Lawrence Berkeley National Laboratory
Recent Work

Title
ON THE USE OF THE TOMONAGA INTERMEDIATE COUPLING METHOD IN MESON THEORY

Permalink
https://escholarship.org/uc/item/3zh3v914

Authors

Watson, Kenneth M.
Hart, Edward W.

Publication Date
1950-03-30

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/3zh3v91z
https://escholarship.org
http://www.cdlib.org/

UCRL_si2
Cy. 2

UNIVERSITY OF
CALIFORNIA

Radiation
Laborator

TWO-WEEK LOAN COPY

This is a Library Circulating Copy
which may be borrowed for two weeks. |
For a personal retention copy, call -
Tech. Info. Division, Ext. 5545

BERKELEY, CALIFORNIA



DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.



coryz

) UCRL 642
Uhclassified Distribution

'UNIVERSITY OF CALIFORNIA

Radiation laboratory

Contract No. W-7405-eng-48

ON THE USE OF THE TOMONAGA INTERMEDIATE COUPLING

METHOD IN MESON THEORY
" Kenneth M. Watson and. Edward W. Hart

March 30, 1950

Berkeley, Celifornia



Unclassified Distribution

INSTALLAT ION

Argonne National Laboratory

Armed Forces Special Weapons Project
Atomic Energy Commission, Washington
Battelle Memorial Institute
Brookhaven National Laboratory .

Bureau of Medicine and Surgery

Bureau of Ships :
Carbide and Carbon Chemicals Corp. (K=-25)
Carbide and Carbon Chemicals Corpe (Y=12)
Chicago Operations Qffice

Cleveland Area Office

Columbia University (Dunning)

Columbia University (Failla)

Dow Chemical Company

General Electric Company, Rlchland

Idaho Qperations Qffice

Iows State College

Kensas City

Keliex Corporstion

Knolls Atomic Power Laboratory

Los Alamos

Mallinckrodt Chemical Wbrks

Massachusetts Institute of Technology (Gaudln)
Massachusetts Institute of Technology (Kaufmann)
Mound Laboratory

Netional Advisory Committee for Aeronautlos
Netiocnal Bureau of Standards -

Naval Radiological Defense Laboratory
NEPA Project

New Brunswick Laboratory

New York Operations Office

North American Aviation, Inc,

Oak Ridge National Laboratory

Patent Advisor, Washington

Rend Corporation

Sandia Base

Syivania Electric Products, Ince
Technical Information Branch, ORE

Uo S. Public Health Service

UCLA Medical Research Laboratory (Warren)
University of California Radiation Laboratory
University of Rochester

University of Washington

Western Reserve University (Friedell)
Westinghouse

Total
Information Division
Radiation Laboratory
Unive of Califormia
Berkeley, Californis -

No, of Copies

H . ‘. ) i . .

|

117



&

LS

TUCRL 642
-3

'ON THE USE OF THE TOMONAGA INTERMEDIATE COUPLING
| METHOD IN MESON THEORY
Kenneth M. Watson and Edward W. Hart

March 30, 1950

ABSTRACT

It is shown that the Tomonaga method for obftaining an intermediate

- eoupling approximation in meson theory can be formulated very simply and will

in general gilve accurate results in the limits of weak and strong coupling.
The problem of nuclear foreces in the charged scalar theory is studied. The
ratio of ordinary to exchange forces is given as a function of the coupling
strength. Photo-meson production is studied in the intermediate coupling
region for both charged scalar and charged pseudoscalar theorises. The method

is seriously limited in that nucleon recoil is neglected.
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ON THE USE OF THE TOMONAGA INTERMEDIATE COUPLING
METHOD IN MESON THECRY
Kenneth M. Watson and Edward W, Hart

Mareh 30, 1950 -

Tomonagal

has given an intermediate coupling approximation for meson
theory based on an Hartree approximation. In this methed of treatment the
" mesons in the self-field ef awnucleon are assumed to be in a finite set of
“orbital states,reducing the infinite number of degrees of freedom character-
istic of field theory to a finite number, Rigorous results are obtained in
~the two extremes of weak and strong coupling.

