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Abstract

Low Regularity Solutions for Gravity Water Waves

by

Albert Lee Ai

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Daniel Tataru, Chair

The gravity water waves equations are a system of partial differential equations which
govern the evolution of the interface between a vacuum and an incompressible, irrotational
fluid in the presence of gravity. In the case of two dimensions, these equations model non-
breaking waves at the surface of a body of water, such as a lake or ocean, while in one
dimension, they model non-breaking waves propagating in a channel.

We are concerned with the well-posedness of the Cauchy problem for the gravity water
waves equations: We seek to show that given an initial configuration of the vacuum-fluid
interface and an initial fluid velocity field beneath the interface, there is a unique solution
to the gravity water waves equations which matches the given initial data. In particular, we
are concerned with the situation where the initial data has low regularity, corresponding to
surface waves which are not necessarily smooth.

The classical regularity threshold for the well-posedness of the water waves system re-
quires initial velocity field in Hs, with s > d

2
+ 1, and can be obtained by proving standard

energy conservation estimates. On the other hand, it has been shown that for dispersive
equations (equations describing phenomena which disperse waves of different frequencies),
one can lower well-posedness regularity thresholds below that which is attainable by energy
conservation alone. This was first realized for the nonlinear wave equation via dispersive
estimates known as Strichartz estimates, and was first applied toward the well-posedness of
gravity water waves by Alazard-Burq-Zuily.

However, this approach was implemented as a partial result, using Strichartz estimates
with loss relative to what one expects based on the corresponding linearized model problem.
In this dissertation, we prove well-posedness with initial velocity field in Hs, s > d

2
+ 1− µ,

where µ = 1
10

in the case d = 1 and µ = 1
5

in the case d ≥ 2, extending the previous result
of Alazard-Burq-Zuily. In the case of one dimension, using a further refined argument, we
establish the well-posedness for s > 1

2
+ 1 − 1

8
, corresponding to proving lossless Strichartz

estimates. This provides the sharp regularity threshold with respect to the approach of
combining Strichartz estimates with energy estimates.
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Chapter 1

Introduction

1. The Gravity Water Waves Equations

The gravity water waves equations are a system of partial differential equations which
govern the evolution of the interface between a vacuum and an incompressible, irrotational
fluid in the presence of gravity. We are concerned with the threshold for the well-posedness
of these equations with respect to the regularity of the initial data.

Let Ω denote a time dependent fluid domain contained in a fixed domain O, located
between a free surface and a fixed bottom:

Ω = {(t, x, y) ∈ [0, 1]×O ; y < η(t, x)}
where O ⊆ Rd × R is a given connected open set, with x ∈ Rd representing the horizontal
spatial coordinate and y ∈ R representing the vertical spatial coordinate. We also assume
the free surface

Σ = {(t, x, y) ∈ [0, 1]× Rd × R : y = η(t, x)}
is separated from the fixed bottom Γ = ∂Ω\Σ by a curved strip of depth h > 0:

{(x, y) ∈ Rd × R : η(t, x)− h < y < η(t, x)} ⊆ O.(1.1)

We consider an incompressible, irrotational fluid flow. In this setting the fluid velocity
field v may be given by ∇x,yφ where φ : Ω→ R is a harmonic velocity potential,

∆x,yφ = 0.

We consider the situation of a constant downward gravitational force, but no surface tension.
The water waves system is then given by

(1.2)


∂tφ+

1

2
|∇x,yφ|2 + P + gy = 0 in Ω,

∂tη = ∂yφ−∇xη · ∇xφ on Σ,

P = 0 on Σ,

∂νφ = 0 on Γ,

where g > 0 is acceleration due to gravity, ν is the normal to Γ, and P is the pressure,
recoverable from the other unknowns by solving an elliptic equation. Here the first equation
is the Euler equation in the presence of gravity, the second is the kinematic condition ensuring
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fluid particles at the interface remain at the interface, the third indicates no surface tension,
and the fourth indicates a solid bottom.

A substantial literature regarding the well-posedness of the system (1.2) has been pro-
duced. We refer the reader to [ABZ14a], [ABZ14b], [Lan13] for a more complete history and
references. In our direction, well-posedness of (1.2) in Sobolev spaces was first established
by Wu [Wu97], [Wu99]. This well-posedness result was improved by Alazard-Burq-Zuily to
a lower regularity at the threshold of a Lipschitz velocity field using only energy estimates
[ABZ14a]. This was further sharpened to velocity fields with only a BMO derivative by
Hunter-Ifrim-Tataru [HIT16].

It has been known that by taking advantage of an equation’s dispersive properties, one
can lower its well-posedness regularity threshold below that which is attainable by energy
estimates alone. This was first realized in the context of low regularity Strichartz esti-
mates for the nonlinear wave equation, in the works of Bahouri-Chemin [BC99b], [BC99a],
Tataru [Tat00], [Tat01], [Tat02], Klainerman-Rodnianski [KR03], and Smith-Tataru [ST05].
Strichartz estimates have been similarly been studied for the water waves equations with
surface tension; see [CHS10], [ABZ11b], [dPN15], [dPN16], [Ngu17].

This low regularity Strichartz paradigm was first applied toward gravity water waves by
Alazard-Burq-Zuily in [ABZ14b]. The argument proceeds by first establishing a paradiffer-
ential formulation of the water waves system (described precisely in Section 2.2)

(1.3) (∂t + TV · ∇+ iTγ)u = f

where TV denotes the low-high frequency paraproduct with the vector field V , and Tγ denotes
the low-high paradifferential operator with symbol γ. Here, γ is a real symbol of order 1

2
,

thus making explicit the dispersive character of the equations. Then by proving a Strichartz
estimate for the paradifferential equation (1.3), one can obtain a priori estimates for the full
nonlinear system. However, to be useful toward the low regularity well-posedness theory,
this Strichartz estimate must be proven assuming only a correspondingly low regularity of
the coefficient vector field V and symbol γ. This difficulty is addressed in [ABZ14b] by
truncating these coefficients to frequencies below λδ, where δ = 2/3 < 1 is an optimized
constant, essentially regularizing V and γ.

However, this truncation approach comes at the cost of derivative losses in the Strichartz
estimates and corresponding losses in the well-posedness threshold. In fact, it is likely that
using only the regularity of the coefficients V and γ in (1.3), it is impossible to prove
Strichartz estimates without loss. For instance, in the context of the wave equation with
Lipschitz metric, counterexamples to sharp Strichartz estimates were provided by Smith-
Sogge [SS94] and Smith-Tataru [ST02]. Likewise, the former discusses counterexamples to
sharp Lp estimates for eigenfunctions of elliptic operators with Lipschitz coefficients.

Thus, to further improve the well-posedness threshold (at least, through the low regu-
larity Strichartz paradigm), one needs to invoke the additional structure of V and γ as
solutions to the water waves system. In Chapter 2, we implement this by observing an
integration structure that reveals extra regularity in the change of variables from Eulerian
to Lagrangian coordinates. This approach applies to all dimensions with no additional dif-
ficulty, but is insufficient for achieving sharp Strichartz estimates. In Chapter 3, we entirely
remove the derivative loss for the Strichartz estimates, implying the greatest improvement to
the well-posedness threshold that can be attained using the low regularity Strichartz para-
digm. Because this argument is quite delicate, we consider only the case d = 1 of one surface

2



dimension, where the equations are somewhat simpler. Lastly, in Chapter 4, we outline the
proof of well-posedness, given the low regularity Strichartz estimates.

2. Statement of Results

2.1. Zakharov-Craig-Sulem formulation. We first reduce the free boundary problem
(1.2) to a system of equations on the free surface. Following Zakharov [Zak68] and Craig-
Sulem [CS93], we have unknowns (η, ψ) where η is the vertical position of the fluid surface
as before, and

ψ(t, x) = φ(t, x, η(t, x))

is the velocity potential φ restricted to the surface. Then (henceforth, ∇ = ∇x):

(2.1)

∂tη −G(η)ψ = 0

∂tψ + gη +
1

2
|∇ψ|2 − 1

2

(∇η · ∇ψ +G(η)ψ)2

1 + |∇η|2
= 0.

Here, G(η) is the Dirichlet to Neumann map with boundary η:

(G(η)ψ)(t, x) =
√

1 + |∇η|2(∂nφ)|y=η(t,x).

See [ABZ11a], [ABZ14a] for a precise construction of G(η) in a domain with a general
bottom. In addition, it was shown in [ABZ13] that if a solution (η, ψ) of (2.1) belongs to

C0([0, T ];Hs+ 1
2 (Rd)) for T > 0 and s > d

2
+ 1

2
, then one can define a velocity potential φ

and a pressure P satisfying the Eulerian system (1.2). We will consider the case s > d
2

+ 1
2

throughout.

2.2. Paradifferential reduction. We establish Strichartz estimates in terms of the parad-
ifferential reduction of the water waves system developed in [ABZ14a], [ABZ14b], which
expresses the unknowns of the water waves system as the solution to an explicit dispersive
equation. We recall the reduction in this subsection.

We denote the horizontal and vertical components of the velocity field restricted to the
surface η by

V (t, x) = (∇φ)|y=η(t,x), B(t, x) = (∂yφ)|y=η(t,x)

and the good unknown of Alinhac by

Us = 〈Dx〉sV + T∇η〈Dx〉sB.
The traces (V,B) can be expressed directly in terms of the unknowns (η, ψ) of the Zakharov-
Craig-Sulem formulation,

(2.2) B =
∇η · ∇ψ +G(η)ψ

1 + |∇η|2
, ∇ψ = V +B∇η.

Denote the principal symbol of the Dirichlet to Neumann map

Λ(t, x, ξ) =
√

(1 + |∇η|2)|ξ|2 − (∇η · ξ)2,

and the Taylor coefficient
a(t, x) = −(∂yP )|y=η(t,x).

We will assume the now-classical Taylor sign condition, a(t, ·) ≥ amin > 0. This expresses
the fact that the pressure increases going from the air to the fluid domain. It is satisfied in
the case of infinite bottom [Wu99] or small perturbations of flat bottoms [Lan05]. In the
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case of one surface dimension, also see [HIT16] and [HGIT17] for alternative proofs of this
fact with infinite bottom and flat bottom, respectively. The water waves system is known
to be ill-posed when the condition is not satisfied [Ebi87].

The reduction to a dispersive equation involves a symmetrization and complexification of
the Eulerian system. As a result, it is convenient to define the symmetrized symbol

γ =
√
aΛ

and the complex unknown

(2.3) u = 〈Dx〉−s(Us − iT√a/Λ
〈Dx〉s∇η).

Lastly, let F denote a non-decreasing positive function depending on h, g, and amin and
define

Ms(t) = ‖(η, ψ)(t)‖
Hs+1

2 (Rd)
+ ‖(V,B)(t)‖Hs(Rd)

Zr(t) = 1 + ‖η(t)‖
W r+1

2 ,∞(Rd)
+ ‖(V,B)(t)‖W r,∞(Rd).

Then we have the following paradifferential equation for u (see Appendix E.1 for the defini-
tions and notation of the paradifferential calculus), which holds in general dimension:

Proposition 2.1 ([ABZ14b, Corollary 2.7]). Let

0 < T ≤ 1, s >
d

2
+

3

4
, r > 1.

Consider a smooth solution (η, ψ) ∈ C([0, T ];Hs+ 1
2 (Rd)) to (2.1) satisfying, uniformly on

t ∈ [0, T ], (1.1) and the Taylor sign condition a(t, ·) ≥ amin > 0.
Then u given by (2.3) satisfies (1.3),

∂tu+ TV · ∇u+ iTγu = f,

with

‖f(t)‖Hs(Rd) ≤ F(Ms(t))Zr(t).

Remark 2.2. The proposition was stated for s > d
2

+ 3
4

in [ABZ14b], but using a more

careful elliptic analysis, this can be reduced to s > d
2

+ 1
2
.

2.3. Strichartz estimates and local well-posedness. In this section we state our main
result, a Strichartz estimate for arbitrary smooth solutions u to the equation (1.3). Write,
denoting I = [0, T ],

Ms(T ) = ‖(η, ψ)‖
L∞(I;Hs+1

2 (Rd))
+ ‖(V,B)‖L∞(I;Hs(Rd))

Zr(T ) = 1 + ‖η‖
Lp(I;W r+1

2 ,∞(Rd))
+ ‖(V,B)‖Lp(I;W r,∞(Rd)).

Theorem 2.3. Let d ≥ 1 and

0 < T ≤ 1, s >
d

2
+

3

4
, r > 1.

Consider a smooth solution (η, ψ) ∈ C([0, T ];Hs+ 1
2 (Rd)) to (2.1) satisfying, uniformly on

t ∈ [0, T ], (1.1) and the Taylor sign condition a(t, ·) ≥ amin > 0.
Further, let

σ ∈ R, ε > 0,
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{
µ = 1

10
, p = 4 if d = 1

µ = 1
5
, p = 2 if d ≥ 2.

Then a smooth solution u on I to (1.3),

∂tu+ TV · ∇u+ iTγu = f

with coefficients V, γ obtained from (η, ψ), satisfies

‖u‖
Lp(I;Wσ+µ− d2−ε,∞(Rd))

≤ F(Ms(T ) + Zr(T ))
(
‖f‖

L1(I;Hσ− 1
10 (Rd))

+ ‖u‖L∞(I;Hσ(Rd))

)
.

In the d = 1 case, we further improve the derivative gain µ to a sharp 1
8

gain:

Theorem 2.4. Let d = 1 and

0 < T ≤ 1, s >
d

2
+

7

8
, r > 1.

Consider a smooth solution (η, ψ) ∈ C([0, T ];Hs+ 1
2 (R)) to (2.1) satisfying, uniformly on

t ∈ [0, T ], (1.1) and the Taylor sign condition a(t, ·) ≥ amin > 0. Further, let

σ ∈ R, σ′ = σ +
1

8
, p = 2, ε > 0.

Then a smooth solution u on I to (1.3),

∂tu+ TV · ∇u+ iTγu = f

with coefficients V, γ obtained from (η, ψ), satisfies

‖u‖
L2(I;Wσ′− d2−ε,∞(R))

≤ F(Ms(T ) + Zr(T ))(‖f‖L1(I;Hσ(R)) + ‖u‖L∞(I;Hσ(R))).

Remark 2.5. We make the following remarks regarding the Strichartz gain µ:

• For comparison, solutions to the constant coefficient linearized equation satisfy

‖e−it|Dx|
1
2 u0‖L4([0,1];L∞(R)) . ‖u0‖H 3

8 (R)
,

‖e−it|Dx|
1
2 u0‖L2([0,1];L∞(R2)) . ‖u0‖H 3

4 (R2)
.

Thus, we expect at most a gain of µ = 1
8

derivatives over Sobolev embedding in the

case d = 1, as achieved by Theorem 2.4, and a gain of µ = 1
4

in the case d ≥ 2.
• Note that Theorem 2.4 does not achieve L4 in time; this remains an open question

for now.
• Such estimates were first established in [ABZ14b] with µ = 1

24
in the case d = 1 and

µ = 1
12

in the case d ≥ 2.

Theorems 2.3 and 2.4 combine with Proposition 2.1 to yield a priori energy and Hölder
estimates. Combining these with contraction and limiting arguments, we will obtain the
following local well-posedness with Strichartz estimates:

Theorem 2.6. Let d ≥ 1, {
µ = 1

10
, p = 4 if d = 1

µ = 1
5
, p = 2 if d ≥ 2,

5



and

s >
d

2
+ 1− µ, 1 < r < s−

(
d

2
− µ

)
.

Consider initial data (η0, ψ0) ∈ Hs+ 1
2 (Rd) satisfying

i) (V0, B0) ∈ Hs(Rd),
ii) the positive depth condition

{(x, y) ∈ Rd × R : η0(x)− h < y < η0(x)} ⊆ O,

iii) the Taylor sign condition

a0(x) ≥ amin > 0.

Then there exists T > 0 such that the system (2.1) with initial data (η0, ψ0) has a unique

solution (η, ψ) ∈ C([0, T ];Hs+ 1
2 (Rd)) such that

i) (η, ψ) ∈ Lp([0, T ];W r+ 1
2
,∞(Rd)),

ii) (V,B) ∈ C([0, T ];Hs(Rd)) ∩ Lp([0, T ];W r,∞(Rd)),
iii) the positive depth condition (1.1) holds on t ∈ [0, T ] with h/2 in place of h,
iv) the Taylor sign condition a(t, x) ≥ amin/2 holds on t ∈ [0, T ].

Further, if (η0,n, ψ0,n) uniformly form a sequence of such initial data with

(η0,n, ψ0,n)→ (η0, ψ0) ∈ Hs+ 1
2 (Rd),

then the corresponding solutions converge:

(ηn, ψn, Vn, Bn)→ (η, ψ, V,B) ∈ C([0, T ];Hs+ 1
2 (Rd)).

Theorem 2.7. Theorem 2.6 holds with

d = 1, µ =
1

8
, p = 2.

3. Overview of the Arguments

Here we outline the main ideas used in Chapters 2 and 3 to prove the Strichartz estimates
of Theorem 2.3 and 2.4 respectively. The proof of well-posedness, Theorems 2.6 and 2.7, is
relatively standard in the context of quasilinear equations, and is presented in Chapter 4.

3.1. General surface dimensions. To prove the low regularity Strichartz estimate of The-
orem 2.3, we use a parametrix construction for (1.3) based on the FBI transform (see [Tat04],
[KT05]). This transform decomposes the initial data into space and frequency localized com-
ponents which evolve along the Hamilton flow, yielding a parametrix resembling a Fourier
integral operator with complex phase. We use this parametrix to establish fixed-time dis-
persive estimates, so that a classical TT ∗ argument then yields the Strichartz estimate.

A difficulty one encounters in using this strategy is that the order 1 transport term TV ·∇
of (1.3) dominates the order 1/2 dispersive term Tγ when considering the regularity of the
Hamilton flow associated to (1.3), which is central to the fixed-time dispersive estimates.

This difficulty is addressed in [ABZ14b] by performing a change of variables x 7→ X to
straighten the vector field ∂t + V · ∇, essentially passing to Lagrangian coordinates,

(3.1) ∂tv + ip(t, y,D)v = f(X)

6



where p is a symbol of order 1/2. However, this change of variables comes at the cost of a
low regularity Jacobian term ∂xX appearing in the symbol p, forcing losses in the Strichartz
estimates.

Here, we use the fact that V arises from a solution to the Euler equations to observe that
we may write

V ≈ (∂t + V · ∇)F

where F has improved regularity over V . Using this integration structure, we observe that
the change of variables X has a hidden Strichartz regularity. This may be used to observe
a corresponding hidden regularity for the symbol p, which in fact matches the Strichartz

regularity of the original symbol γ ∈ L2
tC

1/2
x .

However, a heuristic wave packet analysis shows that the order 1/2 dispersive equation re-

quires symbol regularity γ ∈ L2
tC

2/3
x to establish Strichartz estimates without loss relative to

the constant coefficient case. Thus, as in [ABZ14b], we still need to truncate the coefficients
to frequencies below λδ, with δ = 9/10 an optimized constant. We remark that as part of
this approach, one decomposes the time interval into a number of short intervals on which
one proves the Strichartz estimates, before recombining the intervals at a loss depending on
the number of short intervals. Here, we are able to obtain an additional gain over the imple-
mentation in [ABZ14b] by performing the time interval partition more delicately, balancing
the the length of each short interval with the regularity of the symbol on that interval (also
see [Tat02]).

3.2. Sharp estimates in one surface dimension. The strategy we use to prove Theorem
2.4 relies on a parametrix construction that approximates solutions to (1.3) as a square-
summable superposition of discrete wave packets. The Strichartz estimates then follow from
a geometric observation capturing the dispersion of the packets, combined with a counting
argument. This is in contrast with the Hadamard parametrix used in [ABZ14b], or the
parametrix based on the FBI transform that we will use in the case of general dimensions in
Chapter 2, both of which use dispersive estimates combined with a classical TT ∗ argument
to obtain the Strichartz estimates. The strategy we follow here more closely resembles the
parametrix construction and counting argument used for the wave equation in [ST05]. Also
in contrast with both [ABZ14b] and the general dimensional argument in Chapter 2, we
incorporate the transport term of (1.3) directly in the parametrix construction, rather than
changing variables to Lagrangian coordinates.

To proceed without derivative losses, we can only truncate the coefficients of (1.3) to
frequencies below λ, in further contrast with [ABZ14b] and Chapter 2, which truncate the
coefficients of (1.3) to frequencies λδ, with δ a constant below 1. As a result, our wave
packet parametrix construction and subsequent geometric analysis must be performed at
lower regularity. This presents difficulties on two main fronts.

First, if we observe only the regularity of the symbol of (1.3), the associated Hamilton
characteristics along which wave packets travel do not have sufficient regularity to allow a
meaningful geometric analysis of the dispersion on the full time interval. To overcome this,
we seek an integration structure for the symbol along the Hamilton flow, to show that the
characteristics are in fact bilipschitz. We remark that this integration structure is more
complex than that in Chapter 2, as it involves the full symbol V ξ + γ rather than V alone.
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Second, the natural wave packet scale at frequency λ for a dispersive equation of order
1/2 is

δx ≈ λ−
3
4 , δξ ≈ λ

3
4 , δt ≈ 1.

However, the coefficients of (1.3), when truncated only to frequencies below λ, are approx-
imately constant only on the scale δx ≈ λ−1, so we cannot expect a generic bump function
localized on the wave packet scale to be a useful approximate solution. We address this by
using an exact eikonal phase function for our wave packets, at the cost of losing the exact
localization in frequency. In turn, this interferes with the square summability of the wave
packets. To gain the additional frequency localization needed for the summability, we use
the fact that, along wave packets, the coefficients of (1.3) enjoy extra regularity in the form

of dispersive local smoothing estimates on the wave packet scale δx ≈ λ−
3
4 .

4. Notation

We record the notation and setting that we will use throughout.

4.1. Regularity indices. We assume

s >
d

2
+

3

4
, 1 < r < s− d

2
+

1

4
, r ≤ 3

2
.

Note that some propositions will evidently hold without the upper bounds on r. Also let
0 < ε < 1− r denote a small number, and for any regularity index m ∈ R, let

m+ = m+ ε, m− = m− ε.
We will allow m+,m−, and ε to vary from line to line.

In Chapter 2, we let {
µ = 1

10
, p = 4 if d = 1

µ = 1
5
, p = 2 if d ≥ 2.

In Chapter 3, we set d = 1 and p = 2. In place of setting µ = 1/8, we use the notation

m′ = m+
1

8

for brevity. We will further assume

s >
d

2
+

7

8
where d = 1. Note that we will often preserve the notation of general d to provide context.

4.2. Quantities from the water waves system. We write

∇ = ∇x, ∆ = ∆x, 〈D〉 = 〈Dx〉, |D| = |Dx|.

Unless otherwise specified, let 0 < T ≤ 1, I = [0, T ], and (η, ψ) ∈ C1(I;Hs+ 1
2 (Rd)) denote a

smooth solution to (2.1) satisfying, uniformly on t ∈ I, the positive depth condition (1.1).
From (η, ψ) we can extract the harmonic velocity potential φ(t, x, y) satisfying

∆x,yφ = 0, φ|y=η(t,x) = ψ,

the velocity field v(t, x, y),

v = ∇x,yφ,
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the pressure P (t, x, y),

−P = ∂tφ+
1

2
|∇x,yφ|2 + gy,

the horizontal and vertical components (V,B)(t, x) of the velocity field restricted to the
surface η,

V = (∇φ)|y=η(t,x), B = (∂yφ)|y=η(t,x),

and the Taylor coefficient a(t, x),

a = −(∂yP )|y=η(t,x).

We assume (V,B) ∈ L∞(I;Hs(Rd)), as well as the Taylor sign condition a ≥ amin > 0
as discussed in the introduction. We remark that throughout, we use the estimates on a
provided in Proposition D.8. Lastly, we obtain the principal symbol Λ(t, x, ξ) of the Dirichlet
to Neumann map associated to η(t, ·),

Λ =
√

(1 + |∇η|2)|ξ|2 − (∇η · ξ)2,

and define the symmetrized symbol

γ =
√
aΛ.

Observe that in the case d = 1, we have

Λ = |ξ|, γ =
√
a|ξ|.

Lastly, for brevity we let L denote the vector field

L = ∂t + V · ∇.

4.3. Frequency decomposition and truncation. Throughout, we denote frequencies by
λ, µ, κ ∈ 2N. We will fix λ by the end of Section 5 in Chapter 2 and Section 10 in Chapter
3, and assume µ satisfies λ

3
4 � µ ≤ cλ, where the small absolute constant c is discussed

further below. We typically use κ to denote a general frequency parameter.
We recall the standard Littlewood-Paley decomposition. Fix ϕ(ξ) ∈ C∞0 (Rd) with support

in {|ξ| ≤ 2} such that ϕ ≡ 1 on {|ξ| ≤ 1}. Then define for u = u(x),

Ŝκu(ξ) := (ϕ(ξ/κ)− ϕ(2ξ/κ))û(ξ) =: ψ(ξ/κ)û =: ψκ(ξ)û

which has support {|ξ| ∈ [κ/2, 2κ]}. Also allow S<κ, etc., in the natural way, and denote
S0 = S<1. Lastly, let S̃κ =

∑
κ/4≤κ̃≤4κ Sκ̃ denote a frequency projection with widened support

so that S̃κSκ = Sκ.
For a small absolute constant c > 0, write

A� B, A ≈ B

when, respectively,

A ≤ cB, (1− c)A ≤ B ≤ A/(1− c).
In Chapter 2, we denote, for 0 < δ < 1,

Vδ = S≤λδV, ηδ = S≤λδη, γδ = S≤λδγ, Lδ = ∂t + Vδ · ∇.

In Chapter 3, we will set an additional absolute constant

0 < c1 � c� 1,
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where c1λ will be the frequency truncation for the paradifferential equation on which we
prove Strichartz estimates. We denote

aκ = S≤c1κa, Vκ = S≤c1κV, ηκ = S≤c1κη, γκ = S≤c1κγ.

4.4. A priori quantities. Throughout, F will denote a non-decreasing positive function
which may change from line to line, and which may depend on the depth h > 0, the constant
amin > 0 of the Taylor sign condition, and the gravitational constant g > 0. For brevity, we
denote

M(t) = Ms(t) = ‖(η, ψ)(t)‖
Hs+1

2
+ ‖(V,B)(t)‖Hs ,

Z(t) = Zr(t) = 1 + ‖η(t)‖
W r+1

2 ,∞
+ ‖(V,B)(t)‖W r,∞ .

We also write for brevity,

M(T ) =Ms(T ) = ‖(η, ψ)‖
L∞(I;Hs+1

2 )
+ ‖(V,B)‖L∞(I;Hs),

Z(T ) = Zr(T ) = ‖η‖
Lp(I;W r+1

2 ,∞)
+ ‖(V,B)‖Lp(I;W r,∞),

F(T ) = F(Ms(T ) + Zr(T )).

Observe that
‖F(M(t))‖L∞t (I) + ‖Z(t)‖Lpt (I) ≤ F(T ).
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Chapter 2

Strichartz Estimates for General Surface Dimensions

In this chapter, we establish Theorem 2.3, the Strichartz estimates in general dimensions
but with a loss of derivatives.

We outline the chapter below. First, in Section 5, we perform a standard reduction of the
Strichartz estimate to a dyadic frequency localized form.

In Section 7, we straighten the vector field ∂t+V ·∇ to remove the non-dispersive principal
term in (1.3). This is done via a change of variables obtained by solving the flow Ẋ = V (t,X),
essentially passing to Lagrangian coordinates. This method was already applied in [ABZ14b].

We will observe some structure of the vector field V to discover extra regularity in the
flow X, which was a limiting factor in the Strichartz estimates proved in [ABZ14b]. We
discuss this structure in Section 6. As part of this analysis, we will be required to estimate
our errors, and in particular the paralinearization error of the Dirichlet to Neumann map,
in Hölder norm. These estimates are established in Appendices A and D.

In Section 8, we construct a parametrix and prove Strichartz estimates for the equation
after the change of variables. Here, we apply a wave packet parametrix, which has the
advantage that it only requires control of the Hamilton flow on the λ-frequency wave packet
scale associated to our dispersive operator, ∆x ≈ λ−3/4.

As in [ABZ14b], the low regularity of our symbol will limit our Strichartz estimate, without
derivative loss, to short time intervals. In Section 9, we partition the unit time interval into
such short time intervals, implying a Strichartz estimate on a unit time interval with a loss
depending on the number of intervals. We obtain a gain by performing this partition in a
way that balances the the length of the time interval with the regularity of our symbol on
that interval (also see [Tat02]).

5. Frequency Localization

In this section we reduce Theorem 2.3 to a frequency localized form.

5.1. Dyadic decomposition. First we reduce to the corresponding dyadic frequency esti-
mates:

Proposition 5.1. Consider a smooth solution uλ to (1.3) on I where u = uλ(t, ·) and f = fλ
have frequency support {|ξ| ∈ [λ/2, 2λ]}. Then

‖uλ‖
Lp(I;Wµ− d2−,∞)

≤ F(T )(‖fλ‖L1(I;H−
1
10 )

+ ‖uλ‖L∞(I;L2)).
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Proof of Theorem 2.3. Given u solving (1.3), uλ = Sλu solves (1.3) with inhomogeneity

Sλf + [TV · ∇, Sλ]u+ i[Tγ, Sλ]u.

Note that this has frequency support {|ξ| ∈ [λ/4, 4λ]} (strictly speaking, we should modify
Proposition 5.1 to address this wider support, but we neglect this detail throughout for
simplicity). By the paradifferential commutator estimate (E.2),

‖[TV · ∇, Sλ]u‖L1(I;Hσ− 1
10 )
. ‖V ‖L1(I;W 1,∞)‖S̃λu‖L∞(I;Hσ).

Similarly, by (E.2) and the estimates on the Taylor coefficient as in Corollary D.10,

‖[Tγ, Sλ]u‖Hσ− 1
10
.M

1
2
1
2

(γ)‖S̃λu‖Hσ ≤ F(M(t))Z(t)‖S̃λu‖Hσ

and hence

‖[Tγ, Sλ]u‖L1(I;Hσ− 1
10 )
≤ F(T )‖S̃λu‖L∞(I;Hσ).

We then decompose u into frequency pieces uλ on which we can apply Proposition 5.1
(multiplied by λσ, using the frequency localization):

‖u‖
Lp(I;Wσ+µ− d2−,∞)

≤
∑
λ=0

‖uλ‖
Lp(I;Wσ+µ− d2−,∞)

≤ F(T )
∑
λ=0

λ−ε(‖Sλf‖L1(I;Hσ− 1
10 )

+ ‖S̃λu‖L∞(I;Hσ))

≤ F(T )(‖f‖
L1(I;Hσ− 1

10 )
+ ‖u‖L∞(I;Hσ))

as desired. �

5.2. Symbol truncation. Next, we reduce Proposition 5.1 to an estimate with frequency
truncated symbols.

Proposition 5.2. Let 9
10
≤ δ < 1. Consider a smooth solution uλ to

(5.1) (∂t + TVδ · ∇+ iTγδ)uλ = fλ

on I where uλ(t, ·) and fλ have frequency support {|ξ| ∈ [λ/2, 2λ]}. Then

‖uλ‖
Lp(I;Wµ− d2−,∞)

≤ F(T )(‖fλ‖L1(I;H−
1
10 )

+ ‖uλ‖L∞(I;L2)).

Proof of Proposition 5.1. This follows from Proposition 5.2 by including (TV −TVδ) ·∇uλ and
(Tγ − Tγδ)uλ as components of the inhomogeneous term, along with the following estimates,
proven below:

‖(TV − TVδ) · ∇uλ‖L1(I;H−
1
10 )
≤ F(T )‖uλ‖L∞(I;L2)

‖(Tγ − Tγδ)uλ‖L1(I;H−
1
10 )
≤ F(T )‖uλ‖L∞(I;L2).

For the first estimate, observe that

(TV − TVδ) · ∇uλ = (Sλδ<·≤λ/8V ) · ∇uλ
which satisfies

‖(Sλδ<·≤λ/8V ) · ∇uλ‖L1(I;H−
1
10 )
. λ−

1
10λ1−δ‖V ‖L1(I;W 1,∞)‖uλ‖L∞(I;L2)

where 1− δ − 1
10
≤ 0 as desired.
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The second estimate is similar, using (E.1) to obtain

‖(Tγ − Tγδ)uλ‖H− 1
10
. λ−

1
10M

1
2

0 (S>λδγ)‖uλ‖H 1
2

. λ−
1
10λ

1
2
− 1

2
δM

1
2
1
2

(γ)‖uλ‖L2 .

Then 1
2
− 1

2
δ− 1

10
< 0 is better than needed. Using the estimates on γ provided in Corollary

D.10 and integrating in time yields the desired result. �

5.3. Pseudodifferential symbol. To construct a parametrix, it is convenient to replace the
paradifferential symbol Tγδ with the pseudodifferential symbol γδ = γδ(t, x, ξ), and likewise
the paraproduct TVδ by Vδ. It is harmless to do so since uλ is frequency localized.

Since Proposition 5.2 reduces to Proposition 5.3 as seen below, the remainder of CHapter
2 will be dedicated to the proof of Proposition 5.3:

Proposition 5.3. Let 9
10
≤ δ < 1. Consider a smooth solution uλ to

(5.2) (∂t + Vδ · ∇+ iγδ(t, x,D))uλ = fλ

on I where uλ(t, ·) and fλ have frequency support {|ξ| ∈ [λ/2, 2λ]}. Then

‖uλ‖
Lp(I;Wµ− d2−,∞)

≤ F(T )(‖fλ‖L1(I;H−
1
10 )

+ ‖uλ‖L∞(I;L2)).

Proof of Proposition 5.2. We may apply Proposition 5.3 with inhomogeneity

fλ + (Tγδ − γδ)uλ + (TVδ − Vδ) · ∇uλ.

Using for instance [Ngu15, Proposition 2.7] and the estimates on γ as in Corollary D.10,

‖(Tγδ − γδ)uλ‖H− 1
10
.M

1
2
1
2

(γ)‖uλ‖H− 1
10
≤ F(M(t))Z(t)‖uλ‖H− 1

10
.

Integrating in time, we have

‖(Tγδ − γδ)uλ‖L1(I;H−
1
10 )
≤ F(T )‖uλ‖L∞(I;H−

1
10 )

which is better than needed.
Similarly,

‖(TVδ − Vδ) · ∇uλ‖H− 1
10
.M1

1 (V · ξ)‖uλ‖H− 1
10
. ‖V ‖W 1,∞‖uλ‖H− 1

10
.

Integrating in time yields the desired estimate.
�

6. Flow of the Vector Field

6.1. Integrating the vector field. Recall that the traces of the velocity field on the surface
(V,B) satisfy the relations [ABZ14a, Proposition 4.3]:

(6.1) L∇η = ∇B −∇V · ∇η = G(η)V +∇ηG(η)B + Γx +∇ηΓy, G(η)B = −∇ · V − Γy.

Here, Γy,Γx arise only in the case of finite bottom, and are discussed in Appendix D.2.
Observe that the vector field V of (1.3) may be integrated along L by using (6.1), as in

the following proposition. This additional structure will imply improved regularity on the
flow of the vector field.
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Proposition 6.1. Let α ≥ 1
2
. Then

(6.2) ∂xVδ = LδTq−1∂x∇ηδ + g

where q = ΛI − i∇η · ξT is a matrix-valued symbol of order 1, and g satisfies

‖g‖Wα,∞(Rd) ≤ λδ(α−
1
2

)F(‖η‖
Hs+1

2
, ‖(ψ, V,B)‖

H
1
2×Hs×Hs

)

· (1 + ‖η‖
W r+1

2 ,∞
)(1 + ‖η‖

W r+1
2 ,∞

+ ‖(V,B)‖W r,∞).

Remark 6.2. The proposition only uses s > d
2

+ 1
2
.

Proof. We may assume α = 1
2
; for the general case, observe that all the terms of (6.2) have

frequency support {|ξ| . λδ}.
We have from (6.1)

L∇η = G(η)V − (∇η)∇ · V + Γx.

Step 1. Paralinearization. Paralinearize the terms

G(η)V = TΛV +R(η)V,

(∇η)∇ · V = T∇η∇ · V + T∇·V∇η +R(∇η,∇ · V )

of (12.7). Then rearranging,

TqV = TΛV − T∇η∇ · V = L∇η −R(η)V + T∇·V∇η +R(∇η,∇ · V )− Γx.

We estimate the error terms on the right hand side. By Proposition D.3, (E.1), (E.6), and
Proposition D.7 respectively,

‖R(η)V ‖
W

1
2 ,∞
≤ F(‖η‖

Hs+1
2
, ‖V ‖Hs)(1 + ‖η‖

W r+1
2 ,∞

)(1 + ‖η‖
W r+1

2 ,∞
+ ‖V ‖W r,∞)

‖T∇·V∇η‖W 1
2 ,∞
. ‖V ‖W 1,∞‖η‖

W
3
2 ,∞

‖R(∇η,∇ · V )‖
W

1
2 ,∞
. ‖η‖

W
3
2 ,∞
‖V ‖W 1,∞

‖Γx‖W 1
2 ,∞
≤ F(‖η‖

Hs+1
2
, ‖(ψ, V,B)‖

H
1
2
)(1 + ‖η‖

W r+1
2 ,∞

).

We conclude
TqV = L∇η + g1

where

‖g1‖W 1
2 ,∞
≤ F(‖η‖

Hs+1
2
, ‖(ψ, V,B)‖

H
1
2×Hs×Hs

)

· (1 + ‖η‖
W r+1

2 ,∞
)(1 + ‖η‖

W r+1
2 ,∞

+ ‖(V,B)‖W r,∞).

For brevity, denote the right hand side by E.

Step 2. Inversion of q. To invert Tq, note the outer product ∇η ·ξT has only real eigenvalues,
so ΛI − i∇η · ξT = −i(∇η · ξT + iΛI) is invertible except when Λ = 0. Furthermore, since
Λ ≥ |ξ|, we see that for fixed |ξ| ≥ 1

2
the inverse is a smooth function of ∇η. We write

V = Tq−1L∇η + Tq−1g1 + (1− Tq−1Tq)V.

We again estimate the error terms on the right hand side. For the first error term Tq−1g1,
q−1 is a symbol of order −1 and is a smooth function of ∇η, so that by (E.15) and Sobolev
embedding with s− 1

2
> d

2
,

(6.3) M−1
0 (q−1) ≤ F(‖∇η‖L∞) ≤ F(‖∇η‖

Hs− 1
2
)
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and similarly

M−1
1
2

(q−1) ≤ F(‖∇η‖
Hs− 1

2
)‖∇η‖

C
1
2
∗
.

Then by (E.1) and the estimate on g1 in the previous step,

‖Tq−1g1‖W 3
2 ,∞
.M−1

0 (q−1)‖g1‖W 1
2 ,∞
≤ E.

Similarly, by (E.3), we control the second error term by

‖(1− Tq−1Tq)V ‖W 3
2 ,∞
.
(
M−1

1/2(q−1)M1
0 (q) +M−1

0 (q−1)M1
1/2(q)

)
‖V ‖W 1,∞

. ‖η‖
W r+1

2 ,∞
‖V ‖W 1,∞ .

We conclude

V = Tq−1L∇η + g2

with

‖g2‖W 3
2 ,∞
≤ E.

Step 3. Frequency localization and differentiation. Applying ∂xS≤λδ to both sides of our
identity, we have

∂xVδ = Tq−1∂xS≤λδL∇η + ∂xS≤λδg2 + [∂xS≤λδ , Tq−1 ]L∇η.

For the first error term, we have

‖∂xS≤λδg2‖W 1
2 ,∞
. ‖g2‖W 3

2 ,∞
.

To estimate the second error term, use the first identity of (6.1), (E.3), and (6.3),

‖[∂xS≤λδ , Tq−1 ]L∇η‖
W

1
2 ,∞

.
(
M−1

1/2(q−1) +M−1
0 (q−1)

)
‖∂B −∇η · ∂V ‖L∞

. ‖η‖
W r+1

2 ,∞
(‖B‖W 1,∞ + ‖∇η‖L∞‖∂V ‖L∞)

≤ F(‖η‖
Hs+1

2
)‖(V,B)‖W 1,∞‖η‖

W r+1
2 ,∞

.

We conclude

∂xVδ = Tq−1∂xS≤λδL∇η + g3

with

‖g3‖W 1
2 ,∞
≤ E.

Step 4. Vector field paralinearization. We paralinearize the vector field in order to commute
past it in the next step. Writing the paraproduct expansion

(V · ∇)∇η = (TV · ∇)∇η + T∇(∇η) · V +R(V,∇(∇η)),

we have

∂xVδ = Tq−1∂xS≤λδ(∂t + TV · ∇)∇η + g3 + Tq−1∂xS≤λδ(R(V,∇(∇η)) + T∇(∇η) · V ).
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Then by (E.1), (E.6), and (E.9),

‖Tq−1∂xS≤λδ(R(V,∇(∇η)) + T∇(∇η) · V )‖
W

1
2 ,∞

.M0
0 (q−1ξ)‖S≤λδ(R(V,∇(∇η)) + T∇(∇η) · V )‖

W
1
2 ,∞

. ‖∇η‖L∞‖V ‖W 1,∞‖∇2η‖
W−

1
2 ,∞

. ‖η‖
Hs+1

2
‖V ‖W 1,∞‖η‖

W
3
2 ,∞

.

We may thus replace V with TV , yielding, for g4 satisfying the same estimate as g3,

∂xVδ = Tq−1∂xS≤λδ(∂t + TV · ∇)∇η + g4.

Step 5. Vector field commutator estimate. Applying Proposition D.11 with m = 0, r = 1
2

and
ε = 1, we may exchange Tq−1∂xS≤λδ(∂t + TV · ∇)∇η for LTq−1∂x∇ηδ with an error bounded

in W
1
2
,∞ by (using that q is a smooth function of ∇η and the first identity of (6.1))

M0
0 (q−1ξ)‖V ‖W 1,∞‖∇η‖

B
1
2
∞,1

+M0
0 ((∂t + V · ∇)q−1ξ)‖∇η‖

W
1
2 ,∞

. (‖η‖W 1,∞‖V ‖W 1,∞‖η‖
B

3
2
∞,1

+ ‖∂B −∇η · ∂V ‖L∞‖η‖W 3
2 ,∞

)

≤ F(‖η‖
Hs+1

2
)‖(V,B)‖W 1,∞‖η‖

W r+1
2 ,∞
≤ E.

Step 6. Vector field truncation. Lastly we frequency truncate the vector field, using (E.12)
and (E.1):

‖((S>λδV ) · ∇)Tq−1∂x∇ηδ‖W 1
2 ,∞

. ‖S>λδV ‖W 1
2 ,∞

M0
0 (q−1ξ)‖∇ηδ‖W 1,∞ + ‖S>λδV ‖L∞M0

0 (q−1ξ)‖∇ηδ‖W 3
2 ,∞

. ‖η‖
Hs+1

2
(λ

1
2
δ‖S>λδV ‖W 1

2 ,∞
‖∇ηδ‖W 1

2 ,∞
+ λδ‖S>λδV ‖L∞‖∇ηδ‖W 1

2 ,∞
)

. ‖η‖
Hs+1

2
‖V ‖W r,∞‖∇ηδ‖W 1

2 ,∞
.

�

6.2. Regularity of the flow. We straighten the vector field Lδ = ∂t+Vδ ·∇ by considering
the system {

Ẋ(s) = Vδ(s,X(s))

X(s0) = x.
(6.4)

Since we assume that V ∈ L∞([0, T ]×Rd), Vδ is smooth with bounded derivatives so that this
system has a unique solution defined on I = [0, T ], which we denote X(s, x). For emphasis,
we may also write X = X(s) or X(x).

Proposition 6.3 ([ABZ14b, Proposition 2.16]). The map X(s, ·) is smooth, with the follow-
ing estimates:

‖(∂xX)(s, ·)− Id‖L∞(Rd) ≤ F(‖V ‖L2(I;W 1,∞))|s− s0|1/2(6.5)

‖(∂αxX)(s, ·)‖L∞(Rd) ≤ F(‖V ‖L2(I;W 1,∞))λ
δ(|α|−1)|s− s0|1/2, |α| ≥ 1(6.6)

In the case that V arises from a solution to (2.1), we can improve upon the regularity of
X by using the integrability of V along the vector field established in the previous section:
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Proposition 6.4. Consider a smooth solution (η, ψ) to the system (2.1). Let s > d
2

+ 1
2

and

r > 1. There exists s0 ∈ I such that for 1
2
≤ α < 1,

‖∂xX‖Lp(I;Cα∗ (Rd)) ≤ λδ(α−
1
2

)F(‖η‖
L∞(I;Hs+1

2 )
, ‖(ψ, V,B)‖L∞(I;Hs), ‖V ‖L2(I;W 1,∞))(6.7)

· (1 + ‖η‖
L2(I;W r+1

2 ,∞)
)(1 + ‖η‖

Lp(I;W r+1
2 ,∞)

+ ‖(V,B)‖L2(I;W r,∞)).

Proof. In the following let ∂i = ∂xi , and sum over repeated indices. Also denote |D|αSµ =
|D|αµ for brevity. Differentiating the system for X, we have

(6.8)
d

ds
(|D|αµ∂jX)(s) = |D|αµ((∂kVδ)(s,X(s))∂jX

k).

We decompose the right hand side into paraproducts:

|D|αµ(T(∂kVδ)(s,X(s))∂jX
k + T∂jXk((∂kVδ)(s,X(s))) +R((∂kVδ)(s,X(s)), ∂jX

k))

=: I + II + III.

We estimate I using (E.10):

‖|D|αµT(∂kVδ)(s,X(s))∂jX
k‖L∞x . ‖T(∂kVδ)(s,X(s))∂jX

k‖Cα∗,x . ‖V ‖W 1,∞‖∂jX‖Cα∗,x .

III satisfies the same estimate but using (E.6) in place of (E.10).
To study II, use Proposition 6.1 and the fact that X is the flow of Vδ to write

(∂kVδ)(s,X(s)) = ((∂t + Vδ · ∇)T1/q∂k∇ηδ)(s,X(s)) + gk(s,X(s))

=
d

ds
((T1/q∂k∇ηδ)(s,X(s))) + gk(s,X(s))

and hence

II =
d

ds
(|D|αµT∂jXk((T1/q∂k∇ηδ)(s,X(s))))− |D|αµT d

ds
∂jXk((T1/q∂k∇ηδ)(s,X(s)))

+ |D|αµT∂jXk(gk(s,X(s))).

The first term of II will be moved to the left hand side of (6.8). The second term of II may
be estimated using the system for X, (E.10), and (6.5):

‖|D|αµT d
ds
∂jXk((T1/q∂k∇ηδ)(s,X(s)))‖L∞x

. ‖T∂`V kδ (s,X(s))∂jX`((T1/q∂k∇ηδ)(s,X(s)))‖Cα∗,x
≤ F(‖V ‖L2(I;W 1,∞))‖V ‖W 1,∞‖(T1/q∂x∇ηδ)(s,X(s))‖Cα∗,x .

In turn, by the Lipschitz regularity of X from (6.5), Proposition E.11, (E.1), and (6.3),

‖(T1/q∂x∇ηδ)(s,X(s))‖Cα∗,x ≤ F(‖V ‖L2(I;W 1,∞))‖(T1/q∂x∇ηδ)(s, x)‖Cα∗,x
≤ F(‖V ‖L2(I;W 1,∞))M

0
0 (q−1ξ)‖∇ηδ‖Wα,∞

x

≤ λδ(α−
1
2

)F(‖V ‖L2(I;W 1,∞))‖η‖Hs+1
2
‖η‖

W
r+1

2 ,∞
x

.
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We estimate the third term of II similarly, using the Lipschitz regularity of X from (6.5),

Proposition E.11, and Proposition 6.1 to see that g ∈ W 1
2
,∞:

‖|D|αµT∂jXk(gk(s,X(s)))‖L∞x . ‖T∂jXk(gk(s,X(s)))‖Cα∗,x
≤ F(‖V ‖L2(I;W 1,∞))‖g(s,X(s))‖Cα∗,x
≤ λδ(α−

1
2

)F(‖V ‖L2(I;W 1,∞))‖g‖
W

1
2 ,∞
x

.

