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Abstract

Learning Objective Functions from Many Diverse Signals

by

Smitha Laxman Milli

Doctor of Philosophy in Engineering- Electrical Engineering and Computer Sciences

University of California, Berkeley

Associate Professor Anca D. Dragan, Co-chair

Associate Professor Moritz Hardt, Co-chair

Specifying the correct objective function for a machine learning system is often difficult and
error-prone. This thesis focuses on learning objective functions from many kinds of human
inputs. It is comprised of three parts. First, we present our formalism, reward-rational
choice (RRC), that unifies reward learning from many diverse signals. The key insight is
that human behavior can often be modeled as a reward-rational implicit choice – a choice
from an implicit set of options, that is approximately rational for the intended reward. We
show how much of the prior work, despite using many diverse modalities of feedback, can be
seen as an instantiation of RRC.

In the second part, we discuss implications of the RRC formalism. In particular, it allows
us to learn from multiple feedback types at once. Through case studies and experiments, we
show how RRC can be used to combine and actively select from feedback types. Furthermore,
once a person has access to multiple types of feedback, even their choice of feedback type
itself provides information to learn the reward function from. We use RRC to formalize and
learn from a person’s meta-choice, the choice of feedback type itself.

Finally, in the third part, we study settings in which the human may violate the reward-
rational assumption. First, we consider the case where the human may be pedagogic, i.e.,
optimizing for teaching the reward function. We show that the reward-rational assumption
provides robust reward inference even when the human is pedagogic. Second, we consider
the case where the human may face temptation and act in ways that systematically deviate
from their target preferences. We theoretically analyze such a setting and show that, with
the right feedback type, one can still efficiently recover the individual’s preferences. Lastly,
we consider the recommender system setting. There, it is difficult to model all user behaviors
as rational, but by leveraging one strong, explicit signal (e.g. “don’t show me this”), we are
still able to operationalize and optimize for a notion of “value” on these systems.



i

For Charlie.

We miss you.



ii

Contents

Contents ii

1 Introduction 1

I The reward-rational choice formalism 6

2 The reward-rational choice formalism 7
2.1 A formalism for reward learning . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Bounded rationality, maximum entropy, and Boltzmann-rational policies . . 10
2.3 Prior work from the perspective of the formalism . . . . . . . . . . . . . . . 12

II Implications of reward-rational choice 18

3 Combining and actively selecting feedback types 19
3.1 A case study on combining feedback types . . . . . . . . . . . . . . . . . . . 20
3.2 Actively selecting which type of feedback to use . . . . . . . . . . . . . . . . 23

4 Learning from the choice of feedback type 27
4.1 Formalizing meta-choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Comparing the literal interpretation to meta-choice . . . . . . . . . . . . . . 30
4.3 What happens when metarationality is misspecified? . . . . . . . . . . . . . 30

III Beyond the reward-rational assumption 33

5 Learning from a human that may be pedagogic 34
5.1 Theoretical analysis of robustness . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Empirical analysis of robustness . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3 Explaining the gap between the empirical and theoretical results . . . . . . . 42
5.4 Can we “fix” the pedagogic robot? . . . . . . . . . . . . . . . . . . . . . . . 46



iii

6 Learning from a human that may be tempted 48
6.1 Modeling individuals with temptation and commitment . . . . . . . . . . . . 49
6.2 Consumption choices are insufficient for learning menu preferences . . . . . . 52
6.3 Learning menu preferences from menu comparisons . . . . . . . . . . . . . . 57

7 Learning objective functions on recommender systems 65
7.1 Identification of the latent variable model . . . . . . . . . . . . . . . . . . . . 68
7.2 Application to Twitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.3 Assessing validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

8 Conclusion 81

Bibliography 83



iv

Acknowledgments

First, I would like to thank my PhD advisors, Anca Dragan and Moritz Hardt. Your guidance
over the past several years has made me a much better researcher. You have helped me to
not only solve problems, but more importantly, develop a taste for choosing them. There
were many bumps along the way, and I appreciate your patience and continued belief in me
during this meandering journey.

Next, I would like to thank the members of my committee, Stuart Russell and Tom
Griffiths, both of whom I had the privilege to work with during my undergraduate years
at UC Berkeley. I first became interested in the theme of this thesis—learning objective
functions—in 2016 because of Stuart frankly pointing out how misguided the “standard
model” of AI, which takes for granted a correctly specified objective function, is. From Tom,
I learned many fascinating ideas and frameworks from computational cognitive science that
I continue to take inspiration from, both personally and in research.

And although I will not list them all, I would also like to thank all my other collaborators.
I have learned from each and every one of them; it has been an honor to get to work with
so many talented people.

Thank you to my friends for making the good times great and the bad times bearable:
Emily Chao, Ishaan Gulrajani, Shiying He, Gail Hernandez, Miranda Li, Gloria Liu, Meg
Majumder, Anna Papitto, Albert Pham, Joshua Price, Sophia Wang, Qiming Weng, Guy
Wilson, Yifan Wu, Thomson Yeh, and Michael Zhang. I am so lucky and grateful to have
you in my life.

Finally, I would like to thank my family: my cousin Naveen, brother Sachin, and parents,
Suma and Laxman. Absolutely none of this would be possible without your endless support.

Berkeley is a weird, beautiful place that I love.



1

Chapter 1

Introduction

The field of machine learning has made significant progress in optimizing a known objective
or reward function. For example, in game playing, where the objective is simple — win the
game — machine learning systems have made huge strides, achieving human or superhuman
performance in Go [Silver et al., 2016, 2017], Dota [Berner et al., 2019], and Atari [Mnih
et al., 2013]. However, for most complex tasks, figuring out what the correct objective is
remains a challenging bottleneck [Krakovna, 2018]. For example, it is difficult to directly
specify how a self-driving car should trade off all the possible, relevant features of driving
such as distance to other cars, following the speed limit, arriving at the destination, etc.

If specification is so hard, what is the alternative? Well, we want machine learning
systems to do what we want them to do. Thus, the objective function, and information
about it, must ultimately originate from people. Specification is just one way that people
can give information about the objective function, but there are many others. For example,
even if it is too difficult for someone to write down the objective function for a self-driving
car, they can still provide demonstrations of driving, and we can use those demonstrations to
infer the latent objective function [Ng and Russell, 2000, Abbeel and Ng, 2004]. And luckily,
demonstrations are not the only source of information. We can also learn about the intended
objective function by, say, asking people for comparisons between trajectories [Wirth et al.,
2017, Sadigh et al., 2017, Christiano et al., 2017] or by grounding people’s natural language
instructions [MacGlashan et al., 2015, Fu et al., 2019].

Perhaps even more fortunate is that, even without being explicitly asked for it, people
seem to reveal information left and right about the intended reward. For instance, if we push
a robot away, this shouldn’t just modify the robot’s current behavior – it should also inform
the robot about our preferences more generally [Jain et al., 2015, Bajcsy et al., 2017]. In
particular, if someone turns a system off in a state of panic to avert a disaster, this shouldn’t
just stop the system right now. It should also inform the system about the intended reward
function so that the system avoid the same disaster in the future: the robot should infer that
whatever it was about to do has a tragically low reward. Even the current state of the world
ought to inform the system about our preferences – it is a direct result of us having been
acting in the world according to these preferences [Shah et al., 2019]! For instance, those
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shoes didn’t magically align themselves at the entrance: someone put effort into arranging
them that way, so their state alone should tell the system something about what we want.

Overall, there are many, many signals that can be used to learn about the objective
function. The immediate goal of this dissertation is to provide a cohesive and unified way to
learn objective functions from many, diverse types of information at once. Learning a more
accurate objective function will, in turn, make the system produce behavior that is more
desirable — the ultimate goal. The rest of the dissertation is organized into three parts (see
Figure 1.1 for an overview).

To begin, in Part I, we discuss our unifying formalism for learning reward functions. A
reward function is an objective function that is additive over time and is typically used for
autonomous agents such as a robot or a self-driving car. Researchers in reward learning1

have proposed countless kinds of human behaviors, such as the ones already described, that
can be used for learning reward functions, and surely, there are many more that have not
yet been discovered. Is there a way we can view all these methods through one cohesive lens
instead of re-inventing the wheel with each new type of information?

We contribute a formalism, reward-rational choice, which offers both a unifying lens with
which to view past work, as well as a recipe for interpreting new sources of information
that are yet to be uncovered. The key insight is that human behavior is a reward-rational
implicit choice – a choice from an implicit set of options, which is approximately rational
for the intended reward. We show that despite their diversity, many sources of information
about reward functions can be characterized as instantiating this formalism, varying only in
two components: 1) the set of options the person (implicitly) chose from, and 2) a grounding
function that maps these options to robot behaviors.

In Part II, we focus on implications and applications of the formalism. In particular, RRC
easily allows for the consideration of multiple feedback types at once. In Chapter 3, we show
how the formalism can be used to both combine and actively select from feedback types. In a
case study on a simulated robot, we learn from three different feedback types at once: proxy
reward functions, physical corrections, and trajectory comparisons. To explore the benefit
of actively selecting feedback types, we also run an experiment actively selecting between
demonstrations and comparisons. Overall, we observe that demonstrations are optimal early
on, when little is known about the reward function, while comparisons become optimal later,
as a way to fine-tune the learned reward function.

1In reward learning, learning the reward function and acting based upon it are treated as two distinct
stages. First, the system infers the reward function (or a distribution over reward functions), and then it
takes actions while optimizing the expected reward under the inferred reward function (or distribution over
reward functions). An assistance game is an alternative formulation that does not split up inference and
action into distinct stages [Shah et al., 2020]. Our framework, reward-rational choice, is still just as relevant
for assistance games. In an assistance game, the human is modeled as part of the environment and the
reward function is modeled as a latent variable in the environment. The system learns about the latent
reward function through the human’s actions. To learn about the latent reward function in an assistance
game, one still needs a model of how the human’s actions relate to the reward function. The reward-rational
choice framework provides a recipe for designing such a human model.
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Part 1: Reward-rational choice formalism

Part 2: RRC implications

Part 3: Beyond the reward-rational assumption

r
<latexit sha1_base64="Wrfv8HZ4CiqK1xNJcMVp+e9vwHk=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPBi8cKtlbaUDabTbt0Nwm7E6GE/govHhTx6s/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmlldW19o7xZ2dre2d2r7h+0TZJpxlsskYnuBNRwKWLeQoGSd1LNqQokfwhGN1P/4YlrI5L4Hscp9xUdxCISjKKVHnsoZMhzPelXa27dnYEsE68gNSjQ7Fe/emHCMsVjZJIa0/XcFP2cahRM8kmllxmeUjaiA961NKaKGz+fHTwhJ1YJSZRoWzGSmfp7IqfKmLEKbKeiODSL3lT8z+tmGF37uYjTDHnM5ouiTBJMyPR7EgrNGcqxJZRpYW8lbEg1ZWgzqtgQvMWXl0n7rO5d1s/vLmqNZhFHGY7gGE7BgytowC00oQUMFDzDK7w52nlx3p2PeWvJKWYO4Q+czx9BEZDC</latexit>
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r̃ don’t step 
on the carpet

Combining and actively selecting multiple types of feedback (Ch 3) 
Learning from the choice of feedback type itself (Ch 4) 

The RRC formalism and prior work through its lens (Ch 2)

r

Learning the objective when the human may be pedagogic (Ch 5), face 
temptation (Ch 6), or deviate from reward-rationality in unknown ways (Ch 7)

Proxy

Off-switch Comparison Correction Demonstration

don’t step 
on the carpet

Language World state

?

Figure 1.1: This dissertation is comprised of three parts. In the first part, we introduce our
formalism, reward-rational choice which unifies reward learning from many diverse sources
of information. In part two, we focus on applications of RRC to learn from multiple feedback
types at once. In part three, we study settings in which the reward-rational assumption does
not hold.

Once a human is no longer limited to only one feedback type, then even their choice of
feedback type can convey information. For example, if a robot is about to do something
disastrous, then a human may choose the sure-fire safeguard: turning it off immediately. On
the other hand, if the robot is doing something wrong but not critically disastrous, then
they may try to correct the robot, either physically or through language. Thus, the choice
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of feedback type may itself be a useful signal for the robot to learn about the true reward
function from. In Chapter 4, we instantiate the RRC framework to formalize meta-choice,
the choice of feedback type, as a signal that can be learned from. Through experiments, we
demonstrate the potential that meta-choice has for improving reward inference.

Finally, in Part III, we relax the reward-rational assumption, i.e., the assumption that
the human’s choices are rational with respect to the target reward function. We study three
different settings in which the human may deviate in different ways from reward-rationality.

First, in Chapter 5, we study the setting where the human may be pedagogic, i.e.,
optimizing for teaching the reward function, rather than optimizing for reward itself. Here,
we show that the reward-rational assumption still leads to robust inference even with a
pedagogic human. We cast objective learning into the more general form of a common-
payoff game between the robot and human, and prove that in any such game assuming
the human is reward-rational is more robust than assuming that the human is pedagogic.
Experiments with human data support our theoretical results and point to the sensitivity of
the pedagogic assumption.

Next, in Chapter 6, we consider a setting in which the human may suffer from temptation,
meaning that they may act in ways that conflict with what they would want upon reflection.
In particular, we study a notable economic theory by Gul and Pesendorfer [2001] of individual
choice under temptation. In this model, a decision-maker acts in two stages. In the first
stage, the individual can anticipate temptation and restrict their choices for the second
stage to a limited menu of items. In the second stage, the individual chooses from this
menu, subject to temptation. A rational human who suffers no temptation would never need
to restrict their choices at the first stage. However, a human that faces temptation may want
to restrict their options so that they do not succumb to temptation in the second stage.

We focus on learning the individual’s preferences before temptation: the first-stage pref-
erences. We show that, if one models the human as rational while ignoring their capacity
for temptation, it is impossible to recover their first-stage preferences. Instead, we model
the human as being sophisticated [O’Donoghue and Rabin, 1999], i.e., rational in the first
stage given that they face temptation in the second stage. We give an efficient algorithm
to learn first-stage menu preferences over a set of n possible items using O(n2 log n) menu
comparisons from a sophisticated human. Furthermore, we show how to reduce the number
of comparisons to O(n log n) for approximate recovery.

In Chapter 7, we consider the recommender system setting. Here, the user typically
has many ways to interact with a given item, e.g., likes, clicks, shares, replies, etc. While
the standard paradigm for algorithmic recommendation, engagement optimization, treats
these behavioral signals as the objective for recommendation, we suggest that these signals
are only evidence of the true, underlying objective function: to provide content that is of
“value” to the user. However, such signals are often very noisy indicators of what a user
values and there may be many unknown ways that people’s behaviors. If we cannot model
each behavior as a reward-rational choice, what is an alternative that still allows us to learn
from all signals at once?

Building on the framework of measurement theory, we treat “value” as a theoretical con-
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struct that must be operationalized through a measurement model [Causey, 1971, Hand,
2004, Jackman, 2009, Jacobs and Wallach, 2019]. We create a general latent-variable model-
ing approach for recommender systems that can be used to operationalize the target construct
“value” and optimize for it. Our approach relies on using one sparse signal that provides
strong evidence that the user either values or doesn’t value an item (e.g. “don’t show me
this”) to learn the relationship between all the other user behaviors and latent “value”. Es-
sentially, we make a rationality assumption on just one strong signal which allows us to learn
how to interpret all other signals. We implement our approach on the Twitter platform on
millions of users. In line with established approaches to assessing the validity of measure-
ments, we perform a qualitative evaluation of how well our model captures a desired notion
of “value”.

Finally, in Chapter 8, we end by discussing avenues for future work.
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Part I

The reward-rational choice formalism
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Chapter 2

The reward-rational choice formalism

In recent years, researchers have proposed ways to learn reward functions from a plethora
of sources, e.g., demonstrations [Ng and Russell, 2000, Abbeel and Ng, 2004, Ziebart et al.,
2008], comparisons [Wirth et al., 2016, Sadigh et al., 2017, Christiano et al., 2017], physical
corrections [Losey and O’Malley, 2017, Bajcsy et al., 2017], natural language instructions
[Matuszek et al., 2012, Tellex et al., 2011, Fried et al., 2018b,a], proxy rewards [Hadfield-
Menell et al., 2017b, Ratner et al., 2018], switching a robot off [Hadfield-Menell et al.,
2017a], and even the initial state of the world [Shah et al., 2019].

Overall, there is much information out there. Some types of information are purposefully
communicated, while others are implicitly “leaked” by the human. While existing papers
are instructing us how to tap into some of it, one can only imagine that there is much
more that is yet untapped. There are probably new yet-to-be-invented ways for people to
purposefully provide feedback to robots – e.g., guiding them on which part of a trajectory
was particularly good or bad. And there will probably be new realizations about ways in
which human behavior already naturally leaks information, beyond the state of the world or
turning the robot off. How will robots make sense of all these diverse sources of information?

There is a way to interpret all this information in a single unifying formalism1. The
critical observation is that human behavior can be modeled as a reward-rational implicit
choice (RRC) – a choice from an implicit set of options, which is approximately rational
for the intended reward. This observation leads to a recipe for making sense of human
behavior, from language to switching the robot off. The recipe has two ingredients: 1) the
set of options the person (implicitly) chose from, and 2) a grounding function that maps
these options to robot behaviors2. This is admittedly obvious for traditional feedback. In
comparison feedback, for instance, the set of options is just the two robot behaviors presented

1In other frameworks, e.g., an assistive game [Hadfield-Menell et al., 2016, Shah et al., 2020] or Bayesian
inverse reinforcement learning [Ramachandran and Amir, 2007], one can also theoretically accommodate
various kinds of human behavior if given a model of how that behavior relates to the latent reward function.
Critically, our formalism, reward rational choice, give us a recipe for designing such a model.

2The contents of this chapter were originally published with Hong Jun Jeon and Anca Dragan as “Reward-
rational (implicit) choice: A unifying formalism for reward learning” in NeurIPS 2020.
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to the human to compare, and the grounding is identity. In other types of behavior though,
it is much less obvious. Take switching the robot off. The set of options is implicit: you can
turn it off, or you can do nothing. The formalism says that when you turn it off, it should
know that you could have done nothing, but (implicitly) chose not to. That, in turn, should
propagate to the robot’s reward function. For this to happen, the robot needs to ground
these options to robot behaviors: identity is no longer enough, because it cannot directly
evaluate the reward of an utterance or of getting turned off, but it can evaluate the reward
of robot actions or trajectories. Turning the robot off corresponds to a trajectory – whatever
the robot did until the off-button was pushed, followed by doing nothing for the rest of the
time horizon. Doing nothing corresponds to the trajectory the robot was going to execute.
Now, the robot knows you prefer the former to the latter. We have taken a high-level human
behavior, and turned it into a direct comparison on robot trajectories with respect to the
intended reward, thereby gaining reward information.

We use this perspective to survey prior work on reward learning. We show that despite
their diversity, many sources of information about rewards proposed thus far can be charac-
terized as instantiating this formalism (some very directly, others with some modifications).
This offers a unifying lens for the area of reward learning, helping better understand and
contrast prior methods. We end with discussion on how the formalism can help combine and
actively decide among feedback types, and also how it can be a potentially helpful recipe for
interpreting new types of feedback or sources of leaked information.

2.1 A formalism for reward learning

Reward-rational implicit choice
In reward learning, the robot’s goal is to learn a reward function r : Ξ → R from human
behavior that maps trajectories3 ξ ∈ Ξ to scalar rewards.

(Implicit/explicit) set of options C. We interpret human behavior as choosing an
option c∗ from a set of options C. Different behavior types will correspond to different explicit
or implicit sets C. For example, when a person is asked for a trajectory comparison, they
are explicitly shown two trajectories and they pick one. However, when the person gives a
demonstration, we think of the possible options C as implicitly being all possible trajectories
the person could have demonstrated. The implicit/explicit distinction brings out a general
tradeoff in reward learning. The cleverness of implicit choice sets is that even when we
cannot enumerate and show all options to the human, e.g. in demonstrations, we still rely
on the human to optimize over the set. On the other hand, an implicit set is also risky –
since it is not explicitly observed, we may get it wrong, potentially resulting in worse reward
inference.

The grounding function ψ. We link the human’s choice to the reward by thinking
of the choice as (approximately) maximizing the reward. However, it is not immediately

3We consider finite fixed horizon T trajectories.
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clear what it means for the human to maximize reward when choosing feedback because the
feedback may not be a (robot) trajectory, and the reward is only defined over trajectories.
For example, in language feedback, the human describes what they want in words. What is
the reward of the sentence, “Do not go over the water”?

To overcome this syntax mismatch, we map options in C to (distributions over) trajecto-
ries with a grounding function ψ : C → fΞ where fΞ is the set of distributions over trajectories
for the robot Ξ. Different types of feedback will correspond to different groundings. In some
instances, such as kinesthetic demonstrations or trajectory comparisons, the mapping is sim-
ply the identity. In others, like corrections, language, or proxy rewards, the grounding is
more complex (see Section 2.3).

Human policy. Given the set of choices C and the grounding function ψ, the human’s
approximately rational choice c∗ ∈ C can now be modeled via a Boltzmann-rational policy,
a policy in which the probability of choosing an option is exponentially higher based on its
reward:

P(c∗ | r, C) = exp(β · Eξ∼ψ(c∗)[r(ξ)])∑
c∈C exp(β · Eξ∼ψ(c)[r(ξ)])

, (2.1)

where the parameter β is a coefficient that models how rational the human is. Often, we
simplify Equation 2.1 to the case where ψ is a deterministic mapping from choices in C to
trajectories in Ξ, instead of distributions over trajectories. Then, the probability of choosing
c∗ can be written as:4

P(c∗ | r, C) ∝ exp(β · r(ψ(c∗))) (2.2)
Boltzmann-rational policies are widespread in psychology [Baker et al., 2009, Goodman

et al., 2009, Goodman and Stuhlmüller, 2013], economics [Bradley and Terry, 1952, Luce,
1959, Plackett, 1975, Luce, 1959], and AI [Ziebart et al., 2008, Ramachandran and Amir,
2007, Finn et al., 2016, Bloem and Bambos, 2014, Dragan et al., 2013a] as models of hu-
man choices, actions, or inferences. In the next section, we provide a maximum-entropy
motivation for the Boltzmann distribution.