The method is seriously limited in that it necessitates the neglect
of nucleon recoil effects and requires the introduction of a finite "size"
for the nucleons, making the theory non-relativistic. However, there exists
no satisfactory theory for.including the reactive effects of nucleon motion
in a relativistically satisfactory manner: first, bscause the relativistic
wave equation satisfied by free nucleons is not knowng sécond9 because the
existiﬁg relativistically covariant meson theories involve divergent inte-
grals whicp cannot be made finite even by renormalization of mass and mesonic
cﬁafge,.but must be handled by formal trick32; third, the not-weak couplings
between meson and nucleon in relativistic theories must. be treated as if weak

through the use of perturbation methodssvcasting considerable doubt on even

the qualitative conclusions drawn from these thsories. Whereas the Tomonaga

1 S. Tomonaga, Prog. Theor. Phys. 2, 6 {(1947).

2 7. Steinberger, Phys. Rev. 76, 1180 (1949).
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meﬁhod ignores the first two difficultiego it seems to permit at least a
QualitatiVe estimate of the effect'of couplings which are neither strong
nor weak, It may thus be of value in estimating the conditions under which
perturbation theory will give untrustworthy results.

In the present papef the Tomdnaga tfeatmant will bYbe reformulated in
‘a manner which makes it somewhat easier to %pply than was Tomonaga’s original
method. By way of illustration it will then be applied to the problem of
mclear forees in the charged sealar meson theory and to the problem of
photo-mescn production for charged scalar and charged pseudoscalar meson
theories. |

I Formulation of the Method.

We consider the interaction of nucleons with a meson field character-
ized by a set of field variabls ¢x (x) (x= lozgcoon)o We neglect relativ-
istie effec§5“pértaining to the nucleox}s9 considering‘them to obey a
Schrodingef equation, Aséoeiated with the field.variablésfﬁ)\(x)9 will be

a set of canonigal variables?fk(x) with the usual commtation relations

s @), gy = 868 i - x), (1)

all other combinations commuting.
) Ths Schrodinger equation for the system consisting of N nuclsons

coupled to the meson field will be of the form*

[-_HO*HH+H‘£}Q=1%§—” | (2)

* We use units in which k = ¢ = 1.
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where

i=1

B, (T M)

Tfﬂ.

t
]

B
2 [é On ﬁ%(z ) +

g (z (3)
i=1 ,\ 1 )\k lek 7\ -1 ]

p.

Hére_gi is the momentum opgfator of the i'th nucleon, zji is its space coor-
dinate, aﬁd M is its mass. H, represents-the Hamiltonian operator for free
mesons, g and g’ are coupling constants (of which one can in general be taken
to be zero), and OA and QAk are matrix operators. Letting @ represent
the meson mass, we write

ISR | : (4)

and introduce the wvariables

Ux (x)_=$%r E}}/@ ﬂk (x) +1 Cpfl/% ™ (x)]

v () =J72[w1/2;¢5 =) - M m w] (5)
which satisfy the commutation relations

'[ﬁ/\'(x‘)»‘ﬁg (x)] = 87\0’18(£=£“)

[, @), ve e} ] = [0} . 0 )] =0 (6)

In térms of these variables, H and H?! will have the form (for vector and

pseudovector theories a somewhat modified treatment is necessary)

n 3
H = 2 /dx Ut (x) Un (x) , | 7
b 7\()‘*3. A (x) ‘ | (7)

.
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[N n7"’
g (e e voun Attt tom) e
T ml/2 =1/2
. H = ﬁ' > 2 2w/ (z5) ,-{g O [UA (z5) + U7\+ (zi)]

i=1 A=l '

e }i_ & o, [U (1) + U,* ( )] | (8)
—_— ! Zj + 25

=T A bzk : 3

The field'angulér momentum in this representation is

M- > fdsx ENEORNFEL AR N ®)

We now seek a unitary transformation, S, on Equation 2 which diagonalizes

Iﬁ‘.f‘ Hﬂ:’ ‘_ioeo,;

. T , -1 , ,
S B ‘ = - ' -
qa [Huaﬁ * ap- SﬁQ' ‘Sqq“ €& Flo?
in matrix form, Writing jln E S . o s Bquation 2 becomes
, : g aq L
| | A =l 1 an’ - ,
(H, o+ € + H ,S Nt = i d 2!