Collecting the above estimates for I, II and III, we can write (6.8) as

d

ds
|D|αµ(∂jX − F )(s, x) = G(s, x) +H(s, x)

where

F = T∂jXk(T1/q∂k∇ηδ)(s,X(s)),

‖G‖L∞x . ‖V ‖W 1,∞
x
‖∂jX‖Cα∗,x ,

and

‖H‖L∞x ≤ λδ(α−
1
2

)F(‖η‖
L∞(I;Hs+1

2 )
, ‖V ‖L2(I;W 1,∞))(‖V ‖W 1,∞

x
‖η‖

W
r+1

2 ,∞
x

+ ‖g‖
W

1
2 ,∞
x

).

Integrating in s, we may further write (6.8) as

|D|αµ(∂jX − F )(s, x) = |D|αµ(∂jX − F )(s0, x) +

∫ s

s0

G(σ, x) +H(σ, x) dσ

so that

‖|D|αµ(∂jX − F )(s)‖L∞x . ‖|D|
α
µ(∂jX − F )(s0)‖L∞x +

∫ s

s0

‖V ‖W 1,∞
x
‖∂jX‖Cα∗,x + ‖H‖L∞x dσ.

Then taking the supremum over µ and using triangle inequality on the right hand side,

‖(∂jX − F )(s)‖Cα∗,x . ‖(∂jX − F )(s0)‖Cα∗,x +

∫ s

s0

‖V ‖W 1,∞
x
‖∂jX − F‖Cα∗,x

+ ‖H‖L∞x + ‖V ‖W 1,∞
x
‖F‖Cα∗,x dσ.

Then by the Gronwall and Hölder inequalities,

‖(∂jX − F )(s)‖Cα∗,x ≤ F(‖V ‖L2(I;W 1,∞))

· (‖(∂jX − F )(s0)‖Cα∗,x + ‖H‖L1(I;L∞) + ‖F‖L2(I;Cα∗ )).

Finally, integrating in time,

‖(∂jX − F )(s)‖Lp(I;Cα∗ ) ≤ T
1
pF(‖V ‖L2(I;W 1,∞))(6.9)

· (‖(∂jX − F )(s0)‖Cα∗,x + ‖H‖L1(I;L∞) + ‖F‖L2(I;Cα∗ )).

It remains to estimate the terms of the right hand side, and ‖F‖Lp(I;Cα∗ ) on the left, by
the right hand side of (6.7). The term with H is already suitably estimated above, using
additionally Hölder in time and the estimate on g from Proposition 6.1. It remains to study
F .
F may be estimated in the same way as the second term of II:

‖F‖Cα∗,x = ‖T∂jXk(T1/q∂k∇ηδ)(s,X(s))‖Cα∗,x ≤ λδ(α−
1
2

)F(‖V ‖L2(I;W 1,∞))‖η‖Hs+1
2
‖η‖

W r+1
2 ,∞

.
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We conclude

‖F‖Lp(I;Cα∗ ) ≤ λδ(α−
1
2

)F(‖V ‖L2(I;W 1,∞))‖η‖L∞(I;Hs+1
2 )
‖η‖

Lp(I;W r+1
2 ,∞)

as desired, and similarly with L2(I;Cα
∗ ).

It remains to estimate ‖(∂jX − F )(s0)‖Cα∗ . Note there exists s0 ∈ I such that

‖η(s0)‖p
W r+1

2 ,∞
≤ T−1‖η‖p

Lp(I;W r+1
2 ,∞)

.

Fixing such an s0, by the previous estimate on ‖F‖Cα∗ ,

‖(∂jX − F )(s0)‖Cα∗ . 1 + ‖F (s0)‖Cα∗
≤ 1 + λδ(α−

1
2

)F(‖V ‖L2(I;W 1,∞))‖η(s0)‖
Hs+1

2
‖η(s0)‖

W r+1
2 ,∞

≤ 1 + T−
1
pλδ(α−

1
2

)F(‖V ‖L2(I;W 1,∞))‖η‖L∞(I;Hs+1
2 )
‖η‖

Lp(I;W r+1
2 ,∞)

.

Then T
1
p‖(∂jX − F )(s0)‖Cα∗ from the right hand side of (6.9) is bounded by the right hand

side of (6.7). �

It will be convenient to have estimates on the higher derivatives of X, to later see that
our operator has a symbol in a classical symbol class:

Proposition 6.5. Consider a smooth solution (η, ψ) to the system (2.1). Let s > d
2

+ 1
2

and
r > 1. There exists s0 ∈ I such that for |α| ≥ 2,

‖∂αxX‖Lp(I;L∞(Rd)) ≤ λδ(|α|−
3
2

)F(‖η‖
L∞(I;Hs+1

2 )
, ‖(ψ, V,B)‖L∞(I;Hs), ‖V ‖L2(I;W 1,∞))

· (1 + ‖η‖
L2(I;W r+1

2 ,∞)
)(1 + ‖η‖

Lp(I;W r+1
2 ,∞)

+ ‖(V,B)‖L2(I;W r,∞)).

Proof. The proof is similar to that of Proposition 6.4, except easier as it does not require the
paradifferential calculus, using only the chain and product rules directly. We differentiate
both sides of the flow for Vδ,

d

ds
∂αxX = ∂αx (Vδ(s,X(s))).

On the right hand side, the term for which all the derivatives fall on a single copy of X is
treated as a Gronwall term. The term on which all the derivatives fall on V should be handled
using Proposition 6.1 as in the proof of Proposition 6.4. The remaining terms are estimated
either as with the analogous terms in the proof of Proposition 6.4, or inductively. �

7. Change of Variables

On a sufficiently small time interval [s0, s0 + T ′], (6.5) implies that ∂xX is invertible. It is
also straightforward to check that x 7→ X(t, x) is proper, so we can conclude by Hadamard’s
theorem that x 7→ X(t, x) is a smooth diffeomorphism for each t ∈ [s0, s0 + T ′]. The length
of the time interval depends only on ‖V ‖L2(I;W 1,∞), so we may partition [0, T ] into a number
of time intervals of length T ′ on which x 7→ X(t, x) is a diffeomorphism. Without loss of
generality, consider the first interval [0, T ′].

We now return to the setting of Proposition 5.3 to perform the change of variables x 7→
X(t, x). Consider a smooth solution uλ to (5.2). Writing

vλ(t, y) := uλ(t,X(t, y)),
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we have by (6.4) that

∂tvλ(t, y) = (∂tuλ)(t,X(t, y)) + Vδ(t,X(t, y)) · (∇uλ)(t,X(t, y))

and hence

∂tvλ(t, y) + i(γδuλ)(t,X(t, y)) = fλ(t,X(t, y)).

Next, we write the dispersive term in terms of vλ. Fix t in the following and omit it for
brevity. We have

(γδuλ)(X(y)) =

∫
ei(X(y)−x′)ηγδ(X(y), η)uλ(x

′) dx′dη.

By the frequency support of uλ, we may write

(γδuλ)(X(y)) =

∫
ei(X(y)−x′)ηγδ(X(y), η)ψλ(η)uλ(x

′) dx′dη,

though abusing notation by writing ψ in place of the appropriate smooth cutoff with broader
support. To make the change of variables x′ = X(y′), we use the following notation:

H(y, y′) =

∫ 1

0

(∂xX)(hy + (1− h)y′) dh, M(y, y′) = (H(y, y′)t)−1,

J(y, y′) = |det ((∂xX)(y′))| | detM(y, y′)|.
Then

(γδuλ)(X(y)) =

∫
ei(X(y)−X(y′))ηγδ(X(y), η)ψλ(η)uλ(X(y′)) |det ((∂xX)(y′))| dy′dη.

Then make a second change of variables η = M(y, y′)ξ, noting the identity X(y)−X(y′) =
H(y, y′)(y − y′):

(γδuλ)(t,X(y)) =

∫
ei(y−y

′)ξγδ(X(y),M(y, y′)ξ)ψλ(M(y, y′)ξ)vλ(y
′)J(y, y′) dy′dξ.

We thus have

(7.1) ∂tvλ(t, y) + i(p(t, y, y′, D)vλ)(t, y) = fλ(t,X(t, y))

where

p(t, y, y′, ξ) = γδ(X(y),M(y, y′)ξ)ψλ(M(y, y′)ξ)J(y, y′).

7.1. Symbol regularity. It remains to study the regularity and curvature properties of p
needed for Strichartz estimates.

Proposition 7.1. There exists T ′ > 0 sufficiently small depending on ‖V ‖L2(I;W 1,∞) such
that for I = [0, T ′] and 1

2
≤ α < 1,

‖∂βξ p(t, y, y
′, ξ)‖Lp(I;L∞ξ C

α
∗,y,y′ )

≤ λ
1
2
−|β|+δ(α− 1

2
)F(T ).

Proof. Choose T ′ sufficiently small so that x 7→ X(t, x) is a diffeomorphism for each t ∈ I.

Let mij(y, y
′) denote the entries of the matrix M(y, y′). Then ∂βξ p is a sum of products of

the form, with β1 + β2 = β,

(∂β1ξ γδ)(X(y),M(y, y′)ξ)(∂β2ξ ψλ)(M(y, y′)ξ)Pβ(mij(y, y
′))J(y, y′)

where Pβ is a polynomial of degree |β|.
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By (6.5), for T ′ > 0 sufficiently small, ‖M‖, ‖M−1‖ ≤ 1/2 so that (∂β2ξ ψλ)(M(y, y′)ξ) and
hence p have support {|ξ| ∈ [cλ, λ/c]}. Thus, in the following, L∞ξ = L∞ξ ({|ξ| ∈ [cλ, λ/c]})
unless otherwise specified.

By using the product estimate (E.12) and recalling the estimates on γ from Corollary
D.10, it suffices to show the following estimates:

‖(∂β1ξ γδ)(X(y),M(y, y′)ξ)‖Lp(I;L∞ξ C
α
∗ ) ≤ λ

1
2
−|β1|+δ(α− 1

2
)F(T )(7.2)

· (
∑

|b|≤|β|+1

sup
|ξ|=1

‖∂bξγ‖L∞t,x+ ‖ sup
|ξ|=1

‖∂bξγ‖
W

1
2 ,∞
x

‖Lpt (I) )

‖(∂β2ξ ψλ)(M(y, y′)ξ)‖Lp(I;L∞ξ C
α
∗ ) ≤ λ−|β2|+δ(α−

1
2

)F(T )(7.3)

‖Pβ(mij)‖Lp(I;Cα∗ ) + ‖J(y, y′)‖Lp(I;Cα∗ ) ≤ λδ(α−
1
2

)F(T )(7.4)

‖(∂β1ξ γδ)(X(y),M(y, y′)ξ)‖L∞
t,y,y′,ξ

. λ
1
2
−|β1| sup

|ξ|=1

‖∂β1ξ γ‖L∞t,x(7.5)

‖(∂β2ξ ψλ)(M(y, y′)ξ)‖L∞
t,y,y′,ξ

. λ−|β2|(7.6)

‖Pβ(mij)‖L∞
t,y,y′

+ ‖J(y, y′)‖L∞
t,y,y′
≤ F(‖V ‖L2(I;W 1,∞)).(7.7)

First we show (7.5). Using T ′ > 0 sufficiently small so that ‖M‖, ‖M−1‖ ≤ 1/2, by
homogeneity we have

‖(∂β1ξ γδ)(X(y),M(y, y′)ξ)‖L∞
t,y,y′,ξ

. λ
1
2
−|β1| sup

|ξ|=1

‖(∂β1ξ γδ)(X(y), ξ)‖L∞t,y .

Then (7.5) is clear. (7.6) is similarly proven.
To see (7.7), note that by (6.5),

(7.8) ‖mij(y, y
′)‖L∞

t,y,y′
≤ F(‖V ‖L2(I;W 1,∞)).

Then (7.7) holds, as Pβ(mij) and J are polynomials in mij.
Next we prove (7.4). From (6.7) and the definition of M ,

(7.9) ‖mij(y, y
′)‖Lp(I;Cα∗,y,y′ )

≤ λδ(α−
1
2

)F(T ).

Then (7.4) holds, using the product estimate (E.12), the fact that Pβ(mij) and J are poly-
nomials in mij, and (7.8).

To prove (7.3), write (F )λ(·) = F ((·)/λ) so that we have

(∂β2ξ ψλ)(M(y, y′)ξ) = λ−|β2|(∂β2ξ ψ)λ(M(y, y′)ξ).

Then view (∂β2ξ ψ)λ((·)ξ) as a smooth function vanishing near 0 to apply the Moser-type
estimate (E.15)

‖(∂β2ξ ψ)λ(M(y, y′)ξ)‖Cα∗,y,y′ ≤ F(‖mij(y, y
′)‖L∞

y,y′
)‖mij(y, y

′)‖Cα∗,y,y′ .

Then the desired estimate is obtained by taking LptL
∞
ξ and using (7.8) and (7.9).

It remains to show (7.2). We are in a position to apply Proposition E.12, by writing

x = (y, y′) ∈ R2d, a(x, ζ) = (∂β1ξ γδ)(X(y), ζ), and f(x) = f(y, y′) = M(y, y′)ξ. Since the
range of f may be assumed to be {|ζ| ≈ λ} for T ′ sufficiently small, we may smoothly cut
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off a(x, ζ) to have support {|ζ| ≈ λ}. We obtain

‖(∂β1ξ γδ)(X(y),M(y, y′)ξ)‖Cα∗,y,y′ . sup
|ζ|≈λ
‖(∂β1ξ γδ)(X(y), ζ)‖Cα∗,y

+ sup
|ζ|≈λ
‖(∇ξ∂

β1
ξ γδ)(X(y), ζ)‖L∞y ‖M(y, y′)ξ‖Cα∗,y,y′ .

The second term is estimated as before by taking LptL
∞
ξ and using homogeneity of γ and

(7.9) to obtain a bound by

‖(∇ξ∂
β1
ξ γδ)(X(y), ξ)‖L∞t,y,ξ‖M(y, y′)‖Lp(I;Cα∗,y,y′ )

≤ λ
1
2
−(|β1|+1)+δ(α− 1

2
)F(T ) sup

|ξ|=1

‖∇ξ∂
β1
ξ γδ‖L∞t,x

which is better than desired.
For the first term, we apply Proposition E.11 and the Lipschitz regularity of X from (6.5):

‖(∂β1ξ γδ)(X(y), ζ)‖Cα∗,y ≤ ‖(∂
β1
ξ γδ)(y, ζ)‖Cα∗,y‖∂xX‖

α
L∞

≤ λδ(α−
1
2

)F(‖V ‖L2(I;W 1,∞))‖(∂β1ξ γδ)(y, ζ)‖
W

1
2 ,∞
y

.

Then taking sup|ζ|≈λ, using homogeneity of γ, and taking Lpt yields the desired estimate. �

It will be convenient to have the following symbol property for p, for later application of
the mapping properties of p(t, y, y′, D).

Proposition 7.2. Fix k ∈ N. There exists T ′ > 0 sufficiently small, depending on

‖V ‖L2(I;W 1,∞),

such that for I = [0, T ′], |α|+ |α′|+ |β| ≤ k, and |α|+ |α′| ≥ 1,

‖∂αy ∂α
′

y′ ∂
β
ξ p(t, y, y

′, ξ)‖Lp(I;L∞
y,y′,ξ)

≤ λ
1
2
−|β|+δ(|α|+|α′|− 1

2
)F(T ).

Proof. We consider the case where |α| ≥ 1 and α′ = 0. The general case is similar.
Choose T ′ sufficiently small so that x 7→ X(t, x) is a diffeomorphism for each t ∈ I. Let

mij(y, y
′) denote the entries of the matrix M(y, y′). Then ∂βξ p is a sum of products of the

form, with β1 + β2 = β,

(∂β1ξ γδ)(X(y),M(y, y′)ξ)(∂β2ξ ψλ)(M(y, y′)ξ)Pβ(mij(y, y
′))J(y, y′)

where Pβ is a polynomial of degree |β|.
By (6.5), for T ′ > 0 sufficiently small, ‖M‖, ‖M−1‖ ≤ 1/2 so that (∂β2ξ ψλ)(M(y, y′)ξ) and

hence p have support {|ξ| ∈ [cλ, λ/c]}. Thus, in the following, L∞ξ = L∞ξ ({|ξ| ∈ [cλ, λ/c]})
unless otherwise specified.
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By using the product estimate (E.12) and recalling the estimates on γ from Corollary
D.10, it suffices to show the following estimates, for |ν| ≥ 1:

‖∂νy ((∂β1ξ γδ)(X(y),M(y, y′)ξ))‖Lp(I;L∞
y,y′,ξ)

≤ λ
1
2
−|β1|+δ(|ν|− 1

2
)F(T )

· (
∑
|b|≤k

sup
|η|=1

‖∂bξγ‖L∞t,x+ ‖ sup
|η|=1

‖∂bξγ‖
W

1
2 ,∞
x

‖Lpt (I) )

‖∂νy ((∂β2ξ ψλ)(M(y, y′)ξ))‖Lp(I;L∞
y,y′,ξ)

≤ λ−|β2|+δ(|ν|−
1
2

)F(T )

‖∂νyPβ(mij)‖Lp(I;L∞) + ‖∂νyJ(y, y′)‖Lp(I;L∞
y,y′,ξ)

≤ λδ(|ν|−
1
2

)F(T )

‖∂ν′y ((∂β1ξ γδ)(X(y),M(y, y′)ξ))‖L∞
t,y,y′,ξ

. λ
1
2
−|β1|+δ|ν′| sup

|ξ|=1

‖∂β1ξ γ‖L∞t,x .

‖∂ν′y ((∂β2ξ ψλ)(M(y, y′)ξ))‖L∞
t,y,y′,ξ

. λ−|β1|+δ|ν
′|

‖∂ν′y Pβ(mij)‖L∞
t,y,y′

+ ‖∂ν′y J(y, y′)‖L∞
t,y,y′
≤ λδ|ν

′|F(‖V ‖L2(I;W 1,∞)).

Other than the first, these estimates are straightforward, similar to the proof of Proposition
7.1. The difference is that here we apply Proposition 6.5 in place of Proposition 6.4.

We will only focus on the first estimate. For brevity, write β = β1. By the chain rule,
∂νy (∂βξ γδ)(X(y),M(y, y′)ξ) consists of terms of the form

K := (∂ay∂
β+b
ξ γδ)(X(y),M(y, y′)ξ)

r∏
j=1

(
∂`jy X(y)

)pj (
∂`jy M(y, y′)ξ

)qj
where ∑

pj = a,
∑

qj = b, |`j| ≥ 1,
∑

(|pj|+ |qj|)`j = ν.

We study the frequency contribution of each member of the product K. For the first
term, we can remove the M(y, y′) as before by choosing T ′ sufficiently small, and using
homogeneity:

‖(∂ay∂
β+b
ξ γδ)(X(y),M(y, y′)ξ)‖L∞

y,y′,ξ
. λ

1
2
−(|β|+b) sup

|ξ|=1

‖(∂ay∂
β+b
ξ γδ)(X(y), ξ)‖L∞t,y

≤ λ
1
2
−|β|

∑
|b|≤k

sup
|ξ|=1

‖(∂ay∂bξγδ)(x, ξ)‖L∞t,x .

Assuming for now that |a| ≥ 1, then by the frequency localization of γδ,

‖(∂ay∂
β+b
ξ γδ)(X(y),M(y, y′)ξ)‖Lp(I;L∞

y,y′,ξ)
. λ

1
2
−|β|+δ(|a|− 1

2
)
∑
|b|≤k

‖ sup
|ξ|=1

‖∂bξγδ(x, ξ)‖W 1
2 ,∞
‖Lp(I).

For the second term, we apply (6.5) and (6.6):

(7.10)
r∏
j=1

‖∂`jy X(y)‖pjL∞t,y ≤ λδ
∑
|pj |(|`j |−1)F(‖V ‖L2(I;W 1,∞)).

For the third term, from (6.5), we have

‖∂ν′y mij(y, y
′)‖L∞

t,y,y′
≤ λδ|ν

′|F(‖V ‖L2(I;W 1,∞)).
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Applying this,

(7.11)
r∏
j=1

‖∂`jy M(y, y′)ξ‖qjL∞
t,y,y′,ξ

≤ λδ
∑
|qj ||`j |F(‖V ‖L2(I;W 1,∞)).

Then putting the three terms together, the exponent on λ is

δ

(
|a| − 1

2

)
+ δ

r∑
j=1

|pj|(|`j| − 1) + δ

r∑
j=1

|qj||`j| = δ

(
|a| − 1

2

)
+ δ(|ν| − |a|) = δ

(
|ν| − 1

2

)
as desired.

It remains to consider the case |a| = 0, in which case we have |b| ≥ 1, so that without loss
of generality, |q1| ≥ 1. We apply (7.5) and (7.10) on the first and second terms in K. For
the third term, we apply (7.11) except on a single copy of ∂`1y M(y, y′)ξ for which we apply
(6.7):

‖∂`1y M(y, y′)ξ‖Lp(I;L∞
y,y′,ξ)

≤ λδ(|`1|−
1
2

)λF(T ).

Then we would have the desired exponent on λ, once we account for the extra λ term arising
from the fact that ξ ≈ λ. Note from the third term of K that this extra factor in fact appears∑
qj = b times, which is cancelled by the 4λ−b gain from the first term of K. �

7.2. Time regularity. In this section we study the regularity of the symbol p in time.

Proposition 7.3. Fix I = [0, T ′] as in Proposition 7.1. Then

‖∂t∂2
ξp(t, y, y

′, ξ)‖Lp(I;L∞
y,y′,ξ)

≤ λ−3/2F(T )

where L∞ξ = L∞ξ ({|ξ| ∈ [cλ, λ/c]}).

Proof. Recall

p(t, y, y′, ξ) = γδ(X(t, y),M(y, y′)ξ)ψλ(M(y, y′)ξ)J(y, y′).

By (6.5), for T ′ > 0 sufficiently small, ‖M‖, ‖M−1‖ ≤ 1/2. Thus on {|ξ| ∈ [cλ, λ/c]} with
the appropriate constant, ψλ(M(y, y′)ξ) ≡ 1. Restricting our attention to this domain,

p(t, y, y′, ξ) = γδ(X(y),M(y, y′)ξ)J(y, y′).

Then, by homogeneity, it suffices to show

‖∂t∂2
ξp(t, y, y

′, ξ)‖Lp(I;L∞
y,y′,ξ)

≤ F(T )

on {|ξ| = 1}.
Let mij(y, y

′) be the entries of the matrix M(y, y′). Then ∂2
ξp is a product of three terms,

(∂2
ξγδ)(X(y),M(y, y′)ξ)P2(mij(y, y

′))J(y, y′)

where P2 is a polynomial of degree 2. By the product rule, (6.5), and the L∞ bound of
Corollary D.10, it suffices to study the time derivative on each of γξξδ, J , and P2(mij)
individually. Throughout the proof, since ‖M‖, ‖M−1‖ ≤ 1/2, we will use the fact that we
may scale to |M(y, y′)ξ| = 1 with an acceptable loss.

Recall

J(y, y′) = | det(∂xX)(y′)|| detM(y, y′)|
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is a polynomial in ∂xX and the matrix coefficients mij of M . Further, the matrix coefficients
mij are smooth functions of ∂xX. Thus using again (6.5), to study the time derivative of J
it suffices to study the time derivative of ∂xX, . We have by the flow of Vδ that

d

dt
∂iX = (∂kVδ)(t,X(t))∂iX

k

and thus

‖ d
dt
∂iX‖Lp(I;L∞) . ‖V ‖Lp(I;W r,∞)‖∂iXk‖L∞(I;L∞) ≤ F(‖V ‖Lp(I;W r,∞)).

The analysis of P2(mij) is similar.
Next we turn to γξξδ. Write

d

dt
γξξδ = ∂tγξξδ + ∂tX · ∇xγξξδ + ∂tM · ∇ξγξξδ.

Similar to before, we estimate ∂tM ·∇ξγξξδ by applying Corollary D.10 and noting that ∂tM
satisfies the same estimates as ∂t∂xX, discussed above.

For the first two terms, note by the flow of Vδ that

∂tγξξδ + ∂tX · ∇xγξξδ = (∂t + Vδ · ∇)γξξδ.

We need to remove the frequency localization to exploit the material derivative, L = ∂t+V ·∇.
First, we can replace Vδ with V via the following estimate:

‖(S>λδV ) · ∇γξξδ‖L∞ . λδ‖S>λδV ‖L∞‖γξξδ‖L∞ . ‖V ‖W 1,∞‖γξξ‖L∞
and thus

‖(S>λδV ) · ∇γξξδ‖Lp(I;L∞) . ‖V ‖Lp(I;W 1,∞)‖γξξ‖L∞(I;L∞)

as desired (estimating γξξ via Corollary D.10 as above). Second, by the commutator estimate

‖[V,∇S≤λδ ]γξξ‖L∞ . ‖V ‖W r,∞‖γξξ‖L∞
it remains to bound

S≤λδ(∂tγξξ +∇ · (V γξξ)).
Third, by the product rule, we are reduced to studying

(∂t + V · ∇)γξξ

by observing
‖(∇ · V )γξξ‖L∞ ≤ ‖V ‖W 1,∞‖γξξ‖L∞ .

To estimate (∂t + V · ∇)γξξ, it suffices to estimate each of

(∂t + V · ∇)a, (∂t + V · ∇)Λ.

The former is estimated in [ABZ14b, Proposition C.1]:

‖(∂t + V · ∇)a‖W ε,∞ ≤ F(‖(η, ψ)‖
Hs+1

2
, ‖(V,B)‖Hs)(1 + ‖η‖

W r+1
2 ,∞

+ ‖(V,B)‖W r,∞).

Then take the Lp integral in time.
For the latter, it suffices to estimate

(∂t + V · ∇)∇η = G(η)V +∇ηG(η)B + Γx +∇ηΓy.

We may estimate the terms arising from the bottom using Sobolev embedding and [ABZ14a,
Proposition 4.3] (which uses the notation γ := Γx +∇ηΓy):

‖Γx +∇ηΓy‖L∞ . ‖Γx +∇ηΓy‖Hs− 1
2
≤ F(‖η‖

Hs+1
2
, ‖(ψ, V,B)‖

H
1
2
).
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Finally, it remains to estimate G(η)V (as ∇ηG(η)B is similar). We have

‖G(η)V ‖L∞ ≤ ‖G(η)− TΛV ‖L∞ + ‖TΛV ‖L∞ .

and

‖TΛV ‖L∞ .M1
0 (Λ)‖V ‖C1

∗ . ‖∇η‖L∞‖V ‖W r,∞ .

For the paralinearization error, we may use [ABZ14b, Theorem 1.4] and Sobolev embedding,
to obtain

‖G(η)− TΛV ‖L∞ ≤ F(‖η‖
Hs+1

2
, ‖V ‖Hs)(1 + ‖η‖

W r+1
2 ,∞

+ ‖V ‖W r,∞).

Taking Lp in time yields the desired estimate.
�

7.3. Curvature estimates. We recall the following estimate on the Hessian of γ:

Proposition 7.4 ([ABZ14b, Proposition 2.11]). There exists c0 > 0 and λ0 > 0 such that

| det ∂2
ξγδ(t, x, ξ)| ≥ c0

for all λ ≥ λ0 and (t, x, ξ) ∈ [0, T ]× Rd × {|ξ| ≈ 1}.

We can obtain the same estimates for p:

Corollary 7.5. There exists T ′ > 0 (depending on ‖V ‖L2(I;W 1,∞)), c0 > 0, and λ0 such that

| det ∂2
ξp(t, y, y

′, ξ)| ≥ c0λ
− 3d

2

for all λ ≥ λ0 and (t, y, y′, ξ) ∈ [0, T ′]× R2d × {|ξ| ∈ [cλ, λ/c]}.

Proof. Recall

p(t, y, y′, ξ) = γδ(X(y),M(y, y′)ξ)ψλ(M(y, y′)ξ)J(y, y′).

By (6.5), for T > 0 sufficiently small, ‖M‖, ‖M−1‖ ≤ 1/2. Thus on {|ξ| ∈ [cλ, λ/c]} with
the appropriate constant, ψλ(M(y, y′)ξ) ≡ 1. Restricting our attention to this domain,

p(t, y, y′, ξ) = γδ(X(y),M(y, y′)ξ)J(y, y′).

Thus, we have

∂2
ξiξj
p(t, y, y′, ξ) = M(y, y′)T (∂2

ξiξj
γδ)(X(y),M(y, y′)ξ)M(y, y′)J(y, y′).

By (6.5), M(y, y′) ≈ Id and J(y, y′) ≈ 1 on [0, T ′] for T ′ sufficiently small. Thus by
Proposition 7.4 and homogeneity,

| det ∂2
ξp(t, y, y

′, ξ)| & inf
x∈Rd
| det ∂2

ξγδ(t, x, ξ)| & c0λ
− 3d

2 .

�
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8. Strichartz Estimates for Order 1/2 Evolution Equations

8.1. The parametrix construction. In this section we consider a general evolution equa-
tion of the form

(8.1)

{
(Dt + aw(t, x,D))u = f, in (0, 1)× Rd

u(0) = u0, on Rd

where a(t, x, ξ) is a real symbol continuous in t and smooth with respect to x and ξ. In
this setting aw is self-adjoint and thus generates an isometric evolution S(t, s) on L2(Rd).
We outline the construction of a phase space representation of the fundamental solution for
(8.1), following [KT05], [Tat04], [MMT08].

The FBI transform [Tat04]

(Tf)(x, ξ) = 2−
d
2π−

3d
4

∫
e−

1
2

(x−y)2eiξ(x−y)f(y) dy

is an isometry from L2(Rd) to phase space L2(R2d) with an inversion formula

f(y) = (T ∗Tf)(y) = 2−
d
2π−

3d
4

∫
e−

1
2

(x−y)2e−iξ(x−y)(Tf)(x, ξ) dxdξ.

First we would like to describe the phase space localization properties of S(t, s) relative
to the Hamilton flow corresponding to (8.1),

(8.2)

{
ẋ = aξ(t, x, ξ)

ξ̇ = −ax(t, x, ξ).
More precisely, let

(xt, ξt) = (xt(x, ξ), ξt(x, ξ))

denote the solution to (10.1), with initial data (x, ξ) at time 0. Let χ(t, s) denote the family
of canonical transformations on phase space L2(R2d) corresponding to (10.1),

χ(t, s)(xs, ξs) = (xt, ξt).

Then we would like an estimate on the kernel K̃ of the phase space operator TS(t, s)T ∗, of
the form

|K̃(t, x, ξ, s, y, η)| . (1 + |(x, ξ)− χ(t, s)(y, η)|)−N .
Such an estimate has been established in [Tat04] for the class of symbols a ∈ S

0,(k)
0,0

satisfying
|∂αx∂

β
ξ a(t, x, ξ)| ≤ cα,β, |α|+ |β| ≥ k,

for k = 2. This was generalized in [MMT08] to the class of symbols a ∈ S(k)L1
χ satisfying

sup
x,ξ

∫ 1

0

|∂αx∂
β
ξ a(t, χ(t, 0)(x, ξ))| dt ≤ cα,β, |α|+ |β| ≥ k.

For our purposes it suffices to consider an intermediate class of symbols a ∈ L1S
0,(k)
0,0 satisfying

‖∂αx∂
β
ξ a‖L1

t ([0,1];L∞(R2d)) ≤ cα,β, |α|+ |β| ≥ k.

Precisely, we have the following corollary of [MMT08] for this smaller class of symbols:

Theorem 8.1. Let a(t, x, ξ) ∈ L1S
0,(2)
0,0 . Then

(1) The Hamilton flow (10.1) is well-defined and bilipschitz.
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(2) The kernel K̃(t, s) of the phase space operator TS(t, s)T ∗ decays rapidly away from
the graph of the Hamilton flow,

|K̃(t, x, ξ, s, y, η)| . (1 + |(x, ξ)− χ(t, s)(y, η)|)−N .

Then we have the following phase space representation for the exact solution to (8.1):

Theorem 8.2. Let a(t, x, ξ) ∈ L1S
0,(2)
0,0 . Then the kernel K(t, s) of the evolution operator

S(t, s) for Dt + aw can be represented in the form

K(t, y, s, ỹ) =

∫
e−

1
2

(ỹ−xs)2e−iξ
s(ỹ−xs)ei(ψ(t,x,ξ)−ψ(s,x,ξ))eiξ

t(y−xt)G(t, s, x, ξ, y) dxdξ

where the function G satisfies

|(xt − y)γ∂αx∂
β
ξ ∂

ν
yG(t, s, x, ξ, y)| . cγ,α,β,ν .

Proof. This is a consequence of Theorem 8.1 and [Tat04, Theorem 4], once we prove that
the canonical transformation χ(t, s) is smooth with uniform bounds,

|∂αx∂
β
ξ χ(x, ξ)| ≤ cα,β, |α|+ |β| > 0.

This can be proven for instance by using the argument in Section 2 of [MMT08] showing
that χ is uniformly bilipschitz, along with an induction. �

8.2. Dispersive estimates. We combine the representation formula in Theorem 8.2 with
a curvature condition to yield a dispersive estimate.

First we define a class of symbols analogous to the class λSkλ in [KT05]. Define the class

of symbols a(t, x, ξ) ∈ L1S
m,(k)
1,δ (λ) satisfying

‖∂αx∂
β
ξ a‖L1

t ([0,1];L∞(R2d)) ≤ cα,βλ
m−|β|+δ(|α|−k), |α| ≥ k.

Note this definition makes sense even for noninteger k.
We will work with symbols which also partially satisfy uniform bounds. Define the class

of symbols a ∈ Sm1 (λ) satisfying

|∂βξ a(t, x, ξ)| ≤ cβλ
m−|β|.

Proposition 8.3. Let a ∈ L1S
1
2
,( 2

3
)

1, 3
4

(λ)∩S
1
2
1 (λ) such that for each (t, x, ξ) ∈ [0, 1]×Rd×{|ξ| ∈

[cλ, λ/c]}, ∂2
ξa satisfies

| det ∂2
ξa(t, x, ξ)| ≥ cλ−

3d
2 .

Also assume that

‖λ3/2∂t∂
2
ξa‖L1

t ([0,1];L∞x,ξ)
≤ c1 � c

where L∞ξ = L∞ξ ({|ξ| ∈ [cλ, λ/c]}).
Let u0 have frequency support {|ξ| ∈ [cλ, λ/c]}. Then there exists 0 < T ≤ 1 such that for

all |t− s| < T , we have

‖S(t, s)u0‖L∞ . λ
3d
4 |t− s|−

d
2‖u0‖L1 .
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Proof. Without loss of generality let s = 0. Fix T small to be chosen later. We fix t0 ∈ [0, T ]
and prove the estimate when t = t0. To do so, we reduce the problem to an estimate for
t = 1 by rescaling. Write u = S(t, s)u0 and set

v(t, x) = u(t0 · t, λ−3/4
√
t0x).

Then v solves

(Dt + ãw(t, x,D))v = 0, v(0) = u0(0, λ−3/4
√
t0x) =: v0

where

ã(t, x, ξ) = t0a

(
t0 · t, λ−3/4

√
t0x, λ

3/4 ξ√
t0

)
.

Then it suffices to show
‖v(1)‖L∞ . ‖v0‖L1 .

We first show ã ∈ L1S
0,(2)
0,0 in order to apply Theorem 8.2. Indeed,

‖∂βξ ã‖L1
t ([0,1];L∞) ≤ ‖∂βξ ã‖L∞ = λ

3
4
|β|t
− 1

2
|β|

0 t0‖∂βξ a‖L∞(8.3)

≤ λ
3
4
|β|t

1− 1
2
|β|

0 cβλ
1
2
−|β| = cβ(t−1

0 λ−
1
2 )

1
2

(|β|−2).

Note that when t−1
0 λ−

1
2 ≥ 1, the dispersive estimate is trivial by Sobolev embedding, so we

may assume t−1
0 λ−

1
2 ≤ 1. Thus when |β| ≥ 2,

‖∂βξ ã‖L1
t ([0,1];L∞) ≤ cβ.

On the other hand, for |α| ≥ 1, again using t−1
0 λ−

1
2 ≤ 1,

‖∂αx∂
β
ξ ã‖L1

t ([0,1];L∞) ≤ λ−
3
4
|α|t

1
2
|α|

0 λ
3
4
|β|t
− 1

2
|β|

0 t0‖∂αx∂
β
ξ a(t0 · t)‖L1

t ([0,1];L∞)

≤ cα,βλ
− 3

4
|α|t

1
2
|α|

0 λ
3
4
|β|t
− 1

2
|β|

0 λ
1
2
−|β|+ 3

4
(|α|− 2

3
)

= cα,βt
1
2
|α|

0 (t−1
0 λ−

1
2 )

1
2
|β| ≤ cα,βt

1
2
|α|

0 ≤ cα,β.(8.4)

Thus, we may use the representation formula in Theorem 8.2,

v(t, y) =

∫
G(t, x, ξ, y)e−

1
2

(ỹ−x)2+iξt(y−xt)−iξ(y−x)+iψ(t,x,ξ)v0(ỹ) dxdξdỹ.

By the frequency support of v0 in B = {|ξ| ≈ λ
1
4 t

1
2
0 }, the contribution of the complement of

B to the integral is negligible, so it suffices to study∫ ∫
B

|G(t, x, ξ, y)| dξ e−
1
2

(ỹ−x)2|v0(ỹ)| dxdỹ . ‖v0‖L1 sup
x

∫
B

|G(t, x, ξ, y)| dξ.

It remains to show ∫
B

|G(1, x, ξ, y)| dξ . 1.

Given the bound for G in Theorem 8.2, this reduces to∫
B

(1 + |x1 − y|)−N dξ . 1.

To show this, we study the dependence of x1 = x1(x, ξ) on ξ. Write

X = ∂ξx
t, Ξ = ∂ξξ

t,
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which by the Hamilton flow (10.1) for ã solve

(8.5)

{
Ẋ = ãξxX + ãξξΞ, X(0) = 0

Ξ̇ = −ãxxX − ãxξΞ, Ξ(0) = I.

From (8.4), we have
‖ãxξ‖L1

t ([0,1];L∞) + ‖ãxx‖L1
t ([0,1];L∞) .

√
t0.

Similarly, (8.3) implies ‖∂ξξã‖L∞ . 1. Further, since the Hamilton flow for ã is bilipschitz
by Theorem 8.1, we have

‖X‖L∞ + ‖Ξ‖L∞ . 1.

Thus, we have

Ξ(t) = Ξ(0) +

∫ t

0

Ξ̇ ds = I −
∫ t

0

ãxxX + ãxξΞ ds = I +O(
√
t0)

and hence
ãξξΞ = ãξξ +O(

√
t0)

Then

(8.6) X(t) = X(0) +

∫ t

0

Ẋ ds =

∫ t

0

ãξxX + ãξξΞ ds =

∫ t

0

ãξξ ds+O(
√
t0).

We would like to replace ãξξ = ãξξ(s, x
s, ξs) in the integral by ãξξ(0, x, ξ). Combining

(10.1), (8.4), and (8.3), we have

‖ãξξxẋ‖L1
t ([0,1];L∞) = ‖ãξξxãξ‖L1

t ([0,1];L∞) ≤ cα,βt
1
2
0 (t−1

0 λ−
1
2 ) · cβ(t−1

0 λ−
1
2 )−

1
2 ≤ cα,βcβλ

− 1
4

‖ãξξξ ξ̇‖L1
t ([0,1];L∞) = ‖ãξξξãx‖L1

t ([0,1];L∞) ≤ cβ(t−1
0 λ−

1
2 )

1
2 · cα,βt

1
2
0 ≤ cα,βcβλ

− 1
4 .

In addition, recalling the assumption that λ3/2∂t∂
2
ξa ∈ L1

t ([0, 1];L∞), we have

‖∂t∂2
ξ ã‖L1

t ([0,1];L∞) = λ3/2‖∂t∂2
ξa‖L1

t ([0,t0];L∞) ≤ c1.

Thus,

ãξξ(s, x
s, ξs) = ãξξ(0, x, ξ) +

∫ s

0

d

dt
ãξξ dr

= ãξξ(0, x, ξ) +

∫ s

0

∂t∂
2
ξ ã+ ãξξxẋ+ ãξξξ ξ̇ dr

= ãξξ(0, x, ξ) +O(c1) +O(λ−
1
4 ).

We conclude from (8.6) that

∂ξx
1 = X(1) = ãξξ(0, x, ξ) +O(c1) +O(λ−

1
4 +
√
t0) = ãξξ(0, x, ξ) +O(c1) +O(

√
t0).

For t0 ∈ [0, T ], with T chosen sufficiently small,

| det ∂ξx
1| = | det ãξξ|+O(c1) +O(

√
t0) & 1

and hence ∫
B

(1 + |x1 − y|)−N dξ .
∫

(1 + |x1 − y|)−N dx1 . 1

as desired.
�
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8.3. Strichartz estimate. We establish a Strichartz estimate from the previous dispersive
estimate. Say (p, q, ρ) is admissible if

2

p
+
d

q
=
d

2
, 2 ≤ p, q ≤ ∞, (p, q) 6= (2,∞), ρ =

3

2p
.

Theorem 8.4. Consider a symbol a(t, x, ξ) as in Proposition 8.3. Let u and f1 have fre-
quency support {|ξ| ∈ [cλ, λ/c]} and solve

(Dt + aw)u = f1 + f2, u(0) = u0

on t ∈ [0, 1] = I. Then for (p, q, ρ) admissible we have

‖|D|−ρu‖Lp(I;Lq) . ‖|D|ρf1‖Lp′ (I;Lq′ ) + ‖f2‖L1(I;L2) + ‖u0‖L2 .

Proof. It suffices to prove this in a sufficiently small time interval [0, T ], as we can iterate it
to obtain it in the full interval [0, 1].

The proof follows the standard TT ∗ formalism. By Duhamel’s formula, it suffices to show

S(t, s) : L2 → λρLpLq(8.7)

1t>sS(t, s) : λ−ρLp
′
Lq
′ → λρLpLq.(8.8)

In turn, by a TT ∗ argument for (8.7) and the Christ-Kiselev lemma for (8.8), it suffices to
show

S(t, s) : λ−ρLp
′
Lq
′ → λρLpLq.

To show this, we interpolate the trivial energy bound

‖S(t, s)‖L2→L2 ≤ 1

with the dispersive estimate in Proposition 8.3

‖S(t, s)‖L1→L∞ . λ
3d
4 |t− s|−

d
2

and then apply the Hardy-Littlewood-Sobolev inequality. �

8.4. Symbol truncation and rescaling. We will consider symbols

a(t, x, y, ξ) ∈ L1
t ([0, T ];L∞ξ Ẇ

2
3
,∞

x,y )

and study the evolution equation (8.1) but with the Kohn-Nirenberg quantization. We can
reduce Strichartz estimates in this setting to Theorem 8.4 by frequency truncating in the
spatial variables.

In our applications, we will also need to rescale to time intervals of variable length.

Corollary 8.5. Let I = [0, T ] with T > 0. Consider a symbol a(t, x, y, ξ) with support on
{|ξ| ∈ [cλ, λ/c]} and satisfying

‖∂βξ a‖L∞t,x,y,ξ . λ
1
2
−|β|, T

1
3‖∂βξ a‖

L1
t (I;L

∞
ξ Ẇ

2
3 ,∞
x,y )

. λ
1
2
−|β|.

For each (t, x, y, ξ) ∈ [0, 1]× R2d × {|ξ| ∈ [cλ, λ/c]}, assume ∂2
ξa satisfies

| det ∂2
ξa(t, x, y, ξ)| ≥ cλ−

3d
2 .

Also assume that
‖λ3/2∂t∂

2
ξa‖L1

t (I;L
∞
x,y,ξ)
≤ c1 � c

where L∞ξ = L∞ξ ({|ξ| ∈ [λ/2, 2λ]}).
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Let u have frequency support {|ξ| ∈ [cλ, λ/c]} and solve

(8.9) (Dt + a(t, x, y,D))u = f, u(0) = u0.

Then for (p, q, ρ) admissible we have

(8.10) ‖|D|−ρu‖Lp(I;Lq) . ‖f‖L1(I;L2) + ‖u0‖L∞(I;L2).

Proof. By applying the scaling

ã = a(Tt, T 2x, T 2y, ξ), ũ = u(Tt, T 2x), f̃ = Tf(Tt, T 2x)

and the scaling invariance of the symbol a and the desired estimate (8.10), we may assume
T = 1.

Next, we frequency truncate the symbol a in the x and y variables. Write, with δ = 3
4
,

a = S≤λδa+ S>λδa =: aδ + a>δ.

Then we may assume a = aδ, since viewing a>δ(t, x, y,D)u as a component of f on the
right hand side of (8.9),

‖a>δ(t, x, y,D)u‖L1(I;L2) = λ
1
2‖λ−

1
2a>δ(t, x, y,D)u‖L1(I;L2)

. λ
1
2‖λ−

1
2a>δ‖L1(I;L∞x,y,ξ)

‖u‖L∞(I;L2)

. ‖λ−
1
2a‖

L1(I;L∞ξ Ẇ
2
3 ,∞)
‖u‖L∞(I;L2)

which by assumption is bounded by ‖u‖L∞(I;L2) on the right hand side of (8.10).
Next we pass to the Weyl quantization. Since a = aδ, we have

a ∈ L1S
1
2
,( 2

3
)

1,δ,δ .

We can write (see [Tay91, Proposition 0.3.A])

a(t, x, y,D) = a(t, x, x,D) + r(t, x,D), r ∈ L1S
1
2
−1+δ(1− 1

2
),(0)

1,δ = L1S
− 1

8
,(0)

1,δ

so that

‖r(t, x,D)u‖L1(I;L2) . ‖u‖L∞(I;L2).

Similarly, writing ã(t, x, ξ) = a(t, x, x, ξ), we can write

ã(t, x,D) = ãw(t, x,D) + r̃(t, x,D), r̃ ∈ L1S
− 1

8
,(0)

1,δ

and hence

‖r̃(t, x,D)u‖L1(I;L2) . ‖u‖L∞(I;L2).

Viewing (r + r̃)u as an inhomogeneous term bounded by ‖u‖L∞(I;L2), we may assume

(8.11) (Dt + ãw)u = f.

Since

ã ∈ L1S
1
2
,( 2

3
)

1, 3
4

(λ)

and the remaining properties required of ã in Proposition 8.3 are straightforward to check,
we may apply Theorem 8.4 with f2 = f and f1 = 0 to yield (8.10).

�
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9. Strichartz Estimates for Rough Symbols

As our symbol p in (7.1) is only in L1
t ([0, T ];L∞ξ Ẇ

1
2
,∞

x,y ), we cannot directly apply Corollary
8.5. We will consider Strichartz estimates on time intervals of variable length, adapted to
our lower regularity.

9.1. Strichartz estimates on variable time intervals. First we establish a counterpart
to Corollary 8.5 for lower regularity symbols.

Corollary 9.1. Corollary 8.5 holds with a symbol a(t, x, y, ξ) satisfying

T
1
4λ

1
8‖∂βξ a‖

L1
t (I;L

∞
ξ Ẇ

1
2 ,∞
x,y )

. λ
1
2
−|β|

in place of

T
1
3‖∂βξ a‖

L1
t (I;L

∞
ξ Ẇ

2
3 ,∞
x,y )

. λ
1
2
−|β|.

Proof. We frequency truncate the symbol a in the x and y variables. Set

µ = ‖a‖2

L1
t (I;L

∞
ξ Ẇ

1
2 ,∞
x,y )

and write

a = S≤µa+ S>µa =: aµ + a>µ.

