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ABSTRACT
Micronutrient (MN) deficiencies can produce a broad array of
adverse health and functional outcomes. Young, preschool children
and women of reproductive age in low- and middle-income countries
are most affected by these deficiencies, but the true magnitude of
the problems and their related disease burdens remain uncertain
because of the dearth of reliable biomarker information on population
MN status. The reasons for this lack of information include a
limited understanding by policy makers of the importance of MNs
for human health and the usefulness of information on MN status
for program planning and management; insufficient professional
capacity to advocate for this information and design and implement
related MN status surveys; high costs and logistical constraints
involved in specimen collection, transport, storage, and laboratory
analyses; poor access to adequately equipped and staffed laboratories
to complete the analyses reliably; and inadequate capacity to interpret
and apply this information for public health program design and
evaluation. This report describes the current situation with regard to
data availability, the reasons for the lack of relevant information, and
the steps needed to correct this situation, including implementation
of a multi-component MN Data Generation Initiative to advocate
for critical data collection and provide related technical assistance,
laboratory services, professional training, and financial support.
Am J Clin Nutr 2021;114:862–870.

Keywords: vitamin deficiency, mineral deficiency, nutrition
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Background
Deficiencies of specific vitamins and minerals are responsible

for a sizeable share of the mortality and morbidity experienced
by young children and women of reproductive age in low- and
middle-income countries (LMICs). For example, deficiencies of

vitamin A, zinc, and vitamin D each increase the susceptibility to
and severity of common infections, like diarrhea and pneumonia,
which are responsible for a large proportion of child deaths
in LMICs (1–5). Peri-conceptional maternal folate insufficiency
increases the risk of infant neural tube defects (NTDs), including
anencephaly and spina bifida, resulting in both stillbirths and
postnatal deaths, as well as physical disabilities of surviving
infants (6, 7). Maternal iron deficiency anemia during pregnancy
is associated with an increased incidence of low birth weight (8,
9), thereby contributing to infant mortality, impaired postnatal
growth, and a heightened risk of metabolic diseases as adults;
severe maternal anemia of all causes during pregnancy increases
the risk of maternal death (10). However, the total disease
burden attributable to micronutrient (MN) deficiencies remains
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uncertain due to the scarcity of information on population MN
statuses.

According to the 2013 Lancet Nutrition Series (11), each
year more than 425,000 deaths of children less than 5 years
of age are due to maternal or child MN deficiencies. Another
estimate, which considered a broader set of MN deficiencies
and applied somewhat different assumptions, concluded that as
many as 745,000 under-5 deaths may occur each year due to
MN deficiencies (12). Even this latter figure may underestimate
the actual mortality burden, as it did not include an updated
estimate of NTD deaths due to maternal folate insufficiency (6),
the increasingly recognized problem of deaths due to thiamine
deficiency and infantile beriberi (13–15), or the possible effects
of vitamin D deficiency on the risk of acute respiratory infections
(5). In addition to the impact of MN deficiencies on child
mortality, selected deficiencies adversely affect neuro-behavioral
and cognitive development. For example, both iodine deficiency
and iron deficiency anemia impair children’s cognitive develop-
ment, as well as adult cognitive function (16, 17). Other MN
deficiencies, like thiamine and vitamin B12 deficiencies, affect
neurological function and social and educational performance
(18, 19).

There are 5 major reasons why greater availability of high-
quality information on population MN statuses is critical for
establishing coherent MN deficiency control programs. First,
reliable, population-level information is needed to define whether
a deficiency problem exists in a particular population and whether
the prevalence is of sufficient magnitude to justify a public health
prevention program rather than just individualized treatment
of sporadic cases of deficiency. Second, data are needed on
the population subgroups most affected to enable appropriate
targeting of interventions to maximize program efficiency and
avoid unnecessary (and costly) program outreach. Third, data are
needed to gauge whether the programs are achieving their desired
outcomes and to track progress against the United Nations’
Sustainable Development Goals (20). Fourth, for those MNs that
produce adverse effects when consumed in excessive amounts, it
is important to monitor for any possible risks of toxicity imposed
by these programs. Finally, the information is useful for research
purposes to determine the relationships between MN statuses and
a variety of health outcomes.