; The quantity S [ Hy,S ;] represents the effects of nucleon recoile ‘Eveﬁ
if S were known, this termewould make a general solutlon of Equatlon 29 diffi-
culte ﬁcwever,ﬁif this term is cpnsidered te beiemallg it‘caﬁ be treafed‘as
a first order perturbatiqn and Equa‘b“ionvzv becomes

. A o . ml [ .o . dﬂﬂo o
{Ho + GO + Soa, [__Hossao ]} D_O = 1 at ' . (2 )

where we represent the lowest eigenstate of Equatlon 10 by q = 0. For the

Aproblems that we are to consider the term S, [ﬁogs %J gives no con-

tribution and will henceforth be dropped.
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From Equation 6 we see that a Fock representation can be used for U,

and Uyf, For instance, the operator
+
Ny = fd5x U," U, | . (11)

has integral eigenvalues and represents the number of mesons of type "Aw
in the field, Let us now expand U, , U%f in a complete set of orthonormal

functions, \b@(x) :

[

) |

L o Yotx)

| U;:_' (x)

; ago \PI;(}C) (12?

where it follows from Equations 6 and 11 that 8o and a;p are absorption
vand emission operators respectively for the state r and n,\p = a.;p a)\p
is the occupation number of this state o by mesons of the type A .

"~ The essence of ‘the Tomonaga method involves thé‘detérminatibn’bf'the
functions \R;,(x) so that to a first approximatioﬁ one can keep only a
finite number of terms in Equation 12--thus reducing the number of degrees
of freedom to a finite number. Drawing a rough analogy t§ the case of atomic
structuré, we méy expect that the mesons will show a tendency to be bound in
“that particular state qub (or set of states if there is degénéracy) for
which the enefgy of the system is a minimum for just one meson, sincewtﬂéy
obey Bose statistics., In particular, it'would seem_reasonable on this éssumpa

.~ tion to find these lowest states from lowest order perturbation theory and

assume that the additional mesons appearing from higher order terms will be

Hoﬁnd‘in these same states, We now show that this chdice.qf.states satiéfies

® V. Fock, Zeits. f. Phys. 75, 622 (1952)
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simultaneously the weak and strong coupling hypotheses.
Consider the self-energy of a single nucleon with coordinate z in the

weak coupling case., Using a Fock® representation in which the codrdinate

of the i'th meson of type A is gf s we can write to lowest order in g, g'
the eigenvalue equation
(B, +B) X = €X | (13)
as !
: ~1/2 -
w (xl;\) €1 (xlh) + 2 / »{g 0, w 1/2‘ (xl)\) 8 (;_cl?\ - 2)
' -1/2 A -
SL Eo w2 §G) -a) b o -0 (14)
Ak A =1 )
k i o ox : _ S
1k
or

c (x]_)‘)/ I I 0, w-s/z ) S (s - 2)

- x B, W ) 2= 8 & - g)} Co  (15)
H axlk

where )( in Equation 13 is the matrix {icn} with n representing the
occupation number of the mesons in the field., From Equafions 12 and 15 we

see that the ground state eigenfunction '\yo(x)‘can be teken as
Vo =1 w8 (5 (16)

if there is no gradient coupling. Here L is chosen to normalize V/o to
unity, For the term with the gradient coupling, we have from Equation 15

three such states, .

Yoy = -1 W 2 Sx-o) (17)



UCRL 642

«10=

where L, is chosen to normalize \ék-to‘dnitya“

Since the expressions for L and Li involve divergent integfals, we adopt
the cut=off convention of expressing all divergent integrals in momentum space
_‘end replacing : ” . :

00 _ | l/h ’
f £(k) dk by £(k) dk
o : ' o
whenever the first integral diverges., It will be assumed that ap<<1 .
According to Equations 16 and 17, the Tomonaga approximation involves
rewriting Equation 12 as
. . 3‘ . .
Uy (x) = & Y, (x) +k§l o Yy () (18)
end the corresponding adjoint equation, Using Equations 7, 8 and 18, we

write the Tomonaga approximation to Equation 13 as

EA{L ho* Ao*’él% A *g— o0 [one *e ]
—E—T i One [7\1: * a?\k]} GX (1s)
where
- T wl/z @) \P(x> s
I '"’% i kZi ml/z 5@_ i ) I‘k=z

Defining canonical variables

2a1/2

Pa = (g * 830 )

g and Py (e =0, 1, 2, 3) by

S 2}=l/2 (aﬂa - a;a) (20)

ge)
>
(=]
]
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Equation 19'becomes

3 Ii 1 ? v '
+ ;L_;:l [L]_ (P)\k "’ q/\k = 1? +-E ‘/___ 7\k q}\kJ}X = GX (21)

To obtain the strong coupling approximation to Equation 13, we split

the field ﬁ;\ into coupled and uncoupled parts, as usuals
A = AT () § (x - 2)
23 Pt R 5 - BE (22
k=1 e e W g © -2 A

where ¢& is not coupled to the nucleon., The portion of the Hamiltonian

involving just ¢>€ and ﬂ%ko is

_:'J:_ 0 2\ / o 3 1l .2
Z)\{ 7 (BN + & 0 +kZ=l {Il (%)

p, 7\k ’Z‘/\\k :l } ‘ (25)

