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At the time of this writing, the COVID-19 pandemic

will have infected more than 17 million people and taken

the lives of nearly 700,000 individuals world-wide [1].

While containment and treatment strategies have focused

primarily on social distancing, therapeutics, and vaccines,

the pandemic has also revealed serious underlying

vulnerabilities in individuals infected by the coronavirus,

SARS-CoV-2. The vulnerable aspects include advanced age,

obesity [and its comorbidities, diabetes and chronic heart

diseases], systemic coagulopathy or thrombosis [2], acute

respiratory failure (e.g., hypoxia), inflammation, immuno-

deficiency, and neuropathologies [3,4]. The evidence for

vulnerable people is supported by early reports on the

COVID-19 pandemic in the United States that revealed

ethnic, racial, and socio-economic disparities that resulted

in some sectors of the population being disproportionally

affected by COVID-19. Some of the sectors showing

disproportionate rates of infection and death included

men, American Indians, Alaska Natives, Blacks, Latinos,

older adults, recent immigrants, and individuals with low

income [5,6]. What is largely missed by the public,

researchers, and healthcare providers is how nutrition

and food intersect with this multiplicity of COVID-19

symptoms and disparities, in different ways and to dif-

ferent degrees.

It is well documented that nutrition, food, herbals,

nutrients, and supplements, including various combina-

tions and compositions, support metabolism and physiol-

ogy required for health [7,8]. Table 1 shows the nutrients

and herbals that complement the immune system and

control inflammation to promote cell-associated antibody

production and cell-mediated immunity [9]. A balanced

diet, with the myriad of nutrients vital to health, supports

normal B and T cell functions for optimal disease-reducing

immunity [10]. In the case of COVID-19, the goal of

nutrition is to reduce infection and disease progression

while improving recovery during the course of the disease

(Table 1). Therefore, it is critical that the medical

community and supporting healthcare professionals un-

derstand the role of nutrition for maintaining health and

reducing disease risk. In light of improving nutrition to
https://doi.org/10.1016/j.nutres.2020.07.005
0271-5317/© 2020 Elsevier Inc. All rights reserved.
avert or control COVID-19 infections, healthcare pro-

viders must support proper nutrition, and specifically,

the nutrition necessary to protect those in high risk

groups such as the elderly. Many elderly individuals

suffer from poor nutrition because of marginal intakes of

critical vitamins, minerals, and essential amino acids

necessary for a robust immune system. This situation is

further exacerbated by the declining gastrointestinal

uptake of micronutrients and macronutrients that

occurs with advanced age [11].

A recent review describes the role of nutrition in viral

infections [12]. The fat-soluble vitamins A, D, E, and

specific minerals play a significant role in the physiology

of the immune system [10,12]. Vitamin A improves

responses to vaccines and augments both cellular and

humoral immunity. The function of vitamin D is

important for aging and protection against viral infec-

tion. Vitamin D supports innate immune responses to

influenza A-B, parainfluenza 1–2, and low vitamin D

status is associated with an increased risk of both upper

and lower respiratory tract infections [12]. Thus, vitamin

D status appears to play a role in antiviral immunity and

depending on vitamin D status, immunity could be

compromised, especially in the elderly. Vitamin E

deficiency is known to impair both humoral and cellular

immunity [9]. Additionally, the fat-soluble vitamins

serve a role in tissue growth. Vitamin C can also support

antiviral immune protection in rodents and general

functions in antioxidants pathways as well as co-factors

for physiology of immune tissues [12].

Trace elements that support immune functions

include Zn, Cu, and Mg. Marginal Zn status is associated

with increased susceptibility of infections including viral

[9], and Se has pleiotropic effects ranging from antiox-

idant to anti-inflammatory properties. Cu supports

differentiation of immune cells, while Mg influences the

synthesis of immunoglobulins such as immunoglobulin

M. Immunoglobulin is a target of antibody testing for

COVID 19 exposure [12].