Then we may assume a = aµ, since viewing a>µ(t, x, y,D)u as a component of f on the
right hand side of (8.9),

‖a>µ(t, x, y,D)u‖L1(I;L2) = λ
1
2‖λ−

1
2a>µ(t, x, y,D)u‖L1(I;L2)

. λ
1
2‖λ−

1
2a>µ‖L1(I;L∞x,y,ξ)

‖u‖L∞(I;L2)

. µ−
1
2λ

1
2‖λ−

1
2a‖

L1(I;L∞ξ Ẇ
1
2 ,∞)
‖u‖L∞(I;L2)

which by the choice of µ is bounded by ‖u‖L∞(I;L2) on the right hand side of (8.10).
Then we have

T
1
3‖∂βξ aµ‖

L1
t (I;L

∞
ξ Ẇ

2
3 ,∞
x,y )

. µ
1
6T

1
3‖∂βξ a‖

L1
t (I;L

∞
ξ Ẇ

1
2 ,∞
x,y )

.

By choice of µ and assumption,

µ
1
6 = ‖a‖

1
3

L1
t (I;L

∞
ξ Ẇ

1
2 ,∞
x,y )

. T−
1
12λ

1
8 .

Again by assumption,

‖∂βξ a‖
L1
t (I;L

∞
ξ Ẇ

1
2 ,∞
x,y )

. T−
1
4λ

3
8
−|β|.

Collecting these estimates, we conclude

T
1
3‖∂βξ aµ‖

L1
t (I;L

∞
ξ Ẇ

2
3 ,∞
x,y )

. T−
1
12λ

1
8T

1
3T−

1
4λ

3
8
−|β| = λ

1
2
−|β|

which permits us to apply Corollary 8.5. �
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9.2. Time interval partition. We will apply Corollary 9.1 to the elements of a partition
of our time interval to obtain a Strichartz estimate with loss:

Proposition 9.2. Let I = [0, T ′] with 0 < T ′ ≤ 1. Consider a symbol a(t, x, y, ξ) with
support on {|ξ| ∈ [cλ, λ/c]} and satisfying

‖∂βξ a‖L∞t,x,y,ξ . λ
1
2
−|β|, ‖∂βξ a‖

L1
t (I;L

∞
ξ Ẇ

1
2 ,∞
x,y )

. λ
1
2
−|β|.

For each (t, x, y, ξ) ∈ [0, T ′]× R2d × {|ξ| ∈ [cλ, λ/c]}, assume ∂2
ξa satisfies

| det ∂2
ξa(t, x, y, ξ)| ≥ cλ−

3d
2 .

Also assume that

‖λ3/2∂t∂
2
ξa‖L1

t (I;L
∞
x,y,ξ)
≤ c1 � c

where L∞ξ = L∞ξ ({|ξ| ∈ [cλ, λ/c]}).
Let u have frequency support {|ξ| ∈ [cλ, λ/c]} and solve

(Dt + a(t, x, y,D))u = f, u(0) = u0.

Then for (p, q, ρ) admissible we have

(9.1) ‖|D|−ρu‖Lp(I;Lq) . λ
− 1

10p′ ‖f‖L1(I;L2) + λ
1

10p‖u0‖L∞(I;L2).

Proof. Decompose [0, T ′] into maximal subintervals

0 = t0 < t1 < ... < tk = T ′

satisfying both

(9.2) ‖f‖L1([tj ,tj+1];L2) ≤ λ−
1
10‖f‖L1(I;L2)

and

(9.3) (tj+1 − tj)
1
4λ

1
8λ−

1
2

+|β|‖∂βξ a‖
L1
t ([tj ,tj+1];L∞ξ Ẇ

1
2 ,∞
x,y )

≤ 1

for each 0 ≤ |β| ≤ N . We claim that the number k of intervals satisfies

k ≈ λ
1
10 .

The lower bound follows from (9.2). For the upper bound, observe that for each j, equality
must hold either in (9.2) or (9.3) for some β. The number k0 of intervals for which equality

in (9.2) holds is at most λ
1
10 as desired. On each of the kβ intervals in which equality holds

in (9.3) with β, we have, since c4 + c−1 & 1 for any c,

λ
1
10 (tj+1 − tj) + λ−

1
40λ

1
8λ−

1
2

+|β|‖∂βξ a‖
L1
t ([tj ,tj+1];L∞ξ Ẇ

1
2 ,∞
x,y )

& 1.

Then summing over all such intervals, we have

λ
1
10T ′ + λ

1
10 & λ

1
10

∑
j

(tj+1 − tj) + λ−
1
40λ

1
8

∑
j

λ−
1
2

+|β|‖∂βξ a‖
L1
t ([tj ,tj+1];L∞ξ Ẇ

1
2 ,∞
x,y )

& kβ.

and thus

k = k0 +
∑
β

kβ . λ
1
10 .

as desired.
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We conclude from (9.3) that a restricted to [tj, tj+1] satisfies the conditions of Corollary
9.1 with T = tj+1 − tj. We obtain

‖|D|ρu‖Lp([tj ,tj+1];Lq) . ‖f‖L1([tj ,tj+1];L2) + ‖u‖L∞([tj ,tj+1];L2).

Using (9.2) we have

‖|D|ρu‖Lp([tj ,tj+1];Lq) . λ−
1
10‖f‖L1(I;L2) + ‖u‖L∞([tj ,tj+1];L2).

Raising to the power p and summing over j, we obtain

‖|D|ρu‖Lp(I;Lq) . λ
1−p
10p ‖f‖L1(I;L2) + λ

1
10p‖u‖L∞(I;L2).

�

9.3. Proof of Proposition 5.3. In this section we combine the estimates on the symbol p
from Section 7 and the Strichartz estimates from the previous section to prove Proposition
5.3. Recall that if we define vλ(t, y) = uλ(t,X(t, y)), then vλ satisfies (7.1),

∂tvλ(t, y) + i(p(t, y, y′, D)vλ)(t, y) = fλ(t,X(t, y)).

Up to a perturbative inhomogeneous error, we will apply Proposition 9.2 with u = vλ and
a = p(t, y, y′, ξ). In the following, implicit constants will depend on F(T ).

For instance, we may partition [0, T ] into a number of time intervals of length T ′, depending
on ‖V ‖L2(I;W 1,∞) and hence F(T ). Without loss of generality, we consider the first such
interval I = [0, T ′].

Step 1. We recall the properties of p required by Proposition 9.2. For the curvature lower
bound on p, we recall Corollary 7.5.

We have λ3/2∂t∂
2
ξp ∈ L

p
t (I;L∞y,y′,ξ) by Proposition 7.3. Then on a sufficiently short time

interval I, we have by Hölder in time,

‖λ3/2∂t∂
2
ξp‖L1

t (I;L
∞
x,ξ)
≤ c1.

Proposition 7.1 implies

‖∂βξ p‖
L1
t (I;L

∞
ξ Ẇ

1
2 ,∞
y,y′ )

. λ
1
2
−|β|.

It is also easy to see that λ−
1
2

+|β|∂βξ p ∈ L∞t,y,y′,ξ from the proof of Proposition 7.1, by using

only L∞t,y,y′,ξ in place of Lpt (I;L∞ξ C
α
∗ ).

Step 2. Before we can apply Proposition 9.2, we need to frequency localize

vλ(t, y) = uλ(t,X(t, y)).

By the computations for the change of variables in Section 7, but with ψλ(ξ), the symbol of
Sλ, in place of γδ, we have

vλ(t, y) = uλ(t,X(y)) = (Sλuλ)(t,X(y)) = (χ(t, y, y′, D)vλ)(t, y)

where

χ(t, y, y′, ξ) = ψλ(M(y, y′)ξ)J(y, y′).

Further, following the proof of Proposition 7.2 with χ in place of p, we have

χ ∈ L1S
0,( 1

2
)

1,δ,δ
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and hence, recalling that 0 < δ < 1,

(9.4) χ(t, y, y′, D) = χ(t, y′, y′, ξ) + r(t, y′, D), r ∈ L1S
−1+δ(1− 1

2
),(0)

1,δ ⊆ L1S
− 1

2
,(0)

1,δ .

Writing χ̃(t, y′, ξ) = χ(t, y′, y′, ξ), we conclude from (7.1) and (9.4) that

(9.5) (∂tχ̃vλ)(t, y) + i(pχ̃vλ)(t, y) = fλ(t,X(t, y))− (∂trvλ)(t, y)− i(prvλ)(t, y).

Step 3. From the estimate of Proposition 9.2, we see that an estimate

(9.6) ‖∂trvλ − iprvλ‖L1(I;L2) . ‖fλ(t,X(t, y))‖L1(I;L2) + ‖vλ‖L∞(I;L2)

would suffice.
First we estimate prvλ. Observe that

p ∈ L∞S
1
2
,(0)

1,δ,δ ,

by using the uniform bound (6.6) in place of (6.7) (and similarly choosing the uniform bound
in Corollary D.10) in the proof of Proposition 7.2. Thus we have

‖prvλ‖L1(I;L2) . ‖rvλ‖L1(I;H
1
2 )
. ‖vλ‖L∞(I;L2)

as desired.
Next, we estimate ∂trvλ. Write

∂trvλ = ṙvλ + r∂tvλ = ṙvλ − irpvλ + rfλ(t,X(t, y)).

rpvλ is estimated in the same way as prvλ. To estimate rfλ, view r = χ − χ̃ and without
loss of generality, estimate χfλ. Similar to the analysis of p with uniform bounds, we have

χ ∈ L∞S0,(0)
1,δ,δ ,

from which we obtain

‖χ(fλ(t,X(t, y)))‖L1(I;L2) . ‖fλ(t,X(t, y))‖L1(I;L2).

Similarly, to estimate ṙvλ, view ṙ = χ̇− ˙̃χ and without loss of generality, estimate χ̇vλ. From
the definition of χ and the relation Ẋ = Vδ, we have (with implicit constant depending on
‖V ‖Lp(I;W 1,∞))

χ̇ ∈ L1S
0,(0)
1,δ,δ ,

from which we obtain
‖χ̇vλ‖L1(I;L2) . ‖vλ‖L∞(I;L2)

as desired.

Step 4. Applying Proposition 9.2 to (9.5) and applying the estimate (9.6), we obtain

‖|D|−ρχ̃vλ‖Lp(I;Lq) . λ
− 1

10p′ (‖fλ(t,X(t, y))‖L1(I;L2) + ‖vλ‖L∞(I;L2)) + λ
1

10p‖χ̃vλ‖L∞(I;L2)

. λ
− 1

10p′ ‖fλ(t,X(t, y))‖L1(I;L2) + λ
1

10p‖vλ‖L∞(I;L2).

We would like to replace χ̃vλ on the left hand side by vλ. Recall the difference is rvλ. We

have using Sobolev embedding and r ∈ L1S
− 1

2
,(0)

1,δ ,

‖|D|−ρrvλ‖Lp(I;Lq) . ‖|D|−ρrvλ‖
Lp(I;H

2
p+ε

)
. ‖rvλ‖

Lp(I;H
1
2p+ε

)
. ‖vλ‖

L∞(I;H
1
2p+ε− 1

2 )

which more than suffices as p ≥ 2.
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Lastly, by (6.5), X is bilipschitz uniformly in time, so we may replace vλ with uλ and
fλ(X) with fλ:

(9.7) ‖|D|−ρuλ‖Lp(I;Lq) . λ
− 1

10p′ ‖fλ‖L1(I;L2) + λ
1

10p‖uλ‖L∞(I;L2).

Step 5. Rearranging (9.7),

‖|D|−ρuλ‖Lp(I;Lq) . λ
1

10p (λ−
1
10‖fλ‖L1(I;L2) + ‖uλ‖L∞(I;L2)).

In the case d = 1 and p = 4,

‖|D|−ρuλ‖L4(I;L∞) . λ
1
40 (λ−

1
10‖fλ‖L1(I;L2) + ‖uλ‖L∞(I;L2)),

We conclude by the frequency localization of uλ, fλ that

‖uλ‖
L4(I;W s1−

d
2+ 1

10 ,∞)
≤ F(T )(‖fλ‖L1(I;Hs1−

1
10 )

+ ‖uλ‖L∞(I;Hs1 ))

as desired.
In the case d ≥ 2, choose p = 2 + ε′. Then by Bernstein’s,

‖|D|−ρuλ‖L∞x . λ
d
q ‖|D|−ρuλ‖Lqx = λ

d
2
− 2
p‖|D|−ρuλ‖Lqx

and hence
‖uλ‖Lp(I;L∞) . λρ+ d

2
− 2
pλ

1
10p (λ

1
10‖fλ‖L1(I;L2) + ‖uλ‖L∞(I;L2)).

Compute that, for small εi > 0 depending on ε′,

ρ+
d

2
− 2

p
=
d

2
− 1

4
+ ε1

and
1

10p
=

1

20
− ε2

so that
‖uλ‖Lp(I;L∞) . λ

d
2
− 1

4
+ε1+ 1

20
−ε2(λ

1
10‖fλ‖L1(I;L2) + ‖uλ‖L∞(I;L2)).

We conclude by the frequency localization of uλ, fλ and collecting εi into ε that

‖uλ‖
Lp(I;W s1−

d
2+1

5−ε,∞)
≤ F(T )(‖fλ‖L1(I;Hs1−

1
10 )

+ ‖uλ‖L∞(I;Hs1 )).

After applying a Hölder estimate in time to replace p on the left hand side by 2, this concludes
the proof of Proposition 5.3.
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Chapter 3

Sharp Strichartz Estimates for One Surface Dimension

In this chapter, we establish Theorem 2.4, which improves upon Theorem 2.3 in the case
d = 1 by providing the sharp Strichartz estimate.

We outline the chapter below. In Section 10, we record some additional notation and
preliminary frequency localization that we use throughout the chapter.

In Section 11, we prove local smoothing estimates. We also remark that in Appendices A
and B, we prove local versions of the elliptic estimates for the Dirichlet problem with rough
boundary, and of the paralinearization of the Dirichlet to Neumann map, respectively. In
Appendix C, we likewise establish local Sobolev estimates on the Taylor coefficient a.

In Sections 12 and 13, we integrate the symbol of our evolution equation along its Hamilton
flow, and use this to establish improved the regularity properties for the flow. In Section
14, we construct the wave packet parametrix. Finally, in Section 15, we prove Strichartz
estimates for the parametrix, before establishing the estimate for the exact solution.

10. Notation and Preliminaries

We record the notation and setting that we will use throughout this chapter, in addition
to the notation discussed in Section 4.

10.1. The Hamiltonian and wave packets. We will use the Hamiltonian H(t, x, ξ) given
by

H = Vλξ +
√
aλ|ξ|.

Note we omit notating λ on H for brevity since we will fix λ by the end of this section.
Recall the Hamilton equations associated to H,

(10.1)


ẋ(t) = Hξ(t, x(t), ξ(t))

ξ̇(t) = −Hx(t, x(t), ξ(t))

(x(s), ξ(s)) = (x, ξ).

We also denote the solution (x(t), ξ(t)) to (10.1), at time t ∈ I with initial data (x, ξ) at
time s ∈ I, variously by

(xts(x, ξ), ξ
t
s(x, ξ)) = (xt(x, ξ), ξt(x, ξ)) = (xts, ξ

t
s) = (xt, ξt).
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We consider the discrete set of phase space indices,

T = {T = (x, ξ) ∈ λ−
3
4Z× λ

3
4Z : |ξ| ≈ λ},

and in particular often write T = (x, ξ) for brevity.
We let s0 ∈ I denote the time chosen as in Proposition 13.3. Once s0 is introduced, we

write

(xt, ξt) = (xts0 , ξ
t
s0

)

unless otherwise indicated. Further, associated to T = (x, ξ) ∈ T , we let sT ∈ I denote the
time chosen as in Lemma 13.8.

10.2. Local smoothing. We define weights to exhibit local smoothing estimates. Fix a
Schwartz weight w ∈ C∞(R) with frequency support {|ξ| ≤ 1} and w ≥ 1 on {|x| ≤ 1}. We
denote a scaled translate of w by

wx0,κ(x) = w(κ
3
4 (x− x0))

for x0 ∈ R. We will use throughout that wx0,κ has frequency support {|ξ| ≤ κ
3
4}.

It will also be convenient to have compactly supported weights. Fix a smooth bump
function χ ∈ C∞0 (R) supported on [−1, 1], with χ ≡ 1 on [−1

2
, 1

2
]. Also let χ̃ denote a

widened bump function supported on [−2, 2], with χ̃ ≡ 1 on [−1, 1]. As with w, we also
write χx0,κ, χ̃x0,κ for the scaled translates of χ, χ̃.

We define the following local seminorm to measure local smoothing:

‖f‖LSσx0,λ =
∑
κ≤cλ

‖wx0,κSκf‖Hσ .

We will also define a more technical local seminorm which we use to measure local smooth-
ing on products. Let ξ0 ∈ R with |ξ0| ∈ [λ/2, 2λ]. First we construct a symmetric λ-frequency
projection Sξ0,λ,µ with a cµ-width gap at ξ0, as follows: Let

p(ξ) = 1[0,∞)(ξ + λ)ψλ(ξ + λ)(1− χ(µ−1ξ/c))

and define

Sξ0,λ,µ = p(D − ξ0) + p(−D + ξ0).

Throughout, to simplify exposition, we will abuse notation and use Sξ0,λ,µ to denote the same
construction with ψλ′ in place of ψλ, where λ and λ′ have bounded ratio.

Then we define the following local seminorm for σ ∈ R, which collects local measurements
on low, high, and balanced frequencies, respectively by row:

‖f‖LSσx0,ξ0,λ,µ =
∑

κ∈[cµ,cλ]

(κ
3
4µ−1‖Sκf‖Hσ + ‖wx0,κSκf‖Hσ)

+ λ
3
4µ−1‖S≥cλf‖Hσ +

∑
κ≥λ/c

‖wx0,λSκf‖Hσ

+ ‖wx0,λSξ0,λ,µf‖Hσ .
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For brevity, we combine these by denoting

L(t, x0, ξ0, λ) = Ls(t, x0, ξ0, λ)

= ‖(η, ψ)(t)‖
LS

s′+1
2

x0,λ

+ ‖(V,B)(t)‖LSs′x0,λ

+ max
λ

3
4�µ≤cλ

max
0≤σ≤s

λ−σµs
′
(‖(η, ψ)(t)‖

LS
σ+1

2
x0,ξ0,λ,µ

+ ‖(V,B)(t)‖LSσx0,ξ0,λ,µ).

10.3. Frequency localization. Similar to Section 5 in Chapter 2, we can reduce Theorem
2.4 to the following frequency localized and symbol truncated form. The proof is similar, so
we omit it:

Proposition 10.1. Consider a smooth solution uλ to

(10.2) (∂t + TVλ · ∇+ iTγλ)uλ = fλ

on I where uλ(t, ·) and fλ have frequency support {|ξ| ∈ [λ/2, 2λ]}. Then

‖uλ‖
L2(I;W

1
8−

d
2−,∞)

≤ F(T )(‖fλ‖L1(I;L2) + ‖uλ‖L∞(I;L2)).

As in Section 5, it is convenient to replace the paradifferential symbol Tγλ by the pseudo-
differential symbol γλ = γλ(t, x, ξ), and likewise the paraproduct TVλ by Vλ. Further, recall

that since d = 1, γ =
√
a|D|. For technical reasons, we further replace γλ by

√
aλ|D|.

Proposition 10.2. Consider a smooth solution uλ to

(10.3) (∂t + Vλ∂x + i
√
aλ|D|)uλ = f

on I where uλ(t, ·) has frequency support {|ξ| ∈ [λ/2, 2λ]}. Then

‖uλ‖
L2(I;W

1
8−

d
2−,∞)

≤ F(T )(‖fλ‖L1(I;L2) + ‖uλ‖L∞(I;L2)).

Proof of Proposition 10.1. We may apply Proposition 10.2 with inhomogeneity

fλ + (Tγλ − γλ)uλ + (TVλ − Vλ) · ∇uλ + (γλ −
√
aλ|D|)uλ.

Using for instance [Ngu15, Proposition 2.7] and the estimates on the Taylor coefficient as in
Corollary D.10,

‖(Tγλ − γλ)uλ‖L2 .M
1
2
1
2

(γ)‖uλ‖L2 ≤ F(M(t))Z(t)‖uλ‖L2 .

Integrating in time, we have

‖(Tγλ − γλ)uλ‖L1(I;L2) ≤ F(T )‖uλ‖L∞(I;L2)

which is controlled by the right hand side of the estimate in Proposition 5.2.
Similarly,

‖(TVλ − Vλ) · ∇uλ‖L2 .M1
1 (V · ξ)‖uλ‖L2 . ‖V ‖W 1,∞‖uλ‖L2 .

Integrating in time yields the desired estimate.
It remains to estimate (γλ −

√
aλ|D|)uλ. First, we have

‖(γ − γλ)uλ‖L2 . ‖S>c1λ
√
a‖L∞‖uλ‖H 1

2

≤ ‖
√
a‖

W
1
2 ,∞
‖uλ‖L2 .
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Using the Taylor coefficient estimates of Proposition D.8 and integrating in time, this is
controlled by the right hand side of the estimate in Proposition 5.2. We may thus exchange
γλ for γ.

Lastly, it is easy to compute

γ −
√
aλ|D| =

a>c1λ√
a+
√
aλ

√
|D|.

Thus, using the Taylor sign condition,

‖(γ −
√
aλ|D|)uλ‖L2 .

1
√
amin
‖a>c1λ‖L∞‖uλ‖H 1

2

.
1

√
amin
‖a‖

W
1
2 ,∞
‖uλ‖L2 .

Using the usual Taylor coefficient estimates and integrating in time yields the desired result.
�

For the remainder of the chapter, it remains to prove Proposition 10.2. In particular, we
fix the frequency λ throughout.

11. Local Smoothing Estimates

In this section we establish local smoothing estimates for the paradifferential dispersive
equation (1.3), and then show that these estimates are inherited by (η, ψ, V,B).

Observe that the order 1/2 dispersive term of (1.3) contributes velocity µ−
1
2 � 1 to a

frequency µ component of a solution u. On the other hand, the transport term of the
equation contributes up to a unit scale velocity to all frequency components of u, dominating
the dispersive velocity, 1� µ−

1
2 . As a result, we only expect to see a local smoothing effect

by following the transport vector field.
In fact, for our purposes we are interested in local smoothing along λ-frequency Hamilton

characteristics, on packets of width δx ≈ λ−
3
4 . Since at frequency λ,

∂2
ξ |ξ|

1
2 = λ−

3
2 ,

we expect to see local smoothing effects for frequencies of u with frequency separation greater
than

λ−
3
4/λ−

3
2 = λ

3
4

from the frequency center of a packet.

11.1. The Hamilton flow. Recall we denote the Hamiltonian for (10.3) by

H(t, x, ξ) = Vλξ +
√
aλ|ξ|.

Thus, the Hamilton equations (10.1) associated to H are given by{
ẋt = Vλ + 1

2

√
aλ|ξt|−

3
2 ξ

ξ̇t = −∂xVλξt − ∂x
√
aλ|ξt|

1
2 .

In the following lemma, we observe that ξt preserves data satisfying |ξ| ∈ [λ/2, 2λ]:

Lemma 11.1. If |ξ| ∈ [λ/2, 2λ] and |t− s| 12F(T )� 1, then

‖ξts(x, ξ)‖L∞x ≈ |ξ|.
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Proof. We work with |ξt| 12 instead of ξt itself, due to its appearance in H. By (10.1),

d

dt
|ξt|

1
2 = −1

2
|ξt|−

3
2 ξtHx,

so we have (using at the end the Taylor sign condition, and the frequency localization)

||ξt|
1
2 − |ξ|

1
2 | ≤ 1

2

∫ t

s

|ξτ |−
1
2 |Hx| dτ ≤

1

2

∫ t

s

|∂xVλ|ξτ |
1
2 |+ |∂x

√
aλ| dτ

≤ 1

2

∫ t

s

‖∂xVλ‖L∞x |ξ
τ |

1
2 + ‖∂x

√
aλ‖L∞x dτ

.
∫ t

s

‖V ‖W 1,∞|ξτ |
1
2 + λ

1
2‖aλ‖W 1

2 ,∞
dτ.

Using the Taylor coefficient estimates of Proposition D.8,

(11.1) |ξt|
1
2 ≤ |ξ|

1
2 +

∫ t

s

Z(t)|ξτ |
1
2 + λ

1
2F(M(t))Z(t) dτ.

Applying Gronwall, Cauchy-Schwarz, and the assumption |ξ| 12 . λ
1
2 ,

|ξt|
1
2 . λ

1
2 (1 + |t− s|

1
2F(T )) exp(|t− s|

1
2F(T )) ≤ 2λ

1
2 .

Use this in (11.1) to obtain

||ξt|
1
2 − |ξ|

1
2 | ≤

∫ t

s

Z(t)|ξτ |
1
2 + λ

1
2F(M(t))Z(t) dτ ≤ λ

1
2 |t− s|

1
2F(T )� λ

1
2 .

�

Remark 11.2. In the remainder of the chapter, we may assume T is small enough so that
the condition

|t− s|
1
2F(T )� 1

of the lemma is satisfied for all t, s ∈ I (otherwise, we can iterate the argument a number of
times depending on F(T )). In particular, ξt maintains separation from 0, so that the flow
(xt, ξt) remains defined on I.

11.2. Estimates on the dispersive equation. In this subsection, we prove local smooth-
ing estimates for (1.3) along Hamilton characteristics. Throughout this section, we consider
the case of ξ0 > 0, but the corresponding results for ξ0 < 0 are similar.

Proposition 11.3. Consider a smooth solution u to

(11.2) (∂t + Vλ∂x + i
√
aλ|D|)u = f

on I. Let (xt, ξt) be a solution to (10.1) with initial data (x0, ξ0) satisfying ξ0 ∈ [λ/2, 2λ].
Let u(t, ·) have frequency support [cλ/2, ξt − cµ]. Then

‖wxt,λu‖L2(I;L2) ≤ µ−
1
2λ

3
8F(T )(‖u‖L∞(I;L2) + ‖f‖L1(I;L2)).

The same holds for u(t, ·) with frequency supports [ξt + cµ, 2λ/c] or [−2λ/c,−cλ/2].
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Proof. We use the positive commutator method. Let v ∈ C∞(R) satisfy
√
v′ = w. It is also

convenient to write

p(D) = |D|
1
2 S̃λ

so that we may exchange |D| 12 for p(D) in (11.2). Lastly, for brevity, write

w̃(t, x) = wxt,λ = w(λ
3
4 (x− xt)), ṽ(t, x) = v(λ

3
4 (x− xt)), ṽ′ = ∂xṽ.

Using (11.2), we have

d

dt
〈ṽu, u〉 = 〈ṽ∂tu− ṽ′ẋtu, u〉+ 〈ṽu, ∂tu〉(11.3)

= 〈ṽ∂tu+ ∂x(Vλṽu) + ip(D)
√
aλṽu, u〉 − 〈ṽ′ẋtu, u〉

= 〈ṽf, u〉+ 〈i[p(D),
√
aλ]ṽu, u〉+ 〈i

√
aλ[p(D), ṽ]u, u〉

+ 〈ṽ′(Vλ − ẋt)u, u〉+ 〈(∂xVλ)ṽu, u〉.

We successively consider each term on the right hand side.
We will obtain positivity from the third term on the right hand side of (11.3). Write the

kernel of [p(D), ṽ] using a Taylor expansion:∫
ei(x−y)ξp(ξ)(ṽ(y)− ṽ(x)) dξ

=

∫
ei(x−y)ξp(ξ)

(
(y − x)ṽ′(x) + (y − x)2

∫ 1

0

ṽ′′(h(x− y) + y)h dh

)
dξ

Then integrating by parts, we obtain∫
ei(x−y)ξ

(
−ip′(ξ)ṽ′(x)− p′′(ξ)

∫ 1

0

ṽ′′(h(x− y) + y)h dh

)
dξ

=: K1(x, y) +K2(x, y).

Observe that K1 is the kernel of

−iṽ′p′(D) = −iλ
3
4w2p′(D)

so that K1 will contribute the positive operator. We observe that ṽ has been chosen so that
the second order component K2 is integrable, independent of λ. Indeed, observe that we
may write, for a unit-scaled bump function q,

p(ξ) = λ
1
2 q(λ−1ξ)

so that

λ
3
2

∫
ei(x−y)ξp′′(ξ) dξ = λq̂′′(λ(y − x))

is an integrable kernel. Further, since λ−
3
2 ṽ′′ = ṽ′′ is bounded, we have uniformly in (x, y),

λ−
3
2

∣∣∣∣∫ 1

0

ṽ′′(h(y − x) + x)h dh

∣∣∣∣ . 1.

We conclude ∫ √
aλ(x)K2(x, y)u(y)u(x) dydx . ‖a‖L∞‖u‖2

L2 .
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We can similarly estimate the second and last terms on the right hand side of (11.3) as

errors (observe that ṽ has frequency support below λ
3
4 � λ):

‖[p(D),
√
aλ]ṽu‖L2 . ‖∂x

√
aλ‖L∞‖ṽu‖H− 1

2

≤ λ
1
2F(M(t))Z(t)λ−

1
2‖u‖L2 ,

‖(∂xVλ)ṽu‖L2 ≤ F(M(t))Z(t)‖u‖L2 .

It remains to consider the fourth term on the right hand side of (11.3),

〈ṽ′(Vλ − ẋt)u, u〉 = 〈ṽ′(Vλ(x)− Vλ(xt))u, u〉 −
1

2
〈ṽ′
√
aλ|ξt|−

3
2 ξtu, u〉.

We bound the first of these terms as an error:

‖ṽ′(Vλ(x)− Vλ(xt))u‖L2 . ‖λ
3
4v′(λ

3
4 (x− xt))(x− xt)‖L∞‖Vλ‖C1‖u‖L2

. Z(t)‖u‖L2 .

We conclude from (11.3) that, on the frequency support of u, and using the choice of v in
terms of w,

d

dt
〈ṽu, u〉 =

1

2
λ

3
4 〈
√
aλw̃

2(|D|−
1
2 − |ξt|−

1
2 )u, u〉(11.4)

+O((F(M(t))Z(t))‖u‖2
L2 + ‖f‖L2‖u‖L2).

Next, we symmetrize the first term on the right hand side. We write

w̃2(|D|−
1
2 − |ξt|−

1
2 )u = w̃(|D|−

1
2 − |ξt|−

1
2 )w̃u+ w̃[|D|−

1
2 , w̃]u

where the commutator is bounded in L2
x by

‖w̃′‖L∞‖u‖H− 3
2
≤ λ

3
4λ−

3
2‖u‖L2 .

Using additionally the bounds on the Taylor coefficient, this may be absorbed into the error
on the right hand side. Similarly, we write, using the frequency localization of u,

√
aλ(|D|−

1
2 − |ξt|−

1
2 )w̃u = (|D|−

1
2 − |ξt|−

1
2 )

1
2
√
aλ(|D|−

1
2 − |ξt|−

1
2 )

1
2 w̃u

− [(|D|−
1
2 − |ξt|−

1
2 )

1
2 ,
√
aλ](|D|−

1
2 − |ξt|−

1
2 )

1
2 w̃u.

Then, observing that w̃ has frequency support below λ
3
4 � λ, we similarly may estimate the

commutator by

‖∂x
√
aλ‖L∞‖w̃u‖H− 3

2
≤ λ

1
2F(M(t))Z(t)λ−

3
2‖u‖L2

which is better than needed with respect to the power of λ to absorb into the right hand
side.

After the symmetrization, integrating (11.4) in time, we obtain

λ
3
4‖a

1
4
λ (|D|−

1
2 − |ξt|−

1
2 )

1
2 w̃u‖2

L2(I;L2) ≤ F(T )‖u‖2
L∞(I;L2) + ‖f‖2

L1(I;L2).

Using the lower bound from the Taylor sign condition and taking square roots,

‖(|D|−
1
2 − |ξt|−

1
2 )

1
2 w̃u‖L2(I;L2) ≤ λ−

3
8F(T )(‖u‖L∞(I;L2) + ‖f‖L1(I;L2)).

Lastly, observe that for ξ in the frequency support of u (using Lemma 11.1),

|ξ|−
1
2 − |ξt|−

1
2 ≥ |ξt − cµ|−

1
2 − |ξt|−

1
2 & λ−

3
2µ.
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Using that the frequency support of w̃ at λ
3
4 � µ ≤ cλ essentially leaves that of u unchanged,

we obtain
λ−

3
4µ

1
2‖w̃u‖L2(I;L2) ≤ λ−

3
8F(T )(‖u‖L∞(I;L2) + ‖f‖L1(I;L2))

as desired. The case of frequency support [ξt + cµ, 2λ/c] is similar, and the case of support
[−2λ/c,−cλ/2] is better than needed.

�

Using similar, cruder analyses, we have corresponding estimates for the cases of u with
low and high frequencies:

Proposition 11.4. Consider a smooth solution u to

(∂t + Vκ∂x + i
√
aκ|D|)u = f

on I. Let (xt, ξt) be a solution to (10.1) with initial data (x0, ξ0) satisfying ξ0 ∈ [λ/2, 2λ].
Let u(t, ·) have frequency support {|ξ| ∈ [κ/2, 2κ]}. If κ ≤ cλ, then

‖wxt,κu‖L2(I;L2) ≤ κ−
1
8F(T )(‖u‖L∞(I;L2) + ‖f‖L1(I;L2)).

If κ ≥ λ/c, then

‖wxt,λu‖L2(I;L2) ≤ λ−
1
8F(T )(‖u‖L∞(I;L2) + ‖f‖L1(I;L2)).

We can prove paradifferential counterparts, using essentially the same analysis as in Section
5:

Corollary 11.5. Consider a smooth solution u to (1.3) on I. Let (xt, ξt) be a solution to
(10.1) with initial data (x0, ξ0) satisfying ξ0 ∈ [λ/2, 2λ].

i) If u(t, ·) has frequency support on one of

[cλ/2, ξt − cµ], [ξt + cµ, 2λ/c], [−2λ/c,−cλ/2],

then
‖wxt,λu‖L2(I;L2) ≤ µ−

1
2λ

3
8F(T )(‖u‖L∞(I;L2) + ‖f‖L1(I;L2)).

ii) If u(t, ·) has frequency support {|ξ| ∈ [κ/2, 2κ]} and κ ≤ cλ, then

‖wxt,κu‖L2(I;L2) ≤ κ−
1
8F(T )(‖u‖L∞(I;L2) + ‖f‖L1(I;L2)).

iii) If u(t, ·) has frequency support {|ξ| ∈ [κ/2, 2κ]} and κ ≥ λ/c, then

‖wxt,λu‖L2(I;L2) ≤ λ−
1
8F(T )(‖u‖L∞(I;L2) + ‖f‖L1(I;L2)).

Lastly, we apply Corollary 11.5 to frequency localized pieces of a smooth solution u to (1.3),
with no assumed frequency localization. Recall that we construct a symmetric λ-frequency
projection Sξ0,λ,µ with a cµ-width gap at ξ0, as in Section 10.2.

Corollary 11.6. Consider a smooth solution u to (1.3) on I. Let (xt, ξt) be a solution to
(10.1) with initial data (x0, ξ0) satisfying ξ0 ∈ [λ/2, 2λ].

i) We have

‖wxt,λSξt,λ,µu‖L2(I;Hs) ≤ µ−
3
2λ

11
8 F(T )(‖u‖L∞(I;Hs) + ‖f‖L1(I;Hs)).

ii) For κ ≤ cλ,

‖wxt,κSκu‖L2(I;Hs) ≤ κ−
1
8F(T )(‖u‖L∞(I;Hs) + ‖f‖L1(I;Hs)).
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iii) For κ ≥ λ/c,

‖wxt,λSκu‖L2(I;Hs) ≤ λ−
1
8F(T )(‖u‖L∞(I;Hs) + ‖f‖L1(I;Hs)).

Proof. For (ii) and (iii), we may apply Corollary 11.5 on Sκu with inhomogeneity

Sκf + [TV ∂, Sκ]u+ i[T√a|D|
1
2 , Sκ]u.

The commutators are estimated in the same way as the corresponding inhomogeneous com-
mutators in Section 5, though we do not sum the frequency pieces here.

The case of (i) is similar. However, for p as in the definition of the symbol of Sξt,λ,µ, we
observe that p′ is not of order −1 uniformly in µ and λ. Rather, we need to consider instead
µλ−1p′. Additionally, we need to estimate

[∂t, p(D − ξt)]u = ξ̇tp′(D − ξt)u = (−∂xVλξt − ∂x
√
aλ|ξt|

1
2 )p′(D − ξt)u

in L1(I;L2) as an inhomogeneous term (and likewise for the similar p(−D+ ξt) case). Using
Lemma 11.1 to see that ξt ≈ ξ0, we obtain

‖(−∂xVλξt − ∂x
√
aλ|ξt|

1
2 )p′(D − ξt)u‖L1(I;L2) . λ(‖V ‖L1(I;C1) + ‖a‖

L1(I;C
1
2 )

)µ−1‖u‖L∞(I;L2).

Using the Taylor coefficient estimates of Proposition D.8 yields the desired estimate.
�

11.3. Estimates on the surface and velocity field. In this section we establish local
smoothing estimates on the original unknowns (η, ψ, V,B), using Proposition 2.1.

Proposition 11.7. Let (xt, ξt) be a solution to (10.1) with initial data (x0, ξ0) satisfying
ξ0 ∈ [λ/2, 2λ].

i) We have

‖wxt,λSξt,λ,µ(η, ψ)‖
L2(I;Hs+1

2 )
+ ‖wxt,λSξt,λ,µ(V,B)‖L2(I;Hs) ≤ µ−

3
2λ

11
8 F(T ).

ii) For κ ≤ cλ,

‖wxt,κSκ(η, ψ)‖
L2(I;Hs+1

2 )
+ ‖wxt,κSκ(V,B)‖L2(I;Hs) ≤ κ−

1
8F(T ).

iii) For κ ≥ λ/c,

‖wxt,λSκ(η, ψ)‖
L2(I;Hs+1

2 )
+ ‖wxt,λSκ(V,B)‖L2(I;Hs) ≤ λ−

1
8F(T ).

Proof. We establish (ii); the other cases are similar.
By Proposition 2.1, we have that

u = 〈D〉−s(〈D〉sV + T∇η〈D〉sB − iT√a/|D|〈D〉
s∇η)

solves
(∂t + TV ∂x + iT√a

√
|D|)u = f

with
‖f‖L1(I;Hs) ≤ F(T ).

Further, using Sobolev embedding and (E.1), it is easy to see that

‖u‖L∞(I;Hs) ≤ F(T ).

We conclude by Corollary 11.6,

‖wxt,κSκu‖L2(I;Hs) ≤ κ−
1
8F(T ).
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Using the frequency localization of wxt,κ at κ−
3
4 � κ, we may commute 〈D〉s to obtain

‖wxt,κ〈D〉sSκu‖L2(I;L2) ≤ κ−
1
8F(T ).

Step 1. First we estimate η. Taking the imaginary part of u,

‖wxt,κSκT√a|D|−
1
2 〈D〉s∇η‖L2(I;L2) ≤ κ−

1
8F(T ).

We may commute Sκ with T√a by absorbing the commutator into the right hand side,
using (E.2) with the estimates on the Taylor coefficient a provided in Proposition D.8:

‖[Sκ, T√a]|D|−
1
2 〈D〉s∇S̃κη‖L2(I;L2) ≤ F(T )‖|D|−

1
2 〈D〉s∇S̃κη‖L∞(I;H−

1
2 )

≤ F(T )‖S̃κη‖L∞(I;Hs) ≤ κ−
1
2F(T )‖S̃κη‖L∞(I;Hs+1

2 )

so that

‖wxt,κT√a|D|−
1
2 〈D〉s∇Sκη‖L2(I;L2) ≤ κ−

1
8F(T ).

We may also exchange T√a with
√
a, absorbing the error into the right hand side using (E.8),

(E.7), and Proposition D.8:

‖T
|D|−

1
2 〈D〉s∇Sκη

√
a‖L2(I;L2) . ‖|D|−

1
2 〈D〉s∇Sκη‖

L2(I;C
1
2−s
∗ )
‖
√
a‖

L∞(I;Hs− 1
2 )

≤ κ−
1
2F(T ),

‖R(|D|−
1
2 〈D〉s∇Sκη,

√
a)‖L2(I;L2) . ‖|D|−

1
2 〈D〉s∇Sκη‖

L2(I;C
1
2−s
∗ )
‖
√
a‖

L∞(I;Hs− 1
2 )

≤ κ−
1
2F(T ),

so that

‖
√
awxt,κ|D|−

1
2 〈D〉s∇Sκη‖L2(I;L2) ≤ κ−

1
8F(T ).

Using the Taylor sign condition, a ≥ amin > 0,

‖wxt,κ|D|−
1
2 〈D〉s∇Sκη‖L2(I;L2) ≤ κ−

1
8F(T ).

Lastly, recalling the frequency localization of wxt,κ, we obtain the desired result.

Step 2. Next, we estimate B. Taking the real part of u,

‖wxt,κSκ(〈D〉sV + T∇η〈D〉sB)‖L2(I;L2) ≤ κ−
1
8F(T ).

Similar to Step 1, we may commute Sκ with T∇η, obtaining

‖wxt,κ(〈D〉s∂−1
x Sκ∂xV + T∇η〈D〉sSκB)‖L2(I;L2) ≤ κ−

1
8F(T ).

Recalling from Proposition 4.5 of [ABZ14a],

∂xV = −G(η)B − Γy.

We may thus exchange ∂xV with −G(η)B, absorbing the Γy by using Proposition D.4 to
estimate

‖〈D〉s∂−1
x SκΓy‖L2(I;L2) . κ−

1
2‖Γy‖L2(I;Hs− 1

2 )
≤ κ−

1
2F(T ).

Further, we can exchange G(η)B with |D|B by using Proposition B.15 to estimate

‖〈D〉s∂−1
x Sκ(G(η)B − |D|B)‖L2(I;L2) . κ−

1
2‖G(η)B − |D|B‖

L2(I;Hs− 1
2 )
≤ κ−

1
2F(T ).
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We conclude
‖wxt,κ(−∂−1

x |D|+ T∇η)〈D〉sSκB‖L2(I;L2) ≤ κ−
1
8F(T ).

Similar to Step 1, we may exchange T∇η with ∇η, and using as usual the frequency
localization of wxt,κ, commute wxt,κ with ∂−1

x |D|:

‖(−∂−1
x |D|+ (∇η))wxt,κ〈D〉sSκB‖L2(I;L2) ≤ κ−

1
8F(T ).

We can restore the paralinearization by estimating (using the frequency localization of
wxt,κ and SκB)

‖Twxt,κ〈D〉sSκB∇η‖L2(I;L2) . ‖wxt,κ〈D〉sSκB‖
L2(I;C

1
2−s
∗ )
‖∇η‖

L∞(I;Hs− 1
2 )

≤ κ−
1
2F(T ).

and similarly for the balanced-frequency term. We conclude

‖Tiξ−1|ξ|+∇ηwxt,κ〈D〉sSκB‖L2(I;L2) ≤ κ−
1
8F(T ).

Lastly, by (E.1),

‖T(iξ−1|ξ|+∇η)−1Tiξ−1|ξ|+∇ηwxt,κ〈D〉sSκB‖L2(I;L2) ≤ κ−
1
8F(T ).

which we may exchange for the desired estimate by (E.2).

Step 3. We estimate V . Using the estimate on B from Step 2 along with an analysis
similar to that in Step 1 to commute T∇η, we have

‖wxt,κSκT∇η〈D〉sB‖L2(I;L2) ≤ κ−
1
8F(T ).

Recalling the estimate on the real part of u at the beginning of Step 2, we may absorb this
into the right hand side. The remaining term is the desired estimate.

Step 4. Lastly, we estimate ψ using the formula

∇ψ = V +B∇η.
Note that it suffices to show

‖wxt,κ〈D〉s−
3
8Sκ∇ψ‖L2(I;L2) ≤ F(T ).

We easily have

‖wxt,κ〈D〉s−
3
8SκV ‖L2(I;L2) ≤ F(T )

so it remains to show
‖wxt,κ〈D〉s−

3
8SκB∇η‖L2(I;L2) ≤ F(T ).

We may commute B with 〈D〉s− 3
8Sκ by estimating

‖[〈D〉s−
3
8Sκ, B]∇η‖L2(I;L2) . ‖B‖L2(I;C1)‖η‖L2(I;Hs− 3

8 )
+ ‖B‖

L2(I;Hs− 3
8 )
‖∇η||L∞ ≤ F(T ).

Then it remains to show

‖Bwxt,κ〈D〉s−
3
8Sκ∇η‖L2(I;L2) ≤ F(T ),

which is immediate from the local estimate on η.
�

As a straightforward consequence of case (ii) in Proposition 11.7, we have
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Corollary 11.8. Let (xt, ξt) be a solution to (10.1) with initial data (x0, ξ0) satisfying ξ0 ∈
[λ/2, 2λ]. Then

‖(η, ψ)(t)‖
L2(I;LS

s′+1
2−

xt,λ
)
+ ‖(V,B)(t)‖

L2(I;LSs
′−
xt,λ

)
≤ F(T ).

The other cases will be used in considering local Sobolev estimates on products in the
following subsection.

11.4. Local smoothing on products. Recall that we define the following local seminorm
for σ ∈ R (see Section 10.2):

‖f‖LSσx0,ξ0,λ,µ =
∑

κ∈[cµ,cλ]

(κ
3
4µ−1‖Sκf‖Hσ + ‖wx0,κSκf‖Hσ)

+ λ
3
4µ−1‖S≥cλf‖Hσ +

∑
κ≥λ/c

‖wx0,λSκf‖Hσ

+ ‖wx0,λSξ0,λ,µf‖Hσ .

This definition is motivated by the following balanced-frequency product estimate:

Proposition 11.9. Let α + β = α′ + β′ > 0. Then

‖wx0,λSµR(f, g)‖Hα+β . ‖f‖LSαx0,ξ0,λ,µ‖g‖Cβ∗ + ‖Sλf‖Cα′∗ ‖wx0,λSξ0,λ,µg‖Hβ′ .

In the case α = β = 0, we have

‖wx0,λSµR(f, g)‖L2 . ‖f‖LS0
x0,ξ0,λ,µ

‖g‖C0+
∗

+ ‖Sλf‖Cα′∗ ‖wx0,λSξ0,λ,µg‖Hβ′ .

Proof. For simplicity, we set α = β = α′ = β′ = 0 and accordingly use L∞ in place of Cα
∗ ;

the generalization is easily obtained. First write

R(f, g) = R(S≤cλf, S≤cλg) +R(Scλ≤·≤λ/cf, Scλ≤·≤λ/cg) +R(S≥λ/cf, S≥λ/cg).(11.5)

From the first term of (11.5), we have

wx0,λSµR(S≤cλf, S≤cλg) = wx0,λSµR(Scµ≤·≤cλf, Scµ≤·≤cλg).

A term of this sum takes the form

wx0,λSµ((Sκf)(Sκg))

with κ ∈ [cµ, cλ]. Observe that

‖wx0,λSµ((Sκf)(Sκg))‖L2 . ‖wx0,κSµ((Sκf)(Sκg))‖L2 .

We commute

‖[wx0,κ, Sµ]((Sκf)(Sκg))‖L2 = ‖[wx0,κ, Sµ]S̃µ((Sκf)(Sκg))‖L2

. κ
3
4µ−1‖S̃µ((Sκf)(Sκg))‖L2

. κ
3
4µ−1‖Sκf‖L2‖g‖L∞ .