Defining ¢}‘ = jé-qh and ﬂ&k = —El~qu in Equatlon 23, we see that this then
agrees w1th the part of Equation 21 that depends on the q's, Whenever the
eigenvalue in the strong coupling 1limit depends only on the g's (and not on
the canonical momenta) it is apparent that the Tomonaga method will indeed
give correctly both the weak énd strong coupling solutions with the choice
of wave function given by Equations 16 and 17, With two nucleons present, a
similar analysis applies.

‘As in Strong coupling theory, we can expect toc improve our approximation

by including first order effects from the remainder of The field that was

neglected in the approximate Equation 18,
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To specialize Equation 19 to particular cases, we consider first the
charged scalar theory. It is convenient to introduce complex fields ¢
and ﬁ* with respective cenonical variables ™ and T*, Fock variables U

and V are intrcduced through the relations
g = (200)"1/2 [U + v““] , s (2 w)”l/z [U*’ + v]

=1/2 - '
DI LR [ - v] , Tr"’=uvizl/2w1/2 [Uev"] (24)
The total mesonic charge is

Q= /dg’“ {U{"(X) U(x) = 7 (x) V(x)} (25)

Comparing this with Equation 11, we see that U, U* are field Yariab;es
for positive mesons while V, V© are those for negativeAmesonso The interaction.
term H' of Egquation 3 'is now _ _

B =g [T, 8°(:) + T_ 9z} ] | o @e)

where ’t+ is the operator in isotopic spin space changing a protoﬁ into a
neutron and T _ is ifs_adjointo “

In accordance with Equaticn 16 we tqke
2 =) | |
b \}’o (x) : (27)

and the corresponding adjoint equations.,

U

]

v

]

The eigenvalue Equaticn 19 becomes

{ s+ @2 2 T et 4 ) T (@ 4 bf)]}X e X (28)

e |

For the pseudoscalar thecry with pseudovector coupling we keep the defini-

tions (24) of the field variablesU and V, The interaction, H', is now
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w] 3=
1 1 ”Eg’v-" [T.0%(2) + T2 #(2)] (29)
In accordance with Equation 17 we take
3
Ux) =3 oy Yi(x)
k=1
V(x) = Z=1 b, Y, (%) (30)
and the corresponding adjoint equations. Introducing vector notation for the
a's and b's and the canonical variables
q 271/ (a + %)
=1/2 N
p = i2 / (2" - v) (31)
we obtain the eigenvalue equation
I .
- {p"°p+q ©q=-3
L, = =2 "=
g v
+2 Jip o [T+g++T_§]}X -eX (32)
The angular momentum (Equation 9) and charge (Equation 25) operators
for the “bound" field have the respective forms:
L = axp+atxp | o
@ = te [arept-a-p] (35)
II Nuclear Forces in the Charged Scalar Theory
A

We shall suppose the dynamical system to contain two nucleons with
respective coordinates z;, and zg. The eigenvalue problem is of the form

of Equation 13 with
_Hi ='g:[i;<l) ?* (Zl)vf’@;(l) ﬁ'(zl)

e T s TP g )] B ED
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Introducing the Fock varisbles of Equation 24 and following the analysis
leading to Equation 159 we find that the ground state for the mesons is doubly

degenerate with wave functions of the form

I ) B e - ny)

o312 (x) 3 (x =,§2) 0

corresponding to mesons bound to either nucleon., From these we construct

two orthogonal wave functions,

\%g. N [?%‘-k'ijé]
¥, - x [v X, +7<2] | | (35)

1

where
N‘”_2 = L + sz + 2bd
b=ed/[Ls 2o 2]
: =3 : :
= fX]_XZ Px = 007 (21).5 (3 - z) (36)

and L is defined in commection with Equation 16, We note that if P is the

. F .o .
permubation operator interchanging the two nucleons, then
P\//l = % - P\f’z = ‘701 | (37)
" The Tomonaga approximation implies that We-write'thaFock.variabl&sof
i) =0 \{/1 * §+ V/‘Z

voa e ¥, (e

Equation 24 as

and similar equations for the adjoint dperators U, vt Substituting these

definitions into H' of Eqﬁation 34 and into H@ of Equation 7 gives the
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Tomonage approximation to Equetion 13. To write this as a differential
equation it is convenient to introduce four pairs of canonical variables,

