
 

 

 

Abstract— This paper addresses the problem of dynamically 
matching automated vehicles (AVs) to open traveler requests 
in a large-scale automated-mobility-on-demand (AMOD) 
simulation framework. While optimization-based matching 
strategies based on the linear assignment problem formulation 
significantly outperform simple heuristic strategies (e.g. 
nearest neighbor), the scalability of the assignment problem 
limits its applicability to large problem instances. This study 
proposes a fleet dispatching strategy to dynamically assign AVs 
to travelers that involves the assignment problem formulation 
but restricts the decision space to reduce computational time. 
First, we significantly trim the decision space via only 
considering the k-closest open requests around each idle vehicle 
or k-closest idle vehicles around each open request. Second, we 
only calculate point-to-point shortest paths for vehicles and 
travelers that are close in spatial proximity. For vehicles and 
travelers that are not close in proximity, we use zone-to-zone 
travel time estimates. This study embeds the proposed AV fleet 
dispatching strategy within Polaris--an agent-based 
transportation simulation modeling framework. Within 
Polaris, the restricted fleet dispatching strategy proposed in 
this significantly outperforms (i) existing large-scale strategies 
in terms of fleet performance and (ii) the unrestricted 
assignment problem strategy in terms of computational 
performance. 

I. INTRODUCTION 

The emergence and rapid growth of transportation 
network companies (TNCs, e.g. Uber, Lyft, Didi) have 
significantly disrupted passenger transportation systems in 
cities. TNC services offer significant benefits to travelers as 
a relatively affordable, high service quality travel mode that 
does not require purchasing or parking a vehicle. However, 
TNC services are also increasing vehicle miles traveled and 
traffic congestion due to various travel behavior impacts and 
operational inefficiencies. 

Capturing the societal benefits and diminishing the 
negative outcomes of TNCs falls within the purview of 
transportation policymakers and planners. For example, 
there are plans to implement congestion pricing in 
Manhattan [1] and Manhattan already caps TNC vehicles 
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[2]. Researchers have analyzed and compared other possible 
TNC regulations, including a driver minimum wage, a 
vehicle cap, and per-trip congestion tax  [3]. 

Traditionally, transportation planning agencies, and to a 
lesser extent, policymakers have relied on models to 
understand the potential impacts of various technologies 
(e.g. electrification of vehicles), plans/designs (e.g. 
widening highways) and policies (e.g. congestion pricing 
and TNC vehicle caps) on transportation systems. The 
emergence and large presence of TNCs within transportation 
systems has presented a modeling challenge as traditional 
transportation system models only incorporated private 
vehicle and public transit modes. 

Recently researchers have embedded fleet dispatching 
modules within transportation system models, including 
MATSim [4], Polaris [5] and SimMobility [6], to model the 
network and system impacts of TNCs as well as potential 
future automated-mobility-on-demand (AMOD) services, 
which are similar to TNC ridesourcing services except the 
vehicles are driverless, a fixed fleet size is typically 
assumed, and, the automated vehicles (AVs) are completely 
controlled by a central operator [7]. Polaris and MATSim 
both incorporate fleet dispatching modules and integrate 
them within a larger transportation system model that 
includes travel demand models and transportation network 
and control models.  

Existing studies and transportation system models that 
incorporate fleet dispatching modules, and the fleet 
dispatching policies they employ,  can be classified as either 
(i) large-scale simulations that employ simple heuristic 
strategies for dispatching [8], or (ii) small-medium-scale 
simulations that employ optimization-based strategies for 
dispatching [7]. 