Definition 2.1.1 (Reward-rational choice). Finally, putting it all together, we call a type
of feedback a reward-rational choice if, given a grounding function ψ, it can be modeled as
a choice from an (explicit or implicit set) C that (approximately) maximizes reward, i.e., as
in Equation 2.1.

4One can also consider a variant of Equation 2.1 in which we use a Boltzmann distribution over actions
instead of trajectories. The human’s choices are grounded to actions and are evaluated via a Q-value function,
rather than the reward function. That is, ψ : C → A, P(c∗ | r, C) ∝ exp(β · Ea∼ψ(c∗)[Q∗(s, a)]). Another
possible extension is to model the human’s choices as grounding to policies rather than trajectories. Then,
one can use a Boltzmann distribution over policies as was recently proposed by Laidlaw and Dragan [2022].
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Robot inference
Each feedback is an observation about the reward, which means the robot can run Bayesian
inference to update its belief over the rewards. For a deterministic grounding,

P(r | c∗) = 1
Z
· exp(β · r(ψ(c∗)))∑

c∈C exp(β · r(ψ(c))) · P(r) , (2.3)

where P(r) is the prior over rewards and Z is the normalization over possible reward func-
tions. The inference above is often intractable, and so reward learning work leverages ap-
proximations [Blei et al., 2017], or computes only the MLE for a parametrization of rewards
(more recently as weights in a neural network on raw input [Christiano et al., 2017, Ibarz
et al., 2018]).

Finally, when the human is highly rational (β → ∞), the only choices in C with a non-
neglible probability of being picked are the choices that exactly maximize reward. Thus,
the human’s choice c∗ can be interpreted as constraints on the reward function (e.g. [Ratliff
et al., 2006]):

Find r such that r(ψ(c∗)) ≥ r(ψ(c)) ∀c ∈ C . (2.4)

2.2 Bounded rationality, maximum entropy, and
Boltzmann-rational policies

A perspective on reward learning that makes use at its core the Boltzmann model from
Equation 2.1 would not be complete without a formal justification for it within our context.
In this section, we derive it as the maximum-entropy distribution for the choices made by a
bounded, satisficing human. Our explanation is complementary to that of Ortega and Braun
[2013] who derive an axiomatic, thermodynamic framework to modeling bounded-rational
decision making. Their framework leads to much the same interpretation of the Boltzmann-
rational distribution, but is significantly more complex than needed for our purposes.

A perfectly rational human choosing from the set C would always pick the choice with
optimal reward, maxc∈C r(ψ(c)). However, since humans are bounded, we do not expect
them to perform optimally. Herbert Simon proposed the influential idea that humans are
bounded rational and merely satisfice [Simon, 1956], rather than maximize, i.e., they pick an
option above some satisfactory threshold, rather than picking the best possible option.

We can construct a simplified model of a satisficing human by modeling their expected
reward as equal to a satisficing threshold, maxc∈C r(ψ(c))−ϵ where ϵ ∈ (0, ϵmax) is the amount
of expected error. The maximum possible error, ϵmax = minc∈C r(ψ(c)) − maxc∈C r(ψ(c)),
corresponds to anti-rationality, i.e., always picking the worst option.

Given the constraint that the human’s expected reward is satisfactory, how should we pick
a distribution to model the human’s choices? The principle of maximum entropy [Jaynes,
1957] gives us a guide. If we want to encode no extra information in the distribution, then
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we ought to pick the distribution that maximizes entropy subject to the constraint on the
satisficing threshold.

Definition 2.2.1 (Satisficing MaxEnt problem). Let be be a distribution P over choice set
C and let p be a density for P with respect to a base measure F . The Shannon entropy of
P is defined as H(P ) = −

∫
C p(f) log p(f)dF (f). The satisficing maximum entropy problem

is to find a distribution P that maximizes entropy subject to the satisficing constraint (2.5):

max
P

H(P )

subject to
Ec∼P [r(ψ(c))] = max

c∈C
r(ψ(c))− ϵ . (2.5)

It is well-known that the maximum-entropy distribution subject to linear constraints
(such as a constraint on the mean as in (2.5)) is the unique exponential distribution that
satisfies the constraints. Thus, for our special case, the maximum-entropy distrbution is the
Boltzmann distribution with rationality coefficient β satisfying the satisficing constraint.

Theorem 2.2.1 ([Jaynes, 1957]). The solution to the satisficing maximum entropy problem
is the Boltzmann distribution Pβ(f) ∝ exp(β · r(ψ(c))) where β is the unique value satisfying
the satisficing constraint (2.5).

Since the expected reward Eβ[r(ψ(c)] is monotonically increasing in the rationality pa-
rameter β, the satisficing error ϵ and rationality coefficient β have a one-to-one relationship,
as summarized in the following corollary.

Corollary 2.2.1. The solution to the satisficing maximum entropy problem is a Boltzmann-
rational policy where the rationality coefficient β is monotonically decreasing in the satisficing
error ϵ. In particular, we have the following:

Human type Error ϵ Rationality β
Perfectly rational ϵ→ 0 β → +∞

Random ϵ = maxc∈C r(ψ(c)) −
Ec∼Unif(C)[r(ψ(c))] β = 0

Anti-rational ϵ→ ϵmax β → −∞

Thus, we see that a Boltzmann-rational policy is the maximum entropy distribution
for an ϵ-suboptimal human. By following the principle of maximum entropy, Boltzmann-
rationality provides a way to model a suboptimal human without implicitly adding in any
extra assumptions about the human’s choice.
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Table 2.1: The choice set C and grounding function ψ for different types of feedback
described in Section 2.3, unless otherwise noted.

Feedback Choices C Grounding ψ

Comparisons [Wirth et al., 2017] ξi ∈ {ξ1, ξ2} ψ(ξi) = ξi

Demonstrations [Ng and Russell, 2000] ξd ∈ Ξ ψ(ξ) = ξ

Corrections [Bajcsy et al., 2017] ∆q ∈ Q−Q ψ(∆q) = ξR + A−1∆q

Improvement [Jain et al., 2015] ξ ∈ {ξimproved, ξR} ψ(ξ) = ξ

Off [Hadfield-Menell et al., 2017a] c ∈ {off,−} ψ(c) =
ξR c = −
ξ0:t
R ξ

t
R . . . ξ

t
R c = off

Language [Matuszek et al., 2012] λ ∈ Λ ψ(λ) = Unif(G(λ))

Proxy Rewards [Hadfield-Menell et al., 2017b] r̃ ∈ R̃ ψ(r̃) = π(ξ | r̃)

Reward and Punishment [Griffith et al., 2013] c ∈ {+1,−1} ψ(c) =
ξR c = +1
ξexpected c = −1

Initial state [Shah et al., 2019] s ∈ S ψ(s) = Unif({ξ−T :0
H | ξ0

H = s})

Credit assignment (Discussion) ξ ∈ {ξi:i+kR , 0 ≤ i ≤ T} ψ(ξ) = ξ

2.3 Prior work from the perspective of the formalism
We now instantiate the formalism above with different behavior types from prior work,
constructing their choice sets C and groundings ψ. Some are obvious – comparisons, demon-
strations especially. Others – initial state, off, reward/punish – are more subtle and it takes
slightly modifying their original methods to achieve unification, speaking to the nontrivial
nuances of identifying a common formalism.

Table 2.1 lists C and ψ for each feedback, while Table 2.2 shows the deterministic con-
straint on rewards each behavior imposes, along with the probabilistic observation model –
highlighting, despite the differences in feedback, the pattern of the (exponentiated) choice
reward in the numerator, and the normalization over C in the denominator. Fig. 2.1 will
serve as the illustration for these types, looking at a grid world navigation task around a rug.
The space of rewards we use for illustration is three-dimensional weight vectors for avoiding
the rug, not getting dirty, and reaching the goal.

Trajectory comparisons. In trajectory comparisons [Wirth et al., 2016], the human
is typically shown two trajectories ξ1 ∈ Ξ and ξ2 ∈ Ξ, and then asked to select the one
that they prefer. They are perhaps the most obvious exemplar of reward-rational choice:
the set of choices C = {ξ1, ξ2} is explicit, and the grounding ψ is simply the identity. As
Fig. 2.1 shows, for linear reward functions, a comparison corresponds to a hyperplane that
cuts the space of feasible reward functions in half. For all the reward functions left, the
chosen trajectory has higher reward than the alternative. Most work on comparisons is
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Table 2.2: The probabilistic model (Equation 2.1) and the simplification to the
constraint-based model (Equation 2.4).

Feedback Constraint Probabilistic

Comparisons r(ξ1) ≥ r(ξ2) P(ξ1 | r, C) = exp(β · r(ξ1))
exp(β · r(ξ1)) + exp(β · r(ξ2))

Demonstrations r(ξD) ≥ r(ξ) ∀ ξ ∈ Ξ P(ξD | r,Ξ) = exp(β · r(ξD))∑
ξ∈Ξ exp(β · r(ξ))

Corrections r(ξR + A−1∆q) ≥ r(ξR + A−1∆q′) ∀∆q′ ∈ Q−Q P(∆q′ | r,Q−Q) = exp(β · r(ξR + A−1∆q))∑
∆q∈Q−Q exp(β · r(ξR + A−1∆q))

Improvement r(ξimproved) ≥ r(ξR) P(ξimproved | r, C) = exp(β · r(ξimproved))
exp(β · r(ξimproved)) + exp(β · r(ξR))

Off r(ξ0:t
R ξ

t . . . ξt) ≥ r(ξR) P(off | r, C) = exp(β · r(ξ0:t
R ξ

t . . . ξt))
exp(β · r(ξ0:t

R ξ
t . . . ξt)) + exp(β · r(ξR))

Language Eξ∼Unif(G(λ∗))
[
r(ξ)

]
≥ Eξ∼Unif(G(λ))

[
r(ξ)

]
∀λ ∈ Λ P(λ∗ | r,Λ) =

exp(β · Eξ∼Unif(G(λ∗))
[
r(ξ)

]
)∑

λ∈Λ exp(β · Eξ∼Unif(G(λ))
[
r(ξ)

]
)

Proxy Rewards Eξ̃∼π(ξ̃|r̃)

[
r(ξ̃)

]
≥ Eξ̃∼π(ξ̃|c)

[
r(ξ̃)

]
∀c ∈ R̃ P(r̃ | r, R̃) =

exp(β · Eξ̃∼π(ξ̃|r̃)

[
r(ξ̃)

]
)∑

c∈R̃ exp(β · Eξ̃∼π(ξ̃|c)

[
r(ξ̃)

]
)

Reward/Punish r(ξR) ≥ r(ξexpected) P(+1 | r, C) = exp(β · r(ξR))
exp(β · r(ξR)) + exp(β · r(ξexpected))

Initial state Eξ∼ψ(s∗)[r(s∗)] ≥ Eξ∼ψ(s)[r(s)] ∀s ∈ S P(s∗ | r,S) = exp(β · Eξ∼ψ(s∗)[r(ξ)])∑
s∈S exp(β · Eξ∼ψ(s)[r(ξ)])

Meta-choice Eξ∼ψ(Ci)[r(ξ)] ≥ Eξ∼ψ(Cj)[r(ξ)] ∀j ∈ [n] P(Ci | r, C0) =
exp

(
β0 · Eξ∼ψ0(Ci)[r(ξ)]

)
∑
j∈[n] exp

(
β0 · Eξ∼ψ0(Cj)[r(ξ)]

)
Credit assignment r(ξ∗) ≥ r(ξ) ∀ ξ ∈ C P(ξ∗ | r, C) = exp(β · r(ξ∗))∑

ξ∈C exp(β · r(ξ))

done in the preference-based RL domain in which the robot might compute a policy directly
to agree with the comparisons, rather than explicitly recover the reward function [Wilson
et al., 2012, Busa-Fekete et al., 2013]. Within methods that do recover rewards, most use
the constraint version (left column of Table 2.2) using various losses [Akrour et al., 2011,
Wirth and Fürnkranz, 2014]. Holladay et al. [2016] use the Boltzmann model (right column
of Table 2.2) and proposes actively generating the queries, Sadigh et al. [2017] follow up with
actively synthesizing the queries from scratch, and Christiano et al. [2017] introduce deep
neural network reward functions.

Demonstrations. In demonstrations, the human is asked to demonstrate the optimal
behavior. Reward learning from demonstrations is often called inverse reinforcement learning
(IRL) and is one of the most established types of feedback for reward learning [Ng and Russell,
2000, Abbeel and Ng, 2004, Ziebart et al., 2008]. Unlike in comparisons, in demonstrations,
the human is not explicitly given a set of choices. However, we assume that the human is
implicitly optimizing over all possible trajectories (Fig. 2.1 (1st row, 2nd column) shows these
choices in gray). Thus, demonstrations are a reward-rational choice in which the set of choices
C is (implicitly) the set of trajectories Ξ. Again, the grounding ψ is the identity. In Fig. 2.1,
fewer rewards are consistent with a demonstration than with a comparison. Early work used
the constraint formulation with various losses to penalize violations [Ng and Russell, 2000,
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Figure 2.1: Different behavior types described in Sec. 2.3 in a gridworld with three features:
avoiding/going on the rug, getting the rug dirty, and reaching the goal (green). For each, we display
the choices, grounding, and feasible rewards under the constraint formulation of robot inference
(2.4). Each trajectory is a finite horizon path that begins at the start (red). Orange is used to
denote c∗ and ψ(c∗) while gray to denote other choices c in C. For instance, the comparison affects
the feasible reward space by removing the halfspace where going on the rug is good. It does not
inform the robot about the goal, because both end at the goal. The demonstration removes the
space where the rug is good, where the goal is bad (because alternates do not reach the goal), and
where getting the rug dirty is good (because alternates slightly graze the rug). The correction is
similar to the demonstration, but does not infer about the goal, since all corrections end at goal.

Ratliff et al., 2006]. Bayesian IRL [Ramachandran and Amir, 2007] exactly instantiates the
formalism using the Boltzmann distribution by doing a full belief update as in Equation 2.3.
Later work computes the MLE instead [Ziebart et al., 2008, Bloem and Bambos, 2014, Ho
and Ermon, 2016] and approximates the partition function (the denominator) by a quadratic
approximation about the demonstration [Levine and Koltun, 2012], a Laplace approximation
[Dragan and Srinivasa, 2012], or importance sampling [Finn et al., 2016].

Corrections are the first type of feedback we consider that has both an implicit set of
choices C and a non-trivial (not equal to identity) grounding. Corrections are most common
in physical human–robot interaction (pHRI), in which a human physically corrects the motion
of a robot. The robot executes a trajectory ξR, and the human intervenes by applying a
correction ∆q ∈ Q that modifies the robot’s current configuration. Therefore, the set of
choices C = Q − Q = {q1 − q2 | q1, q2 ∈ Q} consists of all possible configuration differences
∆q the person could have used (Fig. 2.1 1st row, 3rd column shows possible ∆qs in gray and
the selected one in orange). The way we can ground these choices is by finding a trajectory
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that is closest to the original, but satisfies the constraint of matching a new point:

min
ξ
||ξ − ξR||2A

s.t. ξ(0) = ξR(0), ξ(T ) = ξR(T ), ξ(t) = ξR(t) + ∆q (2.6)

where t is the time at which the correction was applied. Choosing a non-Euclidean inner-
product, A (for instanceKTK, withK the finite differencing matrix), couples states along the
trajectory in time and leads to a the resulting trajectory smoothly deforming – propagating
the change ∆q to the rest of the trajectory: ψ(∆q) = ξR + A−1[λ, 0, ..,∆q, .., 0, γ]T (with λ
and γ making sure the end-points stay in place). This is the orange trajectory in the figure.
Most work in corrections affects the robot’s trajectory but not the reward function [Haddadin
et al., 2008, Hogan, 1985], with [Losey and O’Malley, 2017] proposing the propagation via
A−1 above. Bajcsy et al. [2017] propose that corrections are informative about the reward
and use the propagation as their grounding, deriving an approximate MAP estimate for the
reward. Losey and O’Malley [2018] introduce a way to maintain uncertainty.

Improvement. Prior work [Jain et al., 2015] has also modeled a variant of corrections
in which the human provides an improved trajectory ξimproved which is treated as better than
the robot’s original ξR. Although [Jain et al., 2015] use the Euclidean inner product and
implement reward learning as an online gradient method that treats the improved trajectory
as a demonstration (but only takes a single gradient step towards the MLE), we can also
naturally interpret improvement as a comparison that tells us the improved trajectory is
better than the original: the set of options C consists of only ξR and ξimproved now, as
opposed to all the trajectories obtainable by propagating local corrections; the grounding is
identity, resulting in essentially a comparison between the robot’s trajectory and the user
provided one.

Off. In “off” feedback, the robot executes a trajectory, and at any point, the human may
switch the robot off. “Off” appears to be a very sparse signal, and it is not spelled out in
prior work how one might learn a reward from it. Reward-rational choice suggests that we
first uncover the implicit set of options C the human was choosing from. In this case, the set
of options consists of turning the robot off or not doing anything at all: C = {off,−}. Next,
we must ask how to evaluate the reward of the two options, i.e., what is the grounding?
Hadfield-Menell et al. [2017a] introduced switching the robot off as a source of information
to learn from and it as a choice in a one-shot game. There, not intervening means the
robot takes its one possible action, and intervening means the robot takes the no-op action.
This can be easily generalized to the sequential setting: not intervening means that the
robot continues on its current trajectory, and intervening means that it stays at its current
position for the remainder of the time horizon. Thus, the choices C = {off,−} map to the
trajectories {ξ0:t

R ξ
t
R . . . ξ

t
R, ξR}.

Language. Humans might use rich language to instruct the robot, like “Avoid the rug.”
Let G(λ) be the trajectories that are consistent with an utterance λ ∈ Λ (e.g. all trajectories
that do not enter the rug). Usually the human instruction is interpreted literally, i.e. any
trajectory consistent with the instruction ξ ∈ G(λ) is taken to be equally likely , although,
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other distributions are also possible. For example, a problem with literal interpretation is
that it does not take into account the other choices the human may have considered. The
instruction “Do not go into the water” is consistent with the robot not moving at all, but we
imagine that if the human wanted the robot to do nothing, they would have said that instead.
Therefore, it would be incorrect for the robot to do nothing when given the instruction “Do
not go into the water”. This type of reasoning is called pragmatic reasoning [Grice, 1975],
and indeed recent work shows that explicitly interpreting instructions pragmatically can
lead to higher performance [Fried et al., 2018a,b]. The reward-rational choice formulation of
language feedback naturally leads to pragmatic reasoning on the part of the robot, and is in
fact equivalent to the rational speech acts model [Goodman and Stuhlmüller, 2013, Bergen,
2016], a model of pragmatic reasoning in language. The pragmatic reasoning arises because
the human is explicitly modeled as choosing from a set of options.

The reward-rational choice formulation of language feedback naturally leads to pragmatic
reasoning on the part of the robot, and is in fact equivalent to the rational speech acts model
[Goodman and Stuhlmüller, 2013], a standard model of pragmatic reasoning in language. The
pragmatic reasoning arises because the human is explicitly modeled as choosing from a set
of options. Language is a reward-rational choice in which the set of options C is the set of
instructions considered in domain Λ and the grounding ψ maps an utterance λ to the uniform
distribution over consistent trajectories Unif(G(λ)). In language feedback, a key difficulty
is learning which robot trajectories are consistent with a natural language instruction, the
language grounding problem (and is where we borrow the term “grounding” from) [Matuszek
et al., 2012, Tellex et al., 2011, Fu et al., 2019]. Fig. 2.1 shows the grounding for avoiding
the rug in orange – all trajectories from start to goal that do not enter rug cells.

Proxy rewards are expert-specified rewards that do not necessarily lead to the desired
behavior in all situations, but can be trusted on the training environments. They were
introduced by Hadfield-Menell et al. [2017b], who argued that even when the expert attempts
to fully specify the reward, it will still fail to generalize to some situations outside of the
training environments. Therefore, rather than taking a specified reward at face value, we can
interpret it as evidence about the true reward. Proxy reward feedback is a reward-rational
choice in which the set of choices C is the set of proxy rewards the designer may have chosen,
R̃. The reward designer is assumed to be approximately optimal, i.e. they are more likely to
pick a proxy reward r̃ ∈ R̃ if it leads to better trajectories on the training environment(s).
Thus, the grounding ψ maps a proxy reward r to the distribution over trajectories that
the robot takes in the training environment given the proxy reward [Hadfield-Menell et al.,
2017b, Mindermann et al., 2018, Ratner et al., 2018]. Fig. 2.1 shows the grounding for
a proxy reward for reaching the goal, avoiding the rug, and not getting the rug dirty –
many feasible rewards would produce similar behavior as the proxy. By taking the proxy
as evidence about the underlying reward, the robot ends up with uncertainty over what the
actual reward might be, and can better hedge its bets at test time.

Reward and punishment [Griffith et al., 2013, Loftin et al., 2014]. In this type of
feedback, the human can either reward (+1) or punish (−1) the robot for its trajectory
ξR; the set of options is C = {+1,−1}. A naive implementation would interpret reward
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and punishment literally, i.e. as a scalar reward signal for a reinforcement learning agent,
however empirical studies show that humans reward and punish based on how well the robot
performs relative to their expectations [MacGlashan et al., 2017]. Thus, we can use our
formalism to interpret that: reward (+1) grounds to the robot’s trajectory ξR, while punish
(−1) grounds to the trajectory the human expected ξexpected (not necessarily observed).

Initial state. Shah et al. [2019] make the observation that when the robot is deployed in
an environment that humans have acted in, the current state of the environment is already
optimized for what humans want, and thus contains information about the reward. For
example, suppose the environment has a goal state which the robot can reach through
either a lawn or a carpet. If the lawn is pristine and untrodden, then humans must have
intentionally avoided walking on it in the past (even though the robot hasn’t observed this
past behavior), and the robot can reasonably infer that it too should not go on the lawn.

