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Changes in Structural Networks after Radiation

Therapy in Patients with Brain Tumors

by Joy Yeh

Introduction - Radiation therapy (RT) received by brain tumor patients after tumor re-
section can affect brain connectivity in various degrees. Structural connectivity changes
in brain matter can be modeled by diffusion MRI and tractography between areas of
the brain that act as nodes of the network. We hypothesize that graph theory measures,
including global network descriptors and local node characteristics, may change with
the application of radiation therapy and evolve over time.

Methods - Six patients with brain tumor resections were imaged either before or imme-
diately following RT and then again six months later. Diffusion data were registered
with a brain atlas (AAL), and post-gad T1- and T2-weighted FLAIR images were clin-
ically marked for tumor-affected tissues. Networks were constructed using 90 AAL
regions as nodes and connecting streamlines as edges, weighted by the average frac-
tional anisotropy (FA) within those streamlines. Four global and four local network
measures were examined. Tumor-affected node sets were defined in each patient and
examined for changes, then compared against contralateral nodes and all non-affected
nodes. Obtained network measures were correlated with cognitive data.

Results - Network average clustering coefficient increased significantly between scans
(p=0.0313). Local clustering, local efficiency, and node strength showed increasing
trends in selected node sets. Node strength increased significantly with T1 and T2
image-based definitions of tumor-affected nodes six months post-RT in a single pa-
tient. Correlation was detected between cognitive scores and betweenness centrality in
select tumor-affected nodes.

Conclusions - Several connectivity measures appeared to be altered in patients after
radiation therapy in a span of six months, including increases in network average clus-
tering. Small sample size limited the level of confidence of observed changes in lo-
cal measures and correlation to cognitive scores but suggests connectivity changes in
tumor-affected regions and betweenness centrality in relation to cognitive scores as
points of interests in future studies.
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Chapter 1

Introduction

1.1 Motivation

Standard of care for patients with high grade gliomas currently includes tumor resec-
tion followed by radiation therapy and chemotherapy (Stupp et al., 2007). Previous lit-
erature suggests that radiation therapy may affect brain tissue by demyelination, mild
structural degradation of axonal fibers, and microbleeds in tissues (Nagesh et al., 2008;
Lupo et al., 2012) Changes in these tracts may alter brain function through interrup-
tion or changes in the network. Structural connectomes can be used to study the white
matter tract connections of the human brain; until recently, few applications of this
method have been performed to examine the effects of radiation therapy on structural
connectivity (Sporns, Tononi, and Kötter, 2005). Such an analysis may provide new
insights into the effects of radiation therapy on the brain and may offer guidance in
future treatment strategies.

1.2 Background

Patients with malignant high-grade gliomas undergo radiation therapy and chemother-
apy treatment following surgical removal of tumors. The effects of radiation therapy
have been known to be detrimental, with studies noting microbleeds in tissues years
after application of radiation (Lupo et al., 2012). Although a multitude of connectome
studies have been performed, very few studies have applied this methodology to in-
vestigate the effects of radiation therapy.

Connectome analysis examines the network of connections in the brain. These stud-
ies are segregated into analysis of the functional and structural connectome (Sporns,
Tononi, and Kötter, 2005). Functional networks are derived from fMRI studies and are
based on temporal activation measured by Blood-Oxygen-Level Dependent (BOLD)
response (Biswal et al., 2010). Previous functional connectome studies have found con-
nectivity alterations that correlated significantly to changes in cognitive scores in at-
tention in the context of radiation therapy in nasopharyngeal carcinoma patients, with
particular changes in attention (Ma et al., 2016).
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In contrast, structural connectomes are based on physical connections of white mat-
ter tracts in a network between brain regions and are derived from diffusion MRI
(Sporns, Tononi, and Kötter, 2005). Structural connectome changes have been stud-
ied extensively for various conditions, including but not limited to epilepsy, dementia,
schizophrenia, multiple sclerosis, and development in children, with various changes
(Griffa et al., 2013; Tymofiyeva et al., 2014). However, fewer studies have analyzed
structural networks in relation to cancer and radiation therapy. One study of struc-
tural connectivity in adult patients who had been treated for brain tumors as children
noted variation in connectivity in relation to attention networks (Smith et al., 2014).
The effects of chemotherapy on connectivity in leukemia patients have included lower
network average clustering, among other changes (Kesler et al., 2016). In patients with
pediatric medulloblastoma, a decrease in FA was found 12 weeks after radiation ther-
apy ended (Duncan et al., 2016). Though related in methodology, an evaluation of
structural changes in adult patients with high-grade gliomas may describe underlying
changes occurring during radiation application in fully developed brains.

