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Kun Zhang, Lawrence Berkeley National Laboratory 
Marco Pritoni, Lawrence Berkeley National Laboratory 
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ABSTRACT 

Building-level microgrids may be a key strategy to unlock the combined potential of 
flexible loads, renewable generation, and energy storage. However, few software options exist 
for integrated control of building loads and other distributed energy resources at this scale. The 
commercial software solutions on the market can force customers to adopt one particular 
ecosystem of products, thus limiting consumer choice. The SolarPlus Optimizer (SPO) is an 
open-source building-level microgrid control platform that uses Model Predictive Control to 
optimize both building loads and behind-the-meter energy storage to reduce energy bills and 
increase demand flexibility. This paper evaluates the capabilities of SPO in a small commercial 
building in Northern California under multiple electricity tariffs and demand response scenarios. 
Comparing SPO operation with an emulated battery and baseline operation employing a 
commercial optimization service, SPO reduced electricity bills by an estimated 7.3% in summer, 
3.2% in spring, and 3.7% in winter. In a “load shape” scenario meant to counter the “duck 
curve”, SPO achieved 71% fewer violations from the load signal than the baseline control 
method. During a three hour long load shed event, SPO reduced cooling and refrigeration load 
by 38%. This research shows significant potential to provide load flexibility for building-level 
microgrids for this type of control systems. Finally, the paper discusses the future direction of 
research on open-source control systems.  

Introduction 

Commercial buildings account for almost 35% of total electrical consumption in the 
United States (EIA 2021), and packaged air conditioning systems compose 60% of the cooling 
equipment installed in these buildings (EIA 2012). Estimates indicate that using temperature 
setpoint control in commercial facilities like these could save more than 30% of the electricity 
costs of air conditioning (Cai et al. 2019). There is a significant opportunity for cost savings, and 
also for enhanced demand flexibility, by effectively controlling the temperature setpoints of 
packaged air conditioning systems like rooftop units (RTUs).  Increased availability and variety 
of inexpensive Internet of Things (IoT) building sensors, and the convergence of building 
automation systems to a common set of protocols, present new options to accomplish this goal 
(Minoli, Sohrabi and Occhiogrosso 2017). 

Solar photovoltaic (PV) generation of electricity has been increasing rapidly over the past 
decade, growing an average 33% annually over 2011-2021, and the Solar Energy Industries 
Association expects that 29% of new solar systems will be paired with storage by 2025 (SEIA 
2021). As solar plus storage systems increase in prevalence, and grid-disrupting extreme weather 
events like heat waves and forest fires in California and other western states increase, the 



operation of these systems to enhance resiliency and demand flexibility will become ever more 
important. Advanced control algorithms that produce optimal supervisory setpoints can provide 
these capabilities.   

Model Predictive Control (MPC) is a control strategy that has demonstrated the ability to 
optimally control both behind-the-meter energy storage and RTUs in simulation and in field 
studies (Drgoňa et al. 2020). MPC uses a model of a particular subject, along with forecasts of 
external information such as prices or PV generation, to predict the effect of different control 
actions on that subject's behavior. These predictions are then used to choose optimal control 
actions based on their cumulative effect on specific objectives, such as reducing a utility bill 
while maintaining building thermal comfort. MPC can be used to manage several systems in 
concert to create control strategies that are better than what can be provided by standalone 
systems. In an MPC study controlling multiple packaged HVAC units for energy cost reduction, 
4-9% energy cost savings was achieved (Kim et al. 2022). In (Allen et al. 2020), a supervisory 
MPC for solar, battery energy storage, and building loads (EVs, HVAC, and Lighting) was 
investigated in simulation. MPC for net energy reduction using a moving horizon estimation 
forecast generated 12.8% cost savings versus rule-based control. In (Kromer et al. 2020) an 
optimal dispatch controller used MPC to optimize the net load of a virtual power plant consisting 
of solar PV, battery energy storage, and flexible customer loads. With the objective of peak 
shaving and energy cost reduction, peak load was reduced by 16% relative to a non-storage 
baseline. To deploy MPC, a building needs to be outfitted with connected devices and software 
capable of communicating with building equipment if a building automation system (BAS) does 
not exist. 