The original paper inferred rewards from a single state s by marginalizing over possible
pasts, i.e. trajectories ξ−T :0

H that end at s which the human could have taken, P (s|r) =∑
ξ−T :0

H |ξH(0)=s P (ξ−T :0
H |r). However, through the lens of our formalism, we see that initial

states can also be interpreted more directly as reward-rational implicit choices. The set
of choices C can be the set of possible initial states S. The grounding function ψ maps a
state s ∈ S to the uniform distribution over any human trajectory ξ−T :0

H that starts from a
specified time before the robot was deployed (t = −T ) and ends at state s at the time the
robot was deployed (t = 0), i.e. ξ0

H = s. This leads to the P (s|r) from Table 2.2, which
is almost the same as the original, but sums over trajectories directly in the exponent, and
normalizes over possible other states. The two interpretations would only become equivalent
if we replaced the Boltzmann distribution with a linear one. Fig 2.1 shows the result of this
(modified) inference, recovering as much information as with the correction or language.

Formalizing new feedback

The types of feedback or behavior we have discussed so far are by no means the only types
possible. New ones will inevitably be invented. But when designing a new type of feedback,
it is often difficult to understand what the relationship is between the reward r and the
feedback c∗. Reward-rational choice suggests a recipe for uncovering this link – define what
the implicit set of options the human is choosing from is, and how those options ground to
trajectories. Then, Equation 2.1 provides a formal model for the human feedback.

For example, hypothetically, someone might propose a “credit assignment" type of feed-
back. Given a trajectory ξR of length T , the human is asked to pick a segment of length
k < T that has maximal reward. We doubt the set of choices in an implementation of credit
assignment would be explicit, however the implicit set of choices C is then the set of all
segments of length k. The grounding function ψ is simply the identity. With this choice of
C and ψ in hand, the human can now be modeled according to Equation 2.1, as we show in
the last rows of Tables 2.1 and 2.2.
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Part II

Implications of reward-rational choice
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Chapter 3

Combining and actively selecting
feedback types

From demonstrations to reward/punishment to the initial state of the world, the robot can
extract information from humans by modeling them as making approximate reward-rational
choices. Often, the choices are implicit, like in turning the robot off or providing language
instructions. Sometimes, the choices are not made in order to purposefully communicate
about the reward, and rather end up leaking information about it, like in the initial state,
or even in corrections or turning the robot off. Regardless, the RRC framework enables us
to better understand how all these sources of information relate and compare.

So far we have talked about learning from individual types of behaviors. But we do
not want our robots stuck with a single type: we want them to learn from all types of
information. For example, the robot might receive demonstrations from a human during
training, and then corrections during deployment, which are followed by the human prema-
turely switching the robot off. The observational model in (2.2) for a single type of behavior
also provides a natural way to model combinations of behavior. If each observation is condi-
tionally independent given the reward, then according to (2.2), the probability of observing
a vector c of n behavioral signals (of possibly different types) is equal to

P(c | r) =
n∏
i=1

exp(βi · r(ψi(ci)))∑
c∈Ci

exp(βi · r(ψi(c)))
. (3.1)

Given this likelihood function for the human’s behavior, the robot can infer the reward
function using the approaches and approximations described in Sec. 2.1. Recent work has
already built in this direction, combining trajectory comparisons and demonstrations [Ibarz
et al., 2018, Palan et al., 2019]. We note that the formulation in Equation 3.1 is general and
applies to any combination. In Section 3.1, we describe a case study on a novel combination
of feedback types: proxy rewards, a physical improvement, and comparisons in which we use
a constraint-based approximation (see Equation 2.4) to Equation 3.1.

Further, it also becomes natural to actively decide which feedback type to ask a human
for. Rather than relying on a heuristic (or on the human to decide), the robot can maximize
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expected information gain. Suppose we can select between n types of feedback with choice
sets C1, . . . , Cn to ask the user for. Let bt be the robot’s belief distribution over rewards at
time t. The type of feedback i∗ that (greedily) maximizes information gain for the next time
step is

i∗ = arg max
i∈[n]

Ert,c∗
i

[
log

(
p(c∗

i | rt)∫
rt∈R p(c∗

i | rt)bt(rt)

)]
, (3.2)

where rt ∼ Bt is distributed according to the robot’s current belief, c∗
i ∈ Ci is the random

variable corresponding to the user’s choice within feedback type i, and p(c∗
i | rt) is defined

according to the human model in Equation 2.1. We also note that different feedback types
may have different costs associated with them (e.g. of human time) and it is straightforward
to integrate these costs into (3.2). In Section 3.2, we describe experiments with active
selection of feedback types. In the environments we tested, we found that demonstrations
are optimal early on, when little is known about the reward, while comparisons became
optimal later, as a way to fine-tune the reward. The finding provides validation for the
approach pursued by Palan et al. [2019] and Ibarz et al. [2018]. Both papers manually define
the mixing procedure we found to be optimal: initially train the reward model using human
demonstrations, and then fine-tune with comparisons.

3.1 A case study on combining feedback types
We now describe a case study in which we illustrate how the framework can be used to learn
from multiple sources of information at once. Fig. 3.1 illustrates a case study for teaching
a robot arm a reward for motion planning through a novel combination of feedback types.
In each environment, the robot arm must plan a trajectory from a start configuration to
a designated goal configuration. We want this trajectory to properly trade off efficiency
against staying at an appropriate distances to the human and to the table. Hand-tuning a
reward function that returns desirable trajectories in all possible environments is actually
very challenging. You could imagine that as you increase the efficiency weight to produce
a smoother trajectory in one environment, you break the behavior in another environment
where the robot now gets too close to the human, etc. In fact, the first type of feedback in
the case study illustrates this: we design a (proxy) reward function that works well in two
(training) environments (top left), but there are many rewards that are consistent with that
behavior, yet produce vastly different behaviors in the two test environments (right).

Therefore, we start by defining a proxy reward, but then follow it up with more feed-
back: an improvement, and a comparison between two trajectories. This narrows down the
space of rewards such that the robot can now generalize what to do outside of the training
environments, as shown by two testing environments (right).

Cost Function and Features.

Efficiency :=
|τ |−1∑
i=1
∥τ [i]− τ [i− 1]∥2

2 ,
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Figure 3.1: A case study for teaching a reward for robot arm motion using two training envi-
ronments. The robot trades off efficiency, keeping distance away from the human, and also from
the table. We use the constraints interpretation of feedback in this study. We start by defining a
proxy reward that produces acceptable behavior (orange trajectories) in the training environments
(1st row). This initial feedback significantly prunes the feasible space, but is not enough to guar-
antee good performance in other environments. On the right, we see trajectories still considered
feasible in two test environments. The green one is correct, however, the other feasible trajectories
are either too close to the human or too close to the table. After an improvement feedback and
a comparison, the robot shrinks the space of feasible rewards, removing extraneous rewards that
produce undesirable behavior at test time.
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Distance to Table :=
|τ |−1∑
i=0

1− exp(−disti)

where disti = |gst(τ [i])z − tablez| ,

Distance to Human :=
|τ |−1∑
i=0

1− exp(−disti)

where disti = ∥projx(gst(τ [i]))− projx(human)∥2
2 .

Efficiency is the sum of squared configuration space distances between consecutive trajectory
waypoints. The table and human features are expressed as 1 minus a radial basis function
of a modified distance between the object and the robot’s end effector positon (denoted by
gst(τ [i]), where gst is the forward kinematics that maps configuration ξ[i] ∈ Q to its end
effector location in R3). For the table, this modification is to only consider distance in the
z-coordinate, effectively measuring the distance from the robot’s end effector to the table
plane. For the human, the modification is to treat the human as an axis x and consider dis-
tance in 2 dimensions after projecting onto the plane with normal x. In Figure 3.1, the main
obstacle is either the human’s body or his arm. When the body is the obstacle, x = [0, 0, 1]
and when the arm is the obstacle, x = [0, 1, 0]. This considers the human not as just a point,
but rather a line along the body, or arm axis.

Optimization We approximate the space of reward parameters Θ by uniform discretiza-
tion at the surface of the non-negative octant of the 3 dimensional sphere (1371 points).
Robotic motion planners cannot, in general, compute the globally optimal trajectory for a
given θ ∈ Θ so we resort to computing a set T̂ of locally optimal trajectories for each θ via
TrajOpt [Schulman et al., 2014]. The optimal trajectory for a given θ is then defined as

ξ(θ) := arg min
ξ∈T̂

θTϕ(ξ)

Proxy Reward. For this case study, the robot begins by asking the human designer for a
proxy reward (cost) function. It is difficult for humans to provide proxies that work across all
environments [Ratner et al., 2018], so the robot asks for a proxy that produces the desired
behavior in the two training environments. The human can provide the proxy weights:
[0.55, 0.55, 0.55] and produce trajectories that match those of ξθ∗ (Figure 3.1 depicted in
orange). Providing a proxy applies constraints that shrink our feasible set from Θ to Fproxy:

Fproxy = {θ̃ : θ∗Tϕ(ξ(1)
θ̃

) ≥ θ∗Tϕ(ξ(1)
θ ) , θ∗Tϕ(ξ(2)

θ̃
) ≥ θ∗Tϕ(ξ(2)

θ ) ∀ θ ∈ Θ} ,

where ξ(i)
θ denotes the optimal trajectory1 w.r.t. cost parameter θ in environment i. The

new feasible set Fproxy contains only the parameters θ that produce optimal trajectories
1In our case study, the optimal trajectory is unique.
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with respect to the true weights θ∗ in environments 1 and 2. Although it is a subset of the
original feasible set Θ, the new feasible set Fproxy is still a reasonably large set (Figure 3.1,
top, middle, orange area). Furthermore, although the proxy produces optimal trajectories
in environments 1 and 2, it does not necessarily for environments 3 and 4. Figure 3.1 (top,
right) illustrates the different trajectories that result from optimizing different θ ∈ Fproxy.
To further narrow our feasible set, we will ask for another form of feedback: Improvement.

Improvement. The robot will now (actively) provide a nominal trajectory, and ask the
human to improve it, i.e. alter the trajectory to better suit their preferences. Suppose the
robot presents the human with the nominal trajectory shown in gray (Figure 3.1, middle,
left). This nominal trajectory is inefficient, staying too close to the table. Based on θ∗, the
human could provide the improved orange trajectory (Figure 3.1, middle, left) that is more
efficient and doesn’t emphasize closeness to the table as much. This improvement reduces
our feasible set from Fproxy to Fimprovement:

Fimprovement = {θ : θTϕ(ξimproved) ≥ θTϕ(ξR) θ ∈ Fproxy} .

Figure 3.1 (middle, middle) shows the effect of applying this constraint, shrinking the orange
feasible set. The feasible set has shrunk, but not enough to guarantee optimal behavior in
all environments. The improvement establishes that closeness to the table should not come
at the cost of efficiency. As a result, it removes the red trajectory in environment 3, which
greatly traded off efficiency for proximity to the table (Figure 3.1, middle, right). To further
fine tune, we will ask the human to answer a trajectory comparison.

Trajectory Comparison. The robot presents the human with two trajectories (Figure
3.1 bottom, left, orange and gray) and asks which incurs less cost. The human answers
"orange", the trajectory that prioritizes efficiency over distance to the table. This comparison
feedback shrinks our feasible set from Fimprovement to Fcomparison:

Fcomparison = {θ ∈ Fimprovement : θTϕ(ξorange) ≥ θTϕ(ξgray)} .

We finally see a very small orange feasible set (Figure 3.1, bottom, middle). Appropriately, in
all four environments now, every θ ∈ Fcomparison produces a trajectory ξθ s.t. ϕ(ξθ) = ϕ(ξθ∗).
This is illustrated in Figure 3.1 (bottom, right) as only the optimal green trajectory remains
in each environment.

Our case study showcases the usefulness of combining types of feedback. A designer
might start with their best guess at a reward function, the robot might misbehave in new
environments, the designer or even end-user might observe this and intervene to correct or
stop the robot, etc. – over time, the robot should narrow in on what people actually want
it to do.

3.2 Actively selecting which type of feedback to use
Given that we can mix and match types of feedback, we may also wonder what is the best
type to ask for at each point in time. To showcase the benefit of actively selecting feedback
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Figure 3.2: Environments used for experiments on active selection of feedback. (Top) These
four environments were used during "training". (Bottom) These four environments were held
as a test set to measure maximum and average regret.

types, we run an experiment actively selecting between demonstrations and comparisons.
We measure regret (maximum and expected difference, on holdout environments, in ground
truth reward between 1) optimizing with ground truth vs. 2) optimizing with the learned
reward). We manipulate whether we have access to demonstrations only, comparisons only,
or both, as well as the number of feedback instances queried.

One may initially wonder whether comparisons are necessary, given that demonstrations
seem to provide so much information early on. Overall, we observe that demonstrations are
optimal early on, when little is known about the reward, while comparisons become optimal
later, as a way to fine-tune the reward (Fig. 3.3 shows our results)2. The observation also
serves to validate the approach contributed by Palan et al. [2019], Ibarz et al. [2018] in the
applications of motion planning and Atari game-playing, respectively. Both papers manually
define the mixing procedure we found to be optimal: initially train the reward model using
human demonstrations, and then fine-tune with comparisons.

Experiment Details We tested 3 different active learning methods: active querying
of demonstrations, active querying of comparisons, and active querying of demonstrations
and comparisons, across 8 different gridworld environments depicted in Figure 3.2. The
top 4 environments were used in training while the bottom 4 were held for testing. Each
environment e is a 25x25 gridworld MDP with a linear reward function in 3 features: RGB
color values of each pixel. We assign each e with 10 different start goal pairs (s, g) from
which the algorithms can ask queries. The goal of each algorithm is to efficiently recover a
ground truth reward r∗ through querying.

2 More recent theoretical work by Skalse et al. [2022] on the ambiguity of different information sources
may provide insight into why different sources encode complementary information about the reward function.
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Figure 3.3: Statistics computed over 10 iterations of our greedy maximum information gain
algorithm. We notice that demonstrations (purple) are initially very information-dense but
quickly flatten out, whereas comparisons (cyan) obtain more information but less efficiently.
We notice that combining the two methods (orange) inherits the positive aspects of both,
the efficiency of demonstrations with the precision of comparisons.
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Since our rewards are linear in RGB, the feasible reward set R consists of 3D parameters
that weight the value of each feature in the reward function. R can be constrained to the sur-
face of the 3D unit sphere since reward functions in MDPs are scale invariant. We uniformly
discretize points at the surface of the 3D sphere to approximate R via R̂. To approximate Ξ,
we first compute the optimal trajectory under each r ∈ R̂ to make {arg maxξ r(ξ); r ∈ R̂}.
We include trajectories that are not the result of optimizing reward functions by inserting
noise into the value function when computing optimal trajectories as above.

Demonstrations and Comparisons as Hard Constraints The algorithms recover
r∗ by narrowing a set of feasible rewards with active queries. We use Ri to denote the set
of feasible rewards at iteration i of querying. Demonstrations and comparisons shrink the
feasible set in the following way:

Rdemo
i+1 (ξd) = {r : r(ξd) ≥ r(ξ) r ∈ Ri; ∀ξ ∈ Ξ}

Rcomp
i+1 (ξ1, ξ2) =

R
comp
i+1 (ξ1, ξ2) = {r : r(ξ1) ≥ r(ξ2) r ∈ Ri} ξ1 > ξ2

Rcomp
i+1 (ξ1, ξ2) = {r : r(ξ2) ≥ r(ξ1) r ∈ Ri} ξ2 > ξ1

For our experiments, we performed the following greedy volume removal over possible (s, g)
pairs that we specified in each environment.

Ri+1 =
Rdemo

i+1 (ξ∗
d) Vdemo < Vcomp

Rcomp
i+1 (ξ1, ξ2) Vcomp < Vdemo

Vcomp = min
(s,g)

max
{
Rcomp
i+1 (ξ1, ξ2), Rcomp

i+1 (ξ1, ξ2)
}

Vdemo = min
(s,g)

Er∗∈Ri

[
|Ri+1(ξdemo

r∗ )|
]

For demonstrations, we look for the (s, g) pair that in expectation produces a demonstra-
tion that leave the smallest feasible set (size of feasible set is volume or diameter described
below). For comparisons, we look for the pair of trajectories (ξ1, ξ2) that produces the
minimum worst-case feasible region remaining. For the method with demonstrations and
comparisons, we computed the above two metrics and select the feedback type with the
smaller feasible region. We run this algorithm for 10 iterations and average our results
across 50 different ground truth r∗. We plot several statistics for each iteration in Figure 3.3
including 

|Ri| Volume at iteration i
supr1,r2∈Ri

∥r1 − r2∥2 Diameter at iteration i
maxe;(s,g); r∈Ri

r∗(ξ(e,s,g)
r∗ )− r∗(ξ(e,s,g)

r ) Max regret at iteration i
Ee;(s,g); r∈Ri

[
r∗(ξ(e,s,g)

r∗ )− r∗(ξ(e,s,g)
r )

]
Avg regret at iteration i

where e is a holdout environment and (s, g) is a start-goal pair in the MDP. Each metric is a
proxy for how accurate our estimate of r∗ is. We notice that the combination of demonstra-
tions and comparisons achieves lower volume, diameter, max regret, and average regret than
demonstrations alone and that it achieves this in fewer iterations than comparisons alone.
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Chapter 4

Learning from the choice of feedback
type

While of course the reward-rational choice formalism won’t apply to all types of feedback,
we believe that it applies to many, even to types that initially seem to have a more obvious,
literal interpretation (e.g. reward and punishment, Section 2.3). Most immediately, we
are excited about using it to formalize a particular new source of (leaked) information we
uncovered while developing the formalism itself: the moment we enable robots to learn
from multiple types of feedback, users will have the choice of which feedback to provide.
Interpreted literally, each feedback gives the robot evidence about the reward. However,
this leaves information on the table: if the person decided to, say, turn the robot off, they
implicitly decided to not provide a correction, or use language. Intuitively, this means that
turning off the robot was a more appropriate intervention with respect to the true reward.
Interpreting the feedback type itself as reward-rational implicit choice has the potential to
enable robots to extract more information about the reward from the same data. We call
the choice of feedback type “meta-choice”. In this chapter, we formalize meta-choice and
conduct experiments that showcase its potential importance.

In Chapter 3, we described a straight-forward way of combining feedback types: treat
each individual feedback received as an independent reward rational choice, and update the
robot’s belief (Equation 3.1). However, the moment we open it up to multiple types of
feedback, the person is not stuck with a single type and is actually choosing which type
to use. We propose that this itself is a reward-rational implicit choice, and therefore leaks
information about the reward. We call the choice of feedback “meta-choice”, and in this
section, we formalize it and empirically showcase its potential importance.

4.1 Formalizing meta-choice
The assumption of conditional independence that the formulation in (3.1) uses is natural and
makes sense in many settings. For example, during training time, we might control what
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feedback type we ask the human for. We might start by asking the human for demonstrations,
but then move on to other types of feedback, like corrections or comparisons, to get more
fine-grained information about the reward function. Since the human is only ever considering
one type of feedback at a time, the conditional independence assumption makes sense.

But the assumption breaks when the human has access to multiple types of feedback at
once because the types of feedback the robot can interpret influence what the human does in
the first place.1 If the human intervenes and turns the robot off, that means one thing if this
were the only feedback type available, and a whole different thing if, say, corrections were
available too. In the latter case, we have more information - we know that the user chose to
turn the robot off rather than provide a correction.

The type of feedback itself leaks information about the reward, and the RRC framework
gives us a recipe for formalizing this new source: we need to uncover the set of options the
human is choosing from. The human has two stages of choice: the first is the choice between
feedback types, i.e corrections, language, turn-off, etc. and the second is the choice within
the chosen feedback type, i.e the specific correction that the human gave. Our formalism
can leverage both sources of information by defining a hierarchy of reward-rational choice.

Suppose the user has access to n types of feedback with associated choice sets C1, . . . , Cn,
groundings ψ1, . . . ψn, and Boltzmann rationalities β1, . . . , βn. For simplicity, we assume
deterministic groundings. The set of choice sets C0 for the first-stage choice is {C1, . . . , Cn}
The grounding ψ0 : C → fΞ for the first stage choice maps a feedback type Ci to the
distribution of trajectories defined by the human’s behavior and grounding in the second
stage:

ψ0(Ci) = P(ξ | r, Ci) =
∑

ci∈Ci:ψi(ci)=ξ
P(ci | r, Ci) , (4.1)

where, as usual, P(ci | r, Ci) is given by Equation 2.1. Instantiating Equation 2.1 to model
the first-stage decision as well, results in the following model for the human picking feedback
type Ci:

P(Ci | r) =
exp

(
β0 · Eξ∼ψ0(Ci)[r(ξ)]

)
∑
j∈[n] exp

(
β0 · Eξ∼ψ0(Cj)[r(ξ)]

) , (4.2)

The human is more likely to pick a feedback type Ci in the first stage, if the distribu-
tion of choices ψ0(Ci) that they would choose in the second stage achieves higher reward:
Eξ∼ψ0(Ci)[r(ξ)]. To get the probability that the human gives feedback c∗, we combine the

1We note that this adaptation by the human only applies to types of behavior that the human uses to
purposefully communicate with the robot, as opposed to sources of information like initial state.
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Figure 4.1: (Left) Environment with designated start (red circle), goal (green circle) and lava area
(red tiles). The human can provide a correction (one of the green trajectories) or turn off the
robot, forcing the robot to stop at the marked dot. (Middle) Belief distribution over rewards after
the human provides feedback (β0 = 10.0). Darker indicates higher probability. The metareasoning
model is able to rule out more reward functions than the naive model. (Right) When the human’s
metareasoning has no signal (β0 = 0), then the metareasoning (orange) and naive model (gray)
perform equally well. As β0 increases, the advantage of the metareasoning model also increases.

policies at the first and second stage:

P(c∗ | r) =
∑
i

P(c∗ | r, Ci) · P(Ci | r) (4.3)

=
∑
i

 exp
(
βi · r(ψi(c∗))

)
∑
c∈Ci

exp
(
βi · r(ψi(c))

) · exp
(
β0 · Eξ∼ψ0(Ci)[r(ξ)]

)
∑
j∈[n] exp

(
β0 · Eξ∼ψ0(Cj)[r(ξ)]

)
 . (4.4)

The first-stage decision can be interpreted as the human metareasoning over the best
type of feedback. The benefit of modeling the hierarchy is that we can cleanly separate and
consider noise at both the level of metareasoning (β0) and the level of execution of feedback
(β1, . . . , βn). Noise at the metareasoning level models the human’s imperfection in picking
the optimal type of feedback. Noise at the execution level might model the fact that the
human has difficulty in physically correcting a heavy and unintuitive robot.2

2Although we modeled rationality with respect to the reward r that the robot should optimize, we can
easily extend our formalism to capture that the person might trade-off between that and their own effort
– this is especially interesting at this meta-choice level, where one type of feedback might be much more
difficult and thus people might want to avoid it unless it is particularly informative.
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4.2 Comparing the literal interpretation to
meta-choice

We showcase the potential importance of accounting for the meta-choice in an experiment in
a gridworld setting, in which an agent navigates to a goal state while avoiding lava (Figure
4.1, left). The reward function is a linear combination of 2 features that encode the goal
and lava. The human has access to two channels of feedback: “off” and corrections. We
simulate the human feedback as choosing between feedback types according to Equation 4.4.
We manipulate three factors: 1) whether the robot is naive, i.e. only accounts for the
information within the feedback type, or metareasons, i.e. accounts for the other feedback
types that were available but not chosen; 2) the meta-rationality parameter β0 modeling
human imperfection in selecting the optimal type of feedback; and 3) the location of the
lava, so that the rational meta-choice changes from off to corrections. We measure regret
over holdout environments.