1.2.1 Diffusion MRI

In white matter, cellular membranes of the myelin sheath restrict water diffusion or-
thogonal to the fibers. Diffusion Weighted Imaging (DWI) uses diffusion sensitizing
gradients to highlight the diffusion of water during the imaging sequence. Diffusion
Tensor Imaging (DTI) models the diffusion magnitude, anisotropy and orientation as
a tensor. DTI measures include fractional anisotropy (FA), which describes the de-
gree of anisotropy of a diffusion process and may be determined from the tensor. FA
values are generally high in white matter tracts, lower with degradation, and can indi-
cate structural integrity of fibers (Melhem et al., 2002). DTI uses a spin echo pulse se-
quence with diffusion gradients and echo planar imaging readout (EPI) in a minimum
of 6 non-collinear directions to describe the diffusion tensor. Such scans also utilize a
b=0, or b0 reference scan where no diffusion-sensitizing gradients are applied. Some
post-processing such as eddy-current corrections may be based off of the b0 scan and
multiple b0 scans captured throughout the scan, theoretically allowing for additional
motion correction. Greater b values, reflecting the application of diffusion gradients,
allow for greater diffusion weighting to detect slower diffusion processes (Mukherjee
et al., 2008).

High Angular Resolution Diffusion Imaging (HARDI) allows for better delineation of
white matter tracts by addressing crossing tracts compared to standard DTI by using
a higher order of modeling, utilizing additional directions with higher b-values (Hess
et al., 2006). Q-ball reconstruction allows for resolution of multiple intravoxel fiber
orientation (Tuch, 2004). Selection of HARDI data to use may require rejection of direc-
tions in which eddy currents and other artifacts affect image quality. FA and primary
eigenvectors are known to be affected by rejection of directions (Chen et al., 2015).
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1.2.2 Anatomical Images

Within each patient, different sets of tumor-affected tissues may be identified depend-
ing on MRI scan parameters. T2-weighted FLAIR images may show a combination of
infiltrative tumor and edema as hyperintense regions while suppressing cerebrospinal
fluid signal. T1-weighted images after the injection of gadolinium-based contrast agent
depict necrosis and areas of breakdown of the blood-brain barrier (Just and Thelen,
1988). Use of contrast agents with T1-weighted images allows for detection of potential
inflammation or breakdown of the blood-brain barrier. Tumor-affected areas may in-
clude these contrast-enhanced lesions (CEL), as well as the surrounding non-enhancing
T2 lesions (NEL) (Graif et al., 1985).

1.2.3 Network Analysis

A graph is defined as a set of nodes and edges (connections) between them. Connec-
tions can be obtained from diffusion MRI and tractography. Application of atlases such
as the Automated Anatomical Labeling (AAL) atlas allows for parcellation of the brain
to regions that act as nodes (Heckemann et al., 2006). A graph can be represented as a
connectivity matrix where entries relate to the connections between two parcels within
the brain and act as edges. These edges can be weighted and carry values relating to
the level of connectivity between the nodes, or brain regions they connect. Registration
of data to a common atlas and template space allows consistency despite anatomical
variations between patients (Klein et al., 2009).

Graph theory measures of the resulting networks may include both global measures
that describe the network as a whole and local measures particular to individual nodes
(Bullmore and Sporns, 2009). Global measures include network average clustering co-
efficient (C), characteristic path length (L), small world index (S), and transitivity (T)
(Rubinov and Sporns, 2010). Local measures include local clustering coefficient (ci),
local efficiency (ei), node strength (si), and betweenness centrality (bi) (Rubinov and
Sporns, 2010).