The SolarPlus Optimizer (SPO) is a control platform for grid responsive building 
microgrids with an MPC optimization engine (Prakash et al. 2020). It was designed to manage 
building energy system controls in tandem with on-site energy resources. SPO is a vendor-
agnostic and protocol-independent control platform built using open-source software that can be 
installed on any site. SPO is scalable, which means that it can be adapted and modified 
throughout the life of the building hardware while protecting users from being tied  into a 
particular manufacturer ecosystem. These features increase SPO’s flexibility, extend its lifetime, 
and reduce its installation cost. SPO’s attributes make it a perfect candidate for small- and 
medium-size buildings that do not typically have a BAS (Katipamula et al. 2012). 

SPO uses MPC to optimize the operation of Heating, Ventilation, Air Conditioning, and 
Refrigeration (HVAC&R) and battery systems in response to various grid requirements as well 
as minimizing the building electricity bill. SPO receives energy price, demand charge, and load-
based demand response signals1. The MPC engine, described in greater depth in (Zhang et al. 
2022) calculates an optimal control scheme over a specific control interval – every five minutes 
in this study. It uses JModelica.org (Akesson et al. 2009), which uses CasADi (Andersson et al. 
2012) to compute function derivatives and IPOPT (Wachter et al. 2006) for optimization. 

At each interval MPC predicts building behavior over a 24-hour prediction horizon using 
a built-in building model. MPC then works to minimize a cost function subject to various 
demand and cost constraints to determine optimal setpoints for each building system (i.e., 
battery, HVAC, refrigeration), while maintaining comfortable site temperatures and food-safe 
refrigeration temperatures. SPO functions as a supervisory controller, sending these setpoints to 

                                                
1 Load-based demand response signals are soft constraints suggesting SPO to keep the site net load above 

and/or below some time-varying power value. 



the local controllers, which in turn manage systems through their internal control loops.The 
specific design of SPO is described in detail  in (Prakash et al. 2020). 

This paper examines the effectiveness of SPO to control building loads and energy 
storage given external conditions, building demand, and weather forecasts. SPO’s performance is 
evaluated on its ability to reduce utility bills using battery and load control, to control building 
net load according to load-based demand response events, and to shift demand using HVAC&R 
temperature setpoint control.   
Methodology  

  
Site Specifications 

  
The pilot site for SPO is a convenience store and gas station located in Blue Lake 

Rancheria, California (Figure 1). The key SPO-controlled systems at the site are two rooftop 
HVAC units (RTUs), a refrigerator room, a walk-in freezer, and battery energy storage. 
Uncontrolled loads include lighting, plug loads and  slot machines in the store. These slot 
machines are a major source of internal heat, and are a significant constant load as they cannot be 
turned off.  

The two RTUs serve all the HVAC needs within the store. The store is divided into east 
and west zones, with one thermostat and one RTU serving each. The store does not have any 
physical barrier between the zones, so there is significant air mixing and heat transfer from one 
zone to the other. The refrigerator and freezer store and display beverages and food items for 
customers behind glass reach-through doors. They have a timed defrost cycle that is independent 
of SPO. During baseline operation, HVAC and refrigeration (HVAC&R) systems are controlled 
with constant temperature setpoints. HVAC operates with a temperature deadband range of 66F 
to 70F. The refrigerator and freezer have cooling setpoints of 33F and -7F, respectively. During 
SPO operation, thermal comfort setpoints for the HVAC system are constrained to between 67 F 
and 74 F. To maintain food safety, the refrigerator setpoint was constrained between 33F and 
38F, and the freezer setpoint between -30F and -2F.  