The goal of this research study is to develop a 
computationally efficient yet effective (in terms of fleet 
performance) AV fleet operational strategy to assign AVs to 
traveler requests in large-scale transportation simulation 
models. The optimization-based strategy proposed in this 
study is based on the assignment problem formulation; 
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however, the proposed approach significantly decreases the 
size of the decision space using knowledge of the spatial 
distribution of AVs and open requests. Moreover, the 
proposed dispatching strategy intelligently populates the 
cost function in the assignment problem via only calling the 
shortest path module when AVs and travelers are close in 
proximity. The restricted assignment problem strategy 
proposed in this study is compared against two existing 
dispatching strategies in the literature for dynamically 
matching AVs to traveler request. The first is a rule-based 
dispatching strategy [9] and the second involves solving an 
unrestricted assignment problem. For comparison, this study 
embeds each of these fleet dispatching strategies within the 
fleet dispatching module in Polaris—an agent-based 
integrated activity-based travel demand and dynamic 
network assignment modeling software [10]. 

The rest of the paper is organized as follows: Section II 
describes the proposed assignment method. Section III 
discusses the proposed dispatching strategy within 
POLARIS and describes the efficiency and effectiveness 
evaluation measures. Section IV compares the proposed 
dispatching strategy against other dispatching strategies in 
terms of computational and fleet performance. Section V 
concludes the study and discusses future research directions.  

II. METHODOLOGY 

A. Problem statement 

Given a set of trip requests 𝑃 and a fleet of AVs 𝑉 in 
time step 𝜏, the problem objective is to match the AVs to the 
trip requests as efficiently and effectively as possible, within 
an agent-based simulation module. In this study, efficiency 
is measured in terms of computational time and 
effectiveness is measured in terms of fleet productivity and 
average pickup distance across the entire simulation period, 
not just at the current time interval 𝜏.  

B. Problem Formulation 

Finding the optimal assignment for a set of requests P 
and a set of vehicles V involves constructing 𝑛𝑝 × 𝑛𝑣 cost 

objects and solving an optimization problem with 𝑛𝑝 × 𝑛𝑣 

decision variables, where 𝑛𝑝 and 𝑛𝑣  denote the number of 

requests and vehicles, respectively. Hence, as the number of 
vehicles and passengers increase, the size of the decision 
space rapidly increases, such that large problems (e.g. 
10,000 vehicles and 8,000 requests) take too long to solve in 
real-time. To address the computational efficiency problem 
this paper proposes several methods to reduce the decision 
space, while not significantly impacting the optimal 
solution. 

As mentioned in the problem statement, at each time 
interval in the agent-based simulation model, the fleet 
dispatching module needs to assign AVs to open requests. 
To do this, this study proposes repeatedly solving a modified 
assignment problem with a reduced decision space until all 
there are no more feasible AV-traveler matches. The 
objective function of the modified assignment problem is 
formulated as follows: 

𝑚𝑖𝑛  ∑ (𝑇𝑐 − 𝑀)
∀ 𝑐

∗ 𝑋𝑐 (1) 

where  

 c=(p,v) denotes a feasible combination of an 
unassigned person p and an vehicle v in the reduced 
decision space (explained further in sub-section C).  

 Tc denotes the travel time from vehicle v to person p in 
the feasible combination c.  

 Xc is a binary decision variable indicating whether the 
feasible combination c is chosen for matching  or not. 

 M is the maximum pickup travel time from an 
unassigned  vehicle v to unassigned person p--a constant 
set by the TNC vehicle operator 

In the modified assignment problem, each request can be 
assigned to at most one vehicle. 

∑ 𝑋𝑐
∀ 𝑐

∗ 𝑃𝑝𝑐 ≤ 1 ∀ 𝑝 (2) 

where 𝑃𝑝𝑐 = 1  𝑖𝑓 𝑝 ∈ 𝑐 and 0 otherwise. 

Moreover, each vehicle can be assigned to at most one 
request. 

∑ 𝑋𝑐
∀ 𝑐

∗ 𝑉𝑣𝑐 ≤ 1 ∀ 𝑣 (3) 

where 𝑉𝑣𝑐 = 1  𝑖𝑓 𝑣 ∈ 𝑐 and 0 otherwise. 