Figure 4.1 (left) depicts the possible grounded trajectories for corrections and for off. For
the top, off is optimal because all corrections go through lava. For the bottom, the rational
meta-choice is to correct. In both cases, we find that meta-reasoning gains the learner more
information, as seen in the belief (center). For the top, where the person turns it off, the
robot can be more confident that lava is bad. For the bottom, the fact that the person had
the off option and did not use it informs the robot about the importance of reaching the
goal. This translates into lower regret (right), especially as β0 increases and there is more
signal in the feedback type choice.

4.3 What happens when metarationality is
misspecified?

In our main metareasoning experiments, we assumed that the simulated human metareasoned
with β0 and that our algorithm somehow knew this quantity. However, in practice, we will
not have access to β0. This brings about an interesting question: What are the effects of
inference under a misspecified β0? What are the effects of overestimating or underestimating
the human’s rationality?

To test this, we designed an experiment in which our simulated human provided super-
vision with a fixed ground truth r∗ and β∗

0 while our algorithm performs belief updates with
various β0 above and below β∗

0 . The first way to measure the extent of misspecification is to
measure the KL divergence between the belief induced by β∗

0 and that induced by β0.

DKL(P (r | c∗)∥Q(r | c∗))

P (r | c∗) ∝ P (c∗ | r, β∗
0) · P (r)

Q(r | c∗) ∝ P (c∗ | r, β0) ·Q(r)
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Additionally, we wanted to measure the expected regret given a human that provides super-
vision with rationality β∗

0 and the algorithm that performs belief updates with rationality
β0.

E[Regret | c∗, Ci, r
∗, β0] =

∑
r∈R

(r∗(ϕ(r∗))− r∗(ϕ(r)))

·P(r | c∗, Ci, β0)

E[Regret | β0] =
∑
r∗∈R

∑
i∈C0

∑
c∗∈Ci

E[Regret | c∗, Ci, r
∗, β0]

· P(Ci | r∗, β0) · P(c∗ | Ci, r∗, β0)

We plot the results in Figure 4.2 averaged over 50 randomly sampled reward functions and
β0 ∈ [0.0, 10.0]. We notice that when the human does not metareason (β∗

0 = 0.0), the KL
divergence in the belief distribution update is large. In comparison, with any moderate level
of metareasoning (β∗

0 = 2.5, 5.0, 7.5), the KL divergence is very low. We notice this too in
the expected regret. Note that the minimum expected regret is not achieved by β0 = β∗

0 .
This is because β∗

0 is used to compute the frequency at which the human provides each type
of feedback as an answer. Simply matching β0 with β∗

0 doesn’t guarantee minimum expected
regret (the optimal β0 for minimizing expected regret is a function of β∗

0). These experiments
suggest that if we detect that the human is poor at metareasoning (low β∗

0), it is safer to
drop the metareasoning assumption. However, if the human is displaying metareasoning, we
can leverage this to improve learning.
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Figure 4.2: In each plot, the human operates under a true metarationality denoted by β∗
0 .

We measure performance drop from misspecification by computing the KL divergence and
expected regret of the belief distribution over rewards for robots with misspecified metara-
tionalities β0 ∈ [0.0, 10.0]. (Top) The plots display the KL divergence between the true
belief with β∗

0 and various misspecified beliefs. We notice that assuming metareasoning
when the human does not metareason (left β∗

0 = 0) results in significant divergence in the
belief distribution. (Bottom) The plots show the expected regret for robots that learn, with
misspecified β0’s, from a human who gives feedback with β∗

0 . As with KL divergence, the
expected regret incurred by assuming metareasoning when the human does not metareason
is high. Additionally, we note that a robot learning with β0 = β∗

0 does not necessarily incur
minimum expected regret (as mentioned in the main text).
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Part III

Beyond the reward-rational
assumption
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Chapter 5

Learning from a human that may be
pedagogic

The reward-rational choice framework assumes that the human’s choice is near-optimal with
respect to the reward function to be inferred. This in the natural assumption for many
situations, e.g. an autonomous car learning a reward function for driving through observing
natural, human demonstrations of driving [Levine and Koltun, 2012]. However, recent work
shows that this assumption may not hold in certain collaborative settings [Ho et al., 2016]
in which the human is aware that the robot needs to learn. In such settings, the person
might optimize for teaching the robot about the objective, which is not the same as directly
optimizing the objective itself [Dragan et al., 2013b, Hadfield-Menell et al., 2016, Ho et al.,
2016].

Prior work has suggested that when the human is teaching, the robot should infer the
reward function using a pedagogic model of the human, rather than a reward-rational model
of the human [Fisac et al., 2018]. Here, we study impact of the human model (pedagogic
vs reward-rational) on reward inference. We find that the reward-rational assumption is
quite robust to humans who are teaching. First, we prove a theoretical result stating that
if one does not know whether the human is pedagogic or reward-rational, it is more robust
to use the reward-rational assumption. Then, in experiments with humans, we find that
the reward-rational model performs better than the pedagogic model, even with humans are
acting pedagogically! Given that any pedagogic model will also always deviate from actual
human behavior, the reward-rational assumption may simply be a more robust assumption.

In this chapter, we refer to a reward-rational human as literal and a human who is
teaching as pedagogic. We similarly define a literal and pedagogic robot based upon which
model of the human (literal or pedagogic) the robot uses.

1. The literal human directly optimizes for the objective, i.e., the reward-rational as-
sumption.

2. The literal robot infers the objective while assuming the human is literal (reward-
rational).
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Figure 5.1: In this scenario, the robot infers whether it is ok to walk on the grass or not
from a demonstration provided by the human (it already knows pavement is always ok). (a)
The literal and pedagogic human’s demonstrations. When grass is ok, the literal human is
equally likely to walk on the grass or pavement. On the other hand, when grass is ok, the
pedagogic human always walks on the grass in order to signal that grass is ok. (b) The beliefs
of the literal robot LR and pedagogic robot PR after observing a demonstration. LR and
PR assume human is literal and pedagogic, respectively. LR and PR differ in how strong
their beliefs are after witnessing the human walk on pavement, leading to different problems
when the human is misspecified. If the human is literal, but the robot is pedagogic, then it
makes too strong an inference. On the other hand, if the human is pedagogic, but the robot
is literal, then it makes too weak of an inference.

3. The pedagogic human optimizes for teaching the literal robot the objective.

4. The pedagogic robot (sometimes called “pragmatic” [Fisac et al., 2018]) infers the
objective while assuming the human is pedagogic.

Figure 5.1 shows an example of the difference between a literal and pedagogic human. When
the human is literal and optimizes for the objective, they take any optimal path to the goal.
When the human is pedagogic and optimizes for teaching the objective, they take the path
that best signals the objective.

Which is worse—interpreting a pedagogic human literally (literal robot + pedagogic
human) or interpreting a literal human pedagogically (pedagogic robot + literal human)? In
both cases, the model of the human is incorrect, and we might expect that which is better
depends on the context and the task; surprisingly, we are able to prove that regardless of
the task, the literal robot is more robust, suggesting that it may be safer to simply model
the human as reward-rational. Our contributions are the following1:

• Section 5.1: Theoretical Analysis. We cast objective learning into the more general
form of a common-payoff game between the human and robot. We then prove that
a pedagogic robot and a literal human always do worse than a literal robot and a

1The contents of this chapter were originally published with Anca Dragan as “Literal or Pedagogic
Human? Analyzing Human Model Misspecification in Objective Learning” in UAI 2019.
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pedagogic human, showing that misspecification is worse in one direction than the
other.

• Section 5.2: Empirical Analysis. We test the effects of misspecification on data from
human teaching. The data confirms that assuming pedagogic behavior when people are
literal is worse than assuming literal behavior when people are pedagogic. Surprisingly,
we find that the literal robot does better than the pedagogic robot even when people
are trying to be pedagogic, because of the discrepancy between the pedagogic model of
humans and real human behavior.

• Section 5.3: Theoretical vs Empirical. Our empirical results are surprising, in that
the pedagogic model is a state of the art cognitive science model that is fit to the
human data and has relatively high predictive accuracy, yet the pedagogic robot does
worse than the literal robot with humans who are trying to be pedagogic. We use our
theory to derive a hypothesis for why this could be. The hypothesis is that in practice
different humans vary in how literal or pedagogic they are, which our theory implies
will degrade the performance of the pedagogic robot more than the literal robot. We
find positive evidence for this hypothesis, indicating that robustness to a population of
humans is an important consideration in choosing a pedagogic versus literal robot.

• Section 5.4: Can we “fix” the pedagogic robot? An intuitive idea for improving the
pedagogic robot is to give it a model of the pedagogic human that has higher predictive
accuracy. For example, what if instead of assuming all people are pedagogic, the robot
estimated how pedagogic each person is? Unfortunately, we find that this makes no
difference. And in fact, we show that better models can actually worsen performance
due to a subtle, yet remarkable fact: a human model with higher predictive accuracy
does not necessarily imply higher inferential accuracy for the robot.

In conclusion, we found that not only are pedagogic robots less robust to the human’s
recursion level, they can also perform worse when people are actually being pedagogic – even
with a state of the art pedagogic model tuned to human data. This points to a surprising
brittleness of the pedagogic assumption. Further, we point out that a more predictive hu-
man model will not necessarily solve the problem because improving the model’s predictive
accuracy does not necessarily lead to better robot inference.

The difficulty of reward specification was an important motivation for pursuing reward
learning in the first place. But in our pursuit of reward learning, we ought to be careful to
not simply trade the problem of reward specification for the equally, if not more, difficult
problem of human specification. In practice, humans will deviate from our models of them,
and thus, it is important to understand which assumptions are robust and which are not.
The reward-rational choice framework provides a simple model of humans that is robust even
in collaborative settings when the human may be pedagogic.
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5.1 Theoretical analysis of robustness
In this section, we cast objective learning into the more general form of a common-payoff2

game between the robot and human. We then formalize the literal/pedagogic robot/human,
and prove that in any common-payoff game a literal robot and pedagogic human perform
better than a pedagogic robot and literal human.

Generalizing objective learning to CI(RL)
Before proceeding to our proof, we give background on how common-payoff games generalize
standard objective learning. In particular, objective learning can be modeled as a cooperative
inverse reinforcement learning (CIRL) game [Hadfield-Menell et al., 2016], a common-payoff
game in which only the human knows an objective/reward function r.

Formally, a CIRL game is defined as a tuple ⟨S, {AH,AR},⊺, {R, r}, P0, γ} where S is
the set of states, AH and AR are the set of actions available to the human and robot,
⊺(s′ | s, aH, aR) is the transition distribution specifying the probability of transitioning to a
new state s′ given the previous state s and the actions aH and aR of both agents, R is the
space of reward functions, r : S ×AH×AR → R is the shared reward function (known only
to H), P0 is the initial distribution over states and reward functions, and γ is the discount
factor.

The joint payoff in a CIRL game is traditionally value, expected sum of rewards. Since
only the human in CIRL knows the shared reward function, this indirectly incentivizes the
human to act in ways that signal the reward function and incentivizes the robot to learn
about the reward function from the human’s behavior. In fact, in Demonstration-CIRL
(Example 5.1.1), the best that the robot can do is infer a posterior distribution over rewards
from the human’s demonstrations, and then act optimally with respect to the posterior
mean. However, we can also consider a version that directly incentivizes reward inference
by making the payoff the accuracy of the robot’s inference.

To illustrate how objective learning settings are special cases of CIRL games, we give an
example for the learning-from-demonstrations setting.

Example 5.1.1 (Demonstration-CI(RL)). Learning from demonstrations can be modeled
as a common-payoff game with two phases. In the first phase, the human provides demon-
strations. In the second phase,

(a) in CIRL, the robot acts in the environment. The game’s joint payoff for the robot and
human is the value (expected sum of rewards) attained by the robot.

(b) in CI, the robot outputs an estimate of the reward function. The game’s joint payoff
for the robot and human is a measure of the accuracy of the robot’s inference.

The second formulation (b) is a cooperative inference (CI) problem [Yang et al., 2018,
Wang et al., 2019]. In CI, there is a teacher (e.g, human) who is teaching a learner (e.g.,

2A game in which all agents have the same payoff.
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robot) a hypothesis r (e.g, the reward) via data d (e.g., demonstrations). The human has
a distribution over demonstrations pH(d | r) and the robot has a distribution over rewards
pR(r | d). Given a starting distribution of human demonstrations, pH

0 (d | r), the optimal
solution for these two distributions can be found via fixed-point iteration of the following
recursive equations3:

pR
k (r | d) ∝ pH

k (d | r) , (5.1)
pH
k+1(d | r) ∝ pR

k (r | d) . (5.2)

Theoretical comparison: literal robots are more robust
We now proceed to formalize what we mean by literal and pedagogic and to prove that the
literal robot is more robust to misspecification of whether the human is literal or pedagogic.
Suppose that the human and robot are acting in a common-payoff game. Let H and R be
the space of policies for the human and robot, respectively. The joint payoff for the human
and robot is denoted by U : H × R → R. The joint payoff function could be value, as
assumed by CIRL, or accuracy of inference, as assumed by CI.

To define literal and pedagogic, we define a set of recursive policies for the human and
robot. Let H0 be a starting human policy. For k ≥ 0, define the recursive policies

Rk = BR(Hk) , (5.3)
Hk+1 = IR(Rk) . (5.4)

We assume that at each level of recursion the robot does a best response BR : H → R.
However, for the human, we only assume that at each step she improves over her previous
policy. This allows for arbitrary irrationalities, so long as the next policy is at least as good
as the previous one. We call this an “improving” response IR : R → H, and define both
types of responses below.

Definition 5.1.1. A best response for the robot is a function BR : H → R such that for
any human policy H ∈ H and robot policy R ∈ R,

U(H,BR(H)) ≥ U(H,R) .

Definition 5.1.2. An improving response for the human is a function IR : R → H such
that ∀ k ≥ 0,

U(IR(Rk), Rk) ≥ U(Hk, Rk) .

3Wang et al. [2019] show that fixed-point iteration converges for all discrete distributions. For simplicity,
we have written equations (5.1) and (5.2) assuming that the human and robot’s prior over rewards and
demonstrations is uniform, but in general, the equations can incorporate any prior [Yang et al., 2018].
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Goal

the safe colors are and

Show your partner that the

Literal Pedagogic(a) (b)

= -2 points= 0 points = +10 points

Figure 5.2: (a) The instructions given to participants in the literal and pedagogic condition,
and a sample demonstration from both conditions. In the pedagogic case, participants were
more likely to visit multiple safe colors, as well as to loop over safe tiles multiple times. (b)
All possible reward functions. Each tile color can be either safe (0 points) or dangerous (-2
points). Figure modified from Ho et al. [2018].

We give special emphasis to what we call the literal human and robot, H0 and R0, and
the pedagogic human and robot, H1 and R1.4 We now provide an example of the literal
and pedagogic policies for the Demonstration-CI setting (Example 5.1.1b). In this case, the
human and robot policies can be modeled by the recursive CI equations (5.1) and (5.2).

1. The literal human H0 is noisily-optimal with respect to the reward function r. The
probability pH

0 (d | r) that she gives a demonstration d is exponentially proportional to
the reward of the demonstration, denoted by r(d):

pH
0 (d | r) ∝ exp(r(d)) .

2. The literal robot R0 does a BR to the literal human, i.e. does Bayesian inference
assuming the human is literal,

pR
0 (r | d) ∝ pH

0 (d | r) ,

and then uses the posterior mode as its estimate for the reward r.

3. The pedagogic human H1 picks demonstrations that are informative to the literal
robot5:

pH
1 (d | r) ∝ pR

0 (r | d) .
4There is nothing that requires the literal level to be at recursion level 0 and the pedagogic level to be

at recursion level 1. Our proof of Claim 5.1.1 holds when the literal level is any k ≥ 0 and the pedagogic
level is k + 1.

5Typically, the human is modeled as being exponentially more informative: pH
1 (d | r) ∝ exp(pR

0 (r | d)).
This is the form we will use in our experiments.
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Note this is not a best response, which would unrealistically require the human to
choose arg maxd pR

0 (r | d).

4. The pedagogic robot R1 does a BR to the pedagogic human, i.e. does Bayesian
inference assuming the human is literal,

pR
1 (r | d) ∝ pH

1 (d | r) ,

and then uses the posterior mode as its estimate for the reward r.
We show that for any common-payoff game the payoffs for the literal/pedagogic hu-

man/robot pairs have the following ranking:

Pedagogic R1, H1 ≥ Literal R0, Pedagogic H1

≥ Literal R0, H0 ≥ Pedagogic R1, Literal H0 . (5.5)

In particular, a pedagogic robot R1 and a literal human H0 always do worse than a literal
robot R0 and a pedagogic human H1, showing misspecification is worse one way than the
other. The ranking has the following straight-forward proof.

Claim 5.1.1. In any common-payoff game, the ranking of payoffs between a literal/pedagogic
human/robot is

U(H1, R1) ≥ U(H1, R0) ≥ U(H0, R0) ≥ U(H0, R1) .

Proof. Since R1 = BR(H1), we have U(H1, R1) ≥ U(H1, R0). Since H1 = IR(R0), we have
U(H1, R0) ≥ U(H0, R0). Since R0 = BR(H0), we have U(H0, R0) ≥ U(H0, R1).

5.2 Empirical analysis of robustness
In this section, we test our results in practice using experimental data from actual humans,
who provide demonstrations that the robot uses to infer the objective from. These experi-
ments are a way of stress-testing our theoretical results, which assumed that at each level of
recursion, the robot computes a best response and that the human never does worse than
her previous level. In practice, there will be a difference between what humans actually do,
and the model of the human, which could cause both the human and robot to break our
theoretical assumptions.

Experimental design
We test the performance of literal/pedagogic robot/human pairs on data from an experiment
run by Ho et al. [2016]6, which was subsequently followed up on by Ho et al. [2018]. In the

6The experiment is Experiment 2 in their paper.
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experiment, humans are asked to act in different types of gridworlds. The gridworld has one
goal state that is worth 10 points and three other types of tiles (orange, purple, cyan). Each
type of tile can each be either “safe" (0 points) or “dangerous" (-2 points). Thus, there are
23 = 8 possible reward functions, which are depicted in Figure 5.2b.

Sixty particpants were recruited from Mechanical Turk. The participants are told that
they will get two cents of bonus for each point they get. Participants were split into two
conditions, a literal and pedagogic condition, depicted in Figure 5.2a. In the literal condition,
the participant only gets points for their own actions in the gridworld. In the pedagogic
condition, the participant is told that their demonstration will be shown to another person,
a learner, who will then apply what they learn from the demonstration to act in a separate
gridworld. The participant still gets points based on their own actions, but is also told that
the number of points the learner receives will be added as a bonus.

Human and Robot Models
We model the robot and human following that of Ho et al. [2018]. We use the same model
parameters that Ho et al. [2018] found to be the best qualitative match to the human
demonstrations.

Notation. Let S be the set of states and A be the set of actions. The gridworld has a
reward function r : S ×A×S → R. The optimal Q-value function for a reward function r is
denoted by Q∗

r : S ×A → R. The robot has a uniform prior belief over the reward function,
i.e, it puts uniform probability on all 23 = 8 reward functions depicted in Figure 5.2b. The
human and robot models are as follows.

1. Literal H. At each time step t, the probability HL(at|st, r) that the literal human
takes action at given state st and the reward r is exponentially proportional to the
optimal Q-value,

HL(at | st, r) ∝ exp(Q∗
r(st, at)/τL) . (5.6)

The temperature parameter τL controls how noisy the human is.

2. Literal R. The robot does Bayesian inference, while assuming that the human is
literal. The robot’s posterior belief at time t+ 1 is

Rt+1
L (r) ∝ HL(at | st, r)

· T (st+1 | st, at) ·Rt
L(r) . (5.7)

3. Pedagogic H. The pedagogic human optimizes a reward function r′ that trades off
between optimizing the reward in the gridworld and teaching the literal robot the
reward. At time step t, the reward is r′(st, at, st+1) = r(st, at, st+1)+κ(Rt+1

L (r)−Rt
L(r)).