Thus it remains to consider

Sµwx0,κ((Sκf)(Sκg))

which we estimate

‖Sµwx0,κ((Sκf)(Sκg))‖L2 . ‖wx0,κSκf‖L2‖g‖L∞ .
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For the latter two terms of (11.5), we commute

‖[wx0,λ, Sµ]R(S≥cλf, S≥cλg)‖L2 = ‖[wx0,λ, Sµ]S̃µR(S≥cλf, S≥cλg)‖L2

. λ
3
4µ−1‖S̃µR(S≥cλf, S≥cλg)‖L2

. λ
3
4µ−1‖S≥cλf‖L2‖S≥cλg‖C0+

∗

so it remains to consider

(11.6) Sµwx0,λ(R(Scλ≤·≤λ/cf, Scλ≤·≤λ/cg) +R(S≥λ/cf, S≥λ/cg)).

Consider a term of the latter sum in (11.6), which takes the form

Sµwx0,λ((Sκf)(Sκg))

with κ ≥ λ/c. We easily estimate

‖Sµwx0,λ((Sκf)(Sκg))‖L2 . ‖wx0,λSκf‖L2‖g‖L∞ .

It remains to consider (an absolute number of) terms of the former sum in (11.6),

Sµwx0,λ((Sλf)(Sλg)).

First recall that wx0,λ has frequency support below λ
3
4 � µ and so essentially does not disturb

the frequency pieces of Sλf and Sλg at the cµ-scale. Then observe that the outermost Sµ
eliminates cµ-width frequency pieces of Sλf and Sλg that are not separated in absolute value
by at least µ/8.

Thus, write

ψλ(ξ) = p(ξ − ξ0) + p(−ξ + ξ0) + q(ξ − ξ0) + q(−ξ + ξ0)

where p was constructed in the definition of Sξ0,λ,µ and q has support {|ξ| ≤ cµ}. Using the
previous observation, we may write

Sµwx0,λ((Sλf)(Sλg)) = Sµwx0,λ((Sξ0,λ,µf)(Sλg)

+ ((q(D − ξ0) + q(−D + ξ0))f)(Sξ0,λ,µg)).

Then

‖Sµwx0,λ(Sλf)(Sλg)‖L2 . ‖wx0,λSξ0,λ,µf‖L2‖Sλg‖L∞ + ‖Sλf‖L∞‖wx0,λSξ0,λ,µg‖L2 .

�

In the special case where at least one of f, g is truncated to low frequencies {|ξ| ≤ cλ}, we
see from the proof of Proposition 11.9 that we can use instead the simpler local seminorm,

‖f‖LSσx0,λ =
∑
κ≤cλ

‖wx0,κSκf‖Hσ .

Corollary 11.10. Let α + β ≥ 0, and f = S≤cλf or g = S≤cλg. Then

‖wx0,λSµR(f, g)‖Hα+β . (‖f‖LSαx0,λ + λ
3
4µ−1‖S≤cλf‖Hα)‖g‖Cβ∗ .

Lastly, using Proposition 11.7, we observe that we estimate (η, ψ, V,B) in the full local
seminorm:
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Corollary 11.11. Let 0 ≤ σ ≤ s. Let (xt, ξt) be a solution to (10.1) with initial data (x0, ξ0)
satisfying ξ0 ∈ [λ/2, 2λ]. Then

λ−σµs
′‖(η, ψ)‖

L2(I;LS
σ+1

2
xt,ξt,λ,µ

)
+ λ−σµs

′‖(V,B)‖L2(I;LSσ
xt,ξt,λ,µ

) ≤ F(T ).

Proof. We consider V ; the other terms are similar.
First consider the terms of LSσxt,ξt,λ,µ that do not have local weights. We have

λ−σκ
3
4µ−1‖SκV ‖Hσ . κ

3
4
−sµ−1‖SκV ‖Hs ≤ κ−

1
8µ−s

′F(T ).

Summing geometrically with respect to κ yields the desired estimate. Similarly,

λ−σλ
3
4µ−1‖S≥cλf‖Hσ . λ

3
4
−sµ−1‖S≥cλf‖Hs ≤ λ−

1
8µ−s

′F(T )

which is better than needed.
It remains to consider the three terms of LSσxt,ξt,λ,µ with local weights. First consider the

low frequency sum, using case (ii) of Proposition 11.7:

λ−σ
∑

κ∈[cµ,cλ]

‖wxt,κSκV ‖L2(I;Hσ) ≤
∑

κ∈[cµ,cλ]

κ−s−
1
8F(T ) ≤ µ−s

′F(T ).

For the high frequency sum, use case (iii):

λ−σ
∑
κ≥λ/c

‖wxt,λSκV ‖L2(I;Hσ) ≤
∑
κ≥λ/c

κ−(s−σ)λ−σ−
1
8F(T ) ≤ λ−s

′F(T )

which is better than needed.
Lastly, for the λ-frequency term, use case (i):

λ−σ‖wxt,λSξt,λ,µV ‖L2(I;Hσ) . λ−sµ−
3
2λ

11
8 F(T ) ≤ µ−s

′F(T ).

�

12. Integration Along the Hamilton Flow

To motivate the results of this section, recall the symbol of the operator of our evolution
is

H(t, x, ξ) = Vλξ +
√
aλ|ξ|

with associated Hamilton equations{
ẋ = Hξ(t, x, ξ) = Vλ + 1

2

√
aλ|ξ|−

3
2 ξ

ξ̇ = −Hx(t, x, ξ) = −∂xVλξ − ∂x
√
aλ|ξ|

1
2 .

To construct a useful wave packet parametrix for the evolution Dt + H(t, x,D), we require
the Hamilton flow of H to be bilipschitz. In turn, this relies on the regularity of ∂2

xH. To
circumvent this in our low regularity setting, we will write ∂2

xH as a derivative of some
F = F (t, x, ξ) along the flow (x(t), ξ(t)):

(12.1) ∂2
xH ≈ (∂t + ẋ∂x + ξ̇∂ξ)F

in a sense to be made precise.
By a straightforward computation,

∂2
xH = ∂2

xVλξ +
1

2

(
−1

2

(∂xaλ)
2√

a3
λ

+
∂2
xaλ√
aλ

)
|ξ|

1
2 .
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Then (12.1) becomes (omitting “lower order terms” from both sides)

(12.2) ∂2
xVλξ +

1

2

∂2
xaλ√
aλ
|ξ|

1
2 ≈

(
∂t + Vλ∂x +

1

2

√
aλ|ξ|−

3
2 ξ∂x

)
F.

We will see below that in fact, for F1 = F1(t, x) to be determined,

(12.3) ∂2
xVλξ ≈ (∂t + Vλ∂x)F1ξ,

∂2
xaλ√
aλ
|ξ|

1
2 ≈ (

√
aλ|ξ|−

3
2 ξ∂x)F1ξ

in a sense to be made precise.

12.1. Vector field identities. First we recall identities involving the vector field L = ∂t +
V · ∇.

Recall that the traces of the velocity field on the surface (V,B) can be expressed directly
in terms of η, ψ via the formulas (2.2). Further, as a simple consequence of these formulas
and the first equation of the system (2.1),

(12.4) Lη = B.

Also recall from [ABZ14a, Propositions 4.3, 4.5],

(12.5)


LB = a− g,
LV = −a∇η,
L∇η = G(η)V +∇ηG(η)B + Γx +∇ηΓy,

(12.6) G(η)B = −∇ · V − Γy.

Here, Γx,Γy arise only in the case of finite bottom, and is described with estimates in
Appendix D.2. In the remainder of the section, we will consider the case of infinite bottom,
so that

Γx = Γy = 0.

This assumption is only for convenience; the appropriate local estimates on Γx,Γy may be
obtained by using elliptic arguments similar to those in Appendix C.

12.2. Integrating the vector field. Observe that two of the identities from (12.5) and
(12.6) imply

(12.7) L∇η = (G(η)− (∇η)div)V,

which is the basis for our integration of ∂2
xVλ below. Recall we write Λ for the principal

symbol of the Dirichlet to Neumann map.

Proposition 12.1. We have

(12.8) ∂2
xVλ = (∂t + Vλ · ∇)Tq−1∂2

x∇ηλ +GV

where q = Λ− i∇ηξ is a symbol of order 1, and GV satisfies

‖GV ‖L∞ ≤ λ
1
2
−F(M(t))Z(t)2,

‖wx0,λSµGV ‖H 1
2
≤ λ

1
2
−F(M(t))Z(t)(Z(t) + L(t, x0, ξ0, λ)).
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Proof. Starting from (12.7), we incrementally paralinearize, apply the symbolic calculus,
frequency truncate, and commute. First, we observe that

‖wx0,λSµf‖Hσ . ‖wx0,µSµf‖Hσ

so we may exchange wx0,λ with wx0,µ when necessary.
Step 1. Paralinearization. Paralinearize the terms

G(η)V = TΛV +R(η)V,

(∇η)∇ · V = T∇η∇ · V + T∇·V∇η +R(∇η,∇ · V )

of (12.7). Then rearranging,

TqV = (TΛ − T∇ηdiv)V = L∇η −R(η)V + T∇·V∇η +R(∇η,∇ · V ).

We estimate the error terms on the right hand side. By (D.3) (appropriately sharpened for
the ε gain), (E.1), and (E.6) respectively,

‖R(η)V ‖
W

1
2+,∞ ≤ F(‖η‖

Hs+1
2
, ‖V ‖Hs)(1 + ‖η‖

W r+1
2 ,∞

)(1 + ‖η‖
W r+1

2 ,∞
+ ‖V ‖W r,∞)

‖T∇·V∇η‖W 1
2+,∞ . ‖V ‖W r,∞‖η‖

W r+1
2 ,∞

‖R(∇η,∇ · V )‖
W

1
2+,∞ . ‖η‖W r+1

2 ,∞
‖V ‖W r,∞ .

For the local Sobolev estimates, by Proposition B.14,

‖wx0,λSµR(η)V ‖
Hs′− 1

2
≤ F(M(t))Z(t)(λ

1
2µ−

1
2 + Z(t) + λ

1
2µ−

1
2L(t, x0, ξ0, λ)).

By Proposition B.1,

‖wx0,µSµT∇·V∇η‖Hs′− 1
2
. ‖∇ · V ‖L∞(‖wx0,µSµ∇η‖Hs′− 1

2
+ ‖∇η‖

Hs− 1
2
).

Lastly, by Proposition 11.9,

µs
′− 1

2‖wx0,λSµR(∇η,∇ · V )‖L2

. µs
′− 1

2‖∇η‖LS0
x0,ξ0,λ,µ

‖∇ · V ‖C0+
∗

+ ‖Sλ∇η‖
C

1
2
∗
µs
′− 1

2‖wx0,λSξ0,λ,µ∇ · V ‖H− 1
2

. Z(t)λ
1
2µ−

1
2L(t, x0, ξ0, λ).

We conclude

TqV = L∇η +G1

where

‖G1‖W 1
2+,∞ ≤ F(M(t))Z(t)(1 + ‖η‖

W r+1
2 ,∞

),

‖wx0,λSµG1‖Hs′− 1
2
≤ F(M(t))Z(t)(λ

1
2µ−

1
2 + Z(t) + λ

1
2µ−

1
2L(t, x0, ξ0, λ)).

Following the above proof of the local Sobolev estimate, but using the standard Sobolev
counterparts to all of the local Sobolev estimates, one also obtains the (global) Sobolev
counterpart,

‖G1‖Hs− 1
2
≤ F(M(t))Z(t).

Step 2. Inversion of q. We write

V = Tq−1L∇η + Tq−1G1 + (1− Tq−1Tq)V.
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For the first error term Tq−1G1, q−1 is a symbol of order −1 and is a smooth function of
∇η, so that by (E.15) and Sobolev embedding with s− 1

2
> d

2
,

(12.9) M−1
0 (q−1) ≤ F(‖∇η‖L∞) ≤ F(‖∇η‖

Hs− 1
2
)

and similarly

M−1
1
2

(q−1) ≤ F(‖∇η‖
Hs− 1

2
)‖∇η‖

C
1
2
∗
.

Then by (E.1) and the estimate on G1 in the previous step,

‖Tq−1G1‖W 3
2+,∞ .M−1

0 (q−1)‖G1‖W 1
2+,∞ ≤ F(M(t))Z(t)(1 + ‖η‖

W r+1
2 ,∞

).

For the local Sobolev counterpart, use instead Proposition B.3 with Step 1:

‖wx0,λSµTq−1G1‖Hs′+1
2
.M−1

0 (q−1)(‖wx0,λSµG1‖Hs′− 1
2

+ λ
3
8µ−

3
8‖G1‖Hs′+1

2−1− 1
8
)

≤ F(‖η‖
Hs+1

2
)(‖wx0,λSµG1‖Hs′− 1

2
+ λ

3
8µ−

3
8‖G1‖Hs− 1

2
)

≤ F(M(t))Z(t)(λ
1
2µ−

1
2 + Z(t) + λ

1
2µ−

1
2L(t, x0, ξ0, λ)).

Using (E.3), we control the second error term by

‖(1− Tq−1Tq)V ‖W 3
2+,∞ .

(
M−1

1
2

(q−1)M1
0 (q) +M−1

0 (q−1)M1
1
2
(q)
)
‖V ‖W r,∞

≤ F(‖η‖
Hs+1

2
)‖η‖

W r+1
2 ,∞
‖V ‖W 1,∞ .

Likewise, using instead Proposition B.3 for the local Sobolev estimate,

‖wx0,µSµ(1− Tq−1Tq)V ‖Hs′+1
2
.
(
M−1

1
2

(q−1)M1
0 (q) +M−1

0 (q−1)M1
1
2
(q)
)

· (‖wx0,µSµV ‖Hs′ + ‖S̃µV ‖Hs)

≤ F(‖η‖
Hs+1

2
, ‖V ‖Hs)‖η‖

W r+1
2 ,∞
‖wx0,µSµV ‖Hs′ .

We conclude

V = Tq−1L∇η +G2

with

‖G2‖W 3
2+,∞ ≤ F(M(t))Z(t)(1 + ‖η‖

W r+1
2 ,∞

),

‖wx0,λSµG2‖Hs′+1
2
≤ F(M(t))Z(t)(λ

1
2µ−

1
2 + Z(t) + λ

1
2µ−

1
2L(t, x0, ξ0, λ)).

As before, it is easy to follow the local Sobolev proof to show additionally

‖G2‖Hs+1
2
≤ F(M(t))Z(t).

Step 3. Frequency truncation and differentiation. Applying ∂2
xS≤c1λ to both sides of our

identity, we have

∂2
xVλ = Tq−1∂2

xS≤c1λL∇η + ∂2
xS≤c1λG2 + [∂2

xS≤c1λ, Tq−1 ]L∇η.

For the first error term, we have

‖∂2
xS≤c1λG2‖L∞ . λ

1
2
−‖G2‖W 3

2+,∞ . λ
1
2
−F(M(t))Z(t)2,

‖wx0,λSµ∂2
xG2‖H 1

2
. µ

1
2
−‖wx0,λSµG2‖Hs′+1

2
. λ

1
2
−F(M(t))Z(t)(Z(t) + L(t, x0, ξ0, λ)).
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To estimate the second error term, first rewrite, using the definition of the paradifferential
calculus,

[∂2
xS≤c1λ, Tq−1 ]S≤cλL∇η.

Using (12.4), write

(12.10) L∇η = ∇Lη −∇V · ∇η = ∇B −∇V · ∇η.

Then by (E.3) and (12.9),

‖[∂2
xS≤c1λ, Tq−1 ]S≤cλL∇η‖L∞ . λ

1
2
−
(
M−1

1
2

(q−1) +M−1
0 (q−1)

)
‖∇B −∇V · ∇η‖Cr∗

. λ
1
2
−F(‖η‖

Hs+1
2
)‖η‖

W r+1
2 ,∞

(
‖B‖Cr∗ + ‖∇η‖L∞‖∂V ‖Cr∗

)
≤ λ

1
2
−F(‖η‖

Hs+1
2
)‖η‖

W r+1
2 ,∞
‖(V,B)‖Cr∗ .

For the local Sobolev counterpart, use instead Proposition B.3:

‖wx0,µSµ[∂2
xS≤c1λ, Tq−1 ]L∇η‖

H
1
2

. λ
1
2
−
(
M−1

1
2

(q−1) +M−1
0 (q−1)

)
· (‖wx0,µSµ(∇B −∇V · ∇η)‖Hs′−1 + ‖S̃µ(∇B −∇V · ∇η)‖Hs−1)

. λ
1
2
−F(‖η‖

Hs+1
2
)‖η‖

W r+1
2 ,∞

· (L(t, x0, ξ0, λ) + ‖wx0,µSµ(∇V · ∇η)‖Hs′−1 +M(t)).

For the remaining middle term, using Corollary B.2,

‖wx0,µSµ(∇V · ∇η)‖Hs′−1 . (‖wx0,µS̃µ∇V ‖Hs′−1 + ‖∇V ‖Hs−1)‖∇η‖L∞

+ ‖∇V ‖L∞(‖wx0,µS̃µ∇η‖Hs′−1 + ‖∇η‖Hs−1)

+ ‖∇η‖
C

1
8
∗
‖∇V ‖Hs−1

≤ F(M(t))(Z(t) + L(t, x0, ξ0, λ)).

We conclude

∂2
xVλ = Tq−1∂2

xS≤c1λL∇η +G3

with

‖G3‖L∞ ≤ λ
1
2
−F(M(t))Z(t)2,

‖wx0,λSµG3‖H 1
2
≤ λ

1
2
−F(M(t))Z(t)(Z(t) + L(t, x0, ξ0, λ))

Step 4. Vector field paralinearization. We paralinearize the vector field in order to com-
mute past it in the next step. Writing the paraproduct expansion

(V · ∇)∇η = (TV · ∇)∇η + T∇(∇η) · V +R(V,∇(∇η)),

we have

∂2
xVλ = Tq−1∂2

xS≤c1λ(∂t + TV · ∇)∇η +G3 + Tq−1∂2
xS≤c1λ(R(V,∇(∇η)) + T∇(∇η) · V ).
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Then by (E.1), (E.6), and (E.9),

‖Tq−1∂2
xS≤c1λ(R(V,∇(∇η)) + T∇(∇η) · V )‖L∞

.M1
0 (q−1ξ2)‖S≤c1λ(R(V,∇(∇η)) + T∇(∇η) · V )‖W 1,∞

. λ
1
2
−F(‖η‖

Hs+1
2
)‖∇η‖L∞‖V ‖W r,∞‖∇2η‖

C
− 1

2
∗

. λ
1
2
−F(‖η‖

Hs+1
2
)‖η‖

Hs+1
2
‖V ‖W r,∞‖η‖

W
3
2 ,∞

.

For the local Sobolev estimate, first consider R(V,∇(∇η)). By Proposition B.3,

‖wx0,λSµTq−1∂2
xR(V,∇(∇η))‖

H
1
2

.M−1
0 (q−1)(‖wx0,λSµ∂2

xR(V,∇(∇η))‖
H

1
2−1 + λ

3
8µ−

3
8‖S̃µ∂2

xR(V,∇(∇η))‖
H

1
2−1− 1

8
)

≤ F(M(t))(‖wx0,λSµ∂2
xR(V,∇(∇η))‖

H−
1
2

+ λ
3
8‖S̃µR(V,∇(∇η))‖H1)

≤ F(M(t))(‖wx0,λSµ∂2
xR(V,∇(∇η))‖

H−
1
2

+ λ
1
2
−Z(t)).

For the remaining first term, first note that

‖(∂xwx0,λ)Sµ∂xR(V,∇(∇η))‖
H−

1
2
. µ−

1
2λ

3
4‖SµR(V,∇(∇η))‖H1

. λ
3
8‖SµR(V,∇(∇η))‖H1

. λ
1
2
−F(M(t))Z(t).

We have a similar situation (better than needed) when both ∂2
x fall on w, so it remains to

consider

‖wx0,λSµR(V,∇(∇η))‖
H

3
2
.

Applying Proposition 11.9,

‖wx0,λSµR(V,∇(∇η))‖L2 . ‖V ‖
LS

1
2
x0,ξ0,λ,µ

‖∇2η‖
C
r− 3

2
∗

+ ‖V ‖Cr∗‖wx0,λSξ0,λ,µ∇
2η‖H−1

and thus

‖wx0,λSµR(V,∇(∇η))‖
H

3
2
≤ F(M(t))Z(t)λ

1
2
−L(t, x0, ξ0, λ).

For the local Sobolev estimate of T∇(∇η) · V , the analysis is similar and easier, using
Proposition B.1 in the place of Proposition 11.9.

We conclude that we may replace V with TV , yielding, for G4 satisfying the same estimates
as G3,

∂2
xVλ = Tq−1∂2

xS≤c1λ(∂t + TV · ∇)∇η +G4.

Step 5. Vector field commutator estimate. By the definition of the paradifferential calculus,
we may freely exchange Tq−1∂2

xS≤c1λ(∂t + TV · ∇)∇η for

Tq−1∂2
xS≤c1λ(∂t + TV · ∇)∇S≤cλη.

In turn, applying Proposition D.11 with m = 1, r = 0 and ε = 1, we may exchange this
for

LTq−1∂2
x∇ηλ
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with an error bounded in L∞ by (using that q is a smooth function of ∇η, and (12.10))

M1
0 (q−1ξ2)‖V ‖W 1,∞‖∇S≤cλη‖B1

∞,1
+M1

0 (Lq−1ξ2)‖∇S≤cλη‖W 1,∞

. λ
1
2
−F(‖η‖

Hs+1
2
)(‖η‖W 1,∞‖V ‖W 1,∞‖η‖

B
3
2+

∞,1
+ ‖∇B −∇η · ∇V ‖L∞‖η‖W 3

2 ,∞
)

≤ λ
1
2
−F(‖η‖

Hs+1
2
)‖(V,B)‖W 1,∞‖η‖

W r+1
2 ,∞
≤ λ

1
2
−F(M(t))Z(t)(1 + ‖η‖

W r+1
2 ,∞

).

For the local Sobolev estimate, apply instead Proposition B.3 to estimate

‖wx0,µSµ[Tq−1∂2
xS≤c1λ,∂t + TV · ∇]∇η(t)‖

H
1
2

. (M1
0 (q−1ξ2)‖V (t)‖W r,∞ +M1

0 ((∂t + V · ∇)q−1ξ2))

· (‖wx0,µSµ∇η(t)‖
H

1
2+1 + ‖∇η(t)‖

H
1
2+1− 1

4
)

≤ F(‖η‖
Hs+1

2
)Z(t)(µ2‖wx0,µSµη(t)‖

H
1
2

+ µ
1
2
−)

≤ F(‖η‖
Hs+1

2
)Z(t)λ

1
2
−(L(t, x0, ξ0, λ) + 1).

Note that we also need to restore V , from TV . First consider the error arising from the
balanced terms. Note that since we have one term truncated to low frequencies, we may use
use Corollary 11.10 instead of Proposition 11.9:

‖wx0,λSµR(V,∇Tq−1∂2
x∇ηλ)‖H0+ . (‖V ‖LSs′x0,λ

+ λ
3
4µ−1‖S≤cλV ‖Hs′ )‖∇Tq−1∂2

x∇ηλ‖
C
− 3

2
∗

≤ F(‖η‖
Hs+1

2
)(‖V ‖LSs′x0,λ

+ λ
1
2µ−

1
2‖V ‖Hs)‖η‖

C
3
2
∗

≤ F(M(t))Z(t)λ
1
2µ−

1
2 (L(t, x0, ξ0, λ) + 1).

The high-low terms T∇Tq−1∂2x∇ηλV are similarly estimated, using Proposition B.1 in the place

of Proposition 11.9.
We conclude, for G5 satisfying the same estimates as G4,

∂2
xVλ = LTq−1∂2

x∇ηλ +G5.

Step 6. Vector field truncation. Lastly, we frequency truncate the vector field, using (E.1):

‖((S>cλV ) · ∇)Tq−1∂2
x∇ηλ‖L∞ . ‖S>cλV ‖L∞M1

0 (q−1ξ2)‖∇ηλ‖W 2,∞

≤ F(‖η‖
Hs+1

2
)λ1−‖S>cλV ‖W 1

2 ,∞
‖∇ηλ‖W r− 1

2 ,∞

. λ
1
2
−F(‖η‖

Hs+1
2
)‖V ‖W r,∞‖∇ηλ‖W r− 1

2 ,∞
.

For the local Sobolev counterpart, note that it suffices to consider

wx0,λSµ(S̃c1λV )∇Tq−1∂2
x∇ηλ,

which was essentially estimated at the end of Step 5. �

12.3. Integrating the dispersive term. In this subsection we integrate ∂2
xaλ, the coeffi-

cient of the dispersive term in our symbol H.

Proposition 12.2. We have

∂2
xaλ√
aλ

=
√
aλ∂xTq−1∂3

xηλ + (∂t + Vλ∂x)Fa +Ga
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where q = Λ− i∇ηξ is a symbol of order 1, and Fa, Ga satisfy

‖Fa‖L2 ≤ λ
5
8
−F(M(t)),

‖Fa‖H 1
2
≤ λ

5
8
−F(M(t))Z(t),

‖wx0,λSµ
√
aλ∂xFa‖H 1

2
≤ λ

3
2
−F(M(t))Z(t)(Z(t) + L(t, x0, ξ0, λ)),

‖Ga‖L∞ ≤ λ1−F(M(t))Z(t)2,

‖wx0,λSµGa‖H 1
2
≤ λ1−F(M(t))Z(t)(Z(t) + L(t, x0, ξ0, λ)).

Proof. We will focus on the local Sobolev estimates, as the Hölder estimates are easier,
using the appropriate Hölder counterparts. Throughout, we use identities from Section 12.1.
Beginning with the identity

G(η)B = −∂xV
and the paralinearization

G(η)B = |D|B +R(η)B,

write
B = |D|−1|D|B = |D|−1(G(η)B −R(η)B) = −|D|−1∂xV − |D|−1R(η)B

Then apply L to both sides, so that using the identities

LB = a− g, LV = −a∇η,
we obtain

a− g = −L|D|−1∂xV − L|D|−1R(η)B

= |D|−1∂x(a∇η)− L|D|−1R(η)B − [V, |D|−1∂x]∂xV.

Applying |D| to both sides, using the product rule, and applying a paradifferential decom-
position,

(|D| − T∇η∂x)a = a∂2
xη + ((∇η)− T∇η)∂xa− |D|L|D|−1R(η)B − |D|[V, |D|−1∂x]∂xV.

Observe that on the left hand side, we have Tqa. Lastly, we apply ∂2
xS≤c1λTq−1 to both

sides of the identity, to obtain

∂2
xaλ = ∂2

xS≤c1λTq−1a∂2
xη + E

where E denotes error terms,

E = ∂2
xS≤c1λTq−1(((∇η)− T∇η)∂xa− |D|L|D|−1R(η)B − |D|[V, |D|−1∂x]∂xV )(12.11)

+ ∂2
xS≤c1λ(Tq−1Tq − 1)a.

Except for some commuting and rearrangement, it remains to estimate the errors E in
L∞ or locally with the weight wx0,λSµ in H

1
2 . As usual, we observe that

‖wx0,λSµf‖Hσ . ‖wx0,µSµf‖Hσ

so we may exchange wx0,λ with wx0,µ when necessary.

Step 1. First we consider from (12.11) the paraproduct error with the Taylor coefficient,

((∇η)− T∇η)∂xa = T∂xa∂xη +R(∂xη, ∂xa).

From the first of these terms, we estimate

wx0,λSµ∂
2
xTq−1T∂xa∂xη
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using successive application of Propositions B.1 and B.3 to commute the localization under
the paraproducts and paradifferential operators. Note that we have a total of 2 derivatives
applied to η (using that q−1 is of order −1), but we have an additional 1/2 from measuring

E in H
1
2 , and an additional 1

2
from measuring ∂xa ∈ C

− 1
2

∗ . Using that s′ + 1
2
> 2 and the

estimate

‖wx0,µSµη‖H3 . µ1−‖wx0,µSµη‖Hs′+1
2
≤ µ1−L(t, x0, ξ0, λ),

we see that we have a net loss of µ1−, which is better than needed. (Throughout, we will use
the fact that we may commute wx0,λSµ under ∂2

xTq−1 and thus effectively treat it as a single
low frequency derivative.)

For the second term, note that the bilinear estimate of Proposition 11.9 is not directly
applicable here, because we do not have an estimate on a in LSαx0,ξ0,λ,µ. Thus, we instead
integrate, writing

R(∂xη, ∂xa) = R(∂xη, ∂xLB) = R(∂xη, L∂xB + (∂xV )∂xB).

The term with (∂xV )∂xB is balanced and hence easily estimated. Indeed, we have (note we
do not use the spatial localization)

‖Sµ∂2
xTq−1R(∂xη, (∂xV )∂xB)‖

H
1
2
≤ µ1−F(M(t))‖SµR(∂xη, (∂xV )∂xB)‖

H
1
2+

≤ µ1−F(M(t))‖∂xη‖Hs− 1
2
‖∂xV ‖L∞‖∂xB‖L∞ .

It thus remains to consider

R(∂xη, L∂xB) =
∑
κ

(Sκ∂xη)(SκL∂xB) = LR(∂xη, ∂xB) +
∑
κ

[(Sκ∂xη)Sκ, L]∂xB.

Consider the commutator. It is easy to commute Sκ with L as discussed above, as this
balances the derivatives onto the vector field V of L. Thus we consider∑

κ

[(Sκ∂xη), L]Sκ∂xB = −
∑
κ

(LSκ∂xη)(Sκ∂xB).

Again, we may commute L with a single derivative, so that using Lη = B, we may exchange
this for

−
∑
κ

(Sκ∂xB)(Sκ∂xB) = −R(∂xB, ∂xB)

which we may estimate using Proposition B.3 to commute with the paradifferential operator
and Proposition 11.9 to handle the R(·, ·) term:

‖wx0,λSµ∂2
xTq−1R(∂xB, ∂xB)‖

H
1
2
≤ F(M(t))(‖wx0,λSµR(∂xB, ∂xB)‖

H
1
2+1

+ λ
3
8µ−

3
8‖SµR(∂xB, ∂xB)‖

H
1
2+1− 1

8
)

≤ F(M(t))(µ
3
2‖wx0,λSµR(∂xB, ∂xB)‖L2 + λ

3
8µ

5
8
−Z(t))

≤ F(M(t))(µ
3
2‖B‖Cr∗‖B‖LS1

x0,ξ0,λ,µ
+ λ1−Z(t))

≤ λ1−F(M(t))Z(t)(L(t, x0, ξ0, λ) + 1).

We conclude that the first error term from (12.11) satisfies the appropriate estimates, except
for a term

LR(∂xη, ∂xB),

which we consider later as part of Fa.
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Step 2. Next, consider the second error term from (12.11),

|D|L|D|−1R(η)B.

As discussed in Step 1, we may easily commute L with a single derivative, so we are left
with a term

LR(η)B

which we also consider later as part of Fa.

Step 3. For the third error term from (12.11),

|D|[V, |D|−1∂x]∂xV,

we reduce to paraproducts. First, we have by Proposition B.3,

‖wx0,µSµ[TV , |D|−1∂x]∂xV ‖H 3
2+ . ‖V ‖C1(‖wx0,µSµV ‖H 3

2+ + ‖V ‖
H

3
2−

1
4+)

. ‖V ‖C1(‖V ‖LSs′x0,λ
+ ‖V ‖Hs)

which suffices. The other low-high terms are similarly estimated using Proposition B.3. On
the other hand, a typical balanced-frequency term may be estimated by Proposition 11.9,

‖wx0,λSµR(V, |D|−1∂2
xV )‖

H
3
2+ . µs

′‖V ‖Cr‖wx0,λSµV ‖LS0
x0,ξ0,λ,µ

.

Step 4. Lastly, we estimate the fourth error term from (12.11), using the commutator
estimate of Proposition B.3 with the local Taylor coefficient estimate of Corollary C.6,

‖wx0,λSµ(Tq−1Tq − 1)a‖
H

5
2
. (M1

1
2
(q)M−1

0 (q−1) +M1
0 (q)M−1

1
2

(q−1))

· (‖wx0,λSµa‖H2 + λ
3
8µ−

3
8‖S̃µa‖H2− 1

8
)

≤ F(‖η‖
Hs+1

2
)Z(t)(µ1−‖wx0,λSµa‖Hs′− 1

2
+ λ

3
8µ

5
8
−‖S̃µa‖Hs− 1

2
)

≤ F(M(t))Z(t)λ1−(Z(t) + L(t, x0, ξ0, λ)).

We conclude that

(12.12) ∂2
xaλ = ∂2

xS≤c1λTq−1a∂2
xη + ∂2

xS≤c1λTq−1L(R(∂xη, ∂xB) +R(η)B) +G1

where G1 satisfies the desired estimate.

Step 5. In the first term on the right hand side of (12.12), we need to commute the
Taylor coefficient a to the front. To do so, we check below that we may exchange a for
Ta, after which we can commute and apply the commutator estimate of Proposition B.3 as
usual. Having done so, we may also commute the paradifferential operators to the desired
arrangement,

Ta∂xTq−1∂3
xηλ.

To estimate

∂2
xS≤c1λTq−1(a− Ta)∂2

xη,

we apply the same steps as in Step 1, ending instead with the integrated term

LR(B, ∂2
xη).
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After commuting the paradifferential operators to the desired arrangement above, it re-
mains to estimate

(aλ − Ta)∂xTq−1∂3
xηλ = (aλ − Taλ)∂xTq−1∂3

xηλ.

The low-high term uses Proposition B.1 as usual, while for the balanced term

R(aλ, ∂xTq−1∂3
xηλ),

we apply Corollary 11.10 since both factors are frequency truncated. Finally, multiplying
both sides of (12.12), after the above modifications, by (aλ)

− 1
2 , we obtain

(12.13)
∂2
xaλ√
aλ

=
√
aλ∂xTq−1∂3

xηλ + (aλ)
− 1

2∂2
xS≤c1λTq−1L(R(∂xη, ∂xB) +R(B, ∂2

xη) +R(η)B) +G2

Here, observe that we may use

(aλ)
− 1

2 ∈ Hs− 1
2 ⊆ H

1
2

+, (aλ)
− 1

2 ∈ W
1
2
,∞

with a paraproduct decomposition and Proposition B.1 to easily estimate G2 = (aλ)
− 1

2G1

by the same right hand side as G1.

Step 6. It remains to commute L to the front of the second term in (12.13),

(aλ)
− 1

2∂2
xS≤c1λTq−1L(R(∂xη, ∂xB) +R(B, ∂2

xη) +R(η)B).

To do so, as in Step 5, we exchange L for a paradifferential counterpart, ∂t+TV ∂x. We remark
that the discussion in Step 1 about commuting L applies here, in that the computations in
this step do not require spatial localization and thus are relatively straightforward. We may
commute the vector field using [ABZ14a, Lemma 2.15] to obtain

(aλ)
− 1

2 (∂t + TV ∂x)∂
2
xS≤c1λTq−1(R(∂xη, ∂xB) +R(B, ∂2

xη) +R(η)B).

After restoring L from ∂t + TV ∂x, we have

(aλ)
− 1

2L∂2
xS≤c1λTq−1(R(∂xη, ∂xB) +R(B, ∂2

xη) +R(η)B).

Lastly, we may commute L to the front by using the Taylor coefficient estimates of Propo-
sition D.8,

L(aλ)
− 1

2 ∈ L∞ ∩Hs−1,

again not requiring spatial localization. Likewise, we may exchange L for ∂t + Vλ∂x.

Step 7. Lastly, we check that

Fa := (aλ)
− 1

2∂2
xS≤c1λTq−1(R(∂xη, ∂xB) +R(B, ∂2

xη) +R(η)B)
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satisfies the desired estimates. Using the algebra property of H
1
2

+, as well as the tame (linear
in Z(t)) paralinearization estimate of Proposition B.15,

‖(aλ)−
1
2∂2

xS≤c1λTq−1(R(∂xη, ∂xB) +R(B, ∂2
xη) +R(η)B)‖

H
1
2

. ‖(aλ)−
1
2‖

H
1
2+‖∂2

xS≤c1λTq−1(R(∂xη, ∂xB) +R(B, ∂2
xη) +R(η)B)‖

H
1
2+

. F(M(t))‖S≤c1λTq−1(R(∂xη, ∂xB) +R(B, ∂2
xη) +R(η)B)‖Hs′+1

≤ λ
5
8
−F(M(t))‖R(∂xη, ∂xB) +R(B, ∂2

xη) +R(η)B‖
Hs− 1

2

≤ λ
5
8
−F(M(t))Z(t)

as desired. The L2 estimate is similar, using instead Proposition B.16.
We also estimate wx0,λSµ

√
aλ∂xFa. When the derivative falls on (aλ)

− 1
2 , we have the

previous estimate except with an additional loss,

‖∂x(aλ)−
1
2‖

H
1
2
≤ λ5/8F(M(t))

which is better than needed. When the derivative falls on the rest of the term, we have

‖wx0,λSµ∂3
xTq−1(R(∂xη, ∂xB) +R(B, ∂2

xη) +R(η)B)‖
H

1
2
.

By applying Proposition B.3 to commute under the paradifferential operator, it remains to
estimate

‖wx0,λSµ(R(∂xη, ∂xB) +R(B, ∂2
xη) +R(η)B)‖H5/2 .

To the first quadratic term (the second is similar), we apply Proposition 11.9,

‖wx0,λSµR(∂xη, ∂xB)‖H5/2 . µ2(‖∂xη‖
C
r− 1

2
∗
‖B‖LS1

x0,ξ0,λ,µ
+ ‖∂xB‖Cr−1

∗
‖η‖

LS
3
2
x0,ξ0,λ,µ

)

≤ λµ
1
2
−Z(t)L(t, x0, ξ0, λ)

as desired. Likewise, by Proposition B.14,

‖wx0,λSµR(η)B‖
Hs′− 1

2
≤ F(M(t))Z(t)(λ

1
2µ−

1
2 + Z(t) + λ

1
2µ−

1
2L(t, x0, ξ0, λ))

so that

‖wx0,λSµR(η)B‖H5/2 ≤ µ
3
2
−F(M(t))Z(t)(λ

1
2µ−

1
2 + Z(t) + λ

1
2µ−

1
2L(t, x0, ξ0, λ))

≤ λ
3
2
−F(M(t))Z(t)(Z(t) + L(t, x0, ξ0, λ)).

�

12.4. Integrating the symbol. Combining Propositions 12.1 and 12.2, we obtain the in-
tegration (12.2) of ∂2

xH:

Corollary 12.3. Let

F1(t, x) = Tq−1∂3
xηλ, F 1

2
(t, x) = Fa

where Fa is given in the proof of Proposition 12.2. Then we may write

(12.14) ∂2
xH = (∂t +Hξ∂x −Hx∂ξ)(F1ξ + F 1

2
|ξ|

1
2 ) +G1ξ +G 1

2
|ξ|

1
2 +G0|ξ|−1ξ
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where

‖Fα‖L2 ≤ λ
9
8
−α−F(M(t)),

‖Fα‖L∞ ≤ λ
3
2
−α−F(M(t))Z(t),

‖wx0,λSµFα‖H 1
2
≤ λ

3
2
−α−F(M(t))(Z(t) + L(t, x0, ξ0, λ)),

‖Gα‖L∞ ≤ λ
3
2
−α−F(M(t))Z(t)2,

‖wx0,λSµGα‖H 1
2
≤ λ

3
2
−α−F(M(t))Z(t)(Z(t) + L(t, x0, ξ0, λ)).

Proof. It is easy to check that F1 satisfies the desired estimates using Proposition B.3. Note
that F 1

2
is even easier, using Sobolev embedding and not requiring the spatial localization.

It remains to compute the errors Gi of the integration.
First compute

Hξ = Vλ +
1

2

√
aλ|ξ|−

3
2 ξ,

Hx = ∂xVλξ + ∂x
√
aλ|ξ|

1
2 ,

∂2
xH = ∂2

xVλξ +
1

2

(
−1

2

(∂xaλ)
2√

a3
λ

+
∂2
xaλ√
aλ

)
|ξ|

1
2 .

Consider the three terms constituting ∂2
xH. For the first and last, recall the identities of

Propositions 12.1 and 12.2,

∂2
xVλ = (∂t + Vλ∂x)F1 +GV

∂2
xaλ√
aλ

=
√
aλ∂xF1 + (∂t + Vλ∂x)F 1

2
+Ga.

Substituting into the expression for ∂2
xH, we see that the two terms containing F1 combine

to form

(∂t +Hξ∂x)F1ξ,

so that

∂2
xH = (∂t +Hξ∂x)F1ξ +GV ξ +

1

2

(
−1

2

(∂xaλ)
2√

a3
λ

+ (∂t + Vλ∂x)F 1
2

+Ga

)
|ξ|

1
2 .

On the right hand side, putting aside for now the term (∂t + Vλ∂x)F 1
2
|ξ| 12 , and adding and

subtracting Hx∂ξF1ξ, we have

(∂t +Hξ∂x −Hx∂ξ)F1ξ + (GV + (∂xVλ)F1)ξ +
1

2

(
−1

2

(∂xaλ)
2√

a3
λ

+Ga + (∂x
√
aλ)F1

)
|ξ|

1
2

=: (∂t +Hξ∂x −Hx∂ξ)F1ξ +G1ξ +G 1
2
|ξ|

1
2 .

It remains to check the estimates on Gi. Note that GV , Ga satisfy the desired estimates by
Propositions 12.1 and 12.2. We consider the remaining terms, focusing on the local Sobolev
estimates since the Hölder estimates are easier, using the appropriate Hölder counterparts.
First, for

(∂xVλ)F1,
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we use a paraproduct decomposition,

(∂xVλ)F1 = T∂xVλF1 + TF1∂xVλ +R(∂xVλ, F1).

The first and second terms are straightforward, using Proposition B.1 with the estimates on
F1 ∈ L∞ ∩H

1
2 of the proposition. The third term uses Corollary 11.10.

The remaining two terms,

−1

2

(∂xaλ)
2√

a3
λ

+ (∂x
√
aλ)F1

are similarly treated using a paraproduct decomposition (using also the Taylor coefficient
bounds of Proposition D.8 and the Taylor sign condition).

We assess the term
1

2
(∂t + Vλ∂x)F 1

2
|ξ|

1
2

similarly, adding errors as necessary to the Gi terms. However, to form

1

2
(∂t +Hξ∂x)F 1

2
|ξ|

1
2 ,

we simply add and subtract

1

4

√
aλ|ξ|−

3
2 ξ∂xF 1

2
|ξ|

1
2 =

1

4

√
aλ∂xF 1

2
|ξ|−1ξ.

By the corresponding estimate of Proposition 12.2, this term satisfies the appropriate esti-
mate to be absorbed into G0. Also note that inserting the term Hx∂ξF 1

2
|ξ| 12 is easier than

before, in particular not using spatial localization. �

13. Regularity of the Hamilton Flow

Recall we have the Hamiltonian

H(t, x, ξ) = Vλξ +
√
aλ|ξ|.

In this section we discuss the regularity properties of the associated Hamilton flow.

13.1. The linearized equations. Recall the Hamilton equations (10.1) associated to H,
ẋ(t) = Hξ(t, x(t), ξ(t))

ξ̇(t) = −Hx(t, x(t), ξ(t))

(x(s), ξ(s)) = (x, ξ),

and that we denote the solution (x(t), ξ(t)) to (10.1), at time t ∈ I with initial data (x, ξ)
at time s ∈ I, variously by

(xts(x, ξ), ξ
t
s(x, ξ)) = (xt(x, ξ), ξt(x, ξ)) = (xts, ξ

t
s) = (xt, ξt).

Denoting

p(t, x, ξ) =

(
xt(x, ξ)
ξt(x, ξ)

)
,

we have the linearization of the Hamilton equations (10.1):

(13.1)
d

dt
∂xp(t) =

(
Hξx(t, x

t, ξt) Hξξ(t, x
t, ξt)

−Hxx(t, x
t, ξt) −Hxξ(t, x

t, ξt)

)
∂xp(t).
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By a heuristic computation using the uncertainty principle and the dispersion relation
|ξ| 12 , the scale on which wave packets cohere is

δx ≈ λ−
3
4 , δξ ≈ λ

3
4 , δt ≈ 1.

As a result, it is natural to define

P (t, x, ξ) =

(
X t(x, ξ)
Ξt(x, ξ)

)
=

(
λ

3
4xt(x, ξ)

λ−
3
4 ξt(x, ξ)

)
,

and with a slight abuse of notation,

H̃ξξ = λ
3
2Hξξ, H̃xξ = Hxξ, H̃xx = λ−

3
2Hxx.

Then we have

(13.2)
d

dt
∂xP (t) =

(
H̃ξx(t, x

t, ξt) H̃ξξ(t, x
t, ξt)

−H̃xx(t, x
t, ξt) −H̃xξ(t, x

t, ξt)

)
∂xP (t).

For the remainder of this subsection we estimate the entries of the matrix of the linearized
Hamilton flow 13.2.

Lemma 13.1. On {|ξ| ∈ [λ/2, 2λ]},

‖H̃ξξ(t)‖L∞x ≤ F(M(t)),

‖H̃xξ(t)‖L∞x ≤ F(M(t))Z(t),

‖wx0,λH̃ξξ(t)‖
H

1
2+
x

≤ λ0+F(M(t)),

‖wx0,λH̃xξ(t)‖
H

1
2+
x

≤ λ0+F(M(t))(Z(t) + L(t, x0, ξ0, λ)).

Proof. We have

Hξξ = −1

4

√
aλ|ξ|−

3
2

from which the first estimate is immediate on {|ξ| ∈ [λ/2, 2λ]}, using Proposition D.8. We
also have

Hxξ = ∂xVλ +
1

2
(∂x
√
aλ)|ξ|−

3
2 ξ.

Then the second bound is obtained using Proposition D.8, the Taylor sign condition, fre-
quency localization, and the assumption on ξ. The third estimate on Hξξ is immediate as
there is evidently sufficient regularity on a.

For the fourth estimate on Hxξ, consider first the transport term Vλ. We have using
Proposition B.3 to commute the localization under ∂x (or simply by using the product rule),

‖wx0,µSµ∂xV ‖H 1
2+ . ‖wx0,µSµV ‖H 3

2+ + ‖V ‖Hs− .

Further, we have

‖wx0,λS.λ 3
4
∂xV ‖H 1

2+ . λ0+‖∂xV ‖L∞ .

Summing this with logarithmically many values of µ, we conclude

‖wx0,λ∂xV ‖H 1
2+ ≤ F(M(t))(Z(t) + L(t, x0, ξ0, λ)).
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From the dispersive term, we have

‖wx0,λ∂x
√
aλ‖H 1

2+ . ‖wx0,λa
− 1

2
λ ∂xaλ‖H 1

2

. ‖a−
1
2

λ ‖H 1
2+‖wx0,λ∂xaλ‖L∞ + ‖a−

1
2

λ ‖L∞‖wx0,λ∂xaλ‖H 1
2+ .

The first three terms are all easily estimated using Proposition D.8, so it remains to consider
the last term in H

1
2

+.
By Corollary C.6, we have

‖wx0,λS�λ 3
4
aλ‖H 3

2+ .
∑

λ
3
4�µ≤c1λ

µ−ε‖wx0,λSµa‖Hs′ ≤ λ
1
2F(M(t))(Z(t) + L(t, x0, ξ0, λ)).

Thus, it remains to estimate

‖wx0,λS.λ 3
4
∂xa‖H 1

2+ + ‖(∂xwx0,λ)S�λ 3
4
aλ‖H 1

2+ .

The first is easily estimated,

‖wx0,λS.λ 3
4
∂xa‖H 1

2+ . λ
3
8

+‖S
.λ

3
4
∂xa‖L2 . λ

1
2‖a‖

Hs− 1
2
.

The second is estimated using the algebra property of H
1
2

+,

‖(∂xwx0,λ)S�λ 3
4
aλ‖H 1

2+ . ‖∂xwx0,λ‖H 1
2+‖S�λ 3

4
aλ‖H 1

2+

. λ
3
4

+‖S
�λ

3
4
aλ‖H 1

2+

. λ
1
2‖a‖

Hs− 1
2
.

