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A rapid phylogeny- based method for 
accurate community profiling of large- 
scale metabarcoding datasets
Lenore Pipes1*, Rasmus Nielsen1,2

1Department of Integrative Biology, University of California, Berkeley, Berkeley, 
United States; 2GLOBE Institute, University of Copenhagen, Copenhagen, Denmark

Abstract Environmental DNA (eDNA) is becoming an increasingly important tool in diverse 
scientific fields from ecological biomonitoring to wastewater surveillance of viruses. The fundamental 
challenge in eDNA analyses has been the bioinformatical assignment of reads to taxonomic groups. 
It has long been known that full probabilistic methods for phylogenetic assignment are preferable, 
but unfortunately, such methods are computationally intensive and are typically inapplicable to 
modern next- generation sequencing data. We present a fast approximate likelihood method for 
phylogenetic assignment of DNA sequences. Applying the new method to several mock communi-
ties and simulated datasets, we show that it identifies more reads at both high and low taxonomic 
levels more accurately than other leading methods. The advantage of the method is particularly 
apparent in the presence of polymorphisms and/or sequencing errors and when the true species is 
not represented in the reference database.

Editor's evaluation
This important work presents a novel tool for performing phylogenetic assignment of DNA 
sequences. The manuscript is convincing, and the authors perform a standard benchmark experi-
ment against current state- of- the- art tools using real + simulated datasets to demonstrate where the 
novel tool stands in the context of existing methods. This paper will be of great interest to bioinfor-
maticians and evolutionary biologists interested in massively- scalable phylogenetic assignment.

Introduction
In the past 10 years, metabarcoding and metagenomics based on DNA sequencing and subsequent 
taxonomic assignment have become an important approach for understanding diversity and commu-
nity organization at many taxonomic levels. This has led to the publication of more than 80 taxo-
nomic classification methods (Gardner et al., 2019). There are three major strategies in classification 
methods: (1) composition- based, which do not align sequences but extract compositional features 
(e.g., kmers) to build models of probabilistic taxonomic inclusion; (2) alignment- based, which rely on 
alignments to directly compare query sequences to reference sequences but do not use trees; and (3) 
phylogenetic- based, which rely on a phylogenetic tree reconstruction method, in addition to align-
ments, to perform a placement of the query onto the tree. As a trade- off between speed and preci-
sion for processing next- generation sequencing (NGS) data, the vast majority of recent classification 
methods have either relied on alignment- based or composition- based strategies.

Composition- based tools reduce the reference database by indexing compositional features such 
as kmers for a rapid search of the database. These methods require an exact match between the 
kmer in the query sequence and the kmer in the reference database. As a result of hash indexing 
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of kmers, kraken2 (Wood et al., 2019), for example, can classify >1 million reads within 1 min using 
the entire Geengenes or SILVA databases (Lu and Salzberg, 2020). Alignment- based tools use a 
fast local aligner such as BLAST (Altschul et  al., 1990) to pairwise align queries to the reference 
database and define a score based on sequence similarity in the alignment between the read and 
reference sequence. However, alignment- based methods can be many orders of magnitude slower 
than composition- based tools since datasets with >10 million reads require weeks of BLASTN running 
time (Ainsworth et al., 2017). In both composition- based tools and alignment- based tools, a lowest 
common ancestor (LCA) algorithm is then typically used to assign at different taxonomic levels 
(Figure 1A). LCA works by assigning to the smallest possible clade that include all matches with a 
similarity less than the specified cut- off.

Phylogenetic placement methods place a query sequence onto a phylogenetic tree of refer-
ence sequences. This placement requires a full multiple sequence alignment (MSA) of the reference 
sequences and a subsequent estimation of a phylogenetic tree. However, large datasets with high 
rates of evolution are hard to align accurately (Sievers et al., 2011) and phylogeny estimation methods 
produce poor trees when MSAs are not of high quality (Kapli et al., 2020). Furthermore, phylogenetic 
placement tends to be computationally demanding as both running time and memory usage scale 
linearly with the size of the reference database (Balaban et al., 2020). Even for reference databases 
that contain sequences as few as 1600 sequences, assignment for a single query using the most cited 

Figure 1. Species assignment in alignment- based methods (A) vs. Tronko (B). In Tronko, scores are calculated for 
all nodes in the tree based on the query’s global alignment to the best BWA- MEM hit. The query is assigned to 
the lowest common ancestor (LCA) of the highest scoring nodes within the cut- off threshold. See Figure 1—figure 
supplement 1 for more details regarding using multiple trees.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Workflow of iterative partitioning procedure.

Figure supplement 2. Comparisons of Tronko with pplacer and APPLES- 2 using a database of 200, 400, 600, 800, 
1000, 1200, 1400, and 1600 reference sequences.

https://doi.org/10.7554/eLife.85794
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phylogenetic placement method, pplacer (Matsen et al., 2010), takes more than 7 min and requires 
over 10 GB of RAM (on a Dell PowerEdge server with 32 CPU threads and 512 GB of RAM). At this 
rate, a reference database that contains a metabarcode such as cytochrome oxidase 1 (COI) that has 
at least 1.5 million reference sequences, assigning just a single query would require 20.9 hr and 2.37 
TB RAM. Scaling the query size to millions of queries would therefore be computationally intractable.

To address these challenges, the most recent implementations of phylogeny- based methods 
(Barbera et al., 2019) rely on reference database reduction techniques (i.e., using only representative 
taxa or consensus sequences for a sparse backbone tree) to handle the large amount of data that 
is routinely produced. Often a single species is selected to represent an entire clade (Czech et al., 
2022). While this reduces the computational cost, it also reduces the granularity, and potentially the 
accuracy, of the assignments. As a trade- off between speed and precision, the vast majority of recent 
classification methods are either alignment- based or composition- based approaches (Hleap et al., 
2020) since phylogeny- based methods have not scaled to handle the entirety of the rapidly growing 
reference databases of genome markers and the increasingly large amounts of NGS data.