The parameter κ ≥ 0 controls how “pedagogic” the human is. The probability HP (at |
st, r) that the pedagogic human takes action at given state st and the reward r is
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exponentially proportional to the optimal Q-value associated with the modified reward
r′,

HP (at | st, r) ∝ exp(Q∗
r′(st, at)/τP ) . (5.8)

The temperature parameter τP controls how noisy the human is.

4. Pedagogic R. The robot does Bayesian inference, while assuming that the human is
pedagogic. The robot’s posterior belief at time t+ 1 is

Rt+1
P (r) ∝ HP (at | st, r)

· T (st+1 | st, at) ·Rt
P (r) . (5.9)

Results
We evaluate each literal/pedagogic robot/human pair on the accuracy of the robot’s infer-
ence, i.e, P(r̂ = r), where r is the true reward and r̂ is the robot’s guess. We take the robot’s
guess r̂ to be the mode of its belief, as given by the robot models (5.7) and (5.9). We test
each pair with both the demonstrations generated by actual humans and demonstrations
generated by simulating humans according to the human models (5.6) and (5.7).

Figure 5.3a depicts our experimental results7. We refer to the actual human as AH, the
human model as H, and the robot as R. Consistent with the theory, the performance of
pedagogic R and literal AH is (significantly) worse than that of literal R and pedagogic
AH, validating that misspecification is worse one way than the other. However, the overall
ranking of robot/human pairs does not match the theoretical ranking (Equation 5.5) we
expected. Surprisingly, even when AH is pedagogic, pedagogic R performs (insignificantly)
worse than literal R. The empirical ranking is

Literal R, Pedagogic AH ≥ Pedagogic R, AH
≥ Literal R, AH ≥ Pedagogic R, Literal AH .

The empirical ranking carries a stronger implication than our theoretical ranking—it implies
that regardless of whether the human is literal or pedagogic, the robot should be literal.

5.3 Explaining the gap between the empirical and
theoretical results

In our empirical analysis, we found a perplexing result: the literal robot does better than
the pedagogic robot even when people are trying to be pedagogic. How could this be? Figure
5.3b shows the accuracy of robot/human pairs when the human demonstrations are simulated

7All error bars and confidence bands in the paper depict bootstrapped 95% confidence intervals.
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Figure 5.3: The accuracy of the robot’s inferred reward for different pairs of human/robot
pairs under the demonstrations provided by actual humans (left/a) and humans simulated
according to the human models in Section 5.2. (right/b).

from the literal H and pedagogic H models described in equations (5.6) and (5.8). In the
simulations, we find, as expected, that pedagogic R and pedagogic H do better than literal R
and pedagogic H. So clearly, the reason pedagogic R does worse in the human experiments
is that pedagogic AH (actual humans) is not the same as the pedagogic H (the human
model).

But, in what way does pedagogic AH deviate from pedagogic H? Why is literal R more
robust to the deviation than pedagogic R? We derive a hypothesis from our theory. In the
theoretical ranking (Equation 5.5), the performance of literal R and literal/pedagogic H is
sandwiched between the performance of pedagogic R + pedagogic H and pedagogic R +
literal H. Thus, literal R is more robust to whether H is literal or pedagogic than pedagogic
R. This suggests an explanation for why literal R does better, namely, that pedagogic AH
is actually sometimes literal!

Hypothesis 5.3.1. Pedagogic AH is actually “in between" literal H and pedagogic H. If
this is true, then our theory implies that literal R will be affected less than pedagogic R,
potentially explaining why pedagogic R does worse with pedagogic AH than literal R.

To test Hypothesis 5.3.1, we create two models that are mixtures of the literal and
pedagogic model. We then measure how much better the mixture models are at predicting
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Figure 5.4: The performance of the literal and pedagogic robot when demonstrations are
simulated according to the demonstration mixture model (left/a) or the action mixture model
(right/b).

pedagogic AH, and how much the literal and pedagogic R are affected by demonstrations
generated from the mixture models.

Demonstration mixture model
First, we test what we call the “demonstration mixture model”. It is possible that the humans
in the pedagogic condition from Ho et al. [2016] followed different strategies; some may have
attempted to be pedagogic, but others may have simply been literal. If we look at which
model, literal or pedagogic, is a better fit on a per-individual basis, we find that 89.7% of
literal AH are better described by literal H, but in comparison, only 70.0% of pedagogic
AH are better described by pedagogic H. If we simulate pedagogic humans as only following
the model 70.0% of the time, then the accuracy of the pedagogic robot drops to 90% (Figure
5.4a). The literal robot is hardly impacted.

Action mixture model
We now test a more continuous version of the previous setting. We now model humans as
acting according to a mixture policy Hm between the literal HL and pedagogic HP policies.
In particular, at each time t the probability the human picks action at from state s in an
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Figure 5.5: (left/a) In blue is the mean negative log-likelihood of the pedagogic human
demonstrations under the action mixture model with probability α. All individuals are
assumed to have the same value of α. Note that a mixture between the literal and pedagogic
model is far better than either the literal model (α = 0) or the pedagogic model (α = 1).
In purple is the accuracy of the robot’s inferred reward, when given demonstrations from
pedagogic AH, if it assumes the human acts according to the action mixture model. (right/b)
The mixture probability α that maximized log-likelihood for each individual pedagogic AH.

environment with reward r is

HM(at | st, r) =
αHP (at | st, r) + (1− α)HL(at | st, r) . (5.10)

The parameter α is the probability of picking an action according to the pedagogic model.
We plot the likelihood of the actual pedagogic human demonstrations as a function of α,
(5.10). The best value of α over the whole population was αP = 0.5 (Figure 5.5a). But
surprisingly, even a mixture with α = 0.01 or α = 0.99 is far better than either the literal
(α = 0) or pedagogic (α = 1) model. In addition, the best estimates for α on an individual
basis are somewhat bimodal (Figure 5.5b), indicating that there is high individual variation.

Figure 5.4b shows the performamce of the literal and pedagogic robot as α varies. At the
best population level αP = 0.5, we find that the pedagogic robot gets 97% accuracy. However,
if we simulate the pedagogic humans using the values of α estimated at an individual level,
then the pedagogic robot’s accuracy drops to 90%, highlighting the importance of individual
variation. The literal robot again remains unaffected.
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Discussion
In both the demonstration and action mixture models, we found that a mixture between
pedagogic H and literal H was a much better fit to AH. In both cases, when pedagogic H
is simulated according to the more accurate mixture model pedagogic R’s accuracy drops
ten percentage points, but literal R’s accuracy hardly changes. Thus our results provide
positive evidence for Hypothesis 5.3.1.

However, Hypothesis 5.3.1 does not explain the full story. The hypothesis can only
account for a ten percentage drop in accuracy, but even with this drop, pedagogic R would
still be better than literal R. Furthermore, with a cursory glance at Figure 5.4, one might
be tempted to consider pedagogic R quite robust, as it remains high-performing for large
ranges of α. However, as usual, the real problem is the unknown unknowns. Our empirical
results imply that there are other ways that humans deviate from the model and that literal
R is more robust than pedagogic R to these unknown deviations. Rather than robustness to
α, the more compelling reason for choosing to use literal R is robustness to these unknown
deviations.

5.4 Can we “fix” the pedagogic robot?
An intuitive idea for improving the performance of the pedagogic robot R is to give it a
model of the pedagogic human H that is more predictive. Unfortunately, it is not so simple.
For example, in Section 5.3, we showed that a mixture between the literal and pedagogic
human model was a much better fit to actual pedagogic humans than either the literal or
pedagogic human model. What if we had pedagogic R use the more accurate mixture model
as its model of the pedagogic human? Unfortunately, as shown in Figure 5.4a (purple line),
even if pedagogic R uses a better predictive model, i.e. the action mixture model, it does
not perform any better.

In fact, it is possible for pedagogic R to do worse when given a more predictive model
of the human. The reason is that a model that is better for predicting behavior (e.g. human
demonstrations) is not necessarily better for inferring underlying, latent variables (e.g. the
reward function), which is what is important for the robot. This may help explain why
pedagogic R does worse than literal R with pedagogic AH, even though the pedagogic H
model assumed by pedagogic R is more predictive of pedagogic AH than the literal H model
assumed by literal R.

To illustrate, suppose there is a latent variable θ ∈ Θ with prior distribution p(θ) and
observed data x ∈ X generated by some distribution p(x | θ). In our setting, θ corresponds
to the objective and x corresponds to the human input. For simplicity, we assume Θ and
X are finite. We have access to a training dataset D = {(θi, xi)}ni=1 of size n. A predictive
model m(x | θ) models the conditional probability of the data x given latent variable θ for all
x ∈ X , θ ∈ Θ. In our case, the predictive model is the model of the human. The predictive
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likelihood LX of a predictive model m is simply the likelihood of the data under the model:

LX (m) =
n∏
i=1

m(xi | θi) . (5.11)

The inferential likelihood is the likelihood of the latent variables after applying Bayes’ rule:

LΘ(m) =
n∏
i=1

m(xi | θi)p(θi)∑
θm(xi | θ)p(θ)

. (5.12)

Next, we show higher predictive likelihood does not necessarily imply higher inferential
likelihood.

Claim 5.4.1 (Predictive vs inferential likelihood). There exist settings in which there are
two predictive models m1,m2 such that LX (m1) > LX (m2), but LΘ(m1) < LΘ(m2).

Proof. Suppose that Θ = {θ1, θ2} and X = {x1, x2, x3}, the prior p(θ) is uniform over Θ,
and the dataset D contains the following n = 9 items:

D = {(θ1, x1), (θ1, x1), (θ1, x2), (θ2, x2), (θ2, x2),
(θ2, x3), (θ2, x3), (θ2, x3), (θ2, x3)} .

Define the models m1(x | θ) and m2(x | θ) by the following conditional probabilities tables.
m1(x | θ)
x1 x2 x3

θ1 2/3 1/3 0
θ2 0 1/3 2/3

m2(x | θ)
x1 x2 x3

θ1 2/3 1/3 0
θ2 0 2/3 1/3

The model m1 has predictive likelihood LX (m1) = (2/3)6(1/3)3 and inferential likelihood
LΘ(m1) = (1/2)3. The model m2 has predictive likelihood LX (m2) = (2/3)4(1/3)5 and
inferential likelihood LΘ(m2) = (1/3)(2/3)3. Thus, LX (m1) > LX (m2), but LΘ(m1) <
LΘ(m2).

In our context, Claim 5.4.1 means that a human model that is better in terms of prediction
may actually be worse for the robot to use for inference. An alternative approach could be to
directly fit models that optimize for inferential likelihood. Unfortunately, this optimization
becomes much trickier because of the normalization over the latent variable space Θ in the
denominator of (5.12), see e.g., Dragan et al. [2013a].
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Chapter 6

Learning from a human that may be
tempted

In the real world, individuals often have to grapple with temptation and self-control. Imagine
a dieter who hides their oreos in the back of their cabinet, but occasionally caves and eats
them. If a robot assumes that the person is reward-rational, then it will interpret even their
momentary lapses as being evidence of the target reward function. A particularly “helpful”
robot might even move the oreos to the kitchen table to make it easier for the person.

Clearly, sometimes a system should satisfy a person’s “reflective” preferences rather than
their immediate, in-the-moment preferences. A weakness of the reward-rational choice for-
malism is that it does not distinguish between reflective and immediate preferences. In this
chapter, we study decision-making when individuals have both kinds of preferences and in-
vestigate what kinds of feedback are sufficient to learn the individual’s reflective preferences.
Here, we find that it is important to account for the potential for temptation and to ask
feedback at a time with human is reflective and can plan sophisticatedly [O’Donoghue and
Rabin, 1999, Evans et al., 2016], i.e., anticipate their future temptation and account for it.

We focus on a notable economic theory from Gul and Pesendorfer [2001] that models
individual decision-making under temptation and self-control. In the model, a decision-
maker acts in two stages. In the first stage, the individual can anticipate temptation and
restrict their choices for the second stage to a limited menu of items. In the second stage,
the individual chooses from this menu, subject to temptation. Analogously, the social media
user may block certain provocative accounts, so that she is not tempted to look at them
later on.

To our knowledge, we are the first to study the Gul-Pesendorfer (GP) model from
a learning-theoretic perspective. We focus on learning the individual’s first-stage menu
preferences—the individual’s preferences before facing temptation. First, we show that the
first-stage menu preferences cannot be identified from the items chosen by the individual
in the second-stage. Given the infeasibility of learning from second-stage choices alone, we
introduce a type of query at the first-stage: menu comparisons. In a menu comparison,
we show the user two menus of options and ask which menu they prefer. We then give an
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efficient algorithm to learn the first stage menu preferences over a set of n possible items
using O(n2 log n) comparisons between menus. Finally, we show how to reduce the number
of comparisons to O(n log n) for approximate recovery.

6.1 Modeling individuals with temptation and
commitment

In this section, we give an overview of the Gul-Pesendorfer model of decision-making under
temptation.

A dieter facing temptation
First, we describe an illustrative example that will be helpful for intuition. Imagine a dieter
who wishes to avoid eating dessert. The dieter is choosing a restaurant to go to for dinner.
The two restaurants they are choosing between are part of a chain; the only difference
between them is that one of them doesn’t serve dessert. The dieter knows that if they
choose the one with dessert, then unfortunately, once they are at the restaurant and can
smell the mouth-watering chocolate lava cakes, then it will be difficult to resist ordering one.
So, they opt to go to the restaurant without dessert.

The dieter’s choice can be thought of as a two-stage decision problem. In the first stage,
they pick the restaurant. In the second stage, they order a meal from the menu of the
restaurant they picked in the first stage. Crucially, between the first and second stage, the
dieter undergoes a shift in their ability to resist temptation. In the first stage, the dieter is
at home, is thinking reflectively, and can act without temptation. In the second stage, the
dieter is at the restaurant, is overwhelmed by the sights and smells of scrumptious pastries,
and thus, has difficulty resisting temptation.

Our fictional dieter anticipates that they will face temptation in the second stage, so
they chose to commit to the restaurant without dessert in the first stage. Commitment,
i.e. up-front restriction of one’s future choices, is a well-documented strategy for overcoming
temptation. For example, studies have shown that commitment can be used to help people
eat healthier [Schwartz et al., 2012, Wertenbroch, 1998], save more money [Ashraf et al., 2006,
Beshears et al., 2015], avoid procrastination [Ariely and Wertenbroch, 2002], and reduce
smoking [Giné et al., 2010].

The Gul-Pesendorfer model
Like our dieter, an individual in the GP model faces a two-stage decision problem. Let Z =
{z1, . . . , zn} be a set of items, ∆ be the set of all lotteries (discrete probability distributions)
over Z, and A be the set of compact subsets of ∆.

1. In the first stage, the individual chooses a menu of lotteries A ⊆ A.
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2. In the second stage, the individual chooses a lottery x ∈ A.

Let’s first consider how a “standard” decision-maker that does not face temptation would
act. Assume that the decision-maker has preferences over the lotteries chosen in the second
stage that can be represented with a utility function u, i.e. if u(x) ≥ u(y), then the decision-
maker weakly prefers the lottery x to y. How would such a decision-maker choose menus
at the first stage? If we assume that how good a menu is depends only upon how good
the lottery picked from that menu is, then the decision-maker would simply rank menus
according to the utility function

U ′ = max
x∈A

u(x) . (6.1)

Any menu that contains the optimal lottery would be optimal. Notably, a menu that is
always optimal for any utility function u is A = A, the menu that contains all possible
lotteries. So, the decision-maker never has a preference for commitment, i.e. they never
have a preference to restrict their options at the first stage.

In contrast, Gul and Pesendorfer formulate an axiomatic definition of temptation (de-
scribed later in this section) that is based on the existence of a preference for commitment.
They show that an individual whose preferences satisfy these axioms have the following suc-
cinct utility representations. In the first stage, the individual’s preference over menus can
be represented with a menu utility U that has the form

U(A) = max
x∈A

[c(x) + t(x)]−max
x∈A

t(x) , (6.2)

and the individual’s preference over lotteries in the second stage can be represented by a
consumption utility u that has the form

u(x) = c(x) + t(x) , (6.3)

where c and t are von Neumann-Morgenstern utility functions, i.e. there exists u, v such that
c(x) = u⊺x and t(x) = v⊺x.

The menu utility U can be written as U(A) = maxx∈A u(x) − maxx∈A t(x), which can
be contrasted with the standard decision-maker with utility U ′(A) = maxx∈A u(A). The
difference between the two is the “penalty term” maxx∈A t(x). Since menus are penalized
for containing lotteries with higher utility according to t, we refer to t as the temptation
utility. The presence of the penalty term means that, unlike the standard decision-maker,
an individual in the GP model may have a preference for commitment.

The menu utility of a singleton set {x} is equal to c(x). Since c defines the utility of
completely commiting to any item, we refer to c as the commitment utility. The com-
mitment utility can be thought of as the “true” utility of an item, absent temptation. In the
second stage, the individual would ideally like to choose lotteries according to commitment
utility c. But unfortunately, in the second stage, the individual faces temptation and the
temptation utility t affects the individual’s evaluation of lotteries; it acts like an additive
noise term to the commitment utility c.
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We now give more details on the axioms around temptation that these utility represen-
tations arise from. Let ⪰∗ be the individual’s preference over the set of possible choices in
both stages: L = {(A, x) : x ∈ A} where A is the menu chosen in the first stage and x ∈ A
is the lottery chosen in the second stage. The definition of temptation in the GP model is
based upon whether the individual has a preference for commitment or not.

Definition 6.1.1. The item y is said to tempt the item x if the individual prefers to commit
to x in the first stage, rather than have to choose x over y in the second stage: ({x}, x) ≻∗

({x, y}, x). For example, we may have ({salad}, salad) ≻∗ ({salad, cake}, salad).

Notably, under this definition, an item y can tempt an item x even if the individual can
overcome temptation and choose x over y. In both of the outcomes we are comparing, i.e.
({x}, x) and ({x, y}, x), the individual ultimately chooses x in the second stage. We interpret
a preference for ({x}, x) over ({x, y}, x) as an aversion to the costly self-control that would
be necessary to choose x over y. For example, eating a salad is less enjoyable when one has
to choose it over a cake.

In addition, the following three axioms about temptation are assumed:

(T1) if x tempts y, y does not tempt x;

(T2) unless an option y tempts every option in a menu A, adding y to A does not make A
worse;

(T3) (A, x) ⪰∗ (B, x) if A ⊂ B, i.e. eliminating temptations cannot make the individual
worse.

The extended preference ⪰∗ induces a preference over menus ⪰ where ⪰ is defined so
that A ⪰ B if and only if there exists x ∈ A such that (A, x) ⪰ (B, y) for all y ∈ B. Gul
and Pesendorfer prove that the individual’s menu preference ⪰ has a utility representation
as in (6.2).

Theorem 6.1.1 (Gul and Pesendorfer [2001], Theorem 1 and 5). If the extended preference
⪰∗ satisfies the axioms T1-3 and is upper semi-continuous1, and the induced menu preference
⪰ is continuous and independent2 then the menu preference ⪰ has a utility representation
of the form

U(A) = max
x∈A

[c(x) + t(x)]−max
x∈A

t(x) , (6.4)

where c and t are von Neumann-Morgenstern utility functions.
1The preference ⪰∗ is upper semi-continuous if the upper-contour sets are closed, i.e. the sets {(A, x) :

(A, x) ⪰∗ (B, y)} are closed for all (B, y).
2The preference ⪰ is continuous if its upper and lower contour sets are closed, i.e. the sets {B : B ⪰ A}

and {B : A ⪰ B} are closed for all A. The preference ⪰ is independent if A ≻ B and α ∈ (0, 1) implies
αA+ (1− α)C ≻ αB + (1− α)C.
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Building on Theorem 6.1.1, we define a Gul-Pesendorfer menu preference as the following.

Definition 6.1.2 (GP menu preference). If a preference ⪰ over menus has a utility rep-
resentation of the form in (6.4), then we call the preference a Gul-Pesendorfer (GP) menu
preference and say that it is represented by (c, t).

At the second stage, the individual is assumed to maximize the conditional preference, i.e.
given a menu A, the individual chooses x ∈ A such that (A, x) ⪰ (A, y) for all y ∈ A. Gul and
Pesendorfer prove that, if the menu preference is represented by (c, t), then the individual
chooses an option x∗ from the menu A to maximize the consumption utility u := c+ t.

Theorem 6.1.2 ([Gul and Pesendorfer, 2001], Theorem 7). Suppose the extended preference
⪰∗ satisfies T1-3, is upper semi-continuous, and is minimally congruent3. Suppose also that
the induced menu preference ⪰ is a GP menu preference represented by (c, t) and is regular4.
Then, in the second stage, the individual picks a lottery x∗ out of the available menu A such
that

x∗ ∈ arg max
x∈A

u(x) = arg max
x∈A

[c(x) + t(x)] . (6.5)

Notation for learning GP menu preferences
In the next two sections, we analyze learning of an individual’s first-stage menu preference ⪰.
We focus on learning the first-stage menu preference because it is the individual’s preference
before they are subject to temptation.

We are interested in a slight modification of the setting studied by Gul and Pesendorfer.
In particular, we are interested in the case where the individual selects items in the second
stage, rather than lotteries. In other words, we restrict the lotteries considered over Z to
the degenerate lotteries. So for convenience, we write the utilities c, t, u as functions directly
from Z to R. Furthermore, we define the commitment preference ⪰c, temptation preference
⪰t, and consumption preference ⪰u as the preferences with utility representations c, t, u. The
commitment, temptation, and consumption preferences all operate directly over the items
Z. Similarly, the menu preferences ⪰ then operate over the set 2Z/∅.

6.2 Consumption choices are insufficient for learning
menu preferences

In accordance with the principle of revealed preference, consumption choices are typically
taken to be ground-truth for what an individual prefers. A line of theoretical work already

3The extended preference ⪰∗ is minimally congruent if A ⪰ {y} for all A implies ({x, y}, x) ⪰∗ ({x}, x)
for all x ∈ ∆. Minimal congruence requires that a lottery that is ranked lowest by commitment utility is not
tempting.