The network average clustering coefficient reflects the local clustering at each node
(Sporns et al., 2004). Similarly, the characteristic path length is a reflection of the in-
verse of the global efficiency of the network (Bullmore and Sporns, 2009). In the case of
brain tumors, the changes in specific nodes may be of interest in addition to the overall
network measure. Some of these measures, such as clustering and transitivity exam-
ine the connectivity between node neighbors (Sporns et al., 2004). Transitivity places
more weight on high degree nodes whereas the network average clustering coefficient
evaluates low degree nodes with the same weight (Rubinov and Sporns, 2010). Char-
acteristic path length, local efficiency, and node strength are more indicative of weights
in connections (throughout the network, in local networks of individual nodes, and
in connection to a single node, respectively) rather than patterns of node linkage, and
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reflect physiological efficacy (He and Evans, 2010). Small world indices evaluate a spe-
cific pattern of connection described by networks with node connections to few neigh-
bors and efficient traversal between node pairs. Bassett and Bullmore have described
this phenomenon as a measure of “cost-effectiveness” in natural connected networks
(Bassett and Bullmore, 2006). Finally, betweenness centrality of individual nodes is of
interest in the cases of brain tumors since it reflects the number of shortest paths (and
thereby the most efficient paths) through a particular node. This measure may be ex-
pected to increase with function and usage of a particular node and decrease with use
of alternative paths of network traversal (Alstott et al., 2009).

FIGURE 1.1: Network measures describe graphs of nodes and edges. Adapted from Rubi-
nov M, Sporns O (2010) NeuroImage 52:1059-69

1.2.4 Cognitive Scores

Previous studies have shown radiation therapy may cause changes in cognitive func-
tion, which is linked to degradation of white matter structural integrity (Aoyama et
al., 2007). The Montreal Cognitive Assessment (MoCA) tests short term recall, visu-
ospatial abilities, executive function, attention, concentration, working memory, and
orientation to time and place (Nasreddine et al., 2005). Cognitive tests may include
memory, language, executive function, visual-spatial, and visual-motor speed scores,
combined with behavioral and quality of life tests into a total score that measures over-
all performance as a total or global z-score. While relatively little is known about these
changes in the context of radiation therapy and effects on underlying white matter
tracts, a structural connectivity study may provide new insights in this area.

1.3 Project Goals

We hypothesize that changes in structural connectivity in brain tumor patients will
take place after treatment with radiation therapy and seek to investigate differences
through network analysis of global and local properties.



5

Chapter 2

Methods

2.1 Data Acquisition

Data was obtained from six high grade glioma patients (grades III-IV) who were im-
aged using a GE Medical Systems Signa HDx 3.0T scanner at the University of Cali-
fornia, San Francisco. Images were obtained after surgical tumor resection but either
immediately before (4 patients) or after (2 patients) radiation therapy, and again after
six months, during which patients were treated with radiation therapy and adjuvant
chemotherapy. These scans will be referred to as pre-RT scans and post-RT scans, re-
spectively. These images had voxel size 1.094 x 1.094 x 2.600 mm and 256 x 256 x 44
matrix, obtained with 55 diffusion directions (HARDI) and 7 b0 image set volumes,
with a maximum b value of 2000 s/mm2. Additionally, T2 FLAIR and pre/post-gad T1
SPGR MRI images were obtained for anatomical reference.

2.2 Pre-processing

An automatic data rejection algorithm was used to discard corrupted image set vol-
umes affected by motion. These images were identified as outliers with signal inten-
sity ripples or loss. Images that exceeded a threshold number of pixels deviating from
mean pixel value for all diffusion directions by three standard deviations or more were
labeled as corrupt. The threshold for number of pixels was set based on head size.
Slices corresponding to areas including and inferior to the nasal cavities, as well as
those corresponding to the superior edge were excluded, as defined by the lower 1/3
and top 1/6 slices, respectively. The six additional b0 image set volumes were also dis-
carded due to Diffusion Toolkit (Wang et al., 2007) restriction on input formatting of
data files.

2.3 Tractography

Tractography was performed using Diffusion Toolkit and reconstructed for stream-
lines in DTI space. In the case of DTI reconstruction, the deterministic Fiber Assign-
ment by Continuous Tracking (FACT) algorithm was applied using the entire diffusion-
weighted image set volume as the mask image (Mori et al., 1999) . A threshold angle of
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35o was chosen as a compromise between false positive and false negative streamlines
(Moldrich et al., 2010) . Trackvis was used for visualization (Wang et al., 2007).

