
Lawrence Berkeley National Laboratory
Scientific Data

Title
MIQS

Permalink
https://escholarship.org/uc/item/3zj0g27z

ISBN
9781450362290

Authors
Zhang, Wei
Byna, Suren
Tang, Houjun
et al.

Publication Date
2019-11-17

DOI
10.1145/3295500.3356146

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3zj0g27z
https://escholarship.org/uc/item/3zj0g27z#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

MIQS: Metadata Indexing andQuerying Service
for Self-Describing File Formats

Wei Zhang
Texas Tech University

Lubbock, Texas

X-Spirit.zhang@ttu.edu

Suren Byna
Lawrence Berkeley National

Laboratory

Berkeley, California

sbyna@lbl.gov

Houjun Tang
Lawrence Berkeley National

Laboratory

Berkeley, California

htang4@lbl.gov

Brody Williams
Texas Tech University

Lubbock, Texas

Brody.Williams@ttu.edu

Yong Chen
Texas Tech University

Lubbock, Texas

yong.chen@ttu.edu

ABSTRACT
Scientific applications often store datasets in self-describing data
file formats, such as HDF5 and netCDF. Regrettably, to efficiently
search the metadata within these files remains challenging due to
the sheer size of the datasets. Existing solutions extract the meta-
data and store it in external database management systems (DBMS)
to locate desired data. However, this practice introduces signifi-
cant overhead and complexity in extraction and querying. In this
research, we propose a novel Metadata Indexing and Querying

Service (MIQS), which removes the external DBMS and utilizes
in-memory index to achieve efficient metadata searching. MIQS
follows the self-contained data management paradigm and pro-
vides portable and schema-free metadata indexing and querying
functionalities for self-describing file formats. We have evaluated
MIQS with the state-of-the-art MongoDB-based metadata indexing
solution. MIQS achieved up to 99% time reduction in index con-
struction and up to 172k× search performance improvement with
up to 75% reduction in memory footprint.

CCS CONCEPTS

• Computing methodologies→ Parallel computing method-

ologies.

KEYWORDS

Metadata Search, HDF5 Metadata Management

ACM Reference Format:

Wei Zhang, Suren Byna, Houjun Tang, BrodyWilliams, and Yong Chen. 2019.

MIQS: Metadata Indexing and Querying Service for Self-Describing File

Formats. In The International Conference for High Performance Computing,

Networking, Storage, and Analysis (SC ’19), November 17–22, 2019, Denver, CO,

USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3295500.

3356146

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SC ’19, November 17–22, 2019, Denver, CO, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6229-0/19/11. . . $15.00
https://doi.org/10.1145/3295500.3356146

1 INTRODUCTION

Large-scale scientific applications, including experiments, observa-

tions, and simulations, generate enormous amounts of data. [3, 4,

8, 11, 24, 25, 27, 31]. Due to upcoming construction of even larger

scientific infrastructures and the increasing demand on the fine

nature of the data, the volume of scientific data is expected to grow

rapidly. Such growth imposes a substantial challenge to scientists -

to survive in the ocean of data, and particularly, to efficiently find

the data they require [38, 40, 43, 46, 48].

Self-describing data and file formats, such as HDF5 [13], netCDF

[33], ADIOS-BP [26], and ASDF [14], are extensively used in scien-

tific applications. In these file formats, the metadata of each data

object is stored alongside the data object. This practice makes these

formats both self-describing and self-contained. For self-describing

and self-contained data management paradigm, it is ideal that

the metadata search functionality is included as part of the self-

describing and self-contained data management solution. However,

most self-describing and self-contained data management solutions

do not provide such internal metadata search functionality. Instead,

finding interesting data in multiple files is achieved by iterating

through all the files and performing pattern matching on the meta-

data one by one. Such a procedure is easy to implement and works

well when there are a limited number of files and the amount of

metadata is small. However, when the number of data objects in a

file is very large, sifting through the metadata objects within one

file becomes time-consuming. Many applications further compound

this issue by generating a large number of data files. For instance,

cosmology observations store the images of the sky either hourly

or daily and stores all the datasets into multiple self-describing data

files [24].

Whilemetadatamanagement and indexing have beenwell-studied

in the context of file systems [23, 28, 38, 41, 47, 48], metadata in-

dexing for self-describing data formats remains underdeveloped.

Due to the lack of effective metadata search capabilities provided

by the runtime libraries and tool-chains packaged with these self-

describing data formats, scientists often use a separate database

management system (DBMS) to facilitate the process of finding

the required data. Typical examples can be seen from BIMM [20],

EMPRESS [21], the SPOT Suite [9], and JAMO [18], where relational

databases (e.g. SQLite [39], PostgreSQL [32]) and NoSQL databases

SC ’19, November 17–22, 2019, Denver, CO, USA Wei Zhang, et al.

(e.g. MongoDB [29]) are used for maintaining the metadata and

providing the metadata search functionality needed for locating

the required data from the self-describing data files.

However, a database solution disjoint from the self-describing

data files is incompatible with the self-describing and self-contained

data management paradigm. This approach requires extra overhead

in deployment as well as constant maintenance in order to keep the

database updated. In addition, initial deployment of the database

system for metadata search necessitates reading the metadata from

the self-describing files and then loading it into the database. This

duplicates the metadata at two places and hence leads to storage

redundancy. Moreover, the database has to be either made avail-

able or migrated when the self-describing files are transferred to a

different site, which is a complicated process, not to mention that

the entire database has to be updated with the new location of file

paths.

Toward the goal of providing a self-contained metadata search

service for self-describing file formats, we propose MIQS, a novel

Metadata Indexing and Querying Service. MIQS is designed to be a

library that can be integrated into the existing self-describing and

self-contained data management solutions. It provides metadata in-

dexing and querying functionality for self-describing data formats

in a way that complies with the self-describing and self-contained

data management paradigm. By introducing an in-memory in-

dex structure, along with an on-disk persistence mechanism of

the index, MIQS provides the capability to build portable indexes

and an efficient metadata query service. Applications that utilize

MIQS can perform metadata search without consulting an exter-

nal DBMS. This philosophy complies with the self-describing and

self-contained data management paradigm.

We have developed a prototype implementation of MIQS to sup-

port the HDF5 library and to study its effectiveness. We have con-

ducted evaluation tests on the Edison supercomputer hosted at the

National Energy Research Scientific Computing Center (NERSC).

Our experiments against over 144 million attributes from 1.5 mil-

lion objects in 100 astrophysics data files [24] show that, com-

pared to a state-of-the-art MongoDB powered indexing solution,

MIQS achieved up to 99% time reduction in index construction and

searched metadata about 172k× faster. Moreover, MIQS used only

up to 25% of the overall storage footprint that the MongoDB-based

solution used for these datasets.

The contributions of this research are summarized as follows:

• We identify the drawbacks of existing DBMS-powered meta-

data indexing and querying solutions for self-describing file

formats.

• Following the principle of self-describing and self-contained

data management paradigm, we introduce an integrated,

lightweight metadata indexing and querying service for self-

describing data files. The in-memory indexing data struc-

ture achieves significantly better query performance without

transforming or duplicating metadata, as compared to ex-

isting database-powered solutions. The index persistence

mechanism also makes the index reconstruction easier and

ensures the portability of the metadata search service.

• We develop a prototype implementation of MIQS to sup-

port the HDF5 library and conduct extensive evaluations to

validate the design. The evaluations confirm that MIQS is

efficient in building metadata indexes and offers better query

performance than database-powered solutions, with less stor-

age consumption. Additionally, MIQS is both portable and

transparent in nature, which promotes the design philosophy

of the self-describing and self-contained data management

solution.

The rest of this paper is organized as follows. In Section 2, we

review self-describing data formats such as HDF5 and existing

solutions for metadata indexing and searching. We introduce the

design of MIQS in detail in Section 3. In Section 4, we present the

experimental evaluation results of MIQS. We conclude this research

and discuss future work in Section 5.

2 BACKGROUND AND RELATEDWORK

In this section, we briefly review self-describing data formats, using

HDF5 as an example.We also discuss existing research and solutions

that provide metadata search functionality for self-describing data

files.

2.1 Self-Describing Data Formats and HDF5

Self-describing data formats, such as HDF5, netCDF, ADIOS-BP

and ASDF, are designed to provide one-stop data management so-

lution with no dependency on other data management solutions.

In these data formats, the metadata is stored alongside the data

itself, providing description, interpretation, and even definition of

the data objects. This fusion between data and its metadata allows

the self-describing formats to provide users with programming

interfaces and tools that facilitate portable one-stop data manage-

ment solutions. Applications that adopt these APIs and toolchains

can be expected to behave in the same way regardless of where

the applications are deployed. Data analysis performed on these

self-describing files need not consult other data management so-

lutions as the descriptive information is already contained in the

data formats themselves.

HDF5 (Hierarchical Data Format version 5), a typical example

of the self-describing data format, is one of the most frequently

used data formats in scientific fields, which a large number of users

rely on for scientific data management and exchanges [16]. When

considering the case where we have a set of HDF5 files managed by

the file system, there is a deep hierarchy across both the file system

and also the HDF5 data format, as shown in Figure 1.

In a file system (e.g. GPFS [34] or Lustre [35]), each directory

may contain sub-directories and also the HDF5 files. Within each

HDF5 file, there are two types of objects - groups and datasets.

The groups function as internal nodes within the hierarchy while

the datasets play the role of leaf nodes. Attached alongside each of

these data objects (either a group or dataset) are metadata attributes.

Different objects may share the same set of attributes, but the value

of these shared attributes can be different from one another. The

hierarchical organization of these data objects introduces attribute

inheritance between parental data objects and child data objects.

In other words, the metadata attribute values of a group also apply

to all child groups and datasets underneath.

Not all self-describing data formats follow the hierarchical orga-

nization. For instance, netCDF has a flat organization of all variables.

MIQS: Metadata Indexing andQuerying Service

for Self-Describing File Formats SC ’19, November 17–22, 2019, Denver, CO, USA

HDF5 File Collection Hierarchy

HDF5 Object HierarchyFile System Hierarchy

Directory

HDF5
File

Group

Dataset

Dataset

Dataset

HDF5
File

Group

Group

Metadata

Metadata Metadata

Metadata

Metadata

Metadata

Metadata Metadata

Metadata

Figure 1: HDF5 file collection hierarchy

However, flat organization is a special case of hierarchical orga-

nization, where there is only one level in the hierarchy. As such,

we consider metadata indexing and querying using a hierarchical

organization to be generalizable to all self-describing data formats.

In the rest of this paper, our discussion of metadata indexing and

querying will focus on hierarchical organization formats such as

HDF5.

2.2 Metadata Indexing and Querying over
Self-Describing Files

The metadata in self-describing data formats provides users with

descriptive information about the underlying dataset and therefore

is prevalently used for finding required data. In self-describing

data files, the metadata can be seen as a collection of attributes.

Each attribute can be represented as a tuple < k,v >, where k
represents the attribute name and v represents the attribute value.

Finding required data can then be accomplished by issuingmetadata

queries that utilize these key-value pairs. These queries may search

for the identifiers of data files or data objects that match given

query. Each query contains query target T and query condition

Q =< qk ,qv >, where qk and qv are the attribute name and

attribute value, respectively, in the query condition.

Table 1: Structure of metadata queries with a query target

and a query condition

T Q =< qk ,qv >

Data files <BESTEXP, 113919>

Data objects <AUTHOR, John>

According to the Digital Curation Conference (DCC) [10], the

major data types of metadata attributes are strings and numbers.

In particular, the attribute names are of strings and attribute values

are either strings or numbers. Therefore, in this study, we focus

on metadata queries with qk to be a string and qv to be a string or

a number. For example, as shown in Table 1, one metadata query

may ask for the identifiers of data files that contain attribute key-

value pair <BESTEXP, 113919>, where attribute name “BESTEXP”

is a string and its value “113919” is a number. Another metadata

query may look up the identifiers of the data objects with attribute

key-value pair <AUTHOR, John>, where “AUTHOR” is a string and

“John” is also a string.

Most self-describing data formats come with libraries and tools

that enable access to the metadata of each data object in a single

file. However, many contemporary applications tend to store data

into multiple self-describing files instead of a single file [24] in

order to avoid performance issues and to be able to better cope

with different file systems. In such scenarios, even with the libraries

and tools provided by the self-describing data formats, finding the

required data over a large number of self-describing files remains a

challenging task. Due to the lack of libraries to provide metadata

search capabilities over a collection of multiple self-describing files,

scientists have to build external metadata search system on their

own with the help of a database management system (DBMS).

Examples of such DBMS-powered approaches are BIMM [20],

EMPRESS 2.0 [21], JAMO [18], and SPOT Suite [9]. In BIMM [20]

and EMPRESS 2.0 [21], the metadata is stored in relational data-

base management systems (RDBMS), such as PostgreSQL[32] and

SQLite [39]. It is difficult, however, to accurately reflect the hierar-

chical organization of metadata for self-describing files using the

tabular model of RDBMS. Some other solutions, such as JAMO [18]

and SPOT Suite [9], use document database (MongoDB [29] in

particular) to avoid the complexity and effort of transforming meta-

data into tabular format. In these MongoDB-powered solutions,

metadata is transformed into BSON format [7] (the binary format

of JSON [19]) first, and the BSON representation of the metadata

is then stored in MongoDB for efficient metadata search. From

the BSON documents in MongoDB, MongoDB indexes have to be

created on specified attributes to accelerate queries against these

attributes.

However, all database-powered solutions share common draw-

backs. In order to explain these drawbacks, Figure 2 provides an

abstract view of these existing DBMS-powered solutions. As shown

in this figure, the self-describing data files are stored on a shared

file system, and applications running on the HPC system can ac-

cess the data and metadata in these files concurrently. Apart from

the HPC system, an external, dedicated database system is built

to facilitate metadata search. The metadata of the self-describing

data files is first transformed into another format that complies

with the data model of the database system, and is then imported

into the database system. This operation duplicates the metadata

of the self-describing data files and stores them into the external

DBMS. To search metadata, applications on the HPC system have to

issue queries through the client-side APIs of the DBMS. In this case,

metadata queries and the querying results are transmitted over the

network between the HPC system and the database. Such a solution

disregards the self-containing property of self-describing data for-

mats by introducing external data source for metadata management

and hence suffers from the following drawbacks:

• Performance issue: Since applications need to communi-

cate with the external database over the network, the com-

munication overhead can be significant. Particularly, when

applications have a high degree of concurrency, metadata

search queries can overwhelm or throttle the network.

