelihood of systematic errors in 

measurements.  In addition, the binary labeling techniques add complexity to the acquired 

spectra and to their interpretation by introducing additional peaks into the mass spectra. 

In contrast to MS1-based quantification, shotgun proteomic methods involving 

iTRAQ enable simultaneous identification and quantification of peptides using MS2 and 

permit parallel proteome analysis of more than two samples194, 203.  iTRAQ uses four 

amine specific isobaric reagents to label the primary amines of peptides from four 

different biological samples (Figure 6.1a).  The labeled peptides from each sample are 

mixed, separated using LC and analyzed using MS/MS.  Different from other differential 

labeling techniques, the same peptide from each sample appears as a single peak in the 

MS1 spectrum because of the isobaric nature of these reagents.  This reduces the 

complexity in the MS1 spectrum and thus decreases the systematic noise introduced by 

labeling.  Upon the physical collision prior MS2, the iTRAQ-tagged peptides fragment to 

release reporter ions (at 114.1, 115.1, 116.1 and 117.1 m/z) and b- and y-ion series 

among other fragments.  The peak height of the reporter ions are measured in MS2 and 
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used to assess relative abundance of peptides (consequently the proteins from which they 

are derived) (Figure 6.1b). 

6.3 pSAM − Significance Analysis of Mass spectrum based protein quantification 

pSAM is a method for identifying differentially expressed proteins using the 

relative abundance of two iTRAQ reporter ions acquired in a MS2 spectra.  This process 

involves several scoring steps for both within and between MS/MS experiments.  For a 

given MS/MS spectrum, let p be the intensity of reporter 1 and q be that of reporter 2, 

where each reporter is used to label a different sample.  The ratio of p over q is 

represented as r while the product of p and q is as m.  Let ∑𝑗𝑗 be the set of spectrum i 

mapped to the unique peptides derived from protein j.  Let di be the log2 transform of ri.  

We first calibrate di by its intensity dependent variation σd,mi: 

𝑧𝑧𝑖𝑖 = 𝑑𝑑𝑖𝑖
𝜎𝜎𝑑𝑑 ,𝑚𝑚𝑖𝑖

 , where σd,mi is the standard deviation of the dk’s whose mk are of similar 

levels as mi.  

The fold change of a specific protein between the two samples is then defined as 

the weighted average of the normalized reporter ratios among the spectra which have 

been mapped to peptides derived from the protein: 

𝑘𝑘𝑗𝑗 =
∑ 𝑧𝑧𝑖𝑖𝑖𝑖∈∑𝑗𝑗

��∑𝑗𝑗 �
   

If replicate experiments are performed, the protein ratios from individual experiments are 

then integrated into a single score to assess the significance and robustness of the 

observed changes: 
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 𝑠𝑠𝑗𝑗 =
�∑ 𝑘𝑘𝑗𝑗 ,𝑝𝑝
𝑛𝑛
𝑝𝑝 �

√𝑛𝑛
𝜎𝜎𝑗𝑗+𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚

, where n is the number of experiment p detecting protein j reliably, 

σj is the standard deviation of kj across these n runs of experiments, and σmed is the median 

of σj of every protein across all the replicates.  Because MS profiling is an open system 

and has many uncharacterized systematic noise, a protein might not be detected in every 

MS run and may have large variation in measurements between runs.  The s score awards 

proteins with more times of detection and less variation across runs. 

Figure 6.1c provides an illustration of this hierarchical scoring procedure.  To 

estimate the p-values of s of a protein j, the protein score sj is compared to the random 

scores sampled from a permutation test of 300 random trials across multiple MS/MS 

experiments.  For each MS/MS experiment in a random trial, we randomly assign the 

intensity ratio of two reporter ions zi to ∑𝑙𝑙  where l is a protein rather than j and then 

perform the same scoring procedure as that on real data.  Such permutation disrupts the 

correlation between spectra generated from the same peptide.  The score of each protein 

sj is indexed on the null distribution of all random scores. 

6.4 Experimental Design 

Multidimensional LC-ESI-tandem mass spectrometry with iTRAQ labeling is 

applied to compare protein levels across three classes of mature B-cells: (a) aggressive 

CLL, (b) indolent CLL, and (c) normal B cells.  Peripheral blood monocytes from 

patients were lysed and proteins were digested by trypsin.  Three equal aliquots of 

digested protein samples, one from a patient in each of the three classes of mature B-

cells, were treated each with one of distinct N-terminal iTRAQ isotopes.  The three 
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labeled lysates are mixed together and fractionated by LC following by ESI and tandem 

mass spectrometry.  At MS1, for each time point, we select 15 peaks of the highest signal 

intensity and submit the peaks into MS2.  A database search is then performed using the 

fragmentation data from MS2 to identify the labeled peptides and hence the 

corresponding proteins.  The fragmentation of the attached iTRAQ tags generates a low 

molecular mass reporter ion whose intensities quantify the relatively abundance of the 

peptides which they originated. 

The raw MS/MS spectra are extracted and searched using Spectrum Mill 

(Agilent) against the International Protein Index database.  Each spectrum is assigned to a 

unique peptide of the best match.  A concatenated forward-reverse database is 

constructed to calculate the in-situ false discovery rate (FDR) of matched spectrum-

peptide pairs.  Cutoff scores are dynamically assigned for each dataset from a MS/MS 

experiment to maintain FDR less than 3.5%; spectrum-peptide pairs of a match score less 

than the cutoff are discarded.  Peptides shared by multiple proteins are further removed 

before quantification.  Relative peptide quantification is calculated as the iTRAQ reporter 

ion intensity ratios r of any two samples.  Relative protein quantification is performed by 

pSAM on these r’s.  In total, five patients of each B-cell class are profiled in a way that 

each MS/MS experiment has one patient from each class, i.e., five runs of MS/MS are 

performed (Figure 6.2a).  After mapping the IPI protein IDs to NCBI Entrez gene IDs, 

there are 2,556 unique proteins detected at least twice among the five runs of MS/MS 

experiments. 
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To investigate the differences in protein identification and quantification obtained 

in isobaric tagging experiments compared with those observed in other shotgun 

proteomic experiments, we also perform another two sets of MS1-based protein 

quantification experiments in additional ten aggressive and ten indolent CLL samples 

using binary 16O/18O labeling.  One set of the MS1-based quantification is a pooled 

design where in a MS run, five aggressive samples are mixed together and then labeled 

with 16O.  The mixture of five indolent samples is labeled with 18O.  The MS experiment 

is repeated three times on aliquots from these two labeled lysates and also repeated in a 

dye-swapped fashion for another three times (i.e., the aggressive samples are labeled with 

18O whereas the indolent samples are labeled with 16O).  Therefore, this set contains six 

MS experiments (the left panel in Figure 6.2b).  Another set is using individually labeled 

samples in a MS experiment.  Every MS experiment measures peptides from only one 

aggressive sample labeled with 16O and one indolent sample labeled with 18O; a dye-

swapped experiment is performed using vice versa labeling of the same samples.  In all, 

five aggressive and five indolent samples are used in this set so ten MS experiments are 

performed (the right panel in Figure 6.2b).  The LC-ESI step and the database search 

procedure are the same as those used in the above iTRAQ experiments, but the relative 

quantification of 16O/18O labeling is calculated using spectra counts on MS1 spectra as 

contrast to peak intensities on MS2 spectra for iTRAQ quantification.  Spectra count ratio 

is digitized into either up (ratio ≥ 1), down (ratio ≤ 1 ), or undetected (ratio = 0) 

categories.  The sum of the digitized spectra count ratio is used to estimate the level of 

protein expression changes across multiple runs. 
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6.5 pSAM removes selection biases on protein abundance or size 

Ratio of peak heights of two reporter ions r, where proteins differing by more 

than an arbitrary cut-off value in abundance are considered to be differentially expressed, 

is commonly used in analyzing proteomics data.  Such a concept of fold changes is 

intuitive and easy to interpret.  However, simple ratios have a tendency in selecting 

proteins of naturally lower abundance regardless the phenotypes of interest (Figure 

6.3a), as the phenomenon seen in microarray data204.  Moreover, in MS experiments, 

proteins of larger size are digested into more peptides on average than proteins of smaller 

size, thus also more likely to be classified as differentially expressed by the ratio method 

(Figures 6.3b).  As well discussed in microarray literature204, a normalization on the 

variance of the ratios is needed to remove such an intensity-dependent bias (Figure 6.3c) 

in analyses of differential expression. 