To prevent conflicting constraints that may arise based 
on the spatial distribution of vehicles and requests it is 
necessary to set both request and vehicle assignment 
constraints as inequality constraints. An objective function 
that minimizes total cost with inequality assignment 
constraints would result in no matches being made with an 
objective value of 0. The presence of the maximum pickup 
travel time term M in the objective function  ensures that the 
solver assigns requests to vehicles that are within the 
maximum pickup time, even with inequality constraints for 
both requests and vehicles. 

Figure 1 shows an overview of the proposed vehicle-
request matching algorithm executed at each time interval in 
the agent-based simulation model. The algorithm is divided 
into the following steps:  

i. Input Pre-processing: This step involves finding the list 
of vehicles and requests eligible for assignment in each 
zone, and computing zone-zone cost matrices. 
Vehicles and requests that are unassigned at the 
beginning of a time step are eligible for assignment.  

ii. Assignment Method Selection: This step involves 
choosing the method to build the restricted search 
space of feasible person-vehicle combinations to pass 
to the optimization problem. Based on the number of 
unassigned vehicles and requests (from Step i) The 
choice is between building combinations of either k 
nearest vehicles to all requests or k nearest requests to 
all vehicles. 

iii. Optimization Pre-processing: This step involves 
finding the k nearest vehicles or requests based on the 
method chosen in the previous step and constructing 
cost objects for all unique person-vehicle combinations 
in the k nearest set. The travel cost between vehicles 
and requests is obtained by either indexing from a Zone 
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to Zone skim matrix, or by computing the point-to-
point shortest paths between vehicles and travelers.  

iv. Solving the Optimization Problem: This step involves 
solving one stage of the modified assignment problem 
with the reduce decision space for the feasible vehicle-
traveler combinations from Step iii.  

v. Post-processing: This step involves updating the 
statuses of assigned requests and vehicles, and 
updating the list of eligible requests and vehicles in 
each zone. If eligible vehicle-request combinations still 

exist, then go to Step 
i.  If not, then the 
process is complete. 

C. Computation 
Time Reduction 

Solving a 
matching problem 
with a reduced 
decision space of k 
nearest vehicles to all 
requests or k nearest 
requests to all 
vehicles reduces the 
number of decision 
variables in the 
optimization problem 
and hence the 
computation time and 

memory 
requirements. The 
overall computation 
time of the algorithm 
is influenced by the 
following three 
factors.  

Figure 1: Overview of Request-Vehicle Matching Algorithm 

The first is the choice of Assignment Method.  The number 
of requests and vehicles determine the entity (person or 
vehicle) around which k nearest search is to be performed to 
reduce the feasible decision space. Performing the k nearest 
search around the entity which is smaller in size results in 
fewer feasible person-vehicle combinations and hence takes 
less computation time and memory. Thus, if the number of 
requests is less than number of vehicles, a reduced decision 
space is constructed by finding the k nearest vehicles 
associated with each requests. 

The second is building the heap of k nearest 
requests/vehicles. Finding k nearest requests to a vehicle (or 
vice versa), involves building a min heap from the request to 
all vehicles and popping the root of the heap k times. 
Building a heap of n objects takes O(n) time complexity. 
Each time the root of a heap is popped, it takes O(log n) time 
complexity to re-adjust the min heap to set a new root. Thus, 
finding k nearest vehicles to a single request takes a time 
complexity of O(n+klogn).  

In general, building a min heap for a request to all vehicles 
is a computationally intensive process especially when the 
number of vehicles is high. The computation time is reduced 

by incrementally constructing a min-heap from the request 
to all eligible vehicles within the same spatial zone and 
expanding the search to the next closest zone until a min 
heap with at least k vehicles to the request is built. This 
significantly reduces the time to find the k nearest entity to 
complexity O(K+klogK), where k is a whole number 
typically in the range of 1 to 20 based on the search space, 
and K is the total number of eligible vehicles in each 
searched zone, starting from the request zone, k<=K<=n. 
This procedure requires zone-wise lists of eligible persons 
and vehicles to be initialized during pre-processing and 
updated at the end of each iteration of solving the 
optimization problem. 