There is ample evidence to indicate that the availability of data
can instigate programmatic action, drive program modifications,
and contribute to greater cost-effectiveness and safety of these
programs. To cite just a few examples, availability of information
on population median urinary iodine concentrations (UICs)
and/or newborn thyrotropin levels has inspired multiple countries
to initiate (or reinitiate) iodine intervention programs and
has provided countries with the rationale for increasing or
decreasing the level of salt iodization, as needed, to maximize
program impact and ensure safety (21–24). Similarly, data on
the prevalence of vitamin A deficiency in Guatemala motivated
research on vitamin A fortification, which led to a national
sugar fortification program and subsequent modifications of other
vitamin A–deficiency control activities (25). Data on RBC folate
statuses from the US National Health and Nutrition Examination
Survey have allowed the CDC to identify population subgroups
with suboptimal RBC folate concentrations who need to be
targeted with additional interventions beyond just wheat flour
fortification to prevent NTDs (26).

With respect to potential opportunities for cost savings, a
recent set of analyses using vitamin A biomarker and dietary data
and vitamin A program delivery costs in Cameroon found that
it was possible to reimagine the existing vitamin A intervention
programs and achieve the same level of effective coverage by
expanding food fortification nationally and reducing the scope of
vitamin A supplementation in areas with a better vitamin A status
(12, 27, 28). These program modifications could save more than
16 million dollars in program costs over 10 years, whereas the
data that enabled this modeling were collected and analyzed for
less than 1 million dollars. Thus, investment in data could more
than pay for itself through greater program efficiency. Likewise,
data on improved vitamin A statuses in Guatemala following
revitalization of the sugar fortification program have allowed the
government to scale back vitamin A supplementation, thereby
reducing the risk of vitamin A toxicity while lowering program
costs (29). Similarly, findings on adequate UICs following salt
iodization in Nepal allowed the country to discontinue the iodized
oil capsule program (30). Thus, the availability of data on
population MN statuses has not only presented opportunities for
MN intervention programs and improvements of these programs,
but has also led to safer and more coherent interventions and
considerable cost savings overall.

Regrettably, representative national and subnational MN
biomarker data are very limited, not only with regard to the
number of countries that have generated relevant information
but also the frequency of data collection, the number of MNs
considered, and the analysis, interpretation, and utilization of
the data once they become available. As a result, public health
programs are not always deployed where and when they are
needed, and these programs are often less cost-effective and
sometimes riskier than they could be. To address this issue of data
scarcity, the Micronutrient Forum assembled a Core Working
Group of experts in MN deficiencies, assessments of population
nutritional statuses, laboratory analyses of MN biomarkers, and
related public health programs to 1) describe existing information
gaps; and 2) propose steps that should be taken to promote
and support the collection, interpretation, and dissemination of
more high-quality information on population MN statuses. The
current review presents the findings and recommendations of
the working group, which were further informed by a broader
multi-stakeholder advisory group comprised of experts in specific
MNs and representatives of national governments in LMICs,
bilateral and multi-lateral technical assistance agencies, and
private foundations, who reviewed a preliminary draft of the
proposed strategy and provided critical inputs to the final plan
described herein (see Supplemental Table 1 for a list of
Advisory Group members). The full working group report can
be found on the Micronutrient Forum website (31).