4A GP menu preference represented by (c, t) is regular if neither c nor t is constant and neither are affine
transformations of each other.
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analyzes the use of consumption choices, dubbed revealed preference queries, for learning the
individual’s preference over items, i.e. their consumption preference [Beigman and Vohra,
2006, Zadimoghaddam and Roth, 2012, Balcan et al., 2014, Kallus and Udell, 2016, Roth
et al., 2016].

Definition 6.2.1 (Revealed preference query). A revealed preference query is a query to an
individual’s choice function5 C(A) = arg maxx∈A u(x) which takes in a menu A and returns
the item they choose to consume from the menu A.

From a practical standpoint, it is desirable to learn preferences from consumption choices
because such choices are readily available, e.g. the deluges of data recommender platforms
have on what content users consume. We show, however, that revealed preference queries
are insufficient for learning GP menu preferences.

Insufficiency of standardized preferences
First, we analyze the limitations of a natural way of constructing menu preferences from
consumption choices. There is already a body of prior work that uses revealed prefer-
ence queries to learn the individual’s preference over items, i.e. the individual’s consump-
tion preference ⪰u [Beigman and Vohra, 2006, Zadimoghaddam and Roth, 2012, Balcan
et al., 2014, Kallus and Udell, 2016, Roth et al., 2016]. Once ⪰u is recovered, so is the
standardized preference: the menu preference that a “standard” decision-maker that does
not face temptation would have. In particular, the standardized preference ⪰′ of a GP
menu preference ⪰ with representation (c, t) is the preference ⪰′ with utility representation
U ′(A) = maxx∈A u(x) = maxx∈A c(x) + t(x) (see Equation 6.1).

Using the standardized preference ⪰′ is intuitively appealing and requires nothing beyond
inferring the consumption preference ⪰c. However, we prove that a GP menu preference
equals its standardized preference only for a subset of GP menu preferences that have no
preference for commitment, defined below. Furthermore, we show empirically that as the
true preference exhibits a greater preference for commitment, the standardized preference
becomes a worse approximation.

Definition 6.2.2 (Preference for commitment). The menu preference ⪰ has a preference
for commitment at the menu A if there exists B ⊂ A such that B ≻ A. The preference
⪰ has a preference for commitment if ⪰ has a preference for commitment at some menu.
Furthermore, we say that the preference ⪰1 has a greater preference for commitment than
⪰2, if for every menu A where ⪰2 has a preference for commitment, ⪰1 also has a preference
for commitment.

The following lemma from [Gul and Pesendorfer, 2001] describes the conditions under
which a GP menu preference has no preference for commitment.

5We assume ties in the individual’s choice function are broken arbitrarily.
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Lemma 6.2.1 ([Gul and Pesendorfer, 2001]). If ⪰ is a GP menu preference represented
by (c, t), then it has no preference for commitment if and only if either c is constant, t is
constant, or c is a positive affine transformation of t [Gul and Pesendorfer, 2001].

With this lemma in hand, we prove that a GP menu preference ⪰ equals its standardized
preference ⪰′ only if ⪰ lies within a subset of GP menu preferences that have no preference
for commitment.

Theorem 6.2.1. A GP menu preference ⪰ is equal to its standardized preference ⪰′ if and
only ⪰ has a representation (c, t) such that either t is constant or c is a positive affine
transformation of t.

Proof. First, we show that if t is constant or c is a positive affine transformation of t, then the
standardized and true preference are equal. If t is constant, i.e. t(x) = β for all x and some
constant β ∈ R, then the preference ⪰ can be represented by U(A) = maxx∈A c(x), and thus,
can also be represented by U ′(A) = maxx∈A c(x) + t(x) = maxx∈A c(x) + β. If c is a positive
affine transformation of t, i.e. c = αt+ β for α > 0 and some β ∈ R, then the preference ⪰
can be represented by U(A) = maxx∈A(1 + α)t(x) + β −maxx∈A t(x) = αmaxx∈A t(x) + β,
and thus, can also be represented by U ′(A) = maxx∈A c(x) + t(x) = (1 + α) maxx∈A t(x).

Now we show that if ⪰ does not have a representation (c, t) such that t is constant or c is
a positive affine transformation of t, then the true and standardized preference are not equal.
By Lemma 6.2.1, ⪰ either has a representation such that c is constant or has a preference
for commitment. If the true preference ⪰ has a preference for commitment, then clearly the
standardized preference ⪰′ cannot be equal to it because the standardized preference cannot
have a preference for commitment. If c is constant, then U(A) = 0 is a utility representation
for ⪰ and U ′(A) = maxx∈A t(x) is a utility representation for ⪰′. However, by assumption t
is not constant, and therefore, ⪰ and ⪰′ cannot be equal.

Next, we show that as the true preference exhibits a greater preference for commitment,
the standardized preference becomes a worse approximation. We make use of a representa-
tion theorem from Gul and Pesendorfer. They prove that if ⪰1 and ⪰2 are two GP menu
preferences with representation (c1, t1) and (c2, t2), respectively, and if c1 and t1 are convex
combinations of c2 and t2, then ⪰1 has a greater preference for commitment than ⪰2.

Lemma 6.2.2 ([Gul and Pesendorfer, 2001], Theorem 8). Let ⪰1,⪰2 be two GP menu
preferences that are regular6 and let (c1, tt) be a representation of ⪰1. Then ⪰1 has a
greater preference for commitment than ⪰2 if and only if there exists c2, t2 such that (c2, γt2)
represents ⪰2 and

c2 = αc1 + (1− α)t1 , t2 = βc1 + (1− β)t1

for some α, β ∈ [0, 1] and some γ > 0.
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Figure 6.1: As the true preference exhibits a greater preference for commitment, the stan-
dardized preference becomes a worse approximation. The true preference ⪰α is defined by
the representation (cα, tα) where cα = αc + (1 − α)t and tα = αt + (1 − α)c. We generate
c and t as random Gaussian noise, i.e. c(xi), t(xi) ∼ N (0, 1) for all items x1, . . . xn (here
n = 10). As α increases, ⪰α has a greater preference for commitment, and the Kendall-Tau
distance between ⪰α its standardized preference ⪰′

α increases.

Now, suppose we have a consumption utility c and a temptation utility t. For α ∈ [0.5, 1],
define the preference ⪰α as the GP menu preference with representation (cα, tα) where

cα = αc+ (1− α)t , tα = αt+ (1− α)c , (6.6)

As α increases, the preference ⪰α has a greater preference for commitment. Thus, by varying
α, we can measure how well the standardized preference approximates the true preference as
its preference for commitment increases or decreases. We measure how close the standardized
preference ⪰′

α is to the true preference ⪰α by the Kendall-Tau distance (Definition 6.2.3).
Figure 6.1 shows that as α increases, the Kendall-Tau distance between ⪰′

α and ⪰α increases.
In other words, the standardized preference becomes a worse approximation as the true
preference exhibits a greater preference for commitment.

6A GP menu preference represented by (c, t) is regular if neither c nor t is constant and neither are affine
transformations of each other.
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Definition 6.2.3 (Kendall-Tau distance). Let ⪰1 and ⪰2 be preferences over k elements.
The (normalized) Kendall-Tau distance between ⪰1 and ⪰2 is the portion of pairwise com-
parisons that are inconsistent between the two preferences:

KT(⪰1,⪰2) =
(
k

2

)−1( ∑
(x,y) :x≻1y

1{y ⪰2 x}

+ 1
2

∑
(x,y) :x∼1y

1{y ≻2 x or x ≻2 y}
)
.

Insufficiency of any algorithm
We now prove that no algorithm that learns from revealed preference queries can learn the
individual’s true menu preferences. Below, we formally define the problem of learning GP
menu preferences from revealed preference queries.

Definition 6.2.4 (Learning menu preferences from revealed preference queries). An algo-
rithm A is said to learn the GP menu preferences from m = m(n) revealed preference queries,
if for any possible GP menu preference ⪰ over the set of items Z, if the learning algorithm
can query the choice function C, then after at most m queries the algorithm outputs ⪰.

This is simply because second-stage behavior is defined entirely by the consumption
preference ⪰u, but the consumption preference does not identify the menu preference. In
fact, our result is stronger than non-identification: after any set of revealed preference queries,
there exist two menu preferences with exactly the opposite ranking of singleton sets, i.e. with
exactly the opposite commitment preferences. What this means is revealed preference queries
reveal essentially nothing about the menu preferences.

Theorem 6.2.2. Let ⪰ be a GP menu preference represented by (c, t) and let C be its
associated choice function. Let D = {(Ri, C(Ri))}mi=1 be a dataset of revealed preference
queries. There exists a GP menu preference ⪰′ which is consistent with D and for which ⪰
and ⪰′ have exactly the opposite ranking of singleton sets. Therefore, no algorithm can learn
GP menu preferences from revealed preference queries.

Proof. Let x∗
1, . . . , x

∗
n be the items as ranked by commitment utility c, i.e. x∗

1 has the highest
commitment utility and x∗

n has the lowest commitment utility. Construct the GP menu
preference ⪰′ represented by (c′, t′) where c′ and t′ are defined as c′(x∗

i ) = −i and t′(x∗
i ) =

c(x∗
i ) + t(x∗

i ) + i. Clearly the consumption utility of ⪰ and ⪰′ are equal: c′ + t′ = c + t.
Therefore, ⪰′ and ⪰ induce the same choice function, which means that ⪰′ is consistent
with the dataset D. However, c′ has the opposite ranking of items as c, and therefore ⪰′

has the opposite ranking of singleton sets as ⪰. No algorithm that learns from revealed
preference queries can distinguish between ⪰ and ⪰′, and thus, no algorithm can learn menu
preferences from revealed preference queries alone.
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6.3 Learning menu preferences from menu
comparisons

In the previous section, we showed that second-stage consumption choices are insufficient
for recovering menu preferences, which now motivates us to consider queries at the first-
stage. In particular, we consider learning menu preferences from menu comparisons. A
menu comparison is a query that asks which of two menus A or B is preferred and returns
either A ≻ B, A ∼ B, or A ≺ B.7 We first consider exact recovery and show that the menu
preferences can be recovered in O(n2 log n) menu comparisons. Then, we show how to reduce
the number of comparisons to O(n log n) for approximate recovery.

In both exact and approximate recovery, we restrict ourselves to considering strict GP
menu preferences.

Definition 6.3.1. A GP menu preference is strict if its associated preferences over items;
⪰c, ⪰t, and ⪰u; are strict preferences; i.e. for all items x, y ∈ X , either x ≻z y or y ≻z x for
z ∈ {c, t, u}.

Exact recovery from menu comparisons
Below, we define the problem of exactly recovering menu preferences from menu comparisons.

Definition 6.3.2 (Learning menu preferences exactly). An algorithm A is said to exactly
learn menu preferences from m = m(n) menu comparisons, if for any strict GP menu pref-
erence ⪰ over the set of items X , after at most m menu comparison queries, it outputs the
menu preference ⪰.

Since there are O(2n) possible menus, recovering the menu preferences with a standard
comparison-based sorting algorithm would require O(2n log 2n) = O(n2n) menu comparisons.
Instead, we give a simple algorithm that can learn menu preferences using only O(n2 log n)
menu comparisons. The algorithm has two steps. In the first step, we partition the menus
into O(n2) equivalence classes. The individual is indifferent between all menus that lie within
the same equivalence class. In the second step, we sort the O(n2) equivalence classes, which
can be done in O(n2 log n) queries through a standard comparison-based sorting algorithm.
Thus, the overall complexity of our algorithm is O(n2 log n). Pseudocode for the algorithm
is given in Algorithm 2.

First, we show that for any GP menu preference, the menus can be partitioned O(n2)
equivalence classes. For any item x ∈ X , define its consumption rank ru(x) and temptation
rank rt(x) as its rank according to consumption utility u and to temptation utility t, e.g.
the item with highest temptation utility has temptation rank equal to one. Then, for a
menu A, define its consumption rank Ru(A) and temptation rank Rt(A) as the highest

7We could also consider just returning A ⪰ B or A ≾ B and none of our results are affected.
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Figure 6.2: The possible rank representations under two different GP menu preferences
for n = 6. A directed path from a vertex (a1, b1) to another vertex (a2, b2) indicates that
(a1, b1) ≻ (a2, b2). The preference on the left achieves Lemma 6.3.2’s lower bound of n = 6
rank representations, and the preference on the right achieves the upper bound of n(n+1)

2 = 21
rank representations. The orange points represent equivalence classes that include a singleton
set (a menu with only one item), the blue points are equivalence classes that include two-sets
(a menu with two items) but not a singleton set, and the gray points are rank representations
that no menu has. The rank representations of the singleton sets fix which of the other rank
representations are possible. It is not possible to have any rank representations that are
directly above or to the right of an orange point. For example, consider the orange point
(2, 4) in Figure 1(b). Let {y} be the singleton set with rank representation (2, 4). It is not
possible to have (x, 4) for x > 2 because any menu A with temptation rank equal to four
must include y, which has consumption rank equal to two. Since the consumption rank of
menu A is the minimum consumption rank of the items it contains, its consumption rank
must be less than or equal to two. All rank representations that are not directly above or to
the right of an orange point are possible and can be attained by menus with two items.
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consumption rank and temptation rank of its items: Ru(A) = minx∈A ru(A) and Rt(A) =
minx∈A rt(A). Together, we call the consumption rank and temptation rank of a menu its
rank representation.

Definition 6.3.3 (Rank representation). The rank representation of a menu A is the tuple
of its consumption and temptation rank: (Ru(A), Rt(A)). If the rank representation of a
menu A is (a, b), we write A ≡ (a, b).

Recall that any GP menu preference has a utility representation of the form U(A) =
maxx∈A u(x)−maxx∈A t(x). The utility of a menu A is therefore defined by its consumption
and temptation rank. Thus, The individual is indifferent between any two menus with the
same rank representation:

Lemma 6.3.1 (Equivalence classes for menus). Let ⪰ be a GP menu preference. If two
menus A and B have the same rank representation under ⪰, then the individual is indifferent
between the two menus: A ∼ B.

Proof. The menu preference⪰ has a utility representation U(S) = maxx∈S u(x)−maxx∈S t(x).
Since the menus A and B have the same consumption and temptation rank, maxx∈A u(x) =
maxx∈B u(x) and maxx∈A t(x) = maxx∈B t(x), thus U(A) = U(B) and A ∼ B.

Suppose two menus have the rank representations (a1, b1) and (a2, b2). If a1 ≤ a2 and
b1 ≤ b2 where at least one of the inequalities is strict, then we must have (a1, b1) ≻ (a2, b2)
because (a1, b1) has higher consumption utility and lower temptation utility than (a2, b2).
Figure 6.2 visualizes this structure between rank representation as a lattice. The rank
representations are represented as vertices where a directed path from a vertex (a1, b1) to
(a2, b2) means that (a1, b1) ≻ (a2, b2).

The next lemma states that for any GP menu preference, the number of unique rank
representations is between Ω(n) and O(n2). Figures 6.2a and 6.2b show examples of two GP
menu preferences in which the lower bound and upper bound are achieved, respectively.

Lemma 6.3.2. For any strict GP menu preference ⪰, the number of unique rank represen-
tations N(⪰) is such that n ≤ N(⪰) ≤ n(n+1)

2 . The lower and upper bound are tight, i.e
there exists strict GP menu preferences ⪰ and ⪰′ such that N(⪰) = n and N(⪰′) = n(n+1)

2 .

Proof. First, we consider the upper bound. Since the utility of a menu A only depends on
the most consumable item x∗

u(A) = arg maxx∈A u(x) and the most tempting item x∗
t (A) =

arg maxx∈A t(x), it has the same utility as the menu B = {x∗
u(A), x∗

t (A)}. Therefore, for
every menu A, there exists a menu B such that A ∼ B and |B| = 1 or |B| = 2 (we
have |B| = 2 if x∗

u(A) ̸= x∗
t (A) and |B| = 1 otherwise). Thus, an upper bound on the

number of unique rank representations is the number of unique menus of size one or two:
n+

(
n
2

)
= n(n+1)

2 . For the lower bound, since the GP menu preference is strict, each item has
a unique consumption and temptation rank, and therefore each singleton set has a unique
rank representation. There are n singleton sets, so we have N(⪰) ≥ n. Figure 6.2 has two
examples that achieve the upper and lower bound.
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x ?c y x ?u y x ?t y U({x, y}) {x} ?U {x, y} ?U {y}
1 x ≻c y x ≻u y x ≻t y u(x)− t(x) = c(x) {x} ∼ {x, y} ≻ {y}
2 x ≺c y x ≻u y x ≻t y u(x)− t(x) = c(x) {x} ∼ {x, y} ≺ {y}
3 x ≻c y x ≺u y x ≺t y u(y)− t(y) = c(y) {x} ≻ {x, y} ∼ {y}
4 x ≺c y x ≺u y x ≺t y u(y)− t(y) = c(y) {x} ≺ {x, y} ∼ {y}
5 x ≻c y x ≻u y x ≺t y u(x)− t(y) {x} ≻ {x, y} ≻ {y}
6 x ≺c y x ≺u y x ≻t y u(y)− t(x) {x} ≺ {x, y} ≺ {y}

Table 6.1: The ordering of {x}, {x, y}, and {y} is uniquely determined by the item compar-
isons between x and y.

Determining the rank representation of each menu is equivalent to recovering the con-
sumption and temptation preferences ≻u and ≻t. If we had access to consumption com-
parisons x ?u y (a revealed preference query of size two) and temptation comparisons x ?t y
(“which is more tempting?”), then to recover ≻u and ≻t we could simply apply a comparison-
based sorting algorithm with consumption comparisons and temptation comparisons, respec-
tively.

It turns out we can simulate consumption and temptation comparisons with menu com-
parisons. Since the utility of a menu depends only on the item with highest consumption
rank and the item with highest temptation rank, menu comparisons give us information
about the underlying consumption and temptation preferences. For example, if we observe
that A ̸∼ A ∪ {x}, then we know the item x is more desirable for consumption than any
y ∈ A or x is more tempting than any y ∈ A. Through menu comparisons between {x},
{y}, {x, y}, we can determine the consumption comparison x ?u y and the temptation com-
parison x ?t y. Then, using consumption and temptation comparisons, we can recover the
rank representations. Algorithm 1 details the procedure. The following lemma proves that
Algorithm 1 returns the rank representations in O(n log n) menu comparisons.

Lemma 6.3.3. Under any strict GP menu preference ⪰, Algorithm 1 recovers the rank
representations of all menus in O(n log n) menu comparisons.

Proof. The function consumption-temptation-comparison takes in two items x and y and
uses menu comparisons (denoted by ?U) to simulate a consumption comparison x ?u y and a
temptation comparison x ?t y. In particular, there is a 1-1 relationship between the individ-
ual’s ordering of the menus {x}, {y}, and {x, y} and the individual’s ordering of the items x
and y according to the preferences ≻c,≻u, and ≻t. The function uses menu comparisons to
determine the ordering of the menus {x}, {y}, and {x, y}, and by doing so, also determines
the answer to the consumption comparison x ?u y and temptation comparison x ?t y.

Table 6.1 lists, for each possible value for x ?c y, x ?u y, x ?t y, the ordering of {x}, {y},
and {x, y}. There are six rows total, rather than the 23 = 8 one might expect, because when
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Algorithm 1: Recovering the equivalence classes of menus
Using queries to consumption-temptation-comparison, sort x1, . . . xn to get ≻u
and ≻t

Function consumption-temptation-comparison(x, y):
Query menu comparison between {x} and {x, y}
Query menu comparison between {y} and {x, y}
if {x, y} ∼ {x} then

return x ≻u y and x ≻t y
else if {x, y} ∼ {y} then

return x ≺u y and x ≺t y
else if {x} ≻ {x, y} ≻ {y} then

return x ≻u y and x ≺t y ;
else if {y} ≻ {x, y} ≻ {x} then

return x ≺u y and x ≻t y

Algorithm 2: Recovering menu preferences exactly
Run Algorithm 1 to get the rank representation of each menu.
Sort all unique rank representations to get ⪰

x ≻u y and y ≻t x or when y ≻u x and x ≻t y, then the value of the commitment comparison
is determined as x ≻c y or y ≻c x, respectively.

We now prove, for each row, that the values of the comparisons determine the correspond-
ing ordering of {x}, {x, y}, and {y}. In rows 1-2, the menu utility of {x, y} (which is deter-
mined by ≻t and ≻u) is equal to the menu utility of {x}, indicating that {x, y} ∼ {x}. The
commitment comparison x ?c y is equivalent to the menu comparison {x} ?U {y}. Therefore,
we have that {x} ∼ {y} ?U {x, y} where the value of ?U is determined by the commitment
comparison x ?c y. A similar analysis holds for rows 3-4.

For row 5, note that

U({y}) = max
z∈{y}

u(z)− max
z∈{y}

t(z)

< max
z∈{x,y}

u(z)− max
z∈{y}

t(z)

= max
z∈{x,y}

u(z)− max
z∈{x,y}

t(z) = U({x, y})

< max
z∈{x}

u(z)− max
z∈{x}

t(z) = U({x}) ,

and so, {x} ≻ {x, y} ≻ {y}. An analogous analysis holds for row 6. Thus, there is a 1-1 rela-
tionship between the item comparisons and the ordering of the menus {x}, {x, y}, and {y}.
The function consumption-temptation-comparison determines the ordering of the menus
and then infers the item comparisons according to Table 6.1. The function uses only two
menu comparisons to determine the temptation and consumption comparisons. Therefore,
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a standard comparison-based sorting algorithm that uses temptation and consumption com-
parisons (as simulated by consumption-temptation-comparison) takes O(n log n) menu
comparisons to determine the consumption and temptation preferences, which then deter-
mine the rank representation of each menu.

After recovering the rank representations, in the second step, we simply sort them. As
stated in Lemma 6.3.2, the number of unique rank representations ranges from n to n(n+1)

2 .
Thus in the best-case, the algorithm take O(n log n) comparisons, while in the worst-case, it
takes O(n2 log n) comparisons. We prove this in the following theorem.