The project site has a PV array of capacity 60 kW-DC/50-kW-AC. The PV panels are 
installed on the gas station canopy. Frequent overcast days at the pilot location made 
overgeneration of solar infrequent, and overgeneration was not a major issue due to net metering. 
The site also has a commercial battery with an energy storage capacity of 174 kWh and a peak 
discharge power of 109 kW. The PV capacity and the storage battery are both somewhat 
oversized relative to the average building load, which is approximately 33 kW. This choice was 
made so that this microgrid would have greater resilience and could be integrated with the 
greater community microgrid system in the future. Resilience has been extremely beneficial at 
this site, as this convenience store, with its gas station and cold storage services, served essential 
community needs during PG&E Public Safety Power Shutoffs due to wildfire risk (Waraich 
2019, Alstone et al. 2020).  



  
Figure 1: Image of the pilot site, convenience store/gas station at the Blue Lake Rancheria.  

   Credit: Blue Lake Rancheria 
 

Testing Setup 
  
Six Wattnode power meters were installed to measure power flows at the project site. 

These meters measured the instantaneous power consumption of the RTUs, the freezer and 
refrigerator compressors, and the freezer evaporator fan, and the building as a whole. Indoor 
temperatures were measured by two thermostats, one in the east and one in the west zone of the 
project site. 

Data from the real battery on site were collected at 15 minute intervals from its internal 
monitoring system. Unfortunately, a delay which arose during delivery, installation and 
deployment of the battery did not allow sufficient time to commission the battery with SPO, and 
to later recommission it with commercial optimization software (for long term operations). For 
this reason, an emulated battery was used instead of the physical on-site battery for testing. 
Additionally, the emulated battery allowed us to resize the battery to test different capabilities of 
SPO.  

  
Baseline Model 

  
During testing, the performance of SPO was compared to the predicted performance of 

baseline operation during the test. This baseline operation is termed business as usual (BAU). To 
compare the performance of SPO and BAU subject to the same external conditions, a black-box 
model for baseline HVAC&R load was created.  

The baseline HVAC&R load is calculated using a Random Forest (RF) regression model 
trained on real operational data from 88 days of baseline operation from throughout the testing 
period. The outdoor temperature, solar irradiance, uncontrolled building load, day of the week, 
and time of the day were the parameters. Tested using eight-fold cross validation, the model 
achieved an R-squared value of 0.91 and a root mean square error (RMSE) value of 1.9 kW. The 
model has a temporal resolution of every 15 minutes. Figure 2 shows a few comparison days of 
the modeled and real BAU HVAC&R load.   



 
               Figure 2: BAU modeled HVAC&R load compared to the real HVAC&R load 
 

During price optimization, an emulated battery identical to the installed BAU battery was 
used for testing. The battery is modeled using the bucket model approach by considering the 
battery as a repository for energy (Reniers et al. 2018). The emulated and BAU batteries had a 
174 kWh capacity and a 109 kW max discharge rate. They were configured with a 25% 
minimum state of charge (SOC) and a 94% maximum SOC. The 25% minimum SOC allows the 
battery to provide resilience during an unexpected grid disruption. The 94% maximum SOC 
gives the control system time to curtail PV generation if there is excess generation coinciding 
with an islanding event. The measured charge and discharge efficiencies of the commercial 
battery were applied to the emulated battery’s charge and discharge values, not considering 
efficiency differences due to charge/discharge magnitude. SPO and the commercial optimization 
software for the BAU ran concurrently on the emulated and installed batteries respectively. They 
were thus subject to the same external factors. In demand response tests, the installed battery 
reduced BAU performance with respect to the different demand flexibility metrics because the 
commercial optimizer was not capable of demand response. This made the comparison less fair, 
so the battery is not included in the BAU scenario for these tests.  