To stabilize the intensity-dependent variation on ratios, pSAM first normalizes the 

log ratio of two reporter ions based on the log product of the two intensities, similar to the 

lowess normalization procedure on microarray data204 (Figure 6.3f).  As a result, we can 

see that pSAM has a more even chance in selecting proteins over a wide range of 

abundance and size, reducing false positives for peptides with naturally low intensities or 

smaller size and false negatives for peptides with naturally high intensities or larger size 

(Figures 6.3d-e).  Figure 6.3g shows that most proteins have correlated ratios and pSAM 

scores while some are only considered to be differentially expressed by either method. 
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6.6 Protein markers selected by pSAM are more functionally correlated and 

coherent with gene expression changes 

Proteins work in a concert to carry out cellular functions.  Any molecular 

alterations effecting cell phenotypes should involve proteins functioning in the same 

signaling cascade or complexes.  Among the 2,556 proteins which are detected at least 

twice in the five runs of MS/MS experiments on CLL samples, for aggressive versus 

indolent CLLs, the top 100 proteins of largest expression changes ranked by pSAM 

scores are more likely to be participating in the same pathways than those ranked by 

simple ratios (Figure 6.4a; p-value ≤ 0.05 for protein functional enrichment analyzed 

using NCBI DAVID).  We also examine the functional enrichment of the two sets of top 

proteins ranked by spectra counts, each from the pooled and individual MS1-based 

quantification (Figure 6.2b).  In terms of MS1 methods, the pooled experimental design 

seems to be an effective means to reveal robust and common differences between 

phenotypes as compared to the individual design (Figure 6.4a).  However, the pooled 

design is not able to recover an established CLL protein marker ZAP70 (Figure 6.4b).  In 

all, the proteins selected by pSAM on MS2 measurements are more functionally 

correlated and have a larger overlap with the proteins selected by MS1 quantification, as 

compared to the other three methods (Figure 6.4c). 

We further check the correlation between our mRNA and protein quantification 

data.  For a fair comparison, two microarray methods, simple ratios and SAM205, are used 

to select differentially expressed genes between aggressive and indolent CLLs on mRNA 

level and the results are compared with the proteins selected by ratios and pSAM, 
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respectively.  When compared to the top gene markers, both ratios and pSAM have a low 

rate of false positives which are defined as top proteins with opposite direction of gene 

expression changes (Figure 6.4d).  Although the expression level between genes and 

proteins are not well correlated in our data as noted elsewhere200, the proteins selected by 

pSAM have a more consistent change at both the transcription and translation levels than 

those selected by simple ratios. 

6.7 HIP1R and CD74 are promising novel protein markers of CLL progression risk 

Among the 2,556 proteins detected twice of high confidence in our iTRAQ data, 

pSAM identifies about 1,700 proteins significantly differentially expressed in B-cells 

between CLL patients and normal people, but only fourty proteins different between 

aggressive versus indolent CLLs (Figure 6.5a; FDR = 30% in Figure 6.5b).  This 

finding supports the notion researchers have observed from gene expression data that 

these two forms of CLLs are truly the same disease but might be with some subtle 

difference in pathology. 

To demonstrate the detection power of pSAM, we select two example proteins, 

HIP1R and CD74, out of the thirty proteins that are differentially expressed not only 

between aggressive versus indolent CLLs but also between CLLs and normal B-cells.  

HIP1R, Huntingtin-interacting protein 1, has an averaged 6.6 fold increase at protein 

level in our aggressive CLLs when compared to the indolent samples (pSAM p-value = 

0.003).  HIP1R has been shown to be capable of stabilizing receptor tyrosine kinases on 

cell surface that may contribute to alteration in cell growth and survival206, 207.  B-cell 

receptor signaling pathway, essential to B-cell survival, is activated through an antigen 
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binding to the cell surface receptor tyrosine kinases208 and is found to be enhanced in 

aggressive CLLs124.   

To study its potential contribution in stabilization of  BCR signaling in aggressive 

CLLs, we probe the protein expression of HIP1R in the original samples used in MS/MS 

experiments as well as additional 34 CLL patients by using low-throughput immuno-

blotting (Figure 6.6a).  We found that the patients of HIP1R-expressing CLL cells have 

a shorter treatment-free survival as compared to those of no HIP1R expression (p-value = 

0.006 in Figure 6.6b).  The same patient cohort is not able to be separated into two 

distinct risk groups by ZAP70 expression (p-value = 0.944 in Figure 6.6c).  Figure 6.6d 

suggests that potential regulation of HIP1R induction can be a gene dosage effect, given 

its chromosomal location 12q24.  Trisomy 12 is a known indicator of poor prognosis in 

CLL209.  Another explanation can be the down-regulation of miR-29 observed in 

aggressive CLLs210, 211, which has a target site in the 3’-end of HIP1R gene. 

In contrast to HIP1R, CD74 has only 1.4 fold increase in aggressive CLLs.  

However, it is selected by pSAM as a protein marker indicative of CLL progression 

because of its consistent expression elevation across multiple replicates (p-value = 

0.005).  To capture this subtle expression change, we quantify the protein expression of 

CD74 by flow cytometry.  This slight expression elevation in aggressive CLLs is 

validated by a higher percentage of CD74 positive CLLs (Figure 6.7a).  In a validation 

cohort of 73 new CLL patients, we find that CD74 expression is highly associated with 

ZAP70 expression (Figure 6.7b) and can be used to separate the cohort into two groups 

of different risk levels of disease progression (Figure 6.7c).   
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Activation of cell-surface CD74 by MIF initiates a survival cascade to induce 

NF-kB activation, contributing to CLL tumorgenesis212.  A phase I clinical trial of anti-

CD74 therapy in B cell malignancies is undergoing (a collaboration between Cornell 

University and Immunomedics).  Previously, CLL lymphocytes are shown to over-

express CD-74 as compared to normal B-cells but the expression level is not different 

between different risk groups212.  We re-analyze the data in Binsky et al.212 and find that 

CD74 is indeed differentially expressed at both gene and protein levels between early-

staged ZAP70-positive versus ZAP70-negative patients (Figure 6.7d). 

6.8 Differential protein expression is coherent with protein interactions 

By mapping the differentially expressed proteins between aggressive and indolent 

CLLs (176 proteins of pSAM p-value ≤ 0.05) on the protein interaction network in 

Figure 2.2, we find several subnetworks formed by direct interactions between these 

proteins.  Three subnetworks of size greater than four are not possibly formed by random 

(Figure 6.8a;  p-value ≤ 0.05 as compared to a distribution of sizes of random 

subnetworks formed by 100 trails of randomly withdrawn 176 proteins).  This might 

suggest dependence between protein differential expression and the physical interactions 

between proteins. 

To systematically examine this correlation, we define a test statistic r as the 

number of protein pairs where the two proteins are both differentially expressed.  Among 

the 21,150 protein pairs where the two proteins are directly interacting or have at least 

one common interacting partner, there are 2,085 protein pairs where the two proteins are 

also differentially expressed (i.e., r = 2,085).  The null hypothesis here is that in any 
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random 21,150 protein pairs we can also find a similar number of protein pairs of 

differentially expressed proteins.  Estimated by 1000 sets of random 21,150 protein pairs, 

the null distribution of r has a mean at 1623.8 and a standard deviation of 2.5 (Figure 

6.7b).  Indexed on this null distribution, r = 2,085 from the real interacting protein pairs 

has a p-value close to 0, suggesting that a protein is more likely to be differentially 

expressed if its interacting partner has differentia expression. 

6.9 Integrated strategies for targeted proteomic 

Given the coherence observed between protein differential expression and 

physical interactions, we test how much the information on the differential expression of 

interacting partners can help the prediction for an unmeasured protein.  A leave-one-out 

cross-validation technique (LOOCV) is used to evaluate the prediction performance, 

where one protein is withheld for test and the rest is used to train a predictor.  In the 

protein interaction network, 1,516 proteins are measured at least twice in our iTRAQ 

experiments and of ≥ 1 interacting partner also measured in the data.  We take the top 150 

proteins of differential expression ranked by pSAM as the gold positive set and the 

bottom 150 proteins of least differential expression as the gold negative set for the 

LOOCV test. 

We predict an unknown protein as differentially expressed if a portion of its 

interacting partners is measured as differentially expressed.  The precision of the 

prediction (true positive rate) increases as the majority of the interacting partners of an 

unknown protein is differentially expressed (the red curve in Figure 6.9a).  We next test 

the prediction based on gene expression changes.  As expected, gene expression is a 
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strong predictor of protein expression (the blue curve in Figure 6.9a).  However, the best 

prediction is made from the consensus of the predictions made based on gene expression 

alone and based on differential protein expression of the interacting partners, achieving a 

high true positive rate over 80% (the green curve in Figure 6.9a).   

 We further evaluate the feasibility of this integrated method by predicting the 

differential expression of the rest 7,877 unmeasured proteins in the interaction network.  