Here, we describe a new method for phylogenetic placement, implemented in the program 
’Tronko’ (https://github.com/lpipes/tronko, Mapper and Pipes, 2024), the first phylogeny- based 
taxonomic classification method designed to truly enable the use of modern- day reference databases 
and NGS data. The method is based on approximating the phylogenetic likelihood calculation by (1) 
only allowing the edge connecting the reference sequence to the tree to join at existing nodes in 
the tree and then (2) approximating the likelihood using a probabilistically weighted mismatch score 
based on pre- calculated fractional likelihoods stored in each node (see ‘Methods’). We argue that (2) 
approximates the full maximized likelihood assignment without requiring any numerical maximization 
under the approximating assumption that the read joins the tree in an existing node with a zero- length 
branch. The approximation is equivalent to calculating the expected average mismatch to each node 
in the phylogeny. The assignment method in Tronko uses the LCA criteria but, unlike composition- 
based and alignment- based approaches (Figure 1A), takes advantage of fractional likelihoods stored 
in all nodes of the tree with a cut- off that can be adjusted from conservative to aggressive (Figure 1B). 
In the simplest case, when the reference sequences form a single tree, Tronko uses a pre- calculated 
MSA, the phylogenetic tree based on the MSA, and pre- calculated posterior probabilities, which are 
proportional to the fractional likelihoods. However, in more typical cases, when a single tree/MSA is 
unsuitable for analyses, as the reference sequences encompass increasingly divergent species as well 
as an increasing volume of sequences, we present a fully customizable divide- and- conquer method 
for reference database construction that is based on dividing reference sequences into phylogenetic 
subsets that are realigned and with local trees re- estimated.

The construction of the database, MSAs, and trees facilitates fast phylogenetic assignment. 
The assignment algorithm then proceeds by (1) a BWA- MEM (Li and Durbin, 2009) search on all 
sequences in the database, (2) a pairwise sequence alignment between the query and the top hit in 
each alignment subset containing a BWA- MEM hit using either the Needleman–Wunsch algorithm 
(Needleman and Wunsch, 1970) or the wavefront alignment algorithm (Marco- Sola et al., 2021), 
and (3) a calculation of a score based on the approximate likelihood for each node in subsets with a 
BWA- MEM hit. An additional LCA assignment for all subsets can then be applied to summarize the 
results. For full details, see ‘Methods’.

Results
To compare the new method (Tronko) to previous methods, we constructed reference databases for 
COI and 16S for common amplicon primer sets using CRUX (Curd et al., 2019; sSee ‘Methods’ for 
the exact primers used). We first compared Tronko to pplacer and APPLES- 2 for reference databases 
containing a reduced amount of sequences (<1600 sequences) to compare the speed and memory 
requirements with comparable phylogenetic- based assignment methods. Tronko shows speed- ups 
>20 times over pplacer, with a vastly reduced memory requirement illustrating the computational 
advantage of the approximations in Tronko (Figure 1—figure supplement 2). Tronko demonstrates a 
speed- up >2 times over APPLES- 2 with a similar memory footprint. In terms of accuracy, all methods 
had a 100% true- positive rate at the species level. Additionally, in terms of the species assignment rate 
(the percentage of queries that were assigned at the species level), Tronko assigns the most queries.

https://doi.org/10.7554/eLife.85794
https://github.com/lpipes/tronko
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Next, in addition to pplacer and APPLES- 2, we evaluated Tronko’s performance to kmer- based 
kraken2 (Wood et  al., 2019), which previously has been argued to have the lowest false- positive 
rate (Lu and Salzberg, 2020), and two other popular alignment- based methods: MEGAN (Huson 
et  al., 2007) and metaphlan2 (Truong et  al., 2015). We used two types of cross- validation tests: 
leave- one- species- out and leave- one- individual- out analyses. The leave- one- species- out test involves 
removing an entire species from the reference database, simulating NGS reads from that species, and 
then attempting to assign those reads with that species missing from the database. The leave- one- 
individual- out test involves removing a single individual from the reference database, simulating NGS 
reads from that individual, and then attempting to assign those reads with that individual missing from 
the database. In both tests, singletons (i.e., cases in which only one species was present in a genera or 
cases in which only one individual represented a species) were exempt from the tests.

We performed a leave- one- species- out test comparing Tronko (with LCA cut- offs for the score of 
0, 5, 10, 15, and 20 with both Needleman–Wunsch alignment and wavefront alignment) to kraken2, 
metaphlan2, and MEGAN for 1467 COI sequences from 253 species from the order Charadriiformes 
using 37,515 (150 bp × 2) paired- end sequences and 768,807 single- end sequences (150 bp and 
300 bp in length) using 0, 1, and 2% error/polymorphism (Figure 2). We use the term ‘error/poly-
morphism’ to represent a simulated change in nucleotide that can be either an error in sequencing 
or a polymorphism. We display confusion matrices to display the clades in which each method has an 
incorrect assignment (Figure 3). See Figure 2—figure supplement 1 for results with the wavefront 
alignment algorithm (Marco- Sola et al., 2021).

Using leave- one- species- out and simulating reads (both paired- end and single- end) with a 
0–2% error (or polymorphism), Tronko detected the correct genus more accurately than the other 
methods even when using an aggressive cut- off (i.e., when cut- off    0) (Figure 3F). Using 150 bp 
paired- end reads with 1% error, Tronko had a misclassification rate of only 9.8% with a recall rate 
of 70.1% at the genus level using a cut- off set to 15 while kraken2, MEGAN, and metaphlan2 had 
misclassification rates of 33.5, 10.0, and 27.7%, respectively, with recall rates of 90.6, 52.1, and 95.0% 
(see Figure 2B). Tronko had a lower misclassification rate relative to the recall rate out of all methods 
for 150 bp × 2 paired- end reads with 0% error/polymorphism (Figure 2A), 1% error/polymorphism 
(Figure  2B), and 2% error/polymorphism (Figure  2 and Figure  3D–I), for 150  bp reads with 0% 
error/polymorphism (Figure 2D), 1% error/polymorphism (Figure 2E), and 2% error/polymorphism 
(Figure 2F), and for 300 bp reads with 0% error/polymorphism (Figure 2G), 1% error/polymorphism 
(Figure  2H), and 2% error/polymorphism (Figure  2I). See ‘Methods’ for definitions of recall and 
misclassification rates. Tronko also accurately assigned genera from the Scolopacidae family (top left 
of matrices in Figure 3) using Needleman–Wunsch with a cut- off of 10 compared to kraken2, meta-
phlan2, and pplacer.