• Storage redundancy: Since the self-describing data files

already contain the metadata, duplicating the metadata in

SC ’19, November 17–22, 2019, Denver, CO, USA Wei Zhang, et al.

Dedicated SystemHPC System

Shared File System

 Application

File
Metadata

……
Metadata Database

Application…

…

Figure 2: A high-level view of database-powered metadata

search solution

any form in DBMS can introduce storage redundancy for

storing an extra copy of the metadata.

• Data model adaption: The data model in a database is

different from that of the metadata in self-describing files. In

the aforementioned DBMS-powered solutions, the metadata

in self-describing files has to be reformatted into either tables

in RDBMS or BSON documents in MongoDB, which requires

extra efforts and time in transforming data formats.

• Schema constraints:The datamodel in RDBMS or document-

based databases require the user to know about the data

schema used in these systems. For example, in a RDBMS,

users have to know on which table an index should be

built and from which table the required data records can

be retrieved from. In MongoDB, the metadata is represented

as BSON document where BSON objects follow the same

hierarchical organization found in the original metadata.

Therefore, when building index for the attributes, the users

must have knowledge on the data schema of the BSON doc-

ument and they have to know the paths to the data ob-

jects where the attributes belong to. As such, when issu-

ing a metadata query in MongoDB, it is necessary for the

users to specify the path to the attribute in the query condi-

tion. For example, if attribute “BESTEXP” belongs to both

object “/3540/55127” and object “/3540/55127/100/coadd”,

users have to explicitly indicate two BSON paths for build-

ing the index on “BESTEXP”:“3540.55127.BESTEXP” and

“3540.55127.100.coadd.BES-TEXP”. Accordingly, when per-

forming a query for “BESTEXP”, users still have to specify

the path of the object containing “BESTEXP” [30]. However,

when building the metadata index and issuing metadata

queries, users are typically aware of only the attribute name

(e.g. “BESTEXP”) and attribute value (e.g. 113919). The hi-

erarchical schema of the metadata is hidden from the users

and the only way to know the path to the owner object of

the attribute is to scan the entire dataset.

• Maintenance demand: The database system runs on top

of the operating system. Consequently, any update to the

database system or operating system can cause compatibility

issues, which require non-trivial efforts in rectifying them.

• Portability and mobility: The external database and the

metadata search solution are not seamlessly integrated into

the self-describing data formats, which introduces complex-

ity in deployment, and significantly affects the mobility of

the data files and the portability of the metadata search solu-

tion.

3 METHODOLOGY

In this section, we introduce MIQS - a novel metadata indexing and

querying service for self-describing data formats. We first present

an overview of the MIQS design, and then introduce the index

construction procedures of MIQS. Afterwards, we introduce how

MIQS serves metadata queries.

3.1 Overview of MIQS Design

MIQS is designed to be a software library providing metadata in-

dexing and querying service that complies with the self-describing

and self-contained data management paradigm and can be inte-

grated into the querying APIs or tools of existing self-describing

data formats such as HDF5 querying module [15]. Without dupli-

cating the metadata that is already included in the self-describing

data files, it only maintains the index of the metadata to facilitate

efficient metadata query. As shown in Figure 3, given a collection

of self-describing files, MIQS allows each process to create and to

maintain a copy of the in-memory index on specified attributes after

scanning the data files. Since the index will maintain the relation-

ship between attribute key-value pairs and file/object paths, even

a full copy of the index will not consume a significant amount of

memory. Once the in-memory index is built, processes can access in-

memory index via the metadata search service provided by MIQS.

In other words, each process is independent and self-contained.

Different from some existing distributed metadata management

solutions [17, 40, 42, 45, 47], MIQS follows a shared-nothing par-

allel architecture which ensures efficient and independent direct

memory access for metadata search without network operations.

HPC System

 Application

MIQS

on

Shared File System

File
Metadata

……
Metadata

…

…

MIQS Index Files

Metadata Indexing and Querying Service

Metadata Search Service

Index Persistence

In-memory Index

Attribute
Name Index

String Value
Index

Numeric
Value Index

Index
Builder

File Path List Object Path List

 Application

MIQS

Metadata Indexing Index Persistence Index ReloadingMetadata Scanning Serving Query

Figure 3: Overview of the architecture of MIQS-based solu-

tion

MIQS: Metadata Indexing andQuerying Service

for Self-Describing File Formats SC ’19, November 17–22, 2019, Denver, CO, USA

Processes with MIQS can also store the in-memory index to on-

disk index files via the index persistence mechanism of MIQS. The

MIQS on-disk file can be included as part of the self-describing file

collection and can be transferred to any place alongside the self-

describing data files. In addition, when transferring a self-describing

dataset to a different HPC site, MIQS can quickly reload its on-disk

index files into memory to reconstruct in-memory index.

This design eliminates the need for a dedicated external database

system. Instead, metadata index files are maintained alongside the

datasets while the in-memory index is integrated into existing

solutions, which are completely self-describing and self-contained.

As a consequence, improved portability and mobility are achieved.

Also, in this design, there is no need to maintain databases or to

know about data schema in order to use the metadata search service.

This design also avoids the effort in adapting data models. Moreover,

it does not duplicate the metadata in self-describing data files into

other data sources like DBMS, which avoids storage redundancy.

The search performance can also be expected to improve since

there is no network communication between applications and an

external database system.

As the datasets in most scientific applications are generated once

and will be read many times for analysis without change [6, 12,

37], our current design does not yet support index updates if a

self-describing dataset is modified while being searched. In such

a scenario, MIQS needs to reconstruct the indexes to continue

performing metadata searches against a modified dataset.

ART
(Attribute Names)

SBST
(Numeric Attribute Values)

… ART
(String Attribute Values)

List<(File_Path_Identifier, Object_Path_Identifier)>

Object Path ListFile Path List

…

…

7

FPFP

60 3

FP FP

1 5

FP FP

4

FP

2

FP

…

…

7

OPOP

60 3

OP OP

1 5

OP OP

4

OP

2

OP

FP = File Path OP = Object Path

Figure 4: MIQS index data structures

3.1.1 In-memory Index. As shown in Figure 4, in MIQS, the in-

memory index contains:

(1) Two path lists serving asmapping tables between path strings

and integer identifiers. We use this data structure to store

both global file path and global object path mapping tables.

In this study, we use the tagged linked list from libhl [2] to

implement this functionality.

(2) A root-level adaptive radix tree (ART) [22] for the attribute

keys (name strings).

(3) A secondary tree-based index at each leaf node of the root-

level ART. The secondary indexes are designed for indexing

attribute values using a self-balancing search tree (SBST) [36]

for numeric values and an ART for string values. (In MIQS,

we use the red-black tree in libhl [2] for the implementation

of SBST.)

(4) A list containing multiple tuples at each leaf node of each

secondary index where each tuple contains the file path

identifier and the object path identifier. These identifiers cor-

respond to those found in the global file path lists and global

object path list which helps avoid storing space-consuming

strings, i.e. the repetitive file and object paths.

This combination of ARTs and SBSTs is able to support exact

queries on attribute names, string attribute values and numeri-

cal attribute values. Also, it opens the possibility for prefix/suffix

queries on attribute names and string attribute values as well as

range query on numbers. In this study, our major contribution is

to eliminate 3rd-party data sources and maintain the property of

the self-contained data management paradigm. Therefore, we only

discuss exact queries on strings and numbers in order to showcase

the benefit of the self-contained and portable design of MIQS. Fur-

thermore, as a result of the direct access to the local in-memory

index, both index construction and metadata search are expected

to be much more efficient than database-powered solutions.

3.1.2 Index Persistence Mechanism. The MIQS index files are de-

signed to permanently store indexes, alongside the corresponding

self-describing datasets. An index file can then be loaded into mem-

ory quickly for metadata searches when an application uses the

dataset. It can also be used to help with the recovery of the metadata

querying service if the application process is terminated. These in-

dex files can be transferred along with the self-describing data files,

so that applications integrated with MIQS can perform efficient

metadata queries with minimal effort devoted to setting up the

metadata search service.

3.1.3 Schema-Free Metadata Index Model. As mentioned in Sec-

tion 2.2, in the DBMS-powered solutions, the indexing and querying

procedures always require information about the data schema. In

MIQS, when building the index, users only have to specify the name

of the attributes without knowing the host of the attributes. MIQS

will match every attribute with the specified name, regardless of

the hierarchical schema of the metadata. Also, for metadata search,

users only need to be aware of the type of query target, the query

attribute name qk and the query attribute value qv in the query

condition. Users do not need to know the specific structures of the

metadata. There is also no need to support a full-fledged SQL-like

query language.

3.1.4 Portability and Mobility. As discussed in 3.1.2, MIQS stores

the index files alongside the self-describing files. Consequently,

whenever the combined self-describing files and index files arrive

at a scientific computing facility, and the metadata indexing and

querying service can be immediately put to use once the dataset is

prepared and the application is deployed. This practice conforms

to the self-contained data management paradigm. Therefore, we

consider the portability and mobility of the MIQS solution for self-

describing files to be favorable when compared to DBMS-powered

metadata search solutions.

SC ’19, November 17–22, 2019, Denver, CO, USA Wei Zhang, et al.

3.2 Index Construction

In MIQS, there are two types of index construction procedures. The

first is to build the index from scratch, which involves metadata

scanning (optional), metadata indexing and index persistence. We

call this procedure “initial indexing”. The other is called “index

reloading”. As shown in Figure 3, for initial indexing, the MIQS

index builder has to retrieve metadata attributes from the self-

describing data files. This is done by scanning the metadata in

an existing set of files or by receiving the attributes in an in-situ

fashion when the data files are generated. When an attribute is

encountered, the index builder retrieves the attribute name and

value, along with the corresponding object and file path and creates

an index in the memory. After the metadata scanning and indexing

are finished, MIQS stores the in-memory index into the MIQS index

files using its index persistence mechanism. For index reloading,

the MIQS index builder can load all the MIQS index files to rebuild

the in-memory index. Our compact index file format is designed

to support rapid index recovery. Next, we will describe the initial

indexing procedure in detail.

3.3 Initial Indexing

When MIQS index files do not exist yet, we perform initial in-

dexing procedure. The initial indexing procedure includes three

sub-procedures, which are metadata scanning (optional), metadata

indexing, and index persistence.

3.3.1 Metadata Scanning. When building metadata index on an

existing set of data files for the first time, MIQS will perform meta-

data scanning procedure. Since MIQS is designed for applications

running in a parallel environment on HPC systems, MIQS leverages

parallelism starting from the index construction phase. Consider a

parallel application with n processes where process rank r ranges
from 0 ton−1. In this scenario, each process maintains a file counter,
given as f ile_counter , and that is incremented each time a file is
encountered during metadata scanning. The following equation

can be used to determine whether or not a given file should be

scanned:

p = f ile_counter%n (1)

When p = r , process r will perform metadata scanning on the

encountered file; otherwise, it will skip this file and continue. By

utilizing this mechanism, MIQS is able to leverage data parallelism

across different data files and to avoid the I/O contention occurred

when multiple processes are accessing the same data file concur-

rently.

During the metadata scanning procedure, theMIQS index builder

scans four elements from a self-describing file collection (as shown

in Figure 5). These elements include :

• The directory that contains the self-describing files. We call

this directory the root directory of the data file collection

(we use root directory for this meaning in the rest of this

paper).

• The self-describing data files.

• The objects in the self-describing files, including groups and

datasets.

• The metadata attributes attached to each data object in the

self-describing data file.

Directory File Object Attributes

Figure 5: Four elements in MIQS metadata scanning. The ar-

row shows inclusive relationship.

For scanning metadata, MIQS defines a series of operations on

the aforementioned four elements. All these procedures take a

global memory pointer called index_anchor as a parameter. This
memory pointer references the address of the MIQS index root. As

part of each procedure, MIQS recursively scans the files of each

sub-directory within the root directory.

For each file scanned, MIQS invokes the OnFile procedure. For

every object within a file, the OnObject is called with the file path

and the object path as parameters.

In the OnObject procedure, MIQS extracts the metadata at-

tributes for the encountered data object and prepares the index

record for each attribute. Since multiple attributes may share the

same set of file and object paths, if MIQS stores the path strings

alongside each attribute key-value pair, these path strings will

be repeated among index records of different attributes for many

times. The repetition of path strings will lead to significant mem-

ory overhead. Thus, for each attribute to be indexed, MIQS takes

the related file and object paths, puts them into the file path list

and object path list, respectively, and records their integer iden-

tifiers. Afterwards, both identifiers are combined into a tuple t =
{ f ile_path_identi f ier ,object_path_identi f ier }. This design re-
places space-consuming path strings that are of variable lengths

with fixed-size and space-saving integers. Based on the key and

value of the attributes, MIQS is then able to build an index for

the attribute with tuple t by calling the CreateIndex procedure.
When finished, MIQS recursively scans and invokes the OnObject

procedure on any existing child objects.

3.3.2 Metadata Indexing. Given the metadata attribute name key
and attribute value value , along with the tuple t storing the path
identifiers of the file and the data object which the metadata at-

tribute comes from, MIQS performs the metadata indexing proce-

dure. As shown in Algorithm 1, in the CreateIndex procedure,

MIQS first extracts the root ART from the index anchor (which is a

global pointer to the in-memory index) and then inserts the attribute

name into it. By doing so, MIQS is able to locate the corresponding

leaf node of the attribute name at the root-level adaptive radix tree

(a.k.a ART) where a self-balancing search tree (a.k.a SBST) or an

ART places its root. If it is a numeric value, MIQS inserts the value

into the SBST and inserts the tuple t into the list which is linked to
the corresponding leaf node. Likewise, if it is a string, MIQS inserts

it into the ART and links the tuple with the corresponding leaf node

of the ART.