The enrichment of known cancer genes is used as the metric to benchmark the prediction 

performance (the list of cancer genes is assembled as described in Chapter 4).  The 

combination of comprehensive gene expression data, limited protein expression data and 

protein interaction networks outperforms the other two prediction methods, predicting a 

set of differentially expressed proteins where ~30% are cancer related genes (Figure 

6.9b).  Some example unmeasured proteins but predicted as differentially expressed 

include TP53, BRCA2, ERBB2, PIK3R1, and IKBK1. 
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Figure 6.1. A schematic diagram of a MS/MS experiment using iTRAQ and pSAM.  
(a) A iTRAQ molecule attaches to the N-terminus of a peptide. The proteins in each sample are 
first digested into peptides using trysin and labeled with individual iTRAQ reagent. Then the 
labeled peptides from several samples are pooled together and fractionated by LC following by 
MS/MS. (b) At MS1, for each time point, we select 15 peaks of the highest signal intensity from 
3 m/z windows and submit the peaks into MS2. A database search is then performed using the 
fragmentation data from MS2 to identify the labeled peptides and hence the corresponding 
proteins. The fragmentation of the attached iTRAQ tags generates a low molecular mass reporter 
ion that is used to relatively quantify the peptides which they originated. (c) The relative 
abundance of two reporter ions is first normalized to stabilize the intensity dependent variation. 
We sum up the normalized relative abundance of two samples at spectra level to peptides and 
then to a whole protein. The ratios of a protein across multiple MS/MS runs are then summarized 
to stabilize the between-run variation (see Section 6.3 for details). 
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Figure 6.2. Experimental designs of MS/MS experiments using (a) iTRAQ and (b) 16O/18O.  
(a) The peptide samples from aggressive CLL, indolent CLL and normal B cells are labeled with 
iTRAQ isotopes of reporter ion m/z at 114, 115, and 117, respectively. Five sets of iTRAQ 
experiments are performed and the peptide abundance is quantified using peak heights of the 
iTRAQ ions in MS2 spetra. (b) Two designs of MS1 quantification are analysed, pooled versus 
individual. The pooled design is using pooled samples of five aggressive/indolent CLLs whereas 
the individual design has every CLL sample labeled individually with a oxygen isotopes. Multiple 
replicates and dye swapping are performed. 
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Figure 6.3. Protein selection bias when using simple ratios or pSAM.  
Every data point is a protein in these scatter plots. The y-axis is either averaged log ratio across 
multiple runs (a-c) or pSAM s-score (d-f). The x-axis denotes natural protein abundance (number 
of spectrums), protein size (number of peptides), or the multiplication of the peak heights of the 
two reporter ions (log intensity). The pink areas circle out the proteins whose ratios are dramatic 
but s-scores are close to 0 whereas the green areas contain the proteins whose ratios are not 
interesting but s-scores are significant. 
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Figure 6.4. Comparisons of top proteins selected by MS1 and MS2 quantification.  
(a) Functional enrichment of top 100 proteins by NCBI DAVID analysis. Bars chart the number 
of significantly associated functional groups from the databases listed on the x-axis. (b) Rank of 
ZAP70 in each method. (c) Overlap of top 100 proteins selected by each method. Numbers are 
the proteins in common. (d) Overlap between top gene markers from mRNA data and top protein 
markers from MS data. Curves marked as “same direction” chart the percentage of top proteins 
whose gene expression are with the same direction of changes as protein expression between 
phenotypes whereas curves marked as “opposite direction” chart the percentage of those proteins 
whose gene expression change is inconsistent with the protein expression.  
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Figure 6.5. Differentially expressed proteins between the three classes of mature B-cells.  
(a) Left panel: Number are the proteins selected by pSAM at FDR = 30% for distinguishing 
different classes of mature B-cells. Right panel is a Venn diagram of the overlap and uniqueness 
of the protein groups in the left panel. (b) Distributions of protein p-values (red) from real iTRAQ 
data versus random data (blue).  
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Figure 6.6. HIP1R protein expression in newly diagnosed patients.  
(a) Immuno-blots of HIP1R and β-actin in the patient cohort used in the MS/MS experiments 
and in a new cohort for validation. (b-c) Survival analyses of the two risk groups of the new 
validation cohort defined by HIP1R protein expression or ZAP70 protein expression. (d) 
Correlation between HIP1R expression and trisomy 12 in the new patient cohort.  
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Figure 6.7. CD74 protein expression in newly diagnosed patients.  
Flow cytometry of CD74 in the patient cohort used in the MS/MS experiments (a) and in a new 
cohort for validation (b). (c) Survival analysis of the two risk groups of the validation cohort 
defined by CD74 expression (%CD74+ cells > 20 is called high expression). (d) Re-analysis of 
the qPCR and immune-blotting data of the patients of Rai stage I or II in Binsky et al.212. 

  



134 
 

   

 
Figure 6.8. Correlation between protein differential expression and physical interactions.  
(a) Significant subnetoworks of differentially expressed proteins between aggressive versus 
indolent CLLs (pSAM p-value ≤ 0.05). (b) The null distribution of r in random protein pairs (see 
Section 6.8).   
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Figure 6.9. Strategies for targeted proteomics.  
(a) LOOCV evaluation of prediction on differential expression of unmeasured proteins. The y-
axis represents the precision of the prediction and the x-axis represents the parameter values used 
in the classifiers (see Section 6.9). (b) The cancer gene enrichment of predicted differentially 
expressed proteins in each method. The y-axis represents the percent known cancer genes of the 
prediction and the x-axis represents the parameter values used in the classifiers (see Section 6.9).
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7. CONCLUSION

Deciphering the pathways that give rise to cancer development and progression 

involves dealing with the complex nature of the disease as it manifests itself in humans.  

Much progress experimentally is being made to develop high-throughput technologies in 

order to address this complexity from a holistic view of biological systems.  To 

understand the collaborative effects involving interactions of multiple genes within 

complex pathways and their contributions towards a phenotype, computational 

approaches are needed to simulate known biological systems for hypothesis testing and 

account for what is not known from high-throughput data sets.  Iterative systems 

approaches, connecting experimental data to computational approaches, provide deeper 

insights into human in vivo tumor behavior, and improve the development of better 

diagnostic and prognostic biomarkers for cancer.  In this study, we discuss several 

promising techniques for coping with these challenges.  In all, the proposed methods are 

not limited to cancer research, but are systems for studying complex genetic diseases. 

7.1 Pathway-based molecular diagnosis   

Protein interaction networks are a powerful framework for summarizing prior 

biological knowledge.  In Chapter 2, we first demonstrate the utility of incorporating 

protein interactions into gene expression profiling for better understanding of cancer and 

development of precise prognostics.  Gene expression profiles from large cohorts of 

patients are mapped to a huge human protein interaction network.  A search over this 

network is performed to identify discriminative subnetworks which could be used to 

assess the aggravation risk of a patient.   
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In Chapter 3, we identify protein interaction subnetworks with coherent 

expression patterns of their component genes, which can distinguish the samples of 

patients which developed distant metastasis after surgery from those that did not.  The 

subnetwork markers are more accurate in the classification of metastasis than the 

previous predictors and in the meantime provide potential insights into the molecular 

mechanisms involved in metastasis formation.  In addition, the vast majority of the 

selected subnetworks contain highly interconnected proteins encoded by genes that are 

previously identified for breast cancer susceptibility but absent in the established 

predictors, because they are not detected as differentially expressed. 

In Chapter 4, we develop a network-aided gene expression classification 

procedure to classify CLL progression status based on the activity of entire signaling 

pathways or protein complexes, rather than the expression levels of individual genes or 

proteins.  The identified subnetwork markers that can reliably predict the relative risk for 

disease progression from the time of sample collection outperform previous risk-

assessment markers on the prognosis of newly diagnosed patients.  We also find evidence 

that the subnetwork signatures may evolve over time, suggesting degenerate pathways 

implicated in cancer evolution. 

Besides de novo pathway reconstruction from protein interaction networks, we 

infer dynamic activity of canonical pathways for each patient based on the gene 

expression levels of condition-responsive gene in Chapter 5.  We demonstrate an 

advanced diagnostic based on the activity of entire pathways to improve the prognosis 
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accuracy of lung cancer, prostate cancer, breast cancer and acute leukemia and to 

facilitate the discovery of molecular mechanisms underlying disease. 

In summary, projection of gene expression profiles onto pathway databases or 

interaction networks is proving to be a powerful approach for understanding disease.  The 

goal is to identify biomarkers not as lists of individual genes or proteins, but as 

functionally-related groups of genes or proteins whose aggregate expression accounts for 

the phenotypic differences between the different populations of patients.  Conventional 

gene-expression analyses associate each individual of hundreds of genes with important 

parameters of cancer, but the functional correlations between the genes and the 

mechanisms of their control are largely unknown.  Unlike those single gene markers 

analyzed in isolation, the “diagnostic pathway markers” provide a strong biological 

interpretation for why the expression profile is associated with a particular type of 

disease.  The diagnostic pathways are more reproducible than single genes and can 

improve the prediction accuracy of disease states.  Dissecting cancer transcriptome in a 

network-assisted view have identified features that are more closely tethered to the 

biology of disease progression, allowing us to observe mechanisms governing cancer 

evolution.  At present, the success of network-based pathway identification and 

classification supports the notion that cancer is indeed a “disease of pathways”1, 213, and 

that the keys for understanding at least some of these pathways are encoded in the protein 

network. 

We believe this work is biologically significant and methodologically novel 

because of its integration of network analysis with microarray classification.  Both of 
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these areas have individually received a great deal of attention in systems biology.  