Theorem 6.3.1. Algorithm 2 learns menu preferences in O(n2 log n) menu comparisons. In
the best-case, Algorithm 2 takes O(n log n) menu comparisons.

Proof. By Lemma 6.3.3, Algorithm 1 recovers the rank representations in O(n log n) menu
comparisons. By Lemma 6.3.2, every strict GP menu preference will have between n and
n(n+1)

2 rank representations. Therefore, a standard sorting algorithm will sort the rank
representations in O(n log n) menu comparisons in the best-case and O(n2 log n) menu com-
parisons in the worst-case.

Approximate recovery from menu comparisons
Next, we turn to approximate recovery: finding preferences that are close to the true GP
menu preferences. We measure “close” using the Kendall-Tau distance (Definition 6.2.3).
Our approach reduces the problem of approximate recovery of GP menu preferences to the
standard problem of learning a linear classifier. Thus, any black-box algorithm for learning a
linear classifier can be used to approximately learn GP menu preferences in O(n log n) menu
comparisons.

The algorithm is broken into the same two steps as the algorithm for exact recovery
(Algorithm 2): (1) find the rank representation of each menu (2) sort the rank representa-
tions. The first step is exactly the same: we use Algorithm 1 to find the rank representations
in O(n log n) menu comparisons. In the second step, rather than exactly sorting the rank
representations like in Algorithm 2, we reduce the problem of sorting rank representations
to the problem of learning a linear classifier, which allows us to approximately recover the
ordering of rank representations in O(n) comparisons. Thus, overall, our algorithm will take
O(n log n) menu comparisons.

We now describe the reduction to linear classification. After finding the rank representa-
tion of a menu A, it can be represented as a binary vector v(A) ∈ {0, 1}2n with ones at the
positions of the consumption and temptation rank:

v(A)i =
1 i = Ru(A) or i = Rt(A),

0 otherwise
.
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The utility of each menu can now be written as U(A) = v(A)⊺β where the vector β ∈ R2n

can be defined as

βi =
u(xui ) 1 ≤ i ≤ n

t(xti) n+ 1 ≤ i ≤ 2n

where xui is the i-th ranked item according to consumption utility and xti is the i-th ranked
item according to temptation utility.

A menu comparison between two menus A and B with different rank representations can
be represented as a vector v(A)− v(B) with an associated label y where y = 1 if A ≻ B and
y = −1 if B ≻ A. Or equivalently, where y = 1 if (v(A) − v(B))⊺β is positive. Thus, we
can reduce the problem of determining the ordering of rank representations to the problem
of determining a weight vector β̂ that classifies all pairwise comparisons correctly.

We query comparisons by sampling pairs of menus uniformly at random from the
(

2n−1
2

)
possible pairs. Then, we use a black-box linear classification algorithm A to determine the
approximate ranking. Any algorithm which PAC-learns the class of linear separators will
suffice.

Definition 6.3.4 (PAC-learning linear separators). An algorithm A PAC-learns the class
of linear separators if there exists a function mA : [0, 1]2 × N → N if for any ϵ, δ ∈ (0, 1),
for every distribution D over X = Rd, and for every linear function c : X → {0, 1}, if after
receiving mA(ϵ, δ; d) i.i.d examples generated by D and labeled by c, the algorithm returns
a linear function h such that with probability of at least 1− δ,

Px∼D [h(x) ̸= c(x)] ≤ ϵ .

The function mA is called the sample complexity of A.

Our full algorithm is given in Algorithm 3. The following theorem proves a straight-
forward upper bound on the number of samples required to achieve a small Kendall-Tau
distance with high probability. For simplicity of exposition, we assume that if two menus A
and B have different rank representations, then U(A) ̸= U(B). However, our results can be
modified appropriately for the case where they may have the same utility.

Theorem 6.3.2. For every strict GP menu preference ⪰, Algorithm 3 recovers menu pref-
erences ⪰′ such that with probability 1− δ

KT(⪰,⪰′) ≤ ϵ

with O(n log n + mA(ϵ, δ; 2n)) menu comparisons where mA is the sample complexity of the
black-box linear classification algorithm A.

Proof. By Lemma 6.3.3, the invocation to Algorithm 1 requiresO(n log n) menu comparisons.
Next, the Kendall-Tau distance between the true preferences ⪰ and the recovered preferences
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Algorithm 3: Learning menu preferences approximately
Input: ϵ error rate
Run Algorithm 1 to get the rank representation of each menu
Select pairs of menus (A1

i , A
2
i ) uniformly at random for i = 1, . . . ,mA(ϵ, δ; 2n)

For all i, query comparison (A1
i , A

2
i ) and assign the result to yi

Create dataset D = {(v(A1
i )− v(A2

i ), yi)}
mA(ϵ,δ;2n)
i=1

β̂ ← weights from black-box linear classification algorithm A(D)
Return the preference relation with utility representation U(A) = β̂⊺v(A)

⪰′ can be written as

KT(⪰,⪰′) = P(A,B)∼U(A ≻ B and B ≻′ A or B ≻ A and A ≻′ B)
= P(A,B)∼U(sgn(β⊺(v(A)− v(B))) ̸= sgn(β̂⊺(v(A)− v(B)))) ,

where U is the uniform distribution over pairs of menus. Thus, the Kendall-Tau distance
KT(⪰,⪰′) is equivalent to the generalization error of the linear classification algorithm,
which must be less than ϵ with probability 1−δ because we queried for mA(ϵ, δ; 2n) samples.

In the realizable setting, a linear classifier that achieves zero training error can easily
be found through a linear program. A standard VC dimension bound shows that empirical
risk minimization (ERM) achieves a sample complexity of m(ϵ, δ; d) ≤ O

(
d+log 1

δ

ϵ

)
of learn-

ing linear separators in the realizable setting [Bousquet et al., 2003]. Thus, as a corollary
to Theorem 6.3.2, GP menu preferences can be learned approximately in O(n log n) menu
comparisons.

Corollary 1. For every strict GP menu preference ⪰, if empirical risk minimization is
used as the black-box linear classification algorithm, Algorithm 3 returns preferences ⪰′ in
O
(
n logn+log 1

δ

ϵ

)
comparisons which satisfies KT(⪰,⪰′) ≤ ϵ with probability 1− δ.
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Chapter 7

Learning objective functions on
recommender systems

So far, in Chapters 5 and Chapter 6, we explored specific ways that a human may deviate
from reward-rationality. In Chapter 5, a pedagogic human did not act rationally with respect
to the target reward function, but rather with respect to teaching the target reward function.
In Chapter 6, the human was time-inconsistent and sophisticated, i.e. they act rationally in
the first stage given that they may succumb to temptation in the second stage. In reality,
there may be many unknown ways that the human deviates from reward-rationality.

The recommender system context is one that exemplifies this potential for unknown
deviations from a reward-rational model. First, the objectives that people have on social
media are complex and uncertain. Potential goals social media users may have include getting
more followers, sharing information, making friends, making money. Secondly, the dynamics
of how the user’s actions end up affecting the goals of interest are also unknown. How does
replying to a particular conversation change the number of followers you’ll have down the
road? The human will likely deviate in many unexpected ways from any reward-rational
model that we explicitly write down.

How do we learn an objective despite such uncertainty over any kind of reward-rational
model? Well, the defacto objective function on recommender systems today is to maximize
user engagement, e.g. maximizing the probability that a user will click on an item or not.
However, there is potentially a large gap between engagement signals and a desired notion
of value that is worth optimizing for [Ekstrand and Willemsen, 2016]. Just because a user
engages with an item doesn’t mean they value it. A user might reply to an item because
they are angry about it, or click an item in order to gain more information about it [Wen
et al., 2019], or watch addictive videos out of temptation.

It is clear that engagements provide some signal for “value”, but are not equivalent
to it. Further, different types of engagement may provide differing levels of evidence for
value. For example, if a user explicitly likes an item, we are more likely to believe that they
value it, compared to if they had merely clicked on it. Ideally, we want the objective for
our recommender system to take engagement signals into account, but only insofar as they
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relate to a desired notion of “value”. However, for the reasons just discussed, it is difficult
to model each signal as being reward-rational. Instead, our approach relies on learning an
objective through the use of one, strong signal (e.g. “don’t show me this”) for which we can
assume a kind of rationality. This one strong signal will allow us to learn a model of how
much evidence all other behaviors provide for “value”.

Our contributions
We make three primary contributions1.

1. We propose measurement theory as a principled approach to aggregating engagement
signals into an objective function that captures a desired notion of “value”. The resulting
objective function can be optimized from data, serving as a plug-in replacement for the
ad-hoc objectives typically used in engagement optimization frameworks.

2. Our approach is based on the creation of a latent variable model that relates value to
various observed engagement signals. We devise a new identification strategy for the latent
variable model tailored to the intended use case of online recommendation systems. Our
identification strategy needs only a single robust engagement signal for which we know the
conditional probability of value given the signal. Essentially, we invoke a reward-rational
assumption on just one strong, explicit signal.

3. We implemented our approach on the Twitter platform on millions of users. In line
with an established validity framework for measurement theory, we conduct a qualitative
analysis of how well our model captures “value”.

Measurement theory and latent variable models
The framework of measurement theory [Hand, 2004, Jackman, 2009, Causey, 1971] is widely
used in the social sciences as a guide to measuring unobservable theoretical constructs like
“quality of life”, “political ideology”, or “socio-economic status”. Under the measurement
approach, theoretical constructs are operationalized as latent variables, which are related to
observable data through a latent variable model (LVM).

Similarly, we treat the “value” of a item2 to a particular user as a theoretical construct,
which we operationalize as a (binary) latent variable V . We represent the LVM as a a
Bayesian network [Pearl, 2009] that contains V as well as each of the possible types of user
engagements (clicks, shares, etc). The structure of the Bayesian network allows us to specify

1The contents of this chapter were originally published with Luca Belli and Moritz Hardt as “From
Optimizing Engagement to Measuring Value” in FaccT 2021.

2We note that some items may only provide value to the user the first time they are interacted with.
For example, if a user has just bought a particular dress, then it is probably not prudent to recommend
that dress again, even though the user “values” the dress. Our measurement of value does not capture
this dependence since it only depends on the user and item. Most real-world recommender systems have a
candidate generation stage that comes before the ranking stage, and items that the user has interacted with
before can simply be filtered out during the candidate generation stage [Thorburn et al., 2022].
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conditional independences between variables, enabling us to capture dependencies like e.g.
needing to click an item before replying to it.

Under the measurement approach, the ideal objective becomes clear: P(V = 1 | Behaviors)
- the probability the user values the item given their engagements with it. Such an objective
uses all engagement signals, but only insofar provide evidence of Value V . If we can identify
P(V = 1 | Behaviors), then it can be used as a drop-in replacement for any objective that
scores items based on engagement signals.

Our key insight is that we can identify P(V | Behaviors) — the probability of Value
given all behaviors — through the use of a single anchor variable A for which we know
P(V = 1 | A = 1). The anchor variable, together with the structure of the Bayesian
network, is what gives “value” its meaning. Through the choice of the anchor variable and
the structure of the Bayesian network, the designer has the flexibility to give “value” subtly
different meanings.

Recommendation engines have natural candidates for anchor variables: strong, explicit
feedback from the user. For example, strong negative feedback could include downvoting
or reporting a content item, or blocking another user. Strong positive feedback could be
explicitly liking or upvoting an item. For negative feedback, we make the assumption that
P(V = 1 | A = 1) = ϵ for ϵ ≈ 0, while for positive feedback we make the assumption that
P(V = 1 | A = 1) = 1− ϵ.

A case study on the Twitter platform
We implemented our approach on the Twitter platform on millions of users. On Twitter,
there are numerous user behaviors: clicks, favorites, retweets, replies, and many more. It
would be difficult to directly specify an objective that properly trades off all these behaviors.
Instead, we identify a natural anchor variable. On Twitter, users can give explicit feedback
on tweets by clicking “See less often” (SLO) on them. We use SLO as our anchor and assume
that the user does not value tweets they click “See less often” on. After specifying the anchor
variable and the Bayesian network, we are able to learn P(V | Behaviors) from data.

The model automatically learns a natural ordering of which behaviors should provide
stronger evidence for Value V , e.g. P(V = 1 | Retweet = 1) > P(V = 1 | Reply =
1) > P(V = 1 | Click = 1). Furthermore, it learns complex inferences about the evidence
provided by combinations of behavior. Such inferences would not be possible under the
standard approach, which uses a linear combination of behaviors as the objective.

Unlike other work on recommender systems, we do not evaluate through engagement
metrics. If we believe that engagement is not the same as the construct “value”, then we
cannot evaluate our approach merely by reporting engagement numbers. Instead, we must
take a more holisitc approach. We discuss established approaches to assessing the validity
[American Educational Research Association, American Psychological Association, National
Council on Measurement in Education, Joint Committee on Standards for Educational and
Psychological Testing, 2014, Messick, 1987, Reeves and Marbach-Ad, 2016] of a measurement,
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and explain how they translate to the recommender system setting by using Twitter as an
example.

7.1 Identification of the latent variable model
We now describe our general approach to operationalizing a target construct through a latent
variable model (LVM) with an anchor variable. We operationalize the construct for value
through a LVM in which the construct is represented through an unobserved, binary latent
variable V that the other binary, observed behaviors provide evidence for. We assume there
is one observed behavior, an anchor variable A, which we know P(V = 1 | A = 1) for.
We represent all other observed behaviors in the binary random vector B = (B1, . . . , Bn).
We refer to A as an anchor variable because it will provide the crucial link to identifying
P(V | A,B). In other words, it will anchor the other observed behaviors B to Value V .

We represent the LVM as a Bayesian network. A Bayesian network is a directed acyclic
graph (DAG) that graphically encodes a factorization of the joint distribution of the variables
in the network. In particular, the DAG encodes all conditional independences among the
nodes through the d-separation rule [Pearl, 2009]. This is important because in most real-
world settings, the observed behaviors have complex dependencies among each other (e.g.
one may need to click on an item before replying to it). Through our choice of the DAG we
can model both the dependencies among the observed behaviors as well as the dependence
of the unobserved variable V on the observed behaviors.

Our goal is to determine P(V | A,B) so that it can later be used downstream as a
target for optimization. We now discuss sufficient conditions for identifying the conditional
distribution P(V | A,B). There are three assumptions on the anchor variable A that we will
consider in turn.

Notation. We use Pa(X) to denote the parents of a nodeX and use Pa−V (X) = Pa(X)\V
to denote all parents of X except for V .

Assumption 1 (Value-sensitive). For every realization b of the random vector B, we have
that P(A = 1 | B = b, V = 1) ̸= P(A = 1 | B = b, V = 0).

Assumption 1 simply means that the anchor A carries signal about Value V , regardless
of what the other variables B are.3

Assumption 2 (No children). The anchor variable A has no children.

Since the anchor A is chosen to be a strong type of explicit feedback, it is usually the
last type of behavior the user engages in on a content item (e.g. a “report” button that
removes the content from the user’s timeline), and thus, it typically makes sense to model
A as having no children.

3When combined with Assumption 2, Assumption 1 simplifies to the condition P(A = 1 | Pa−V (A) =
z, V = 1) ̸= P(A = 1 | Pa−V (A) = z, V = 0) for every realization z of Pa−V (A), the parents of A excluding
V .
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Assumption 3 (One-sided conditional independence). Let Pa−V (A) be all parents of A
excluding V . Value V is independent from Pa−V (A) given that A = 1:

P(V = 1 | A = 1,Pa−V (A)) = P(V = 1 | A = 1) .

Assumption 3 means that when the user has opted to give feedback (A = 1), the level of
information that feedback contains about Value V does not depend on the other parents of
A. The assumption rests on the fact that A is a strong type of feedback that the user only
provides when they are confident of their assessment.

Conditions for identification
The next theorem establishes that under A1, the distribution of observable behaviors P(A,B)
and the conditional distribution P(A | V,B) are sufficient for identifying the conditional
distribution, P(V | A,B). The proof uses a matrix adjustment method [Rothman et al.,
2008; pg. 360] and is very similar to that in Pearl [2010], Kuroki and Pearl [2014].

Theorem 7.1.1. Let V and A be binary random variables and let B = (B1, . . . , Bn) be a
binary random vector. If A1 holds, then the distributions P(A,B) and P(A | V,B) uniquely
identify the conditional distribution P(V | A,B).

Proof. Since the conditional distribution P(V | A,B) is equal to P(B,V )·P(A|B,V )
P(A,B) , we can reduce

the problem to determining the distribution P(B, V ). We can relate P(B, V ) to the given
distributions, P(A,B) and P(A | B, V ), via the law of total probability:

P(A,B) =
∑

v∈{0,1}
P(B, V = v)P(A | B, V = v) . (7.1)

For every realization b of the random vector B, we can write Equation 7.1 as zb = Pbµb

where the matrix Pb ∈ [0, 1]2×2 and the vectors µb, zb ∈ [0, 1]2 are defined as

Pb
i,j = P(A = i | B = b, V = j) for i, j ∈ {0, 1} ,

µb = [P(B = b, V = 0),P(B = b, V = 1)]T ,
zb = [P(B = b, A = 0),P(B = b, A = 1)]T .

Determining the distribution P(B, V ) is equivalent to determining µb for all b. By Assump-
tion 1, for all b we have P(A = 1 | B = b, V = 1) ̸= P(A = 1 | B = b, V = 0), which implies
that the determinant of the matrix Pb is non-zero. Therefore, for all b, the vector µb is equal
to µb = (Pb)−1zb. Thus, P(B, V ), and therefore the conditional distribution P(V | A,B), is
identified by the given distributions.

If we add Assumption 2, i.e. the anchor A has no children, then the distributions P(A,B)
and P(A | Pa(A)) are sufficient to identify P(V | A,B).
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Corollary 2. If the joint distribution P(V,A,B) is Markov4 with respect to a DAG G in
which A1 and A2 hold, then the distributions P(A,B) and P(A | Pa(A)) uniquely identify
the conditional distribution P(V | A,B).

Proof. In a Bayesian network, the Markov blanket for a variable X is the set of variables
MB(X) ⊆ Z that shield X from all other variables Z in the DAG, i.e. P(X | Z) = P(X |
MB(X)) [Pearl, 2009]. The Markov blanket for a variable X consists of its parents, children,
and parents of its children. Since the anchor A has no children, P(A | V,B) = P(A |
MB(A)) = P(A | Pa(A)). Thus, by Theorem 7.1.1, P(A | Pa(A)), and P(A,B) identify the
conditional distribution P(V | A,B)

Finally, when we add Assumption 3, one-sided conditional independence, then the dis-
tributions P(V ), P(A,B), P(V = 1 | A = 1), and P(Pa−V (A) | V ) are sufficient. The proof
follows from Corollary 2 because, under Assumption 3, the distributions P(V = 1 | A = 1),
P(Pa−V (A) | V ), and P(V ) identify P(A | Pa(A)).

Corollary 3. If the joint distribution P(V,A,B) is Markov with respect to a DAG G in
which A1-3 hold, then P(V ), P(A,B), P(V = 1 | A = 1), and P(Pa−V (A) | V ) uniquely
identify the conditional distribution P(V | A,B).

Proof. We will show that, under Assumption 3, the distributions P(V = 1 | A = 1),
P(Pa−V (A) | V ), and P(V ) identify P(A | Pa(A)). The proof then follows from Corollary 2.

We show that we can identify P(A | Pa(A)) by solving a set of linear equations. For short-
hand let pw,a,v = P(Pa−V (A) = w,A = a, V = v). For any realization w, by marginalizing
over A and V , we can derive the following four equations for the four unknown probabilities
pw,0,0, pw,0,1, pw,1,0, pw,1,1:

P(Pa−V (A) = w,A = 0) = pw,0,0 + pw,0,1 (7.2)
P(Pa−V (A) = w,A = 1) = pw,1,0 + pw,1,1 (7.3)
P(Pa−V (A) = w, V = 0) = pw,0,0 + pw,1,0 (7.4)
P(Pa−V (A) = w, V = 1) = pw,0,1 + pw,1,1 (7.5)

Note that the LHS of Equations 7.2 and 7.3 are given by P(A,B) and the LHS of Equations
7.4 and 7.5 are given by the prior P(V ) and P(Pa−V (A) | V ).

From Assumption 3, one-sided conditional independence, we know that P(V = 1 | A =
1,Pa−V (A)) = P(V = 1 | A = 1). Under one-sided conditional independence, the probability
pw,1,1 is determined by the given distributions:

pw,1,1 = P(A = 1) · P(Pa−V (A) = w | A = 1)
· P(V = 1 | A = 1,Pa−V (A) = w)

= P(A = 1) · P(Pa−V (A) = w | A = 1)
· P(V = 1 | A = 1) . (7.6)

4A distribution P(X1, . . . , Xn) is said to be Markov with respect to a DAG G if it factorizes according
to G, i.e. P(X1, . . . , Xn) =

∏
i∈[n] P(Xi | Pa(Xi)).
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Since pw,1,1 is determined by the given distributions, so are pw,0,0, pw,1,0, and pw,0,1, which
can be solved for through Equations 7.2-7.5. Since this holds for any realization w, the
distribution P(A, V,Pa−V (A)) = P(A,Pa(A)) is determined, which by Collorary 2 means
that the conditional distribution P(V | A,B) is determined.

Specifying the distributions for identification
Corollary 3 establishes that, under Assumptions 1-3, the distributions P(V ), P(A,B), P(Pa−V (A) |
V ), and P(A = 1 | V = 1) are sufficient to determine the conditional distribution P(V | A,B)
for the LVM. Where do we get these distributions?

1. The distribution of observable nodes P(A,B) is estimated by the empirical distribution
of observed data.

2. The distribution P(V ) over the latent variable for value V is a prior distribution that is
specified by the modeler. Recall that our goal with the LVM is to use P(V = 1 | B, A)
as an objective to optimize. Since the prior P(V ) only has a scaling effect on P(V =
1 | B, A), it does not matter greatly. We set P(V ) to be uniform, i.e. P(V = 1) = 0.5.