After the metadata indexing procedure, each process of the par-

allel application maintains partial indexes for approximately 1/n of
the metadata in the entire self-describing file collection. The index

persistence mechanism ensure that each process gets a full copy of

the index for the entire file collection.

MIQS: Metadata Indexing andQuerying Service

for Self-Describing File Formats SC ’19, November 17–22, 2019, Denver, CO, USA

Algorithm 1 Create Index

1: procedure CreateIndex(key, value, t , index_anchor)
2: ARTroot ← index_anchor
3: lea fk ← insert_into_ART (key,ARTroot)
4: if value is a string then
5: ARTvalue ← дet_ART (lea fk).
6: lea fv ← insert_into_ART (value,ARTvalue).
7: link(lea fv , t).
8: else if value is a number then
9: SBSTvalue ← дet_SBST (lea fk).
10: lea fv ← insert_into_SBST (value, SBSTvalue)
11: link(lea fv , t).
12: end if

13: end procedure

3.3.3 Index Persistence. Once theMIQS index builder finishesmeta-

data indexing for the metadata in all data files, the MIQS index

persistence mechanism is invoked and the in-memory metadata

index is stored onto disk.

Figure 6 shows the layout of MIQS compact index file format

and how the in-memory index is stored in such a format. When

MIQS Compact Index File MIQS In-Memory Index

Object List Region

File List Region

Attribute Region
Path 0 ID 0

Number of Paths

……

Attribute Block

Number of Attributes

Attribute Type

Value block 0

Value block n

Attribute Name

Number of Attribute Values

……

Attribute Value

FOIP n

Number of FOIP
(File-Object ID Pair)

FOIP 0

……

Object Path ID

File Path ID

Attribute Trees

Object Path List

File Path List

…
…

7
FPFP

60 3
FP FP

1 5
FP FP

4
FP
2

FP

…

…

7

OPOP

60 3

OP OP

1 5

OP OP

4

OP

2

OP

FP = File Path

OP = Object Path

Figure 6: MIQS compact index file format

persisting the in-memory index, MIQS first writes the file path list

and object path list in succession. Each path list is persisted as a

frame that starts with a frame header. The frame header contains

an integer number that represents the number of items in the path

list. After the frame header, the items in the path list are stored as a

series of item blocks. Each block contains the path string and also

the numeric identifier.

After file list frame and object list frame, there is the attribute

frame. The attribute frame also starts with a frame header con-

taining the total number of attributes that are maintained in the

in-memory index. After the frame header, there are a series of

attribute blocks.

The attribute block starts with the attribute header containing

the attribute name, the data type of the attribute and the number of

unique attribute values. We differentiate three data types supported

in MIQS: an integer value type (including all sizes of integers), a

floating-point value type, and a string type. Since each attribute

may have different attribute values of the same data type, MIQS

records the number of unique attribute values at the end of the

attribute header and then write a series of attribute value blocks

(or value blocks for short) after it.

Each value block starts with the actual attribute value, the num-

ber of matched File-Object ID pairs (FOIPs) - the tuples created in

OnObject procedure, and then the actual FOIP containing the file

path identifier and the object path identifier.

MIQS 2

MIQS 0

MIQS 1

Index
Persistence Index Recovery

MIQS 0

MIQS 1

Index
File 0

Index
File 1

MIQS 2
Index
File 2

MIQS 1

MIQS 2

MIQS 0

MIQS 0

MIQS 1

MIQS 2

WR RD 0 RD 1 RD 2

Time Steps

Retrospective Loading

Figure 7: MIQS parallel index file access. “WR” stands for

write operation, “RD” stands for read operation.

Following the above procedure, each process will write its own

in-memory index into a separate index file with the process rank

in the index file name (shown as “WR” step in Figure 7). Thus far,

the index persistence procedure is finished.

3.4 Index Loading

3.4.1 Retrospective Loading. After the index persistence procedure,

each process only maintains the index of the files it has scanned.

In order to have a full copy of the index of the entire file collection,

MIQS performs “retrospective loading” procedure. For an appli-

cation with n processes, after these processes finish their own index
persistence procedure, each process r (0 ≤ r < n)will taken−1 “RD”
steps (as shown in Figure 7) to read the n − 1 index files generated

by other processes. At each “RD” step s(0 ≤ s < n − 1), process r
reads index file f = (n + r − s − 1)%n and loads the index record
into its own in-memory index. After s “RD” steps, each process will
have a full copy of the entire metadata index. As shown in Figure 7,

at RD step 0 and 1, process 0 reads index file 2 and 1 respectively,

process 1 reads index file 0 and 2 respectively, and process 2 reads

index file 1 and 0 respectively. In this way, we can guarantee that no

index files will be accessed by multiple processes simultaneously.

After the retrospective loading procedure, each process will have

a full copy of the metadata index on the entire self-describing file

collection.

3.4.2 Index Reloading. MIQS stores the metadata index in the

MIQS index file. Therefore, when applications need to be restarted

or deployed at another HPC facility, MIQS can simply reload the

index files and get ready for query processing. By following the data

SC ’19, November 17–22, 2019, Denver, CO, USA Wei Zhang, et al.

layout in the MIQS index file format, the MIQS index builder reads

each attribute frame, retrieves the corresponding index records and

loads them into the in-memory index. Utilizing the same index

file loading procedure as in retrospective loading, MIQS performs

one more RD step to load a full copy of the metadata index for

each process when performing index reloading. For example, as

shown in Figure 7, three processes have stored their in-memory

index into three different index files at the WR step when writing

in-memory index to index files. After shifting the index file read

in the consequent two RD steps by following the same procedure

as in retrospective loading, process 0 loads file 0 at RD step 2, pro-

cess 1 loads file 1 and process 2 loads file 2. Once completed, all

three processes have the same full copy of the metadata in-memory

index.

3.5 Serving Queries

In order to process metadata queries, MIQS follows the procedure

described in Algorithm 2. MIQS first searches the root level of

the ART to locate leaf node lea fk which has a matching attribute
name. Then, based on the data type of the attribute value, MIQS

starts from leaf node lea fk and searches through either the ART or

the SBST associated with lea fk . When searching the appropriate

tree for attribute values, the relationship R is passed to the search

function in order to find appropriate leaf nodes which satisfy the

specified relationship between itself and the given attribute value.

Once the leaf nodes are found, the lists of tuples containing the path

identifiers to the owner files and the owner object can be retrieved.

After looking up the file path list and the object path list with the

identifier of each file path or object path, the actual file paths and

object paths are retrieved and returned as the search result.

Algorithm 2 Serving Query

1: procedure ServingQuery(key, R, value , index_anchor)
2: ARTroot ← index_anchor
3: lea fk ← search_ART (key,ARTroot)
4: if value is a string then
5: ARTvalue ← дet_ART (lea fk).
6: lea fv ← search_ART (value,R,ARTvalue).
7: result ← дet_tuple_list(lea fv).
8: else if value is a number then
9: SBSTvalue ← дet_SBST (lea fk).
10: lea fv ← search_SBST (value,R, SBSTvalue)
11: result ← дet_tuple_list(lea fv).
12: end if

13: return result
14: end procedure

Each process with MIQS can perform metadata searching, and,

as a result of the shared-nothing architecture of MIQS, no com-

munication is needed among these processes. Consequently, the

throughput of the search performance is expected to be propor-

tional to the number of processes, which makes the metadata search

process highly scalable. Also, as there is no communication with

other data sources like DBMS, the search latency is expected to be

small.

4 EVALUATION

MIQS is designed to provide an efficient metadata search service

that complies with the self-contained data management paradigm.

In this section, we show howMIQS is suitable for the self-describing

and self-contained data management solution by reporting the

evaluation results of index construction performance, query per-

formance, and storage overhead. In our evaluation, we compare

MIQS with a MongoDB-powered metadata search solution which

we consider to be a typical example of DBMS-based solution as

the document-based data model of the MongoDB is more flexible

than RDBMS-based solutions and hence is better suited for both

hierarchical and flat metadata organization. As such, we do not

compare against RDBMS solutions in this paper. Also, for fair com-

parison, we evaluate both solutions by building metadata index

while scanning a set of HDF5 files, since we did not find any in-situ

index construction use case through our investigation study on

MongoDB solutions.

4.1 Experimental Setup

4.1.1 Platform. We conducted our evaluation of MIQS on the Edi-

son supercomputer hosted at the National Energy Research Sci-

entific Computing Center (NERSC). This system consists of 5586

“Ivy Bridge” compute nodes, where each node features two 12-core

Intel® “Ivy Bridge” processors at 2.4GHz and 64 GB of DDR3 1866

memory. The Edison employs a Cray Aries interconnect with Drag-

onfly topology and 23.7 TB/s global bandwidth. The compute nodes

use GPFS for its home directory and multiple Lustre file systems as

scratch spaces. We used a 30 PB Lustre file system with over 700

GB/s peak I/O bandwidth for our evaluation.

For the comparison experiment against MongoDB, we used the

MongoDB instance that is also maintained by NERSC. It is installed

on a separate machine that can be accessed from the Edison com-

pute nodes through an Infiniband network with 56 Gb/s bandwidth.

The host machine of MongoDB has two 16-core Intel® Xeon™ pro-

cessors E5-2698 v3 ("Haswell") at 2.3 GHz and 128 GB of DDR4 2133

MHz memory. It features a 6 TB 7200rpm HDD with 6 Gb/s SAS

interface. The MongoDB was initialized with the default configu-

ration, which enables data compression on top of the WiredTiger

storage engine [44].

4.1.2 Dataset. Our dataset contains a set of 100 real-world HDF5

files coming from the Baryon Oscillation Spectroscopic Survey

(BOSS) [5]. The total data size of these 100 HDF5 files on disk is

approximately 145GB with 144 million attribute key-value pairs

attached to 1.5 million data objects (roughly 96 attribute key-value

pairs on each object). Figure 8 summarizes the statistics of this

dataset. The sizes of the files range from 400MB to 2.2GB (shown

in Figure 8a). The number of objects per file spans between 4,800

to 23,000 (shown in Figure 8b). With over 250 different attributes

attached to different data objects in each file, the number of attribute

key-value pairs per file ranges from 300,000 to 2,300,000 (Figure 8c).

4.1.3 Evaluation Procedure. In our evaluation, we built two test

drivers - the MongoDB test driver and the MIQS test driver. Both

test drivers are MPI programs implemented with metadata indexing

and querying functions. For the evaluation on MongoDB and MIQS,

MIQS: Metadata Indexing andQuerying Service

for Self-Describing File Formats SC ’19, November 17–22, 2019, Denver, CO, USA

0
0.5

1
1.5

2
2.5

File Size (GB)

0
0.5

1
1.5

2
2.5

File Size (GB)

(a)

0
5

10
15
20
25

Number of Objects(×1k)

0
5

10
15
20
25

Number of Objects(×1k)

(b)

0
0.5

1
1.5

2
2.5

Number of K-V Pairs(×1m)

0
0.5

1
1.5

2
2.5

Number of K-V Pairs(×1m)

(c)

Figure 8: Statistics of datasets

we performed 5 test rounds and for each test round r = {1, 2, 3, 4, 5}
we ran 20 × r processes for each test driver and we bound each
process to a single core of the CPU and a different HDF5 file. As

there are two 12-core CPUs on each compute node, each test round

r uses r compute nodes for running 20 × r processes.

20 40 60 80 100

Number of Objects 257353 537487 828690 1198301 1590881

Number of K-V Pairs 20905975 45336951 72119206 106462728 144570022

Total Size of Files(GB) 23.41 48.75 75.39 109.11 145.19

0

50

100

150

200

0.00
0.00
0.00
0.00
0.07
1.05

16.78
268.44

G
ig
ab
yt
es

C
ou
n
t(
m
il
li
on
)

Number of Scanned Files/Number of Processes

Figure 9: Dataset size at each test round

Figure 9 shows the size of the dataset being scanned at each test

round, including the number of scanned objects and the number

of scanned attribute key-value pairs in log-scale (the left log-scale

axis with base 2), and the total size of the indexed files in gigabytes

(the right axis).

For the evaluation on MongoDB, due to the schema constraints

discussed in Section 2.2, it is impossible to know the paths to

the owner objects of all the attributes without scanning the en-

tire dataset. Therefore, we selected 16 representative metadata

attributes with known owner object paths for creating attribute

indexes. As shown in the first and second column of Table 2, these

16 attributes include 5 most frequently occurring integer attributes,

5 most frequently occurring float attributes, and 6 most frequently

occurring string attributes. We consider the number and the diver-

sity of these attributes to be sufficient for simulating real-world

metadata search scenarios.

In order to build the metadata index on MongoDB at each test

round, we first sent index creation commands toMongoDB to create

indexes on these 16 attributes. Each test driver process then scanned

a single HDF5 file and transformed the HDF5 metadata into several

BSON documents that are smaller than 16MB [1]. These documents

were then inserted into MongoDB. We believe, based on our study

of MongoDB-based solutions, that this practice is necessary and in

accordance with the realistic MongoDB-based use cases.

We evaluated MIQS for 10 test rounds. In the first 5 rounds, we

ran MIQS test drivers with the settings shown in Figure 9, and

created indexes for the 16 attributes we selected in Table 2. For the

second set of five test rounds, we used the same settings but we let

Table 2: Attributes and sample query conditions

Data Type Attributes Sample Query Conditions

Integer

BESTEXP

DARKTIME

BADPIXEL

COLLB

HIGHREJ

BESTEXP=103179

DARKTIME=0

BADPIXEL= 155701

COLLB=26660

HIGHREJ=8

Floating-point

HELIO_RV

IOFFSTD

CRVAL1

M1PISTON

FBADPIX2

HELIO_RV=26.6203

IOFFSTD=0.0133138

CRVAL1=3.5528

M1PISTON=661.53

FBADPIX2=0.231077

String

AUTHOR

FILENAME

EXPOSURE

LAMPLIST

COMMENT

DAQVER

AUTHOR=“Scott Burles & David Schlegel”

FILENAME=“badpixels-56149-b1.fits.gz”

EXPOSURE=“sdR-b2-00154990.fit”

LAMPLIST=“lamphgcdne.dat”

COMMENT=“sp2blue cards follow”

DAQVER=“1.2.7”

the test driver index every attribute it encountered while scanning

the HDF5 files.