In addition to the important roles vitamins and

minerals play in immune function, the essential fatty

http://crossmark.crossref.org/dialog/?doi=10.1016/j.nutres.2020.07.005&domain=pdf
https://doi.org/10.1016/j.nutres.2020.07.005
http://www.sciencedirect.com/science/journal/
https://doi.org/10.1016/j.nutres.2020.07.005
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Table 1 – Examples of nutrients and phytochemicals with potential preventative or therapeutic impact
on risk factors associated with acute COVID-19

Nutrient,
phytochemical

Risk factor Associated pathway/
select biomarker[s]

References

n-3 PUFA Inflammation and immune
dysregulation

ECS, NF-kB, TNF-α, MCP-1 [9,13,24-33]

EPA Cardiovascular disease PI3K/Akt, MAPK/ERK [28,34,35]
DHA Obesity ECS, PI3K/Akt, MAPK/ERK, AMPK [13,24,27,36-48]

Diabetes ECS, PI3K/Akt, MAPK/ERK, GLUT4 [13,24,26,27,34,44,45]
Respiratory inflammation/disease TLR-4, GPR120, 7nAChR [25,46-50]
Neurodegeneration/
neuroinflammation

ECS, COX-2, 15-LOX [13,51-52]

Phytochemicals Inflammation and immune
dysregulation

NOX, NF-kB, Erk, Akt, TNF-α [53-64]

[−]Epicatechin Cardiovascular disease TGF-β1/smad3, NOX, eNOS [53,54,65,66]
Resveratrol Diabetes NOX, NF-kB, JNK1/2 [60,61]
Curcumin Respiratory inflammation/disease PI3K/AKT/HIF-1α, MAPK/ERK/HIF-1α, [55,61-64,67]
EGCG Neurodegeneration/

neuroinflammation
TLR-4/NF-kB, PI3K/Akt [52,56,61,68-69]

Vitamins Impaired immune system,
inflammation

Cell proliferation &maturation, IL-6, TNF-α,
NF-kB, COX-1

[9-10,70-71]

Vitamin A Respiratory inflammation/disease Improves responses to vaccines, cellular and
humoral immune responses

[12]

Vitamin D Respiratory tract infections,
compromised antiviral immunity

VDR, hCap-18/LL-37 [10,12,70,72-75]

Vitamin E Deficiency impairs immune
responses

Antioxidant functions, control free radicals [10,12]

Vitamin C Poor immune tissue development Supportive antioxidant role, potential for
antiviral immune protection

[12]

B-12 / Folate Neurodegeneration/
neuroinflammation

TNF-α, IL-6, Hcy [76-79]

ECS, endocannabinoid system; EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; EGCG, epigallocatechin gallate.
acids also have modulating effects on immunity

and inflammatory processes [10]. The essential fatty

acids and related long chain polyunsaturated fatty acids

(PUFA) serve as substrate for oxylipins (OxL) and

endocannabinoids (eCB) produced by immunocompetent

cells supporting immune functions and modulating

inflammation [13]. A balanced diet must include ade-

quate essential fatty acids and both n-6 and n-3 PUFA for

OxL and eCB that modulate the immune system and

control inflammation. Unfortunately, by the time an

individual is in the depths of the COVID-19 infection, the

benefits of nutrition-based interventions can do little

to mitigate or reverse the course of the disease. How-

ever, proper nutrition and nutrition support can help

by improving immune responses and aid inflammatory

processes.

The COVID-19 pandemic provides nutrition researchers

and educators new opportunities to inform the public,

particularly those in high-risk groups, about the potential

life-saving benefits of good nutrition and healthy eating

habits [3,14]. While it may be too late for some, there is still

time for others to begin preparing their bodies and

physiologies for the next infectious pandemic. In this case,

providing good nutrition, adequate protein and calories, and

likely vitamin and mineral supplements to the aged

community can only help their immune system and general

health.
NTR-08151; No of Pages 6
As virologists, epidemiologists, and physicians mount

a full-court press against the COVID-19 pandemic, one

might ask what role can nutrition scientists play in these

interdisciplinary efforts? The answer is that nutrition

research has much to contribute to the anti-COVID-19

campaign, even if the connection is nonobvious, complex,

and challenging to comprehend by the general public

and policymakers. What most individuals are familiar

with are excellent dietary recommendations, such as

those found in the 2015–2020 Dietary Guidelines for

Americans, 8th edition [15]. While these recommenda-

tions help Americans eat healthier, with the benefits of

improved adaptive immune systems and metabolic

responses, the rationale to follow a sound diet will also

help promote resistance to COVID-19 – like infections.