(qlgpl), (q29p2)9 and the corresponding adjoint quantities by the relations

l r . + +
e =7 |9 *a+i (" + py )]
1 [+ + ‘
=3 |9 *+9; +1(p + Pzﬂ
: 1 r | ., ; +
By =7 —ql = qz- L (Pl = PZ )]
1 o+ + .
Bo=7% 13 =9 +1(pp- pg)] (39)

and the corresponding adjoint equations. Denoting the g-variables by a single
symbol, g, the eigenfunctions for our approximation to Equation 13 corres=
ponding to an eigenvalue fo_ will be of the form ;Kr(q)o Identifying ;(;(q)
with s~% of Equation 10, we see that the solution, (L, ef'Equation 2 will

have the form

—C)- = Z &(Q)ﬂ; ‘[sls Ss, _?19' ég] ‘ (40)
r .

where S; and S, are the spin variables of the nucleons. With the assumption
of small nucleon recoil effects (use of Equation 2%), we can keep only the

term in Equation 40 with r = 03 i.e.,

Q= X @y [S1052027.25) (40")

Denoting the triplet and singlet isotopic spin states by Z:lu

(b = i, 0, =1) and Z:o respectivelyo,;(;(q) will have the structure

Hole) = 1 R(@) + 35 By(a) + 5, Ryla) + 2o Ry(a) (a1)

-

We are now able to establish certain symmetry conditions on the R's of

Equation 41, since the permutation operator interchanging the two nucleons
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must change the:sign of ) by the Pauli principléo Since P commubes
‘with, the Hamiltonian in Equation 2%, we may take -f]og to be an eigenfunction
of fg.ioeog‘

0

PO, = ey, - (42)

Here e = * 1 depending upon whether=§L0“ is symmetric or antiéymmetrie in
the spins and coordinates of the two nucleons. According %o Equations 37,
38 and 39 the interchange of the two nucleons is equivalent to leaving q19q1+
unchanged and replacing qésqz* by =Q5,-q5".

Further symmetry relations are
SN F = o
Pz: 1 E: 1° PZ:0 Z:o

Applying the operator P to Equation 40' and using Equations 41 and 42, we
have
J” + e \
Ri(QI9q1+quoQZ+) = "'eRi(Q]_sQ]_ 9°q29‘(12+) 9 (1 =1,2,4)

eRz (a3 ,97 " 9=0p,-23*) : o (48)

i

Ré (ql sqlfoqz 9q2+)
Denoting by R the matrix -{Rls Ry, R, R4} , ‘the eigenvalue problem

for determining ¢ is
[H-bwv:le €R B ' (44)
where : | '

H

]

* [oy'ey 4 aptey - 1) 4 ¥ [p2"p2 + 22"az - i]‘ } v (45)

(u is the unit 4 x 4 matrix) and

V=g /0 T*q,* -T7g" 0
g, 0 0 g * |
=g, 0 0 T7q," (46)
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with

<4
-'-
I

L]

(1+ 0/ +3), ¥ =(1- K)/(L ~ 9)

™= (I+K)/LFT , "= (1=-K)/ff=3 ' - (a7)
K o= () 8(z - 2g) = (am)t oHlE17 /(21 = z1)

(1, L end J have their previous definitions, )
Introducing polar coordinates4 and writing'Equation 44 as a differential
equation, the solution can be easily found in the limits of weak and strong

coupling. For weak coupling this is the usual perturbation solution

€ ==g [I-pK] | (48)

where P! is the operator permuting coordinate and spin variables of the

nucleons.

4
In the strong coupling limit the results of Serber and Dancoff are

obtaineds:

Co=-5e [I+K]| | : (49)

for‘%;gzK large compared to the separation of iscbaric states of the
individual nucleons, When '%‘gzK is small compared with the separation of
isobaric states, _ |
S =-38 [1-3PK | (50)
The solution to Equatipn 44 fqr thé peutronaproton system was further
studied to obtain an estimate of G; in the intermédiate eoupling range.
Equation 44 wes solved by perturbation methods to (and including) terms of

order g6o (For any finite order perturbation calculation in the Tomonage

4 Ro Serber and S, Dancoff, Phys. Rev. 63, 143 (1942)
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the phase factor elkog is absorbed in the operators a; and blo’ Also