Throughout our evaluation, we refer to the index construction

procedure as “indexing”, a file or attribute that has been scanned as

“scanned file” or “scanned attribute”, and a file or attribute that has

been successfully indexed as “indexed file” or “indexed attribute”.

After indexing, both test drivers performed 1,024metadata queries

from each process against their target data sources - MongoDB

and MIQS indexes, respectively. Each query asked for identifiers

of objects that match with the given query condition. Our query

conditions covered the 16 selected attributes with non-repetitive

attribute values of three different data types - integer, floating-point,

and string. Thus, these 1,024 metadata queries covered 64 different

values for each selected attribute. The last column in Table 2 shows

selected sample query conditions for each data type from the 1,024

queries we issued.

4.2 Index Construction Time

Index construction time is very important to a metadata search ser-

vice for large-scale self-describing datasets. It determines the time

for getting metadata index ready to use and hence has a significant

impact on the entire software life cycle when the metadata search

service is integrated.

Figure 10 shows the index construction time for MongoDB and

MIQS during the 5 test rounds. For MongoDB, the total indexing

time needed to create indexes for the 16 specified attributes ranged

from 373 to 587 seconds. In comparison, when indexes were con-

structed on the same set of 16 attributes in MIQS, the indexing time

ranged from 194 seconds to 310 seconds, which is approximately

half of the indexing time ofMongoDB.We also tested indexing all at-

tributes in MIQS and the indexing time ranged from 533 seconds to

860 seconds. Finally, we tested building the in-memory index from

the MIQS index files. The time required for loading 16-attribute

index files varied from 3 seconds to 27 seconds, approximately a

95%-99% time reduction compared to MongoDB-powered solution.

Moreover, MIQS was able to load the index files for all attributes in

SC ’19, November 17–22, 2019, Denver, CO, USA Wei Zhang, et al.

10.3 - 112 seconds, which is equivalent to only 2% - 19% of the time

taken by the MongoDB-powered solution.

0

500

1000

20 40 60 80 100

Ti
m

e
(S

ec
on

ds
)

Number of Indexed HDF5 Files

MIQS Indexing 16 MIQS Recover 16
MIQS Indexing All MIQS Recover All

MongoDB Indexing 16

Figure 10: Time for index construction

For a better understanding on this result, we further decompose

the indexing time. As shown in Figure 11, the time spent scanning

HDF5 files was roughly the same, approximately 200 seconds, for

both the MongoDB solution and MIQS, regardless of the number

of indexed attributes (Figure 11a, 11b, and 11c). However, the Mon-

goDB test driver also spent 200 to 359 seconds for inserting the

metadata BSON [7] documents into MongoDB via network. The to-

tal time spent inserting BSON documents is 1.5 - 2× the time spent

scanning HDF5 files and is significant given only 16 attributes were

indexed (Figure 11a). In fact, this time may include time spent trans-

ferring BSON documents over the network and performing I/O

operations at the MongoDB server.

The time for inserting BSON documents was even 1.5 to 2 times

of the time spent for scanning the HDF5 data files, and this may

include the time for transferring the BSON document over the

network and also the I/O operation occurred at MongoDB server.

Apart from the data file scanning procedure, building the actual in-

memory indexes for 16 attributes only took 24-32 seconds for MIQS,

while index persistence and index retrospective loading only took 3

to 28 seconds (Figure 11b). For indexing all attributes, MIQS spent

287 to 470 seconds building the in-memory indexes and the index

persistence and retrospective loading only took 21 to 114 seconds

(Figure 11c). This is quite comparable to the metadata indexing time

in MongoDB; however, MIQS built indexes for all attributes while

only 16 attributes were indexed in MongoDB.

Figure 11d illustrates the case where self-describing data files are

transferred to a new site and the in-memory index has to be reloaded

from the index files in MIQS. It took less than 40 seconds to load

metadata indexes on 16 attributes utilizing up to 100 processes to

initialize the metadata search service. The metadata search service

can be initialized within 2 minutes when loading the metadata

indexes of all attributes.

Overall, our evaluation on index construction time indicates

that MIQS requires much less time than the MongoDB-powered

solutions. It can also be rapidly deployed in the case where metadata

index files already exist. Consequently, applications with MIQS can

begin to perform metadata query much earlier than with MongoDB.

0

100

200

300

400

500

600

20 40 60 80 100

Se
co

nd
s

Number of Indexed HDF5 Files

MongoDB Scanning MongoDB Inserting

(a) MongoDB(16 attributes)

0

100

200

300

400

20 40 60 80 100

Se
co
nd
s

Number of Indexed HDF5 Files

(b) MIQS (16 attributes)

0

200

400

600

800

1000

20 40 60 80 100

Se
co

nd
s

Number of Indexed HDF5 Files

(c) MIQS (all attributes)

0

20

40

60

80

100

120

20 40 60 80 100

Se
co

nd
s

Number of Indexed HDF5 Files

MIQS Recover 16 MIQS Recover All

(d) MIQS Index Recovery Time

Figure 11: Breakdown analysis of indexing time

4.3 Query Performance

Query performance is critical to a metadata search service. By

utilizing an in-memory shared-nothing parallel architecture, MIQS

delivers an efficient metadata search service.

20 40 60 80 100

MongoDB Throughput 419.68 764.71 645.81 397.31 319.21

MIQS Throughput 72290857.75 145557924.7 206509439.2 285721759.6 363494373.6

0.001

1

1000

1000000

T
h

ro
u

gh
p

u
t (

k
Q

P
S

)

Number of Processes

Figure 12: Query throughput comparison (kQPS)

As reported in Figure 12, for an application with 20 processes,

the overall query throughput of MIQS was 72.2 billion queries

per second while the MongoDB only achieved 419.7k queries per

second. This is a drastic performance improvement of over 172,000×
speedup. As shown in the figure, the query throughput of MIQS

scales almost linearly with the number of processes, and ranges

from 72.2 billion QPS all the way up to 363.4 billion QPS. However,

the MongoDB query throughput only slightly increased to 764.7

kQPS when queries were issued by 40 processes and dropped from

645.8 kQPS to 319.2 kQPS when the number of processes increased

from 60 to 100.

The query latency is depicted in Figure 13. Although the la-

tency of each query in MongoDB remains steady around 0.28 to

0.29 milliseconds, as the number of processes increases from 20

to 100, the query latency dramatically increases from 47 seconds

all the way up to 313 seconds. This is almost equal to the time

MIQS: Metadata Indexing andQuerying Service

for Self-Describing File Formats SC ’19, November 17–22, 2019, Denver, CO, USA

20 40 60 80 100

MongoDB Latency 47655 52307 92906 201351 313272

MIQS Latency 0.28 0.29 0.29 0.28 0.28

0
100
200
300
400

L
at

en
cy

 (m
s)

Number of Processes

Figure 13: Query latency comparison(ms)

spent scanning 100 HDF5 data files during our index construction

experiment. These results confirm that, as a benefit of following

the self-contained data management paradigm, MIQS outperforms

MongoDB-powered solutions and delivers superior query perfor-

mance for metadata searches.

4.4 Storage Consumption

MIQS is designed as an in-memorymetadata search service wherein

processes have their own full copy of the metadata index. Thus, the

memory footprint has to be small. In addition, the storage consump-

tion must be minimized so that the index files can be integrated

into existing self-describing file collections without significantly

increasing the size of the dataset.

In our evaluation, we collected MongoDB storage consumption

statistics using the administrative command “dbStats”. The result

of this command includes the “indexSize” field which represents

the total size of the indexes and also the “dataSize” field which

represents the overall storage consumption of MongoDB. The stor-

age overhead for maintaining BSON documents in MongoDB is

then given by the difference between “dataSize” and “indexSize”.

For the memory consumption of MIQS, we track every memory

allocation required by the indexing data structures. For storage

consumption, we measure and analyze the size of MIQS index files.

Figure 14 shows the storage consumption comparison between

MongoDB and MIQS. As shown in Figure 14a, when the index is

built against only 16 attributes, the total storage consumption of

MongoDB ranges from about 680 MB to approximately 4.2 GB.

Regardless of scale, the index size in MongoDB occupies only about

20% of the overall storage space consumption while 80% is used to

store metadata BSON documents.

When it comes to MIQS, as depicted in Figure 14b, the total

storage consumption for indexing 16 attributes does not exceed 0.6

GB at any scale. The index files consume roughly the same amount

of space on disk as the in-memory index consumes in the memory.

For our largest test, MIQS reduces the total storage consumption

by about 75.4% when compared to MongoDB.

Indexing all attributes inMIQS yields a total storage consumption

that ranges from 1.5GB to 7.8 GB where the in-memory index

consumes half of the total storage space (Figure 14c). Although the

total storage consumption of MIQS is twice that of MongoDB, MIQS

indexes all attributes while MongoDB indexes only 16. Further,

MongoDB wastes storage space storing duplicated metadata that

already exists in the self-describing data files.

Figure 14d shows the overall storage consumption in parallel

scenarios where the number of processes increases from 20 to 100.

0

1

2

3

4

5

20 40 60 80 100

St
or

ag
e

C
on

su
m

pt
io

n
(G

B
)

Total Number of Indexed Files

BSON Documents Index Size

(a) MongoDB(16 attributes)

0

0.1

0.2

0.3

0.4

0.5

0.6

20 40 60 80 100

St
or

ag
e

C
on

su
m

pt
io

n
(G

B
)

Total Number of Indexed Files

MIQS Index File MIQS In-memory Index

(b) MIQS (16 attributes)

0

2

4

6

8

10

20 40 60 80 100

St
or

ag
e

C
on

su
m

pt
io

n
(G

B
)

Number of Indexed Files

MIQS Index File MIQS In-memory Index

(c) MIQS (all attributes)

0.000001

0.0001

0.01

1

100

20 40 60 80 100

St
or

ag
e

C
on

su
m

pt
io

n
(G

B
)

Number of Processes

MIQS Index File MIQS In-Memory Index

(d) MIQS (parallel, 16 attributes)

Figure 14: Breakdown analysis on memory consumption

As illustrated in the figure, parallel applications with MIQS con-

sume up to approximately 30 GB of storage space when indexing

16 attributes. However, considering that each process only needs to

maintain around 600 MB of memory for metadata search service,

which provides the high query throughput we have reported in the

previous section, we believe the storage consumed by the index is

worthwhile. The low storage consumption of MIQS further rein-

forces the idea that the design of MIQS complies with self-contained

data management paradigm.

4.5 Summary of Evaluation

MIQS is designed as a metadata indexing and querying service that

follows the self-contained data management paradigm. From our

evaluation, we can discern three significant benefits that result from

adherence to this paradigm: schema-free metadata indexing (MIQS

was capable of indexing and querying all attributes but MongoDB

was not), rapid index construction (hundreds of seconds saved in

MIQS as compared to MongoDB) and superior search performance

(172k× throughput improvement compared to MongoDB-powered

solution). Our evaluation also shows that MIQS takes only a small

amount of memory and that the small size of its index files en-

hances portability. Our results demonstrate the promise of MIQS

and present a rationale for integration with existing self-describing

and self-contained data management solutions.

5 CONCLUSION & FUTUREWORK

Self-describing data formats store metadata alongside the data

objects themselves. Existing metadata search services for these

self-describing data formats are primarily built upon external data-

base management systems (DBMS). Unfortunately, these solutions

disregard the principle of self-describing and self-contained data

SC ’19, November 17–22, 2019, Denver, CO, USA Wei Zhang, et al.

management paradigm, hinder schema-transparency and portabil-

ity and hence introduce additional complexity in deployment and

maintenance.

In this paper, we have proposed the Metadata Indexing and

Querying Service (MIQS) for efficient metadata search on self-

describing file formats such as HDF5. MIQS provides portable and

schema-free indexing and querying solution that complies with the

self-contained data management paradigm. It eliminates the neces-

sity of maintaining a disjoint data source that duplicates metadata

and thereby requires a smaller overall storage footprint, as com-

pared to the DBMS-powered solutions. We have conducted exten-

sive evaluations to compare MIQS against a state-of-the-art DBMS-

based metadata querying solution - the MongoDB-powered meta-

data querying service. MIQS significantly outperforms MongoDB-

powered solution in both index construction and metadata search.

More importantly, our evaluation shows that MIQS complies with

the self-contained data management principle of self-describing

data formats.

At the time of writing this paper, we are in contact with the

HDF5 developers to make MIQS available as an indexing and query-

ing component for the HDF5 library. In the future, we will enhance

MIQS to support complex queries on compound data types in addi-

tion to numeric values or strings.

ACKNOWLEDGMENTS

We are thankful to the anonymous reviewers for their valuable

feedback. This research is supported in part by the National Science

Foundation under grant CNS-1338078, CNS-1362134, CCF-1409946,

CCF-1718336, OAC-1835892, and CNS-1817094. This work is sup-

ported in part by the Director, Office of Science, Office of Advanced

Scientific Computing Research, of the U.S. Department of Energy

under Contract No. DE-AC02-05CH11231. (Project: EOD-HDF5:

Experimental and Observational Data enhancements to HDF5, Pro-

gram managers: Dr. Laura Biven and Dr. Lucy Nowell). This re-

search used resources of the National Energy Research Scientific

Computing Center (NERSC), a DOE Office of Science User Facility.

REFERENCES
[1] 2018. MongoDB Limits and Thresholds. https://docs.mongodb.com/manual/

reference/limits/.
[2] 2018. Simple and fast C library implementing a thread-safe API to manage hash-

tables, linked lists, lock-free ring buffers and queues. https://github.com/xant/
libhl.

[3] MG Aartsen, K Abraham, M Ackermann, J Adams, JA Aguilar, M Ahlers, M
Ahrens, D Altmann, K Andeen, T Anderson, et al. 2016. Search for sources of
High-Energy neutrons with four years of data from the Icetop Detector. The
Astrophysical Journal 830, 2 (2016), 129.