�

A direct estimate on H̃xx = λ−
3
2Hxx as in Lemma 13.1 would yield estimates that are too

crude for a bilipschitz flow (the estimate would depend on a positive power of λ). However,
as discussed in Section 12, we can integrate Hxx along (xt, ξt), with the following estimates
on the integral:

Corollary 13.2. We may write

(13.3) ∂2
xH(t, xt, ξt) =

d

dt
F (t, xt, ξt) +G(t, xt, ξt)

where on {|ξ| ∈ [λ/2, 2λ]},

‖F (t, ·, ξ)‖L2 ≤ λ
9
8
−F(M(t)),

‖F (t, ·, ξ)‖L∞ ≤ λ
3
2
−F(M(t))Z(t),

‖wx0,λF (t, ·, ξ)‖
H

1
2+ ≤ λ

3
2
−F(M(t))(Z(t) + L(t, x0, ξ0, λ)),

‖G(t, ·, ξ)‖L∞ ≤ λ
3
2
−F(M(t))Z(t)2,

‖wx0,λG(t, ·, ξ)‖
H

1
2+ ≤ λ

3
2
−F(M(t))Z(t)(Z(t) + L(t, x0, ξ0, λ)).

Proof. By Corollary 12.3,

∂2
xH = (∂t +Hξ∂x −Hx∂ξ)(F1ξ + F 1

2
|ξ|

1
2 ) +G1ξ +G 1

2
|ξ|

1
2 +G0|ξ|−1ξ.
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Then set

F (t, x, ξ) = F1ξ + F 1
2
|ξ|

1
2 , G(t, x, ξ) = G1ξ +G 1

2
|ξ|

1
2 +G0|ξ|−1ξ,

from which the desired identity is easily verified, along with the desired estimates on {|ξ| ∈
[λ/2, 2λ]}. We make some additional remarks regarding the local Sobolev estimates: By
Corollary 12.3, we have

‖wx0,λSµF (t, ·, ξ)‖
H

1
2
≤ λ

3
2
−F(M(t))(Z(t) + L(t, x0, ξ0, λ)).

Since the first term of F ,

F1ξ = Tq−1∂3
xηλξ,

is localized to frequencies ≤ cλ, we can sum these estimates over λ
3
4 � µ ≤ cλ with

logarithmic loss. The component . λ
3
4 is estimated directly as in the proof of Lemma 13.1.

The other terms of F and G are not localized to frequencies ≤ cλ, but only due to a
coefficient in C

1
2 . Precisely, they may be written as

AS.c1λB

where A ∈ C
1
2 (for instance, A = (aλ)

− 1
2 ). Thus, we may estimate the high frequency

component

S>c1λAS.c1λB

by absorbing half a derivative into A instead of using the local Sobolev estimates of Corollary
12.3.

�

We denote in the following, where F,G are as in Corollary 13.2,

F̃ = λ−
3
2F, G̃ = λ−

3
2G

so that

∂2
xH̃(t, xt, ξt) =

d

dt
F̃ (t, xt, ξt) + G̃(t, xt, ξt).

13.2. The bilipschitz flow. We can combine the integration of Corollary 13.2 with Gron-
wall to obtain estimates on p(t) which exhibit the sense in which (xt, ξt) is bilipschitz.

Proposition 13.3. There exists s0 ∈ I such that for J ⊆ R with |J | . λ−
3
4 , and solutions

(xt, ξt) to (10.1) with initial data (x, ξ) satisfying |ξ| ∈ [λ/2, 2λ], at initial time

i) s = s0 ∈ I,

‖∂xX t − λ
3
4 I‖L∞t (I;L∞x ) � λ

3
4 .

ii) s ∈ I,

‖∂xX t − λ
3
4 I‖L2

x(J) + ‖∂xΞs0‖L2
x(J) � λ

3
8 .

Proof. Recall (13.2),

d

dt
∂xP (t) =

(
H̃ξx(t, x

t, ξt) H̃ξξ(t, x
t, ξt)

−H̃xx(t, x
t, ξt) −H̃xξ(t, x

t, ξt)

)
∂xP (t).
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Step 1. First, we integrate to obtain the right object on which to apply Gronwall. Using
Corollary 13.2, write (omitting the parameters (t, xt, ξt) for brevity)

d

dt
∂xP (t) =

(
0 0

− ˙̃F 0

)
∂xP (t) +

(
H̃ξx H̃ξξ

−G̃ −H̃xξ

)
∂xP (t)

= − d

dt

((
0 0

F̃ 0

)
∂xP (t)

)
+

(
0 0

F̃ 0

)
d

dt
∂xP (t) +

(
H̃ξx H̃ξξ

−G̃ −H̃xξ

)
∂xP (t).

Substituting (13.2) into the right hand side and rearranging,

d

dt

((
I 0

F̃ I

)
∂xP (t)

)
=

(
H̃ξx H̃ξξ

F̃ H̃ξx − G̃ F̃ H̃ξξ − H̃xξ

)
∂xP (t).

For brevity, write this as

(13.4)
d

dt
(IF∂xP )(t) = (A∂xP )(t).

Integrating and rewriting the right hand side to apply Gronwall,

(13.5) (IF∂xP )(t) = (IF∂xP )(s) +

∫ t

s

(AI−1
F )(r)(IF∂xP )(r) dr.

Step 2. As a preliminary step, we establish fixed-time estimates in L∞x . Applying uniform
norms and Gronwall,

‖(IF∂xP )(t)‖L∞x . ‖(IF∂xP )(s)‖L∞x exp

(∫ t

s

‖(AI−1
F )(r)‖L∞x dr

)
.

Noting that

I−1
F =

(
I 0

−F̃ I

)
and

(IF∂xP )(s) = IF (s)

(
λ

3
4 I
0

)
= λ

3
4

(
I

F̃ (s)

)
,

we have

(13.6) ‖∂xP (t)‖L∞x . λ
3
4 (1 + ‖F̃ (t)‖L∞x )(1 + ‖F̃ (s)‖L∞x ) exp

(
‖AI−1

F ‖L1
t (I;L

∞
x )

)
.

To estimate the right hand side, first consider the exponential term:

AI−1
F =

(
H̃ξx H̃ξξ

F̃ H̃ξx − G̃ F̃ H̃ξξ − H̃xξ

)(
I 0

−F̃ I

)
=

(
H̃ξx − F̃ H̃ξξ H̃ξξ

F̃ H̃ξx − G̃− F̃ H̃ξξF̃ + H̃xξF̃ F̃ H̃ξξ − H̃xξ

)
Then using Corollary 13.2, Lemma 13.1, and Cauchy-Schwarz,

‖AI−1
F ‖L1

t (I;L
∞
x ) . T

1
2 (‖H̃ξx‖L2

t (I;L
∞
x ) + ‖H̃ξξ‖L2

t (I;L
∞
x )) + ‖G̃‖L1

t (I;L
∞
x )

+ ‖F̃‖L2
t (I;L

∞
x )

(
‖H̃ξξ‖L2

t (I;L
∞
x ) + ‖H̃xξ‖L2

t (I;L
∞
x )

)
+ ‖F̃‖2

L2
t (I;L

∞
x )‖H̃ξξ‖L∞t (I;L∞x )

≤ (T
1
2 + λ0−)F(T )� 1.(13.7)

68



Here we have chosen T sufficiently small, iterating the argument over multiple time intervals
as necessary, and λ sufficiently large. For smaller λ, the frequency localized Strichartz
estimates can be proven directly with Sobolev embedding.

To estimate F̃ (s), we choose s0 ∈ I such that

‖F̃ (s0)‖L∞x ≤ T−1‖F̃‖L1
t (I;L

∞
x ) ≤ T−

1
2‖F̃‖L2

t (I;L
∞
x ).

Then using Corollary 13.2 and choosing λ sufficiently large as before,

(13.8) ‖F̃ (s0)‖L∞x ≤ T−
1
2λ0−F(T )� T−

1
2 .

Thus, by setting s = s0 in (13.6) and using Corollary 13.2 on F̃ (t), we find

‖∂xP (t)‖L∞x ≤ λ
3
4T−

1
2F(M(t))Z(t).(13.9)

Step 3. Next we improve upon Step 2 by showing that ∂xX
t ≈ λ

3
4 I uniformly in t (thus

establishing the first estimate in part (i)). From the top row of (13.5),

∂xX
t = λ

3
4 I +

∫ t

s0

H̃ξx(r)∂xX
r + H̃ξξ(r)∂xΞ

r dr.

Using (13.9), Lemma 13.1, and Cauchy-Schwarz,

(13.10) ‖∂xX t − λ
3
4 I‖L∞x ≤

∫ t

s0

‖H̃ξx(r)∂xX
r‖L∞x + ‖H̃ξξ(r)∂xΞ

r‖L∞x dr ≤ λ
3
4T−

1
2F(T )

and in particular,

‖∂xX t‖L∞t (I;L∞x ) ≤ λ
3
4T−

1
2F(T ).

Using this in place of (13.9), revisit (13.10) and perform the estimate again to obtain

‖∂xX t − λ
3
4 I‖L∞x ≤ T

1
2F(T )(λ

3
4T−

1
2‖H̃ξx‖L2

t (I;L
∞
x ) + ‖∂xΞt‖L2

t (I;L
∞
x ))

≤ λ
3
4F(T ).

Repeating this process one more time, we obtain

(13.11) ‖∂xX t − λ
3
4 I‖L∞x ≤ λ

3
4T

1
2F(T )� λ

3
4 .

Step 4. Lastly, we establish L2
x(J) estimates in (ii). Recalling that

(IF∂xP )(s) = IF (s)

(
λ

3
4 I
0

)
= λ

3
4

(
I

F̃ (s)

)
:= λ

3
4 Ix + λ

3
4

(
0

F̃ (s)

)
,

it is natural to write, in place of (13.5),

(IF∂xP − λ
3
4 Ix)(t) = λ

3
4

(
0

F̃ (s)

)
+

∫ t

s

(AI−1
F )(r)(IF∂xP − λ

3
4 Ix)(r) + λ

3
4 (AI−1

F )(r)Ix dr.

Then apply L2
x(J) and Gronwall:

‖(IF∂xP−λ
3
4 Ix)(t)‖L2

x(J)

. λ
3
4 (‖F̃ (s)‖L2

x(J) + ‖AI−1
F ‖L1

t (I;L
2
x(J))) exp

(∫ t

s

‖(AI−1
F )(r)‖L∞x dr

)
.

We estimate the right hand side using the (global) L2 estimate of Corollary 13.2, (13.7), and
Cauchy-Schwarz in space, concluding

(13.12) ‖(IF∂xP − λ
3
4 Ix)(t)‖L2

x(J) � λ
3
8 .
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From the top row, we obtain

(13.13) ‖∂xX t − λ
3
4 I‖L2

x(J) � λ
3
8

as desired.

It remains to establish the estimate on ∂xΞ
s0 . First, recalling,

I−1
F =

(
I 0

−F̃ I

)
,

we have using Corollary 13.2 with (13.12),

(13.14) ‖∂xP (t)‖L2
x(J) . (1 + ‖F̃ (t)‖L∞x )‖(IF∂xP )(t)‖L2

x(J) ≤ λ
3
8F(M(t))Z(t).

Using again the top row of (13.5),

∂xX
t = λ

3
4 I +

∫ t

s0

H̃ξx(r)∂xX
r + H̃ξξ(r)∂xΞ

r dr,

we apply L2
x(J), and use (13.13, (13.14), Lemma 13.1, and Cauchy-Schwarz to obtain

‖∂xX t − λ
3
4 I‖L2

x(J) .
∫ t

s

‖H̃ξx(r)‖L∞‖∂xXr‖L2
x(J) + ‖H̃ξξ(r)‖L∞‖∂xΞr‖L2

x(J) dr

≤ λ
3
8T

1
2F(T ).

Combining this with (13.8),

(13.15) ‖F̃ (s0)(∂xX
t − λ

3
4 I)‖L2

x(J) ≤ T−
1
2λ0−λ

3
8T

1
2F(T )� λ

3
8 .

Returning next to the bottom row of (13.12), we obtain

‖F̃ (t)∂xX
t + ∂xΞ

t‖L2
x(J) � λ

3
8 .

Setting t = s0 and applying (13.15),

‖λ
3
4 F̃ (s0) + ∂xΞ

s0‖L2
x(J) � λ

3
8 .

Lastly, using the (global) L2 estimate of Corollary 13.2 (here using as well as the bilipschitz
property (13.13) since F (s0) = F (s0, x

s0 , ξs0)), we obtain

‖∂xΞs0‖L2
x(J) � λ

3
8 ,

completing the two estimates of (ii).
�

We also require estimates on ∂ξP (t) to exhibit the spreading of the characteristics, which
we later use to show dispersive estimates:

Proposition 13.4. Let s0 ∈ I be as in Proposition 13.3. Then for solutions (xt, ξt) to (10.1)
with initial data (x, ξ) satisfying |ξ| ∈ [λ/2, 2λ], at initial time s ∈ I,

‖∂ξΞs0 − λ−
3
4 I‖L∞x � λ−

3
4 .

Further, if t ≥ s,

−∂ξX t & λ−
3
4 (t− s),

and if s > t,

∂ξX
t & λ−

3
4 (s− t).
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In either case,

‖∂ξX t‖L∞x ≤ λ−
3
4F(T )|t− s|.

Proof. Similar to (13.2), we have

d

dt
∂ξP (t) =

(
H̃ξx(t, x

t, ξt) H̃ξξ(t, x
t, ξt)

−H̃xx(t, x
t, ξt) −H̃xξ(t, x

t, ξt)

)
∂ξP (t).

Step 1. We first establish L∞x estimates, uniform in time. In analogy to (13.5), we can
integrate H̃xx to write

(IF∂ξP )(t) = (IF∂ξP )(s) +

∫ t

s

(AI−1
F )(r)(IF∂ξP )(r) dr.

Observing that

(IF∂ξP )(s) =

(
0

λ−
3
4 I

)
:= λ−

3
4 Iξ,

we may write

(IF∂ξP − λ−
3
4 Iξ)(t) =

∫ t

s

(AI−1
F )(r)(IF∂ξP − λ−

3
4 Iξ)(r) + λ−

3
4 (AI−1

F )(r)Iξ dr(13.16)

Applying uniform norms, Gronwall, and a subset of the computations ending in (13.7),
we have

‖(IF∂ξP − λ−
3
4 Iξ)(t)‖L∞x . λ−

3
4‖AI−1

F Iξ‖L1
t (I;L

∞
x ) exp

(∫ t

s

‖(AI−1
F )(r)‖L∞x dr

)
≤ λ−

3
4T

1
2F(T ).

From the top row, we have

‖∂ξX t‖L∞x ≤ λ−
3
4T

1
2F(T )

and from the bottom row,

(13.17) ‖F̃ (t)∂ξX
t + ∂ξΞ

t − λ−
3
4 I‖L∞x ≤ λ−

3
4T

1
2F(T )� λ−

3
4 .

In particular, combining these two estimates, setting t = s0, and using (13.8), we find

‖∂ξΞs0 − λ−
3
4 I‖L∞x ≤ λ−

3
4 (T−

1
2λ0−T

1
2F(T ) + c)� λ−

3
4

as desired.
Step 2. Next we show that ∂ξX

t is linear in the time t. From the top row of (13.16),

∂ξX
t =

∫ t

s

H̃ξx(r)∂ξX
r + H̃ξξ(r)∂ξΞ

r dr.

Substituting the formula for ∂ξΞ
t from (13.17), we have

(13.18) ∂ξX
t =

∫ t

s

(H̃ξx − H̃ξξF̃ )(r)∂ξX
r + H̃ξξ(r)(λ

− 3
4 I +K(r)) dr

where

‖K(t)‖L∞x � λ−
3
4 .
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Using Gronwall followed by Lemma 13.1 and (13.7) (noting that F̃ H̃ξξ − H̃xξ is one of the
coefficients of AI−1

F ), we have

‖∂ξX t‖L∞x . |t− s|‖H̃ξξ(t)(λ
− 3

4 I +K(t))‖L∞t (I;L∞x ) exp

(∫ t

s

‖(AI−1
F )(r)‖L∞x dr

)
≤ λ−

3
4F(T )|t− s|

as desired.
In turn, using this estimate in again (13.18), we can write, using Corollary 13.2, Lemma

13.1, and Cauchy-Schwarz,

‖∂ξX t −
∫ t

s

H̃ξξ(r)(λ
− 3

4 I +K(r)) dr‖L∞x ≤ T
1
2λ−

3
4F(T )|t− s| � λ−

3
4 |t− s|.

Lastly, by the Taylor sign condition and Lemma 11.1,

−H̃ξξ =
1

4
λ

3
2
√
aλ|ξt|−

3
2 &
√
amin > 0

so that if t ≥ s,

−
∫ t

s

H̃ξξ(r) dr >
√
amin(t− s)

and if s > t, ∫ t

s

H̃ξξ(r) dr >
√
amin(s− t).

We conclude by the triangle inequality that if t > s,

−∂ξX t & λ−
3
4 (t− s),

and if s > t,

∂ξX
t & λ−

3
4 (s− t).

�

13.3. Geometry of the characteristics. In this subsection we discuss the geometry of
the characteristics (xt, ξt). Throughout, s0 ∈ I denotes the s0 discussed in Propositions 13.3
and 13.4.

First we observe that if two characteristics intersect at time t with similar frequencies,
then they must have had similar initial frequencies.

Proposition 13.5. For solutions (xt, ξt) to (10.1) with initial data (xi, ξi) at initial time
s0 ∈ I, if

|xt(x1, ξ1)− xt(x2, ξ2)| ≤ λ−
3
4 ,

then

|ξ1 − ξ2| ≤ 2|ξt(x1, ξ1)− ξt(x2, ξ2)|+ λ
3
4 .

Proof. Write ξs0 = ξs0t and

(13.19) ξ1 − ξ2 = ξs0(xt(x1, ξ1), ξt(x1, ξ1))− ξs0(xt(x2, ξ2), ξt(x2, ξ2)).
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Using the fundamental theorem of calculus and (ii) in Proposition 13.3 with inital time s = t,
we have (assuming without loss of generality that xt(x1, ξ1) ≤ xt(x2, ξ2))

|ξs0(xt(x2, ξ2), ξt(x2, ξ2))− ξs0(xt(x1, ξ1), ξt(x2, ξ2))| ≤
∫ xt(x2,ξ2)

xt(x1,ξ1)

|∂xξs0(z, ξt(x2, ξ2))| dz

� λ
3
4 .

On the other hand, using Proposition 13.4,

|ξs0(xt(x1, ξ1), ξt(x1, ξ1))− ξs0(xt(x1, ξ1), ξt(x2, ξ2))| ≤
∫ ξt(x2,ξ2)

ξt(x1,ξ1)

|∂ξξs0(xt(x1, ξ1), η)| dη

≤ 2|ξt(x1, ξ1)− ξt(x2, ξ2)|.
Using these two estimates with (13.19), we obtain

|ξ1 − ξ2| ≤ 2|ξt(x1, ξ1)− ξt(x2, ξ2)|+ λ
3
4 .

�

Next, we observe that two characteristics which intersect at two distant times must have
similar initial frequencies:

Proposition 13.6. For solutions (xt, ξt) to (10.1) with initial data (xi, ξi) at initial time
s0 ∈ I, if

|xs(x1, ξ1)− xs(x2, ξ2)| ≤ λ−
3
4 , |xt(x1, ξ1)− xt(x2, ξ2)| ≤ λ−

3
4

for t, s ∈ I, then

|ξ1 − ξ2| . λ
3
4 |t− s|−1.

Proof. Write xr = xrs0 unless otherwise indicated, and

(13.20) xt(x1, ξ1)− xt(x2, ξ2) = xts(x
s(x1, ξ1), ξs(x1, ξ1))− xts(xs(x2, ξ2), ξs(x2, ξ2)).

Using the fundamental theorem of calculus and (ii) in Proposition 13.3,

|xts(xs(x2, ξ2), ξs(x2, ξ2))− xts(xs(x1, ξ1), ξs(x2, ξ2))| ≤
∫ xs(x2,ξ2)

xs(x1,ξ1)

|∂xxts(z, ξs(x2, ξ2))| dz

. λ−
3
4 .

On the other hand, considering without loss of generality the case t ≥ s and ξs(x2, ξ2) ≥
ξs(x1, ξ1), we may use Proposition 13.4 to estimate

xts(x
s(x1, ξ1), ξs(x1, ξ1))− xts(xs(x1, ξ1), ξs(x2, ξ2)) = −

∫ ξs(x2,ξ2)

ξs(x1,ξ1)

∂ξx
t
s(x

s(x1, ξ1), η) dη

& λ−
3
2 (ξs(x2, ξ2)− ξs(x1, ξ1))(t− s).

Using these two estimates with (13.20), we obtain

|xt(x1, ξ1)− xt(x2, ξ2)|+ λ−
3
4 & λ−

3
2 (ξs(x2, ξ2)− ξs(x1, ξ1))(t− s).

We have an upper bound on the left hand side by assumption, and a lower bound on the
right hand side by Proposition 13.5:

2λ−
3
4 &

1

2
λ−

3
2 (|ξ1 − ξ2| − λ

3
4 )(t− s).
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Rearranging yields the claim.
�

Conversely, we see that if two packets intersect at a given time, then they intersect at
nearby times:

Proposition 13.7. For solutions (xt, ξt) to (10.1) with initial data (xi, ξi) at initial time
s0 ∈ I,

|xt(x1, ξ1)− xt(x2, ξ2)| . |xs(x1, ξ1)− xs(x2, ξ2)|+ λ−
1
2F(T )|t− s|.

Proof. Write xr = xrs0 unless otherwise indicated, and

(13.21) xt(x1, ξ1)− xt(x2, ξ2) = xts(x
s(x1, ξ1), ξs(x1, ξ1))− xts(xs(x2, ξ2), ξs(x2, ξ2)).

Using the fundamental theorem of calculus and (ii) in Proposition 13.3,

xts(x
s(x2, ξ2), ξs(x2, ξ2))− xts(xs(x1, ξ1), ξs(x2, ξ2)) =

∫ xs(x2,ξ2)

xs(x1,ξ1)

∂xx
t
s(z, ξ

s(x2, ξ2)) dz

≈ xs(x2, ξ2)− xs(x1, ξ1).

On the other hand, we may use the last estimate of Proposition 13.4 to obtain

|xts(xs(x1, ξ1), ξs(x1, ξ1))− xts(xs(x1, ξ1), ξs(x2, ξ2))| ≤
∫ ξs(x2,ξ2)

ξs(x1,ξ1)

|∂ξxts(xs(x1, ξ1), η)| dη

≤ λ−
1
2F(T )|t− s|.

Using these two estimates with (13.21), we obtain

|xt(x1, ξ1)− xt(x2, ξ2)| . |xs(x1, ξ1)− xs(x2, ξ2)|+ λ−
1
2F(T )|t− s|.

�

13.4. Characteristic local smoothing. The analysis so far has addressed the motion of
the characteristics (xt, ξt) in physical space, and hence the motion of the wave packets we
construct in Section 14. However, for the square summability of the wave packets in our
parametrix construction, we will need control of an extra half derivative on the phase of the
packets. We obtain this gain via local smoothing estimates on the characteristics.

Before establishing the local smoothing estimate, we establish a bilipschitz property for
the Hamilton characteristics, but relative to initial data at a time sT ∈ I amenable to local
smoothing:

Lemma 13.8. Let T = (x0, ξ0) with |ξ0| ∈ [λ/2, 2λ]. There exists sT ∈ I such that for
solutions (xt, ξt) to (10.1) with initial data (x, ξ) at initial time sT , and satisfying |ξ| ∈
[λ/2, 2λ],

‖wxsT ,λ(∂xX t − λ
3
4 I)‖L∞t (I;L∞x ) � λ

3
4 , ‖wxsT ,λF̃ (sT )‖

H
1
2+
x

� T−
1
2

where we denote xsT = xsTs0 (x0, ξ0).

Proof. The proof is similar to the proof of Proposition 13.3, except we multiply by wxs,λ
before applying L∞x , with s to be chosen as follows: When estimating

(IF∂xP )(s) = IF (s)

(
λ

3
4 I
0

)
= λ

3
4

(
I

F̃ (s)

)
,
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we use that
‖wxs,λF̃ (s)‖L∞x . ‖wxs,λF̃ (s)‖

H
1
2+
x

.

Then we choose s = sT such that

‖wxsT ,λF̃ (sT )‖
H

1
2+
x

≤ T−1‖wxt,λF̃‖
L1
t (I;H

1
2+
x )
≤ T−

1
2‖wxt,λF̃‖

L2
t (I;H

1
2+
x )

.

Then using Corollary 13.2, combined with the fact that by Corollaries 11.8 and 11.11,

‖L(t, xt, ξt, λ)‖L2
t
≤ λ0+F(T ),

we have
‖wxsT ,λF̃ (sT )‖

H
1
2+
x

≤ T−
1
2λ0−F(T )� T−

1
2 .

�

Proposition 13.9. Let T = (x0, ξ0) with |ξ0| ∈ [λ/2, 2λ]. There exists sT ∈ I such that
for solutions (xt, ξt) to (10.1) with initial data (x, ξ) at initial time sT , and satisfying |ξ| ∈
[λ/2, 2λ],

‖χxsT ,λ(∂xX t − λ
3
4 I)‖

H
1
2+ � λ

3
4 ,

‖χxsT ,λ∂xΞt‖
L2
t (I;H

1
2+
x )
� λ

3
4 ,

‖χxsT ,λ∂xΞt‖L∞t (I;L2
x) � λ

3
8
−

where we denote xsT = xsTs0 (x0, ξ0).

Proof. We begin by multiplying (13.5) by χxsT ,λ(x), applying H
1
2

+ norms, and using the
algebra property,

‖χxsT ,λ(IF∂xP )(t)‖
H

1
2+ . ‖χxsT ,λ(IF∂xP )(sT )‖

H
1
2+

+

∫ t

sT

‖χ̃xsT ,λ(AI−1
F )(r)‖

H
1
2+‖χxsT ,λ(IF∂xP )(r)‖

H
1
2+ dr.

Then applying Gronwall,

‖χxsT ,λ(IF∂xP )(t)‖
H

1
2+ . ‖χxsT ,λ(IF∂xP )(sT )‖

H
1
2+ exp

(∫ t

sT

‖χ̃xsT ,λ(AI−1
F )(r)‖

H
1
2+ dr

)
.

(13.22)

We consider the exponential term. Consider a typical term in the matrix AI−1
F ,

‖χxsT ,λ(x)H̃xξ(r, x
r, ξr)‖

H
1
2+ .

In turn, H̃xξ is a sum of a transport term and a dispersive term. We consider the transport
term,

‖χ(λ
3
4 (x− xsT ))(∂xVλ)(r, x

r(x, ξ))‖
H

1
2+ .

Using the bilipschitz property of Lemma 13.8, this may be rewritten with an inserted weight,

‖χ(λ
3
4 (x− xsT ))χ̃(λ

3
4 (xr(x, ξ)− xr(xsT , ξ)))(∂xVλ)(r, xr(x, ξ))‖H 1

2+ .

Then using the algebra property of H
1
2

+, it suffices to estimate

‖χ̃(λ
3
4 (xr(x, ξ)− xr(xsT , ξ)))(∂xVλ)(r, xr(x, ξ))‖H 1

2+ .
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We remark that measuring the weight in H
1
2

+ nets a loss of λ0+. We may choose T ≤ λ0−

to negate this, iterating the argument as necessary.
Using again the bilipschitz property of Lemma 13.8 with the diffeomorphism estimate

Proposition E.13, it suffices to estimate

‖χ̃(λ
3
4 (x− xr(xsT , ξ)))(∂xVλ)(r, x)‖

H
1
2+ = ‖χ̃xr,λ∂xVλ‖H 1

2+ . ‖wxr,λ∂xVλ‖H 1
2+ .

Then using the last estimate of Lemma 13.1 (more accurately, its proof), use again the
assumption T ≤ λ0− to conclude that

‖χxsT ,λ(x)(∂xVλ)(r, x
r)‖

L1(I;H
1
2+)
≤ T

1
2λ0+F(T )� 1.

Similar analyses apply to the other terms of AI−1
F , with repeated use of the algebra prop-

erty of H
1
2

+. We remark that other terms also have ξr factors, which require (after possibly
applying a Moser composition estimate)

(13.23) ‖χ(λ
3
4 (x− xsT ))ξr(x, ξ)‖

H
1
2+ . λ1+,

which we establish in Lemma 13.10 below.
We conclude from (13.22), using the estimate on F from Lemma 13.8,

‖χxsT ,λ(IF∂xP )(t)‖
H

1
2+ . λ

3
4T−

1
2 .

Further, recalling

I−1
F =

(
I 0

−F̃ I

)
and using the same analysis as above, combined with (the proof of) Corollary 13.2,

‖χxsT ,λ(∂xP )(t)‖
H

1
2+ . (1 + ‖χ̃xsT ,λF̃ (t)‖L∞x )‖χxsT ,λ(IF∂xP )(t)‖

H
1
2+

≤ λ
3
4T−

1
2F(M(t))(Z(t) + L(t, xt, ξt, λ)).

Using an argument analogous to Step 3 in the proof of Proposition 13.3, we can boost this
estimate for ∂xX

t to

(13.24) ‖χxsT ,λ(∂xX t − λ
3
4 I)‖

H
1
2+ � λ

3
4 .

We also adapt a similar argument to obtain improvements for ∂xΞ
t. From the bottom row

of (13.5),

−F̃ (t)∂xX
t + ∂xΞ

t = λ
3
4 F̃ (sT ) +

∫ t

sT

(F̃ H̃ξx − G̃)(r)∂xX
r + (F̃ H̃ξξ − H̃xξ)(r)∂xΞ

r dr.

Multiplying by χxsT ,λ(x), applying H
1
2

+ norms, using the algebra property, and applying
Gronwall,

‖χxsT ,λ∂xΞt‖
H

1
2+ . (‖χxsT ,λ(λ

3
4 F̃ (sT ) + F̃ (t)∂xX

t)‖
H

1
2+(13.25)

+ ‖χxsT ,λ(F̃ H̃ξx − G̃)(r)∂xX
r‖
L1
r(I;H

1
2+)

)

· exp

(∫ t

sT

‖χ̃xsT ,λ(F̃ H̃ξξ − H̃xξ)(r)‖
H

1
2+
x

dr

)
.
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The exponential term is estimated similar to the exponential term before. The first and
second terms are also similar, using additionally the uniform estimate on ∂xX

t from (13.24).
We conclude

‖χxsT ,λ∂xΞt‖
H

1
2+ ≤ λ

3
4 (cT−

1
2 + λ−εF(M(t))(Z(t) + L(t, xt, ξt, λ))).

Integrating in time, we obtain

‖χxsT ,λ∂xΞt‖
L2
t (I;H

1
2+
x )
� λ

3
4

as desired.

The third estimate is similar to the second, but using L2
x in the place of H

1
2
x . In particular,

in estimating the right hand side of (13.25), we use the (global) L2 estimate of Corollary
13.2,

‖F̃ (t)‖L2 ≤ λ−
3
8
−F(M(t)) ≤ λ−

3
8
−F(T )

which provides the relative gain, and further is uniform in time. �

It remains to establish the following local estimate (13.23) on ξt:

Lemma 13.10. Let T = (x0, ξ0) with |ξ0| ∈ [λ/2, 2λ]. There exists sT ∈ I such that for
solutions (xt, ξt) to (10.1) with initial data (x, ξ) at initial time sT , and satisfying |ξ| ∈
[λ/2, 2λ],

‖χxsT ,λξt‖H 1
2+ . λ1+

where we denote xsT = xsTs0 (x0, ξ0).

Proof. Beginning with

ξt = ξ0 −
∫ t

sT

Hx(r) dr = ξ −
∫ t

sT

(∂xVλ)(r)ξ
r + (∂x

√
aλ)(r)|ξr|

1
2 dr,

multiply by χxsT ,λ(x), apply H
1
2

+ norms, and use the algebra property to obtain

‖χxsT ,λξt‖H 1
2+ . ξ‖χxsT ,λ‖H 1

2+ +

∫ t

sT

(‖χ̃xsT ,λ(∂xVλ)(r)‖H 1
2+

+ ‖χ̃xsT ,λ(∂x
√
aλ)(r)‖H 1

2+λ
− 1

2 )‖χxsT ,λξr‖H 1
2+ dr.

Applying Gronwall, we obtain

‖χxsT ,λξt‖H 1
2+ . λ1+ exp

(∫ t

sT

(‖χ̃xsT ,λ(∂xVλ)(r)‖H 1
2+ + ‖χ̃xsT ,λ(∂x

√
aλ)(r)‖H 1

2+λ
− 1

2 ) dr

)
.

We estimate the right hand side as in the proof of Proposition 13.9 to obtain the lemma.
�
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13.5. The eikonal equation. In the following, we let y denote the spatial variable, so that
in particular we may let T = (x, ξ) without conflict. Further let sT ∈ I be chosen as in
Lemma 13.8, and

(xsT , ξsT ) = (xsTs0 (x, ξ), ξsTs0 (x, ξ))

where s0 ∈ I is chosen as in Proposition 13.3. Consider the eikonal equation,

(13.26) ∂tψx,ξ(t, y) + H̃(t, y, ∂yψx,ξ(t, y)) = 0, ψx,ξ(sT , y) = ξsT (y − xsT ),

whose characteristics are given by the Hamilton flow. The fact that the Hamilton flow is
bilipschitz corresponds to two derivatives on the eikonal solution:

Proposition 13.11. Let T = (x, ξ) with |ξ| ∈ [λ/2, 2λ]. Then for a solution ψx,ξ to (13.26),

‖χxts0 (x,ξ),λ∂
2
yψx,ξ‖

L2
t (I;H

1
2+
y )
� λ

3
2 ,

‖χxts0 (x,ξ),λ∂
2
yψx,ξ‖L∞t (I;L2

y) � λ
9
8
−.

Proof. Using the characteristics for ψx,ξ, write

ξt(z, ξsT ) = (∂yψx,ξ)(t, x
t(z, ξsT ))

so that

∂xξ
t(z, ξsT ) = (∂2

yψx,ξ)(t, x
t(z, ξsT ))(∂xx

t)(z, ξsT ).

By Lemma 13.8, |(∂xxt)(z, ξsT )| > 1
2

on the support of χxsT ,λ(z), so we may write

χxsT ,λ(z)(∂2
yψx,ξ)(t, x

t(z, ξsT )) = χxsT ,λ(z)(∂xξ
t)(z, ξsT )(χ̃xsT ,λ(z)(∂xx

t)(z, ξsT ))−1.

Using the algebra property of H
1
2

+, as well as a Moser estimate on the second term, we
obtain by Proposition 13.9,

‖χxsT ,λ(z)(∂2
yψx,ξ)(t, x

t(z, ξsT ))‖
L2
t (I;H

1
2+
z )
� λ

3
2 .

It is convenient to exchange χ with χ̃, with the straightforward modifications to the proof:

‖χ̃xsT ,λ(z)(∂2
yψx,ξ)(t, x

t(z, ξsT ))‖
L2
t (I;H

1
2+
z )
� λ

3
2 .

Similar to the proof of Proposition 13.9, we may use the bilipschitz property to insert a
weight, followed by the algebra property to obtain

‖χxt(xsT ,ξsT ),λ(x
t(z, ξsT ))(∂2

yψx,ξ)(t, x
t(z, ξsT ))‖

L2
t (I;H

1
2+
z )

= ‖χxt(xsT ,ξsT ),λ(x
t(z, ξsT ))χ̃xsT ,λ(z)(∂2

yψx,ξ)(t, x
t(z, ξsT ))‖

L2
t (I;H

1
2+
z )

� λ
3
2 .

Lastly, setting y = xt(z, ξsT ) and combining the diffeomorphism estimate Lemma E.13 with
the bilipschitz property of Lemma 13.8, we obtain the first estimate of the proposition.

The proof of the L2 estimate is similar, using the corresponding third estimate of Propo-
sition 13.9. �

As a consequence, we observe that ∂yψx,ξ and ξt(x, ξ) are comparable when following a

characteristic on the λ−
3
4 spatial scale:
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Corollary 13.12. Let T = (x, ξ) with |ξ| ∈ [λ/2, 2λ]. Then for solutions ψx,ξ to (13.26),

‖χxts0 (x,ξ),λ(y)(∂yψx,ξ(t, y)− ξts0(x, ξ))‖L∞y � λ
3
4
−.

Proof. We write (xt, ξt) = (xts0 , ξ
t
s0

). Using the fundamental theorem of calculus, write

∂yψx,ξ(t, y)− ξt(x, ξ) = ∂yψx,ξ(t, y)− ∂yψx,ξ(t, xt(x, ξ)) =

∫ y

xt
∂2
yψx,ξ(t, z) dz

so that using Cauchy-Schwarz followed by Proposition 13.11,

|∂yψx,ξ(t, y)− ξt(x, ξ)| ≤ |y − xt(x, ξ)|
1
2‖∂2

yψx,ξ‖L2
y([xt,y]) � λ

9
8
−|y − xt(x, ξ)|

1
2 .

Then restricting to |y−xt(x, ξ)| ≈ λ−
3
4 via the cutoff χxt,λ, we have the desired estimate. �

14. Wave Packet Parametrix

In this section we construct the wave packet parametrix. Define the index set

T = {T = (x, ξ) ∈ λ−
3
4Z× λ

3
4Z : |ξ| ∈ [λ/2, 2λ]}.

Then a wave packet uT = ux,ξ centered at (x, ξ) is a function of the form

uT (t, y) = λ
3
8χT (t, y)eiψT (t,y)

where
χT (t, y) = χ(λ

3
4 (y − xts0(x, ξ)))

and
ψT (t, y) = ψx,ξ(t, y)

solves the eikonal equation (13.26). Also note that we write

χ′T = (χ′)T = (χ′)(λ
3
4 (y − xt(x, ξ)))

so that in particular

λ
3
8χ′T (t, y)eiψT (t,y)

is a wave packet.

14.1. Approximate solution. A wave packet is an approximate solution to

(Dt +H(t, y,D))u = 0

in the follow sense:

Proposition 14.1. Let uT be a wave packet. Then we may write (Dt +H(t, y,D))SλuT as
a sum of terms, each taking one of the following forms:

i) A(t, y)pT (D)vT (t, y)eiψT (t,y) where ‖A(t)‖L∞y ≤ F(T ), |p(N)
T (η)| . λ−N , vT = vT χ̃T , and

‖vT (t)‖L2
y
≤ F(M(t))Z(t), ‖∂yvT (t)‖L2

y
≤ λ

3
4F(M(t))Z(t).

ii) A(t, y)pT (D)vT (t, y)eiψT (t,y) as before except vT = vT χ̃T instead satisfies

‖vT (t)‖L2
y
� 1, ‖|D|

1
2vT (t)‖L2

t (I;L
2
y) � λ

3
8 .

iii) [Sλ, Vλ]vT e
iψT with vT = vT χ̃T satisfying

‖vT (t)‖L2
y
. λ, ‖∂yvT (t)‖L2

y
. λ1+ 3

4 .
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iv) [Sλ,
√
aλ]vT e

iψT with vT = vT χ̃T satisfying

‖vT (t)‖L2
y
. λ

1
2 , ‖∂yvT (t)‖L2

y
. λ

1
2

+ 3
4 .

Proof. Step 1. First we compute and arrange the error terms. By a direct computation using
(10.1) and (13.26),

(Dt +H(t, y,D))SλuT = (H(t, y,D)Sλ − SλH(t, y, ∂yψT (t, y))

− SλHξ(t, x
t, ξt)(Dy − ∂yψT (t, y)))uT .

To organize the right hand side, first we exchange the coefficient Hξ(t, x
t, ξt) for

Hξ(t, y, ξ
t)

with the goal of separating the spatial variable y of H from the Taylor expansion in ξ.
Writing

vT,1 := Hξ(t, y, ξ
t)−Hξ(t, x

t, ξt),

we have

(Dt +H(t, y,D))SλuT = (H(t, y,D)Sλ − SλH(t, y, ∂yψT (t, y))

− SλHξ(t, y, ξ
t)(Dy − ∂yψT (t, y)))uT − iλ

3
4SλvT,1λ

3
8χ′T e

iψT .

The right hand side may be viewed as a symbol expansion of H(t, y, η) around ∂yψT (t, y).
However, this center is y-dependent. To remedy this, we can shift this center to ξt by defining
the error

VT,2uT := (H(t, y, ξt) +Hξ(t, y, ξ
t)(∂yψT (t, y)− ξt)−H(t, y, ∂yψT (t, y)))uT

and writing

(Dt +H(t, y,D))SλuT = (H(t, y,D)Sλ − SλH(t, y, ξt)− SλHξ(t, y, ξ
t)(Dy − ξt))uT

− iλ
3
4SλvT,1λ

3
8χ′T e

iψT + SλVT,2uT .

Observe that on the right hand side, we now have a symbol expansion of H(t, y, η) in η
to second order, modulo commutators with Sλ, and in particular, the transport term Vλξ of
H vanishes. In turn, this allows us to separate variables in H. More precisely, writing the
dispersive term with the notation √

aλ|η| =
√
aλp(η),

we may write, using the Lagrange remainder and observing that p′′(η) = |η|− 3
2 ,

(H(t, y,D)Sλ − SλH(t, y, ξt)− SλHξ(t, y, ξ
t)(Dy − ξt))uT

=
√
aλ(y)(p(D)− p(ξt)− p′(ξt)(Dy − ξt))SλuT
− [Sλ, H(t, y, ξt) +Hξ(t, y, ξ

t)(Dy − ξt)]uT
=
√
aλ(y)Sλ|qT (D)|−

3
2 (D − ξt)2uT

− [Sλ, H(t, y, ξt) +Hξ(t, y, ξ
t)(Dy − ξt)]uT .

By a routine computation,

(D − ξt)2uT = − λ
3
2λ

3
8χ′′T e

iψT − 2iλ
3
4 (∂yψT − ξt)λ

3
8χ′T e

iψT + (∂yψT − ξt)2λ
3
8χT e

iψT

− i∂2
yψTλ

3
8χT e

iψT .
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Since VT,2 also takes the form of a Taylor expansion, an analogous analysis applies. How-
ever, it is convenient to instead use the integral form of the remainder:

VT,2 =
√
aλ(y)(p(ξt) + p′(ξt)(∂yψT (t, y)− ξt)− p(∂yψT (t, y)))

= −
√
aλ(y)

∫ ∂yψT (t,y)

ξt
|η|−

3
2 (∂yψT (t, y)− η) dη

=:
√
aλ(y)vT,2.

Lastly, write pT (η) = λ
3
2 |qT (η)|− 3

2 , observing that on the support the symbol of Sλ, we

have |p(N)
T (η)| . λ−N . We conclude

(Dt +H(t, y,D))SλuT =
√
aλ(y)SλpT (D)(−λ

3
8χ′′T e

iψT − 2iλ−
3
4 (∂yψT − ξt)λ

3
8χ′T e

iψT(14.1)

+ λ−
3
2 (∂yψT − ξt)2λ

3
8χT e

iψT − iλ−
3
2∂2

yψTλ
3
8χT e

iψT )

− iλ
3
4SλvT,1λ

3
8χ′T e

iψT +
√
aλ(y)SλvT,2uT

− [Sλ, H(t, y, ξt) +Hξ(t, y, ξ
t)(Dy − ξt)]uT

+ [Sλ,
√
aλ(y)]vT,2uT .

Step 2. Next, we check that the non-commutator terms on the right hand side of (14.1)
may be put into the desired form with estimates.

We show the first three terms on the right hand side of (14.1) (from the first and second

rows) may be placed in case (i). We bound
√
aλ(y) using Proposition D.8. Using Corollary

13.12, we have

‖(∂yψT − ξt)χ̃T‖L∞y � λ
3
4 ,

and we easily have

‖λ
3
8 (χT , χ

′
T , χ

′′
T )‖L2

y
. 1.

It is easy to check that the coefficients satisfy the L2 estimates desired of vT by using the
widened cutoff. For instance, we have

‖(∂yψT − ξt)λ
3
8χ′T‖L2

y
. ‖(∂yψT − ξt)χ̃T‖L∞y ‖λ

3
8χ′T‖L2

y
� λ

3
4 .

To estimate the first derivatives, use also Proposition 13.11,

‖(∂2
yψT )χT‖L2

y
� λ9/8,

and likewise
‖∂yλ

3
8 (χT , χ

′
T , χ

′′
T )‖L2

y
. λ

3
4 .

Thus we also obtain the L2 estimates desired of ∂yvT .
Consider the fourth term on the right hand side of (14.1) (from the second row), with

∂2
yψT . The two estimates of Proposition 13.11 yield both estimates desired of vT for case

(ii).
Next, we place the fifth term of (14.1), with

vT,1 = Hξ(t, y, ξ
t)−Hξ(t, x

t, ξt),

in case (i). Using the fundamental theorem of calculus,

Hξ(t, y, ξ
t)−Hξ(t, x

t, ξt) =

∫ y

xt
Hxξ(t, z, ξ

t) dz.
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Restricting to the support of χT and thus |y − xt| . λ−
3
4 , and using the uniform bound on

Hxξ from Lemma 13.1, we have

‖(Hξ(t, y, ξ
t)−Hξ(t, x

t, ξt))χ′T‖L∞y ≤ λ−
3
4F(M(t))Z(t)

and thus, using a widened cutoff as before, the L2 estimate desired of vT . The first derivative
is easier, using directly Lemma 13.1.

We place the the sixth term of (14.1), with

vT,2 =

∫ ∂yψT (t,y)

ξt
|η|−

3
2 (∂yψT (t, y)− η) dη,

in case (i). Since

ξt(z, ξ) = (∂yψT )(t, xt(z, ξ)),

by Lemma 11.1, we may restrict to η ≈ λ. Also restricting to the support of χT and thus
|y − xt| . λ−

3
4 , we have using Corollary 13.12 twice,

‖vT,2χT‖L∞y � λ−
3
2λ

3
4λ

3
4 = 1

and thus the desired L2
y estimate using a widened cutoff. It remains to estimate the first

derivative. By a direct compuation,

∂yvT,2 =

∫ ∂yψT (t,y)

ξt
|η|−

3
2∂2

yψT (t, y) dη.

Then (restricting as usual to |y − xt| . λ−
3
4 ) using Proposition 13.11 to estimate ∂2

yψT in

L2
y, and Corollary 13.12 to estimate the width of the limit of integration,

‖(∂yvT,2)λ
3
8χT‖L2 � λ−

3
2λ9/8λ

3
4λ

3
8 = λ

3
4

as desired.
Step 3. It remains to consider the commutator terms on the right hand side of (14.1).

There are a total of five, as the Hamiltonian contains two terms.
First, we have

[Sλ, Vλξ
t]uT = [Sλ, Vλ]ξ

tλ
3
8χT e

iψT .

Then vT = ξtλ
3
8χT satisfies, by Lemma 11.1,

‖vT‖L2 . λ, ‖∂yvT‖L2 . λλ
3
4 .

Second, we have

[Sλ,
√
aλ|ξt|

1
2 ]uT = [Sλ,

√
aλ]|ξt|

1
2λ

3
8χT e

iψT

so that vT = |ξt| 12λ 3
8χT satisfies

‖vT‖L2 . λ
1
2 , ‖∂yvT‖L2 . λ

1
2λ

3
4 .

Third,

[Sλ, Vλ(Dy − ξt)]uT = [Sλ, Vλ](Dy − ξt)(λ
3
8χT e

iψT )

= [Sλ, Vλ](−iλ
3
4λ

3
8χ′T e

iψT + λ
3
8χT (∂yψT − ξt)eiψT ).
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An analysis similar to that in Step 2 shows that these are better than needed for case (iii).
The fourth term,

[Sλ,
√
aλ|ξt|−

3
2 ξt(Dy − ξt)]uT = [Sλ,

√
aλ]|ξt|−

3
2 ξt(− iλ

3
4λ

3
8χ′T e

iψT

+ λ
3
8χT (∂yψT − ξt)eiψT )

is similarly better than needed.
Lastly, the fifth term with vT,2 is similar to the analysis of the corresponding term in Step

2, and again is better than needed.
�

14.2. Orthogonality. In this subsection we observe that a collection of wave packets is
orthogonal in an appropriate sense. First, we establish the orthogonality of functions in a
form as described in the following proposition:

Proposition 14.2. Let {UT} be functions of the form

UT (t, y) = A(t, y)pT (D)vT (t, y)eiyξ
t(x,ξ)

where T = (x, ξ) ∈ T , ‖A(t)‖L∞y ≤ F(T ), |p(N)
T (η)| . λ−N , and vT = vT χ̃T . Then

‖
∑
T∈T

UT (t)‖2
L2
y
. λ−

3
4 (log λ)F(T )

∑
T∈T

‖vT‖2

H
1
2
y

.