2y, b, commute with at, b¥, etco

The 3chrodinger equation for the system now becomes

{ko [afal . b1+b] + HT} X = & X '. (56)

+ uz)l/z

where k, = (kz and Hyp is the Hamiltonian of Equation 28, The

desired sclution to Equation 56 is of the form

& = €+koa 7(,9-_?7'.7(

where € and ><_ are the quantities obtained from Equation 28 and v is the

eigenfunction of

+ + - .
kg [}l a; + by bl] v = kyv B - (87)

The matrix element for the production of.a positive meson from a proton
“is () (2), ') (1) ), where according to Equations 2 and 2"

Qe = X @) | | |
QE) = X ) | R )

and ()'(1) and () *(2) represent respectively the proton in state "1".

1)

end the neutron in state "2", The dependence of this matrix element on. the

meson field veriables is given by -

(,Xas H“X) =

e 2T ko ap oi(p=k)oz
1/2 5 1/2. 1/2
pl/2 M2 Y1 [ep)? o 2]

e+ v*] X)) (59)

obtained by using the definitions of U and V of Equation'SS in the current

J of Equation 52, In Equation 59, p is the momentum of the photon and QP is

its polarization-vectoro The exponential, exp [i(g =.§)ﬁ3:]; gives total
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momentum conservation when combined with the wave functions gf)“(i) and
“i;lf(Z)\(EqﬁétiOn 58) of the nucleons. It Shouid be noted that oﬁr“formu—
lation of fhe‘néglecﬁ of nucleon recoil éffécté'for virtual emission snd abe
sorptioﬁ'(Equation 2") does not imply such arneglect for re;l.emissiOﬁ and
absorpﬁién processes;
| As the quantity ()C;[a’f bf]')( } is independent of the freé meson momen-
tum, we see that the angular distribution and energy dépendence of the cross
;ééﬁién'Will'Ee independent of the coupling constant go (This conclusion is

iﬁdéﬁéndéﬁﬁ of the Tomonaga epproximation, depending only on the fact that a

”ﬁééoﬂ'prodﬁced by fhe,photon is hot coupled to the nucleon,)

The differential crdss section for the production of.a-meson deﬁehdé
thus on the coupling only through the multiplicative factor
e+ 0] X7 |
It will differ from that of perturbation theory by the deviation of this
facfbr‘ffom its pertﬁrbation limit., As the perturbétion eross secﬁion has
been givéﬁ by'séﬁeral"authors (notably Brueckner®), we give only the ratio
of the differential (end total) cross section to its peftﬁrbation'limit in

Figure 2 as a function of the coupling constant (the cut-off was chosen as

Bl = 1/6). For the determination of the wave function X , a variational

>méthod'(sh6wn"to give good results by Tomonagal) was used in which the trial

wave functions were

Yn = emﬁ/@DZ (1.’13)':1/2 " o | (60)

in a representation in which n represents the number of virtual mesons in

the field and D is the variational. parameter.

8 K, A, Brueckner, Phys. Rev., in press, ("Production of Mesons by Photons")
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IV Photo=Meson PFroduction in the Charged Pseudoscalar Theory.
'  'The self-field of the nucleon is determined by_tﬁé'solufiqﬁ'of'Equation
32, In the strong coupling limit Equation 32 can be handled by the methods

of Pauli and Dancoffo7 ‘Wb obtain then the result of these authors,

1 g2 - .
= - 61
6?0 amTad  4mpl (61)

where a 1is the cut-off radius and ap <<1,
To calculate photo-meson production, we must now evaluate the matrix
element of H® (Equetion 52) for the transition from a state consisting of
\

a photon and a proton to a state with a neutron and a meson. For pseudoscalar

theory the meson current occurring in Equation 52 is
ix) = ie [ @)V Fx) - BV (x) ] - ie;g; BT, - @) 6 (x - 2)a  (62)

Where z is again the nucleon coordinate.

in Figure 3 is plottgg the differential cross section for the pré@pqtion
process in both the strdhg and weak coupling limits. The angulaf qist%ibﬁtion
is the same in both limits, the cross section in the strong coupl?ng limit”
being just l/% that for weak coupling. The flatness of thevangular»Qiigribu—
tion has been noted by Bruecknero6 This is due primarily to.the:faét_gﬂgt for
energies not too far above threshold the second term in Equation_GZﬂ(whiéh is
linear in the meson-field variables) ié responsiﬁle for the greatér ?art_of
the cross section. Indeed, this term causes interaction only with.mesénsof
zoro angular momentum with respect to the nucleon coordinate.