Case Studies 

SPO uses time-varying demand charges, time-of-use (TOU) energy prices, minimum site-
load and maximum site-load signals. Thus, SPO can pursue many different modes of operation 
or demand response events. The different objectives tested were bill optimization, load tracking, 
load shifting, and load shedding. In bill optimization mode, SPO ran throughout the year under 
the different seasonal variations of an electricity rate consisting of TOU energy price and 
demand charge components. In load tracking mode, the ability of SPO to continually and 
accurately control the site’s net load was tested using relatively tight minimum and maximum 
load constraint signals throughout a day. In load shifting mode, SPO’s ability to shift load 
specifically from one time to another was tested. This test was run using demand constraint 
signals with a flat energy price signal (the same energy cost and demand charges at all times of 
the day) and with a dynamic TOU energy price signal. Lastly, load shedding was tested using a 



maximum load constraint for a specific period during the day. All of these signals differ in 
complexity and motivation, and test different characteristics of SPO operation. 

Bill Optimization 

In this mode, SPO minimizes the electricity bill of the system. It accomplishes this by 
looking at the marginal TOU energy cost and demand charge increase given a specific electricity 
tariff. In an electricity tariff, the TOU energy price changes in periods over the day, and is the 
price per kWh used. The demand charge is the price per kW for the highest power use within a 
billing period. Demand charges are judged on a 15 minute basis, and there can be multiple 
demand charges for the different periods defined in a tariff.  

The operating tariff of the pilot site was used for this test, PG&E B-19 (PG&E 2021b). 
Tests were conducted in winter (December 19-21, 2020), spring (May 1-2, 2021) and summer 
(July 23-25, 2021). The B-19 tariff is different in each of these seasons. The winter tariff, lasting 
from October to February, has a peak period during 16:00-21:00, and an off-peak period at all 
other times. Demand and energy prices differ little between the two periods. In spring (March to 
May), a super off-peak period is introduced from 9:00-12:00 that has a lower energy price. In 
summer (June to September), there is no super off-peak period, but part-peak periods are 
introduced before and after the peak period, with intermediate energy and demand charges. In 
summer, the energy and demand charges during the peak period increase significantly. Prices for 
this tariff are shown in Table 1. 

 
 Table 1: PG&E B-19 Energy and Demand Prices 
 

Period Energy ($/kWh) Demand ($/kW) 
Peak (16:00-21:00) 0.14 (winter, spring) 

0.16 (summer) 
1.79 (winter, spring) 
25.58 (summer) 

Part-Peak (14:00-16:00, 21:00-
23:00)  

0.13 5.23 

Off-Peak (all other times) 0.11 0 
Super Off-Peak (9:00-12:00, only 
in spring) 

0.068 0 

Max demand (from any period) NA 21.08 
 

 SPO’s cost savings for each season were estimated by conducting a short test in each 
season. Figure 3 below shows the estimated electricity costs for BAU and SPO operation in each 
season. 

 



 
   Figure 3: Estimated seasonal utility bills (left) and energy use (right) for MPC and BAU 

 
In summer, savings was 7.3%, in spring, 3.2%, and in winter 3.7%. In all seasons, SPO 

was able to slightly reduce electricity bills relative to BAU operation. In summer and winter, 
SPO saved on costs arising from both energy and demand charges compared to BAU. Winter 
shows low overall savings because of the similarity between peak and off-peak prices. This 
means the battery has little opportunity for energy arbitrage. Additionally, since the weather is 
cold there is little opportunity for cooling demand response. Summer shows the highest savings 
because these features are reversed, and there is a greater difference between each pricing period.  
In addition, hot weather gives the opportunity for HVAC&R savings from SPO operation. The  
spring shows the least absolute cost savings. Though SPO operation reduced overall energy costs 
in every season, it exceeded BAU on demand charges. The difference between SPO and BAU 
operation during the spring shows important aspects of SPO’s optimization strategy. Figure 4 
compares SPO and BAU behavior during this period. 