Next, we performed a leave- one- individual- out test for the same COI reference sequences using 
746,352 single- end reads and 36,390 paired- end reads (Figure  4, Figure  4—figure supplement 
1F–J). See Figure 4—figure supplement 2 for results with wavefront alignment algorithm (Marco- 
Sola et al., 2021). Using single- end reads of lengths 150 bp and 300 bp, Tronko has a lower misclassi-
fication rate and higher recall rate than kraken2, metaphlan2, and MEGAN. Using 150 bp paired- end 
reads with 0% error (Figure 4D), Tronko had a misclassification rate at only 0.1% with a recall rate 
of 58.6% at the species level using a cut- off set to 10 while kraken2, MEGAN, and metaphlan2 had 
misclassification rates of 1.5, 0.1, and 11.0%, respectively, with recall rates of 85.4, 60.7, and 98.14%. 
Both metaphlan and kraken2 have a number of mis- assignments within the family of Laridae (see blue 
points across the diagonal in Figure 4—figure supplement 1A and B) and Tronko is able to accu-
rately assign species within this family or assign at the genus or family level. We also observe that for 
increasing error rates, kraken2 and metaphlan2 have a substantial increase in misclassification rate. 
We believe it would be slightly misleading to display results for pplacer and APPLES- 2 here due to the 
lack of an implementation to calculate the LCA on similar likelihoods. See Figure 4—figure supple-
ment 2 for results for pplacer and APPLES- 2 along with wavefront alignment algorithm.

In order to replicate real- world scenarios, we added a leave- one- species- out test using 16S from 
2323 bacterial species and 5000 individual sequences (Figure 5). We selected the sequences for the 
16S dataset by grouping the sequences by the class level in a random order, rotating that order, and 
randomly selecting an individual sequence from each group. We then simulated sequencing reads 
from the dataset simulating 21,947,613 single- end reads (150 bp and 300 bp in length) as well as 

https://doi.org/10.7554/eLife.85794
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Figure 2. Recall vs. misclassification rates using leave- one- species- out analysis of the order Charadriiformes (cytochrome oxidase 1 [COI] metabarcode) 
with paired- end 150 bp × 2 reads with 0% (A), 1% (B), and 2% (C) error/polymorphism, single- end 150 bp reads with 0% (D), 1% (E), and 2% (F) error/
polymorphism, and single- end 300 bp reads with 0% (G), 1% (H), and 2% (I) error/polymorphism using kraken2, metaphlan2, MEGAN, pplacer, and 
APPLES- 2, and Tronko with cut- offs of 0, 5, 10, 15, and 20 using the Needleman–Wunsch alignment (solid line). See Figure 2—figure supplement 2 for 
results using different combinations of aligners and tree estimation methods.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Recall vs. misclassification rates using leave- one- species- out analysis for the order Charadriiformes (cytochrome oxidase 1 [COI] 
metabarcode) with paired- end 150 bp × 2 reads with 0% (A), 1% (B), and 2% (C) error/polymorphism, single- end 150 bp reads with 0% (D), 1% (E), and 
2% (F) error/polymorphism, and single- end 300 bp reads with 0% (G), 1% (H), and 2% (I) error/polymorphism using kraken2, metaphlan2, MEGAN, 
pplacer, APPLES- 2, and Tronko with cut- offs of 0, 5, 10, 15, and 20 using the Needleman–Wunsch alignment (solid line) and wavefront alignment (dashed 
line).

Figure 2 continued on next page

https://doi.org/10.7554/eLife.85794
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21,478,738 paired- end 150 bp × 2 reads. In all simulations at both the genus and family levels, Tronko 
had a higher recall and a lower misclassification rate than all other methods. The simulations for 
300 bp single- end reads are not directly comparable to the 150 bp single- end or paired- end reads 
because only 105 missing- out tests out of 2310 were able to be performed because most refer-
ence sequences were <300 bp in length. We only display the results for 300 bp single- end reads for 
APPLES- 2 in the supplement as we believe the results are not a good representation of the method. 
See Figure 5—figure supplement 1 for results for APPLES- 2 using 300 bp single- end reads, along 
with results using the wavefront alignment algorithm. Additionally, we tested the use of hmmer or 
MAFFT for alignments with APPLES- 2 and pplacer (Figure 5—figure supplement 2), and we did not 
observe any substantial difference with the choice of alignment.

We then compared Tronko’s performance to kraken2, MEGAN, and metaphlan2 using mock 
communities for both 16S (Schirmer et al., 2015; Gohl et al., 2016) and COI markers (Braukmann 
et al., 2019; Figure 6). We did not compare mock community data to pplacer and APPLES- 2 because 
we were unsuccessful in building a full MSA for our 16S and COI reference databases. Tronko also 
relies on sequence alignments, but as described in ‘Methods’, they can be handled by dividing 
sequences into clusters in the Tronko pipeline. For 16S, we used three different mock community 
datasets. We used 1,054,868 2 × 300 bp Illumina MiSeq sequencing data from a mock community 
consisting of 49 bacteria and 10 archaea species from Schirmer et al., 2015, 54,930 2× 300 bp Illu-
mina MiSeq sequencing data from a mock community consisting of 14 bacteria species from Lluch 
et al., 2015, and 206,696 2 × 300 bp Illumina MiSeq sequencing data from a mock community of 20 

Figure supplement 2. Recall vs. misclassification rates using leave- one- species- out analysis for the order Charadriiformes (cytochrome oxidase 1 
[COI] metabarcode) with paired- end 150 bp × 2 reads with 2% error/polymorphism using Tronko with cut- offs of 0, 5, 10, 15, and 20 and different 
combinations of tree estimation methods and aligners.