However, we are aware of few if any studies which use protein networks to improve 

classification accuracy.  Intuitively, one’s ability to classify gene expression profiles 

should indeed be improved by introducing new and relevant biological information.   

On the other hand, this study is preliminary and much work is needed before the 

approach can be translated into advanced diagnostics.  One useful direction will be to 

complement expression and pathway connectivity with other large-scale data sets 

including information on genetic perturbations, epigenetic regulation, signal transduction, 

transcriptional control, protein expression, metabolism and so on.  Integrating other types 

of genome-wide data holds further promise for determining cause and effect relationships 

within and between the degenerate pathways.  The network method PINNACLE 

described here can serve as a systematic and integrative framework for incorporating 

heterogeneous data and outputting predictions. 

Multiple improvements can also be made in terms of the computational 

perspective of PINNACLE.  Currently, the iterative exploration of the high-dimensional 

space of all possible protein subnetworks seeded at all nodes of a highly branched and 

interconnected network is achieved by the use of a greedy algorithm.  It is clearly that the 

identified subnetworks may be locally optimal at the discriminative power of disease 

classification and can be highly overlapped with each other.  With the ever-increasing 

high-performance computing power becoming available within laboratory workstations, 

one can imagine that some global optimization algorithms, such as simulated annealing42, 

can be incorporated to improve the subnetwork search procedure.  
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Moreover, a simple average is used to summarize member gene expression into 

subnetwork activity in this study.  A caveat is the cancel-out between up-regulated and 

down-regulated member genes when inhibition occurs within a pathway.  A more 

sophisticated mathematical function should be devised to capture the coherent 

dysregulation between genes and their suppressors.  Besides expression coherence 

between interacting proteins, another interesting direction is to focus on the dysregulation 

on the interaction itself.  For example, Taylor et al.40 proposed to measure changes in 

interaction “coherence” between member genes in a subnetwork under different 

phenotypes.  The interaction coherence in a sample was defined using the difference in 

expression of the central “hub” gene in a subnetwork with each of its interacting partners. 

Finally, it is clear that many real and functionally-relevant interactions are 

missing in current protein-protein interaction datasets.  Human interaction databases are 

growing dramatically through systematic yeast two-hybrid and transcriptional interaction 

screens214.  Increased coverage, quality, and variety of human protein interaction data 

will, in turn, enable further opportunities for molecular characterization of human 

disease.  Further insights can be expected from re-analysis of the same diseases as the 

data increase in coverage and quality. 

7.2 Protein biomarker identification   

The rise of proteomic technologies is particularly important to disease studies, 

because aberrations on the DNA level translate to the protein networks that perform 

cellular functions.  Chapter 6 addresses the cancer complexity from the proteomic angle.  

We develop a shotgun method to quantify protein expression correlated with progression 
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of CLL.  Our protein markers are more functionally related, consistent with gene 

expression and robust across patient cohorts.  We also find that protein differential 

expression is coherent with their interaction, enabling prediction of expression for 

unmeasured proteins in the shotgun experiments. 

This work is the first proteome-wide study for disease progression in CLL. We 

believe it is also the most complete one in terms of protein coverage in cancer studies up 

to date.  This work is biologically relevant because it identifies new prognostic protein 

markers that are not only associated with the pathways underlying the disease progression 

but also more robust than conventional methods of proteomic analysis.  Furthermore, the 

work is novel in its integration of protein quantification with network analysis.  We are 

aware of few if any studies which use protein networks to predict protein expression. 

This work demonstrates the feasibility of protein expression prediction from the 

integration of gene expression, protein expression and interaction network. 

Due to the uncharacterized systematic errors in MS systems, the proposed MS 

analysis pSAM quantifies the expression changes of a protein between two samples 

within a single MS experiment and then summarize the changes across multiple 

replicates, to adjust for large across-experiment variability.  However, it is desirable to be 

able to analyze data across multiple MS experiments since it allows studies to incorporate 

larger sample sizes, obtaining more accurate estimates of biological effects and thus 

having more power to detect meaningful differences.  One future direction on pSAM 

development is first to sort out experimental factors associated with the noise as 

comparing relative measurements.   Methods for controlling for sources of experimental 
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variation, such as analysis of variance (ANOVA)215, can then be used to correct for 

experimental variability for quantative MS method using iTRAQ. 

Our CLL proteomic study still concentrate on the selection of single protein 

markers.  It is clear that single biomarkers are unlikely to provide information about 

tissue type and malignant transformation throughout the various stages of tumor 

development and progression, as we discuss very much through this dissertation.  

However, assembling such a panel of protein biomarkers is quite a challenge given the 

incomplete protein coverage due to the detection limits of shotgun MS-based proteomics.  

More recently, targeted MS proteomics workflows have been introduced to allow the 

selective detection and quantification of predetermined peptide ions, which are analogous 

to mRNA profiling using DNA microarrays199, 216, 217.  A complement targeted MS 

experiment after shotgun MS proteomics is expected to increase the proteome coverage 

of the disease, if we know what peptides to measure in advance.  Our work here in 

prediction of protein differential expression from an integration of comprehensive gene 

expression profiles, limited protein expression profiles from shotgun proteomics, and 

protein interaction network can help narrow down the large probing space in the 

following targeted MS proteomics.  Increased coverage in quantitative MS methods will 

allow the possibility of joint learning between protein expression and other types of 

genome-wide data, in turn presenting opportunities in elucidating pathway dysregulation 

at translational level. 

    



 
 

143 

REFERENCES 

1. Hanahan, D. & Weinberg, R.A. The hallmarks of cancer. Cell 100, 57-70 (2000). 

2. Comprehensive genomic characterization defines human glioblastoma genes and 
core pathways. Nature 455, 1061-8 (2008). 

3. Ding, L. et al. Somatic mutations affect key pathways in lung adenocarcinoma. 
Nature 455, 1069-75 (2008). 

4. Parsons, D.W. et al. An integrated genomic analysis of human glioblastoma 
multiforme. Science 321, 1807-12 (2008). 

5. Mullighan, C.G. et al. Genome-wide analysis of genetic alterations in acute 
lymphoblastic leukaemia. Nature 446, 758-64 (2007). 

6. Ideker, T., Galitski, T. & Hood, L. A new approach to decoding life: systems 
biology. Annu Rev Genomics Hum Genet 2, 343-72 (2001). 

7. Kitano, H. Systems biology: a brief overview. Science 295, 1662-4 (2002). 

8. Lander, E.S. et al. Initial sequencing and analysis of the human genome. Nature 
409, 860-921 (2001). 

9. Venter, J.C. et al. The sequence of the human genome. Science 291, 1304-51 
(2001). 

10. Schena, M., Shalon, D., Davis, R.W. & Brown, P.O. Quantitative monitoring of 
gene expression patterns with a complementary DNA microarray. Science 270, 
467-70 (1995). 

11. Ren, B. et al. Genome-wide location and function of DNA binding proteins. 
Science 290, 2306-9 (2000). 

12. Chaurand, P., DaGue, B.B., Pearsall, R.S., Threadgill, D.W. & Caprioli, R.M. 
Profiling proteins from azoxymethane-induced colon tumors at the molecular 
level by matrix-assisted laser desorption/ionization mass spectrometry. 
Proteomics 1, 1320-6 (2001). 

13. Chuang, H.-Y., Hofree, M. & Ideker, T. A Decade of Systems Biology. Annual 
Review of Cell and Developmental Biology 26, In press (2010). 

14. Golub, T.R. et al. Molecular classification of cancer: class discovery and class 
prediction by gene expression monitoring. Science 286, 531-7 (1999). 



144 
 

   

15. van 't Veer, L.J. et al. Gene expression profiling predicts clinical outcome of 
breast cancer. Nature 415, 530-6 (2002). 

16. Lamb, J. et al. The Connectivity Map: using gene-expression signatures to 
connect small molecules, genes, and disease. Science 313, 1929-35 (2006). 

17. Tomlins, S.A. et al. Recurrent fusion of TMPRSS2 and ETS transcription factor 
genes in prostate cancer. Science 310, 644-8 (2005). 

18. Yao, J. et al. Combined cDNA array comparative genomic hybridization and 
serial analysis of gene expression analysis of breast tumor progression. Cancer 
Res 66, 4065-78 (2006). 

19. Adler, A.S. et al. Genetic regulators of large-scale transcriptional signatures in 
cancer. Nat Genet 38, 421-30 (2006). 

20. Bild, A.H. et al. Oncogenic pathway signatures in human cancers as a guide to 
targeted therapies. Nature 439, 353-7 (2006). 

21. Ein-Dor, L., Kela, I., Getz, G., Givol, D. & Domany, E. Outcome signature genes 
in breast cancer: is there a unique set? Bioinformatics 21, 171-8 (2005). 

22. Sotiriou, C. & Piccart, M.J. Taking gene-expression profiling to the clinic: when 
will molecular signatures become relevant to patient care? Nat Rev Cancer 7, 
545-53 (2007). 