The planned initiative focuses on a particular subset of MNs
because of their likely high prevalence of deficiency and/or
the severe clinical or functional responses to a poor status.
Specifically, we considered vitamin A, folate, vitamin B12,
vitamin D, thiamine, iodine, iron, and zinc, whose deficiencies
may result in physical disability, sensory impairments, restricted
physical growth, impaired neuro-cognitive development, or
death. The recommended biomarkers for these MNs, as published
by several expert groups (32–49), are listed in Table 1, and the
suggested laboratory methods for analyzing these biomarkers
have been compiled on the OpeN-Global web site (50) and in
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TABLE 1 Key biomarkers recommended for assessing status of selected MNs by BOND, NYAS, WHO, and other expert groups

Nutrient Primary recommended biomarkers Expert groups Refs

Vitamin A1 s/p retinol, retinol binding protein BOND, WHO (32, 33)
total body stores (retinol isotope dilution method) IAEA (34)

Thiamine RBC or whole blood thiamine diphosphate, RBC transketolase activity Global Thiamine Alliance (35)
Folate RBC/s/p folate BOND, WHO, Folate Task Team (36–39)
Vitamin B12 s/p cobalamin, transcobalamin-2, methyl malonic acid BOND, WHO (36, 40)
Vitamin D s/p 25-OH vitamin D Multiple [see Roth et al. (41)] (41)
Iodine urinary iodine, s/p thyroglobulin BOND, IGN, WHO (42, 43)
Iron1 s/p ferritin, soluble transferrin receptor, transferrin saturation, RBC zinc

protoporphyrin
BOND, WHO (44–47)

Zinc1 s/p zinc BOND, IZiNCG (48, 49)

Abbreviations: BOND, Biomarkers of Nutrition for Development; IAEA, International Atomic Energy Agency; IGN, Iodine Global Network; IZiNCG,
International Zinc Nutrition Consultative Group; MN, micronutrient; NYAS, New York Academy of Sciences; RBP, retinol-binding protein; s/p, serum or
plasma can be used for analyses.

1Markers of inflammation should also be measured to help with the interpretation of status markers for vitamin A (retinol and RBP), iron (ferritin), and
zinc (serum zinc concentration).

the working group report. Other MNs, like riboflavin, niacin,
pyridoxine, and selected mineral elements, such as selenium,
may be equally important for public health but are not yet
being prioritized either because of the paucity of information
on population status or an incomplete understanding of the
health implications of deficiency. Calcium is also considered
to be a key nutrient of public health importance, both for the
prevention of rickets in children and preeclampsia in pregnant
women, but calcium was not addressed by the working group
because there are no easily measured biomarkers of calcium
status, so population assessments of the risk of deficiency are
based primarily on dietary intake data.

Current situation regarding data on MN statuses of
populations

The most comprehensive, publicly accessible source of nation-
ally representative information on MN statuses is the WHO’s
Vitamin and Mineral Nutrition Information System (VMNIS)
(51). Although some national survey data are not included in
this database, either because the WHO is unaware of a particular
survey or has not yet curated and published the data or because
the country has decided not to provide the information for public
dissemination, the VMNIS database is reasonably complete and
provides information on MN statuses in LMICs. The Iodine
Global Network (IGN) provides separate, more comprehensive
updates on national iodine status, so the IGN “scorecard of iodine
nutrition” was also consulted for the current report (52).

The World Bank classifies countries as upper-income if the
annual gross national income (GNI) per capita is >US$12,375,
and all countries with a GNI less than that figure are considered
LMICs. We examined how many of the 138 LMICs have data
on specific MN status biomarkers in the VMNIS database. The
amount of information available in the VMNIS on specific MN
deficiencies among preschool children (PSC) in LMICs varies by
MN (Figure 1). From 1988–2018, 77 LMICs (55.8%) reported
data on vitamin A statuses, using either the serum retinol or
retinol binding protein concentration; 53 (38.4%) reported on
iron statuses using serum ferritin; 21 (15.2%) reported on serum
zinc; 8 (5.8%) reported on vitamin D; and 7 (5.1%) reported on
vitamin B12. As information on folate statuses is more critical

for women of reproductive age, we examined the respective
availability of information on folate statuses in the VMNIS
database. Data on RBC or serum folate among nonpregnant
women of reproductive age are available for a total of just
24 LMICs (17.4%). Only a handful of LMICs have generated
information on thiamine, riboflavin, or selenium statuses of PSC,
but data for these nutrients are not yet reported in the VMNIS.