The above discussion indicates that we can calculate photo=meson pro=-

duction to a good approximation by including just the term in'j(x)'that is

7 W, Pauli and S. Dancoff, Phys. Rev. 62, 85 (1942}

e
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linear in @ and ¢*o This approximestion maekes the calculation especially

simple, since the mesons produced will not interact directly with the nuc-

leon through H' of Equation 29, (Equation 29 couples only meSgns in p~states;

the linear term in Equation 62 couples only those in s-states)o

Taking the wave function of the photo-meson to be

sin klx - 2| . o  (63)

9

: u{x) =n o - 2]

where k is its momentum dnd n normalizes u in a large volumeq/, we can

[}

3
Ux) = ) e (x) + @ ulx)
k=1 : .

X . L
V(x) =) b 4’ (x) + b u(x) | (64)
k' k .
k=1
(and similarly for U and v*).
As with the scalar theory, the Tomonaga eigenvalue problem is separable

into Equation 32 and

‘[ﬁ+a + b+b] v=k'v | (65)

k o

Q

with wave function C(” = v?( and eigenvalue & = € + kovc_ Using

-Equation'64 in Equation 62, we obtain for the matfix elementﬁof the +trans-—

ition from a state consisting of proton and a photon to one consisting of a

neutron and a meson:

@I (1) = -0 Rp e L) a0 (s6)

where v, and vy are the solutions of Equation 65 for states represented by

no free meson and one free meson, respectively; :XfF and tXfN are solution$

of Equation 32 for the self-field of a proton and neutron, respectively;
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:and_Aﬁ is the matrix element of the electromagnetic-poteptial for the ab-
sorptic_)ﬁ”of the initial photoms ., o L |

To obtain information concéfning Equation 66 iﬁ fhé intermediate coupling
region, (ZIH“Il) wés evaluated by perﬁurbation methods to the.seventh‘bower of
go This gave the cross section to terms iﬁcluding g8o The resﬁlt for aﬂ un=
poiariﬁed photon incident on a proton of rdndom spin orientation.is given in
>Figure 4, The quantity plotted is the ratio of the cross section to its value
obtgined by using only the lowest order perturbaﬁion formula, For-%zf 7V 62
the power sefies in g apparently becomes invalid (the crossAsécﬁion seeming
to fall off too rapidly). The dsymptetic value for lerge g (obﬁaiﬁed’from
the strong coupling solution) for the ratio is 1/6o The rapidmapproach to the
strong coupling limit is due to the stroﬂg singularities introduced by the
gradient coupling in H* (Equation 29). It is interesting that carryipg per-
turbation theory to a high enough ordér seemed to bridge the gap between the
weak and strong coupling limits (; similar expansion in)ppwers of the coupling
co£staﬁt for photo-meson production in the chafged»scalar theory gave good
agreement with the variational calculation used in obtaihing the‘fésults

shown in Figure 2).

V Conclusions,

The discussion ofvthe validity df the Tomonagé approximatidn is con= -
siderably hampered by the nonmexistepoe of a satisfactory theory to which it
cen be considered as an epproximetion. While the neglect of nucleon recoil
effects is almost certainly not_valid'aﬁ high energies, it is not known whether
there exists a range of energies for which such‘effects can be considered as
smallo"

Grenting the form of meson field theory in which the motion of. the nuclgon

is neglected, there still remains the question of the validity of the Tomonaga

'ﬁ
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approximation to this theory. We have seen that the approximete method
gives exact results in both the weak coupling and strong coupling limits.
Extending the calculation to higher order terms will give some indication of
the error incurred in the Tbmonaga method, Assuming the cut=of?, a, is such
’ thatwap<3:lg the fourth order nucleon self=-energy turng out to be:

Scalar Theory

M gt (L (L) N
ﬁﬁa - In = , omonaga approximation)
: CTvh ‘ v _
1¢ 1
w ='g4 r) 5 ln4 ~ (rigorous)
Pseudoséalar Theory
. 4 . 4 .
w(4) =-§§-<§;F> - JL—) (Tomonega approximation)
4 l .
W = 0,92 g __< % . (rigorous
' 48 (211 a4, ) ( gor )

(The factor, 0,92, comes from the evaluation of numerical factors.) The
energy of'separation of isobaric nucleon states is:

Scalar Theory

(Tomonaga approximation)

(rigqrous)4
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where m 1s the isobaric quantum number and Jj 1is that for the total
angular momentum. In each case the Tomonaga method is incorrect by a
numerical factor. The fogrth order nuclear forces in the charged sgalar
‘theory hadfthe correct sign and very ﬁearly'the correct shape‘as given by

the Tomonaga method, but again were multiplied by incorrect numerical factors.