Figure 2 continued

Figure 3. Confusion matrices at the genus level of the order Charadriiformes (cytochrome oxidase 1 [COI] metabarcode) using the leave- one- species- 
out analysis with paired- end 150 bp × 2 reads with 2% error/polymorphism using kraken2 (A), metaphlan2 (B), pplacer (C), APPLES- 2 (D), MEGAN 
(E), and Tronko using the Needleman–Wunsch alignment (NW) for cut- offs 0 (F), 5 (G), 10 (H), 15 (I), and (J) 20. Unassigned column contains both 
unassigned queries and queries assigned to a lower taxonomic level. Phylogenetic tree represents ancestral sequences at the genus level.

https://doi.org/10.7554/eLife.85794
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Figure 4. Recall vs. misclassification rates using leave- one- individual- out analysis for the order Charadriiformes (cytochrome oxidase 1 [COI] 
metabarcode) with paired- end 150 bp × 2 reads with 0% (A), 1% (B), and 2% (C) error/polymorphism, single- end 150 bp reads with 0% (D), 1% (E), and 
2% (F) error/polymorphism, and single- end 300 bp reads with 0% (G), 1% (H), and 2% (I) error/polymorphism using kraken2, metaphlan2, MEGAN, 
pplacer, APPLES- 2, and Tronko with cut- offs of 0, 5, 10, 15, and 20 using the Needleman–Wunsch alignment (solid line).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Confusion matrices at the species level of the order Charadriiformes using the leave- one- individual- out analysis with paired- 
end 150 bp × 2 reads with 2% error/polymorphism using kraken2 (A), metaphlan2 (B), pplacer (C), APPLES- 2 (D), MEGAN (E), and Tronko using the 
Needleman–Wunsch alignment (NW) for cut- offs 0 (F), 5 (G), 10 (H), 15 (I), and (J) 20.

Figure supplement 2. Recall vs. misclassification rates using leave- one- individual- out analysis for the order Charadriiformes (cytochrome oxidase 1 
[COI] metabarcode) with paired- end 150 bp × 2 reads with 0% (A), 1% (B), and 2% (C) error/polymorphism, single- end 150 bp reads with 0% (D), 1% 
(E), and 2% (F) error/polymorphism, and single- end 300 bp reads with 0% (G), 1% (H), and 2% (I) error/polymorphism using kraken2, metaphlan2, 
MEGAN, pplacer, APPLES- 2, and Tronko with cut- offs of 0, 5, 10, 15, and 20 using the Needleman–Wunsch alignment (solid line) and wavefront 
alignment (dashed line).

https://doi.org/10.7554/eLife.85794
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Figure 5. Recall vs. misclassification rates using leave- one- species- out analysis with bacteria species (16S metabarcode) with paired- end 150 bp × 2 
reads with 0% (A), 1% (B), and 2% (C) error/polymorphism, single- end 150 bp reads with 0% (D), 1% (E), and 2% (F) error/polymorphism, and single- end 
300 bp reads with 0% (G), 1% (H), and 2% (I) error/polymorphism using kraken2, metaphlan2, MEGAN, pplacer, APPLES- 2 and Tronko with cut- offs of 0, 
5, 10, 15, and 20 using the Needleman–Wunsch alignment (solid line).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Recall vs. misclassification rates using leave- one- species- out analysis with bacteria species (16S metabarcode) with paired- end 
150 bp × 2 reads with 0% (A), 1% (B), and 2% (C) error/polymorphism, single- end 150bp reads with 0% (D), 1% (E), and 2% (F) error/polymorphism, and 
single- end 300bp reads with 0% (G), 1% (H), and 2% (I) error/polymorphism using kraken2, metaphlan2, MEGAN, pplacer, APPLES- 2, and Tronko with 
cut- offs of 0, 5, 10, 15, and 20 using the Needleman–Wunsch alignment (solid line) and wavefront alignment (dashed line).

Figure supplement 2. Recall vs. misclassification rates using leave- one- individual- out analysis for bacterial species (16S metabarcode) with paired- end 
150 bp × 2 reads with 0% (A), 1% (B), and 2% (C) error/polymorphism using kraken2, metaphlan2, MEGAN, pplacer + hmmer, pplacer + mafft, APPLES- 2 
+ hmmer, APPLES- 2 + mafft, and Tronko with cut- offs of 0, 5, 10, 15, and 20 using the Needleman–Wunsch alignment (solid line).

https://doi.org/10.7554/eLife.85794
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evenly distributed bacterial species from Gohl et al., 2016. For the data from Schirmer et al., 2015, 
at the species level, Tronko had a <0.6% misclassification rate at every cut- off with a recall rate of 
11.0% at cut- off 0 (Figure 6A; see Figure 6—figure supplement 1 for plot without outliers). kraken2 
had a misclassification rate of 1.2% with a recall rate of 10.6% when using its default database, and 

Figure 6. Recall vs. misclassification rates using mock communities from Schirmer et al., 2015 (A), Lluch et al., 
2015 (B), Gohl et al., 2016 (C), and Braukmann et al., 2019 (D) using both Needleman–Wunsch and wavefront 
alignment algorithms. Figures with smaller misclassification rates on the x- axis are available for Schirmer et al., 
2015, Lluch et al., 2015, Gohl et al., 2016, Braukmann et al., 2019 in Figure 6—figure supplements 1, 2, and 
4, respectively.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Close- up of Figure 6A.

Figure supplement 2. Close- up of Figure 6A.

Figure supplement 3. Close- up of Figure 6B.

Figure supplement 4. Close- up of Figure 6C.

https://doi.org/10.7554/eLife.85794
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a misclassification rate of 3.5% and a recall rate of 35.1% when using the same reference sequences 
as Tronko. metaphlan2 did not have any assignments at the species, genus, or family level using the 
default database, and it had an 8.3% misclassification and 8.9% recall rate at the species level when 
using the same reference sequences as Tronko. MEGAN had a recall rate of 0.2% and a misclassifica-
tion rate of 0% at the species level.

For the data from Lluch et al., 2015, at the genus level, Tronko had a misclassification rate of 0.6% 
and a recall rate of 22.3% using a cut- off of 0, while all other methods had a misclassification rate of 
>8% (see Figure 6—figure supplement 2 for a close- up of the rates).

For the data from Gohl et al., 2016, at the species level, Tronko had a <2.6% misclassification rate 
at every cut- off with a recall rate of 12.8% at cut- off 0 (Figure 6C; see Figure 6—figure supplement 3 
for plot without outliers). kraken2 had a misclassification rate of 26.8% and recall rate of 33.7% when 
using its default database, and a misclassification rate of 21.4% and recall rate of 25.4% when using 
the same reference sequences as Tronko. metaphlan2 did not have any assignments at the species, 
genus, or family level using the default database, and it had an 8.5% misclassification and 2.1% recall 
rate at the species level when using the same reference sequences as Tronko. MEGAN had a misclas-
sification rate of 0% and a recall rate of 4.4% at the species level.