2.4 Registration and Parcellation

DTI data were registered to the MNI space template after application of Brain Extrac-
tion Tool (BET) (Smith, 2002) . FA maps were registered to the standard FMRIB58_FA_1mm
atlas in MNI space using FLIRT (Jenkinson and Smith, 2001; Jenkinson et al., 2002) .
Subsequent registration to DTI space was performed to match tractography. Appli-
cation of the Automated Anatomical Labeling (AAL) atlas to diffusion data was per-
formed with registration of parcel regions of interest (ROIs) to MNI then to DTI space
for definition of network nodes using FLIRT and Matlab 2015b (Tzourio-Mazoyer et
al., 2002; MATLAB, 2015) Nodes were identified using backwards mapping of image
intensities to parcels. 90 AAL parcels were selected for examination. Parcels of the
cerebellum were excluded.

2.5 Matrix Generation

Weighted undirected connectivity matrices were constructed through Matlab for each
scan. For each graph represented by a matrix, 90 AAL parcellations acted as nodes,
or vertices, to represent known brain regions. For each edge ei,j connecting a pair of
nodes vi and vj , the average FA within voxels through which tractography streamlines
passed between nodes vi and vj , were used to generate edge weight values. Node
volumes were also calculated.

2.6 Global Measures

Global properties of network average clustering coefficient, characteristic path length,
small world index, and transitivity were derived as a network-wide value for each scan
using Matlab and the Brain Connectivity Toolbox for comparison of measures in pre-
RT and post-RT scans (Rubinov and Sporns, 2010). These measures are based on the
following graph theory concepts and definitions, adapted from Rubinov and Sporns
(Bullmore and Sporns, 2009). Refer to List of Symbols for definitions and figure 1.1 for
visualization.

The network average clustering coefficient is a measure of segregation and is a measure
of how connected node neighbors are to each other (Onnela et al., 2005). In the context
of connectome analysis, the network average clustering coefficient was used character-
ize connectivity changes on a smaller scale than some of the other network measures,
averaged across all nodes in the network. The network average clustering coefficient is
defined as
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C =
1

n

∑
i∈N

2ti
ki(ki − 1)

(2.1)

The characteristic path length describes the shortest paths, or summation of inverted
edge weights for all possible pairs of nodes in a network, averaged over the entire set
of edges (Watts and Strogatz, 1998). This measure was used as an assessment of overall
integration. Weighted characteristic path length is defined as

L =
1

n

∑
i∈N

∑
j∈N,j 6=i dij

n− 1
(2.2)

Small world indices evaluate the characteristic of the graph where nodes have few
neighbors but most pairs of nodes can be accessible through short paths. The mathe-
matical evaluation of this index compares ratios of clustering and characteristic path
length to their respective randomized values on the same networks (Humphries and
Gurney, 2008). The small world index is defined as

S =
C/Crand

L/Lrand
(2.3)

Transitivity is the ratio of triangles to triplets in the network, where triplets are three
connected nodes (therefore each triangle contains three triplets). Like the clustering
coefficient, transitivity is a segregation measure and reflects changes in connectivity on
smaller scales (Newman, 2003). Weighted transitivity is defined as

T =

∑
i∈N 2ti∑

i∈N ki(ki − 1)
(2.4)

For each global measure, the Wilcoxon ranked sum test was applied between groups
of patient scores before radiation, and patient scores after radiation.

2.7 Local Measures

Local properties of of local clustering coefficient, local efficiency, node strength, and
betweenness centrality were derived for each scan using Matlab and the Brain Con-
nectivity Toolbox for comparison of measures in pre-RT and post-RT scans (Rubinov
and Sporns, 2010). These measures are calculated for each node and are based on the
following graph theory concepts and definitions, adapted from Rubinov and Sporns
(Bullmore and Sporns, 2009). Refer to Appendix A for definitions and figure 1.1 for
visualization.