[4] MG Aartsen, M Ackermann, J Adams, JA Aguilar, Markus Ahlers, M Ahrens,
I Al Samarai, D Altmann, K Andeen, T Anderson, et al. 2017. Constraints on
galactic neutrino emission with seven years of IceCube data. The Astrophysical
Journal 849, 1 (2017), 67.

[5] Christopher P Ahn, Rachael Alexandroff, Carlos Allende Prieto, Scott F Anderson,
Timothy Anderton, Brett H Andrews, Éric Aubourg, Stephen Bailey, Eduardo
Balbinot, Rory Barnes, et al. 2012. The ninth data release of the Sloan Digi-
tal Sky Survey: first spectroscopic data from the SDSS-III Baryon Oscillation
Spectroscopic Survey. The Astrophysical Journal Supplement Series 203, 2 (2012),
21.

[6] Shadab Alam, Metin Ata, Stephen Bailey, Florian Beutler, Dmitry Bizyaev,
Jonathan A Blazek, Adam S Bolton, Joel R Brownstein, Angela Burden, Chia-
Hsun Chuang, et al. 2017. The clustering of galaxies in the completed SDSS-III
Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12
galaxy sample. Monthly Notices of the Royal Astronomical Society 470, 3 (2017),
2617–2652.

[7] bsonspec.org. 2018. BinÂŋary JSON Specification. http://bsonspec.org/spec.html.
[8] Chi Chen, Zhi Deng, Richard Tran, Hanmei Tang, Iek-Heng Chu, and Shyue Ping

Ong. 2017. Accurate force field for molybdenum by machine learning large
materials data. Physical Review Materials 1, 4 (2017), 043603.

[9] Tull Craig E., Essiari Abdelilah, Gunter Dan, et al. 2013. The SPOT Suite project.
http://spot.nersc.gov/.

[10] Digital Curation Conference (DCC). 2018. Scientific Metadata. http:
//www.dcc.ac.uk/resources/curation-reference-manual/chapters-production/
scientific-metadata.

[11] Jeffrey J Donatelli, James A Sethian, and Peter H Zwart. 2017. Reconstruction
from limited single-particle diffraction data via simultaneous determination of
state, orientation, intensity, and phase. Proceedings of the National Academy of
Sciences 114, 28 (2017), 7222–7227.

[12] Bin Dong, Surendra Byna, and Kesheng Wu. 2015. Spatially clustered join on
heterogeneous scientific data sets. In 2015 IEEE International Conference on Big
Data (Big Data). IEEE, 371–380.

[13] Mike Folk, Albert Cheng, and Kim Yates. 1999. HDF5: A file format and I/O library
for high performance computing applications. In Proceedings of supercomputing,
Vol. 99. 5–33.

[14] P Greenfield, M Droettboom, and E Bray. 2015. ASDF: A new data format for
astronomy. Astronomy and Computing 12 (2015), 240–251.

[15] The HDF Group. 2018. HDF5 Topic Parallel Indexing Branch.
https://git.hdfgroup.org/users/jsoumagne/repos/hdf5/browse?at=refs%
2Fheads%2Ftopic-parallel-indexing.

[16] The HDF Group. 2018. HDF5 Users. https://support.hdfgroup.org/HDF5/users5.
html.

[17] Kohei Hiraga, Osamu Tatebe, and Hideyuki Kawashima. 2018. PPMDS: A Dis-
tributed Metadata Server Based on Nonblocking Transactions. In Fifth Interna-
tional Conference on Social Networks Analysis, Management and Security, SNAMS
2018, Valencia, Spain, October 15-18, 2018. 202–208. https://doi.org/10.1109/
SNAMS.2018.8554478

[18] Joint Genome Institute. 2013. The JGI Archive and Meta-
data Organizer(JAMO). http://cs.lbl.gov/news-media/news/2013/
new-metadata-organizer-streamlines-jgi-data-management.

[19] json.org. 2018. Introducing JSON. https://www.json.org.
[20] Daniel Korenblum, Daniel Rubin, Sandy Napel, Cesar Rodriguez, and Chris

Beaulieu. 2011. Managing biomedical image metadata for search and retrieval of
similar images. Journal of digital imaging 24, 4 (2011), 739–748.

[21] Margaret Lawson and Jay Lofstead. 2018. Using a Robust Metadata Management
System to Accelerate Scientific Discovery at Extreme Scales. In Proceedings of the
2nd PDSW-DISCS ’18. https://doi.org/10.1109/PDSW-DISCS.2018.00005

[22] Viktor Leis, Alfons Kemper, and Thomas Neumann. 2013. The Adaptive Radix
Tree: ARTful Indexing for Main-memory Databases. In Proceedings of the 2013
IEEE International Conference on Data Engineering (ICDE 2013) (ICDE ’13). IEEE
Computer Society, Washington, DC, USA, 38–49. https://doi.org/10.1109/ICDE.
2013.6544812

[23] Andrew W Leung, Minglong Shao, Timothy Bisson, Shankar Pasupathy, and
Ethan L Miller. 2009. Spyglass: Fast, Scalable Metadata Search for Large-Scale
Storage Systems.. In FAST, Vol. 9. 153–166.

[24] Jialin Liu, Debbie Bard, Quincey Koziol, Stephen Bailey, et al. 2017. Searching for
millions of objects in the BOSS spectroscopic survey data with H5Boss. In 2017
New York Scientific Data Summit (NYSDS). 1–9. https://doi.org/10.1109/NYSDS.
2017.8085044

[25] Yaning Liu, George Shu Heng Pau, and Stefan Finsterle. 2017. Implicit sam-
pling combined with reduced order modeling for the inversion of vadose zone
hydrological data. Computers & Geosciences (2017).

[26] Jay F. Lofstead, Scott Klasky, et al. 2008. Flexible IO and integration for scientific
codes through the adaptable IO system (ADIOS). In CLADE. 15–24.

[27] Arun Mannodi-Kanakkithodi, Tran Doan Huan, and Rampi Ramprasad. 2017.
Mining materials design rules from data: The example of polymer dielectrics.
Chemistry of Materials 29, 21 (2017), 9001–9010.

[28] Vilobh Meshram, Xavier Besseron, Xiangyong Ouyang, Raghunath Rajachan-
drasekar, Ravi Prakash, and Dhabaleswar K. Panda. 2011. Can a Decentralized
Metadata Service Layer Benefit Parallel Filesystems?. In 2011 IEEE International
Conference on Cluster Computing (CLUSTER), Austin, TX, USA, September 26-30,
2011. 484–493. https://doi.org/10.1109/CLUSTER.2011.85

[29] MongoDB. 2018. MongoDB. https://www.mongodb.com.
[30] mongodb.com. 2018. The MongoDB 4.0 Manual. https://docs.mongodb.com/

manual/.
[31] David Paez-Espino, I Chen, A Min, Krishna Palaniappan, Anna Ratner, Ken Chu,

Ernest Szeto, Manoj Pillay, Jinghua Huang, Victor M Markowitz, et al. 2017.
IMG/VR: a database of cultured and uncultured DNA Viruses and retroviruses.
Nucleic acids research 45, D1 (2017), D457–D465.

[32] PostgreSQL. 2018. PostgreSQL. https://www.postgresql.org.
[33] Russ Rew and Glenn Davis. 1990. NetCDF: an interface for scientific data access.

IEEE computer graphics and applications 10, 4 (1990), 76–82.
[34] Frank B Schmuck and Roger L Haskin. 2002. GPFS: A Shared-Disk File System

for Large Computing Clusters.. In FAST, Vol. 2.

MIQS: Metadata Indexing andQuerying Service

for Self-Describing File Formats SC ’19, November 17–22, 2019, Denver, CO, USA

[35] Philip Schwan et al. 2003. Lustre: Building a file system for 1000-node clusters.
In Proceedings of the 2003 Linux symposium, Vol. 2003. 380–386.

[36] Self-balancing binary search tree. 2019. Self-balancing binary search tree —
Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/wiki/Self-balancing_
binary_search_tree [Online; accessed 10-April-2019].

[37] Arie Shoshani and Doron Rotem. 2009. Scientific data management: challenges,
technology, and deployment. Chapman and Hall/CRC.

[38] Hyogi Sim, Youngjae Kim, Sudharshan S. Vazhkudai, Geoffroy R. Vallée, Seung-
Hwan Lim, and Ali Raza Butt. 2017. Tagit: an integrated indexing and search
service for file systems. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC 2017, Denver, CO,
USA, November 12 - 17, 2017. 5:1–5:12. https://doi.org/10.1145/3126908.3126929

[39] sqlite.org. 2017. SQLite. https://sqlite.org.
[40] Houjun Tang, Suren Byna, Bin Dong, Jialin Liu, and Quincey Koziol. 2017. SoMeta:

Scalable Object-Centric MetadataManagement for High Performance Computing.
In Cluster Computing (CLUSTER), 2017 IEEE International Conference on. IEEE,
359–369.

[41] Alexander Thomson and Daniel J. Abadi. 2015. CalvinFS: Consistent WAN
Replication and Scalable Metadata Management for Distributed File Systems. In
Proceedings of the 13th USENIX Conference on File and Storage Technologies, FAST
2015, Santa Clara, CA, USA, February 16-19, 2015, Jiri Schindler and Erez Zadok
(Eds.). USENIX Association, 1–14. https://www.usenix.org/conference/fast15/
technical-sessions/presentation/thomson

[42] Teng Wang, Adam Moody, Yue Zhu, Kathryn Mohror, Kento Sato, Tanzima Islam,
and Weikuan Yu. 2017. MetaKV: A Key-Value Store for Metadata Management

of Distributed Burst Buffers. In 2017 IEEE International Parallel and Distributed
Processing Symposium, IPDPS 2017, Orlando, FL, USA, May 29 - June 2, 2017. IEEE
Computer Society, 1174–1183. https://doi.org/10.1109/IPDPS.2017.39

[43] Zeyi Wen, Xingyang Liu, Hongjian Cao, and Bingsheng He. 2018. RTSI: An Index
Structure for Multi-Modal Real-Time Search on Live Audio Streaming Services. In
34th IEEE International Conference on Data Engineering, ICDE 2018, Paris, France,
April 16-19, 2018. 1495–1506. https://doi.org/10.1109/ICDE.2018.00168

[44] WiredTiger. 2018. WiredTiger. http://www.wiredtiger.com/.
[45] Quanqing Xu, Rajesh Vellore Arumugam, Khai Leong Yang, and Sridhar Mahade-

van. 2013. Drop: Facilitating distributedmetadata management in eb-scale storage
systems. In 2013 IEEE 29th symposium on mass storage systems and technologies
(MSST). IEEE, 1–10.

[46] Wei Zhang, Houjun Tang, Suren Byna, and Yong Chen. 2018. DART: Distributed
Adaptive Radix Tree for Efficient Affix-based Keyword Search on HPC Systems.
In Proceedings of The 27th International Conference on Parallel Architectures and
Compilation Techniques (PACT’18). https://doi.org/10.1145/3243176.3243207

[47] Dongfang Zhao, Kan Qiao, Zhou Zhou, Tonglin Li, Zhihan Lu, and Xiaohua Xu.
2017. Toward Efficient and Flexible Metadata Indexing of Big Data Systems. IEEE
Trans. Big Data 3, 1 (2017), 107–117.

[48] Qing Zheng, Charles D. Cranor, Danhao Guo, Gregory R. Ganger, George
Amvrosiadis, Garth A. Gibson, Bradley W. Settlemyer, Gary Grider, and Fan
Guo. 2018. Scaling embedded in-situ indexing with deltaFS. In Proceedings of
the International Conference for High Performance Computing, Networking, Stor-
age, and Analysis, SC 2018, Dallas, TX, USA, November 11-16, 2018. 3:1–3:15.
http://dl.acm.org/citation.cfm?id=3291660

Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED

We ran our experiment on NERSC’s Edison supercomputer and our

MongoDB instance is also provided by NERSC database services.

Both of our MongoDB test driver and MIQS test driver are written

in C and are deployed on one-process-per-computing-node basis.

We compare the indexing performance, search performance and

storage consumption of MongoDB and MIQS in our experiment,

and the result is reported as written in the paper.

ARTIFACT AVAILABILITY

Software Artifact Availability: Some author-created software ar-

tifacts are NOT maintained in a public repository or are NOT avail-

able under an OSI-approved license.

Hardware Artifact Availability: Some author-created hardware

artifacts are NOT maintained in a public repository or are NOT

available under an OSI-approved license.

Data Artifact Availability: Some author-created data artifacts

are NOT maintained in a public repository or are NOT available

under an OSI-approved license.

Proprietary Artifacts: No author-created artifacts are proprietary.

List of URLs and/or DOIs where artifacts are available:

https://github.com/zhangwei217245/HDF5Meta

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: Cray XC30 supercomputer/2*12-core

Intel "Ivy Bridge" processor at 2.4 GHz/Each node has 64 GB DDR3

1866 MHzmemory (four 8 GB DIMMs per socket)/Lustre file system

peak @ 700GB/s

Operating systems and versions: SuSE Linux Enterprise Server

running lightweight Linux Kernel 4.4.162

Compilers and versions: GCC 7.3.0

Libraries and versions: HDF5 1.10.2.

Key algorithms: Adaptive Radix Tree and Red-Black Tree and

their corresponding operations

Input datasets and versions: HDF5 files generated by Baryon

Oscillation Spectroscopic Survey

Output from scripts that gathers execution environment informa-

tion.