23. Wang, Y. et al. Gene-expression profiles to predict distant metastasis of lymph-
node-negative primary breast cancer. Lancet 365, 671-9 (2005). 

24. Calvano, S.E. et al. A network-based analysis of systemic inflammation in 
humans. Nature 437, 1032-7 (2005). 

25. Chuang, H.Y., Lee, E., Liu, Y.T., Lee, D. & Ideker, T. Network-based 
classification of breast cancer metastasis. Mol Syst Biol 3, 140 (2007). 

26. Doniger, S.W. et al. MAPPFinder: using Gene Ontology and GenMAPP to create 
a global gene-expression profile from microarray data. Genome Biol 4, R7 (2003). 

27. Draghici, S., Khatri, P., Martins, R.P., Ostermeier, G.C. & Krawetz, S.A. Global 
functional profiling of gene expression. Genomics 81, 98-104 (2003). 

28. Lee, E., Chuang, H.Y., Kim, J.W., Ideker, T. & Lee, D. Inferring pathway activity 
toward precise disease classification. PLoS Comput Biol 4, e1000217 (2008). 

29. Pavlidis, P., Qin, J., Arango, V., Mann, J.J. & Sibille, E. Using the gene ontology 
for microarray data mining: a comparison of methods and application to age 
effects in human prefrontal cortex. Neurochem Res 29, 1213-22 (2004). 



145 
 

   

30. Tian, L. et al. Discovering statistically significant pathways in expression 
profiling studies. Proc Natl Acad Sci U S A 102, 13544-9 (2005). 

31. Wei, Z. & Li, H. A Markov Random Field Model for Network-based Analysis of 
Genomic Data. Bioinformatics (2007). 

32. Nibbe, R.K., Markowitz, S., Myeroff, L., Ewing, R. & Chance, M.R. Discovery 
and scoring of protein interaction subnetworks discriminative of late stage human 
colon cancer. Mol Cell Proteomics 8, 827-45 (2009). 

33. Ulitsky, I., Karp, R.M. & Shamir, R. Detecting disease-specific dysregulated 
pathways via analysis of clinical expression profiles. Lecture Notes in Computer 
Science 4955, 347 (2008). 

34. Breslin, T., Krogh, M., Peterson, C. & Troein, C. Signal transduction pathway 
profiling of individual tumor samples. BMC Bioinformatics 6, 163 (2005). 

35. Li, L. et al. A robust hybrid between genetic algorithm and support vector 
machine for extracting an optimal feature gene subset. Genomics 85, 16-23 
(2005). 

36. Ma, X., Lee, H., Wang, L. & Sun, F. CGI: a new approach for prioritizing genes 
by combining gene expression and protein-protein interaction data. 
Bioinformatics 23, 215-21 (2007). 

37. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based 
approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U 
S A 102, 15545-50 (2005). 

38. Tuck, D.P., Kluger, H.M. & Kluger, Y. Characterizing disease states from 
topological properties of transcriptional regulatory networks. BMC Bioinformatics 
7, 236 (2006). 

39. Vert, J.P. & Kanehisa, M. Extracting active pathways from gene expression data. 
Bioinformatics 19 Suppl 2, ii238-44 (2003). 

40. Taylor, I.W. et al. Dynamic modularity in protein interaction networks predicts 
breast cancer outcome. Nat Biotechnol 27, 199-204 (2009). 

41. Chen, J. & Yuan, B. Detecting functional modules in the yeast protein-protein 
interaction network. Bioinformatics 22, 2283-90 (2006). 

42. Ideker, T., Ozier, O., Schwikowski, B. & Siegel, A.F. Discovering regulatory and 
signalling circuits in molecular interaction networks. Bioinformatics 18 Suppl 1, 
S233-40 (2002). 



146 
 

   

43. Sharan, R. et al. Conserved patterns of protein interaction in multiple species. 
Proc Natl Acad Sci U S A 102, 1974-9 (2005). 

44. Peri, S. et al. Development of human protein reference database as an initial 
platform for approaching systems biology in humans. Genome Res 13, 2363-71 
(2003). 

45. Ramani, A.K., Bunescu, R.C., Mooney, R.J. & Marcotte, E.M. Consolidating the 
set of known human protein-protein interactions in preparation for large-scale 
mapping of the human interactome. Genome Biol 6, R40 (2005). 

46. Rual, J.F. et al. Towards a proteome-scale map of the human protein-protein 
interaction network. Nature 437, 1173-8 (2005). 

47. Stelzl, U. et al. A human protein-protein interaction network: a resource for 
annotating the proteome. Cell 122, 957-68 (2005). 

48. Chung, C.H., Bernard, P.S. & Perou, C.M. Molecular portraits and the family tree 
of cancer. Nat Genet 32 Suppl, 533-40 (2002). 

49. Asyali, M.H., Colak, D., Demirkaya, O. & Inan, M.S. Gene Expression Profile 
Classification: A Review. Current Bioinformatics 1, 55-73 (2006). 

50. Quackenbush, J. Microarray analysis and tumor classification. N Engl J Med 354, 
2463-72 (2006). 

51. Cheang, M.C.U., van de Rijn, M. & Nielsen, T.O. Gene Expression Profiling of 
Breast Cancer. The Annual Review of Pathology: Mechanisms of Disease 3, 67-97 
(2008). 

52. Butte, A.J. & Kohane, I.S. Creation and implications of a phenome-genome 
network. Nat Biotechnol 24, 55-62 (2006). 

53. Ramaswamy, S., Ross, K.N., Lander, E.S. & Golub, T.R. A molecular signature 
of metastasis in primary solid tumors. Nat Genet 33, 49-54 (2003). 

54. Rhodes, D.R. et al. Large-scale meta-analysis of cancer microarray data identifies 
common transcriptional profiles of neoplastic transformation and progression. 
Proc Natl Acad Sci U S A 101, 9309-14 (2004). 

55. Tomlins, S.A. et al. Integrative molecular concept modeling of prostate cancer 
progression. Nat Genet 39, 41-51 (2007). 

56. Draghici, S. et al. Onto-Tools, the toolkit of the modern biologist: Onto-Express, 
Onto-Compare, Onto-Design and Onto-Translate. Nucleic Acids Res 31, 3775-81 
(2003). 



147 
 

   

57. Gene Ontology Database (GO), http://www.geneontology.org/. 

58. Kim, R.D. & Park, P.J. Improving identification of differentially expressed genes 
in microarray studies using information from public databases. Genome Biol 5, 
R70 (2004). 

59. Pavlidis, P., Li, Q. & Noble, W.S. The effect of replication on gene expression 
microarray experiments. Bioinformatics 19, 1620-7 (2003). 

60. Ein-Dor, L., Zuk, O. & Domany, E. Thousands of samples are needed to generate 
a robust gene list for predicting outcome in cancer. Proc Natl Acad Sci U S A 103, 
5923-8 (2006). 

61. Mootha, V.K. et al. PGC-1alpha-responsive genes involved in oxidative 
phosphorylation are coordinately downregulated in human diabetes. Nat Genet 
34, 267-73 (2003). 

62. Monti, S. et al. Molecular profiling of diffuse large B-cell lymphoma identifies 
robust subtypes including one characterized by host inflammatory response. 
Blood 105, 1851-61 (2005). 

63. Segal, E., Friedman, N., Koller, D. & Regev, A. A module map showing 
conditional activity of expression modules in cancer. Nat Genet 36, 1090-8 
(2004). 

64. Efroni, S., Schaefer, C.F. & Buetow, K.H. Identification of key processes 
underlying cancer phenotypes using biologic pathway analysis. PLoS ONE 2, 
e425 (2007). 

65. Svensson, J.P. et al. Analysis of gene expression using gene sets discriminates 
cancer patients with and without late radiation toxicity. PLoS Med 3, e422 (2006). 

66. Glinsky, G.V., Berezovska, O. & Glinskii, A.B. Microarray analysis identifies a 
death-from-cancer signature predicting therapy failure in patients with multiple 
types of cancer. J Clin Invest 115, 1503-21 (2005). 

67. Matyus, L. Fluorescence resonance energy transfer measurements on cell 
surfaces. A spectroscopic tool for determining protein interactions. J Photochem 
Photobiol B 12, 323-37 (1992). 

68. Fields, S. & Sternglanz, R. The two-hybrid system: an assay for protein-protein 
interactions. Trends Genet 10, 286-92 (1994). 

69. Gavin, A.C. et al. Functional organization of the yeast proteome by systematic 
analysis of protein complexes. Nature 415, 141-7 (2002). 



148 
 

   

70. Cusick, M.E. et al. Literature-curated protein interaction datasets. Nat Methods 6, 
39-46 (2009). 

71. Rain, J.C. et al. The protein-protein interaction map of Helicobacter pylori. 
Nature 409, 211-5 (2001). 

72. Butland, G. et al. Interaction network containing conserved and essential protein 
complexes in Escherichia coli. Nature 433, 531-7 (2005). 

73. Ho, Y. et al. Systematic identification of protein complexes in Saccharomyces 
cerevisiae by mass spectrometry. Nature 415, 180-3 (2002). 