The third is building the vehicle-request cost objects. The 
cost term Tc in the objective function (Eqn. 1) can be found 
between each request and vehicle by either using zonal cost 
skims or by computing a point to point shortest path from 
the vehicle to the request. Zonal cost skims are pre-estimated 
and stored, hence accessing them is quite fast. However, 
using zonal cost skims may result in poor matches especially 
for vehicle-request assignments within the same zone or 
adjacent zones. Finding point to point costs for each feasible 
person-vehicle combination is computationally intensive, 
especially to build paths between persons and vehicles that 
are not close to each other. Hence, the proposed algorithm 
determines point to point costs only for feasible 
combinations that are within a zonal cost threshold. For all 
feasible combinations beyond the threshold, the inter-zonal 
cost is used to approximate the cost of travel between the 
vehicle and request. This proposed hybrid approach 
improves fleet performances by making better matches of 
feasible combinations that are close to each other and also 
leverages the time efficiency of zonal costs for other feasible 
combinations. 

Figure 2 illustrates the procedures described above to 
efficiently find the k nearest vehicles to a single request and 
construct cost objects for the feasible request-vehicle 
combinations to be passed as an input to the optimization 
problem.  

III. NUMERICAL EXAMPLE 

A. Case Study 

The proposed algorithm is applied in the city of 
Bloomington, Illinois, USA to match on-demand requests to 
vehicles. It is a medium-scale network that consists of 2,540 
nodes, 7,023 links and 185 Traffic Analysis Zones (TAZs). 
The network also includes 2,833 activity locations that 
generate or attract trips. We assume that the fleet size is fixed 
at 1000 vehicles as current AV-based ridesourcing 
companies such as Waymo plan to operate the their own AV 
fleet [11]. Figure 3 shows the Bloomington network on 
which the assignment methods are run. 

B. Agent-based simulation framework 

The proposed ride-matching algorithm is implemented 
as a Dynamically Linked Library (DLL) to the Polaris agent-
based modeling framework [10]. Polaris synthesizes the 
population and trips for the region for a 24-hour simulation 
period starting from 12 am. TNC trip requests are generated 
by running the mode choice model. The TNC vehicle fleet 
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size is set as a constant throughout the day and the vehicle 
locations and movements are tracked by Polaris in each time 
step. The proposed ride-matching DLL is invoked by Polaris 
in a 60 second interval, passing unassigned requests and all 
vehicle agents as arguments. The optimal ride matching 
DLL was developed in C++ making use of the CPLEX 
optimization package. The proposed algorithm is iteratively 
run in each time step until there are no feasible request-
vehicle combinations remaining and the results are updated 
in Polaris.  

 
Figure 2: Finding k nearest feasible vehicles for a single request 

C. Matching Strategies and Performance Measures 

The study compares three assignment strategies:  

i. A1 - Non-optimal assignment: Unassigned requests 
are matched to unassigned vehicles on a First Come 
First Serve (FCFS) basis in each time step using 
zonal skims. This is the algorithm currently in use in 
Polaris.  

ii. A2 - Optimal K Nearest Hybrid with Zonal Skims: 
The algorithm proposed in Figure 2 is run by 
building feasible combination objects using zonal 
cost skims only. 

iii. A3 – Optimal K Nearest Hybrid Assignment with 
Point to Point and Zonal Skims: The algorithm 
proposed in Figure 2 is run by using point-to-point 
costs for feasible vehicle-request pairs that are 
within a zonal cost threshold of 15% of maximum 
pickup cost M in equation (1), and zonal skims for 
costs beyond the threshold.  

iv. A4 – Global Optimal Assignment. This algorithm 
assigns requests to vehicles using Point to Point 
travel skims, without reducing the decision space 
[17].  