For COI, we used a dataset from Braukmann et al., 2019 which consists of 646,997 2 × 300 bp 
Illumina MiSeq sequencing data from 374 species of terrestrial arthropods, which is the most expan-
sive mock community dataset that we used. At the genus level, Tronko had a misclassification rate of 
<0.5% with a recall rate of 78.3% at the cut- off of 0 (Figure 6D; see Figure 6—figure supplement 4 
for plot without outliers). With the default database, kraken2 had a misclassification rate of 40.5% with 
a recall rate of 6.5%. With the same reference sequences as Tronko, kraken2 still had a misclassifica-
tion of 14.0% with a recall rate of 83.1%. metaphlan2 had a misclassification rate of 3.5% with a recall 
of 86.4% with the same reference sequences as Tronko while the default database failed to assign any 
reads. MEGAN had a 15.0% recall and 0% misclassification rate at the species level and a 49.9% recall 
and 0.5% misclassfication rate at the genus level.

We compared Tronko with kraken2, metaphlan2, and MEGAN (using BLAST as the aligner) for 
running time (Figure  7A) and peak memory (Figure  7B) using 100, 1000, 10,000, 100,000, and 
1,000,000 sequences using the COI reference database. Unsurprisingly, kraken2 had the fastest 
running time followed by metaphlan2, but MEGAN had a substantially slower running time than all 
methods. Tronko was able to assign 1,000,000 queries in ∼8  hr with the choice of aligner being 
negligible. Tronko had the highest peak memory (∼50 GBs) as it stores all reference sequences, their 

Figure 7. Comparisons of running time (A) and peak memory (B) using 100, 1000, 10,000, 100,000, and 1,000,000 queries for Tronko, blastn + MEGAN, 
kraken2, and metaphlan2 using the cytochrome oxidase 1 (COI) reference database. NW: Needleman–Wunsch; WFA: wavefront alignment.

https://doi.org/10.7554/eLife.85794
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trees, and their posterior probabilities in memory. We note that for very large databases, the memory 
requirements can, in theory, be reduced by processing different alignment subsets sequentially.

Discussion
Both leave- one- species- out and leave- one- individual- out simulations show that Tronko recovers the 
correct taxonomy with higher probability than competing methods and represents a substantial 
improvement over current assignment methods. The advantage of Tronko comes from the use of 
limited full- sequence alignments and the use of phylogenetic assignment based on a fast approxima-
tion to the likelihood.

We evaluate Tronko using different cut- offs representing different trade- offs between recall and 
misclassification rate, thereby providing some guidance to users for choice of cut- off. We note that 
in most cases the other methods evaluated here fall within the convex hull of Tronko, showing that 
Tronko dominates those methods, and in no cases do other methods fall above the convex hull of 
Tronko. However, in some cases, other methods are so conservative, or anti- conservative, that a direct 
comparison is difficult. For example, when using single- end 300 bp reads (Figure 4G–I), MEGAN has 
assignment rates that are so low that a direct comparison is difficult.

Among the methods compared here, kraken2 is clearly the fastest (Figure 7A). However, it gener-
ally also has the worst performance with a higher misclassification rate than other methods, especially 
in the leave- one- species- out simulations (Figure 2).

Both metaphlan2 and MEGAN tend to fall within the convex hull of Tronko. Typically, metaphlan2 
assigns much more aggressively, and therefore, has both a recall and misclassification rate that is much 
higher than MEGAN, which assigns very conservatively. We also note that the computational speed of 
MEGAN is so low that it, in some applications, may be prohibitive (Figure 7A).

We evaluated Tronko using two different alignment methods: Needleman–Wunsch and wave-
front alignment. In many cases, the two alignment algorithms perform similarly. However, in the 
case, where short, single- end reads are used (i.e., 150 bp single- end reads), the wavefront alignment 
performs worse than the Needleman–Wunsch alignment (see Figure 2—figure supplement 2D–F 
and Figure 4—figure supplement 2D–F). The wavefront alignment algorithm implements heuristic 
modes to accelerate the alignment, which performs similarly to Needleman–Wunsch when the two 
sequences being aligned are similar in length. However, when there is a large difference between the 
two sequences being aligned, we notice that the wavefront alignment forces an end- to- end alignment 
which contains large gaps at the beginning and end of the alignment. Hence, based on current imple-
mentations, we cannot recommend the use of the wavefront alignment for assignment purposes of 
short reads, although this conclusion could change with future improvements in the implementation 
of the wavefront alignment algorithm.

Tronko is currently not applicable to eukaryotic genomic data as it requires well- curated align-
ments of markers and associated phylogenetic trees, although we note that whole- genome phylo-
genetic reference databases for such data could potentially be constructed. Such extensions of the 
use of Tronko would require heuristics for addressing the memory requirements. Tronko currently has 
larger memory requirements than methods that are not phylogeny- based. Nonetheless, for assign-
ment to viruses, amplicon sequencing, and other forms of non- genomic barcoding, Tronko provides 
a substantial improvement over existing assignment methods and is the first full phylogenetic assign-
ment method applicable to modern large datasets generated using NGS.

The methods presented in this article are implemented in the Tronko software package that 
includes Tronko- build and Tronko- assign for reference database building and species assignment, 
respectfully. Tronko can be downloaded at https://github.com/lpipes/tronko and is available under an 
open- software license (Mapper and Pipes, 2024).

Methods
Tronko-build reference database construction with a single tree
The algorithm used for assignment takes advantage of pre- calculated posterior probabilities of nucle-
otides at internal nodes of a phylogeny. We first estimate the topology and branch lengths of the 
tree using RAxML (Stamatakis, 2014), although users of the method could use any tree estimation 

https://doi.org/10.7554/eLife.85794
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algorithm. We then calculate and store the posterior probabilities of each nucleotide in each node of 
the tree. For computational efficiency, this is done under a Jukes and Cantor, 1969 model, but the 
method can easily be extended to other models of molecular evolution. The calculations are achieved 
using an algorithm that traverses the tree only twice to calculate posterior probabilities simultaneously 
for all nodes in the tree. In brief, fractional likelihoods are first calculated in each node using a stan-
dard postorder traversal (e.g., Felsenstein, 1981). This directly provides the posterior probabilities 
in the root after appropriate standardization. An preorder traversal of the tree is then used to pull 
fractional likelihoods from the root down the tree to calculate posterior probabilities. While naive 
application of standard algorithms for calculating posterior probabilities in a node, to all nodes of 
a tree, has computational complexity that is quadratic in the number of nodes, the algorithm used 
here is linear in the number of nodes as it calculates posterior probabilities for all nodes using a single 
postorder and a single preorder traversal without having to repeat the calculation for each node in the 
tree. For a single site, let the fractional likelihood of nucleotide  a ∈ {A, C, T, G}  in node  j  be  fj(a) , that 
is,  fj(a)  is the probability the observed data in the site for all descendants of node  j  given nucleotide 
 a  in node  j . Let  hj(a)  be the probability of the data in the subtree containing all leaf nodes that are 
not descendants of node  j , given nucleotide  a  in node  j , then the posterior probability of nucleotide 
 a  is (Yang et al., 1995)