74. Ito, T. et al. A comprehensive two-hybrid analysis to explore the yeast protein 
interactome. Proc Natl Acad Sci U S A 98, 4569-74 (2001). 

75. Uetz, P. et al. A comprehensive analysis of protein-protein interactions in 
Saccharomyces cerevisiae. Nature 403, 623-7 (2000). 

76. Li, S. et al. A map of the interactome network of the metazoan C. elegans. Science 
303, 540-3 (2004). 

77. Giot, L. et al. A protein interaction map of Drosophila melanogaster. Science 302, 
1727-36 (2003). 

78. Bouwmeester, T. et al. A physical and functional map of the human TNF-
alpha/NF-kappa B signal transduction pathway. Nat Cell Biol 6, 97-105 (2004). 

79. Shannon, P. et al. Cytoscape: a software environment for integrated models of 
biomolecular interaction networks. Genome Res 13, 2498-504 (2003). 

80. Brown, K.R. et al. NAViGaTOR: Network Analysis, Visualization and Graphing 
Toronto. Bioinformatics 25, 3327-9 (2009). 

81. Hu, Z., Snitkin, E.S. & DeLisi, C. VisANT: an integrative framework for 
networks in systems biology. Brief Bioinform 9, 317-25 (2008). 

82. Alfarano, C. et al. The Biomolecular Interaction Network Database and related 
tools 2005 update. Nucleic Acids Res 33, D418-24 (2005). 

83. Bader, G.D., Betel, D. & Hogue, C.W. BIND: the Biomolecular Interaction 
Network Database. Nucleic Acids Res 31, 248-50 (2003). 

84. Joshi-Tope, G. et al. Reactome: a knowledgebase of biological pathways. Nucleic 
Acids Res 33, D428-32 (2005). 

85. Matys, V. et al. TRANSFAC and its module TRANSCompel: transcriptional gene 
regulation in eukaryotes. Nucleic Acids Res 34, D108-10 (2006). 



149 
 

   

86. Stark, C. et al. BioGRID: a general repository for interaction datasets. Nucleic 
Acids Res 34, D535-9 (2006). 

87. Tourassi, G.D., Frederick, E.D., Markey, M.K. & Carey E. Floyd, J. Application 
of the mutual information criterion for feature selection in computer-aided 
diagnosis. Medical Physics 28, 2394-2402 (2001). 

88. Fisher, R.A. Applications of “Student's” distribution. Metron 5, 90-104 (1925). 

89. Corder, G.W. & Foreman, D.I. Nonparametric Statistics for Non-Statisticians: A 
Step-by-Step Approach (Wiley, New Jersey, 2009). 

90. Rodgers, J.L. & Nicewander, W.A. Thirteen ways to look at the correlation 
coefficient. The American Statistician 42, 59-66 (1988). 

91. Chen, P.Y. & Popovich, P.M. Correlation: Parametric and nonparametric 
measures (Sage Publications, Thousand Oaks, CA, 2002). 

92. Collett, D. Modelling survival data in medical research (Chapman & Hall/CRC, 
2003). 

93. Gersten, M. et al. An integrated systems analysis implicates EGR1 
downregulation in simian immunodeficiency virus encephalitis-induced neural 
dysfunction. J Neurosci 29, 12467-76 (2009). 

94. Weigelt, B., Peterse, J.L. & van 't Veer, L.J. Breast cancer metastasis: markers 
and models. Nat Rev Cancer 5, 591-602 (2005). 

95. Alizadeh, A.A. et al. Distinct types of diffuse large B-cell lymphoma identified by 
gene expression profiling. Nature 403, 503-11 (2000). 

96. Ben-Dor, A. et al. Tissue classification with gene expression profiles. J Comput 
Biol 7, 559-83 (2000). 

97. Symmans, W.F., Liu, J., Knowles, D.M. & Inghirami, G. Breast cancer 
heterogeneity: evaluation of clonality in primary and metastatic lesions. Hum 
Pathol 26, 210-6 (1995). 

98. Pavlidis, P., Lewis, D.P. & Noble, W.S. Exploring gene expression data with 
class scores. Pac Symp Biocomput, 474-85 (2002). 

99. Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y. & Hattori, M. The KEGG 
resource for deciphering the genome. Nucleic Acids Res 32, D277-80 (2004). 

100. Rapaport, F., Zinovyev, A., Dutreix, M., Barillot, E. & Vert, J.P. Classification of 
microarray data using gene networks. BMC Bioinformatics 8, 35 (2007). 



150 
 

   

101. Mendelsohn, A.R. & Brent, R. Protein interaction methods--toward an endgame. 
Science 284, 1948-50 (1999). 

102. Segal, E. et al. Module networks: identifying regulatory modules and their 
condition-specific regulators from gene expression data. Nat Genet 34, 166-76 
(2003). 

103. Nikitin, A., Egorov, S., Daraselia, N. & Mazo, I. Pathway studio--the analysis and 
navigation of molecular networks. Bioinformatics 19, 2155-7 (2003). 

104. van de Vijver, M.J. et al. A gene-expression signature as a predictor of survival in 
breast cancer. N Engl J Med 347, 1999-2009 (2002). 

105. Tourassi, G.D., Frederick, E.D., Markey, M.K. & Carey E. Floyd, J. Application 
of the mutual information criterion for feature selection in computer-aided 
diagnosis. Medical Physics 28, 2394-2402 (2001). 

106. Goebel BD, Z., Hagenauer, J. & Mueller, J.C. An Approximation to the 
Distribution of Finite Sample Size Mutual Information Estimates. IEEE 
Internatioanl Conference on Communications (2005). 

107. Mak, H.C., Daly, M., Gruebel, B. & Ideker, T. CellCircuits: a database of protein 
network models. Nucleic Acids Res 35, D538-45 (2007). 

108. Agresti, A. Categorical data analysis (New York: Wiley, 1990). 

109. Swets, J.A., Dawes, R. & Monahan, J. Psychological Science Can Improve 
Diagnostic Decisions. Psychological Science in the Public Interest 1 (2000). 

110. Chang, C.-C. & Lin, C.-J. Software available at 
http://www.csie.ntu.edu.tw/~cjlin/libsvm (2001). 

111. Molecular Signatures Database (MSigDB), 
http://www.broadinstitute.org/gsea/msigdb/collections.jsp#C2. 

112. Turner, N., Tutt, A. & Ashworth, A. Hallmarks of 'BRCAness' in sporadic 
cancers. Nat Rev Cancer 4, 814-9 (2004). 

113. Kang, Y. et al. Breast cancer bone metastasis mediated by the Smad tumor 
suppressor pathway. Proc Natl Acad Sci U S A 102, 13909-14 (2005). 

114. Bachman, K.E. et al. The PIK3CA gene is mutated with high frequency in human 
breast cancers. Cancer Biol Ther 3, 772-5 (2004). 

115. Campbell, I.G. et al. Mutation of the PIK3CA gene in ovarian and breast cancer. 
Cancer Res 64, 7678-81 (2004). 

http://www.csie.ntu.edu.tw/~cjlin/libsvm�


151 
 

   

116. de Jong, M.M. et al. Genes other than BRCA1 and BRCA2 involved in breast 
cancer susceptibility. J Med Genet 39, 225-42 (2002). 

117. Lymberis, S.C., Parhar, P.K., Katsoulakis, E. & Formenti, S.C. 
Pharmacogenomics and breast cancer. Pharmacogenomics 5, 31-55 (2004). 

118. Online Mendelian Inheritance in Man, O.T. McKusick-Nathans Institute for 
Genetic Medicine, Johns Hopkins University (Baltimore, MD) and National 
Center for Biotechnology Information, National Library of Medicine (Bethesda, 
MD), {6/30/2006}. http://www.ncbi.nlm.nih.gov/omim/  

119. Sjoblom, T. et al. The Consensus Coding Sequences of Human Breast and 
Colorectal Cancers. Science (2006). 

120. Hallek, M. et al. Guidelines for the diagnosis and treatment of chronic 
lymphocytic leukemia: a report from the International Workshop on Chronic 
Lymphocytic Leukemia updating the National Cancer Institute-Working Group 
1996 guidelines. Blood 111, 5446-56 (2008). 

121. Fais, F. et al. Chronic lymphocytic leukemia B cells express restricted sets of 
mutated and unmutated antigen receptors. J Clin Invest 102, 1515-25 (1998). 

122. Damle, R.N. et al. Ig V gene mutation status and CD38 expression as novel 
prognostic indicators in chronic lymphocytic leukemia. Blood 94, 1840-7 (1999). 

123. Hamblin, T.J., Davis, Z., Gardiner, A., Oscier, D.G. & Stevenson, F.K. 
Unmutated Ig V(H) genes are associated with a more aggressive form of chronic 
lymphocytic leukemia. Blood 94, 1848-54 (1999). 

124. Chen, L. et al. Expression of ZAP-70 is associated with increased B-cell receptor 
signaling in chronic lymphocytic leukemia. Blood 100, 4609-14 (2002). 