To assess the frequency of MN status data collection for
those countries that have produced data, we focused on 2 MNs
for which there is relatively more information: namely, vitamin
A and iron. In 2015, Stevens et al. (3) reported that only
83 countries produced relevant information for vitamin A
deficiency among PSC during the years 1990 to 2013, of which
just 29 conducted more than 1 survey during this 23-year period.
We also reviewed the VMNIS database and found that of the
52 countries that provided data on PSC’s iron statuses from
1988 to 2018, 39 countries (75%) completed just 1 survey
during this 30-year period, 12 countries completed 2 surveys, and
1 completed 3. The average year of the last survey for those
countries that completed a single survey was 2005, and the
average number of years between surveys was 9 years for those
countries that completed 2 surveys. In summary, not only is
there a paucity of information for most MN status biomarkers,
but the information that is available is often outdated.

These sets of findings are consistent with the conclusions
of the latest Lancet Series on progress in maternal and
child undernutrition (53), which stated that national and local
governments and their development partners need information
from national household surveys for purposes of advocacy,
strategy development, monitoring, and evaluation. The papers
highlighted the data scarcity related to MN deficiencies, despite
their significant impacts on health and productivity, and the
authors emphasized the need for renewed efforts and funding to
fill the vast data gap.

Notably, the situation regarding data on iodine statuses is
different from that of other MNs. The iodine statuses of
populations are generally assessed by measuring UICs among
school-age children, although recently more attention has also
been directed to women of reproductive age. According to the
IGN, since 1994 a total of 126 LMICs (91%) have produced
information on children’s iodine statuses, and 113 of these
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FIGURE 1 Number of low- and middle-income countries with specified data on MN status of selected population subgroups since 1980, according to the
WHO’s Vitamin and Mineral Nutrition Information System. Data are from the WHO (51), downloaded from the WHO website on 28 February 2020. Data from
high-income countries were not included in tallies. Abbreviations: MN, micronutrient; NPW, nonpregnant women of reproductive age; PSC, preschool-age
children; RBP, retinol-binding protein.

countries (82% of all LMICs) have generated data within the past
15 years (52).

Ideally, MN status surveys should be completed every
5 years to coincide with the formulation of national nutrition
and health plans. Based on reports provided by key informants
from international technical assistance and donor agencies and
representatives of governments and research institutions in
LMICs, we compiled information on the most recently conducted
or currently planned surveys in LMICs that included or will
include an MN status assessment. Specifically, we focused on
surveys that were completed during the past 5 years or are
currently in the planning or implementation stage. Our search
found 21 surveys in LMICs that met these criteria, of which
9 took place or are soon to be carried out in Africa, 3 in South
or Southeast Asia, 3 in the Western Pacific, 3 in the Eastern
Mediterranean, and 1 each in Europe and Central America
(Figure 2). In other words, just 15% of LMICs generated
MN status data during this period. Of the 21 surveys that
were identified, we were able to obtain final or provisional
lists of MN biomarkers for 20 surveys, all of which included
assessments of iron and vitamin A statuses. Folate statuses were
assessed or scheduled for assessment in 18 countries, vitamin
B12 in 17 countries, iodine in 16 countries, and zinc in 13.
Eight countries completed or planned assessments of vitamin
D statuses, and 2 countries each assessed selenium or thiamine
statuses.