 The performance of the above algorithms is evaluated 
in terms of: Total number of assigned travelers across 

24 hours, Average Pickup Distance (feet), Polaris Run 
Time (seconds), and Fleet Productivity (%). Polaris Run 
Time is the time it takes for Polaris to execute the entire 
simulation for the Bloomington network invoking the 
vehicle-request matching algorithm. Fleet Productivity 
is the percentage of TNC vehicle miles with a passenger 
on board. Table 1 shows an overview of the three 
assignment strategies compared in this study. 

 
Figure 3: Bloomington, IL – USA Network 

D. Model Scenarios 

The request-vehicle matching algorithms listed in Table 
1 are run for the following scenarios:  

i. Base Scenario: TNC trips are generated based on the 
taxi mode choice parameters for Home Based Work, 
Home Based Other and Non-Home Based trips. The 
fleet size for the base model is 1000 vehicles. The 
entire fleet is in service during the 24-hour simulation 
period.  

ii. Other scenarios: The assignment strategies A1, A2 and 
A3 are run for other scenarios with varying fleet size 
from 500 to 3000. Mode choice parameters are also 
changed for each fleet size scenario to capture system 
performance at different demand-supply imbalances.  

Table 1: Overview of Matching algorithms 

# Algorithm 
Optimization-

based? 

K-

Nearest?  
Cost Objects 

A1 
Non-Optimal  

[9] 
No NA Zonal skims 

A2 

Optimal K Nearest 

Hybrid with Zonal 

Skims 

Yes Yes Zonal Skims 

A3 

Optimal K Nearest 

Hybrid with Point to 

Point and Zonal Skims 

Yes Yes 

Point-to-Point  

and  

Zonal Skims 

A4 

Unrestricted Assgn. 

Problem with Point-to-
Point Skims [7] 

Yes No 

Point-to-Point 

Skims 
 

For all scenarios, the maximum pick up cost (M) in the 
objective function (Eqn. 1) is set as 20 minutes. A k value of 
10 is used in the optimal K nearest hybrid strategies. An 
inter-zonal cost of 15% of M is used as threshold to switch 
from using point-to-point costs to zonal costs in the third 
assignment strategy (A3). 
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IV. RESULTS AND INFERENCES 

A. Base Scenario 

Table 2 shows the results of running the four assignment 
strategies for the base scenario. 

Table 2: Evaluation of Matching methods for Base Scenario 

Algorithm A1 A2 A3 A4 

Fleet Size 1000 1000 1000 1000 

Assigned Travelers 92,162 101,504 103,464 105,934 

Polaris Run Time 
(sec) 

1104 1138 1291 92,960 

Avg Pickup 
Distance (feet) 

3,021 1,994 1,855 1,271 

Fleet Productivity 
(%) 

68.4 76.7 78.5 83.3 

The assignment results show that the Optimal K Nearest 
hybrid algorithm with Point to Point and Zonal skims (A3) 
provides a significant improvement in terms of 
computational efficiency compared to the global optimal 
assignment algorithm A4. A3 reduces the total Polaris run 
time by around 98% compared to A4, and performs the best 
in terms of the average pickup distance, fleet productivity, 
and the total number of assignments when compared to A1 
and A2. A3 reduces the average pick up distance by almost 
40% compared to the non-optimal solution (A1), with a 16% 
increase in total computation time. Using point to point 
travel times  for feasible combinations of nearby requests 
and vehicles reduces the average pickup distance by 7% 
compared to using zonal skims for all feasible combinations 
(A2). Algorithm A1 serves the fewest travelers over a 24-
hour period in the base scenario. Asside from A4, A3 makes 
the most assignments and has the highest fleet productivity. 

Even though Algorithm A4 perfoms the best in terms of 
average pickup distance, its very high Polaris Run Time of 
92,690 seconds (25.8 hours), makes it unviable for  use in 
dynamic assignment for large fleets. The proposed 
algorithm A3 provides a significant improvement in terms 
of computational efficiency compared to A4. Other 
computational tests illustrate that the fleet performance 
associated with A3 does not notably decrease relative to A4.   