Proof. First note that A is independent of T and thus may be factored out and estimated
immediately. As a result, we may assume A ≡ 1 below.

Step 1. First we reduce the sum over T = (x, ξ) ∈ T to fixed x. Consider ξ ∈ {λ 3
4Z :

|ξ| ∈ [λ/2, 2λ]} and k ∈ λ− 3
4Z. Consider two packets (x1, ξ), (x2, ξ) ∈ T intersecting (t, k).

By Proposition 13.3, we have

λ−
3
4 ≥ |xt(x1, ξ)− xt(x2, ξ)| = |∂xxt(z, ξ)(x1 − x2)| ≈ |x1 − x2|.

Since xi ∈ λ−
3
4Z, we conclude that among packets with frequency ξ, there is at most an

absolute number whose supports intersect (t, k). For simplicity, we assume there is at most
one such packet. Then we may index the packets T by (k, ξ).

Write ∑
T∈T

UT (t) =:
∑
k

∑
ξ

UT (t) =:
∑
k

Uk(t).

Note that the Uk(t) have essentially finite overlap. Thus, using polynomial weights and
Cauchy-Schwarz,

‖
∑
T

UT (t)‖2
L2
y
.
∑
k

‖Uk(t)‖2
L2
y

so that it suffices to show the orthogonality with fixed k. In other words, we may assume T
consists of packets intersecting (t, k), each with distinct ξ.
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Step 2. We abuse notation by equating ξ = (x, ξ) = T as indices, and denote ξt = ξt(x, ξ).
By Plancherel’s and Cauchy-Schwarz,

‖
∑
ξ

UT (t)‖2
L2
y

= ‖
∑
ξ

ÛT (t)‖2
L2
η

=

∫
|
∑
ξ

ÛT (t)〈η − ξt〉
1
2 〈η − ξt〉−

1
2 |2 dη

.
∫ ∑

ξ

|ÛT (t)|2〈η − ξt〉
∑
ξ

〈η − ξt〉−1 dη

.

(∑
ξ

∫
|ÛT (t)|2〈η − ξt〉 dη

)(
sup
η

∑
ξ

〈η − ξt〉−1

)
.

It remains to estimate the two terms.
Step 3. First consider the supremum over η. Fix any η ∈ [λ/2, 2λ] and write

(k, η) = (xt(z, ζ), ξt(z, ζ)).

Then since

|xt(z, ζ)− xt(x, ξ)| = |k − xt(x, ξ)| ≤ λ−
3
4 ,

we may apply Proposition 13.5,

|ζ − ξ| ≤ 2|ξt(z, ζ)− ξt(x, ξ)|+ λ
3
4 = 2|η − ξt|+ λ

3
4 .

We conclude, using that there are at most λ
1
4 frequencies ξ in {|ξ| ∈ [λ/2, 2λ]},∑

ξ

〈η − ξt〉−1 .
∑
ξ

〈ζ − ξ〉−1 . λ−
3
4 log λ.

Then take the supremum over η to obtain

sup
η

∑
ξ

〈η − ξt〉−1 . λ−
3
4 log λ.

Step 4. For the sum over ξ, we have, using a change of variables and Plancherel’s,∫
|ÛT (t)|2〈η − ξt〉 dη =

∫
|pT (η + ξt)v̂T (t)|2〈η〉 dη

= ‖〈D〉
1
2pT (D + ξt)vT (t)‖2

L2
y

. ‖〈D〉
1
2vT (t)‖2

L2
y
.

Combining the above estimates, we conclude

‖
∑
ξ

UT (t)‖2
L2
y
≤ λ−

3
4 (log λ)F(T )

∑
ξ

‖vT‖2

H
1
2
y

as desired. �

We then have the following orthogonality of wave packets:

Corollary 14.3. Let {UT} be functions of the form

UT (t, y) = A(t, y)pT (D)vT (t, y)eiψT (t,y)
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where ‖A(t)‖L∞y ≤ F(T ), |p(N)
T (η)| . λ−N , and vT = vT χ̃T . Then

‖
∑
T∈T

UT (t)‖2
L2
y
. (log λ)F(T )

∑
T∈T

(
‖vT (t)‖2

L2
y

+ λ−
3
4‖|D|

1
2vT (t)‖2

L2
y

)
,

and

‖
∑
T∈T

UT (t)‖2
L2
y
. (log λ)F(T )

∑
T∈T

(
‖vT (t)‖2

L2
y

+ λ−
3
4‖∂yvT (t)‖L2

y
‖vT (t)‖L2

y

)
.

Proof. Apply Proposition 14.2 with, in the place of vT ,

vT e
i(ψT−yξt).

Then write

‖vT ei(ψT−yξ
t)‖2

H
1
2
y

=

∫
(〈D〉vT ei(ψT−yξ

t))(v̄T e
−i(ψT−yξt)) dy

=

∫
([〈D〉, χ̃T ei(ψT−yξ

t)]vT )(v̄T e
−i(ψT−yξt)) dy +

∫
(〈D〉vT )v̄T dy.

The first integral may be estimated using Cauchy-Schwarz and Corollary 13.12:

‖[〈D〉, χ̃T ei(ψT−yξ
t)]vT‖L2

y
‖vT‖L2

y
. ‖χ̃T (∂yψT − ξt)ei(ψT−yξ

t) + λ
3
4 χ̃′T e

i(ψT−yξt)‖L∞‖vT‖2
L2
y

. λ
3
4‖vT‖2

L2
y
.

The second integral may be estimated by

‖〈D〉
1
2vT‖2

L2
y
. ‖vT‖2

L2
y

+ ‖|D|
1
2vT‖2

L2
y
.

Combining the above estimates, we conclude

‖
∑
ξ

UT (t)‖2
L2
y
≤ (log λ)F(T )

∑
ξ

(
‖vT (t)‖2

L2
y

+ λ−
3
4‖|D|

1
2vT‖2

L2
y

)
as desired.

For the second estimate of the proposition, we instead estimate the second integral above
via

〈〈D〉vT , vT 〉 . ‖vT‖H1
y
‖vT‖L2 . ‖vT‖2

L2 + ‖∂yvT‖L2‖vT‖L2 .

�

Combining Proposition 14.1 with Corollary 14.3, we obtain

Corollary 14.4. Let {cT}T∈T ∈ `2(T ) and

u =
∑
T∈T

cTuT

where uT are wave packets. Then

‖(Dt +H(t, y,D))Sλu‖2
L2(I;L2

x) ≤ λ0+F(T )
∑
T∈T

|cT |2

and

‖(Dt +H(t, y,D))Sλu‖2
L1(I;L2

x) �
∑
T∈T

|cT |2.
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Proof. The second estimate is immediate from the first, having chosen T ≤ λ0−. The first is
obtained by using the estimates on the four types of terms from Proposition 14.1 with the
matching orthogonality result of Corollary 14.3. The last two types of terms also require
straightforward commutator estimates, to absorb a factor of λ into a derivative on V and
λ

1
2 into half of a derivative on a. �

14.3. Matching the initial data. To conclude the parametrix construction, it remains to
verify that we may use a linear combination of wave packets to match general initial data.
In order to achieve this, it is convenient to further specify our choice of cutoff χ to satisfy∑

m∈Z

χ(y −m)2 = 1

so that

vT (y) = λ
3
8χT (y)eiyξ

forms a tight frame, in that for f ∈ L2(R) with frequency support {|ξ| ∈ [λ/2, 2λ]},

f =
∑
T∈T

cTvT , cT =

∫
f(y)vT (y) dy.

However, as we shall see below, it is convenient to instead define

vT (y) = λ
3
8χT (y)ei(ψT (s0,x)+ξ(y−x)) = λ

3
8χT (y)ei(ψT (s0,x)+(∂yψT )(s0,x)(y−x))

which still forms a tight frame.

Proposition 14.5. Given u0 ∈ L2
y with frequency support {|ξ| ∈ [λ/2, 2λ]}, there exists

{aT}T∈T ∈ `2(T ) such that

u0 =
∑
T∈T

aTuT (s0)

and ∑
T∈T

|aT |2 . ‖u0‖2
L2
y
.

Proof. Write using the above frame,

u0 =
∑
T∈T

cTvT .

Using these coefficients, construct the linear combination of wave packets

ũ =
∑
T∈T

cTuT .

We consider the difference u0 − ũ(s0), first observing

ei(ψT (s0,x)+ξ(y−x)) − eiψT (s0,y) = ei(ψT (s0,x)+ξ(y−x))(1− ei(ψT (s0,y)−ψT (s0,x)−ξ(y−x))).

Then we apply Proposition 14.2 with, in the place of vT ,

ei(ψT (s0,x)−xξ)χT (1− ei(ψT (s0,y)−ψT (s0,x)−(∂yψT )(s0,x)(y−x))).

This is small in L2
y by Proposition 13.11 with a Taylor expansion:

‖χT (1− ei(ψT (s0,y)−ψT (s0,x)−(∂yψT )(s0,x)(y−x)))‖L2
y
� λ−

3
8
−.

86



Similarly, its first derivative is small in L2
y by using the L∞y estimate of Corollary 13.12. We

conclude that

‖u0 − ũ(s0)‖2
L2
y
�
∑
T∈T

|cT |2 = ‖u0‖2
L2 .

We then obtain the claim by iterating.
�

In the next subsection, we will use a Duhamel argument to match the source term. To do
so, we will need to be able to match initial data at arbitrary time s ∈ I:

Corollary 14.6. Given u0 ∈ L2
y with frequency support {|ξ| ∈ [λ/2, 2λ]} and s ∈ I, there

exists {aT}T∈T ∈ `2(T ) such that

u0 = Sλ
∑
T∈T

aTuT (s) =: Sλũ(s)

and ∑
T∈T

|aT |2 . ‖u0‖2
L2
y
.

Proof. Consider the exact solution u to

(∂t +H)u = 0, u(s) = u0.

Using Proposition 14.5, we may construct

ũ =
∑
T∈T

aTuT

satisfying

ũ(s0) = u(s0).

Using energy estimates with Corollary 14.4, we have

‖Sλ(ũ− u)‖L∞t (I;L2
y) . ‖(∂t +H(t, y,D))Sλ(ũ− u)‖L1

t (I;L
2
y)

+ ‖[∂x, Vλ] + [|D|
1
2 ,
√
aλ]Sλ(ũ− u)‖L1

t (I;L
2
y)

. T
1
2 (‖(∂t +H(t, y,D))Sλ(ũ− u)‖L2

t (I;L
2
y)

+ ‖[∂x, Vλ] + [|D|
1
2 ,
√
aλ]Sλ(ũ− u)‖L2

t (I;L
2
y))

. T
1
2 (λ0+F(T )‖u0‖L2

y
+ ‖[H,Sλ]u‖L2

t (I;L
2
y)

+ (‖V ‖L2
t (I;C

1) + ‖a‖
L2
t (I;C

1
2 )

)‖Sλ(ũ− u)‖L∞t (I;L2
y))

≤ T
1
2λ0+F(T )(‖u0‖L2

y
+ ‖u‖L∞t (I;L2

y) + ‖Sλ(ũ− u)‖L∞t (I;L2
y))

≤ T
1
2λ0+F(T )(‖u0‖L2

y
+ ‖Sλ(ũ− u)‖L∞t (I;L2

y)).

Choosing T
1
2 ≤ λ0− so that T

1
2λ0+F(T )� 1, we conclude

‖Sλũ(s)− u0‖L2
y
� ‖u0‖L2

y
.

Iterating, we obtain the claim.
�
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14.4. Matching the source. We use a Duhamel formula with an iteration argument to
match the source term in Proposition 10.2:

Proposition 14.7. Consider the solution uλ to

(∂t +H(t, y,D))uλ = f, uλ(s0) = u0

where uλ(t, ·) has frequency support {|ξ| ∈ [λ/2, 2λ]}. We may write

uλ = ũ+

∫ t

s0

ũs(t, y) ds

where ũ is the construction in Proposition 14.5, and

ũs =
∑
T∈T

aT,suT

with ∑
T∈T

|aT,s|2 . ‖f(s)‖2
L2
y

+ ‖u0‖2
L2
y
.

Proof. Let f ∈ L1
tL

2
y. We construct the function

Tf(t, y) =

∫ t

s0

ũs(t, y) ds

where ũs is the function constructed in Corollary 14.6 with f(s) in the place of u0, thus
satisfying

Sλũs(s) = f(s)

and ∑
T∈T

|aT,s|2 . ‖f(s)‖2
L2
y
.

Then we see

(∂t +H(t, y,D))SλTf = f(t, y) +

∫ t

s0

(∂t +H(t, y,D))Sλũs(t, y) ds

so that

‖(∂t +H(t, y,D))SλTf − f‖L1
t (I;L

2
y) � ‖f‖L1

t (I;L
2
y).

Thus, iterating, we see we may write the solution uλ to

(∂t +H(t, y,D))uλ = f, uλ(s0) = 0

in the form

uλ = Tf =

∫ t

s0

ũs(t, y) ds.

Using Proposition 14.5, we can repeat the above argument to write the solution uλ to

(∂t +H(t, y,D))uλ = f, uλ(s0) = u0

in the form

uλ = ũ+ Tf.

�

88



15. Strichartz Estimates

In this section we establish Strichartz estimates on sums of wave packets, as defined in
Section 14.

15.1. Packet overlap. We record some estimates on the overlap of the packets.
First, we have a trivial overlap bound:

Proposition 15.1. Let t ∈ I and y ∈ R. There are . λ
1
4 packets T = (x, ξ) ∈ T intersecting

(t, y).

Proof. Consider two packets (x1, ξ), (x2, ξ) ∈ T intersecting (t, y). By Proposition 13.3, we
have

λ−
3
4 ≥ |xt(x1, ξ)− xt(x2, ξ)| = |∂xxt(z, ξ)(x1 − x2)| ≈ |x1 − x2|.

Since xi ∈ λ−
3
4Z, there are at most an absolute number of such packets. Since there are

≈ λ
1
4 frequencies ξ, we obtain the claim. �

Second, we have a bound on the number of packets which intersect at two times:

Corollary 15.2. Let t, s ∈ I and y, z ∈ R. There are . |t − s|−1 packets T = (x, ξ) ∈ T
intersecting both (t, y) and (s, z).

Proof. Consider two packets (x1, ξ1), (x2, ξ2) ∈ T intersecting both (t, y) and (s, z), so that
we have

|xs(x1, ξ1)− xs(x2, ξ2)| ≤ λ−
3
4 , |xt(x1, ξ1)− xt(x2, ξ2)| ≤ λ−

3
4 .

Thus we may apply Proposition 13.6,

|ξ1 − ξ2| . λ
3
4 |t− s|−1.

Since ξi ∈ {λ
3
4Z : |ξ| ∈ [λ/2, 2λ]}, we obtain the claim. �

15.2. Counting argument. We have the following Strichartz estimate on sums of wave
packets. Note that we do not consider phase cancellation, so the estimate is established by
analyzing packet overlap only.

Proposition 15.3. For each T = (x, ξ) ∈ T , let the uT = uT (t, y) denote the wave packet
centered at T . Then

‖
∑
T∈T

cTuT‖2
L2(I;L∞) ≤ λ

3
4F(T )(log λ)4

∑
T∈T

|cT |2.

Proof. Normalizing, we may assume
∑
|cT |2 = 1.

Step 1. Dyadic pidgeonholing. By Proposition 13.7, two packets overlap for at least time
λ−

1
4 (this should depend on F(T ) but to simplify our exposition we omit it). As a result, it

suffices to estimate the following Riemann sum in t, over λ
1
4 times tj ∈ I separated by λ−

1
4 ,

and yj ∈ R arbitrary: ∑
j∈J

λ−
1
4 (
∑
T∈T

|cT |χT (tj, yj))
2 . (log λ)4.

By the trivial overlap bound Proposition 15.1,∑
T∈T

|χT (tj, yj)| . λ
1
4 ,
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so we may restrict the sum over T to T such that |cT | ≥ λ−
1
4 . Since |cT | ≤ 1 trivially, we

may choose dyadic values c ∈ [λ−
1
4 , 1] and partition the sum over T by grouping the T such

that |cT | ≈ c. Accepting the logarithmic loss, it suffices to consider the one member of the
partition (denoting the subcollection by Tc):∑

j∈J

λ−
1
4 (
∑
T∈Tc

|cT |χT (tj, yj))
2 . (log λ)2.

On the other hand, again by Proposition 15.1, we may choose dyadic values L ∈ [1, λ
1
4 ]

and partition the sum over J by grouping the j such that ≈ L packets in Tc intersect (tj, yj).
Accepting the logarithmic loss, it suffices to show (denoting the subcollection by JL):∑

j∈JL

λ−
1
4 (
∑
T∈Tc

|cT |χT (tj, yj))
2 . log λ.

If we denote the number of points in JL by M ,∑
j∈JL

λ−
1
4 (
∑
T∈Tc

|cT |χT (tj, yj))
2 .Mλ−

1
4 (cL)2.

It thus suffices to show

M(cL)2 . λ
1
4 log λ.

Further, if we denote the number of packets in Tc by N ,

Nc2 ≈
∑
T∈Tc

c2
T ≤

∑
T∈T

c2
T = 1

so that N . c−2. It thus suffices to show

(15.1) ML2 . λ
1
4N log λ.

Step 2. Double counting. For each packet T ∈ Tc, denote by nT the number of points
contained in the support of uT . Note that

(15.2) ML ≈
∑
T∈Tc

nT =
∑
nT=1

nT +
∑
nT≥2

nT ≤ N +
∑
nT≥2

nT .

If ∑
nT≥2

nT ≤ N,

then we conclude ML . N . Using also the trivial overlap bound Proposition 15.1 on one
copy of L, we obtain an estimate even better than (15.1).

Thus we may assume ∑
nT≥2

nT > N.

Then (15.2) with Cauchy-Schwarz gives

(15.3) M2L2 . (
∑
nT≥2

nT )2 . N
∑
nT≥2

n2
T =: NK.

We estimate K by a double counting. We claim that K counts the triples (i, j, T ) ∈
JL× JL×Tc, i 6= j, such that the packet uT intersects (ti, yi) and (tj, yj). Indeed, if nT = 1,
T doesn’t contribute to K, and otherwise, T contributes ≈ n2

T to K.
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On the other hand, by Corollary 15.2, each pair of points (ti, yi) and (tj, yj) is covered by
. |ti − tj|−1 packets. Thus

K .
∑

1≤i 6=j≤M

|ti − tj|−1.

The sum is maximzed when the tj are as close as possible, as consecutive multiples of λ−
1
4 :

K . λ
1
4

∑
1≤i 6=j≤M

|i− j|−1 . λ
1
4M logM .Mλ

1
4 log λ.

Substituting in (15.3), we obtain (15.1).
�

Combined with Proposition 14.7, we obtain Proposition 10.2.
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Chapter 4

Local Well-Posedness

In this chapter, we outline the proof of the well-posedness Theorems 2.6 and 2.7 as a conse-
quence of energy, Strichartz, and contraction estimates. Much of the material discussed here
is presented in detail in [ABZ14b, Chapter 3]. However, here we discuss additional details
regarding continuity with respect to time and continuous dependence on initial data. We
also refer to [Ngu16], which discusses continuous dependence on initial data at the energy
threshold, s > d

2
+ 1.

In this chapter, we denote for brevity

U = (η, ψ, V,B), Hm = Hm+ 1
2 ×Hm+ 1

2 ×Hm ×Hm.

16. Preliminary Estimates

16.1. Continuity of the Dirichlet to Neumann map. In establishing continuous de-
pendence on initial data, as well as passing to the limit in the equations, we will require
continuity of the Dirichlet to Neumann map with respect to its nonlinear dependence on the
surface η. We record two of these results in this section. Note that these are general results;
we do not need to assume that (η, ψ) solve (2.1).

Proposition 16.1. [ABZ14b, Proposition 3.8] We have

‖G(η1)f −G(η2)f‖
Hs− 3

2
≤ F(‖(η1, η2)‖

Hs+1
2
)(‖f‖Hs‖η1 − η2‖W r− 1

2 ,∞

+ ‖f‖Hs∩W r,∞‖η1 − η2‖Hs− 1
2
).

Proposition 16.2. [ABZ14b, Proposition 3.13] We have

‖G(η1)f −G(η2)f‖
H−

1
2
≤ F(‖(η1, η2)‖W 1,∞)‖f‖

H
1
2
‖η1 − η2‖W 1,∞ .

As a consequence, we have that (V,B) depend continuously on (η, ψ) in the following
sense:

Corollary 16.3. [ABZ14b, Corollary 3.16] Let (ηn, ψn), (η, ψ) ∈ Hs+ 1
2 uniformly; here it

suffices to assume only s > d
2

+ 1
2
. Assume

ηn → η ∈ W 1,∞,

ψn → ψ ∈ H
1
2 .
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Then

G(ηn)ψn → G(η)ψ ∈ H−
1
2 ,

(Vn, Bn)→ (V,B) ∈ H−
1
2 .

16.2. High frequency energy estimates. We establish the following energy estimate on
the high frequency component of a solution, which will complement contraction estimates
used to handle the low frequencies:

Proposition 16.4. Consider I = [0, T ] and a solution (η, ψ) ∈ L∞(I;Hs+ 1
2 ) (not nec-

essarily smooth) to (2.1), satisfying the properties discussed in Section 4. Then denoting
U = (η, ψ, V,B),

‖S>λU(t)‖Hs ≤ F(T )

(
λ0− + ‖S>λU(0)‖Hs +

∫ t

0

Zr(τ)‖S̃>λU(τ)‖Hs dτ
)
,

and in particular, by Gronwall’s inequality,

‖S>λU‖L∞(I;Hs) ≤ F(T )(λ0− + ‖S>λU(0)‖Hs +
√
T‖S̃λU‖L∞(I;Hs)).

Proof. This energy estimate is essentially [Ngu16, (3.81)]; we may follow the argument used
there. The primary task is to commute the frequency projection S>λ with the paralinear
formulation (1.3), from which one obtains the desired frequency projected energy estimates
along the lines of Proposition 18.1. In turn, commuting S>λ with (1.3) requires a frequency
projected paralinearization of the Dirichlet to Neumann map. This is analogous to the
content of Appendix B except simpler, since the localization occurs only in frequency and
not space.

We remark on the following two differences compared to the result and proof in [Ngu16].
First, we use the cruder pair of frequency projections S>λ, S̃>λ in place of S2

>λ, S>λ, which
suffices to handle the technical difficulties and simplifies the presentation.

Second, we work with lower Sobolev index s. As a result, throughout the argument in
[Ngu16], we refrain from using Sobolev embedding to estimate Hölder norms. Instead, we
allow our estimates to depend not only on Ms(T ), but also on the Hölder norms,

F(T ) = F(Ms(T ) + Zr(T )).

�

17. Uniqueness and Continuity of the Solution Map

In this section, we record a contraction estimate in a lower regularity Sobolev space, which
will contribute to our uniqueness and continuity results.

17.1. Contraction and uniqueness. Uniqueness is an immediate consequence of the fol-
lowing contraction estimate on the difference of two solutions:

Proposition 17.1. Consider I = [0, T ] and two solutions (η1, ψ1), (η2, ψ2) ∈ C(I;Hs+ 1
2 )

(not necessarily smooth) to (2.1), satisfying the properties discussed in Section 4. Then
denoting Ui = (ηi, ψi, Vi, Bi), we have

‖U1 − U2‖L∞(I;Hs−1) ≤ F(T )‖U1(0)− U2(0)‖Hs−1 .

Here F(T ), the notation in Section 4, measures both (η1, ψ1, V1, B1) and (η2, ψ2, V2, B2).
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Proof. The proof is provided in [ABZ14b, Section 3.2]. The approach is standard, by writing
an equation for the difference of two solutions. In particular, we make use of Proposition
16.2.

The main new difficulty involves measuring some product error terms in low or negative
Sobolev spaces. This is resolved by observing that these error terms may be expressed in
differentiated form by using the structure of the equations. �

17.2. Continuous dependence on initial data. Combining the previous contraction es-
timate with the high frequency energy estimates, we obtain continuous dependence of the
solution map on the initial data:

Proposition 17.2. Consider I = [0, T ] and solutions (ηn, ψn), (η, ψ) ∈ C(I;Hs+ 1
2 ) (not

necessarily smooth) to (2.1), uniformly satisfying the properties discussed in Section 4, as
well as Zr(T ) <∞. If

(ηn, ψn, Vn, Bn)(0)→ (η, ψ, V,B)(0) ∈ Hs,

then

(ηn, ψn, Vn, Bn)→ (η, ψ, V,B) ∈ C(I;Hs).

Proof. Denote

Un = (ηn, ψn, Vn, Bn), U = (η, ψ, V,B).

We write

‖Un − U‖L∞(I;Hs) . ‖S≤λ(Un − U)‖L∞(I;Hs) + ‖S>λUn‖L∞(I;Hs) + ‖S>λU‖C(I;Hs).

For the first term on the right hand side, we write, using the contraction estimate of
Proposition 17.1,

‖S≤λ(Un − U)‖L∞(I;Hs) . λ‖S≤λ(Un − U)‖L∞(I;Hs−1) ≤ λF(T )‖Un(0)− U(0)‖Hs−1 .

For the second term, using the high frequency energy estimate of Proposition 16.4, along
with the contraction of Proposition 17.1 again,

‖S>λUn‖L∞(I;Hs) ≤ F(T )(λ0− + ‖S>λUn(0)‖Hs + ‖S̃λUn‖L∞(I;Hs))

≤ F(T )(λ0− + ‖S>λU(0)‖Hs + ‖S̃λU‖L∞(I;Hs)

+ ‖S>λ(Un(0)− U(0))‖Hs + ‖S̃λ(Un − U)‖L∞(I;Hs))

≤ F(T )(λ0− + ‖S>λU(0)‖Hs + ‖S̃λU‖L∞(I;Hs)

+ ‖Un(0)− U(0)‖Hs + λ‖Un(0)− U(0)‖Hs−1).

Collecting these estimates, we conclude

‖Un − U‖L∞(I;Hs) ≤ F(T )(λ0− + ‖S>λU(0)‖Hs + ‖S̃>λU‖C(I;Hs)

+ ‖Un(0)− U(0)‖Hs + λ‖Un(0)− U(0)‖Hs−1).

Choosing λ large, the top row is arbitrarily small. Then the bottom row is small for all large
n, since Un(0)→ U(0) ∈ Hs. �
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17.3. Continuity with respect to time. Here, we show that a solution with initial data
in Hs is continuous with respect to time t, with values in Hs.

Proposition 17.3. Consider I = [0, T ] and a solution (η, ψ) ∈ L∞(I;Hs+ 1
2 ) (not necessarily

smooth) to (2.1), satisfying the properties discussed in Section 4, and F(T ) < ∞. Also
assume (η, ψ, V,B) ∈ C(I;Hs′) for some s′ ≤ s. Then (η, ψ, V,B) ∈ C(I;Hs).

Proof. Consider a sequence tn → t ∈ [0, T ]. We write

‖U(tn)− U(t)‖Hs . ‖S≤λ(U(tn)− U(t))‖Hs + ‖S>λU(tn)‖Hs + ‖S>λU(t)‖Hs .

For the first term on the right hand side, we write

‖S≤λ(U(tn)− U(t))‖Hs . λs−s
′‖U(tn)− U(t)‖Hs′ .

For the second term, using the high frequency energy estimate of Proposition 16.4,

‖S>λU(tn)‖Hs ≤ F(T )

(
λ0− + ‖S>λU(t)‖Hs +

∫ tn

t

Zr(t)‖S̃>λU(τ)‖Hs dτ
)

≤ F(T )(λ0− + ‖S>λU(t)‖Hs + |tn − t|1/2).

Collecting these estimates, we conclude

‖U(tn)− U(t)‖Hs . λs−s
′‖U(tn)− U(t)‖Hs′ + F(T )(λ0− + ‖S>λU(t)‖Hs + |tn − t|1/2).

Choosing λ large, λ0− and ‖S>λU(t)‖Hs are arbitrarily small. Then the remaining terms are
small for all large n, using tn → t and that U is continuous in time with values in Hs′ . �

18. Existence

18.1. A priori estimates. In this subsection we collect the main a priori estimates, com-
bining energy estimates with the Strichartz estimates discussed in depth in the previous
chapters.

First, we have the following energy estimate for Ms(T ).

Proposition 18.1. [ABZ14b, Theorem D.1] We have for any T0 ∈ (0, T ],

Ms(T0) ≤ F(F(Ms(0)) + T0F(T0)).

Proof. The proof is provided in [ABZ14b, Appendix D], and essentially uses the paralinear
formulation (1.3) to obtain an energy estimate for u. The primary task is to convert the
estimate on u into estimates on (η, ψ, V,B). �

Next, we have the Strichartz estimate for Zr(T ).

Proposition 18.2. Additionally assume

s >
d

2
+ 1− µ, r < s− d

2
+ µ

on the regularity indices s, r. We have for any T0 ∈ (0, T ],

Zr(T0) ≤ F(T0F(T0)).
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Proof. The corresponding result for the case of Strichartz gains

µ =
1

24
, d = 1, and µ =

1

12
, d ≥ 2

was stated and proved in [ABZ14b, Section 3.1]. The proof for our result with higher µ
values is similar, except starting instead with our sharper Strichartz estimates, Theorems
2.3 and 2.4. As with the energy estimate of Proposition 18.1, the primary task is to convert
the Strichartz estimate on u into estimates on (η, ψ, V,B). �

A straightforward consequence of Propositions 18.1 and 18.2 is the following a priori
estimate:

Corollary 18.3. Additionally assume

s >
d

2
+ 1− µ, r < s− d

2
+ µ

on the regularity indices s, r. For any A > 0, there exists B, T > 0 such for any smooth
solution (η, ψ) to (2.1) on time interval [0, T0] ⊆ [0, T ], satisfying the properties discussed in
Section 4, and with initial data of size Ms(0) ≤ A,

Ms(T0) + Zr(T0) ≤ B.

18.2. Limit of smooth solutions. We construct the solution (η, ψ) of Theorems 2.6 and
2.7 as a limit of smooth solutions. Given the previous results of this chapter, it remains to
show the following existence result:

Proposition 18.4. Given initial data (η0, ψ0) ∈ Hs+ 1
2 as in Theorems 2.6 and 2.7, there

exists T > 0 such that the system (2.1) with initial data (η0, ψ0) has a solution (η, ψ) ∈
L∞(I;Hs+ 1

2 ) with (η, ψ, V,B) ∈ C(I;Hs′) for any s′ < s.

Proof. The construction of (η, ψ) is sketched in Section 3.4 of [ABZ14b]. We recall the
approach here, and include some additional details.

Construct a sequence (ηn, ψn) of solutions to (2.1) with smooth initial data (ηn(0), ψn(0))

converging to (η0, ψ0) in Hs+ 1
2 . Write Un = (ηn, ψn, Vn, Bn) and denote the lifespan of (ηn, ψn)

by Tn > 0.
The energy estimate on high frequencies from Proposition 16.4 shows that as long as
F(Tn) < ∞, (ηn, ψn) is smooth, and in particular, we may extend it past [0, Tn]. Thus, by
the a priori estimate of Corollary 18.3, we have a uniform lower bound T > 0 on the lifespan
of our smooth solutions (ηn, ψn), as well as uniform estimates on Mn

s (T ),Znr (T ).
Next we observe that the contraction of Proposition 17.1 implies that Un forms a Cauchy

sequence in L∞(I;Hs−1), and thus

Un → U ∈ L∞(I;Hs−1)

for some U = (η, ψ, V,B). Since Un is bounded in L∞(I;Hs), by interpolation

Un → U ∈ L∞(I;Hs−)

and thus by Sobolev embedding,

ηn → η ∈ L∞(I;W 1,∞),

ψn → ψ ∈ L∞(I;H
1
2 ).
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By Corollary 16.3, we may pass to the limit in the equations, and thus obtain a solution
(η, ψ) such that U ∈ C(I;Hs′) for some s′ < s. Since U ∈ L∞(I;Hs), we may interpolate
this to U ∈ C(I;Hs′) for any s′ < s.

�
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Chapter 5

Appendices

The goal of this appendix is to recall and establish various estimates for the elliptic Dirichlet
problem with rough boundary, and then apply them toward objects from the water waves
equations, including the pressure P , Taylor coefficient a, and Dirichlet to Neumann map
G(η). For the reader’s convenience, we also provide notation and estimates from the parad-
ifferential calculus in Appendix E.

Throughout the appendix, we use the notation discussed in Sections 4 and 10, with the
following modifications. Here, we assume only

s >
d

2
+

1

2
.

Further, for all those estimates involving a local weight w or S, we consider only the case
d = 1.

The results of Appendices A and B are time independent, so there we omit the variable
t. In particular, we denote ∇ = ∇x and ∆ = ∆x. Let I = [−1, 0] denote a vertical space
interval, and define the following spaces for a vertical spatial interval J ⊆ R:

Xσ(J) = C0
z (J ;Hσ) ∩ L2

z(J ;Hσ+ 1
2 )

Y σ(J) = L1
z(J ;Hσ) + L2

z(J ;Hσ− 1
2 )

Uσ(J) = C0
z (J ;Cσ

∗ ) ∩ L2
z(J ;C

σ+ 1
2

∗ ).

Appendix A. Elliptic Estimates for the Dirichlet Problem

In this section we recall and establish various estimates for the elliptic Dirichlet problem
with rough boundary. This problem was studied in [ABZ14a], which discusses Sobolev
estimates, and [ABZ14b], which discuss Hölder estimates. Here, our goal is to establish
sharper Hölder estimates, as well as local Sobolev counterparts.

A.1. Flattening the boundary. Consider the Dirichlet problem with rough boundary.
Denote the strip of constant depth h along the surface by

Ω1 = {(x, y) ∈ Rd+1 : η(x)− h < y < η(x)},
and on Ω1, let θ satisfy

(A.1) ∆x,yθ(x, y) = F, θ|y=η(x) = f.
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We would like estimates on θ and its derivatives. To address the rough boundary η and
corresponding rough domain, we change variables to a problem with flat boundary and
domain, following [Lan05], [ABZ14a]. Denote the flat strip by

Ω̃1 = {(x, z) ∈ Rd+1 : z ∈ (−1, 0)}.
Then define the Lipschitz diffeomorphism ρ : Ω̃1 → Ω1 by

ρ(x, z) = (1 + z)eδz〈D〉η(x)− z(e−(1+z)δ〈D〉η(x)− h)

where δ is chosen small as in [ABZ14a, Lemma 3.6]. Lastly, for u : Ω1 → R, let ũ : Ω̃1 → R
denote

ũ(x, z) = u(x, ρ(x, z)).

Then on the flat domain Ω̃1, θ̃ satisfies

(A.2) (∂2
z + α∆ + β · ∇∂z − γ∂z)θ̃ = F0, θ̃|z=0 = f

where

α =
(∂zρ)2

1 + |∇ρ|2
, β = −2

∂zρ∇ρ
1 + |∇ρ|2

, γ =
∂2
zρ+ α∆ρ+ β · ∇∂zρ

∂zρ
and

F0(x, z) = αF̃ .

The diffeomorphism ρ has essentially the same regularity as η, with additional smoothing
when averaged over z. We recall the precise estimates below:

Proposition A.1. The diffeomorphism ρ satisfies

‖(∂zρ)−1‖C0(I;Cr−1
∗ ) + ‖∇x,zρ‖C0(I;Cr−1

∗ ) . ‖η‖Hs+1
2

(A.3)

‖(∂zρ− h,∇ρ)‖
Xs− 1

2 (I)
+ ‖∂2

zρ‖Xs− 3
2 (I)
. ‖η‖

Hs+1
2

(A.4)

‖∇x,zρ‖Ur− 1
2 (I)

+ ‖∂2
zρ‖Ur− 3

2 (I)
. 1 + ‖η‖

W r+1
2 ,∞

(A.5)

‖∇x,zρ‖L1(I;Hs+1
2 )

+ ‖∂2
zρ‖L1(I;Hs− 1

2 )
≤ ‖η‖

Hs+1
2

(A.6)

‖∇x,zρ‖
L1(I;C

r+1
2

∗ )
+ ‖∂2

zρ‖
L1(I;C

r− 1
2

∗ )
≤ 1 + ‖η‖

W r+1
2 ,∞

.(A.7)

Proof. The first estimate is a consequence of [ABZ14a, Lemmas 3.6, 3.7] combined with
Sobolev embedding. The first terms of the second and third estimates are from [ABZ14a,
Lemma 3.7] and [ABZ14b, Lemma B.1] respectively. The corresponding estimates on ∂2

zρ are
proven similarly from the definition of ρ. Lastly, the proofs of the fourth and fifth estimates
are similar to those of the second and third respectively, by using L1

z in place of L2
z. �

Then the above coefficients α, β, γ, expressed in terms of ρ, satisfy similar estimates with
proofs straightforward from paraproduct estimates:

Proposition A.2. For α, β, γ defined as above,

‖(α− h2, β)‖
Xs− 1

2 (I)
+ ‖γ‖

Xs− 3
2 (I)
≤ F(‖η‖

Hs+1
2
)(A.8)

‖(α, β)‖
Ur−

1
2 (I)

+ ‖γ‖L2(I;Cr−1
∗ ) ≤ F(‖η‖

Hs+1
2
)(1 + ‖η‖

W r+1
2 ,∞

)(A.9)

‖(α, β)‖
L1(I;C

r+1
2

∗ )
+ ‖γ‖

L1(I;C
r− 1

2
∗ )
≤ F(‖η‖

Hs+1
2
)(1 + ‖η‖

W r+1
2 ,∞

).(A.10)

To establish local elliptic estimates, we would like a local counterpart to (A.2), which we
obtain by simply commuting:
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Proposition A.3. Let 0 ≤ σ ≤ s− 1
2

and z0 ∈ [−1, 0], J = [z0, 0]. Consider θ̃ solving (A.2).
Denote wS = wx0,λSξ0,λ,µ or wS = wx0,κSκ with κ ≤ cλ. Then we can write

(A.11) (∂2
z + α∆ + β · ∇∂z − γ∂z)wSθ̃ = wSF0 + F4, (wSθ̃)|z=0 = wSf

where

‖F4‖Y σ(J) ≤ F(‖η‖
Hs+1

2
)(1 + ‖η‖

W r+1
2 ,∞

)‖∇x,z θ̃‖Xσ− 1
4 (J)

.

Proof. First observe that by Sobolev embedding,

‖∇x,z θ̃‖
L∞(J ;C

σ−s+1
2+

∗ )
. ‖∇x,z θ̃‖L∞(J ;Hσ− 1

4 )
,

‖∇x,z θ̃‖L2(J ;Cσ−s+1+
∗ ) . ‖∇x,z θ̃‖L2(J ;Hσ+1

4 )

so we may freely use the Hölder norms on the right hand side of our error estimate.
We have

F4 = [α∆ + β · ∇∂z − γ∂z, wS]θ̃.

We discuss the term α∆ of the commutator below; the term β · ∇∂z is similar. First, we
exchange α with Tα as follows. Estimate

‖T∆wSθ̃α‖Hσ− 1
2
. ‖∆wSθ̃‖Cσ−s∗

‖α‖
Hs− 1

2
. ‖∇θ̃‖Cσ−s+1

∗
‖α‖

Hs− 1
2

followed by integrating in z and using the estimates on α in Corollary A.2. The balanced-
frequency term is similar. We likewise have

‖wST∆θ̃α‖Hσ− 1
2
. ‖∆θ̃‖Cσ−s∗

‖α‖
Hs− 1

2
. ‖∇θ̃‖Cσ−s+1

∗
‖α‖

Hs− 1
2
.

Then it remains to estimate

[Tα∆, wS]θ̃ = Tα[∆, w]Sθ̃ + [Tα, wS]∆θ̃.

For the first commutator, we have, estimating α via Corollary A.2,

‖Tα[∆, w]Sθ̃‖
L2(J ;Hσ− 1

2 )
. ‖α‖L∞(J ;L∞)‖[∆, w]Sθ̃‖

L2(J ;Hσ− 1
2 )

≤ F(‖η‖
Hs+1

2
)‖[∆, w]Sθ̃‖

L2(J ;Hσ− 1
2 )
.

Then, using κ to denote the frequency of the projection S,

‖[∆, w]Sθ̃‖
Hσ− 1

2
. ‖∇w‖L∞‖∇Sθ̃‖Hσ− 1

2
+ ‖∆w‖L∞‖Sθ̃‖Hσ− 1

2

. κ
3
4‖∇Sθ̃‖

Hσ− 1
2

+ κ
3
2‖Sθ̃‖

Hσ− 1
2

. ‖∇θ̃‖
Hσ+1

4
.

Integrating in z, we obtain the desired estimate.
A typical term in the sum defining the second commutator is

[(S≤κ/8α)Sκ, wS]∆θ̃ = (S≤κ/8α)[Sκ, w]S∆θ̃ + w[(S≤κ/8α), S]Sκ∆θ̃

with κ comparable to the frequency of the projection S. The first of these commutators is
estimated in the same way as the previous paragraph, putting one derivative on w. For the
second commutator, using the frequency localization, we may drop the weight w. In the case
wS = wx0,κSκ,

‖[(S≤κ/8α), S]Sκ∆θ̃‖Hσ− 1
2
. λ

3
2
−r‖α‖

C
r− 1

2
∗
‖Sk∆θ̃‖Hσ− 3

2
. (1 + ‖η‖

W r+1
2 ,∞

)‖∇θ̃‖Hσ .
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In the case wS = wx0,λSξ0,λ,µ, commuting induces a µ−1λ ≤ λ
1
4 loss:

‖[(S≤λ/8α), S]Sλ∆θ̃‖Hσ− 1
2
. λ

3
2
−r+ 1

4‖α‖
C
r− 1

2
∗
‖Sλ∆θ̃‖Hσ− 3

2
. (1 + ‖η‖

W r+1
2 ,∞

)‖∇θ̃‖
Hσ+1

4
.

It remains to consider
[γ∂z, wS]θ̃.

Here we do not use the commutator, estimating the two terms separately. We decompose
into paraproducts,

γ∂z θ̃ = Tγ∂z θ̃ + T∂z θ̃γ +R(γ, ∂z θ̃).

We have by (E.8), (E.7), and Corollary A.2,

‖Tγ∂z θ̃‖L1(J ;Hσ) + ‖R(γ, ∂z θ̃)‖L1(J ;Hσ) . ‖γ‖L2(J ;Cr−1
∗ )‖∂z θ̃‖L2(J ;Hσ)

≤ F(‖η‖
Hs+1

2
)(1 + ‖η‖

W r+1
2 ,∞

)‖∂z θ̃‖L2(J ;Hσ).

Similarly,

‖T∂z θ̃γ‖L2(J ;Hσ− 1
2 )
. ‖γ‖L2(J ;Hs−1)‖∂z θ̃‖

L∞(J ;C
σ−s+1

2+
∗ )

≤ F(‖η‖
Hs+1

2
)‖∂z θ̃‖

L∞(J ;C
σ−s+1

2+
∗ )

�

A.2. Factoring the elliptic equation. To establish elliptic estimates, we factor the equa-
tion (A.2) as the product of forward and backward paralinearized parabolic evolutions,

(A.12) (∂z − Ta)(∂z − TA)θ̃ ≈ F0

(in a sense to be made precise) where we define

a =
1

2
(−iβ · ξ −

√
4α|ξ|2 − (β · ξ)2), A =

1

2
(−iβ · ξ +

√
4α|ξ|2 − (β · ξ)2).

A pair of parabolic estimates then yields the desired elliptic estimates.
Now we estimate the factoring error in (A.12). In preparation, first we record estimates

on the symbols a and A in (A.12). Define

Mm
ρ (a) = sup

z∈I
Mm

ρ (a(z)), Mm,2
ρ (a) = ‖Mm

ρ (a(z))‖L2
z(I).

Proposition A.4. For a,A defined as above,

M1
0(a) +M1

0(A) ≤ F(‖η‖
Hs+1

2
)

M1
1
2
(a) +M1

1
2
(A) +M1

− 1
2
(∂zA) ≤ F(‖η‖

Hs+1
2
)(1 + ‖η‖

W r+1
2 ,∞

)

M1,2
1 (a) +M1,2

r (A) +M1,2
0 (∂zA) ≤ F(‖η‖

Hs+1
2
)(1 + ‖η‖

W r+1
2 ,∞

)

Proof. The first estimate is from [ABZ14a, Lemma 3.22]. The second estimate is from
[ABZ14b, (B.45)]. The third estimate is similar, but is proven using the L2

z part of Proposi-
tion A.1, instead of C0

z . �

Proposition A.5. Let 0 ≤ σ < r− 1
2

and z0 ∈ [−1, 0], J = [z0, 0]. Consider θ̃ solving (A.2).
Then we can write

(∂z − Ta)(∂z − TA)θ̃ = F0 + F1 + F2 + F3

where for i ≥ 1,

‖Fi‖L1(J ;Cσ∗ ) ≤ F(‖η‖
Hs+1

2
)(1 + ‖η‖

W r+1
2 ,∞

)‖∇x,z θ̃‖Uσ− 1
2 (J)

.
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Proof. Here we have used F1, F2, F3 to represent the errors arising from, respectively, the
first order term on the left hand side of (A.2), the paralinearization errors, and the lower
order terms from applying the symbolic calculus. We estimate these one by one.

We begin with F3. Factor

(∂z − Ta)(∂z − TA)θ̃ = ∂2
z θ̃ + TaTAθ̃ − Ta∂z θ̃ − ∂zTAθ̃

= ∂2
z θ̃ + TaAθ̃ − (Ta + TA)∂z θ̃ + (TaTA − TaA)θ̃ − (∂zTA − TA∂z)θ̃

= ∂2
z θ̃ + Tα∆θ̃ + Tβ · ∇∂z θ̃ + (TaTA − TaA)θ̃ − T∂zAθ̃.

For the first error term, by (E.3) and Proposition A.4,

‖(TaTA − TaA)θ̃‖L1(J ;Cσ∗ ) . (M1,2
r (a)M1

0(A) +M1
0(a)M1,2

r (A))‖θ̃‖L2(J ;Cσ+2−r
∗ )

≤ F(‖η‖
Hs+1

2
)(1 + ‖η‖

W r+1
2 ,∞

)‖θ̃‖L2(J ;Cσ+1
∗ ).

Note that by the definition of the inhomogeneous paradifferential operator, we may exchange
v for S>1/10θ̃ in the previous inequalities, and hence bound

‖S>1/10θ̃‖L2(J ;Cσ+1
∗ ) . ‖∇θ̃‖L2(J ;Cσ∗ ).

Similarly, by (E.1),

‖T∂zAθ̃‖L1(J ;Cσ∗ ) .M1,2
0 (∂zA)‖S>1/10θ̃‖L2(J ;Cσ∗ )

≤ F(‖η‖
Hs+1

2
)(1 + ‖η‖

W r+1
2 ,∞

)‖∇θ̃‖L2(J ;Cσ∗ ).

We hence have
(∂z − Ta)(∂z − TA)θ̃ = ∂2

z θ̃ + Tα∆θ̃ + Tβ · ∇∂z θ̃ + F3

where
‖F3‖L1(J ;Cσ∗ ) ≤ F(‖η‖

Hs+1
2
)(1 + ‖η‖

W r+1
2 ,∞

)‖∇θ̃‖L2(J ;Cσ∗ ).