The number of recent surveys identified suggests that each
year only about 4 new surveys that include MN status biomarkers
are being conducted in LMICs, with sample sizes ranging from
490–6840 women and a similar number of PSC (mean =
∼2000 women and ∼2000 PSC per survey), except for the most
recent surveys in India and Pakistan, which each enrolled more
than 20,000 participants (Figure 2). Some countries have also
collected specimens from school-age children (particularly in the

case of iodine assessments), adolescents, and adult males, so the
total number of specimens actually collected in each country
may be greater than the total number of specimens shown in
Figure 2, which just reflects the analyses planned for women
and PSC. The recent surveys included a broader range of MN
status biomarkers than was the case previously, and they generally
included biomarkers of inflammation (18 of 20 surveys), which
are helpful for interpreting some of the MN status biomarkers
(54–59). Based on the average sample sizes for women and
PSC included in these national surveys (excluding India and
Pakistan), the recent surveys generated a mean of ∼4000 sets
of specimens from these 2 population subgroups combined.
This number multiplied by an estimated 4 surveys completed
annually indicates that the total laboratory throughput for these
population subgroups each year is approximately 16,000 analyses
for each biomarker assessed, or twice that number if analyzed in
duplicate. This information can be used to project the additional
number of samples that might be generated in the future as
efforts to amplify the annual number of surveys become more
successful.

By way of comparison, we also searched the number
of selected other health surveys completed during the same
period (2015–2019). A total of 63 nationally representative
Demographic and Health Surveys (DHS) surveys or Malaria
Indicator Surveys, both of which have the capacity to collect
blood specimens, were completed under the DHS Program
during this period (60). A total of 45 nationally represen-
tative Multi-Indicator Cluster Surveys were completed with
UNICEF support during this same period (61). In other words,
∼21 nationally representative health surveys supported by either
DHS or UNICEF were carried out each year. These and
other health surveys could provide a platform for collecting
information on MN statuses, so there are multiple opportunities
for generating information on MN statuses in countries that could
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FIGURE 2 MN and inflammation biomarkers included in national surveys completed from 2015–2019 or currently being planned; n = total number
of specimens intended for analysis for women of reproductive age and preschool children combined. (Urinary iodine was generally analyzed in school-age
children.) Guatemala data are from individual rounds of a national surveillance system, reflecting the period from 2015–2019. Abbreviations: AGP, alpha-1
acid glycoprotein; CRP, C-reactive protein; MN, micronutrient; MRDR, Modified Relative Dose Response test; RBP, retinol-binding protein.

potentially benefit from this information. Adding MN status
information to other survey platforms, like annual agricultural
surveys, periodic household income and expenditure surveys,
or dietary intake surveys could further expand potential data
collection opportunities, although, with a few exceptions, these
latter surveys do not currently collect clinical specimens.

Reasons for the lack of information on population MN
statuses

The International Zinc Nutrition Consultative Group and the
Micronutrient Forum have collaborated to collect information
on barriers and enablers for collecting information on MN
biomarkers in the context of national nutrition and health surveys
(62). A series of interviews and e-mail exchanges were completed
with key informants involved in nationally representative surveys
that included measurements of at least some MN status markers
in Cambodia, Malawi, Pakistan, Uzbekistan, Ghana, and Uganda.
In addition, interviews were conducted with representatives of
several key agencies that support nutrition surveys (UNICEF,
US CDC, ICF, and GroundWork). Based on responses to
a preformulated list of questions, the authors of the report
categorized factors that served as barriers or facilitators for
including MN biomarker assessments in the surveys. The most
important barrier cited by the country representatives was
insufficient resources to cover the cost of the laboratory analyses.
Other barriers that were mentioned less frequently were the lack
of reliable, experienced, in-country laboratories; the inability
to export clinical specimens due to government regulations;
complexities in specimen collection and processing; tight time

lines; and concerns that attention to MNs could undermine
the data quality for other aspects of the survey. Several of
the external experts also noted that a lack of awareness (both
among the in-country decision makers and within the donor
and technical support agencies) about the usefulness of MN
status data for justifying and planning intervention programs is
an important obstacle to leveraging the necessary funding. The
main factors that favored inclusion of MN biomarkers in the
surveys were the presence of supportive government authorities;
an in-country “champion” (in a government, academic, or donor
agency) to advocate for the information; the presence of a
planned or ongoing MN deficiency control program for which
baseline or follow-up information was desired; access to suitable
laboratories; and availability of external experts to provide
technical assistance to the local survey team.