SLURM_NODELIST=nid0[1572-1573]

LESSKEY=/etc/lesskey.bin

PE_LIBSCI_VOLATILE_PRGENV=CRAY GNU INTEL

PE_SMA_DEFAULT_PKGCONFIG_VARIABLES=PE_SMA_COMPFLAG_@ �

prgenv@↪→

PE_TPSL_64_DEFAULT_GENCOMPS_INTEL_mic_knl=160

MODULE_VERSION_STACK=3.2.10.6

GREP_COLOR=1;32

KSH_AUTOLOAD=1

ZAP_LIBPATH=/opt/ovis/lib64/ovis-lib

SLURM_CHECKPOINT_IMAGE_DIR=/var/slurm/checkpoint

SLURM_JOB_NAME=sh

GNU_VERSION=7.3.0

MANPATH=/usr/common/software/man:/usr/common/mss/man �
:/usr/common/nsg/man:/opt/java/jdk1.8.0_51/man:/ �
opt/cray/pe/atp/2.1.3/man:/opt/cray/alps/6.6.43- �
6.0.7.0_26.4__ga796da3.ari/man:/opt/cray/job/2.2 �
.3-6.0.7.0_44.1__g6c4e934.ari/man:/opt/cray/pe/p �
mi/5.0.14/man:/opt/cray/pe/libsci/18.07.1/man:/o �
pt/cray/pe/man/csmlversion:/opt/cray/pe/craype/2 �
.5.15/man:/opt/gcc/7.3.0/snos/share/man:/opt/cra �
y/pe/mpt/7.7.3/gni/man/mpich:/usr/syscom/nsg/man �
:/opt/cray/pe/modules/3.2.10.6/share/man:/usr/lo �
cal/man:/usr/share/man:/opt/cray/share/man:/opt/ �
cray/share/man:/opt/cray/pe/man:/opt/cray/share/ �
man

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

PE_CXX_PKGCONFIG_LIBS=mpichcxx

PE_PETSC_DEFAULT_GENCOMPS_CRAY_skylake=86

PE_PAPI_DEFAULT_ACCEL_FAMILY_LIBS_nvidia=,-lcupti,-l �

cudart,-lcuda↪→

PE_PETSC_DEFAULT_GENCOMPILERS_CRAY_sandybridge=8.6

NNTPSERVER=news

DVS_MAXNODES=1__

COLOR_NC=\e[0m

PE_TPSL_DEFAULT_GENCOMPS_INTEL_x86_skylake=160

PE_HDF5_DEFAULT_REQUIRED_PRODUCTS=PE_MPICH

XDG_SESSION_ID=69545

PE_TRILINOS_DEFAULT_GENCOMPS_CRAY_x86_64=87

PE_TPSL_64_DEFAULT_GENCOMPS_INTEL_interlagos=160

PE_FFTW_DEFAULT_TARGET_mic_knl=mic_knl

PE_PETSC_DEFAULT_GENCOMPILERS_INTEL_mic_knl=16.0

HDF5_DIR=/opt/cray/pe/hdf5-parallel/1.10.2.0/GNU/7.1

HOSTNAME=edison10

PE_HDF5_PARALLEL_VOLATILE_PRGENV=GNU

CRAY_UDREG_INCLUDE_OPTS=-I/opt/cray/udreg/2.3.2-6.0. �

7.0_33.18__g5196236.ari/include↪→

SLURM_TOPOLOGY_ADDR=s15.s10.nid01572

SLURMD_NODENAME=nid01572

CRAY_SITE_LIST_DIR=/etc/opt/cray/pe/modules

PE_SMA_DEFAULT_COMPFLAG_GNU=-fcray-pointer

Zhang, et al.

LIBRARYMODULES=acml:alps:cray-dwarf:cray-fftw:cray-g �
a:cray-hdf5:cray-hdf5-parallel:cray-libsci:cray- �
libsci_acc:cray-mpich:cray-mpich-abi:cray-mpich2 �
:cray-netcdf:cray-netcdf-hdf5parallel:cray-paral �
lel-netcdf:cray-petsc:cray-petsc-complex:cray-sh �
mem:cray-tpsl:cray-trilinos:cudatoolkit:fftw:ga: �
hdf5:hdf5-parallel:iobuf:libfast:netcdf:netcdf-h �
df5parallel:ntk:onesided:papi:petsc:petsc-comple �
x:pmi:tpsl:trilinos:xt-libsci:xt-mpich2:xt-mpt:x �
t-papi

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

XKEYSYMDB=/usr/X11R6/lib/X11/XKeysymDB

PE_PARALLEL_NETCDF_DEFAULT_VOLATILE_PKGCONFIG_PATH=/ �
opt/cray/pe/parallel-netcdf/1.8.1.3/@PRGENV@/@PE �
_PARALLEL_NETCDF_DEFAULT_GENCOMPS@/lib/pkgconfig

↪→

↪→

PE_NETCDF_DEFAULT_VOLATILE_PKGCONFIG_PATH=/opt/cray/ �
pe/netcdf/4.6.1.3/@PRGENV@/@PE_NETCDF_DEFAULT_GE �
NCOMPS@/lib/pkgconfig

↪→

↪→

PE_TRILINOS_DEFAULT_VOLATILE_PKGCONFIG_PATH=/opt/cra �
y/pe/trilinos/12.12.1.1/@PRGENV@/@PE_TRILINOS_DE �
FAULT_GENCOMPS@/@PE_TRILINOS_DEFAULT_TARGET@/lib �
/pkgconfig

↪→

↪→

↪→

SLURM_PRIO_PROCESS=0

RCLOCAL_BASEOPTS=true

PE_MPICH_ALTERNATE_LIBS_dpm=_dpm

PE_ENV=GNU

INTEL_LICENSE_FILE=28518@crayintel.licenses.nersc.go �

v:28518@intel.licenses.nersc.gov↪→

PE_SMA_DEFAULT_COMPFLAG=

PE_TPSL_64_DEFAULT_GENCOMPILERS_CRAY_x86_64=8.6

PE_HDF5_DEFAULT_GENCOMPILERS_GNU=8.2 7.1 6.1 5.3 4.9

COLOR_RED=\e[0;31m

COLOR_CYAN=\e[0;36m

SLURM_SRUN_COMM_PORT=62382

COLOR_PURPLE=\e[0;35m

PE_TPSL_DEFAULT_GENCOMPS_CRAY_x86_skylake=86

SHELL=/bin/bash

PKGCONFIG_ENABLED=1

TERM=xterm-color

HOST=edison10

SLURM_JOB_QOS=premium

PE_HDF5_PARALLEL_VOLATILE_PKGCONFIG_PATH=/opt/cray/p �
e/hdf5-parallel/1.10.2.0/@PRGENV@/@PE_HDF5_PARAL �
LEL_GENCOMPS@/lib/pkgconfig

↪→

↪→

PROFILEREAD=true

PE_PETSC_DEFAULT_GENCOMPS_CRAY_sandybridge=86

PE_TPSL_DEFAULT_GENCOMPILERS_GNU_x86_skylake=8.2 7.1

6.1↪→

CLICOLOR=1

HISTSIZE=1000

SLURM_PTY_WIN_ROW=36

PE_TRILINOS_DEFAULT_VOLATILE_PRGENV=CRAY GNU INTEL

PE_PETSC_DEFAULT_GENCOMPS_GNU_haswell=71 53 49

PE_NETCDF_DEFAULT_VOLATILE_PRGENV=GNU

PE_TPSL_DEFAULT_GENCOMPS_GNU_sandybridge=82 71 53 49

TMPDIR=/tmp

COLOR_LIGHT_RED=\e[1;31m

CRAYPE_DIR=/opt/cray/pe/craype/2.5.15

SSH_CLIENT=172.73.67.84 53311 22

PE_PARALLEL_NETCDF_DEFAULT_VOLATILE_PRGENV=GNU

CRAY_UGNI_POST_LINK_OPTS=-L/opt/cray/ugni/6.0.14.0-6 �

.0.7.0_23.1__gea11d3d.ari/lib64↪→

PE_TPSL_DEFAULT_REQUIRED_PRODUCTS=PE_MPICH:PE_LIBSCI

CRAY_XPMEM_POST_LINK_OPTS=-L/opt/cray/xpmem/2.2.15-6 �

.0.7.1_5.10__g7549d06.ari/lib64↪→

PE_TPSL_64_DEFAULT_GENCOMPS_INTEL_x86_skylake=160

PE_PETSC_DEFAULT_GENCOMPS_INTEL_haswell=160

SLURM_TOPOLOGY_ADDR_PATTERN=switch.switch.node

PE_HDF5_DEFAULT_VOLATILE_PRGENV=GNU

CRAY_MPICH2_DIR=/opt/cray/pe/mpt/7.7.3/gni/mpich-gnu �

/7.1↪→

ALTD_SELECT_OFF_USERS=

PE_PETSC_DEFAULT_GENCOMPS_CRAY_interlagos=86

ALT_LINKER=/usr/common/software/altd/2.0/bin/ld

COLOR_LIGHT_PURPLE=\e[1;35m

PE_HDF5_PARALLEL_DEFAULT_VOLATILE_PKGCONFIG_PATH=/op �
t/cray/pe/hdf5-parallel/1.10.2.0/@PRGENV@/@PE_HD �
F5_PARALLEL_DEFAULT_GENCOMPS@/lib/pkgconfig

↪→

↪→

COLOR_GREEN=\e[0;32m

PE_FFTW_DEFAULT_VOLATILE_PKGCONFIG_PATH=/opt/cray/pe �
/fftw/3.3.8.1/@PE_FFTW_DEFAULT_TARGET@/lib/pkgco �
nfig

↪→

↪→

PE_NETCDF_HDF5PARALLEL_DEFAULT_VOLATILE_PKGCONFIG_PA �
TH=/opt/cray/pe/netcdf-hdf5parallel/4.6.1.3/@PRG �
ENV@/@PE_NETCDF_HDF5PARALLEL_DEFAULT_GENCOMPS@/l �
ib/pkgconfig

↪→

↪→

↪→

PE_TPSL_DEFAULT_GENCOMPS_CRAY_mic_knl=86

ALTD_SELECT_ON=0

PE_TPSL_64_DEFAULT_GENCOMPILERS_CRAY_interlagos=8.6

PE_GA_DEFAULT_VOLATILE_PRGENV=GNU

PE_LIBSCI_DEFAULT_GENCOMPS_GNU_x86_64=71 61 51 49

PMI_CONTROL_PORT=63186

PE_MPICH_GENCOMPS_GNU=71 51 49

MORE=-sl

PE_TPSL_DEFAULT_GENCOMPS_INTEL_x86_64=160

PE_PKGCONFIG_PRODUCTS=PE_HDF5_PARALLEL:PE_LIBSCI:PE_ �

MPICH↪→

PE_MPICH_DEFAULT_GENCOMPILERS_GNU=7.1 5.1 4.9

FPATH=:/opt/cray/pe/modules/3.2.10.6/init/sh_funcs/n �
o_redirect:/opt/cray/pe/modules/3.2.10.6/init/sh �
_funcs/no_redirect:/opt/cray/pe/modules/3.2.10.6 �
/init/sh_funcs/no_redirect

↪→

↪→

↪→

SLURM_CPU_BIND_VERBOSE=quiet

SLURM_SPANK_NERSC_ZONESORT_INTERVAL=0

COLOR_BLUE=\e[0;34m

PE_TPSL_64_DEFAULT_VOLATILE_PKGCONFIG_PATH=/opt/cray �
/pe/tpsl/18.06.1/@PRGENV@64/@PE_TPSL_64_DEFAULT_ �
GENCOMPS@/@PE_TPSL_64_DEFAULT_TARGET@/lib/pkgcon �
fig

↪→

↪→

↪→

PE_TPSL_64_DEFAULT_GENCOMPS_CRAY_haswell=86

ALTD_VERBOSE=0

PE_PETSC_DEFAULT_REQUIRED_PRODUCTS=PE_MPICH:PE_LIBSC �

I:PE_HDF5_PARALLEL:PE_TPSL↪→

MIQS: Metadata Indexing andQuerying Service for Self-Describing File Formats

PE_PAPI_DEFAULT_ACCEL_LIBS_nvidia35=,-lcupti,-lcudar �

t,-lcuda↪→

PE_CRAY_DEFAULT_FIXED_PKGCONFIG_PATH=/opt/cray/pe/pa �
rallel-netcdf/1.8.1.3/CRAY/8.6/lib/pkgconfig:/op �
t/cray/pe/netcdf-hdf5parallel/4.6.1.3/CRAY/8.6/l �
ib/pkgconfig:/opt/cray/pe/netcdf/4.6.1.3/CRAY/8. �
6/lib/pkgconfig:/opt/cray/pe/hdf5-parallel/1.10. �
2.0/CRAY/8.6/lib/pkgconfig:/opt/cray/pe/hdf5/1.1 �
0.2.0/CRAY/8.6/lib/pkgconfig:/opt/cray/pe/ga/5.3 �
.0.8/CRAY/8.6/lib/pkgconfig

↪→

↪→

↪→

↪→

↪→

↪→

↪→

PE_HDF5_PARALLEL_FIXED_PRGENV=CRAY INTEL

PE_TRILINOS_DEFAULT_GENCOMPILERS_CRAY_x86_64=8.7

PE_PETSC_DEFAULT_GENCOMPS_CRAY_x86_64=86

PE_TPSL_64_DEFAULT_GENCOMPILERS_CRAY_sandybridge=8.6

SSH_TTY=/dev/pts/50

PE_FORTRAN_PKGCONFIG_LIBS=hdf5hl_fortran_parallel:hd �

f5_fortran_parallel:mpichf90↪→

PE_LIBSCI_DEFAULT_OMP_REQUIRES_openmp=_mp

PE_SMA_DEFAULT_VOLATILE_PKGCONFIG_PATH=/opt/cray/pe/ �
mpt/7.7.3/gni/sma@PE_SMA_DEFAULT_DIR_DEFAULT64@/ �
lib64/pkgconfig