Next we estimate the error F2 consisting of errors from paralinearization. Write

(∂z − Ta)(∂z − TA)θ̃ = ∂2
z θ̃ + α∆θ̃ + β · ∇∂z θ̃ + (Tα − α)∆θ̃ + (Tβ − β) · ∇∂z θ̃

and expand

(Tα − α)∆θ̃ + (Tβ − β) · ∇∂z θ̃ = −(T∆θ̃α +R(α,∆θ̃) + T∇∂z θ̃ · β +R(β,∇∂z θ̃)).
By (E.9) and (E.6),

‖T∆θ̃α‖L1(J ;Cσ∗ ) + ‖R(α,∆θ̃)‖L1(J ;Cσ∗ ) . ‖∆θ̃‖L2(J ;Cσ−1
∗ )‖α‖L2(J ;Cr∗)

‖T∇∂z θ̃ · β‖L1(J ;Cσ∗ ) + ‖R(β,∇∂z θ̃)‖L1(J ;Cσ∗ ) . ‖∇∂z θ̃‖L2(J ;Cσ−1
∗ )‖β‖L∞(J ;Cr∗).

We estimate α and β via (A.9) while

‖∆θ̃‖Cσ−1
∗
. ‖∇θ̃‖Cσ∗ , ‖∇∂z θ̃‖Cσ−1

∗
. ‖∂z θ̃‖Cσ∗ .

We hence have

(∂z − Ta)(∂z − TA)θ̃ = ∂2
z θ̃ + α∆θ̃ + β · ∇∂z θ̃ + F2 + F3

where
‖F2‖L1(J ;Cσ∗ ) ≤ F(‖η‖

Hs+1
2
)(1 + ‖η‖

W r+1
2 ,∞

)‖∇x,z θ̃‖L2(J ;Cσ∗ ).

Lastly, we estimate the first order term appearing on the left hand side of (A.2):

(∂z − Ta)(∂z − TA)θ̃ = F0 + γ∂z θ̃ + F2 + F3.
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To estimate F1 := γ∂z θ̃, we decompose into paraproducts,

γ∂z θ̃ = Tγ∂z θ̃ + T∂z θ̃γ +R(γ, ∂z θ̃).

We have by (E.10), (E.6), and (A.9),

‖Tγ∂z θ̃‖L1(J ;Cσ∗ ) + ‖R(γ, ∂z θ̃)‖L1(J ;Cσ∗ ) . ‖γ‖L2(J ;Cr−1
∗ )‖∂z θ̃‖L2(J ;Cσ∗ )

≤ F(‖η‖
Hs+1

2
)(1 + ‖η‖

W r+1
2 ,∞

)‖∂z θ̃‖L2(J ;Cσ∗ ).

Similarly, using (A.10)

‖T∂z θ̃γ‖L1(J ;Cσ∗ ) . ‖γ‖
L1(J ;C

r− 1
2

∗ )
‖∂z θ̃‖

L∞(J ;C
σ+1

2−r
∗ )

≤ F(‖η‖
Hs+1

2
)(1 + ‖η‖

W r+1
2 ,∞

)‖∂z θ̃‖
L∞(J ;C

σ− 1
2

∗ )
.

�

A.3. Elliptic estimates. Now that we have estimates on the coefficients and error in the
factored equation (A.12), we can apply parabolic estimates, which we now recall:

Proposition A.6 ([ABZ14b, Proposition B.4]). Let ρ ∈ (0, 1), J = [z0, z1] ⊆ R, and
p ∈ Γ1

ρ(J × Rd) with

Re p(z;x, ξ) ≥ c|ξ|.

Consider a solution w to

(∂z + Tp)w = F1 + F2, w|z=z0 = w0.

Then for any q ∈ [1,∞] and (r0, r) ∈ R2 with r0 < r, and δ > 0,

‖w‖C0(J ;Cr∗) . ‖w0‖Cr∗ + ‖F1‖L1(J ;Cr∗) + ‖F2‖
Lq(J ;C

r−1+1
q+δ

∗ )
+ ‖w‖L∞(J ;C

r0
∗ )

with a constant depending on r0, r, ρ, c, δ, q, and M1
ρ(p).

By a simple modification of the proof of this result, we also have

Proposition A.7. Let ρ ∈ (0, 1), J = [z0, z1] ⊆ R, and p ∈ Γ1
ρ(J × Rd) with

Re p(z;x, ξ) ≥ c|ξ|.

Consider a solution w to

(∂z + Tp)w = F, w|z=z0 = w0.

Then for any q ∈ [1,∞] and (r0, r) ∈ R2 with r0 < r, and δ > 0,

‖w‖
L1(J ;Cr+1

∗ )∩L2(J ;C
r+1

2
∗ )
. ‖w0‖Cr+δ∗ + ‖F‖L1(J ;Cr+δ∗ ) + ‖w‖L2(J ;C

r0
∗ )

with a constant depending on r0, r, ρ, c, δ, q, and M1
ρ(p).

We now apply these parabolic estimates twice to (A.12) to obtain an “inductive” elliptic
estimate:

103



Proposition A.8. Let 0 ≤ σ < r − 1
2
, δ > 0, and −1 < z1 < z0 < 0. Denote J0 =

[z0, 0], J1 = [z1, 0]. Consider θ̃ solving (A.2). Then

‖∇x,z θ̃‖C0(J0;Cσ∗ ) ≤ F(‖η‖
Hs+1

2
)(1 + ‖η‖

W r+1
2 ,∞

)‖∇x,z θ̃‖Uσ− 1
2 (J1)

+ ‖f‖Cσ+1
∗

+ ‖F0‖
L1(J1;C

σ− 1
2

∗ )

‖∇x,z θ̃‖
L1(J0;Cσ+1

∗ )∩L2(J0;C
σ+1

2
∗ )

≤ F(‖η‖
Hs+1

2
)(1 + ‖η‖

W r+1
2 ,∞

)‖∇x,z θ̃‖Uσ− 1
2+δ(J1)

+ ‖f‖
C
σ+1+ δ2
∗

+ ‖F0‖L1(J1;Cσ+δ∗ ).

Proof. First, we would like to apply the parabolic estimate with symbol −a (satisfying
Re(−a) & |ξ|) on the equation

(∂z − Ta)w = (∂z − Ta)(∂z − TA)θ̃ = F0 + F1 + F2 + F3.

However, it is convenient to apply the parabolic estimate on w with vanishing initial condi-
tion, so instead we set

w := χ(z)(∂z − TA)θ̃

where χ is a smooth cutoff vanishing on [−1, z1] and χ = 1 on J0 = [z0, 0] ⊆ (−1, 0]. We
then have

(∂z − Ta)w = χ(z)(F0 + F1 + F2 + F3) + χ′(z)(∂z − TA)θ̃ =: F ′.

We estimate χ′(z)(∂z − TA)θ̃ directly. By (E.1),

‖TAθ̃‖L1(J1;Cσ∗ ) .M1
0(A)‖θ̃‖L1(J1;Cσ+1

∗ ) ≤ F(‖η‖
Hs+1

2
)‖θ̃‖L2(J1;Cσ+1

∗ ).

As in estimate of F3, we may replace v by S>1/10θ̃ by the inhomogeneous paradifferential
calculus and hence estimate

‖S>1/10θ̃‖L2(J1;Cσ+1
∗ ) . ‖∇θ̃‖L2(J1;Cσ∗ ).

We conclude

‖χ′(z)(∂z − TA)θ̃‖L1(J1;Cσ∗ ) ≤ F(‖η‖
Hs+1

2
)‖∇x,z θ̃‖L2(J1;Cσ∗ ).

Combining this estimate with the estimates of Proposition A.5, we have

‖F ′‖L1(J1;Cσ∗ ) . ‖F1 + F2 + F3 + χ′(z)(∂z − TA)θ̃‖L1(J1;Cσ∗ ) + ‖F0‖L1(J1;Cσ∗ )

≤ F(‖η‖
Hs+1

2
)(1 + ‖η‖

W r+1
2 ,∞

)‖∇x,z θ̃‖Uσ− 1
2 (J1)

+ ‖F0‖L1(J1;Cσ∗ ).

We can now apply Proposition A.6 with

ρ =
1

2
, J = J1, p = −a, q =∞, r = σ.

Note we may also choose r0 = σ − 1, using the above analysis on χ′(z)(∂z − TA)θ̃ with

w = χ(z)(∂z − TA)θ̃, yielding as well the same estimates. Thus

‖w‖C0(J1;Cσ∗ ) . ‖F ′‖L1(J1;Cσ∗ ) + ‖w‖L∞(J1;Cσ−1
∗ )

≤ F(‖η‖
Hs+1

2
)(1 + ‖η‖

W r+1
2 ,∞

)‖∇x,z θ̃‖Uσ− 1
2 (J1)

+ ‖F0‖L1(J1;Cσ∗ ).(A.13)

Similarly, for the second estimate of our proposition, we use Proposition A.7 with

ρ =
1

2
, J = J1, p = −a, r = σ +

δ

2
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and δ/2 in the place of δ. We again choose r0 = σ−1. Using σ+ δ in place of σ in the above
estimate for F ′ (we may assume δ is small enough so that σ + 1

2
+ δ < r)

‖w‖
L1(J1;C

σ+1+ δ2
∗ )

. ‖F ′‖L1(J1;Cσ+δ∗ ) + ‖w‖L2(J1;Cσ−1
∗ )

≤ F(‖η‖
Hs+1

2
)(1 + ‖η‖

W r+1
2 ,∞

)‖∇x,z θ̃‖Uσ− 1
2+δ(J1)

+ ‖F0‖L1(J1;Cσ+δ∗ ).

Next we apply the second parabolic estimate. On J0 = [z0, 0], we have χ = 1 and hence

(∂z − TA)θ̃ = w.

Define θ̃∗(x, z) = θ̃(x,−z) and w∗, etc. in the analogous way, so that Re(A) & |ξ| and

(∂z + TA)θ̃∗ = −w∗, z ∈ [0,−z0] = J∗0 .

We again apply Proposition A.6 with

ρ =
1

2
, J = J∗0 , p = A, q =∞, r = σ + 1, r0 = 0.

We obtain

‖θ̃∗‖C0(J∗0 ;Cσ+1
∗ ) . ‖f‖Cσ+1

∗
+ ‖w∗‖L∞(J∗0 ;Cσ∗ ) + ‖θ̃∗‖L∞(J∗0 ;L∞).

For the second estimate of our proposition, we again apply Proposition A.7 with

ρ =
1

2
, J = J∗0 , p = A, r = σ + 1, r0 = 0

and δ/2 in the place of δ to obtain

‖θ̃∗‖
L1(J∗0 ;Cσ+2

∗ )∩L2(J∗0 ;C
σ+3

2
∗ )

. ‖f‖
C
σ+1+ δ2
∗

+ ‖w∗‖
L1(J∗0 ;C

σ+1+ δ2
∗ )

+ ‖θ̃∗‖L2(J∗0 ;L∞).

Now the rest of the proof for the L1(J0;Cσ+2
∗ ) ∩ L2(J0;C

σ+ 3
2

∗ ) estimate mirrors that of the
C0(J0;Cσ+1

∗ ) estimate, detailed in the following.
We estimate the last term on the right hand side by writing

θ̃∗(z) = θ̃∗(0) +

∫ z

0

∂z θ̃
∗ = f +

∫ z

0

∂z θ̃
∗

and hence

‖θ̃∗‖L∞(J∗0 ;L∞) . ‖f‖L∞ + ‖∂z θ̃∗‖L2(J∗0 ;L∞) . ‖f‖Cσ+1
∗

+ ‖∇x,z θ̃‖Uσ− 1
2 (J0)

.

Collecting the above estimates, we conclude

‖∇θ̃‖C0(J0;Cσ∗ ) . ‖θ̃∗‖C0(J0;Cσ+1
∗ ) . F(‖η‖

Hs+1
2
)(1 + ‖η‖

W r+1
2 ,∞

)‖∇x,z θ̃‖Uσ− 1
2 (J1)

+ ‖f‖Cσ+1
∗

+ ‖F0‖L1(J1;Cσ∗ ).

To attain the same estimate on ∂z θ̃, write

∂z θ̃ = TAθ̃ + w.

TAθ̃ enjoys the same estimate as ∇θ̃ by using Proposition A.4 and that A is of order 1, and
w already has the desired estimate above. �

We also recall the corresponding (global) Sobolev elliptic estimate for (A.2):
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Proposition A.9. [ABZ14a, Proposition 3.16] Let −1
2
≤ σ ≤ s− 1

2
and −1 < z1 < z0 < 0.

Denote J0 = [z0, 0], J1 = [z1, 0]. Consider θ̃ solving (A.2). Then

‖∇x,z θ̃‖Xσ(J0) ≤ F(‖η‖
Hs+1

2
)(‖f‖Hσ+1 + ‖F0‖Y σ(J1) + ‖∇x,z θ̃‖X− 1

2 (J1)
).

Applying this to (A.11), we have the following local Sobolev counterpart:

Corollary A.10. Let 0 ≤ σ ≤ s− 1
2

and −1 < z1 < z0 < 0. Denote J0 = [z0, 0], J1 = [z1, 0].

Consider θ̃ solving (A.2). Denote wS = wx0,λSξ0,λ,µ or wS = wx0,κSκ with κ ≤ cλ. Then

‖∇x,zwSθ̃‖Xσ(J0) ≤ F(‖η‖
Hs+1

2
)(‖wSf‖Hσ+1 + ‖wSF0‖Y σ(J1)

+ (1 + ‖η‖
W r+1

2 ,∞
)(‖f‖

Hσ+3
4

+ ‖F0‖Y σ− 1
4 (J1)

+ ‖∇x,z θ̃‖X− 1
2 (J1)

)).

Proof. Applying Proposition A.9 to (A.11), we have

‖∇x,zwSθ̃‖Xσ(J0) ≤ F(‖η‖
Hs+1

2
)(‖wSf‖Hσ+1 + ‖wSF0 + F4‖Y σ(J1) + ‖∇x,z θ̃‖X− 1

2 (J1)
).

By Proposition A.3,

‖F4‖Y σ(J1) ≤ F(‖η‖
Hs+1

2
)((1 + ‖η‖

W r+1
2 ,∞

)‖∇x,z θ̃‖L2(J1;Hσ+1
4 )

).

Then apply Proposition A.9 on

‖∇x,z θ̃‖L2(J1;Hσ+1
4 )
.

�

A.4. Estimates in the harmonic case. In the special case of (A.1) where θ satisfies

(A.14) ∆x,yθ(x, y) = 0, θ|y=η(x) = f, ∂nθ|Γ = 0,

as is the case for instance when defining the Dirichlet to Neumann map, we have the following
“base case” estimate:

Proposition A.11. [ABZ14a, Remark 3.15] Consider θ solving (A.14). Then

‖∇x,z θ̃‖X− 1
2 ([−1,0])

≤ F(‖η‖
Hs+1

2
)‖f‖

H
1
2
.

Combined with Proposition A.9, this yields:

Proposition A.12. Let −1
2
≤ σ ≤ s − 1

2
and z0 ∈ (−1, 0], J = [z0, 0]. Consider θ solving

(A.14). Then

‖∇x,z θ̃‖Xσ(J) ≤ F(‖η‖
Hs+1

2
)‖f‖Hσ+1 .

We also have a local counterpart, combining with Corollary A.10:

Proposition A.13. Let 0 ≤ σ ≤ s − 1
2

and z0 ∈ (−1, 0], J = [z0, 0]. Consider θ solving
(A.14). Denote wS = wx0,λSξ0,λ,µ or wS = wx0,κSκ with κ ≤ cλ. Then

‖∇x,zwSθ̃‖Xσ(J) ≤ F(‖η‖
Hs+1

2
)(‖wSf‖Hσ+1 + (1 + ‖η‖

W r+1
2 ,∞

)‖f‖
Hσ+3

4
).

Lastly, we state a Hölder counterpart:

Proposition A.14. Let 0 ≤ σ < r − 1
2

and z0 ∈ (−1, 0], J = [z0, 0]. Consider θ̃ solving
(A.14). Then

‖∇x,z θ̃‖Uσ(J) ≤ F(‖η‖
Hs+1

2
)(1 + ‖η‖

W r+1
2 ,∞

)‖f‖Hσ+1+ + ‖f‖Cσ+1+
∗

.
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Proof. First, as a straightforward consequence of Proposition A.8,

‖∇x,z θ̃‖Uσ(J) ≤ F(‖η‖
Hs+1

2
)(1 + ‖η‖

W r+1
2 ,∞

)‖∇x,z θ̃‖Uσ− 1
2+(J1)

+ ‖f‖Cσ+1+
∗

.

Then applying Sobolev embedding and Proposition A.12,

‖∇x,z θ̃‖Uσ− 1
2+(J1)

. ‖∇x,z θ̃‖Xσ+(J1) ≤ F(‖η‖
Hs+1

2
)‖f‖Hσ+1+ .

�

Appendix B. Local Dirichlet to Neumann Paralinearization

In this section we paralinearize the Dirichlet to Neumann map, with a local Sobolev
estimate on the error. Recall the Dirichlet to Neumann map is given by solving (A.14),

∆x,yθ = 0, θ|y=η(x) = f, ∂nθ|Γ = 0,

and setting

(G(η)f)(x) =
√

1 + |∇η|2(∂nθ)|y=η(x) = ((∂y −∇η · ∇)θ)|y=η(x).

In the flattened coordinates discussed in Appendix A.1, we have the homogeneous coun-
terpart to (A.2) (recall that we write ũ(x, z) = u(x, ρ(x, z)) where ρ is the diffeomorphism
that flattens the boundary defined by the graph of η),

(B.1) (∂2
z + α∆ + β · ∇∂z − γ∂z)θ̃ = 0, θ̃|z=0 = f,

and we may write the Dirichlet to Neumann map as

G(η)f =

(
1 + |∇ρ|2

∂zρ
∂z θ̃ −∇ρ · ∇θ̃

)∣∣∣∣
z=0

.

To paralinearize the latter term ∇ρ ·∇θ̃ with errors in local Sobolev norm, we will require
local counterparts to the estimates on the diffeomorphism ρ from Proposition A.1. We
establish these in the next two subsections. To paralinearize the former ∂z θ̃ term, we use
the homogeneous case of the factoring (A.12). A single parabolic estimate then provides the

paralinearization ∂z θ̃ ≈ TAθ̃.

B.1. Commutator and product estimates. Before addressing the diffeomorphism ρ, we
observe some general commutator and product estimates regarding the local weights used in
Section 11. First, we observe that the various weights of the form wS essentially commute
with paraproducts Ta:

Proposition B.1. Let m ∈ R and ρ > 0.

i) We have

‖wx0,λSξ0,λ,µTau‖Hm′ . ‖a‖C−ρ∗ (‖wx0,λS̃ξ0,λ,µu‖Hm′+ρ + λ
1
2µ−

1
2‖S̃µu‖Hm+ρ),

‖wx0,λSµTau‖Hm′ . ‖a‖C−ρ∗ (‖wx0,λS̃µu‖Hm′+ρ + λ
1
2µ−

1
2‖S̃µu‖Hm+ρ).

ii) For κ ≤ cλ,

‖wx0,κSκTau‖Hm′ . ‖a‖C−ρ∗ (‖wx0,κS̃κu‖Hm′+ρ + ‖u‖
Hm′+ρ− 1

4
).

iii) For κ ≥ λ/c,

‖wx0,λSκTau‖Hm′ . ‖a‖C−ρ∗ (‖wx0,λS̃κu‖Hm′+ρ + ‖u‖
Hm′+ρ− 1

4
).
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In the case ρ = 0, the same estimates hold with L∞ in the place of C−ρ∗ .

Proof. We first prove case (iii), noting that (ii) may be proven in the same way. Using the

frequency support of wx0,λ at λ
3
4 , we may write Sκwx0,λTau as a sum of finitely many terms

of the form

Sκwx0,λ(S≤κ̃/8a)Sκ̃u = Sκ(S≤κ̃/8a)wx0,λSκ̃u

where κ̃ ∈ [κ/8, 8κ]. Then estimate

‖Sκ(S≤κ̃/8a)wx0,λSκ̃u‖Hm′ . κm‖S≤κ̃/8a‖L∞‖wx0,λSκ̃u‖L2 . ‖a‖C−ρ∗ ‖wx0,λSκ̃u‖Hm′+ρ .

It then remains to commute, using the frequency support of wx0,λ:

‖[wx0,λ, Sκ]Tau‖Hm′ . κ−
1
4‖TaS̃κu‖Hm′ . ‖a‖C−ρ∗ ‖S̃κu‖Hm′+ρ− 1

4
.

The second estimate of (i) is similar, except that when commuting,

‖[wx0,λ, Sµ]Tau‖Hm′ . λ
3
4µ−1‖TaS̃µu‖Hm′ . λ

3
4µ−

7
8‖a‖C−ρ∗ ‖S̃µu‖Hm+ρ .

Then observe that

λ
3
4µ−

7
8 ≤ λ

1
2µ−

1
2 .

The first estimate of (i) is similar, differing only in the commutator. �

As a simple consequence, we have the following local product estimates:

Corollary B.2. Let m ∈ R and ρ > 0.

i) We have

‖wx0,λSξ0,λ,µ(uv)‖Hm′ . (‖wx0,λS̃ξ0,λ,µu‖Hm′ + λ
1
2µ−

1
2‖u‖Hm)‖v‖L∞

+ ‖u‖C−ρ∗ (‖wx0,λS̃ξ0,λ,µv‖Hm′+ρ + λ
1
2µ−

1
2‖v‖Hm+ρ)

+ ‖v‖
C

1
8
∗
‖u‖Hm ,

‖wx0,λSµ(uv)‖Hm′ . (‖wx0,λS̃µu‖Hm′ + λ
1
2µ−

1
2‖u‖Hm)‖v‖L∞

+ ‖u‖C−ρ∗ (‖wx0,λS̃µv‖Hm′+ρ + λ
1
2µ−

1
2‖v‖Hm+ρ)

+ ‖v‖
C

1
8
∗
‖u‖Hm ,

ii) For κ ≤ cλ,

‖wx0,κSκ(uv)‖Hm′ . (‖wx0,κS̃κu‖Hm′ + ‖u‖Hm)‖v‖L∞

+ ‖u‖C−ρ∗ (‖wx0,κS̃κv‖Hm′+ρ + ‖v‖Hm+ρ)

+ ‖v‖
C

1
8
∗
‖u‖Hm ,

iii) For κ ≥ λ/c,

‖wx0,λSκ(uv)‖Hm′ . (‖wx0,λS̃κu‖Hm′ + ‖u‖Hm)‖v‖L∞

+ ‖u‖C−ρ∗ (‖wx0,λS̃κv‖Hm′+ρ + ‖v‖Hm+ρ)

+ ‖v‖
C

1
8
∗
‖u‖Hm ,

In the case ρ = 0, the same estimates hold with L∞ in the place of C−ρ∗ .
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Proof. Write

wS(uv) = wS(Tuv + Tvu+R(u, v)).

For the third term, we may use (E.7),

‖R(u, v)‖
Hm+1

8
. ‖u‖Hm‖v‖

C
1
8
∗
.

Then the first and second terms are estimated by Proposition B.1.
�

We will also need a generalization to paradifferential operators:

Proposition B.3. Let m, m̃, k ∈ R, ρ, ρ̃ ∈ [0, 1], a ∈ Γmρ̃ , b ∈ Γm̃ρ̃ , and κ
3
4 � µ. Then

‖[wx0,κSµ, Ta]u‖Hk .Mm
0 (a)κ

3ρ
4 µ−

3ρ
4 ‖S̃µu‖Hk+m− ρ4

,

‖wx0,κSµTau‖Hk .Mm
0 (a)(‖wx0,κSµu‖Hk+m + κ

3ρ
4 µ−

3ρ
4 ‖S̃µu‖Hk+m− ρ4

),

‖wx0,κSµ(TaTb − Tab)u‖Hk . (Mm
ρ̃ (a)M m̃

0 (b) +Mm
0 (a)M m̃

ρ̃ (b))

· (‖wx0,κSµu‖Hk+m+m̃−ρ̃ + κ
3ρ
4 µ−

3ρ
4 ‖S̃µu‖Hk+m+m̃−ρ̃− ρ4

).

If additionally a is homogeneous in ξ, we have

‖wx0,κSµ[Ta, ∂t + TV · ∇]u(t)‖Hk . (Mm
0 (a)‖V (t)‖W r,∞ +Mm

0 ((∂t + V · ∇)a))

· (‖wx0,κSµu(t)‖Hk+m + κ
3ρ
4 µ−

3ρ
4 ‖u(t)‖

Hk+m− ρ4
).

Proof. We immediately have by (E.1),

‖Tawx0,κSµu‖Hk .Mm
0 (a)‖wx0,κSµu‖Hk+m .

This implies the second estimate once we prove the first estimate.
First observe that by the frequency localization of wx0,κ at κ

3
4 � µ, we may replace wx0,κ

with Twx0,κ . Then, we may apply (E.2),

‖[wx0,κSµ, Ta]u‖Hk . (Mm
ρ (a)M0

0 (wx0,κ) +Mm
0 (a)M0

ρ (wx0,κ))‖S̃µu‖Hk+m−ρ

. (Mm
ρ (a) +Mm

0 (a)κ
3ρ
4 )‖S̃µu‖Hk+m−ρ .

However, also observe that since wx0,κSµ is order 0, a sharper analysis (see for instance
[Tay08, Theorem 3.4.A]) shows that in fact

‖[wx0,κSµ, Ta]u‖Hk .Mm
0 (a)M0

ρ (wx0,κ)‖S̃µu‖Hk+m−ρ .Mm
0 (a)κ

3ρ
4 ‖S̃µu‖Hk+m−ρ .

For the third estimate, use that the paradifferential calculus essentially forms an algebra
(see the remarks preceding Corollary 3.4.G in [Tay08]), with

TaTb − Tab = TA ∈ OPΓm+m̃−ρ̃
0 .

Then apply the second estimate, with A in the place of a and m+ m̃− ρ̃ in the place of m:

‖wx0,κSµTAu‖Hk .Mm+m̃−ρ̃
0 (A)(‖wx0,κSµu‖Hk+m+m̃−ρ̃ + κ

3ρ
4 µ−

3ρ
4 ‖S̃κu‖Hk+m+m̃−ρ̃− ρ4

).

Then the third estimate follows from (E.2). One similarly obtains the fourth estimate, using
[ABZ14a, Lemma 2.15] in place of (E.2). �
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B.2. Local estimates on the diffeomorphism. In this subsection we establish local coun-
terparts to Proposition A.1. For brevity, it is convenient to let wS denote any of the local-
izing operators found in the LSσx0,λ or LSσx0,ξ0,λ,µ seminorms. When using this notation, let

κ denote the frequency of S, so that S = SS̃κ.

Proposition B.4. Let J ⊆ [−1, 0]. The diffeomorphism ρ satisfies

‖wS(∂zρ,∇ρ)‖
Xs′− 1

2 (J)
≤ F(‖η‖

Hs+1
2
)(1 + ‖wSη‖

Hs′+1
2
).

Proof. Consider first ∇ = ∇x. Recall that on z ∈ (−1, 0),

ρ(x, z) = (1 + z)eδz〈D〉η(x)− z(e−(1+z)δ〈D〉η(x)− h)

so without loss of generality, we consider eδz〈D〉η. Since

∇eδz〈D〉wSη
may be estimated as in the proof of Proposition A.1 with wSη in the place of η, it suffices
to estimate the commutator

[wS,∇eδz〈D〉]η = [w,∇eδz〈D〉]Sη

in Xs′− 1
2 (J).

Since ∇eδz〈D〉 is an order 1 operator uniformly in z ∈ (−1, 0),

‖[w,∇eδz〈D〉]Sη‖
Hs′− 1

2
. κ−

1
4‖Sη‖

Hs′+1
2
. ‖η‖

Hs+3
8
.

This yields the L∞z (J ;Hs′− 1
2 ) estimate.

For the L2
z estimate, we also have that |z| 12 〈D〉− 1

2∇eδz〈D〉 is an order 0 operator uniformly
in z, so that

|z|−
1
2‖〈D〉

1
2 [wS, |z|

1
2 〈D〉−

1
2∇eδz〈D〉]η‖Hs′ . |z|−

1
2‖[w, |z|

1
2 〈D〉−

1
2∇eδz〈D〉]Sη‖

Hs′+1
2

. κ−
1
4 |z|−

1
2‖Sη‖

Hs′+1
2
. |z|−

1
2‖η‖

Hs′+1
4
.

Integrating in z yields the desired estimate in L2
z(J ;Hs), provided we also estimate the

commutator

|z|−
1
2‖[〈D〉

1
2 , wS]|z|

1
2 〈D〉−

1
2∇eδz〈D〉η‖Hs′ . κ−

1
4 |z|−

1
2‖|z|

1
2 〈D〉−

1
2∇eδz〈D〉Sη‖

Hs′+1
2

. |z|−
1
2‖η‖

Hs′+1
4

which we again integrate in z.
For the estimate on ∂zρ, recall that on z ∈ (−1, 0),

(B.2) ∂zρ = h+ eδz〈D〉η − e−(1+z)δ〈D〉η + (1 + z)δ〈D〉eδz〈D〉η + zδ〈D〉e−(1+z)δ〈D〉η.

Without loss of generality, we consider eδz〈D〉η and 〈D〉eδz〈D〉η. The former is easy to estimate,
as eδz〈D〉 is uniformly bounded on Hs. For the latter, as before, it suffices to estimate the
commutator

[wS, 〈D〉eδz〈D〉]η.
This is estimated in the same way as in the previous analysis of ∇ρ, with 〈D〉 in the place
of ∇. �

We also have the analogous estimates on the second derivatives:
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Corollary B.5. Let J ⊆ [−1, 0]. The diffeomorphism ρ satisfies

‖wS∇2
x,zρ‖Xs′− 3

2 (J)
≤ F(‖η‖

Hs+1
2
)(1 + ‖wSη‖

Hs′+1
2
).

Proof. First consider ∇∇x,zρ. We easily see by commuting ∇ that

‖wS∇x∇x,zρ‖Xs′− 3
2 (J)
. ‖wS∇x,zρ‖Xs′− 1

2 (J)
+ ‖∇x,zρ‖Xs′− 3

4 (J)

on which we can apply the estimates on ρ from Propositions B.4 and A.1.
The estimate on ∂2

z is similarly elementary, after computing ∂2
zρ from definition. �

Next, we establish estimates on the coefficients of (A.2). First, we require local estimates
on reciprocals. Notably, we use an algebraic argument instead of a Moser estimate:

Proposition B.6. Let J ⊆ [−1, 0]. The diffeomorphism ρ satisfies

‖wS(∂zρ)−1‖
Xs′− 1

2 (J)
+‖wS(1 + |∇ρ|2)−1‖

Xs′− 1
2 (J)

≤ F(‖η‖
Hs+1

2
)(λ

1
2µ−

1
2 + ‖η‖

W r+1
2 ,∞

+ ‖wSη‖
Hs′+1

2
).

Proof. We consider the first term on the left hand side, and the L∞z (J ;Hs′− 1
2 ) case. The

other cases are obtained with the appropriate modifications.
First, by commuting w and S as in the proof of Proposition B.1, it suffices to consider

‖Sw(∂zρ)−1‖
Hs′− 1

2
.

Then we have, using that ∂zρ ≥ min(h/2, 1) by Lemma 3.6 of [ABZ14a],

‖Sw(∂zρ)−1‖
Hs′− 1

2
. ‖(∂zρ)〈D〉s′−

1
2Sw(∂zρ)−1‖L2 ,

so it suffices to estimate
‖[(∂zρ), 〈D〉s′−

1
2S]w(∂zρ)−1‖L2 .

As with the commutator and product estimates of the previous subsection, the main
burden is to absorb the extra 1/8 derivatives in either a local Sobolev or Hölder norm. For
this, we reduce to paraproducts. The balanced-frequency terms are easily estimated using

C
1
8
∗ on one term, so we consider only the low-high terms. First, we have the commutator, in

the case that S is a typical frequency projection Sκ,

‖[T∂zρ, 〈D〉s
′− 1

2S]w(∂zρ)−1‖L2 . ‖∂zρ‖
C

1
2
∗
‖(∂zρ)−1‖Hs′−1

which suffices by using the ρ estimates of Proposition A.1. In the case S = Sξ0,λ,µ, we have

a µ−1λ ≤ λ
1
4 loss, which is still better than needed. We also have

‖T
〈D〉s′−

1
2 Sw(∂zρ)−1

∂zρ‖L2 . ‖〈D〉s′−
1
2Sw(∂zρ)−1‖

C
1
2−s
∗
‖∂zρ‖Hs− 1

2
. ‖(∂zρ)−1‖

C
1
8
∗
‖∂zρ‖Hs− 1

2
.

It remains to consider the term
STw(∂zρ)−1∂zρ

in Hs′− 1
2 . First observe that by (E.2),

‖S(Tw(∂zρ)−1−T(∂zρ)−1Tw)∂zρ‖Hs′− 1
2

. (M0
1
2
(w)M0

0 ((∂zρ)−1) +M0
0 (w)M0

1
2
((∂zρ)−1))‖S̃κ∂zρ‖Hs′−1

≤ F(‖η‖
Hs+1

2
)(κ

3
8 + ‖η‖

W r+1
2 ,∞

)‖S̃κ∂zρ‖Hs′−1
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so that we may consider

ST(∂zρ)−1Tw∂zρ = ST(∂zρ)−1w∂zρ.

Similar to before, we may commute [S, T(∂zρ)−1 ] to

T(∂zρ)−1Sw∂zρ

with the additional but acceptable loss in the case S = Sξ0,λ,µ. We commute S and w as in
the proof of Proposition B.1 (and as at the beginning of this proof). Lastly, observe that

‖T(∂zρ)−1wS∂zρ‖Hs′− 1
2
. ‖(∂zρ)−1‖L∞‖wS∂zρ‖Hs′− 1

2

on which we can apply the estimates on ρ from Propositions B.4 and A.1.
�

Corollary B.7. Let J ⊆ [−1, 0]. For α, β, and γ defined as above,

‖wS(α, β)‖
Xs′− 1

2 (J)
+ ‖wSγ‖

Xs′− 3
2 (J)
≤ F(‖η‖

Hs+1
2
)(λ

1
2µ−

1
2 + ‖η‖

W r+1
2 ,∞

+ ‖wSη‖
Hs′+1

2
).

Proof. For α and β, apply the product and reciprocal estimates, Propositions B.2 and B.6
respectively, with Proposition A.1. For the product estimates, use ρ = 0.

For γ, use the same estimates with ρ = 1/2.
�

Lastly, we estimate the coefficients in the local seminorm:

Corollary B.8. Let J ⊆ [−1, 0] and 0 ≤ σ ≤ s− 1
2
. For α, β, and γ defined as above,

µσ
′‖(α, β)‖

L∞(J ;LS
s−σ− 1

2
x0,ξ0,λ,µ

)∩L2(J ;LSs−σx0,ξ0,λ,µ
)
+ µσ

′‖γ‖
L∞(J ;LS

s−σ− 3
2

x0,ξ0,λ,µ
)∩L2(J ;LSs−σ−1

x0,ξ0,λ,µ
)

≤ F(‖η‖
Hs+1

2
)(λ

1
2µ−

1
2 + ‖η‖

W r+1
2 ,∞

+ µσ
′‖η‖

LS
s−σ+1

2
x0,ξ0,λ,µ

).

Proof. We consider the L2
z case; the L∞z case is similar. By Corollary B.7, we have in all

three cases of wS,

‖wS(α, β)‖L2(J ;Hs−σ) ≤ F(‖η‖
Hs+1

2
)(κ−σ

′
λ

1
2µ−

1
2 + κ−σ

′‖η‖
W r+1

2 ,∞
+ ‖wSη‖

Hs−σ+1
2
).

Thus, we have

‖(α, β)‖L2(J ;LSs−σx0,ξ0,λ,µ
) ≤ F(‖η‖

Hs+1
2
)(µ−σ

′
λ

1
2µ−

1
2 + µ−σ

′‖η‖
W r+1

2 ,∞
+ ‖η‖

LS
s−σ+1

2
x0,ξ0,λ,µ

).

The γ estimate is similar using Corollary B.7.
�

B.3. Factoring the elliptic equation. In this subsection we estimate the error on the
right hand side of (A.12), in the local energy norm.

Proposition B.9. Let 0 ≤ σ ≤ s − 1
2

and z0 ∈ [−1, 0], J = [z0, 0]. Consider θ solving
(A.14). Then we can write

(∂z − Ta)(∂z − TA)θ̃ = F1 + F2 + F3

where for i ≥ 1,

‖Fi‖Y σ(J) ≤ F(‖η‖
Hs+1

2
)((1 + ‖η‖

W r+1
2 ,∞

)‖∇x,z θ̃‖L2(J ;Hσ) + ‖∇x,z θ̃‖Uσ−s+1
2+(J)

),
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‖wx0,λSµFi‖Y σ′ (J) ≤ F(‖η‖
Hs+1

2
)((λ

1
2µ−

1
2 + ‖η‖

W r+1
2 ,∞

+ µσ
′‖η‖

LS
s−σ+1

2
x0,ξ0,λ,µ

)‖∇x,z θ̃‖Uσ−s+1
2+(J)

+ (1 + ‖η‖
W r+1

2 ,∞
)(µσ

′‖∇x,zwx0,λSξ0,λ,µθ‖L2(J ;L2) + ‖∇wx0,µSµθ̃‖L2(J ;Hσ′ )

+ ‖∇x,z θ̃‖L2(J ;Hσ))).

Proof. Here we have used F1, F2, and F3 to represent the errors arising from, respectively,
the first order term on the left hand side of (A.2), the paralinearization errors, and the lower
order terms from applying the symbolic calculus.

We remark that in contrast to the Sobolev estimates on Fi in [ABZ14a], and similar to
the estimates on Fi in [ABZ14b] and Proposition A.5, we use Hölder estimates whenever
appropriate to obtain an absolute gain of 1/2 derivatives (or the equivalent integral gain in

Lpz) on Fi when compared to ∇2θ̃. Also contrast with Proposition A.3, which obtains only a
1/4 derivative gain on F4.

First, we observe that

‖wx0,λSµFi‖Y σ′ (J) . ‖wx0,µSµFi‖Y σ′ (J)

so we may exchange wx0,λ with wx0,µ when necessary.
We begin with F3. Factor

(∂z − Ta)(∂z − TA)θ̃ = ∂2
z θ̃ + Tα∆θ̃ + Tβ · ∇∂z θ̃ + (TaTA − TaA)θ̃ − T∂zAθ̃.

For the first error term, by the commutator estimate (E.2) and the estimates on a,A from
Proposition A.4,

‖(TaTA − TaA)θ̃‖L1(J ;Hσ) = ‖(TaTA − TaA)S≥1/10θ̃‖L1(J ;Hσ)

. (M1,2
1 (a)M1

0(A) +M1
0(a)M1,2

1 (A))‖S≥1/10θ̃‖L2(J ;Hσ+2−1)

≤ F(‖η‖
Hs+1

2
)(1 + ‖η‖

W r+1
2 ,∞

)‖∇θ̃‖L2(J ;Hσ).

Further, for the local estimate, we have by the third local commutator estimate of Proposition
B.3,

‖wx0,µSµ(TaTA − TaA)θ̃‖L1(J ;Hσ′ ) . (M1,2
1 (a)M1

0(A) +M1
0(a)M1,2

1 (A))

· (‖wx0,µSµθ̃‖L2(J ;Hσ′+2−1) + ‖S̃µθ̃‖L2(J ;Hσ+2−1))

≤ F(‖η‖
Hs+1

2
)(1 + ‖η‖

W r+1
2 ,∞

)

· (‖∇wx0,µSµθ̃‖L2(J ;Hσ′ ) + ‖∇θ̃‖L2(J ;Hσ)).

Similarly, using instead (E.1),

‖T∂zAθ̃‖L1(J ;Hσ) .M1,2
0 (∂zA)‖S>1/10θ̃‖L2(J ;Hσ+1)

≤ F(‖η‖
Hs+1

2
)(1 + ‖η‖

W r+1
2 ,∞

)‖∇θ̃‖L2(J ;Hσ),

and the second estimate of Proposition B.3 for the local estimate,

‖wx0,µSµT∂zAθ̃‖L1(J ;Hσ′ ) .M
1,2
0 (∂zA)(‖wx0,µSµθ̃‖L2(J ;Hσ′+1) + ‖S̃µθ̃‖L2(J ;Hσ+1))

≤ F(‖η‖
Hs+1

2
)(1 + ‖η‖

W r+1
2 ,∞

)

· (‖∇wx0,µSµθ̃‖L2(J ;Hσ′ ) + ‖∇θ̃‖L2(J ;Hσ)).
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We hence have

(∂z − Ta)(∂z − TA)θ̃ = ∂2
z θ̃ + Tα∆θ̃ + Tβ · ∇∂z θ̃ + F3

where

‖F3‖L1(J ;Hσ) ≤ F(‖η‖
Hs+1

2
)(1 + ‖η‖

W r+1
2 ,∞

)‖∇θ̃‖L2(J ;Hσ),

‖wx0,λSµF3‖L1(J ;Hσ′ ) ≤ F(‖η‖
Hs+1

2
)(1 + ‖η‖

W r+1
2 ,∞

)

· (‖∇wx0,µSµθ̃‖L2(J ;Hσ′ ) + ‖∇θ̃‖L2(J ;Hσ)).

Next we estimate the error F2 consisting of errors from paralinearization. Write

(∂z − Ta)(∂z − TA)θ̃ = ∂2
z θ̃ + α∆θ̃ + β · ∇∂z θ̃ + (Tα − α)∆θ̃ + (Tβ − β) · ∇∂z θ̃ + F3

and expand

(Tα − α)∆θ̃ + (Tβ − β) · ∇∂z θ̃ = −(T∆θ̃α +R(α,∆θ̃) + T∇∂z θ̃ · β +R(β,∇∂z θ̃)).

By (E.8) and (E.7),

‖T∆θ̃α‖L1(J ;Hσ) + ‖R(α,∆θ̃)‖L1(J ;Hσ) . ‖∆θ̃‖L2(J ;Cσ−s∗ )‖α‖L2(J ;Hs)

‖T∇∂z θ̃ · β‖L1(J ;Hσ) + ‖R(β,∇∂z θ̃)‖L1(J ;Hσ) . ‖∇∂z θ̃‖L2(J ;Cσ−s∗ )‖β‖L2(J ;Hs).

We estimate α and β via Corollary A.2 while

‖∆θ̃‖Cσ−s∗
. ‖∇θ̃‖Cσ−s+1

∗
, ‖∇∂z θ̃‖Cσ−s∗

. ‖∂z θ̃‖Cσ−s+1
∗

.

For the local estimates, we consider the α terms; the β terms are similar. By Proposition
B.1,

‖wx0,µSµT∆θ̃α‖Hσ′ . ‖∆θ̃‖Cσ−s∗
(‖wx0,µSµα‖Hs′ + ‖α‖Hs).

After integrating in z and using Cauchy-Schwarz, we may use Corollary B.7 and Corollary
A.2 respectively to estimate the α terms.

Next we consider wx0,λSµR(α,∆θ̃). By Proposition 11.9,

‖wx0,λSµR(α,∆θ̃)‖Hσ′ . µσ
′‖wx0,λSµR(α,∆θ̃)‖L2

. µσ
′
(‖α‖LSs−σx0,ξ0,λ,µ

‖∆θ̃‖Cσ−s+∗
+ ‖Sλα‖Cr∗‖wx0,λSξ0,λ,µ∆θ̃‖H−1).

We use Corollary B.8 and Corollary A.2 to estimate the α terms, concluding

‖wx0,λSµR(α,∆θ̃)‖L1(J ;Hσ′ )

≤ F(‖η‖
Hs+1

2
)((λ

1
2µ−

1
2 + ‖η‖

W r+1
2 ,∞

+ µσ
′‖η‖

LS
s−σ+1

2
x0,ξ0,λ,µ

)‖∇θ̃‖L2(J ;Cσ−s+1+
∗ )

+ (1 + ‖η‖
W r+1

2 ,∞
)µσ

′
(‖∇wx0,λSξ0,λ,µθ̃‖L2(J ;L2) + ‖Sξ0,λ,µθ̃‖L2(J ;H1− 1

4 )
)).

We hence have

(∂z − Ta)(∂z − TA)θ̃ = ∂2
z θ̃ + α∆θ̃ + β · ∇∂z θ̃ + F2 + F3 = F0 + γ∂z θ̃ + F2 + F3

where

‖F2‖L1(J ;Hσ) ≤ F(‖η‖
Hs+1

2
)‖∇x,z θ̃‖L2(J ;Cσ−s+1

∗ ),
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‖wx0,µSµF2‖L1(J ;Hσ′ )

≤ F(‖η‖
Hs+1

2
)((λ

1
2µ−

1
2 + ‖η‖

W r+1
2 ,∞

+ µσ
′‖η‖

LS
s−σ+1

2
x0,ξ0,λ,µ

)‖∇θ̃‖L2(J ;Cσ−s+1+
∗ )

+ (1 + ‖η‖
W r+1

2 ,∞
)(µσ

′‖∇wx0,λSξ0,λ,µθ̃‖L2(J ;L2) + ‖∇θ̃‖L2(J ;Hσ))).

Lastly, we estimate the first order term F1 = γ∂z θ̃. We decompose into paraproducts,

γ∂z θ̃ = Tγ∂z θ̃ + T∂z θ̃γ +R(γ, ∂z θ̃).

We have by (E.8), (E.7), and Corollary A.2,

‖Tγ∂z θ̃‖L1(J ;Hσ) + ‖R(γ, ∂z θ̃)‖L1(J ;Hσ) . ‖γ‖L2(J ;Cr−1
∗ )‖∂z θ̃‖L2(J ;Hσ)

≤ F(‖η‖
Hs+1

2
)(1 + ‖η‖

W r+1
2 ,∞

)‖∂z θ̃‖L2(J ;Hσ).

Similarly,

‖T∂z θ̃γ‖L2(J ;Hσ− 1
2 )
. ‖γ‖L2(J ;Hs−1)‖∂z θ̃‖

L∞(J ;C
σ−s+1

2+
∗ )

≤ F(‖η‖
Hs+1

2
)‖∂z θ̃‖

L∞(J ;C
σ−s+1

2+
∗ )

.

For the local estimates, by Proposition B.1,

‖wx0,µSµTγ∂z θ̃‖Hσ′ . ‖γ‖Cr−1
∗

(‖wx0,µSµ∂z θ̃‖Hσ′ + ‖∂z θ̃‖Hσ),

‖wx0,µSµT∂z θ̃γ‖Hσ′− 1
2
. ‖∂z θ̃‖

C
σ−s+1

2+
∗

(‖wx0,µSµγ‖Hs′−1 + ‖γ‖Hs−1).

After integrating in z and using Cauchy-Schwarz for the first estimate, and simply integrating
in L2

z for the second, we use Corollary B.7 and Corollary A.2 to estimate the γ terms.
Lastly, by Proposition 11.9,

‖wx0,λSµR(γ, ∂z θ̃)‖Hσ′ . µσ
′‖wx0,λSµR(γ, ∂z θ̃)‖L2

. µσ
′
(‖γ‖LSs−σ−1

x0,ξ0,λ,µ
‖∂z θ̃‖Cσ−s+1+

∗
+ ‖Sλγ‖Cr−1

∗
‖wx0,λSξ0,λ,µ∂z θ̃‖L2).

We use Corollary B.8 and Corollary A.2 to estimate the γ terms, concluding

‖wx0,λSµR(γ, ∂z θ̃)‖L1(J ;Hσ′ )

≤ F(‖η‖
Hs+1

2
)((λ

1
2µ−

1
2 + ‖η‖

W r+1
2 ,∞

+ µσ
′‖η‖

LS
s−σ+1

2
x0,ξ0,λ,µ

)‖∂z θ̃‖L2(J ;Cσ−s+1+
∗ )

+ (1 + ‖η‖
W r+1

2 ,∞
)µσ

′‖∂zwx0,λSξ0,λ,µθ̃‖L2(J ;L2)).