Because more information is available for iodine biomarkers
than for other MNs, it is instructive to explore the reasons for
this relative degree of success. As noted above, iodine programs
rely primarily on UIC data among school-age children (6–
12 years of age) as an indicator of iodine exposure (63). Because
most children in LMICs attend primary school, the specimens
can be obtained at a common collection site, thereby facilitating
specimen acquisition. Moreover, the ability to use urine rather
than blood specimens reduces the level of invasiveness, thereby
increasing survey participation, and simplifies the specimen
collection and processing. Also, spectrophotometric analysis of
UICs is fairly simple, and global quality assessment programs
have been established (64). Finally, technical support is available
from an experienced international community of clinicians
(endocrinologists), nutritionists, and public health specialists
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FIGURE 3 Theory of change for generating reliable data on population MN status globally. Abbreviations: EQA, External Quality Assessment; MN,
micronutrient.

through the IGN, and a data tracking system is publically
available (52). These facts, coupled with the availability of
a low-cost, widely implemented, and effective intervention
(universal salt iodization), have made population assessments of
iodine statuses relatively common. This experience, although not
completely transferrable to other MN biomarkers, provides some
insights into what will be required to achieve a similar degree of
success.

Increasing the availability of reliable data on MN statuses

Considering the aforementioned obstacles and facilitators for
obtaining the desired information, the working group developed
a theory of change to indicate the steps needed to carry out this
agenda, as well as the personnel, infrastructure, and other items
required to achieve each of the intermediate goals (Figure 3). In
many cases, there has been considerable progress in achieving
the intermediate goals, but much remains to be accomplished to
implement the full agenda.

The first step in this sequence of efforts is to: 1) communicate
with national policy makers and international donors about the
importance of MNs for human health, the likely high prevalence
of these deficiencies, and the current scarcity of relevant data;
and 2) discuss the need for greater availability and use of
this information for MN deficiency control programs. This will
require a deliberate and adequately resourced communication
plan to deliver these messages and engage with key national
decision makers and development partners. At the country level,
available information from prior surveys, as well as suggestive
information derived from national food balance sheets, dietary
intake surveys, clinical case reports, and biomarker assessments
and focused research studies using convenience samples, should
be summarized to determine the MNs of possible concern

in each setting and the population subgroups most likely to
be affected. Appropriate biomarkers of the selected MNs and
related laboratory methods should be described, along with an
explanation of how this information can be applied to support
program decision making. As part of this process, national
champions and technical experts should be identified, as well
as the need for any external technical and financial support to
generate the information.

Once there is consensus on the need for MN status data and
which types of information should be collected, the next step is
to plan for obtaining the biological specimens in the context of a
dedicated or shared survey platform. This requires collaboration
and coordination with the survey team, planning the sampling
design, working through the logistics of specimen collection
and processing, and sensitization of the study population. After
the samples are collected, they need to be transferred to a
reliable laboratory for analysis. This, in turn, requires access to
laboratories that are appropriately equipped and staffed to store
samples, carry out the analyses, and participate in related external
quality assessment schemes to guarantee the accuracy of the
results. Finally, the resulting data must be analyzed, interpreted,
and applied for policy formulation and program design and
evaluation.

Working group recommendations

Based on the background information and theory of change
referenced above, the working group issued the following
set of recommendations, as summarized in Table 2, leading
with a statement that a formal, multi-component MN Data
Generation Initiative should be launched to propel the full
body of activities. The Initiative should be implemented at the
global level by a management entity with relevant technical
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TABLE 2 Summary of working group recommendations