Local clustering coefficients characterize connections of individual nodes’ neighbors.
The network average clustering coefficient is derived from an average of these values
(Onnela et al., 2005). Weighted local clustering coefficient is defined as

ci =
2ti

ki(ki − 1)
(2.5)
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Local efficiency is the summation of edge weights across all pairs of nodes in a local
neighborhood (Bullmore and Sporns, 2009). Weighted local efficiency is defined as

ei =
1

n

∑
i∈N

∑
j,h∈N,j 6=i(wijwih[djh(Ni)]

−1)1/3

ki(ki − 1)
(2.6)

Node strength reflects the connectivity of a node i as the sum of weights in all edges
connected to node i (Hagmann et al., 2010). For each node i, node strength is defined
as

si =
∑
j∈N

wij (2.7)

Betweenness centrality is the fraction of all shortest paths in the network that contain a
given node. For nodes that are included in larger numbers of shortest path connections,
this value will be higher (Freeman, 1978). Betweenness centrality is defined as

bi =
1

(n− 1)(n− 2)

∑
h,j∈N,h6=j,h 6=i,j 6=i

ρhj(i)

ρhj
(2.8)

2.8 Node Set Definition

The T2-hyperintense lesion (T2L) and contrast enhancing lesion (CEL) were generated
from coregistered T2 FLAIR MRI images and post-gad T1 MRI images, respectively.
Masks were created for these voxels and registered to DTI space to match each scan
using FLIRT. Nodes whose parcel volumes included the masked tumor-affected ar-
eas (CEL and T2) were selected for local analysis, heretofore referred to as the tumor-
affected nodes. A set of non-enhancing lesion (NEL) nodes was also defined by sub-
tracting the T2L and CEL masks.

In cases where pre-RT scans and post-RT scans identified slightly different sets of
tumor-affected nodes for local analysis (<10 unique nodes per patient), the union of
these sets of node was used for data analysis. All nodes not labeled tumor-affected, or
normal (Non) were also identified as a comparative set, for a total of 5 sets of nodes per
patient.

2.8.1 Analysis Between Scans

Changes in measures were examined between scans. For each node set, the Wilcoxon
signed rank test was then applied to compare post-RT to pre-RT local measures (aver-
aged within patient-wise node sets) to find differences in node sets changes (defined
as all nodes, non-tumor nodes, CEL nodes, T2L nodes, and NEL nodes) among all
patients. These changes were also derived per patient for observation of direction of
changes.
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2.8.2 Analysis Between Tissues

Changes in measures were examined between tumor-affected and normal tissue. For
each tumor-affected definition (CEL, T2L, NEL), the Wilcoxon rank sum was applied to
compare tumor-affected to normal local measures (averaged as changes within patient-
wise node sets) to find differences in tumor-affected node set changes (compared to
normal tissue change) among all patients. These changes were also derived per patient
for observation of direction of differences in changes.

2.9 Cognitive Correlates

MoCA and global z-scores were obtained as cognitive measures. These measures were
compared with Spearman correlations across each of the 6 patients where each global
measure and each average node set change for each local measure were tested as ex-
planatory variables.
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Chapter 3

Results

3.1 Processed Data

Automatic corrections resulted in less than 5 directions rejected per scan, with 8 scans
resulting in no rejections. Tractography and registration results appeared reasonable
despite some miscellaneous streamlines near the posterior and some minor registration
mismatches especially near the anterior surface.

FIGURE 3.1: Samples from patient 5 pre-RT scan, clockwise from top: registered CEL and
T2L masks; connectivity matrix weighted by FA between a 90 AAL-parcelled brain node

network; tractography streamlines

3.2 Global Measures

Comparisons between pre-RT and post-RT scans showed general increases in network
average clustering coefficients, and transitivity, decreases in characteristic path length,
and little change in small world indices, shown in table 1. Significant increases were
observed in network average clustering coefficients (p=0.031), whereas decreases in
characteristic path length and increases in transitivity showed less consistent results.
Refer to figure 3.2.
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Average Change p-value

Network Avg Clustering 0.0133 0.0313
Characteristic Path Length -0.0109 0.1563
Small World Index 0.0048 0.6991
Transitivity 0.0088 0.1563

TABLE 3.1: Global measures significantly increased in network average clustering coeffi-
cient (p=0.0313) when comparing paired pre-RT to post-RT scans.