 
p(a|x) =

fj(a)hj(a)πa∑
b∈{A,C,G,T} fj(b)hj(b)πb   

(1)

where  πa  is the stationary probability of nucleotide  a . The algorithm here proceeds by first calculating 
and storing  fj(a)  for all values of  j  and  a  using a postorder traversal. It then recursively calculates  hj(a)  
assuming time- reversibility using a preorder traversal as

 
hj(a) =

∑
b∈{A,C,G,T}

pab(tj)hA(j)(b)
∑

c∈{A,C,G,T}
pbc(tS(j))fS(j)(c)

  
(2)

where  tj  is the branch length of the edge from node  j  to its parent,  pab(t)  is the time- dependent tran-
sition probability of a transition from nucleotide  a  to nucleotide  b  in time  t ,  A(j)  is the parent node of 
node  j , and  S(j)  is the sister node of node  j  in the binary tree. The algorithm starts at the root with 

 hroot(a) = 1  This algorithm is implemented in the program ’Tronko- build’.
Each node in the tree is subsequently provided a taxonomy assignment. This is done by first making 

taxonomic assignments of the leaf nodes using the taxonomy provided by the taxid of the associated 
NCBI accession. We then make taxonomic assignments for internal nodes, at all taxonomic levels 
(species, genus, etc.), using a postorder traversal of the tree that assigns a taxonomic descriptor to 
node  i  if both children of node  i  have the same taxonomic assignment. Otherwise, node  i  does not 
have a taxonomic assignment at this taxonomic level and node  i  is given the next closest upward 
taxonomic level where its children have the same taxonomic assignment. In other words, node  i  only 
gets a taxonomic assignment if the taxonomic assignments of both child nodes agree.

Tronko-build reference database construction with multiple trees
MSAs for a large number of sequences can become unreliable and computationally challenging to 
work with due to the large number of insertions and deletions. For that reason, we devise an algo-
rithm for partitioning of sequence sets into smaller subsets based on the accuracy of the alignment 
and using the inferred phylogenetic tree to guide the partitioning (Figure 1—figure supplement 1).

To measure the integrity of the MSA, we calculate an average quality score, sum- of- pairs,  ASP , 
which is a sum of pairwise alignment scores in the MSA. Assume an MSA of length  l  with  K   sequences, 

 A = {ai,j} , where  ai,j  is the jth nucleotide in sequence  i ,  1 ≤ i ≤ K  ,  1 ≤ j ≤ l ,  ai,j ∈ M = {−, A, C, T, G, N} . 
Define the penalty function,  p :

 

p(I,V)=





3 if I = V and I ̸= − (match)

−2 if I ̸= V, I, V /∈ {N,−} (mismatch)

−1 otherwise   

(3)

where  I, V ∈ M  . ASP is then calculated as

https://doi.org/10.7554/eLife.85794
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ASP =

l∑
j=1

K∑
i=1

K∑
k=i+1

p(ai,j, ak,j)

(K
2
)

  

(4)

If the  ASP  is lower than the  ASP  threshold (a threshold of 0.1 was used in our analyses in this article), 
the corresponding tree is split in three partitions at the node with the minimum variance, calculated as

 v = argmini∈T
{

((L1(i) − K/3)2 + (L2(i) − K/3)2) + (K − L1(i) − L2(i) − K/3)2}
  (5)

where  T   is a tree, that is, a set of nodes,  L1(i)  and  L2(i)  is the number of leaf nodes descending from 
the left and right child node, respectively, of node  i , and  K   is the total number of leaf nodes in the 
tree. We then split the tree into three subtrees by eliminating node  v . Each partition is realigned with 
FAMSA (Deorowicz et al., 2016) and new trees are constructed using RAxML (Stamatakis, 2014) using 
default parameters and the GTR + Gamma model. FAMSA is used to optimize for speed since it is 1–2 
orders of magnitude faster than Clustal (Higgins and Sharp, 1988) or MAFFT (Katoh et al., 2002) 
with similar quality (see Deorowicz et al., 2016). We explored different combinations of tree estima-
tion methods (including IQ- TREE2 Minh et al., 2020), multiple sequence aligners, and global aligners 
(Figure 2—figure supplement 2). While most combinations of methods were quite similar (especially 
for the genus level), the use of FAMSA + RAxML + NW was optimal with regard to speed and accu-
racy. We ran IQ- TREE2 with the default settings using options - m GTR+G –nt 4 to be consistent with 
similar RAxML settings. The sequences are recursively partitioned until the  ASP  score is above the 
threshold. Finally, the trees, MSAs, taxonomic information, and posterior probabilities are written to 
one reference file which can be loaded for subsequent assignment of reads. Note that the procedure 
for phylogeny estimating and calculation of posterior probabilities only has to be done once for a 
marker and then can be used repeatedly for assignment using different datasets of query sequences.

Simulation of query sequences
To simulate single- end reads from a reference sequence, a starting point is selected uniformly at 
random and extends for  m0  base pairs, where  m0  represents the read length. For paired- end reads, 
a similar random selection of a starting point occurs, extending  m0  base pairs. From the end of this 
read, if the insert size  m1  is positive, the reverse read begins  m1  base pairs forward with a length of  m0 . 
If  m1  is negative, the reverse read starts  m1  base pairs backward. Sequencing errors are then added 
independently with different probabilities  α = 0 ,  α = 0.01 , and  α = 0.02  at each site. These errors are 
induced by changing the nucleotide to any of the other three possible nucleotides, following the 
probabilities used by Stephens et al., 2016:

 

A C G T

A

C

G

7




0 0.4918 0.3377 0.1705

0.5238 0 0.2661 0.2101

0.3754 0.2355 0 0.3890

0.2505 0.2552 0.4942 0



  

Taxonomic classification of query sequences
First, BWA- MEM (Li, 2013) is used with default options to align the query sequences to the reference 
sequences, thereby identifying a list of the highest scoring reference sequences (which we designate 
as BWA- MEM hits) from the reference database. We use BWA- MEM as the original Minimap2 manu-
script (Li, 2018) demonstrated that BWA- MEM had the lowest error rate for the same amount of frac-
tional mapped reads compared to Minimap2, SNAP (Zaharia et al., 2011), and bowtie2 (Langdon, 
2015). Second, a global alignment, either using the Needleman–Wunsch algorithm (Needleman and 
Wunsch, 1970) or the wavefront alignment algorithm (Marco- Sola et al., 2021), is performed only on 
the sequence with the highest score from each subtree (reference sequence set) identified using the 
previously described partitioning algorithm.