�

B.4. Paralinearization of ∂z. Now that we have estimates on the inhomogeneous error for
the factored equation (A.12), we can apply parabolic estimates, which we now recall:

Proposition B.10. [ABZ14a, Proposition 2.18] Let r ∈ R, ρ ∈ (0, 1), J = [z0, z1] ⊆ R, and
let p ∈ Γ1

ρ(J × Rd) satisfy
Re p(z, x, ξ) ≥ c|ξ|

for some positive constant c. Then for any f ∈ Y r(J) and v0 ∈ Hr(Rd), there exists
v ∈ Xr(J) solving the parabolic evolution equation

(∂z + Tp)v = f, v|z=z0 = v0,

satisfying
‖v‖Xr(J) . ‖v0‖Hr + ‖f‖Y r(J)

with a constant depending only on r, ρ, c, and M1
ρ(p).
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First, we make ∂z ≈ TA precise in a (global) Sobolev norm, on which we will induct for
the local counterpart:

Lemma B.11. Let 0 ≤ σ ≤ s − 1
2

and −1 < z1 < z0 < 0. Denote J0 = [z0, 0], J1 = [z1, 0].
Consider θ solving (A.14). Then

‖(∂z − TA)θ̃‖Xσ(J0) ≤ F(‖η‖
Hs+1

2
, ‖f‖

Hσ+1
2
)(1 + ‖η‖

W r+1
2 ,∞

+ ‖∇x,z θ̃‖Uσ−s+1
2+(J1)

).

Proof. We insert a smooth vertical cutoff χ(z) vanishing on [−1, z1] with χ = 1 on J0 =
[z0, 0] ⊆ (−1, 0], so that we have

(∂z − Ta)χ(∂z − TA)θ̃ = χ(F1 + F2 + F3) + χ′(∂z − TA)θ̃ =: F ′.

We estimate χ′(∂z − TA)θ̃ directly, obtaining

‖χ′(∂z − TA)θ̃‖L1(J1;Hσ) ≤ F(‖η‖
Hs+1

2
)‖∇x,z θ̃‖L2(J1;Hσ).

Combining this estimate with the Sobolev estimates of Proposition B.9, we have

‖F ′‖Y σ(J1) ≤ F(‖η‖
Hs+1

2
)((1 + ‖η‖

W r+1
2 ,∞

)‖∇x,z θ̃‖L2(J1;Hσ) + ‖∇x,z θ̃‖Uσ−s+1
2+(J1)

).

By Proposition A.12 with σ − 1
2

in the place of σ,

‖∇x,z θ̃‖L2(J1;Hσ) ≤ F(‖η‖
Hs+1

2
)‖f‖

Hσ+1
2
.

Lastly, applying the Sobolev parabolic estimate of Proposition B.10, we obtain the result.
�

We are now ready to establish a local Sobolev counterpart to Lemma B.11:

Lemma B.12. Let 0 ≤ σ ≤ s− 1
2

and z0 ∈ (−1, 0], J = [z0, 0]. Consider θ solving (A.14).
Then

‖wx0,λSµ(∂z − TA)θ̃‖Xσ′ (J) ≤ F(‖η‖
Hs+1

2
, ‖f‖

Hσ+1
2
, ‖f‖H1+)(1 + ‖η‖

W r+1
2 ,∞

+ ‖f‖Cr∗ )

· (λ
1
2µ−

1
2 + ‖η‖

W r+1
2 ,∞

+ µσ
′‖η‖

LS
s−σ+1

2
x0,ξ0,λ,µ

+ µσ
′‖f‖

LS
1
2
x0,ξ0,λ,µ

).

Proof. By Proposition B.9, we have

wx0,λSµ(∂z − Ta)(∂z − TA)θ̃ = wx0,λSµ(F1 + F2 + F3).

We will commute

[wx0,λSµ, Ta](∂z − TA)θ̃.

As in the proof of Lemma B.11, we also insert a smooth vertical cutoff χ(z) vanishing on

[−1, z1] with χ = 1 on J = [z0, 0] ⊆ (−1, 0]. Writing W = (∂z − TA)θ̃, we then have

(∂z − Ta)χwx0,λSµW = χwx0,λSµ(F1 + F2 + F3) + χ[wx0,λSµ, Ta]W(B.3)

+ χ′wx0,λSµW =: F ′.

Our goal is to estimate F ′ ∈ Y σ′(J1) to apply the parabolic estimate. First, we consider
the commutator on the right hand side of (B.3). By Proposition B.3,

‖[wx0,λSµ, Ta]W‖Hσ′− 1
2
.M1

0 (a)λ
3
8µ−

3
8‖W‖

Hσ′− 1
2+1− 1

8
≤ F(‖η‖

Hs+1
2
)λ

3
8µ−

3
8‖W‖

Hσ+1
2
.
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Applying Lemma B.11 on W , we conclude

‖[wx0,λSµ, Ta]W‖L2(J1;Hσ′− 1
2 )
≤ F(‖η‖

Hs+1
2
, ‖f‖

Hσ+1
2
)λ

3
8µ−

3
8

· (1 + ‖η‖
W r+1

2 ,∞
+ ‖∇x,z θ̃‖Uσ−s+1

2+(J1)
).

Likewise, for the term χ′wx0,λSµW on the right hand side of (B.3), we again apply Lemma
B.11 (without using any of the localization), obtaining a bound with the same right hand
side.

Collecting these estimates with the local Sobolev estimates of Proposition B.9, we have

‖F ′‖Y σ′ (J1) ≤ F(‖η‖
Hs+1

2
, ‖f‖

Hσ+1
2
)(λ

3
8µ−

3
8 (1 + ‖η‖

W r+1
2 ,∞

+ ‖∇x,z θ̃‖Uσ−s+1
2+(J1)

)

+ (λ
1
2µ−

1
2 + ‖η‖

W r+1
2 ,∞

+ µσ
′‖η‖

LS
s−σ+1

2
x0,ξ0,λ,µ

)‖∇x,z θ̃‖Uσ−s+1
2+(J1)

+ (1 + ‖η‖
W r+1

2 ,∞
)(µσ

′‖∇x,zwx0,λSξ0,λ,µθ̃‖L2(J1;L2) + ‖∇wx0,µSµθ̃‖L2(J1;Hσ′ )

+ ‖∇x,z θ̃‖L2(J1;Hσ))).

On the left hand side, applying the parabolic estimate of Proposition B.10 to (B.3) on J1,
we may exchange ‖F ′‖ with

‖χwx0,λSµ(∂z − TA)θ̃‖Xσ′ (J)

as desired. Here we may drop the χ, as on on J , we have χ ≡ 1.
We may bound the right hand side using Propositions A.12 and A.13 to estimate the

Sobolev norms, and Proposition A.14 for the Hölder norms,

F(‖η‖
Hs+1

2
, ‖f‖

Hσ+1
2
, ‖f‖H1+)(λ

3
8µ−

3
8 (1 + ‖η‖

W r+1
2 ,∞

+ ‖f‖Cr∗ )

+ (λ
1
2µ−

1
2 + ‖η‖

W r+1
2 ,∞

+ µσ
′‖η‖

LS
s−σ+1

2
x0,ξ0,λ,µ

)(1 + ‖η‖
W r+1

2 ,∞
+ ‖f‖Cr∗ )

+ (1 + ‖η‖
W r+1

2 ,∞
)(1 + ‖η‖

W r+1
2 ,∞

+ µσ
′‖wx0,λSξ0,λ,µf‖H 1

2
+ ‖wx0,µSµf‖Hσ′+1

2
)).

Further rearranging, and recalling the definition of LS
1
2
x0,ξ0,λ,µ

, yields the desired estimate. �

B.5. Local Sobolev paralinearization. In this subsection we perform a paralinearization
of the Dirichlet to Neumann map, measuring the error locally in Hs′− 1

2 . For comparison, the
error was measured (globally) in Hs− 1

2 in [ABZ14a], [ABZ14b].
For convenience, we record Lemma B.12 with σ = s − 1

2
, and Proposition A.14 with

σ = 0+:

Corollary B.13. Let z0 ∈ (−1, 0], J = [z0, 0]. Consider θ solving (A.14). Then

‖wx0,λSµ(∂z − TA)θ̃‖
Xs′− 1

2 (J)
≤ F(‖η‖

Hs+1
2
, ‖f‖Hs)(1 + ‖η‖

W r+1
2 ,∞

+ ‖f‖Cr∗ )

· (λ
1
2µ−

1
2 + ‖η‖

W r+1
2 ,∞

+ µs
′− 1

2‖η‖LS1
x0,ξ0,λ,µ

+ µs
′− 1

2‖f‖
LS

1
2
x0,ξ0,λ,µ

),

‖∇x,z θ̃‖L∞(J ;C0+
∗ ) ≤ F(‖η‖

Hs+1
2
, ‖f‖Hs)(1 + ‖η‖

W r+1
2 ,∞

+ ‖f‖Cr∗ ).

Recall that we write Λ for the principal symbol of the Dirichlet to Neumann map.
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Proposition B.14. Write

Λ(t, x, ξ) =
√

(1 + |∇η|2)|ξ|2 − (∇η · ξ)2.

Then

‖wx0,λSµ(G(η)− TΛ)f‖
Hs′− 1

2
≤ F(‖η‖

Hs+1
2
, ‖f‖Hs)(1 + ‖η‖

W r+1
2 ,∞

+ ‖f‖Cr∗ )

· (λ
1
2µ−

1
2 + ‖η‖

W r+1
2 ,∞

+ µs
′− 1

2‖η‖LS1
x0,ξ0,λ,µ

+ µs
′− 1

2‖f‖
LS

1
2
x0,ξ0,λ,µ

).

Proof. Recall

G(η)f =

(
1 + |∇ρ|2

∂zρ
∂z θ̃ −∇ρ · ∇θ̃

)∣∣∣∣
z=0

=:
(
ζ∂z θ̃ −∇ρ · ∇θ̃

)∣∣∣
z=0

.

First we reduce to paraproducts. Write

ζ∂z θ̃ −∇ρ · ∇θ̃ = Tζ∂z θ̃ − T∇ρ∇θ̃ + T∂z θ̃ζ − T∇θ̃ · ∇ρ+R(ζ, ∂z θ̃)−R(∇ρ,∇θ̃).
First we estimate T∂z θ̃ζ (note T∇θ̃ ·∇ρ is similar, with the same estimates). By Proposition

B.1,

‖wx0,λSµT∂z θ̃ζ‖Hs′− 1
2
. ‖wx0,µSµT∂z θ̃ζ‖Hs′− 1

2
. ‖∂z θ̃‖L∞(‖wx0,µSµζ‖Hs′− 1

2
+ ‖ζ‖

Hs− 1
2
).

Use Corollary B.13 to estimate the ∂z θ̃ term. Also note that ζ satisfies the same local
estimate as α in Corollary B.7 by using the same argument,

‖wx0,µSµζ‖Xs′− 1
2 (J)
≤ F(‖η‖

Hs+1
2
)(λ

1
2µ−

1
2 + ‖η‖

W r+1
2 ,∞

+ ‖wx0,µSµη‖Hs′+1
2
).

Likewise, ζ satisfies the same estimate as α in Corollary A.2, and in particular ζ ∈ Xs− 1
2 (J).

Using the L∞z component of the Xs− 1
2 (J) norms, the left hand sides bound the corresponding

terms evaluated at z = 0.
Second, we consider the R(·, ·) terms. We again consider only the typical R(ζ, ∂z θ̃). By

Proposition 11.9,

‖wx0,λSµR(ζ, ∂z θ̃)‖Hs′− 1
2
. µs

′− 1
2‖wx0,λSµR(ζ, ∂z θ̃)‖L2

. µs
′− 1

2 (‖ζ‖LS0
x0,ξ0,λ,µ

‖∂z θ̃‖C0+
∗

+ ‖Sλζ‖
C

1
2
∗
‖wx0,λSξ0,λ,µ∂z θ̃‖H− 1

2
).

Again noting that ζ satisfies the same estimate as α in Corollaries B.8 and A.2 by using the
same arguments, and using Corollary B.13 for ∂z θ̃, we conclude

‖wx0,λSµR(ζ, ∂z θ̃)‖L∞(J ;Hs′− 1
2 )
≤ F(‖η‖

Hs+1
2
, ‖f‖Hs)

· ((λ
1
2µ−

1
2 + ‖η‖

W r+1
2 ,∞

+ µs
′− 1

2‖η‖LS1
x0,ξ0,λ,µ

)(1 + ‖η‖
W r+1

2 ,∞
+ ‖f‖Cr∗ )

+ (1 + ‖η‖
W r+1

2 ,∞
)µs

′− 1
2 (‖∂zwx0,λSξ0,λ,µθ̃‖L∞(J ;H−

1
2 )

)).

Lastly, estimate using Proposition A.13,

‖∂zwx0,λSξ0,λ,µθ̃‖L∞(J ;H−
1
2 )
. λ

1
2
−s′‖∂zwx0,λSξ0,λ,µθ̃‖L∞(J ;Hs′−1)

≤ λ
1
2
−s′F(‖η‖

Hs+1
2
, ‖f‖Hs)(‖wx0,λSξ0,λ,µf‖Hs′ + 1 + ‖η‖

W r+1
2 ,∞

)

≤ F(‖η‖
Hs+1

2
, ‖f‖Hs)(‖wx0,λSξ0,λ,µf‖H 1

2
+ λ

1
2
−s′(1 + ‖η‖

W r+1
2 ,∞

))

which estimates R(ζ, ∂z θ̃) by the desired right hand side.
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Third, we may replace the vertical derivative ∂z θ̃ with TAθ̃ as a consequence of Corollary
B.13. Note that to handle the multiplication of the paralinearization error with ζ, we use a
straightforward generalization of Proposition B.1:

‖wx0,λSµTζ(∂z − TA)θ̃‖
Hs′− 1

2
. ‖∇η‖L∞(‖wx0,λSµ(∂z − TA)θ̃‖

Hs′− 1
2

+ λ
1
2µ−

1
2‖(∂z − TA)θ̃‖

Hs− 1
2
).

Here, the last term on the right may be estimated using Lemma B.11, as in the proof of
Lemma B.12. Thus

G(η)f = (TζTAθ̃ − T∇ρ · ∇θ̃)|z=0 +R,

with the error R satisfying the desired estimate.
Lastly, by Proposition B.3, Propositions A.1 and A.4, and Proposition A.12 and Proposi-

tion A.13,

‖wx0,µSµ(TζTA − TζA)θ̃‖
Hs′− 1

2
. (M0

0 (ζ)M1
1
2
(A) +M0

1
2
(ζ)M1

0 (A))(‖wx0,µSµθ̃‖Hs′ + ‖S̃µθ̃‖Hs)

≤ F(‖η‖
Hs+1

2
)(1 + ‖η‖

W r+1
2 ,∞

)

· (‖∇wx0,µSµθ̃‖Hs′−1 + ‖∇θ̃‖Hs−1)

≤ F(‖η‖
Hs+1

2
, ‖f‖Hs)(1 + ‖η‖

W r+1
2 ,∞

)

· (1 + ‖η‖
W r+1

2 ,∞
+ ‖wx0,µSµf‖Hs′ ).

We thus may exchange TζTAθ̃ for TζAθ̃ in the expression for G(η)f , with an error R′

satisfying the same estimates as R. We conclude, using that θ̃(0) = f ,

G(η)f = TζA−i∇ρ·ξf +R +R′.

A routine computation shows that (ζA− i∇ρ · ξ)|z=0 = Λ as desired. �

For comparison and later use, we also recall the following (global) Sobolev estimates:

Proposition B.15. [ABZ14b, Theorem 1.4] We have

‖G(η)f − TΛf‖Hs− 1
2
≤ F(‖η‖

Hs+1
2
, ‖f‖Hs)(1 + ‖η‖

W r+1
2 ,∞

+ ‖f‖W r,∞).(B.4)

Proposition B.16. [ABZ14a, Proposition 3.13] We have

‖G(η)f − TΛf‖Hs−1 ≤ F(‖η‖
Hs+1

2
, ‖f‖Hs).(B.5)

Remark B.17. The Sobolev estimate here was stated for s > d
2

+ 3
4
, but using sharper

elliptic estimates, this can be reduced to s > d
2

+ 1
2
.

Appendix C. Local Estimates on the Taylor Coefficient

In this section, we establish local Sobolev estimates on the Taylor coefficient

a = −(∂yP )|y=η(t,x).

Recall that the pressure is given by

−P = ∂tφ+
1

2
|∇x,yφ|2 + gy.

This immediately implies an identity involving a derivative along the velocity field v =
∇x,yφ,

(C.1) (∂t + v · ∇x,y)∂yφ = −∂yP − g,
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as well as an elliptic equation,

(C.2) ∆x,yP = −∇2
x,yφ · ∇2

x,yφ =: F, P |y=η(x) = 0.

C.1. Elliptic estimates on the pressure. First we recall standard elliptic estimates on
the pressure P :

Proposition C.1. Let z0 ∈ (−1, 0], J = [z0, 0]. Then

‖∇x,zP̃‖Xs− 1
2 (J)
≤ F(M(t)).

Proof. Apply Proposition A.9 to (C.2) with σ = s− 1
2
:

‖∇x,zP̃‖Xs− 1
2 (J0)

≤ F(‖η‖
Hs+1

2
)(‖αF̃‖

Y s−
1
2 (J1)

+ ‖∇x,zP̃‖X− 1
2 (J1)

).

Then, using [ABZ14a, (4.22)], we have

‖∇x,zP̃‖X− 1
2 (J1)

≤ F(M(t)).

Further, by [ABZ14a, Lemma 4.7] (which one easily checks only requires s > d
2

+ 1
2
),

‖αF‖
Y s−

1
2 (J1)

≤ F(M(t)).

�

C.2. Local elliptic estimates on the pressure. Here we establish local Sobolev estimates
on the pressure P . First, we apply Proposition B.9 to P :

Proposition C.2. Let z0 ∈ [−1, 0], J = [z0, 0]. Then we can write

(∂z − Ta)(∂z − TA)P̃ = F0 + F1 + F2 + F3

where for i ≥ 1,

‖Fi‖Y s− 1
2 (J)
≤ F(M(t))(1 + ‖η‖

W r+1
2 ,∞

),

‖wx0,λSµFi‖Y s′− 1
2 (J)
≤ F(M(t))(λ

1
2µ−

1
2 + ‖η‖

W r+1
2 ,∞

+ µs
′− 1

2‖η‖LS1
x0,ξ0,λ,µ

).

Proof. Apply Proposition B.9 except with F0 6= 0 and σ = s− 1
2
:

‖Fi‖Y s− 1
2 (J)
≤ F(‖η‖

Hs+1
2
)((1 + ‖η‖

W r+1
2 ,∞

)‖∇x,zP̃‖L2(J ;Hs− 1
2 )

+ ‖∇x,zP̃‖U0+(J)),

‖wx0,λSµFi‖Y s′− 1
2 (J)
≤ F(‖η‖

Hs+1
2
)((λ

1
2µ−

1
2 + ‖η‖

W r+1
2 ,∞

+ µs
′− 1

2‖η‖LS1
x0,ξ0,λ,µ

)‖∇x,zP̃‖U0+(J)

+ (1 + ‖η‖
W r+1

2 ,∞
)(µs

′− 1
2‖∇x,zwx0,λSξ0,λ,µP‖L2(J ;L2) + ‖∇wx0,µSµP̃‖L2(J ;Hs′− 1

2 )

+ ‖∇x,zP̃‖L2(J ;Hs− 1
2 )

)).

Then applying Sobolev embedding along with Proposition C.1 to the right hand sides (with-
out using the localization), one obtains the estimate. �

Next, we obtain the counterparts of Lemmas B.11 and B.12:

Lemma C.3. Let z0 ∈ (−1, 0], J = [z0, 0]. Then

‖(∂z − TA)P̃‖
Xs− 1

2 (J0)
≤ F(M(t)).

Proof. This is immediate from Proposition C.1 by estimating ∂zP̃ and TAP̃ separately. �

120



Lemma C.4. Let z0 ∈ (−1, 0], J = [z0, 0]. Then

‖wx0,λSµ(∂z − TA)P̃‖
Xs′− 1

2 (J)
≤ F(M(t))(λ

1
2µ−

1
2 + ‖η‖

W r+1
2 ,∞

+ µs
′− 1

2‖η‖LS1
x0,ξ0,λ,µ

).

Proof. The proof is the same as that of Lemma B.12, except in place of the inhomogeneous
bounds of Proposition B.9, we apply Proposition C.2; in place of the global counterpart
Lemma B.11, apply Lemma C.3; in place of the elliptic estimates of Propositions A.12 and
A.13, apply Proposition C.1. For the Hölder estimates, Sobolev embedding suffices. �

Finally, we perform a second parabolic estimate to obtain the full elliptic estimate:

Proposition C.5. Let z0 ∈ (−1, 0], J = [z0, 0]. Then

‖∇x,zwx0,λSµP̃‖Xs′− 1
2 (J)
≤ F(M(t))(λ

1
2µ−

1
2 + ‖η‖

W r+1
2 ,∞

+ µs
′− 1

2‖η‖LS1
x0,ξ0,λ,µ

).

Proof. First we estimate the commutator using Proposition B.3,

‖[wx0,λSµ, TA]P̃‖Hs′ .M1
0 (A)λ

3
8µ−

3
8‖S̃µP̃‖Hs′+1− 1

8
≤ F(‖η‖

Hs+1
2
)λ

3
8µ−

3
8‖∇P̃‖Hs .

Then integrating L2
z and applying Proposition C.1, we see the commutator satisfies the same

estimate as wx0,λSµ(∂z − TA)P̃ ∈ Y s′+ 1
2 (J) obtained by Lemma C.4.

We conclude

(C.3) (∂z − TA)wx0,λSµP̃ = F ′

where

‖F ′‖
Y s
′+1

2 (J)
≤ F(M(t))(λ

1
2µ−

1
2 + ‖η‖

W r+1
2 ,∞

+ µs
′− 1

2‖η‖LS1
x0,ξ0,λ,µ

).

Then applying the parabolic estimate of Proposition B.10,

‖wx0,λSµP̃‖Xs′+1
2 (J)
≤ F(M(t))(λ

1
2µ−

1
2 + ‖η‖

W r+1
2 ,∞

+ µs
′− 1

2‖η‖LS1
x0,ξ0,λ,µ

).

We thus obtain the desired estimate on ∇wx0,λSµP̃ . Then using the equation (C.3) and

applying our estimate on F ′, we also obtain the estimate on ∂zwx0,λSµP̃ . �

C.3. Local smoothing estimates on the Taylor coefficient. To conclude this section,
we state a local Sobolev estimate on the Taylor coefficient. This is almost immediate from
the previous subsection, but we need to restore the change of coordinates:

Corollary C.6. We have

‖wx0,λSµa‖Hs′− 1
2
≤ F(M(t))(λ

1
2µ−

1
2 + ‖η‖

W r+1
2 ,∞

+ µs
′− 1

2‖η‖LS1
x0,ξ0,λ,µ

).

Proof. Observe that

∂̃yθ =
1

∂zρ
∂z θ̃.

Thus, it suffices to apply the product estimate, Proposition B.2, combined with Proposition
C.5 and the reciprocal estimate Proposition B.6 (it suffices to use Sobolev embedding on the
L∞ estimates). �

Appendix D. Hölder Estimates

We collect Hölder estimates on unknowns appearing in the water waves system.
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D.1. Paralinearization of the Dirichlet to Neumann map. In this section we establish
the Hölder analogue to Appendix B. We similarly begin with the paralinearization of ∂z. We
have from (A.13) in the proof of Proposition A.8 with σ = 1/2,

Lemma D.1. Let −1 < z1 < z0 < 0. Denote J0 = [z0, 0], J1 = [z1, 0]. Consider θ solving
(A.14). Then

‖(∂z − TA)θ̃‖
C0(J0;C

1
2
∗ )
≤ F(‖η‖

Hs+1
2
)(1 + ‖η‖

W r+1
2 ,∞

)‖∇x,z θ̃‖U0(J1).

We can remove the instance of θ̃ on the right hand side of the lemma, working our way
down to the “base case”:

Corollary D.2. Let z0 ∈ (−1, 0], J0 = [z0, 0]. Consider θ solving (A.14). Then

‖(∂z − TA)θ̃‖
C0(J0;C

1
2
∗ )
≤ F(‖η‖

Hs+1
2
, ‖f‖Hs)(1 + ‖η‖

W r+1
2 ,∞

)(1 + ‖η‖
W r+1

2 ,∞
+ ‖f‖Cr∗ )

‖∇x,z θ̃‖U0(J0) ≤ F(‖η‖
Hs+1

2
, ‖f‖Hs)(1 + ‖η‖

W r+1
2 ,∞

+ ‖f‖Cr∗ ).

Proof. To estimate the right hand side of Lemma D.1, recall Proposition A.8 with σ = 1
2
, δ

chosen small enough so that δ < r − 1, and F = 0:

‖∇x,z θ̃‖U0(J1) ≤ F(‖η‖
Hs+1

2
)(1 + ‖η‖

W r+1
2 ,∞

)‖∇x,z θ̃‖Ur− 3
2 (J2)

+ ‖f‖Cr∗ .

In turn, to estimate the right hand side, we apply Sobolev embedding and Proposition A.9
with σ = s− 1 and F = 0:

‖∇x,z θ̃‖Ur− 3
2 (J2)

. ‖∇x,z θ̃‖Xs−1(J3) ≤ F(‖η‖
Hs+1

2
)(‖f‖Hs + ‖∇x,z θ̃‖X− 1

2 (J3)
).

Lastly, recalling Proposition A.11 yields the desired estimate.
�

We now perform the paralinearization:

Proposition D.3. Write

Λ(t, x, ξ) =
√

(1 + |∇η|2)|ξ|2 − (∇η · ξ)2.

Then

‖G(η)f − TΛf‖W 1
2 ,∞
≤ F(‖η‖

Hs+1
2
, ‖f‖Hs)(1 + ‖η‖

W r+1
2 ,∞

)(1 + ‖η‖
W r+1

2 ,∞
+ ‖f‖W r,∞).

Proof. Recall

G(η)f =

(
1 + |∇ρ|2

∂zρ
∂z θ̃ −∇ρ · ∇θ̃

)∣∣∣∣
z=0

=:
(
ζ∂z θ̃ −∇ρ · ∇θ̃

)∣∣∣
z=0

.

First we reduce to paraproducts. Write

ζ∂z θ̃ −∇ρ · ∇θ̃ = Tζ∂z θ̃ − T∇ρ∇θ̃ + T∂z θ̃ζ − T∇θ̃ · ∇ρ+R(ζ, ∂z θ̃)−R(∇ρ,∇θ̃).

By (E.10),

‖T∂z θ̃ζ‖Cr− 1
2

∗
. ‖∂z θ̃‖L∞‖ζ‖

C
r− 1

2
∗

‖T∇θ̃ · ∇ρ‖
C
r− 1

2
∗
. ‖∇θ̃‖L∞‖∇ρ‖

C
r− 1

2
∗

.
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Taking L∞z and using Proposition A.1 and Corollary D.2, the right hand sides are bounded
by the right hand side of the desired estimate. Similarly, by (E.6)

‖R(ζ, ∂z θ̃)‖
C
r− 1

2
∗
. ‖∂z θ̃‖L∞‖ζ‖

C
r− 1

2
∗

‖R(∇ρ,∇θ̃)‖
C
r− 1

2
∗
. ‖∇θ̃‖L∞‖∇ρ‖

C
r− 1

2
∗

.

Second, we may replace the vertical derivative ∂z θ̃ with TAθ̃ as a consequence of Corollary
D.2 along z = 0:

‖((∂z − TA)θ̃)|z=0‖
C

1
2
∗
≤ F(‖η‖

Hs+1
2
, ‖f‖Hs)(1 + ‖η‖

W r+1
2 ,∞

)(1 + ‖η‖
W r+1

2 ,∞
+ ‖f‖Cr∗ ).

Thus (using ζ ∈ L∞)

G(η)f = (TζTAθ̃ − T∇ρ · ∇θ̃)|z=0 +R,

with the error R satisfying

‖R‖
C

1
2
∗
≤ F(‖η‖

Hs+1
2
, ‖f‖Hs)(1 + ‖η‖

W r+1
2 ,∞

)(1 + ‖η‖
W r+1

2 ,∞
+ ‖f‖W r,∞).

Lastly, by the symbolic calculus (E.3), Proposition A.1, and Proposition A.4,

‖(TζTAθ̃ − TζA)θ̃‖
C
r− 1

2
∗
. (M0

r− 1
2
(ζ)M1

0 (A) +M0
0 (ζ)M1

r− 1
2
(A))‖θ̃‖C1

∗

≤ F(‖η‖
Hs+1

2
)‖η‖

W r+1
2 ,∞
‖θ̃‖C1

∗ .

We may exchange θ̃ for S>1/10θ̃ in the previous inequalities by the inhomogeneous paradif-
ferential calculus, and hence use Corollary D.2 to conclude

‖(TζTAθ̃ − TζA)θ̃‖
C
r− 1

2
∗
≤ F(‖η‖

Hs+1
2
, ‖f‖Hs)‖η‖

W r+1
2 ,∞

(1 + ‖η‖
W r+1

2 ,∞
+ ‖f‖Cr∗ ).

We thus may exchange TζTAθ̃ for TζAθ̃ in the expression for G(η)f , with an error R′ satisfying

the same estimates as R. We conclude, using that θ̃(0) = f ,

G(η)f = TζA−i∇ρ·ξf +R +R′.

A routine computation shows that (ζA− i∇ρ · ξ)|z=0 = Λ as desired. �

D.2. General bottom estimates. In this section we recall errors that arise due to the
presence of a general bottom to our fluid domain. We recall the following identities from
Propositions 4.3 and 4.5 in [ABZ14a]:

G(η)B = −∇ · V − Γy

L∇η = G(η)V +∇ηG(η)B + Γx +∇ηΓy
where

‖Γx‖Hs− 1
2

+ ‖Γy‖Hs− 1
2
≤ F(‖η‖

Hs+1
2
, ‖(ψ, V,B)‖

H
1
2
).

Here, Γxi is defined as follows: let θi be the solution to

∆x,yθi = 0, θi|y=η(x) = Vi, ∂nθi|Γ = 0.

Then

(D.1) Γxi = ((∂y −∇η · ∇)(∂iφ− θi))|y=η(x).

Note that by the definition of V , ∂iφ = θi if Γ = ∅, so Γxi is only nonzero in the presence of
a bottom. Γy is defined in the analogous way with B in place of V .
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We recall the following Sobolev estimate:

Proposition D.4. [ABZ14a, Propositions 4.3, 4.5] We have

‖Γy‖Hs− 1
2

+ ‖Γx‖Hs− 1
2
≤ F(‖η‖

Hs+1
2
, ‖(ψ, V,B)‖

H
1
2
).

We also establish the corresponding estimates in Hölder norm. For this we apply the
inhomogeneous elliptic Hölder estimates of Appendix A.

Lemma D.5. Let −1 < z1 < z0 < 0. Denote J0 = [z0, 0], J1 = [z1, 0]. Consider θ̃ solving
(A.2) with f = 0. Then

‖∇x,z θ̃‖
C0(J0;C

1
2
∗ )
≤ F(‖η‖

Hs+1
2
)(1 + ‖η‖

W r+1
2 ,∞

)(‖F0‖Y s− 1
2 (J1)

+ ‖∇x,z θ̃‖X− 1
2 (J1)

)

+ ‖F0‖
L1(J1;C

1
2
∗ )
.

Proof. Applying Proposition A.8 with σ = 1 and f = 0, we have

‖∇x,z θ̃‖
C0(J0;C

1
2
∗ )
≤ F(‖η‖

Hs+1
2
)(1 + ‖η‖

W r+1
2 ,∞

)‖∇x,z θ̃‖U0(J ′0) + ‖F0‖
L1(J ′0;C

1
2
∗ )
.

To estimate the right hand side, we apply Sobolev embedding and Proposition A.9 with
σ = s− 1

2
and f = 0:

‖∇x,z θ̃‖Ur−1(J ′0) . ‖∇x,z θ̃‖Xs− 1
2 (J ′0)

≤ F(‖η‖
Hs+1

2
)(‖F0‖Y s− 1

2 (J1)
+ ‖∇x,z θ̃‖X− 1

2 (J1)
).

�

The rest of the proof closely follows the proof of Proposition 4.3 in [ABZ14a] with the
appropriate modifications to replace Sobolev with Hölder norms, but we provide the details
here for completeness. We will need the following estimate:

Lemma D.6 ([ABZ14a, Lemma 3.11]). Let −1
2
≤ a < b ≤ −1

5
. Then the strip

Sa,b = {(x, y) ∈ Rd+1 : ah < y − η(x) < bh}
is contained in Ω and for any k ≥ 1, we have for any φ solving

∆x,yφ = 0, φ|y=η(x) = ψ,

the estimate

‖φ‖Hk(Sa,b) . ‖ψ‖H 1
2 (Rd)

.

Proposition D.7. Consider Γx,Γy as defined in (D.1). Then

‖Γx‖W 1
2 ,∞

+ ‖Γy‖W 1
2 ,∞
≤ F(‖η‖

Hs+1
2
, ‖(ψ, V,B)‖

H
1
2
)(1 + ‖η‖

W r+1
2 ,∞

).

Proof. We prove the case of Γx as the case of Γy is similar.
First we localize the problem near the surface Γ, away from the general bottom. Let

χ0 ∈ C∞(R), η1 ∈ H∞(Rd) be such that χ0(z) = 1 if z ≥ 0, χ0(z) = 0 if z ≤ −1
4
, and

η(x)− h

4
≤ η1(x) ≤ η(x)− h

5
.

Set

Ui(x, y) = χ0

(
y − η1(x)

h

)
(∂iφ− θi)(x, y).
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By construction, Γxi = ((∂y −∇η · ∇)Ui)|y=η(x). Moreover, Ui satisfies

∆x,yUi = [∆x,y, χ0

(
y − η1(x)

h

)
](∂iφ− θi) =: Fi, Ui|y=η(x) = 0.

where

supp Fi ⊆ S− 1
2
,− 1

5
=

{
(x, y) : x ∈ Rd, η(x)− h

2
≤ y ≤ η(x)− h

5

}
.

By Lemma D.6, we have for arbitrary α ∈ Nd+1,

‖∂αx,yFi‖L∞(S− 1
2 ,−

1
5

)∩L2(S− 1
2 ,−

1
5

) . ‖(V,B)‖
H

1
2

and in particular Fi is smooth.
Next we flatten the boundary defined by the graph of η. Set

Ũi(x, z) = Ui(x, ρ(x, z)), F̃i = Fi(x, ρ(x, z))

where ρ is the Lipschitz diffeomorphism discussed in Appendix A. In particular, the image
of the strip S− 1

2
,− 1

5
is a wider strip, but still away from zero. In turn, this implies F̃i is still

smooth. We also have

(∂2
z + α∆ + β · ∇∂z − γ∂z)Ũi =

(∂zρ)2

1 + |∇ρ|2
F̃i, Ũi|z=0 = 0.

Thus, apply Lemma D.5 with θ̃ = Ũi and smooth inhomogeneity F̃i:

‖∇x,zŨi‖
C0(J0;C

1
2
∗ )
≤ F(‖η‖

Hs+1
2
, ‖(V,B)‖

H
1
2
)(1 + ‖η‖

W r+1
2 ,∞

)(1 + ‖∇x,zŨi‖X− 1
2 (J1)

).

As noted in the proof of Proposition 4.3 in [ABZ14a],

‖∇x,zŨi‖X− 1
2 (I)
≤ F(‖η‖

Hs+1
2
(‖ψ‖

H
1
2

+ ‖Vi‖H 1
2
)

so we conclude

‖∇x,zŨi‖
C0(J0;C

1
2
∗ )
≤ F(‖η‖

Hs+1
2
, ‖(ψ, V,B)‖

H
1
2
)(1 + ‖η‖

W r+1
2 ,∞

).

From the definition of ρ in Section 3 of [ABZ14a],

Γxi =

((
1 + |∇η|2

1 + δ〈Dx〉η
∂z −∇η · ∇

)
Ũi

)∣∣∣∣
z=0

,

so we conclude by Sobolev embedding on ∇η that

‖Γxi‖W 1
2 ,∞
≤ F(‖η‖

Hs+1
2
, ‖(ψ, V,B)‖

H
1
2
)(1 + ‖η‖

W r+1
2 ,∞

).

�

D.3. Estimates on the Taylor coefficient. We recall Hölder estimates on the Taylor
coefficient:

Proposition D.8 ([ABZ14b, Proposition C.1]). Remain in the setting of Proposition 2.1.
Let 0 < ε < min(r − 1, s− d

2
− 3

4
). Then for all t ∈ [0, T ],

‖a(t)− g‖L∞ . ‖a(t)− g‖
Hs− 1

2
≤ F(M(t)),

‖a(t)‖
W

1
2+ε,∞ + ‖La(t)‖W ε,∞ ≤ F(M(t))Z(t).
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Remark D.9. The Sobolev estimate here was stated for s > d
2

+ 1, but the proof is actually

valid for s > d
2

+ 1
2
. The Hölder estimates also hold for s > d

2
+ 1

2
, but require sharper

arguments.

We have the following straightforward consequence:

Corollary D.10. Remain in the setting of Proposition D.8 and fix multi-index β. Then for
all t ∈ [0, T ], uniformly on {|ξ| = 1},

‖∂βξ γ(t, ·, ξ)‖L∞ ≤ F(M(t)),

‖∂βξ γ(t, ·, ξ)‖
W

1
2+ε,∞ ≤ F(M(t))Z(t).

D.4. Vector field commutator estimate. We record a version of Lemma 2.17 in [ABZ14a]
for Hölder spaces. The proof is similar, exchanging Sobolev norms with Hölder norms.

Proposition D.11. For any t ∈ I, r ≥ 0, and ε > −r,
‖ ((∂t + V · ∇)Tp − Tp(∂t + TV · ∇))u(t)‖W r,∞

. Mm
0 (p(t))‖V (t)‖W 1,∞‖u(t)‖Br+m∞,1

+Mm
0 (p(t))‖V (t)‖W r+ε,∞‖u(t)‖B1+m−ε

∞,1

+Mm
0 (∂tp(t) + V · ∇p(t))‖u(t)‖W r+m,∞ .

Appendix E. Paradifferential Calculus

For the reader’s convenience, we provide an appendix of notation and estimates from
Bony’s paradifferential calculus. This is a subset of the appendix in [ABZ14b].

E.1. Notation. For ρ = k+σ, k ∈ N, σ ∈ (0, 1), denote by W ρ,∞(Rd) the space of functions
whose derivatives up to order k are bounded and uniformly Hölder continuous with exponent
σ.

Definition E.1. Given ρ ∈ [0, 1] and m ∈ R, let Γmρ (Rd) denote the space of locally bounded

functions a(x, ξ) on Rd × (Rd\0), which are C∞ functions of ξ away from the origin and
such that, for any α ∈ Nd and any ξ 6= 0, the function x 7→ ∂αξ a(x, ξ) is in W ρ,∞(Rd) and

there exists a constant Cα such that on {|ξ| ≥ 1
2
},

‖∂αξ a(·, ξ)‖W ρ,∞(Rd) ≤ Cα(1 + |ξ|)m−|α|.
For a ∈ Γmρ , we define

Mm
ρ (a) = sup

|α|≤1+2d+ρ

sup
|ξ|≥1/2

‖(1 + |ξ|)|α|−m∂αξ a(·, ξ)‖W ρ,∞(Rd).

Given a symbol a ∈ Γmρ (Rd), define the (inhomogeneous) paradifferential operator Ta by

T̂au(ξ) = (2π)−d
∫
χ(ξ − η, η)â(ξ − η, η)ψ(η)û(η) dη,

where â(θ, ξ) is the Fourier transform of a with respect to the first variable, and χ and ψ are
two fixed C∞ functions satisfying, for small 0 < ε1 < ε2,{

ψ(η) = 0 on {|η| ≤ 1}
ψ(η) = 1 on {|η| ≥ 2},
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{
χ(θ, η) = 1 on {|θ| ≤ ε1|η|}
χ(θ, η) = 0 on {|θ| ≥ ε2|η|},

|∂αθ ∂βηχ(θ, η)| ≤ cα,β(1 + |η|)−|α|−|β|.

The cutoff function χ can be chosen so that Ta coincides with the usual definition of a
paraproduct (in terms of a Littlewood-Paley decomposition), where the symbol a depends
only on x.

E.2. Symbolic calculus. We shall use results from [Mét08] about operator norm estimates
for the pseudodifferential symbolic calculus.

Definition E.2. Consider a dyadic decomposition of the identity:

I = S0 +
∑
λ=1

Sλ.

If s ∈ R, the Zygmund class Cs
∗(Rd) is the space of tempered distributions u such that

‖u‖Cs∗ := sup
λ
λs‖Sλu‖L∞ <∞.

Remark E.3. If s > 0 is not an integer, then Cs
∗(Rd) = W s,∞(Rd).

Definition E.4. Let m ∈ R. We say an operator T is of order m if for every µ ∈ R, it is
bounded from Hµ to Hµ−m and from Cµ

∗ to Cµ−m
∗ .

The main features of the symbolic calculus for paradifferential operators are given by the
following proposition:

Proposition E.5. Let m ∈ R and ρ ∈ [0, 1].
i) If a ∈ Γm0 (Rd), then Ta is of order m. Moreover, for all µ ∈ R,

(E.1) ‖Ta‖Hµ→Hµ−m .Mm
0 (a), ‖Ta‖Cµ∗→Cµ−m∗

.Mm
0 (a).

ii) If a ∈ Γmρ (Rd) and b ∈ Γm
′

ρ (Rd) then TaTb − Tab is of order m+m′ − ρ. Moreover, for all
µ ∈ R,

‖TaTb − Tab‖Hµ→Hµ−m−m′+ρ .Mm
ρ (a)Mm′

0 (b) +Mm
0 (a)Mm′

ρ (b),(E.2)

‖TaTb − Tab‖Cµ∗→Cµ−m−m′+ρ∗
.Mm

ρ (a)Mm′

0 (b) +Mm
0 (a)Mm′

ρ (b).(E.3)

We also need to consider paradifferential operators with negative regularity. As a conse-
quence, we need to extend our previous definition.

Definition E.6. For m ∈ R and ρ < 0, Γmρ (Rd) denotes the space of distributions a(x, ξ)

on Rd × (Rd\0) which are C∞ with respect to ξ and such that, for all α ∈ Nd and all ξ 6= 0,
the function x 7→ ∂αξ a(x, ξ) belongs to Cρ

∗ (Rd) and there exists a constant Cα such that on

{|ξ| ≥ 1
2
},

‖∂αξ a(·, ξ)‖Cρ∗ ≤ cα(1 + |ξ|)m−|α|.
For a ∈ Γmρ , we define

Mm
ρ (a) = sup

|α|≤ 3d
2

+ρ+1

sup
|ξ|≥1/2

‖(1 + |ξ|)|α|−m∂αξ a(·, ξ)‖Cρ∗ (Rd).

We recall Proposition 2.12 in [ABZ14a] which is a generalization of (E.1).

Proposition E.7. Let ρ < 0, m ∈ R, and a ∈ Γ̇mρ . Then the operator Ta is of order m− ρ:

(E.4) ‖Ta‖Hs→Hs−(m−ρ) .Mm
ρ (a), ‖Ta‖Cs∗→Cs−(m−ρ)

∗
.Mm

ρ (a).
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E.3. Paraproducts and product rules. We recall here some properties of paraproducts,
Ta where a(x, ξ) = a(x). A key feature is that one can define paraproducts for rough functions
a which do not belong to L∞(Rd) but merely C−m∗ (Rd) with m > 0.

Definition E.8. Given two functions a, b defined on Rd, we define the remainder

R(a, u) = au− Tau− Tua.

We record here various estimates about paraproducts (see Chapter 2 in [BCD11]).

Proposition E.9. i) Let α, β ∈ R. If α + β > 0 then

‖R(a, u)‖
Hα+β− d2

. ‖a‖Hα‖u‖Hβ(E.5)

‖R(a, u)‖Cα+β∗
. ‖a‖Cα∗ ‖u‖Cβ∗(E.6)

‖R(a, u)‖Hα+β . ‖a‖Cα∗ ‖u‖Hβ .(E.7)

ii) Let m > 0 and s ∈ R. Then

‖Tau‖Hs−m . ‖a‖C−m∗ ‖u‖Hs(E.8)

‖Tau‖Cs−m∗ . ‖a‖C−m∗ ‖u‖Cs∗(E.9)

‖Tau‖Cs∗ . ‖a‖L∞‖u‖Cs∗ .(E.10)

We have the following product estimates (for references and proofs, see [ABZ14b]):

Proposition E.10. i) Let s ≥ 0. Then

‖u1u2‖Hs . ‖u1‖Hs‖u2‖L∞ + ‖u1‖L∞‖u2‖Hs(E.11)

‖u1u2‖Cs∗ . ‖u1‖Cs∗‖u2‖L∞ + ‖u1‖L∞‖u2‖Cs∗ .(E.12)

ii) Let

s1 + s2 > 0, s0 ≤ s1, s2, s0 < s1 + s2 −
d

2
.

Then

(E.13) ‖u1u2‖Hs0 . ‖u1‖Hs1‖u2‖Hs2 .

iii) Let β > α > 0. Then

‖u1u2‖C−α∗ . ‖u1‖Cβ∗ ‖u2‖C−α∗ .(E.14)

iv) Let s1 > d/2 and s2 ≥ 0, and consider F ∈ C∞(CN) such that F (0) = 0. Then there
exists a non-decreasing function F : R+ → R+ such that

(E.15) ‖F (U)‖Hs1 ≤ F(‖U‖L∞)‖U‖Hs1 , ‖F (U)‖Cs2∗ ≤ F(‖U‖L∞)‖U‖Cs2∗ .

We have the following composition estimates:

Proposition E.11. Let 0 < α ≤ 1 and f ∈ Cα(Rd). Let ∇g ∈ L∞(Rd → Rd). Then

‖f(g(x))‖Cα(Rd) ≤ ‖f‖Cα‖∇g‖αL∞ .

Proof. Compute

|f(g(x))− f(g(y))|
|x− y|α

=
|f(g(x))− f(g(y))|
|g(x)− g(y)|α

|g(x)− g(y)|α

|x− y|α
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Then

sup
x 6=y∈Rd

|f(g(x))− f(g(y))|
|x− y|α

≤ sup
x 6=y

|f(g(x))− f(g(y))|
|g(x)− g(y)|α

(
sup
x 6=y

|g(x)− g(y)|
|x− y|

)α
.

�

Proposition E.12. Let 0 < α ≤ 1 and a(x, ζ) ∈ L∞(Rn × Rm), smooth in ζ, and a(·, ζ) ∈
Cα(Rn) uniformly in ζ. Let f ∈ Cα(Rn → Rm). Then

‖a(x, f(x))‖Cαx (Rn) . sup
y
‖a(·, y)‖Cα(Rn) + ‖∇ya‖L∞x,y(Rn×Rm)‖f‖Cα(Rn→Rm).

Proof. Compute

a(x, f(x))− a(y, f(y))

|x− y|α
=
a(x, f(x))− a(y, f(x))

|x− y|α
+
a(y, f(x))− a(y, f(y))

f(x)− f(y)

f(x)− f(y)

|x− y|α
.

Then take the suprema of both sides in x 6= y ∈ Rn as before. �

We also need the following elementary composition estimate ([ABZ11b, Lemma 3.2]):

Proposition E.13. Let m ∈ N and 0 ≤ σ ≤ m. Consider a diffeomorphism κ : R → R.
Then

‖u ◦ κ‖Hσ ≤ F(‖κ′‖W p−1,∞)‖∂x(κ−1)‖L∞‖u‖Hσ .
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