B. Other Scenarios 

Figure 4 shows the Polaris run time associated with 

algorithms A1 (▲), A2 (♦), and A3(X) over different fleet 

sizes (500 to 3000 vehicles) and demand levels (40,000 to 
175,000 riders). The plot shows that the matching algorithm 
A3, which yielded the best objective value in the base 
scenario, takes the most time to compute over different 
scenarios. It takes about 20% more time to run Polaris 
invoking the algorithm A3 compared to using strategy A1. 
The total computation time for A2 is only slightly more than 
A1 over different fleet sizes and demand.  

For a given fleet size, the computation time of all 
algorithms increases with higher demand. Specifically, 
algorithm A3 requires more computation time as demand 
increases due to the need for higher resolution of the spatial 
distribution of both vehicles and requests. In addition, 
Polaris calculates point-to-point travel times from a vehicle 
to a location of the request by building a network path. In 
other words, Polaris only stores a zone-to-zone travel time 

skim matrix for efficient memory management and 
calculates point-to-point travel times on request. Since the 
point-to-point shortest path calls take significantly more 
computational time compared to indexing from an inter-
zonal cost table, algorithm A3 consistently has a higher 
computation time compared to A2. 

 
Figure 4: Comparison of Polaris Run Time 

 Figure 5 compares the average pickup distances (in feet) 
across the 3 assignment strategies for various fleet sizes and 
demand levels. The algorithm A3 performs the best of all 
algorithms across different fleet sizes and demands with 
consistently lower pickup distances. 

Figure 5 also indicates that for a fixed fleet size, the 
average pickup distance decreases for the algorithms that use 
optimization (A2 and A3). Since assignments are made 
myopically in A1, average pick up distance does not tend to 
decrease with increasing demand for a given fleet size.  

 
Figure 5: Comparison of Avg Pickup Distances 

Figure 6 compares the fleet mile productivity across the 
assignment strategies over different scenarios of fleet size 
and demand. A3 consistently outperforms A1 and A2 in 
terms of productive fleet miles. A1 has the worst fleet 
productivity percentages across all scenarios. A3 has higher 
productivity than A2 since it makes better matching 
decisions for vehicles and requests that are close to each 
other by considering point-to-point travel costs instead of 
zonal skim approximations.  

While the fleet productivity increases with increasing 
demand under fleet sizes for A2 and A3, this trend is not 
visible in very high fleet sizes (2500 and 3000). This trend 
could be because A2 and A3 do not yield a globally optimal 
solution (where all vehicle-request combinations are passed 
to the optimization solver). Especially in cases where the 
fleet size is very large, better matches may be missed out by 
just considering the k nearest vehicles or requests. In other 
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words, k value is a critical factor in addressing the 
spatiotemporal density of passengers and vehicles. Our 
experiments, however, set the constant k value over the 
scenarios. 

 
Figure 6: Comparison of Productive Fleet Miles (%) 

The results in Figure 6 are particularly valuable from a 
transportation planning perspective. The policy implications 
associated with TNC/SAV fleets having a productivity rate 
around 75-85% are much different than TNC/SAV fleets 
having a productivity rate between 60-70%.  

V. CONCLUSION 

This study proposed a computationally efficient AV fleet 
dispatching strategy to dynamically match AVs to traveler 
requests within a large-scale agent-based travel demand-
dynamic network simulation model. Computational 
efficiency was achieved by solving a restricted assignment 
problem considering a reduced decision space of k nearest 
elements. Applying the algorithm to a medium scale 
network of Bloomington indicated significant reduction in 
computation time compared to the global optimal solution, 
with improved fleet performance compared to a rule-based 
heuristic. The proposed fleet dispatching study is currently 
being tested on the very large-scale Chicago regional 
network with promising results in terms of both fleet and 
computational performance.  

The study also found that the spatial distribution of 
requests and vehicles affect the number of assignments 
made in each iteration of the algorithm for a given value of 
k. Further research may explore setting of optimal value of k 
based on the spatio-temporal distribution of requests and 
vehicles, at each time interval. Another area of future 
research involves testing various regulations/policies related 
to TNCs in urban areas as well as evaluating the impact of 
TNCs at the network level (congestion) and system level 
(mode choice, activity location choice, etc.).  