 
 



 
Figure 4: Spring energy bill optimization results comparing BAU and SPO net loads (top), HVAC&R 
 loads (middle), and battery charge and discharge behavior (bottom) 
 

SPO fully charges the battery during the super off-peak period, and discharges the battery 
completely during the peak period, shown in Figure 4c. This performance aligns with rule of 
thumb expectations for battery behavior, while BAU doesn’t cycle the battery at all. Counter 
intuitively, the batteries generate essentially the same savings. This is due to a possible flaw in 
the electricity rate design. The super off-peak period has a reduced energy price, which 
incentivizes increased consumption, but the maximum demand charge for the day can still be set 
during this period. This means that shifting demand to this period (ie: charging the battery) is 
incentivized by the low $/kWh energy costs, but if the maximum demand for the month occurs 
during that period, it can significantly increase the high $/kW demand charge on the electricity 
bill. SPO charging the battery during the super off-peak period increases the demand charge 
roughly as much as it decreases the energy charge. It is possible that suboptimal demand charge 
reduction is caused by how SPO addresses these charges. SPO incorporates marginal demand 
increase into the MPC optimization cost function. This marginal demand increase is judged 
against a baseline site demand that was set at the approximate building demand, not including 
solar or HVAC&R demand reduction. Demand is not exceeding that initial level by a large 
amount, and thus the marginal increase in the cost function may be too small to incentivize 
demand charge reduction as opposed to energy cost reduction. 

By not cycling the battery, BAU operation does not increase the demand charge and it 
reduces cycling and related battery capacity degradation. These are factors that SPO does not 
take into account, but that may be important in commercial battery optimization systems.  

Load Tracking 

The load tracking test took place on April 24, 2021. During the load tracking test, SPO 
attempted to manage the building’s demand so that the net load would stay within a reference net 



load signal. The load signal was generated by flattening the noon-evening net load profile of the 
site from the previous day, to counter the duck curve. A ±3kW margin of error was used for the 
allowable power limits around this profile. This test showcased the ability of SPO to continuously 
adjust a building’s net load, primarily through battery dispatch.  

The success of load tracking is evaluated based on how long the power profile is outside 
the acceptable range and how many kilowatt-hours are used outside of the acceptable range. Table 
2 compares how SPO performed against the BAU scenario, static HVAC&R temperature setpoints 
and no battery energy storage.  

 
         Table 2: Load Tracking Metrics 
 

Metric BAU SPO Percent Difference 
Time in Violation  16.25 Hours 10.5 Hours -35% 
Average Power in Violation 8.9 kW 4.1 kW -55% 
Energy in Violation 145 kWh 43 kWh -71% 

 
Over the course of the load tracking test, the SPO exceeded the allowed limits for over 

10.5 hours, approximately 40% of the day. When outside of the allowed limits, SPO was on 
average 4.1 kW away. This is significantly less than the BAU. The reduced time and power in 
violation of the load signal translated to SPO using only 43 kWh outside of the allowed limits, 
71% less than without SPO control. There was overall more energy consumption by SPO, but 
this is because the SPO controlled battery ended the day at a higher SOC than when it started. 
The building load and battery operation are shown in Figure 5. 

 
Figure 5: Load tracking test power profiles: SPO and BAU net loads with the load tracking signal (top), SPO battery 
state of charge and power (middle), and HVAC&R load (bottom)  
 

Though general conclusions about the performance of SPO in load tracking mode can not 
be made from a single day of testing, examining this day shows interesting and promising control 
of the HVAC&R and battery loads. Behavior from 9:00-12:00 suggests a key benefit of having a 



single optimization for both HVAC&R and battery energy storage, rather than having both 
systems independently optimized. In this period, the battery charging peaks simultaneously with 
peak HVAC&R load reduction. SPO moves load shed potential from the HVAC&R system to 
the battery, to be used later in the day. Without this simultaneous battery charging, any 
HVAC&R load shedding during that period would have only driven the site net load further into 
violation, rather than contributing to load shaping later in the day. In the evening at 19:00, 
HVAC&R and battery control again work together to keep the site net load on target. However, 
after this time the SPO net load is in violation of the signal.  