Launch a multi-component, multi-stakeholder MN Data Generation Initiative
Establish a management team to lead and coordinate among stakeholders and implement selected tasks, including fundraising for the Initiative
Conduct advocacy, targeted both to in-country decision makers and program officers of development assistance agencies, to explain the importance of MNs,

the need for MN status data, and methods for generating this information
Provide technical assistance to countries in survey design, specimen collection and laboratory analysis, and data analysis and interpretation
Create a central fund to help countries defray the costs of specimen collection and analysis
Develop consensus and disseminate information on preferred laboratory analysis methods for each MN biomarker
Establish regional resource laboratories to receive and analyze biological specimens collected during national nutrition surveys and to provide laboratory

training
Expand and increase accessibility to external laboratory quality assessment programs and support preparation of certified reference materials where needed
Support a central data repository to archive survey results and periodically summarize these findings with regard to the global and regional prevalence of

individual MN deficiencies, risk factors, and time trends
Track the progress of these activities of the Initiative and their impact on MN deficiency control programs

Abbreviation: MN, micronutrient.

expertise, field experience, agility, and global reach and guided by
appropriate technical experts and representatives of international
agencies, nongovernmental institutions, and LMIC national
governments. The management team should be responsible for
advocacy and fundraising on behalf of the Initiative, as well as
coordination among the partner agencies. The full working group
report indicates possible entities that could implement specific
components of the initiative (65).

In addition to the advocacy and communication activities
noted above, a key recommendation is to establish a multi-
donor, central fund and appropriate governance structure to assist
countries with survey design and specimen collection, laboratory
analyses, and data analysis and interpretation. The estimated bud-
get for each component of the full range of activities is provided
in the working group report. The group further recommends
establishing 2 or more regional resource laboratories, initially in
sub-Saharan Africa and South or Southeast Asia, that are able
to receive and analyze biological specimens collected during
national nutrition surveys. These resource laboratories should
serve as both analytical and training facilities for the respective
regions. The analyses should be standardized with respect to the
specimen type (e.g., serum or plasma and type of anticoagulant)
and analytical methods, and the laboratories should participate
in external quality assessment schemes, which already exist for
some MNs (64, 66, 67) but need to be established for others.
In some cases, certified reference materials are lacking, so these
should be made available for individual biomarkers. The initiative
should provide support for a central data repository for curated
survey results, building on the VMNIS and ultimately including
appropriately anonymized, individual participant data. This
information should be analyzed periodically to update regional
and global estimates of the prevalences of MN deficiencies and
risk factors for these deficiencies, with wide dissemination of
the resulting information. Finally, a transparent tracking system
should be established to monitor the progress of the initiative and
its ultimate impact on MN deficiency control programs.

Additional research needs

The proposed strategy for the MN Data Generation Initiative
focuses primarily on advocacy and the provision of technical and
financial support for MN status surveys, both to determine the
need for public health programs and to permit more coherent

program design and management. While developing this strategy,
the working group identified several areas where additional
research could help to advance this agenda. In particular, research
is needed to identify novel biomarkers for some MNs and
appropriate reference ranges and cutoffs to indicate both deficient
and excess MN statuses and to confirm or refine recommended
approaches for adjusting and interpreting these markers in
the presence of inflammation. Second, efforts are needed to
develop less invasive methods to collect biological specimens and
minimize the amount of material that is required for laboratory
analyses—for example, by using capillary blood collected with
micro-sampling devices or as dried blood spots—and to reduce or
eliminate the need for maintaining a cold chain. Although current
technologies for analyses of the full array of recommended MN
status biomarkers will continue to require the use of central
resource laboratories for the foreseeable future, ultimately, point-
of-collection analytical methods might be desirable to facilitate
population assessment.

Conclusions
Available information indicates that several key MN defi-

ciencies are responsible for a sizeable share of the morbidity
and mortality experienced by young children and women of
reproductive age in LMICs. However, as confirmed by the current
review, there is a scarcity of high quality, up-to-date information
on population MN statuses; this lack of information undermines a
full understanding of the magnitude of the problems and impedes
the initiation, coherent design, and periodic reconceptualization
of MN deficiency control programs. The working group identified
key reasons for this lack of information and developed a set of
recommendations to help close the data gap. Efforts are now
underway to act on these recommendations and implement the
proposed MN Data Generation Initiative; collective action and
investments in generating more and better data on population MN
statuses will be essential to plan and target intervention programs
and monitor their progress.
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