125. Crespo, M. et al. ZAP-70 expression as a surrogate for immunoglobulin-variable-
region mutations in chronic lymphocytic leukemia. N Engl J Med 348, 1764-75 
(2003). 

126. Orchard, J.A. et al. ZAP-70 expression and prognosis in chronic lymphocytic 
leukaemia. Lancet 363, 105-11 (2004). 

127. Rassenti, L.Z. et al. ZAP-70 compared with immunoglobulin heavy-chain gene 
mutation status as a predictor of disease progression in chronic lymphocytic 
leukemia. N Engl J Med 351, 893-901 (2004). 

128. Rassenti, L.Z. et al. Relative value of ZAP-70, CD38, and immunoglobulin 
mutation status in predicting aggressive disease in chronic lymphocytic leukemia. 
Blood 112, 1923-30 (2008). 

http://www.ncbi.nlm.nih.gov/omim/�


152 
 

   

129. Stamatopoulos, B. et al. Quantification of ZAP70 mRNA in B cells by real-time 
PCR is a powerful prognostic factor in chronic lymphocytic leukemia. Clin Chem 
53, 1757-66 (2007). 

130. Bilban, M. et al. Deregulated expression of fat and muscle genes in B-cell chronic 
lymphocytic leukemia with high lipoprotein lipase expression. Leukemia 20, 
1080-8 (2006). 

131. Heintel, D. et al. High expression of lipoprotein lipase in poor risk B-cell chronic 
lymphocytic leukemia. Leukemia 19, 1216-23 (2005). 

132. Huttmann, A. et al. Gene expression signatures separate B-cell chronic 
lymphocytic leukaemia prognostic subgroups defined by ZAP-70 and CD38 
expression status. Leukemia 20, 1774-82 (2006). 

133. Nuckel, H. et al. Lipoprotein lipase expression is a novel prognostic factor in B-
cell chronic lymphocytic leukemia. Leuk Lymphoma 47, 1053-61 (2006). 

134. Oppezzo, P. et al. The LPL/ADAM29 expression ratio is a novel prognosis 
indicator in chronic lymphocytic leukemia. Blood 106, 650-7 (2005). 

135. van't Veer, M.B. et al. The predictive value of lipoprotein lipase for survival in 
chronic lymphocytic leukemia. Haematologica 91, 56-63 (2006). 

136. Haslinger, C. et al. Microarray gene expression profiling of B-cell chronic 
lymphocytic leukemia subgroups defined by genomic aberrations and VH 
mutation status. J Clin Oncol 22, 3937-49 (2004). 

137. Klein, U. et al. Gene expression profiling of B cell chronic lymphocytic leukemia 
reveals a homogeneous phenotype related to memory B cells. J Exp Med 194, 
1625-38 (2001). 

138. Pepper, C. et al. Highly purified CD38+ and CD38- sub-clones derived from the 
same chronic lymphocytic leukemia patient have distinct gene expression 
signatures despite their monoclonal origin. Leukemia 21, 687-96 (2007). 

139. Rosenwald, A. et al. Relation of gene expression phenotype to immunoglobulin 
mutation genotype in B cell chronic lymphocytic leukemia. J Exp Med 194, 1639-
47 (2001). 

140. Schroers, R. et al. Combined analysis of ZAP-70 and CD38 expression as a 
predictor of disease progression in B-cell chronic lymphocytic leukemia. 
Leukemia 19, 750-8 (2005). 

141. Vasconcelos, Y. et al. Gene expression profiling of chronic lymphocytic leukemia 
can discriminate cases with stable disease and mutated Ig genes from those with 
progressive disease and unmutated Ig genes. Leukemia 19, 2002-5 (2005). 



153 
 

   

142. Fernandez, V. et al. Gene expression profile and genomic changes in disease 
progression of early-stage chronic lymphocytic leukemia. Haematologica 93, 
132-6 (2008). 

143. Stratowa, C. et al. CDNA microarray gene expression analysis of B-cell chronic 
lymphocytic leukemia proposes potential new prognostic markers involved in 
lymphocyte trafficking. Int J Cancer 91, 474-80 (2001). 

144. Kohlmann A, K.T., Rassenti LZ, Downing JR, Shurtleff SA, Mills KI, Gilkes AF, 
Hofmann WK, Basso G, Dell'orto MC, Foà R, Chiaretti S, De Vos J, Rauhut S, 
Papenhausen PR, Hernández JM, Lumbreras E, Yeoh AE, Koay ES, Li R, Liu 
WM, Williams PM, Wieczorek L, Haferlach T. An international standardization 
programme towards the application of gene expression profiling in routine 
leukaemia diagnostics: the Microarray Innovations in LEukemia study prephase. 
Br J Haematol 142, 802-807 (2008). 

145. Kohlmann, A. et al. An international standardization programme towards the 
application of gene expression profiling in routine leukaemia diagnostics: the 
Microarray Innovations in LEukemia study prephase. Br J Haematol 142, 802-
807 (2008). 

146. Haferlach, T. et al. Clinical Utility of Microarray-Based Gene Expression 
Profiling in the Diagnosis and Subclassification of Leukemia: Report From the 
International Microarray Innovations in Leukemia Study Group. J Clin Oncol 
(2010). 

147. Bader GD, D.I., Wolting C, Ouellette BF, Pawson T, Hogue CW. BIND--The 
Biomolecular Interaction Network Database. Nucleic Acids Res 29, 242-245 
(2001). 

148. Lu, D. et al. Activation of the Wnt signaling pathway in chronic lymphocytic 
leukemia. Proc Natl Acad Sci U S A 101, 3118-23 (2004). 

149. Danilov, A.V., Danilova, O.V., Klein, A.K. & Huber, B.T. Molecular 
pathogenesis of chronic lymphocytic leukemia. Curr Mol Med 6, 665-75 (2006). 

150. Franks SE, S.M., Arias-Mendoza F, Shaller C, Padavic-Shaller K, Kappler F, 
Zhang Y, Negendank WG, Brown TR. Phosphomonoester concentrations differ 
between chronic lymphocytic leukemia cells and normal human lymphocytes 
Leukemia research 26, 919-926 (2002). 

151. Franks, S.E. et al. Phosphomonoester concentrations differ between chronic 
lymphocytic leukemia cells and normal human lymphocytes Leukemia research 
26, 919-926 (2002). 



154 
 

   

152. Friedman, D.R. et al. A genomic approach to improve prognosis and predict 
therapeutic response in chronic lymphocytic leukemia. Clin Cancer Res 15, 6947-
55 (2009). 

153. Tibshirani, R., Hastie, T., Narasimhan, B. & Chu, G. Diagnosis of multiple cancer 
types by shrunken centroids of gene expression. Proc Natl Acad Sci U S A 99, 
6567-6572 (2002). 

154. Pfaffl, M.W. A new mathematical model for relative quantification in real-time 
RT-PCR. Nucleic Acids Res 29, e45 (2001). 

155. Seger R, K.E. The MAPK signaling cascade. FASEB J 9, 726-735 (1995). 

156. Seger, R. & Krebs, E.G. The MAPK signaling cascade. FASEB J 9, 726-735 
(1995). 

157. Dancey J, S.E. Issues and progress with protein kinase inhibitors for cancer 
treatment. Nat Rev Drug Discov 2, 296-313 (2003). 

158. Dancey, J. & Sausville, E.A. Issues and progress with protein kinase inhibitors for 
cancer treatment. Nat Rev Drug Discov 2, 296-313 (2003). 

159. Platanias LC. Map kinase signaling pathways and hematologic malignancies. 
Blood 101, 4667-4679 (2003). 

160. Platanias, L.C. Map kinase signaling pathways and hematologic malignancies. 
Blood 101, 4667-4679 (2003). 

161. Bierie, B. & Moses, H.L. TGF-beta and cancer. Cytokine Growth Factor Rev 17, 
29 (2006). 

162. Douglas RS, C.R., Lamb RJ, Nowell PC, Moore JS. Chronic lymphocytic 
leukemia B cells are resistant to the apoptotic effects of transforming growth 
factor-beta. Blood 89, 941-947 (1997). 

163. Douglas, R.S., Capocasale, R.J., Lamb, R.J., Nowell, P.C. & Moore, J.S. Chronic 
lymphocytic leukemia B cells are resistant to the apoptotic effects of transforming 
growth factor-beta. Blood 89, 941-947 (1997). 

164. Lotz, M., Ranheim, E. & Kipps, T.J. Transforming growth factor beta as 
endogenous growth inhibitor of chronic lymphocytic leukemia B cells. J Exp Med 
179, 999-1004 (1994). 

165. Carlucci, F. et al. A 57-gene expression signature in B-cell chronic lymphocytic 
leukemia. Biomed Pharmacother 63, 663-71 (2009). 



155 
 

   

166. Kaufman, M., Rubin, J. & Rai, K. Diagnosing and treating chronic lymphocytic 
leukemia in 2009. Oncology (Williston Park) 23, 1030-7 (2009). 