Load Shifting 

The goal of load shifting is to increase the site load during a specific period during the 
day, and decrease the load during a period later that day by the same amount. The load constraint 
signals directed SPO to increase load by at least 20kW from 9:00-14:00, and decrease load by at 
least 20kW from 16:00-21:00. Two different shift tests were conducted using two price signals: a 
flat price all day, and TOU energy prices reinforcing the demand shift power signal (high prices 
during the load shedding period, low prices during the load taking period). For the dynamic price 
signal, the spring variation of PG&E B19 was used, as it aligned well with the shift event’s 
motivation. SPO is designed to receive both load and price signals, and optimize for price while 
treating the load signals as soft constraints for site maximum and minimum load. Treating the 
load signals as soft constraints means that they are added as weighted penalties to the 
optimization cost function. Conducting load shifting tests with different price signals 
investigated the effects of conflicting price and load signals on SPO. Each shift test was judged 
against the BAU scenario. Both shift tests showed similar take values, 23.8 kW under the TOU 
price and 20 kW under the flat price. However, SPO performed markedly better load reduction 
with the TOU energy signal than with the flat price signal: 24.6 kW reduced with the TOU 
signal, and only 11.0 kW with the flat signal. Examining the battery behavior shows how 
conflicting price and load signals affect the SPO optimization.  

 

 
Figure 6: Load shifting battery behavior under a flat price signal and a TOU energy price signal 

reinforcing the load signal. Battery power (top) and battery SOC (bottom) 
 



As Figure 6 indicates, battery behavior is the same in the take period under both signals, 
charging from the minimum SOC to the maximum at a nearly constant rate. Under the flat price 
signal, this is optimal for demand response but not bill reduction. The energy price is not 
decreased during this period, so no energy cost savings is generated, while the demand charge is 
increased by the high rate of battery charging. During the load shed period, battery behavior 
differs. For the flat price signal, the battery is discharged throughout the evening until it is at half 
capacity. This leads to reduced load reduction during the shed period, and is suboptimal for 
demand response. With a flat price signal, there is no low cost period to recharge the battery after 
the shed event, so fully discharging the battery to satisfy the load shed constraint is suboptimal 
for bill reduction. Bill optimization appears to completely outweigh the soft load constraint 
during the shed period.  

During these load shifting tests, SPO fully relied on the battery rather than HVAC&R 
load shifting. The battery represented a readily available shiftable load that could satisfy the 
goals of the load shifting signal without negatively affected thermal comfort at the site. A load 
shedding event with a reduced capacity emulated battery was executed to measure SPO’s ability 
to specifically shed HVAC&R load when it represented a greater proportion of the SPO 
controlled distributed energy resource (DER) energy capacity. 

Load Shedding 

The load shedding test was run on September 3, 2020. In this test, SPO attempted to 
reduce net power consumption by 3kW between 15:00 and 18:00, the same time period as a 
PG&E peak day pricing event (PG&E 2021a). This test reduced the reliable energy storage from 
the battery2, and explored SPO’s ability to control HVAC&R load shedding. Table 2 summarizes 
HVAC&R net load reduction during this test. 

 
            Table 2: Load Shedding Results 
 

Metric Load Shed Event 
Load Reduction by HVAC&R Mean (kW) 3.8 
Load Reduction by HVAC&R Mean (%) 38 
Load Reduction Std. Deviation (kW) 3.7 

 
As the metrics in Table 2 show, the average HVAC&R load reduction was greater than 

the 3 kW target. Figure 7 shows the load curve of SPO-controlled HVAC&R in comparison to 
BAU. 

 

                                                
2 Emulated battery size was reduced to 27 kWh with a peak output of 14 kW for this test. This size was 

chosen because the kWh capacity is more appropriate for a site of this size, and it represents a battery of the same 
make and model as the installed battery, simply with fewer cells. 



 
Figure 7: SPO vs BAU HVAC&R load during load shedding test 

 
SPO was able to reduce HVAC&R load for the entire event (Figure 7). The majority of 

this load shedding was at the beginning of the event, with load shed dropping below 3 kW during 
the final third of the event, due to reaction to the progressive violation of thermal comfort. 
Additionally, immediately after the event ended there was a compensatory increase in HVAC&R 
demand above the BAU value, to bring the indoor temperature back to the original value before 
the event. This was expected, but it means that for this test day SPO had a higher peak load than 
BAU, but this peak happened outside the event window. The average HVAC&R load shedding 
shown during this event was greater than other tests.  