↪→

↪→

ALLINEA_QUEUE_DLL=/opt/cray/pe/mpt/7.7.3/gni/mpich-g �

nu/7.1/lib/libtvmpich.so.3.0.1↪→

SLURM_CPU_BIND_LIST=0xFFFFFFFFFFFF

PE_TRILINOS_DEFAULT_GENCOMPS_INTEL_x86_64=160

COLOR_YELLOW=\e[1;33m

CRAY_MPICH_BASEDIR=/opt/cray/pe/mpt/7.7.3/gni

ALPS_APP_ID=12930506

SLURM_NNODES=2

PE_NETCDF_HDF5PARALLEL_DEFAULT_GENCOMPILERS_GNU=8.2

7.1 6.1 5.3 4.9↪→

PE_TPSL_64_DEFAULT_GENCOMPS_INTEL_haswell=160

JRE_HOME=/opt/java/jdk1.8.0_51/jre

PE_TPSL_64_DEFAULT_GENCOMPS_CRAY_x86_skylake=86

PE_HDF5_PARALLEL_DEFAULT_GENCOMPILERS_GNU=8.2 7.1 6.1

5.3 4.9↪→

USER=USER

PE_PETSC_DEFAULT_GENCOMPILERS_INTEL_interlagos=16.0

LS_COLORS=

PE_TPSL_64_DEFAULT_GENCOMPILERS_INTEL_mic_knl=16.0

LD_LIBRARY_PATH=/usr/common/software/darshan/3.1.4/l �
ib:/opt/cray/job/2.2.3-6.0.7.0_44.1__g6c4e934.ar �
i/lib64:/opt/gcc/7.3.0/snos/lib64

↪→

↪→

CRAY_HDF5_PARALLEL_VERSION=1.10.2.0

PE_TRILINOS_DEFAULT_GENCOMPILERS_GNU_x86_64=8.2 7.3

5.1 4.9↪→

PE_FFTW_DEFAULT_TARGET_interlagos=interlagos

PE_LIBSCI_DEFAULT_VOLATILE_PRGENV=CRAY GNU INTEL

PE_TPSL_DEFAULT_GENCOMPS_CRAY_x86_64=86

PE_TRILINOS_DEFAULT_GENCOMPILERS_INTEL_x86_64=16.0

CRAY_RCA_POST_LINK_OPTS=-L/opt/cray/rca/2.2.18-6.0.7 �
.0_33.3__g2aa4f39.ari/lib64

-lrca

↪→

↪→

PE_PETSC_DEFAULT_VOLATILE_PRGENV=CRAY CRAY64 GNU

GNU64 INTEL INTEL64↪→

PE_TPSL_64_DEFAULT_GENCOMPILERS_GNU_sandybridge=8.2

7.1 5.3 4.9↪→

PE_HDF5_DIR=/opt/cray/pe/hdf5-parallel/1.10.2.0

PE_PKGCONFIG_LIBS=darshan-runtime:hdf5_hl_parallel:h �
df5_parallel:AtpSigHandler:cray-rca:libsci_mpi:l �
ibsci:mpich

↪→

↪→

PE_MPICH_FIXED_PRGENV=INTEL

PE_TPSL_64_DEFAULT_GENCOMPILERS_INTEL_haswell=16.0

PE_LIBSCI_PKGCONFIG_VARIABLES=PE_LIBSCI_OMP_REQUIRES �

_@openmp@:PE_SCI_EXT_LIBPATH:PE_SCI_EXT_LIBNAME↪→

CSCRATCH=/global/cscratch1/sd/USER

CRAY_IAA_INFO_FILE=/tmp/cray_iaa_info.12930506

PE_TPSL_DEFAULT_GENCOMPS_GNU_haswell=82 71 53 49

XNLSPATH=/usr/share/X11/nls

PE_PETSC_DEFAULT_GENCOMPS_INTEL_interlagos=160

PE_PETSC_DEFAULT_GENCOMPS_GNU_interlagos=71 53 49

PE_PETSC_DEFAULT_GENCOMPS_GNU_sandybridge=71 53 49

PE_PETSC_DEFAULT_GENCOMPILERS_CRAY_mic_knl=8.6

PE_PETSC_DEFAULT_GENCOMPS_INTEL_sandybridge=160

PE_PETSC_DEFAULT_GENCOMPILERS_INTEL_skylake=16.0

PE_PETSC_DEFAULT_GENCOMPILERS_CRAY_x86_64=8.6

PE_PETSC_DEFAULT_GENCOMPS_INTEL_mic_knl=160

PE_LIBSCI_DEFAULT_GENCOMPS_CRAY_x86_64=86

MPICH_ABORT_ON_ERROR=1

PE_PETSC_DEFAULT_GENCOMPILERS_CRAY_haswell=8.6

PE_PETSC_DEFAULT_GENCOMPS_GNU_mic_knl=53

MPICH_DIR=/opt/cray/pe/mpt/7.7.3/gni/mpich-gnu/7.1

PE_TPSL_64_DEFAULT_GENCOMPILERS_GNU_interlagos=8.2

7.1 5.3 4.9↪→

PE_TPSL_64_DEFAULT_GENCOMPS_INTEL_sandybridge=160

LDAPTLS_REQCERT=never

PE_PAPI_DEFAULT_PKGCONFIG_VARIABLES=PE_PAPI_ACCEL_LI �

BS_@accelerator@↪→

ALTD_ON=1

SLURM_STEP_NUM_NODES=1

SLURM_JOBID=12930506

SSH_AUTH_SOCK=/tmp/ssh-ucT6jVRyWH/agent.49929

PE_MPICH_FORTRAN_PKGCONFIG_LIBS=mpichf90

MPICH_MPIIO_DVS_MAXNODES=14

PE_FFTW_DEFAULT_TARGET_sandybridge=sandybridge

PE_TPSL_64_DEFAULT_GENCOMPILERS_CRAY_haswell=8.6

PE_PETSC_DEFAULT_GENCOMPILERS_INTEL_sandybridge=16.0

CRAY_PRGENVGNU=loaded

HOSTTYPE=x86_64

PE_NETCDF_HDF5PARALLEL_DEFAULT_REQUIRED_PRODUCTS=PE_ �

HDF5_PARALLEL↪→

PE_HDF5_PARALLEL_DEFAULT_REQUIRED_PRODUCTS=PE_MPICH

ATP_POST_LINK_OPTS=-Wl,-L/opt/cray/pe/atp/2.1.3/libA �

pp/↪→

PE_FFTW_DEFAULT_REQUIRED_PRODUCTS=PE_MPICH

SRUN_DEBUG=3

RCLOCAL_PRGENV=true

PE_PETSC_DEFAULT_GENCOMPILERS_GNU_mic_knl=5.3

PE_LIBSCI_DEFAULT_GENCOMPILERS_INTEL_x86_64=16.0

gcc_already_loaded=0

PE_TPSL_DEFAULT_GENCOMPS_GNU_interlagos=82 71 53 49

Zhang, et al.

PE_HDF5_PARALLEL_FORTRAN_PKGCONFIG_LIBS=hdf5hl_fortr �

an_parallel:hdf5_fortran_parallel↪→

GCC_VERSION=7.3.0

PE_PRODUCT_LIST=CRAY_RCA:CRAY_ALPS:DVS:CRAY_XPMEM:CR �
AY_DMAPP:CRAY_PMI:CRAY_UGNI:CRAY_UDREG:CRAY_LIBS �
CI:CRAYPE:CRAYPE_IVYBRIDGE:GNU:GCC

↪→

↪→

FROM_HEADER=

PE_TPSL_DEFAULT_GENCOMPILERS_CRAY_x86_64=8.6

PE_LIBSCI_GENCOMPS_INTEL_x86_64=160

PE_PETSC_DEFAULT_GENCOMPILERS_GNU_x86_64=7.1 5.3 4.9

PE_TPSL_DEFAULT_GENCOMPS_GNU_x86_skylake=82 71 61

CRAY_MPICH_ROOTDIR=/opt/cray/pe/mpt/7.7.3

PAGER=less

COLOR_BLACK=\e[0;30m

SLURM_LAUNCH_NODE_IPADDR=10.128.6.142

ALPS_LLI_STATUS_OFFSET=1

JAVA_PATH=/opt/java/jdk1.8.0_51

PE_MPICH_GENCOMPILERS_CRAY=8.6

PE_PETSC_DEFAULT_GENCOMPS_INTEL_skylake=160

PE_LIBSCI_GENCOMPILERS_GNU_x86_64=7.1 6.1 5.1 4.9

PE_MPICH_MODULE_NAME=cray-mpich

PE_PETSC_DEFAULT_GENCOMPS_GNU_skylake=61

PE_TPSL_64_DEFAULT_GENCOMPILERS_INTEL_x86_64=16.0

CSHEDIT=emacs

SLURM_STEP_ID=0

ALPS_APP_PE=0

PE_MPICH_DEFAULT_VOLATILE_PRGENV=CRAY GNU

PE_MPICH_TARGET_VAR_nvidia20=-lcudart

PE_CRAY_FIXED_PKGCONFIG_PATH=/opt/cray/pe/hdf5-paral �

lel/1.10.2.0/CRAY/8.6/lib/pkgconfig↪→

XDG_CONFIG_DIRS=/etc/xdg

PE_LIBSCI_GENCOMPS_CRAY_x86_64=86

PE_TPSL_DEFAULT_GENCOMPS_CRAY_haswell=86

PE_LIBSCI_DEFAULT_GENCOMPILERS_CRAY_x86_64=8.6

PE_TPSL_64_DEFAULT_REQUIRED_PRODUCTS=PE_MPICH:PE_LIB �

SCI↪→

LSCOLORS=ExFxCxDxBxegedabagacad

PE_TPSL_DEFAULT_GENCOMPS_CRAY_sandybridge=86

PE_TPSL_64_DEFAULT_GENCOMPS_GNU_x86_64=82 71 53 49

CRAY_DMAPP_INCLUDE_OPTS=-I/opt/cray/dmapp/7.1.1-6.0. �
7.0_34.3__g5a674e0.ari/include

-I/opt/cray/gni-headers/5.0.12.0-6.0.7.0_24.1__g �
3b1768f.ari/include

↪→

↪→

↪→

PE_PARALLEL_NETCDF_DEFAULT_GENCOMPS_GNU=51 49

PE_TPSL_64_DEFAULT_GENCOMPS_GNU_mic_knl=71 53

LIBGL_DEBUG=quiet

PE_NETCDF_DEFAULT_GENCOMPS_GNU=

DVS_VERSION=0.9.0

MINICOM=-c on

PE_LIBSCI_PKGCONFIG_LIBS=libsci_mpi:libsci

USERMODULES=PrgEnv-cray:PrgEnv-gnu:PrgEnv-intel:PrgE �
nv-pathscale:PrgEnv-pgi:acml:alps:apprentice:app �
rentice2:atp:blcr:cce:chapel:cray-ccdb:cray-fftw �
:cray-ga:cray-hdf5:cray-hdf5-parallel:cray-lgdb: �
cray-libsci:cray-libsci_acc:cray-mpich:cray-mpic �
h-compat:cray-mpich2:cray-netcdf:cray-netcdf-hdf �
5parallel:cray-parallel-netcdf:cray-petsc:cray-p �
etsc-complex:cray-shmem:cray-snplauncher:cray-tp �
sl:cray-trilinos:craypat:craype:craypkg-gen:cuda �
toolkit:ddt:fftw:ga:gcc:hdf5:hdf5-parallel:intel �
:iobuf:java:lgdb:libfast:libsci_acc:mpich1:netcd �
f:netcdf-hdf5parallel:netcdf-nofsync:netcdf-nofs �
ync-hdf5parallel:ntk:onesided:papi:parallel-netc �
df:pathscale:perftools:perftools-lite:petsc:pets �
c-complex:pgi:pmi:stat:totalview:tpsl:trilinos:x �
t-asyncpe:xt-craypat:xt-lgdb:xt-libsci:xt-mpich2 �
:xt-mpt:xt-papi:xt-shmem:xt-totalview

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

CRAY_LIBSCI_DIR=/opt/cray/pe/libsci/18.07.1

CRAY_LIBSCI_BASE_DIR=/opt/cray/pe/libsci/18.07.1

SLURM_TASKS_PER_NODE=48(x2)

PE_HDF5_PARALLEL_PKGCONFIG_LIBS=hdf5_hl_parallel:hdf �

5_parallel↪→

PE_PKGCONFIG_DEFAULT_PRODUCTS=PE_TRILINOS:PE_TPSL_64 �
:PE_TPSL:PE_PETSC:PE_PARALLEL_NETCDF:PE_NETCDF_H �
DF5PARALLEL:PE_NETCDF:PE_MPICH:PE_LIBSCI:PE_HDF5 �
_PARALLEL:PE_HDF5:PE_GA:PE_FFTW2:PE_FFTW

↪→

↪→

↪→

MAIL=/var/mail/USER

PE_TPSL_DEFAULT_GENCOMPILERS_GNU_x86_64=8.2 7.1 5.3

4.9↪→

PATH=/global/homes/w/USER/.cargo/bin:/global/homes/w �
/USER/tools/cmake-3.14.0-rc3/bin:/global/homes/w �
/USER/software/cgdb/release/bin:/global/homes/w/ �
USER/.cargo/bin:/global/homes/w/USER/tools/cmake �
-3.14.0-rc3/bin:/global/homes/w/USER/software/cgd �
b/release/bin:/usr/common/software/darshan/3.1.4 �
/bin:/usr/common/software/altd/2.0/bin:/usr/comm �
on/software/bin:/usr/common/mss/bin:/usr/common/ �
nsg/bin:/opt/java/jdk1.8.0_51/bin:/opt/cray/pe/h �
df5-parallel/1.10.2.0/bin:/opt/cray/pe/hdf5/1.10 �
.2.0/bin:/opt/cray/rca/2.2.18-6.0.7.0_33.3__g2aa �
4f39.ari/bin:/opt/cray/alps/6.6.43-6.0.7.0_26.4_ �
_ga796da3.ari/sbin:/opt/cray/job/2.2.3-6.0.7.0_4 �
4.1__g6c4e934.ari/bin:/opt/cray/pe/craype/2.5.15 �
/bin:/opt/gcc/7.3.0/bin:/global/homes/w/USER/.ca �
rgo/bin:/global/homes/w/USER/tools/cmake-3.14.0- �
rc3/bin:/global/homes/w/USER/software/cgdb/relea �
se/bin:/opt/cray/pe/mpt/7.7.3/gni/bin:/opt/ovis/ �
bin:/opt/ovis/sbin:/usr/syscom/nsg/sbin:/usr/sys �
com/nsg/bin:/opt/cray/pe/modules/3.2.10.6/bin:/u �
sr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/gam �
es:/usr/lib/mit/bin:/usr/lib/mit/sbin:/opt/cray/ �
pe/bin