Once aligned to the reference sequence, a score,  S(i) , is calculated for all nodes,  i , in the tree(s) 
that the reference sequence is located to. For a given read, let  bj  be the observed nucleotide in the 
position of the read mapping to position  j  in the alignment. We also assume an error rate,  c . For 

https://doi.org/10.7554/eLife.85794
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example, if the true base is G and the error rate is  c , then the probability of observing A in the read 
is  c/3 . We note that this error rate can be consider to include both true sequencing errors and poly-
morphisms/sequence divergence. In an ungapped alignment, the score for site  j  in node  i  is then the 
negative log of a function that depends on the posterior probability of the observed nucleotide in the 
query sequence,  IPij(bj) , and the error rate:

 − log(c/3 + (1 − 4c/3)Pij(bj))  (6)

Assuming symmetric error rates, the probability of observing the base by error is  (1 − IPij(bj))c/3  
and the probability of observing the base with no error is  (1 − c)IPij(bj) . The sum of these two expres-
sions equals the expression in the logarithm above. The score for all  s  sites in the read is defined as 

 −
∑s

j=1 log(c/3 + (1 − 4c/3)IPij(bj)) .
Note that the full phylogenetic likelihood for the entire tree, under standard models of molecular 

evolution (Yang et al., 1995) with equal base frequencies and not accounting for errors, and assuming 
time reversibility, is

 
ℓ(t) =

s∑
j=1

log(
∑

v∈{A,C,T,G}
Pij(v)pvbj (t))

  
(7)

where  pvbj (t)  is the time- dependent transition probability from base  v  to base  bj  in time  t . This state-
ment takes advantage of the fact that, under time- reversibility, the posterior for a base in an node is 
proportional to the fractional likelihood of that base in the node, if the tree is rooted in the node. For 
small values of  t ,  ℓ  converges to  log(IPij(bj)) . Minimizing the score function, therefore, corresponds 
to maximizing the full phylogenetic likelihood function assuming that the branch leading to the 
query sequence is infinitesimally short and connects with the tree in an existing node. An alternative 
interpretation is that the score maximizes the probability of observing the query sequence if it is 
placed exactly in a node or, equivalently, minimizes the expected mismatch between the query and a 
predicted sequence sampled form the node.

To address insertions and deletions, we define scores of  γ  and  λ  for a gap or insertion, respectively, 
in the query sequence relative to the reference sequence. We also entertain the possibility of a gap 
in the reference sequence in node  i  in read position  j ,  rij , which occurs when the reference is a leaf 
node with a gap in the position or if it is an internal node with all descendent nodes having gaps in 
the position. We use the notation  Mg = {−, N}  for gaps and  Mn = {A, C, T, G}  for nucleotides (no gap). 
Then, the score for node i in site  j  of the read, with observed base  bj , is

 

Sj(i) =





c/3 + (1 − 4c/3)Pi(bj) if bj ∈ Mn and rij ∈ Mn

γ if bj ∈ Mg and rij ∈ Mn

1 if bj ∈ Mg and rij ∈ Mg

λ if bj ∈ Mn and rij ∈ Mg  

(8)

The total score for the entire read is

 
S(i) =

l∑
j=1

log(Sj(i))
  

(9)

For paired reads, the scores for each node in the tree are calculated as the sum of the scores for 
the forward read and the scores for the reverse read. Scores are calculated for all nodes in each tree 
that contain a best hits from the bwa mem alignment. For all analyses in this article, we use values of 
 c = 0.01 ,  λ = 0.01 , and  γ = 0.25 .

After calculation of scores, the LCA of all of the lowest scoring nodes, using a user- defined cut- off 
parameter, is calculated. For example, if the cut- off parameter is 0, only the highest scoring node (or 
nodes with the same score as the highest scoring node) is used to calculate the LCA. If the cut- off 
parameter is 5, the highest scoring node, along with all other nodes within a score of 5 of the highest 
scoring node, are used to calculate the LCA. Once the LCA node is identified, the classification of the 

https://doi.org/10.7554/eLife.85794


 Tools and resources      Computational and Systems Biology | Ecology

Pipes and Nielsen. eLife 2024;13:e85794. DOI: https://doi.org/10.7554/eLife.85794  15 of 20

single read (or paired- reads) will be assigned to the taxonomy assigned to that node. The classification 
of query sequences is parallelized.

Taxonomic assignment using pplacer
To generate phylogenetic placements using pplacer, we first aligned sequencing reads to the refer-
ence sequences using hmmer3 (Mistry et al., 2013). We then ran pplacer, rppr prep_db, and guppy 
classify all using the default parameters in that order. Next, to obtain taxonomic assignments, we used 
the R package BoSSA (Lefeuvre, 2018) to merge the multiclass element (which is a data frame with 
the taxonomic assignments of each placement) and the placement table of pplace object (the output 
of pplacer) and only kept the ‘best’ type of placement for each read. For paired- end sequences, we 
assigned the taxonomy by the LCA of both pairs of reads.

Taxonomic assignment using APPLES-2
To generate phylogenetic placements using APPLES- 2, we first aligned sequencing reads to the refer-
ence sequences using hmmer3 (Mistry et al., 2013). We then converted the alignment output from 
Stockholm to FASTA format and then separated the reference sequences from the sequencing reads 
(an input requirement for APPLES- 2) using in- house scripts. We then ran  run_ apples. py with the 
default parameters. In order to ensure that the tree that was output from APPLES- 2 was strictly binary 
(a requirement to assign taxonomy), we extracted the tree from the jplace output and resolved poly-
tomies using the multi2di function from the R package ape (Paradis and Schliep, 2019). Next, we 
ran  run_ apples. py again using the output tree from ape (with option --tree=) and disabled reesti-
mation of branch lengths (in order to keep the tree as strictly binary) by using the option --disable- 
reestimation. To assign taxonomy we ran gappa examine assign from the Gappa toolkit (Czech 
et al., 2020) using the options --per- query- results and --best- hit.