3. The conditional probability P(V = 1 | A = 1) is specified by our assumption on the
the anchor variable. The probability P(V = 1 | A = 1) is set to ϵ where ϵ ≈ 0 if A is
explicit negative feedback or to 1− ϵ if A is explicit positive feedback.

4. That leaves the distribution P(Pa−V (A) | V ). We estimate P(Pa−V (A) | V ) heuris-
tically using two sources of historical data that vary in their distribution of Value
V . Suppose we have access to a dataset of historical recommendations DR that were
sent to users at random, as well as a dataset of historical recommendations that were
algorithmically chosen, DC . Both kinds of datasets are commonly available on rec-
ommender systems due to the prevalence of A/B testing which typically tests new
algorithmic changes against a randomized baseline. The randomized and algorithmic
datasets will have different distributions of valuable content, PR(V ) and PC(V ), and
different distributions of observed behavior, PR(A,B) and PC(A,B). However, we as-
sume that P(A,B | V ), the probability of the observed behavior given Value V , is the
same between the two datasets.5 The following equations then hold:

PR(Pa−V (A)) = P(Pa−V (A) | V = 1)PR(V = 1)
+ P(Pa−V (A) | V = 0)PR(V = 0) , (7.7)

PC(Pa−V (A)) = P(Pa−V (A) | V = 1)PC(V = 1)
+ P(Pa−V (A) | V = 0)PC(V = 0) . (7.8)

5If our DAG has Value V as a root node and can be interpreted as a causal Bayesian network [Pearl, 2009],
then this is equivalent to assuming that the difference between the datasets corresponds to an intervention
on V .
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We specify PR(V ) and PC(V ) in an application-dependent way, but, generally, we
assume the randomized dataset is lower value than the algorithmic one: PR(V ) <
PC(V ). Once we specify PR(V ) and PC(V ) and estimate PR(A,B) and PC(A,B)
empirically, then we can solve Equations 7.7 and 7.8 to estimate P(Pa−V (A) | V = 1).
This is a heuristic approach that is appropriate for getting a rough estimate, but needs
to be used with care. In practice, not all the differences between the randomized and
algorithmic dataset can be explained by an intervention on Value V . For example,
if the recommendation algorithm has historically been optimized for user clicks, then
users in the algorithmic dataset may click on items more, but for reasons other than
increased value.

Algorithm for identification
We now give more details on how we calculate the joint distribution P(V,A,B) given the
distributions P(V ), P(A,B), P(V = 1 | A = 1) and P(Pa−V (A) | V ). We use the structure of
the Bayesian network to efficiently identify the joint distribution P(V,A,B) by fitting each
factor P(X | Pa(X)) for every variable X.

1. The factor for V is given by the prior P(V ).6

2. The factor for A, i.e. P(A | Pa(A)), can be identified from P(V ), P(V = 1 | A = 1),
and P(Pa−V (A) | V ) by solving a set of linear equations as in the proof of Corollary 3.

3. The factor for any behavior that does not have V as a parent is directly identified by
the distribution of observable behaviors P(A,B).

4. The factors for the remaining behaviors which have V as a parent are fit through a
matrix adjustment method [Rothman et al., 2008; pg. 360]. In particular, note that

P(X = 1,Pa−V (X) = z,Pa−V (A) = w,A = a) =
(
∑

v∈{0,1}
P(A = a | Pa−V (A) = w, V = v)

· P(X = 1,Pa−V (X) = z,Pa−V (A) = w, V = v))

We can also write the above equation in matrix form. Let z1, . . . , zm be all realizations
6Assuming that V is a root node, which is the case in any network we are interested in.
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of Pa−V (X), and define the matrices Qw ∈ [0, 1]2×m, Rw ∈ [0, 1]2×2, Sw ∈ [0, 1]2×m as7

Qwa,i = P(X = 1,Pa−V (X) = zi, (7.9)
Pa−V (A) = w,A = a),

Rwav = P(A = a | Pa−V (A) = w, V = v), (7.10)
Swv,i = P(X = 1,Pa−V (X) = zi, (7.11)

Pa−V (A) = w, V = v).

Then, Qw = RwSw and Sw = (Rw)−1Qw.8 Let S be the marginalization over w:∑
w S

w = (Rw)−1Qw. Then Sv,i = P(X = 1,Pa−V (X) = zi, V = v). Thus, the factor
for X is equal to P(X | Pa−V (X) = zi, V = v) = Sv,i/P(Pa−V (X) = zi, V = v). We
fit nodes with V as a parent in topological order, so that we can always calculate the
denominator from previously fit factors.

7.2 Application to Twitter
We implemented our approach on the Twitter platform on millions of users. On Twitter,
there are many kinds of user behaviors: clicks, replies, favorites, retweets, etc. The typical
approach to recommendations would involve optimizing an objective that trades-off these
behaviors, usually with linear weights. However, designing an objective is a non-trivial
problem. How exactly should we weigh favorites compared to clicks or replies or retweets or
any of the numerous other behaviors? It is difficult to assess whether the weights we chose
match the notion of “value” we intended.

Furthermore, even supposing that we could manually specify the “correct” weights through
laborious trial-and-error, the correct weights change over time. For example, after videos
shared on Twitter began to auto-play, the signal of whether or not a user watched a video
presumably became less relevant. The reality is that the objective is never static—how users
interact with the platform is constantly changing, and the objective must change accordingly.

Our approach provides a principled solution to objective specification. We directly op-
erationalize our intended construct “value” as a latent variable V . The meaning of Value
V is defined by the Bayesian network and the anchor variable A, a behavior that we be-
lieve provides strong evidence for value or the lack of it. On Twitter, the user can provide
strong, explicit feedback by clicking “See less often” (SLO) on a tweet. We use SLO as our
anchor A and assume that if a user clicks "See less often" on a tweet, they do not value it:
P(V = 1 | SLO = 1) = 0.

Under this approach, there is no need to manually specify how all the behaviors should
factor into the objective. Having operationalized Value, the ideal objective to use is clear:

7If Pa−V (X) ∩ Pa−V (A) ̸= ∅ and Pa−V (X) = zi and Pa−V (A) = w conflict, then simply set Qw0,i =
Qw1,i = 0.

8Rw is invertible because of Assumption 1.
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Open

Click

SLO

Opt-outEngage

Figure 7.1: A workflow of how users can interact with ML-based notifications on Twitter.
To view the tweet, the user can either “open” the notification from the home screen on their
phone or “click” on it from the notifications tab within the app. If the user sees the tweet
from their notifications tab, they can also click "See Less Often" on it. Once the user has
opened or clicked on the notification, they can engage with the tweet in many ways, e.g.
replying, retweeting, or favoriting. At any point, the user can opt-out of notifications all
together.

P(V = 1 | B, A) - the probability of Value V given the observed behaviors. As discussed in
Section 7.2, we can directly estimate P(V = 1 | B, A) from data. Furthermore, presuming
that the anchor and structure of Bayesian network remain stable, we can regularly re-estimate
the model with new data at any point, allowing us to account for change in user behavior
on the platform.

The Bayesian network. We applied our approach to ML-driven notifications on Twit-
ter. These notifications have various forms, e.g. "Users A, B, C just liked User Z’s tweet",
"User A just tweeted after a long time", or "Users A, B, C followed User Z". Figure 7.1
shows an example notification and how a user can interact with it. The Bayesian network in
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Figure 7.2: Bayesian network for Twitter notifications. An arrow from a node X to a box
means that the node X is a parent of all the nodes in the box, e.g. Click and Open are
parents of Fav, RT, ..., Linger > 6s. The latent variable Value is a parent of everything
except NTabView. The anchor node SLO is highlighted in pink.

Figure 7.2 succinctly encodes the dependencies between different types of interactions users
can have with notifications.9

Notifications are sent both to the user’s home screen on their mobile phone, as well
as to the notifications tab within the Twitter app. The user can start their interaction
either by seeing the notification in their notification tab (NTabView), and then clicking on
it (Click), or by seeing it as a the notification on their phone home screen and opening it
from there directly (Open). After clicking or opening the notification, the user can engage
in many more interactions: they can favorite (Fav), retweet (RT), quote retweet (Quote), or
reply (Reply) to the tweet; if the tweet has a link, they can click on it (LinkClick); if it
has a video, they can watch it (VidWatch). In addition, other implicit signals are logged:
whether the amount the user lingered on the tweet exceeds certain thresholds (Linger > 6s,
Linger > 12s, Linger > 20s) and whether the number of user active minutes (UAM) spent
in the app after clicking/opening the notification exceeds a threshold.

Furthermore, when the user is in the notification tab, the user can provide explicit feed-
back on a particular notification by clicking “See Less Often” (SLO) on it. Notably, unlike
other types of behavior, the user does not need to actually click or open the notification
before clicking SLO. However, we found empirically that users are more likely to click SLO
after clicking or opening the notification, probably because they need to gain more informa-

9The network can be interpreted as a causal Bayesian network [Pearl, 2009], although for our purposes,
we do not strictly need the causal interpretation.
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tion before making an assessment. Thus, in addition to NTabView, we also model Click and
Open as parents of SLO.

Finally, at any time the user can opt-out of notifications to their phone home screen
(OptOut). If the user saw the tweet on the same day they opted out of notifications, then
OptOut = 1. Since ML-based notifications are relatively rare on Twitter (users usually get
less than one a day), there are usually at most one or two notifications attributed to an
opt-out event.

We model the latent variable V as being a parent of all behaviors except NTabView
(whether or not the user saw the notification in their notifications tab or not). Since users
may check their notifications tab for many other notifications, it is difficult to attribute
NTabView to a particular notification, and so we consider it to be an exogenous, random
event.

Identifying the joint distribution We fit our model on three days of data that con-
tained of all user interactions with ML-based push notifications on Twitter. In Section 7.1, we
proved that the target objective - the conditional distribution P(V = 1 | B, A) - is uniquely
identified from P(V = 1 | A = 1), P(V ), P(B, A), and P(Pa−V (A) | A) (see Corollary 3). We
set the four distributions as follows. We used SLO as our anchor variable A and assumed that
P(V = 1 | A = 1) = 0, i.e. a user never says “See less often” if they value the notification.
The prior distribution of value P(V ) was set to be uniform. The distribution of observed be-
haviors P(B, A) was set to the empirical distribution. The distribution P(Pa−V (A) | V ) was
estimated as described in Section 7.1 by using two sources of historical data, one in which
notifications were sent at random and the other in which notifications were sent according
to a recommendation algorithm.10

Evaluation of internal structure. Assessing our measure of “value” for validity will
necessarily be an on-going and multi-faceted process. We do not, unlike other papers on
recommendation, report engagement metrics. The reason is that if we expect our measure
of “value” to differ from engagement, we cannot evaluate it by simply reporting engagement
metrics. The evaluation of a measurement necessitates a more holistic approach. In Sec-
tion 7.3, we describe the five categories of evidence for validity described by the Standards
for Educational and Psychological Testing, the handbook considered the gold standard on
approaches to testing [American Educational Research Association, American Psychological
Association, National Council on Measurement in Education, Joint Committee on Standards
for Educational and Psychological Testing, 2014].

Here, we focus on evaluating what is known as evidence based on internal structure,
i.e whether expected theoretical relationships between the variables in the model hold. To
justify why the structure of our Bayesian network is necessary, we compare our full model
from Figure 7.2 to two other models: a naive Bayes model and the full model but without
arrows from Open and Click to SLO. In Table 7.1, we show P(V = 1 | Behavior = 1)
for all behaviors and models. As noted by prior work [Pearl, 2009, Halpern et al., 2016],

10We assume that the dataset of randomized notifications has a prior probability PR(V = 1) = 0 and the
dataset of algorithmically chosen notifications has a prior probability PC(V = 1) = 0.5.
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P(V = 1 | Behavior = 1)

Behavior Naive Bayes Click, Open ↛ SLO Full Model

OptOut 0 0 0
Click 0 0.316 0.652
Open 0 0.442 0.685
UAM 0 0.157 0.719
VidWatch 0 0.254 0.772
Linger > 6s 0 0.264 0.802
LinkClick 0 0.320 0.836
Reply 0.358 0.570 0.932
Linger > 12s 0 0.245 0.948
Fav 0.579 0.672 0.949
RT 0.680 0.720 0.956
Linger > 20s 0.019 0.296 0.991
Quote 1.0 1.0 1.0

Table 7.1: The inferences made by LVMs with different DAGs. For each model and for each
behavior, we list P(V = 1 | Behavior = 1) – how much evidence the model learns that a
behavior provides for Value V (when all other behaviors are marginalized over).

matrix adjustment methods can result in negative values when conditional independence
assumptions are not satisfied. To address this, we clamp all inferences to the interval [0, 1].

The first, simple theoretical relationship we expect to hold is that compared to observing
no user interaction, observing any user behavior besides opt-out should increase the proba-
bility that the user values the tweet, i.e. P(V = 1 | Behavior = 1) < P(V = 1) = 0.5 for
all Behavior ̸= OptOut. Furthermore, we also expect some behaviors to provide stronger
signals of value than others, e.g. that P(V = 1 | Fav = 1) > P(V = 1 | Click = 1).

The first model is the naive Bayes model, which simply assumes that all behaviors are
conditionally independent given Value V . It does extremely poorly - almost all inferences
have negative values and are clamped to zero, indicating that the conditional independence
assumptions are unrealistic.

The second model is the full model except without arrows from Click and Open to SLO.
It models all pre-requisite relationships between behaviors, i.e. if a behavior X is required
before another behavior Y , then there is an arrow from X to Y . Compared to the naive
Bayes model, the second model does not make mainly negative-valued inferences, indicating
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that its conditional independence assumptions are more realistic. However, relative to the
prior, most behaviors actually reduce the probability of Value, rather than increase it!

After investigation, we realized that although users were not technically required to click
or open the notification before clicking SLO, in practice, they were more likely to do so,
probably because they needed to gain information before making an assessment. We found
that explicitly modeling the connection, i.e. adding arrows from Click and Open to SLO
was critical for making reasonable inferences. We believe this takeaway will apply across
recommender systems. The user never has perfect information and may need to engage
with an item before providing explicit feedback [Wen et al., 2019]. It is important to model
the relationship between information-gaining behavior and explicit feedback in the Bayesian
network.

Our full model satisfies the theoretical relationships we expect. All the behaviors that
we expect to increase the probability of Value V do indeed do so. Furthermore, the relative
strength of different types of behavior seems reasonable as well, e.g. P(V = 1 | Fav = 1) and
P(V = 1 | RT = 1) are higher than P(V = 1 | VidWatch = 1) and P(V = 1 | LinkClick = 1).

The full model also makes more nuanced theoretical inferences. Recall that UAM is
whether or not the user had high user active minutes after either clicking the notifica-
tion from notifications tab or by opening the notification from their phone home screen.
The model learns that UAM is a highly indicative signal after Open, but not after Click:
P(V = 1 | Open = 1, UAM = 1) = 0.906 and P(V = 1 | Click = 1, UAM = 1) = 0.641. This
makes sense because if the user clicks from notifications tab, it means they were already in
the app, and it is difficult to attribute their high UAM to the notification in particular. On
the other hand, if the user enters the app because of the notification, it is a much more direct
attribution.

It is clear that manually specifying the parameters our model infers would be very diffi-
cult. The advantage of our approach is that after specifying (a) the anchor variable and (b)
the Bayesian network, we can automatically learn these parameters from data. Further, the
model ends up learning complex inferences (e.g. that UAM is more reliable after Open than
Click) that would be impossible to specify under the typical linear weighting of behaviors.

7.3 Assessing validity
Thus far, we have described our framework for designing a measure of “value”, which can
be used as a principled replacement for the ad-hoc objectives ordinarily used in engagement
optimization. How do we evaluate such a measure? Notably, we do not advocate evaluating
the measure purely through engagement metrics. If we expect our measure of “value” to
differ from engagement, then we cannot evaluate it by simply reporting engagement met-
rics. Instead, the assessment of any measure is necessarily an ongoing, multi-faceted, and
interdisciplinary process.

To complete the presentation of our framework, we now discuss approaches to assess
the validity [Messick, 1987, American Educational Research Association, American Psycho-
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logical Association, National Council on Measurement in Education, Joint Committee on
Standards for Educational and Psychological Testing, 2014, Reeves and Marbach-Ad, 2016]
of a measurement. In the most recent (2014) edition of the Standards for Educational and
Psychological Testing, the handbook considered the gold standard on approaches to testing,
there are five categories of evidence for validity. We visit each in turn, and describe how
they translate to the recommender system setting, using Twitter as an example.

Evidence based on content refers to whether the content of a measurement is sufficient
to fully capture the target construct. For example, we may question whether a measure of
“socio-economic status” that includes income, but does not account for wealth, accurately
captures the content of the construct [Jacobs and Wallach, 2019]. In the recommender engine
setting, content-based evidence asks us to reflect on whether the behaviors available on the
platform are sufficient to capture a worthy notion of the construct “value”. For example, if
the only behavior observed on the platform were clicks by the user, then we may be skeptical
of any measurement of “value” derived from user behavior. What content-based evidence
makes clear is that to measure any worthy notion of “value”, it is essential to design platforms
in which users are empowered with richer channels of feedback. Otherwise, no measurement
derived from user behavior will accurately capture the construct.

Evidence based on cognitive processes. Measurements derived from human behavior
are often based on implicit assumptions about the cognitive processes subjects engage in.
Cognitive process evidence refers to evidence about such assumptions, often derived from
explicit studies with subjects. For example, consider a reading comprehension test. We
assume that high-scoring students succeed by using critical reading skills, rather than a
superficial heuristic like picking the answers with the longest length. To gain evidence about
whether this assumption holds, we might, for instance, ask students to take the test while
verbalizing what they are thinking.

Similarly, in the recommender engine setting, we want to verify whether user behaviors
occur for the reasons we think they do. On Twitter, one might think to use Favorite as an
anchor for Value V , assuming that P(V = 1 | Favorite = 1) ≈ 1. However, users actually
choose to favorite items for reasons that may not reflect value – such as to bookmark a
tweet or to stop a conversation. Cognitive process evidence highlights the importance of
user research in assessing the validity of any measure of “value”.

Evidence based on internal structure refers to whether the observations the mea-
surement is derived from conform to expected, theoretical relationships. For example, for a
test with questions which we expect to be of increasing difficulty, we would assess whether
students actually perform worse on later questions, compared to earlier ones. In the recom-
mender system context, we may have expectations on which types of user behaviors should
provide stronger signal for value. In Section 7.2, we evaluated internal structure by compar-
ing P(V = 1 | Behavior = 1) for all behaviors.

Evidence based on relations with other variables is concerned with the relation-
ships between the measurement and other variables that are external to the measurement.
The external variables could be variables which the measurement is expected to be similar
to or predict, as well as variables which the measurement is expected to differ from. For
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example, a new measure of depression should correlate with other, existing measures of de-
pression, but correlate less with measures of other disorders. In the recommender system
context, we might look at whether our derived measurement of “value” is predictive of an-
swers that users give in explicit surveys about content they value. We could also verify that
our measure of “value” does not differ based on protected attributes, such as the sex or race
of the author of the content.

Evidence based on consequences. Finally, the consequences of a measurement cannot
be separated from its validity. Consider a test to measure student mathematical ability. The
test is used to sort students into beginner or advanced classes with the hypothesis that all
students will do better after being sorted into their appropriate class. If it turns out that
students sorted by the test do not perform better, that may give us reason to reassess the
original test. In the recommender system context, if we find that after using our measurement
of value to optimize recommendations, more users complain or quit the platform, then we
would have reason to revise our measurement.
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Chapter 8

Conclusion

The goal of this thesis was to provide a cohesive and unified way to learn objective functions
from many sources of information. We began by introducing our formalism, reward-rational
choice, that unifies reward learning from many sources of information. The RRC framework
provides a common lens from which to understand previously proposed feedback types as well
as a recipe for formalizing new sources of information. We also showed how RRC supports
learning from and actively selecting from multiple feedback types at once. Finally, when
someone can give multiple types of feedback, we showed how RRC can be used to formalize
and learn from a person’s choice of feedback type itself.

After exploring the uses and implications of the RRC formalism, we turned towards
relaxing the core assumption: that the human is rational with respect to the reward function
to be inferred. We considered three different settings. First, the case where the human may
be pedagogic, i.e. rational with respect to teaching the target reward function rather than
rational with respect to the target reward function itself. Second, the case where the human
is time-inconsistent and sophisticated, i.e. they rationally restrict their options earlier on in
order to avoid succumbing to temptation later. Third, we looked at recommender systems,
a setting where it is difficult the model the human as rational with respect to any objective
function, let alone the target reward function.

There are many avenues for future work. First, we would like to further expand upon
the applications of RRC. In the thesis, we gave examples, case studies, and experiments to
showcase the ways that RRC can be used to combine, actively select, and formalize new
feedback types. But we would like to illustrate these benefits in more complex domains, e.g.
in more complex simulated environments like Atari or on a physical robot.

We investigated the robustness of RRC when the human may be acting pedagogically
(Chapter 5) or the human’s meta-rationality may be misspecified (Section 4.3), but there
are many other ways an RRC model may be misspecified and it would be informative to
understand how different kinds of misspecification affect reward inference. For example,
recent work investigates the effects of choice set misspecification [Jonnavittula and Losey,
2021, Freedman et al., 2021] and shows that under-estimating a choice set can actually be
desirable as it leads to the robot to be more risk-averse in its reward inference.



82

In the recommender system setting, we did not explicitly model the human as optimizing
an objective function. Instead, we built upon the framework of measurement theory to learn
a measurement model for what the user “values”. We used strong explicit feedback (the
“anchor” variable) to learn how much all other behavioral signals (e.g. clicks, replies, likes)
should provide evidence for what the user “values”. Is there a way to combine the benefits
of the anchor variable approach with the RRC approach? For example, can we use anchor
variables to learn an explicit human model? Can we apply measurement style evaluations of
validity to the reward learning setting?

There are surely many more sources of information that have not yet been formalized but
can be leveraged to learn about human preferences. We hope that the frameworks and ideas
presented in this thesis can provide insight into how to harness all these signals to create
systems that are aligned with human values.
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