With knowledge of nutrients, food, and herbals that

support the immune system, health professionals can

advance the exciting developments in nutrition research

that could take nutritional intervention to the next level

and into the intensive care unit.

The intellectual space between starvation/death

and health/wellness is wide and punctuated with

many historic landmarks and breakthroughs from the

food and nutrition sciences [16]. Over the past two

decades, however, the “omics” revolution and big data

analytics have created new opportunities to shrink the

distance between diet-derived bioactive compounds (e.g.,
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vitamins, minerals, non-nutritive signaling molecules,

herbals) and pharmaceuticals. Historically, compounds like

opium, menthol, and salicylic acid help address many of

humankind's ailments. Today, we have examples like

oseltamivir (Tamiflu), a medicinal compound from the

Chinese star anise, a well-known spice and food

flavoring. As an inhibitor of neuraminidase, a desialylating

enzyme, oseltamivir prevents the release of newly formed

influenza viruses from the surface of the host cell, thus

preventing their spread to other host cells [17].

Today, the scientific literature contains many examples

of diet-derived signaling molecules capable of controlling

disease processes in vitro and in vivo. A recent study

showed that a novel caffeic acid derivative is capable of

suppressing the growth of colorectal cells in culture and in

xenograft mouse models [18]. This was achieved

by inhibiting cell-cycle regulators and corresponding

blockage of the Akt and STAT3 signaling cascades.

While not directly related to the COVID-19 infection,

this study highlights the convergence of nutrition

research, biomedical research, and molecular signaling

dynamics to address other life-threatening conditions

like cancer. Similar approaches are currently being used

to understand and address those comorbidities related

to COVID-19. As shown in Table 1, there are several

nutrients and diet-derived compounds that are impor-

tant for the immune system or are under evaluation for

their potential preventive and/or therapeutic properties.

The current COVID-19 pandemic has been a game-

changer for nutrition science, which has predominantly

focused its attention on human development, mainte-

nance, and noncommunicable disease [10]. For the first

time in the history of modern nutrition, the spotlight is

aimed at the link between nutrient overconsumption and

a communicable disease. Understanding how this occurs

is not simple and requires nutrition researchers to look

beyond vitamin-mineral deficiencies and energy balance.

Today, we must examine the intersectionality of nutrition

and health as a complex system [19,20]. In this system,

thousands of interconnected and interdependent compo-

nents of the cell are poised at the edge of a “decision

space” ready to tip into the modalities of health or

disease, depending upon the quality and quantity of

nutritional inputs. This is to say that while scrutinizing

one's favorite polyphenol, enzyme, or regulatory protein

is still required, it is not sufficient to blunt the disease

process with today's nutritional interventions. More

combinatorial, computational, and team science ap-

proaches are required.

Recently, MIT researchers predicted a new chemical

entity (Halicin) that when synthesized, proved to have

broad-spectrum, antibiotic properties. This amazing feat

was accomplished using chemical datasets comprised

of 107 million chemical entities [21]. While Halicin is not a

nutrient, the use of deep learning, training algorithms,

and artificial intelligence could prove useful to nutrition

scientists seeking novel nutritional/therapeutic com-

pounds based on diet-derived phytochemicals and pro-

teins. Consortia such as the Food Biomarker Alliance [22,
23] are building large datasets of diet-derived com-

pounds that could be used as scaffolds from which to

predict new compounds. Whether such in silico de-

signed nutrition/therapeutic compounds would be

delivered as supplemental nutrition or as a medical

food remains to be seen. The key message for nutrition

science is that new breakthroughs in data science, cell

signaling, and nutrimetabolomics [23] should make it

possible to reposition itself for the next pandemic. By

incorporating these interdisciplinary tools and ap-

proaches, nutrition research can move closer to the

frontlines in the battle against viral infections like

COVID-19, or worse.
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