167. Bair E, T.R. Semi-supervised methods to predict patient survival from gene 
expression data. PLoS Biol. 2, e108 (2004). 

168. Bair, E. & Tibshirani, R. Semi-supervised methods to predict patient survival 
from gene expression data. PLoS Biol. 2, e108 (2004). 

169. Merlo LM, P.J., Reid BJ, Maley CC. Cancer as an evolutionary and ecological 
process. Nat Rev Cancer 6, 924-935 (2006). 

170. Merlo, L.M., Pepper, J.W., Reid, B.J. & Maley, C.C. Cancer as an evolutionary 
and ecological process. Nat Rev Cancer 6, 924-935 (2006). 

171. Saeys, Y., Inza, I. & Larranaga, P. A review of feature selection techniques in 
bioinformatics. Bioinformatics (2007). 

172. Guo, Z. et al. Towards precise classification of cancers based on robust gene 
functional expression profiles. BMC Bioinformatics 6, 58 (2005). 

173. Tian, B., Nowak, D.E., Jamaluddin, M., Wang, S. & Brasier, A.R. Identification 
of direct genomic targets downstream of the nuclear factor-kappaB transcription 
factor mediating tumor necrosis factor signaling. J Biol Chem 280, 17435-48 
(2005). 

174. Lapointe, J. et al. Gene expression profiling identifies clinically relevant subtypes 
of prostate cancer. Proc Natl Acad Sci U S A 101, 811-6 (2004). 

175. Yeoh, E.J. et al. Classification, subtype discovery, and prediction of outcome in 
pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 
1, 133-43 (2002). 

176. Beer, D.G. et al. Gene-expression profiles predict survival of patients with lung 
adenocarcinoma. Nat Med 8, 816-24 (2002). 

177. Bhattacharjee, A. et al. Classification of human lung carcinomas by mRNA 
expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad 
Sci U S A 98, 13790-5 (2001). 

178. Fisher, R.A. Applications of "Student's" distribution (1925). 

179. Mani, K.M. et al. A systems biology approach to prediction of oncogenes and 
molecular perturbation targets in B-cell lymphomas. Mol Syst Biol 4, 169 (2008). 

180. Guo, Z. et al. Towards precise classification of cancers based on robust gene 
functional expression profiles. BMC Bioinformatics 6, 58 (2005). 



156 
 

   

181. Gambhir, S.S. Molecular imaging of cancer with positron emission tomography. 
Nat Rev Cancer 2, 683-93 (2002). 

182. Gatenby, R.A. & Gillies, R.J. Why do cancers have high aerobic glycolysis? Nat 
Rev Cancer 4, 891-9 (2004). 

183. Gatenby, R.A. & Gillies, R.J. Glycolysis in cancer: a potential target for therapy. 
Int J Biochem Cell Biol 39, 1358-66 (2007). 

184. Banka, C.L. et al. Estrogen induces lung metastasis through a host compartment-
specific response. Cancer Res 66, 3667-72 (2006). 

185. Ong, S.E., Foster, L.J. & Mann, M. Mass spectrometric-based approaches in 
quantitative proteomics. Methods 29, 124-30 (2003). 

186. Cox, J. & Mann, M. Is proteomics the new genomics? Cell 130, 395-8 (2007). 

187. Deutsch, E.W., Lam, H. & Aebersold, R. Data analysis and bioinformatics tools 
for tandem mass spectrometry in proteomics. Physiol Genomics 33, 18-25 (2008). 

188. Hilario, M. & Kalousis, A. Approaches to dimensionality reduction in proteomic 
biomarker studies. Brief Bioinform 9, 102-18 (2008). 

189. Gulcicek, E.E. et al. Proteomics and the analysis of proteomic data: an overview 
of current protein-profiling technologies. Curr Protoc Bioinformatics Chapter 
13, Unit 13 1 (2005). 

190. Yao, X., Freas, A., Ramirez, J., Demirev, P.A. & Fenselau, C. Proteolytic 18O 
labeling for comparative proteomics: model studies with two serotypes of 
adenovirus. Anal Chem 73, 2836-42 (2001). 

191. Gygi, S.P. et al. Quantitative analysis of complex protein mixtures using isotope-
coded affinity tags. Nat Biotechnol 17, 994-9 (1999). 

192. Ong, S.E. & Mann, M. A practical recipe for stable isotope labeling by amino 
acids in cell culture (SILAC). Nat Protoc 1, 2650-60 (2006). 

193. Boehm, A.M., Putz, S., Altenhofer, D., Sickmann, A. & Falk, M. Precise protein 
quantification based on peptide quantification using iTRAQ. BMC Bioinformatics 
8, 214 (2007). 

194. Ross, P.L. et al. Multiplexed protein quantitation in Saccharomyces cerevisiae 
using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3, 1154-69 
(2004). 

195. Hanash, S.M., Pitteri, S.J. & Faca, V.M. Mining the plasma proteome for cancer 
biomarkers. Nature 452, 571-9 (2008). 



157 
 

   

196. Sun, Y. et al. Quantitative proteomic signature of liver cancer cells: tissue 
transglutaminase 2 could be a novel protein candidate of human hepatocellular 
carcinoma. J Proteome Res 7, 3847-59 (2008). 

197. Chen, R. et al. Quantitative proteomics analysis reveals that proteins differentially 
expressed in chronic pancreatitis are also frequently involved in pancreatic 
cancer. Mol Cell Proteomics 6, 1331-42 (2007). 

198. Wright, J.C. & Hubbard, S.J. Recent developments in proteome informatics for 
mass spectrometry analysis. Comb Chem High Throughput Screen 12, 194-202 
(2009). 

199. Malmstrom, J., Lee, H. & Aebersold, R. Advances in proteomic workflows for 
systems biology. Curr Opin Biotechnol 18, 378-84 (2007). 

200. Gstaiger, M. & Aebersold, R. Applying mass spectrometry-based proteomics to 
genetics, genomics and network biology. Nat Rev Genet 10, 617-27 (2009). 

201. Wolters, D.A., Washburn, M.P. & Yates, J.R., 3rd. An automated 
multidimensional protein identification technology for shotgun proteomics. Anal 
Chem 73, 5683-90 (2001). 

202. Mason, C.J. et al. A method for automatically interpreting mass spectra of 18O-
labeled isotopic clusters. Mol Cell Proteomics 6, 305-18 (2007). 

203. Thompson, A. et al. Tandem mass tags: a novel quantification strategy for 
comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75, 
1895-904 (2003). 

204. Smyth, G.K. & Speed, T. Normalization of cDNA microarray data. Methods 31, 
265-73 (2003). 

205. Tusher, V.G., Tibshirani, R. & Chu, G. Significance analysis of microarrays 
applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98, 5116-21 
(2001). 

206. Hyun, T.S. et al. HIP1 and HIP1r stabilize receptor tyrosine kinases and bind 3-
phosphoinositides via epsin N-terminal homology domains. J Biol Chem 279, 
14294-306 (2004). 

207. Jain, R.N. et al. Hip1r is expressed in gastric parietal cells and is required for 
tubulovesicle formation and cell survival in mice. J Clin Invest 118, 2459-70 
(2008). 

208. Wienands, J. The B-cell antigen receptor: formation of signaling complexes and 
the function of adaptor proteins. Curr Top Microbiol Immunol 245, 53-76 (2000). 



158 
 

   

209. Chiorazzi, N., Rai, K.R. & Ferrarini, M. Chronic lymphocytic leukemia. N Engl J 
Med 352, 804-15 (2005). 

210. Calin, G.A. et al. A MicroRNA signature associated with prognosis and 
progression in chronic lymphocytic leukemia. N Engl J Med 353, 1793-801 
(2005). 

211. Pekarsky, Y. et al. Tcl1 expression in chronic lymphocytic leukemia is regulated 
by miR-29 and miR-181. Cancer Res 66, 11590-3 (2006). 

212. Binsky, I. et al. IL-8 secreted in a macrophage migration-inhibitory factor- and 
CD74-dependent manner regulates B cell chronic lymphocytic leukemia survival. 
Proc Natl Acad Sci U S A 104, 13408-13 (2007). 

213. Petricoin, E.F., 3rd et al. Mapping molecular networks using proteomics: a vision 
for patient-tailored combination therapy. J Clin Oncol 23, 3614-21 (2005). 

214. Kim, T.H. et al. A high-resolution map of active promoters in the human genome. 
Nature 436, 876-80 (2005). 

215. Hill, E.G. et al. A statistical model for iTRAQ data analysis. J Proteome Res 7, 
3091-101 (2008). 

216. Kuster, B., Schirle, M., Mallick, P. & Aebersold, R. Scoring proteomes with 
proteotypic peptide probes. Nat Rev Mol Cell Biol 6, 577-83 (2005). 

217. Lange, V., Picotti, P., Domon, B. & Aebersold, R. Selected reaction monitoring 
for quantitative proteomics: a tutorial. Mol Syst Biol 4, 222 (2008). 

 

 