Patients

1 2 3 4 5 6

0

0.01

0.02

0.03

0.04

0.05
Network Average Clustering

Patients

1 2 3 4 5 6

-0.03

-0.02

-0.01

0

0.01

0.02

0.03
Characteristic Path Length

Patients

1 2 3 4 5 6

-0.02

-0.01

0

0.01

0.02

0.03

0.04
Small World Index

Patients

1 2 3 4 5 6

-0.01

0

0.01

0.02

0.03

0.04
Transitivity

FIGURE 3.2: Global measures showed significantly increased network average clustering

3.3 Local Measures

3.3.1 Analysis Between Scans

Comparisons between pre-RT and post-RT scans showed general increases in local
measures, shown in table 3.2. Significant increases were observed in several compar-
isons between larger groups of node sets (patient 2, for example had a tumor that in-
cluded 54 out of 90 CEL nodes and 45 out of 90 T2L nodes). Refer to figure 3.3 and
3.4. Across all patients, each node set appeared to increase in local clustering, local ef-
ficiency, and node strength, with betweenness centrality showing less consistency. No
changes appeared significant, however.

All Non CEL T2 NEL

Local Clustering 0.1797 0.4848 0.1320 0.2403 0.1320
Local Efficiency 0.9372 0.9372 0.8182 0.5887 0.5887
Node Strength 0.2403 0.3095 0.3939 0.4848 0.2403
Betweenness Centrality 0.5887 1.0000 0.3939 0.9372 0.2403

TABLE 3.2: Comparisons between post-RT and pre-RT (mean node set measures), observed
across all patients as Wilcoxon rank sum test p-values
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All Non CEL T2 NEL

Local Clustering 0.0133 0.0120 0.0148 0.0156 0.0164
Local Efficiency 0.0060 0.0049 0.0069 0.0075 0.0086
Node Strength 1.1840 0.9872 1.2768 1.1596 2.0343
Betweenness Centrality 2.0340 0.7999 1.6598 -0.0543 9.5615

TABLE 3.3: Comparisons between post-RT and pre-RT (mean node set measures), observed
across all patients as mean differences
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FIGURE 3.3: Grouped by patient - node sets showed overall increases in local clustering,
local efficiency, and node strength averages among each node set. Betweenness centrality

showed more variation.
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FIGURE 3.4: Grouped by node set - node sets showed overall increases in local clustering,
local efficiency, and node strength averages among each node set. Betweenness centrality

showed more variation.
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3.3.2 Analysis Between Tissues

Comparisons between tumor-affected and normal tissues showed generally more pos-
itive changes in local clustering, local efficiency, node strength than normal tissues,
shown in table 3.4 and 3.5. Significant differences were observed in patient 5 whose
average node strength in CEL and T2L node sets increased significantly more in com-
parison to normal nodes (whose average node strengths decreased). Refer to figure 3.5
and 3.6. Across all patients, non-enhancing lesions appeared to increase more in local
clustering than normal tissue (p=0.0457) and decrease more in betweenness centrality
than normal tissue (p=0.1517). Both these changes were seen at nonsignificant levels
when accounting for Bonferroni corrections. Strength and power of these observations
will be discussed further.

CELvNT T2vNT NELvNT

Local Clustering 0.7259 0.0971 0.0457
Local Efficiency 0.5456 0.3051 0.3292
Node Strength 0.7259 0.4412 0.3012
Betweenness Centrality 0.9643 0.2688 0.1527

TABLE 3.4: Comparisons between tumor-affected and normal tissue (mean node set mea-
sure changes), observed across all patients as Wilcoxon signed rank p-values

CELvNT T2vNT NELvNT

Local Clustering 0.0022 0.0069 0.0092
Local Efficiency 0.0034 0.0051 0.0060
Node Strength 0.4183 -0.7749 -1.2479
Betweenness Centrality 10.7879 0.1733 -6.5455

TABLE 3.5: Comparisons between tumor-affected and normal tissue (mean node set mea-
sure changes), observed across all patients as mean differences
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FIGURE 3.5: Grouped by patient - tumor-affected nodes showed nonsignificant increases
in local clustering and decreases in betweenness centrality when comparing non-enhancing

lesions to normal tissue.
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FIGURE 3.6: Grouped by comparisons - tumor-affected nodes showed nonsignificant in-
creases in local clustering and decreases in betweenness centrality when comparing non-

enhancing lesions to normal tissue.

3.4 Cognitive Correlates

Cognitive scores either improved or remained unchanged overall and showed non-
significant correlations betweenness centrality and global z-score (p=0.0165). Refer to
tables 3.6-3.8 and figures 3.7-3.8.