Discussion 

The design objective of SPO was to provide a portable and interoperable solution for 
optimization in building-level microgrids. The software can minimize customer bills and react to 
a variety of  grid signals, by changing the operation of HVAC and refrigeration systems as well 
as batteries. SPO is publicly available as an open-source software, and does not require specific 
vendors or any particular communication protocols for its connected devices. The MPC used in 
this study was tuned to the specific building characteristics of the site, but the general MPC 
formulation can be extended to any small-to-medium-sized building using thermostat-controlled 
packaged HVAC units. These systems are present in more than 60% of the small/medium 
buildings. Additionally, SPO can optimize building operation by considering time-varying 
energy price, demand charge, and load signals, so it can achieve bill and demand optimization 
under a very wide variety of electricity rate structures and demand response events. To achieve 
such a result, SPO coordinates the different end uses and storage systems, and can be easily 
extended to control other distributed energy resources (DERs).  

The case studies presented in this paper provide preliminary performance data as well as 
lessons learned about the SPO design decisions. Managing bill optimization with TOU prices in 
tandem with load-based demand response events (i.e., reduction of load by a specific amount) 
was achieved by optimizing a bill reduction cost function with soft load constraints. As SPO 
responds to multiple signals simultaneously, it’s difficult to guarantee optimal behavior from the 
customer standpoint. This was observed during load tracking and load shifting tests, when 
battery behavior detracted from SPO performance with respect to the demand response metrics. 
For instance, during the take period, the optimization engine delivered the desired load increase, 
but during the shed period SPO optimized solely for bill reduction. Though these are only 
preliminary results they illustrate the challenges of multi-objective optimization.  

Similarly, integrating multiple DERs with a single optimization is challenging. In the 
load tracking scenario, SPO coordinated the operation of HVAC&R and the battery. This 



demonstrated SPO’s ability to fulfill the load tracking signal in a way only possible with an 
integrated optimization. However, comparing the results of the load shedding test to results of 
load shifting suggests that, with a large battery relative to the amount of HVAC&R flexibility, 
the optimizer may rely on the battery and ignore the HVAC&R. This behavior was probably 
specific to the test site, since the HVAC&R system was somewhat undersized, and had a reduced 
margin of flexibility before occupant comfort and food safety was affected. We believe that in 
more typical buildings with a smaller battery and HVAC&R systems with proper sizing, the 
optimizer would have used both systems for shifting and shedding loads. Future research 
includes more extensive testing in additional sites, as well as exploration of the extensibility of 
this or improved approaches to different types of DERs and systems. 

 
Conclusion 

 
This paper evaluates the effectiveness of SPO, a control platform using MPC to reduce 

electricity bills and to control site net load according to demand response events. SPO was tested 
at a convenience store in northern California under a variety of demand flexibility scenarios.  

Comparing SPO control of HVAC&R and an emulated battery versus baseline HVAC&R 
operation with static setpoints and battery optimization by an advanced commercial software, 
SPO achieved a savings of 7.3% in summer, 3.2% in spring, and 3.7% in winter. These results 
are promising, but we believe they could be higher in more typical buildings and scenarios. This 
is suggested by the load shedding test, which produced a  38% HVAC&R load reduction during 
the event. SPO was also able to accomplish 71% less violations of a load tracking signal than 
under baseline operation.  

Relative sizes of the systems (e.g., battery capacity vs HVAC&R electrical consumption), 
as well as degree of undersizing of the HVAC&R system, play a significant role in the 
optimization strategy and degree of flexibility achievable. SPO’s successful optimization 
performance is largely due to the flexibility of its design that adjusts not only to different signals, 
but also to changes in external parameters, such as weather, over the day.  
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