Classification metrics used for accuracy evaluations
We used the taxonomic identification metrics from Siegwald et al., 2017 and Sczyrba et al., 2017. 
A true- positive (TP) read at a certain taxonomic rank has the same taxonomy as the sequence it was 
simulated from. A misclassification (FP) read at a certain taxonomic rank has a taxonomy different from 
the sequence it was simulated from. A false- negative (FN) read, at a certain taxonomic rank, is defined 
as a read that received no assignment at that rank. For accuracy, we use the following measures for 
recall and misclassification rate.

 
Recall = TP

TP + FN   
(10)

 
Misclassification rate = FP

TP + FP + FN   
(11)

Classification of mock community reads
For Schirmer et  al., 2015, we used the ERR777705 sample, for Gohl et  al., 2016 we used the 
SRR3163887 sample, and for Braukmann et al., 2019 we used the SRR8082172 sample. For Lluch 
et al., 2015, we used the ERR1049842 sample. All sample raw reads used for assignment were first 
filtered through the Anacapa Quality Control pipeline (Curd et al., 2019) with default parameters up 
until before the amplicon sequence variant (ASV) construction step. Only paired reads were retained 
for assignment. For mock datasets where the true species were only defined with ‘sp.’, species assign-
ment were excluded for all methods. After Tronko assignments, we filtered results using a script to 
check the number of mismatches in the forward vs. reverse reads, and used a  χ

2
  distribution to filter 

out assignments that have a discrepancy in mismatches.

Leave-species-out and leave-one-individual-out analyses
We used two datasets (Charadriiformes and Bacteria) for leave- species- out and leave- one- individual- out 
analyses. For one dataset, we used 1467 COI reference sequences from 253 species from the order 
Charadriiformes. For the leave- species- out analyses with Charadriiformes, we removed each of the 
species one at a time (excluding singletons, i.e., species only represented by a single sequence), 
yielding 252 different reference databases. For the leave- species- out analyses with Bacteria, we 
randomly selected 5000 taxonomically divergent bacteria species from the 16S reference database 
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built through CRUX. For the leave- species- out analyses with Bacteria, we removed each of the species, 
one at a time (excluding singletons), yielding 2323 different reference databases. For each database, 
we then simulated reads from the species that had been removed with different error rates, and 
assigned to taxonomy using all methods tested (Tronko, kraken2, metaphlan2, MEGAN, pplacer, and 
APPLES- 2), using the same reference databases and same simulated reads for all methods. For the 
leave- individual- out analysis with Charadriiformes, we removed a single individual from each species 
(excluding singletons) yielding 1423 different reference databases. Assignments for all method were 
performed with default parameters and where a paired read mode was applicable, that mode was 
used when analyzing paired reads. For paired- end read assignments with MEGAN, the assignment is 
the LCA of the forward and reverse read assignments as described in the MEGAN manual v6.12.3. For 
metaphlan, the results from the forward reads and reverse reads were combined.

Custom 16S and COI Tronko-build reference database construction
For the construction of the reference databases in this article, we use custom- built reference sequences 
that were generated using common primers (Caporaso et al., 2012; Leray et al., 2013; Geller et al., 
2013; Amaral- Zettler et al., 2009) for 16S and COI amplicons that have been used in previous studies 
(de Vargas et al., 2015; Leray and Knowlton, 2015; David et al., 2014) using the CRUX module 
of the Anacapa Toolkit (Curd et al., 2019). For the COI reference database, we use the following 
forward primer:  GGWA CWGG WTGA ACWG TWTA YCCYCC, and reverse primer: TANACYTCnGGRT-
GNCCRAARAAYCA from Leray et al., 2013 and Geller et al., 2013, respectively, as input into the 
CRUX pipeline (Curd et al., 2019) to obtain a fasta and taxonomy file of reference sequences. For the 
16S database, we use forward primer GTGCCAGCMGCCGCGGTAA and reverse primer  GACT ACHV 
GGGT ATCT AATCC from Caporaso et al., 2012. We set the length of the minimum amplicon expected 
to 0 bp, the length of the maximum amplicon expected to 2000 bp, and the maximum number of 
primer mismatches to 3 (parameters - s 0, -m 2000, -e 3, respectively). Since all of the custom- 
built libraries contain ≥500,000 reference sequences and MSAs, we first used Ancestralclust (Pipes 
and Nielsen, 2022) to do an initial partition of the data, using parameters of 1000 seed sequences in 
30 initial clusters (parameters - r 1000 and - b 30, respectively). For the COI database, we obtain 76 
clusters and for the 16S database we obtain 228 clusters. For each cluster, we use FAMSA (Deorowicz 
et al., 2016) with default parameters to construct the MSAs and RAxML (Stamatakis, 2014) with the 
model GTR+Γ of nucleotide substitution to obtain the starting trees for Tronko- build.
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2016 16S Methods Comparison, 
raw sequence reads
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NCBI Sequence Read 
Archive, SRR3163887
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Author(s) Year Dataset title Dataset URL Database and Identifier

Braukmann TWA, 
Ivanova NV, Prosser 
SWJ, Elbrecht 
V, Steinke D, 
Ratnasingham S, de 
Waard JR, Sones JE, 
Zakharov EV, Hebert 
PDN

2019 Revealing the Complexities 
of Metabarcoding with a 
Diverse Arthropod Mock 
Community

https:// trace. ncbi. 
nlm. nih. gov/ Traces/? 
view= run_ browser& 
acc= SRR8082172& 
display= metadata

NCBI Sequence Read 
Archive, SRR8082172

Lluch J, Servant F, 
Paisse S, Valle C, 
Valiere S, Kuchly C, 
Vilchez G, Donnadieu 
C, Courtney M, 
Burcelin R

2015 The characterization of 
novel tissue microbiota 
using an optimized 16S 
metagenomic sequencing 
pipeline

https:// trace. ncbi. 
nlm. nih. gov/ Traces/? 
view= run_ browser& 
acc= ERR1049842& 
display= metadata

NCBI Sequence Read 
Archive, ERR1049842
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