ACKNOWLEDGEMENT 

This research was sponsored by the U.S. Department of 
Energy Vehicle Technologies Office under the Systems and 
Modeling for Accelerated Research in Transportation 
Mobility Laboratory Consortium, an initiative of the Energy 
Efficient Mobility Systems Program. The authors remain 
solely responsible for this paper.  

REFERENCES 

[1] W. Hu, “Confused About Congestion Pricing? 

Here’s What We Know,” The New York Times, New 

York City, 24-Apr-2019. 

[2] T. Bellon, “Uber to limit drivers’ app access to 

comply with NYC regulation,” Reuters. 16-Sep-

2019. 

[3] S. Li, H. Tavafoghi, K. Poolla, and P. Varaiya, 

“Regulating TNCs: Should Uber and Lyft set their 

own rules?,” Transportation Research Part B: 

Methodological, vol. 129, pp. 193–225, Nov. 2019. 

[4] M. Maciejewski, J. Bischoff, S. Hörl, and K. Nagel, 

“Towards a testbed for dynamic vehicle routing 

algorithms,” in Communications in Computer and 

Information Science, 2017, vol. 722, pp. 69–79. 

[5] J. A. Auld et al., “Exploring the mobility and energy 

implications of shared versus private autonomous 

vehicles,” in 2019 IEEE Intelligent Transportation 

Systems Conference (ITSC), 2019, pp. 1691–1696. 

[6] R. Basu et al., “Automated Mobility-on-Demand vs. 

Mass Transit: A Multi-Modal Activity-Driven 

Agent-Based Simulation Approach,” 

Transportation Research Record: Journal of the 

Transportation Research Board, p. 

036119811875863, May 2018. 

[7] M. Hyland and H. S. Mahmassani, “Dynamic 

autonomous vehicle fleet operations: Optimization-

based strategies to assign AVs to immediate traveler 

demand requests,” Transportation Research Part C: 

Emerging Technologies, vol. 92, pp. 278–297, Jul. 

2018. 

[8] D. J. Fagnant, K. M. Kockelman, and P. Bansal, 

“Operations of Shared Autonomous Vehicle Fleet 

for Austin, Texas, Market,” Transportation 

Research Record: Journal of the Transportation 

Research Board, vol. 2536, pp. 98–106, Sep. 2015. 

[9] D. J. Fagnant and K. M. Kockelman, “The travel and 

environmental implications of shared autonomous 

vehicles, using agent-based model scenarios,” 

Transportation Research Part C: Emerging 

Technologies, vol. 40, pp. 1–13, Mar. 2014. 

[10] J. Auld, M. Hope, H. Ley, V. Sokolov, B. Xu, and 

K. Zhang, “POLARIS: Agent-based modeling 

framework development and implementation for 

integrated travel demand and network and 

operations simulations,” Transportation Research 

Part C: Emerging Technologies, vol. 64, pp. 101–

116, Mar. 2016. 

[11] Waymo, “Waymo’s fully self-driving vehicles are 

here,” Medium, 2017. [Online]. Available: 

https://medium.com/waymo/with-waymo-in-the-

drivers-seat-fully-self-driving-vehicles-can-

transform-the-way-we-get-around-75e9622e829a. 

[Accessed: 07-Nov-2017]. 

 

60

65

70

75

80

85

40 57 61 63 45 87

10
6

11
3

46

10
0

13
1

14
4

46

10
3

14
5

16
2

45

10
3

15
0

17
3

46

10
3

15
1

17
5

500 1000 1500 2000 2500 3000

P
ro

d
u

ct
iv

it
y(

%
)

A1 A2 A3# of vehicles

o
f 

ri
d

er
ss

(1
,0

0
0

)

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 18,2022 at 21:31:05 UTC from IEEE Xplore.  Restrictions apply. 