L, (It should be emphasized that by carrying the Tomonage approximation one step

farther; one could expect to obtain agreement in the above examples, One might,
for instance, introduce variation parameters info the trial wave function as
did Tomonaga;l or one might introducé formelly the remainder of the meson
field that is neglected in the first approximation, as is done in strong coup-
ling theory. Also the introduction of additional frial wave functions seems
capable of giving improved results. However, the equétions obtained by the
lowest order approximation in the Tomonaga method are sufficiently complicated
that it is desirable to carry the approximation no further, when permissible.)

The source of the error in the Tomonaga method can be easily seen when
higher order perturbation calculations by this method are comparedltp those
of the rigorous theory., The same virtual emission and absorption processes
occur, but the integrals occuring in the rigorous theory are replaced in the
Tomonaga approximation by "average" values éf the integrands-=which are ob=-
tained from the corresponding lowest order perturbation values,

We can then conclude that exact numerical accuracy will certainly not
be obtained by the Tomonaga appfoximationo ‘However, it seems guite probable
that satisfactory qualitétive conclusions may often be drawn from results
obtained by this method, / |

The rapidity with which one leaves the region of weak coupling with

a increasing g is indicated in Figures 1, 2, and 4. It is highly doubtful
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if the strong dependence on cut-off characteristic of the pseudoscalar theory
" 'is resl, ' Thus oné would hesitate to determine & numerical value for the coup~-
ling constant ‘in this theory. The persisting flatness of the angular distribu-
tidnvfor phdﬁoémeson pfdduétidn as the coupling increases may be significant,
howévérg'since'ﬁhisvis in agreement with the experiments of Steinberger and
Bishopo8

Since only the logarithm of the cut=off is important in determining the
strength. of thg couplinglin the scalar theory, somewhat more reasonable con-
~clusions may here be drawn about coupling strength. Referring to Figure 1,
the strength of coupling to give abéut squal exchange éndlordinarymforoes (as

2 ,
observedg) is & ~p which is wsll within the intermediate coupling region,

W
From Figure 2 and from Brueckner“ss total cross section in the perturbation
limit, we éan £it the total cross section for photo-meson productipns,in the
scalar theory with %;/V205o There is, of course, little reason to take
the scalar meson theory seriouélygfhoweverg the fact that one finds couplings
from it that are neither weak nor strong may be meaningful.

Strong evidence against the scalar theory is the incorrect angular dis-
tribution of photOmmésons (which is independent of.the coupling constaﬁt) and
the fact that the exchange force for the neutron-proton system has the wrong
sign for all values of the coupling constantm=accordiﬁg to tﬁe Tomonaga‘approxim
mation. The evidence from photo-meson production seems to be particularly
valid {n view of the resulis of Brueckners) that nucleon recoil effects are
unimportant for the loweét order perturbatién calculation and first order radi-

ative corrections in scalar theory, and since for this theory it seems that

these perturbation calculations may have some qualitative validity,

8 Jo Steinberger and Ao S. Bishop, Fhys. Rev., in press,

9 R, S. Christian and B, Wo Hart, Phys. Rev. 77 441, (1950)
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As a final conclusion, we may venture to suggest that there seems to be
little justification for treating meson-nucleon couplings as weak, and that
the problem of understanding interimediate couplings may be as significent and

as important as the understanding of the nature of relativistic effects and

divergences in meson theory,
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Figure Captions

The ratio, R, of ordinary to exchange force as a function

of the coupling constant for the charged scaler theory. The
&rdinate, R, is defined in Equation 51, ‘
The ratio of the photo-meson production cross section in the
charged scalar theory to its value obtained from lowest order
perturbati;n theory given as a function of the coupling‘conn
stant. The dotted line gives the asymptotic limit of this

2
ratio for large £ .

47
The angular dépend;;ce for both strong and weak coupling cross
section, O, for the charged pseudoscalar theory with pseudo=-
vector coupling, plotted in arbitrary units in the barycentric
system. Fhoton energy in the laboratory system is 260 Mev,

The ratio of the photo-meson production cross section in the

charged pseudoscalar theory to its value obtained from lowest

order perturbation theory., The dotted line gives the asymp-

2

L g
totic value for large T °
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