MoCA Global-z

Local Clustering 0.8465 0.1684
Local Efficiency 0.7807 0.0705
Node Strength 0.6855 0.3556
Betweenness Centrality 0.9072 0.1548

TABLE 3.6: P-valeus of correlation of global measures to cognitive scores.

MoCA Normal CEL T2 NEL

Local Clustering 0.8134 0.7530 0.6709 0.8385
Local Efficiency 0.9382 0.8621 0.5716 0.7009
Node Strength 0.6006 0.4149 0.9480 0.4129
Betweenness Centrality 0.1447 0.8833 0.9576 0.2931

TABLE 3.7: P-values of correlation of local measures to MoCA scores.

Global-z Normal CEL T2 NEL

Local Clustering 0.1641 0.1222 0.2439 0.3792
Local Efficiency 0.0562 0.0703 0.0679 0.0508
Node Strength 0.3179 0.7880 0.2344 0.1422
Betweenness Centrality 0.6941 0.4024 0.0482 0.0165

TABLE 3.8: P-values of correlation of local measures to global z-scores shows non-
significant correlation of global z-score to betweenness centrality in NEL nodes.
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FIGURE 3.7: Correlation of global measures to cognitive scores with rho values
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Chapter 4

Discussion

4.1 Global Measures

The changes observed in network average clustering coefficient were somewhat sur-
prising in that they implied improvement rather than degradation after radiation ther-
apy (p=0.0313). These changes may be reflective of rewiring and recovery of tissues
over time. Though falling short of significant (p=0.1563), the decrease in characteris-
tic path length (indicating an increase in global efficiency) may be of interest in future
studies with more power.

4.2 Local Measures

Average changes between scans within patient-wise node sets showed several signifi-
cant changes in comparisons that included larger node sets, supporting global results
and implications of general improvement. Lack of significance in examination of these
changes across all patients may be due to the limiting factor of having only six patients.

Significant differences in patient 5 between CEL and T2L average node strength is un-
explained. In examining the tumor sizes, patient 5 appears to have more nodes in-
cluded in the post-scan compared to pre-scan. The difference between groups also ap-
pears somewhat uncharacteristic when compared against the same difference in other
patients. Further analysis and if available, additional data such as radiation dosage
maps may be needed to better explain this observation.

In comparisons between tissue types among all patients, local clustering in non-enhancing
lesions may be of interest to observe in future studies with greater power (p=0.0457),
given the restriction of Bonferroni corrections and small number of patients in this
study.
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4.3 Cognitive Scores

Similarly, the correlation of betweenness centrality and global z-score brings up a po-
tential aspect of future exploration. The implication of negative correlation of between-
ness centrality and cognitive scores in non-enhancing tumor-affected areas may sug-
gest improvements when rewiring occurs through alternative pathways, while rewiring
through the affected area worsens function. This is partially supported by soft evidence
of negative correlation in CEL and T2 definitions of tumor-affected tissues and positive
correlation of normal tissue to global z-score, where an increase in alternative pathways
would increase betweenness centrality of normal tissue nodes. Nonetheless, a general
increase in cognitive scores supports the improvements observed in network average
clustering and efficiency in this time scale. In contrast to the previous study that in-
vestigated pediatric medulloblastoma at a 12 week time scale (Duncan et al., 2016), 6
months may be more conducive to rewiring and repair in white matter tracts.

4.4 Limitations

As an exploratory study, the results suggest some measures as potential points of in-
terests for future studies with a larger number of subjects. Caution should be taken
since the obtained results are based on a small number of patients upon which many
calculations have been made, not precluding chance of coincidental significant find-
ings. This study did not examine subnetworks of nodes, but future studies may be able
to correlate changes in measure in subnetwork relating to particular cognitive func-
tion and corresponding cognitive scores. Future use of smaller parcellations may allow
for better categorization of nodes into tumor-affected and normal tissues. Alternate
definitions of node categories may also provide more detailed results specific to the
biological state of tissues. Further examination may also be able to correlate radiation
dosage map scores to local measures.
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Chapter 5

Conclusion

Several structural brain connectivity measures appeared to be altered in patients after
radiation therapy in a six month timeline, including significant increases in network
average clustering. Small sample size limits the level of confidence of observed changes
but suggests several directions for future studies.
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