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

PE_MPICH_GENCOMPILERS_GNU=7.1 5.1 4.9

COLOR_GRAY=\e[0;30m

LIBGL_ALWAYS_INDIRECT=1

MODULE_VERSION=3.2.10.6

MIQS: Metadata Indexing andQuerying Service for Self-Describing File Formats

PE_TPSL_DEFAULT_GENCOMPS_CRAY_interlagos=86

PE_HDF5_DEFAULT_VOLATILE_PKGCONFIG_PATH=/opt/cray/pe �
/hdf5/1.10.2.0/@PRGENV@/@PE_HDF5_DEFAULT_GENCOMP �
S@/lib/pkgconfig

↪→

↪→

SLURM_STEP_LAUNCHER_PORT=62382

PE_NETCDF_DEFAULT_GENCOMPILERS_GNU=8.2 7.1 6.1 5.3 4.9

PE_PARALLEL_NETCDF_DEFAULT_GENCOMPILERS_GNU=5.1 4.9

PE_FFTW_DEFAULT_TARGET_abudhabi=abudhabi

PE_TPSL_DEFAULT_GENCOMPILERS_GNU_haswell=8.2 7.1 5.3

4.9↪→

PE_PETSC_DEFAULT_GENCOMPS_CRAY_mic_knl=86

PE_TPSL_64_DEFAULT_GENCOMPILERS_GNU_x86_skylake=8.2

7.1 6.1↪→

XTPE_NETWORK_TARGET=aries

PE_HDF5_PARALLEL_BASEDIR=/opt/cray/pe/hdf5-parallel/ �

1.10.2.0↪→

ATP_IGNORE_SIGTERM=1

CPU=x86_64

SLURM_WORKING_CLUSTER=edison:ctl1:6817:8448

PMI_CRAY_NO_SMP_ORDER=0

_=/usr/bin/env

SLURM_JOB_ID=12930506

PE_NETCDF_HDF5PARALLEL_DEFAULT_GENCOMPS_GNU=

LDMSD_PLUGIN_LIBPATH=/opt/ovis/lib64/ovis-ldms

PE_SMA_DEFAULT_DIR_CRAY_DEFAULT64=64

PE_NETCDF_HDF5PARALLEL_DEFAULT_FIXED_PRGENV=CRAY

INTEL↪→

PE_TPSL_64_DEFAULT_GENCOMPILERS_CRAY_x86_skylake=8.6

CRAY_PE_MODULES=cray-hdf5-parallel

CRAY_HDF5_DIR=/opt/cray/pe/hdf5-parallel/1.10.2.0

PE_HDF5_PARALLEL_DEFAULT_GENCOMPS_GNU=

PE_HDF5_PARALLEL_DEFAULT_FIXED_PRGENV=CRAY INTEL

JAVA_BINDIR=/opt/java/jdk1.8.0_51/bin

PMI_NO_FORK=1

CRAY_UDREG_POST_LINK_OPTS=-L/opt/cray/udreg/2.3.2-6. �

0.7.0_33.18__g5196236.ari/lib64↪→

PE_TPSL_64_DEFAULT_VOLATILE_PRGENV=CRAY CRAY64 GNU

GNU64 INTEL INTEL64↪→

PE_TPSL_DEFAULT_GENCOMPS_INTEL_interlagos=160

PE_TPSL_DEFAULT_GENCOMPILERS_CRAY_mic_knl=8.6

PE_TPSL_64_DEFAULT_GENCOMPS_CRAY_sandybridge=86

PE_MPICH_VOLATILE_PRGENV=CRAY GNU

PWD=/global/homes/w/USER/software/MIQS/build

CRAYPE_VERSION=2.5.15

PE_TPSL_DEFAULT_GENCOMPS_GNU_mic_knl=71 53

CRAY_ALPS_POST_LINK_OPTS=-L/opt/cray/alps/6.6.43-6.0 �

.7.0_26.4__ga796da3.ari/lib64↪→

INPUTRC=/etc/inputrc

SLURM_STEPID=0

SLURM_JOB_USER=USER

COLOR_LIGHT_CYAN=\e[1;36m

PE_PETSC_DEFAULT_GENCOMPILERS_GNU_sandybridge=7.1

5.3 4.9↪→

PE_TPSL_DEFAULT_GENCOMPILERS_INTEL_haswell=16.0

PE_MPICH_DEFAULT_GENCOMPS_CRAY=86

TARGETMODULES=craype-abudhabi:craype-abudhabi-cu:cra �
ype-accel-host:craype-accel-nvidia20:craype-acce �
l-nvidia30:craype-accel-nvidia35:craype-barcelon �
a:craype-broadwell:craype-haswell:craype-hugepag �
es128K:craype-hugepages128M:craype-hugepages16M: �
craype-hugepages256M:craype-hugepages2M:craype-h �
ugepages32M:craype-hugepages4M:craype-hugepages5 �
12K:craype-hugepages512M:craype-hugepages64M:cra �
ype-hugepages8M:craype-intel-knc:craype-interlag �
os:craype-interlagos-cu:craype-istanbul:craype-i �
vybridge:craype-mc12:craype-mc8:craype-mic-knl:c �
raype-network-aries:craype-network-gemini:craype �
-network-infiniband:craype-network-none:craype-ne �
twork-seastar:craype-sandybridge:craype-shanghai �
:craype-target-compute_node:craype-target-local_ �
host:craype-target-native:craype-xeon:xtpe-barce �
lona:xtpe-interlagos:xtpe-interlagos-cu:xtpe-ist �
anbul:xtpe-mc12:xtpe-mc8:xtpe-network-gemini:xtp �
e-network-seastar:xtpe-shanghai:xtpe-target-nati �
ve:xtpe-xeon

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

HDF5_ROOT=/opt/cray/pe/hdf5-parallel/1.10.2.0/GNU/7.1

LMFILES=/opt/cray/pe/modulefiles/modules/3.2.10.6: �
/usr/syscom/nsg/modulefiles/nsg/1.2.0:/opt/cray/ �
pe/modulefiles/cray-mpich/7.7.3:/opt/modulefiles �
/gcc/7.3.0:/opt/cray/pe/craype/2.5.15/modulefile �
s/craype-ivybridge:/opt/cray/pe/craype/2.5.15/mo �
dulefiles/craype-network-aries:/opt/cray/pe/modu �
lefiles/craype/2.5.15:/opt/cray/pe/modulefiles/c �
ray-libsci/18.07.1:/opt/cray/ari/modulefiles/udr �
eg/2.3.2-6.0.7.0_33.18__g5196236.ari:/opt/cray/a �
ri/modulefiles/ugni/6.0.14.0-6.0.7.0_23.1__gea11 �
d3d.ari:/opt/cray/pe/modulefiles/pmi/5.0.14:/opt �
/cray/ari/modulefiles/dmapp/7.1.1-6.0.7.0_34.3__ �
g5a674e0.ari:/opt/cray/ari/modulefiles/gni-heade �
rs/5.0.12.0-6.0.7.0_24.1__g3b1768f.ari:/opt/cray �
/ari/modulefiles/xpmem/2.2.15-6.0.7.1_5.10__g754 �
9d06.ari:/opt/cray/ari/modulefiles/job/2.2.3-6.0 �
.7.0_44.1__g6c4e934.ari:/opt/cray/ari/modulefile �
s/dvs/2.7_2.2.116-6.0.7.1_8.11__g0dac9eb:/opt/cr �
ay/ari/modulefiles/alps/6.6.43-6.0.7.0_26.4__ga7 �
96da3.ari:/opt/cray/ari/modulefiles/rca/2.2.18-6 �
.0.7.0_33.3__g2aa4f39.ari:/opt/cray/pe/modulefil �
es/atp/2.1.3:/opt/cray/pe/modulefiles/PrgEnv-gnu �
/6.0.4:/opt/cray/pe/modulefiles/cray-hdf5-parall �
el/1.10.2.0:/opt/modulefiles/java/jdk1.8.0_51:/u �
sr/common/software/modulefiles/altd/2.0:/usr/com �
mon/software/modulefiles/darshan/3.1.4:/opt/modu �
lefiles/Base-opts/2.4.135-6.0.7.0_38.1__g718f891 �
.ari

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

PE_LIBSCI_DEFAULT_OMP_REQUIRES=

JAVA_HOME=/opt/java/jdk1.8.0_51

SLURM_SRUN_COMM_HOST=10.128.6.142

PE_TPSL_DEFAULT_GENCOMPILERS_CRAY_interlagos=8.6

PE_TPSL_DEFAULT_GENCOMPILERS_GNU_mic_knl=7.1 5.3

PE_PETSC_DEFAULT_GENCOMPILERS_CRAY_skylake=8.6

PE_LIBSCI_MODULE_NAME=cray-libsci/18.07.1

Zhang, et al.

SLURM_CPU_BIND_TYPE=mask_cpu:

PE_INTEL_FIXED_PKGCONFIG_PATH=/opt/cray/pe/hdf5-para �
llel/1.10.2.0/INTEL/16.0/lib/pkgconfig:/opt/cray �
/pe/mpt/7.7.3/gni/mpich-intel/16.0/lib/pkgconfig

↪→

↪→

PE_TPSL_64_DEFAULT_GENCOMPS_GNU_x86_skylake=82 71 61

PE_MPICH_NV_LIBS_nvidia20=-lcudart

JAVA_VERSION=jdk1.8.0_51

PYTHONSTARTUP=/etc/pythonstart

PE_MPICH_VOLATILE_PKGCONFIG_PATH=/opt/cray/pe/mpt/7. �
7.3/gni/mpich-@PRGENV@@PE_MPICH_DIR_DEFAULT64@/@ �
PE_MPICH_GENCOMPS@/lib/pkgconfig

↪→

↪→

MODULEPATH=/opt/cray/pe/craype/2.5.15/modulefiles:/o �
pt/cray/pe/modulefiles:/opt/cray/modulefiles:/op �
t/modulefiles:/usr/common/software/modulefiles:/ �
usr/syscom/nsg/modulefiles:/usr/common/das/modul �
efiles:/usr/common/ftg/modulefiles:/usr/common/g �
raphics/modulefiles:/usr/common/jgi/modulefiles: �
/usr/common/tig/modulefiles:/opt/cray/craype/def �
ault/modulefiles:/opt/cray/ari/modulefiles

↪→

↪→

↪→

↪→

↪→

↪→

↪→

PE_LIBSCI_GENCOMPILERS_CRAY_x86_64=8.6

SLURM_UMASK=0022

SLURM_PTY_WIN_COL=71

TZ=US/Pacific

SDK_HOME=/usr/lib64/jvm/java

CRAYPE_USE_BUILDTOOLS=0

NSG_HOME=/usr/syscom/nsg

SHMEM_ABORT_ON_ERROR=1

MAN_POSIXLY_CORRECT=1

LOADEDMODULES=modules/3.2.10.6:nsg/1.2.0:cray-mpich/ �
7.7.3:gcc/7.3.0:craype-ivybridge:craype-network- �
aries:craype/2.5.15:cray-libsci/18.07.1:udreg/2. �
3.2-6.0.7.0_33.18__g5196236.ari:ugni/6.0.14.0-6. �
0.7.0_23.1__gea11d3d.ari:pmi/5.0.14:dmapp/7.1.1- �
6.0.7.0_34.3__g5a674e0.ari:gni-headers/5.0.12.0- �
6.0.7.0_24.1__g3b1768f.ari:xpmem/2.2.15-6.0.7.1_ �
5.10__g7549d06.ari:job/2.2.3-6.0.7.0_44.1__g6c4e �
934.ari:dvs/2.7_2.2.116-6.0.7.1_8.11__g0dac9eb:a �
lps/6.6.43-6.0.7.0_26.4__ga796da3.ari:rca/2.2.18 �
-6.0.7.0_33.3__g2aa4f39.ari:atp/2.1.3:PrgEnv-gnu/ �
6.0.4:cray-hdf5-parallel/1.10.2.0:java/jdk1.8.0_ �
51:altd/2.0:darshan/3.1.4:Base-opts/2.4.135-6.0. �
7.0_38.1__g718f891.ari

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

SLURM_JOB_UID=74291

PE_TPSL_DEFAULT_GENCOMPILERS_INTEL_mic_knl=16.0

PE_PKG_CONFIG_PATH=/opt/cray/pe/cti/1.0.7/lib/pkgcon �

fig:/opt/cray/pe/cti/1.0.6/lib/pkgconfig↪→

PE_TPSL_64_DEFAULT_GENCOMPS_GNU_interlagos=82 71 53

49↪→

PE_FFTW_DEFAULT_TARGET_ivybridge=ivybridge

CRAY_DMAPP_POST_LINK_OPTS=-L/opt/cray/dmapp/7.1.1-6. �

0.7.0_34.3__g5a674e0.ari/lib64↪→

PE_FFTW_DEFAULT_TARGET_x86_skylake=x86_skylake

PE_FFTW_DEFAULT_TARGET_share=share

SLURM_NODEID=0

SLURM_SUBMIT_DIR=/global/u2/w/USER/software/MIQS/bui �

ld↪→

PE_LIBSCI_OMP_REQUIRES_openmp=_mp

CRAY_RCA_INCLUDE_OPTS=-I/opt/cray/rca/2.2.18-6.0.7.0 �
_33.3__g2aa4f39.ari/include

-I/opt/cray/krca/2.2.4-6.0.7.1_5.40__g8505b97.ar �
i/include

-I/opt/cray-hss-devel/8.0.0/include

↪→

↪→

↪→

↪→

PE_HDF5_MODULE_NAME=cray-hdf5-parallel

PE_TPSL_DEFAULT_GENCOMPILERS_CRAY_x86_skylake=8.6

PE_PETSC_DEFAULT_GENCOMPILERS_GNU_skylake=6.1

SLURM_STEP_RESV_PORTS=63186

PE_MPICH_CXX_PKGCONFIG_LIBS=mpichcxx

CRAY_MPICH_DIR=/opt/cray/pe/mpt/7.7.3/gni/mpich-gnu/ �

7.1↪→

PE_TPSL_64_DEFAULT_GENCOMPS_CRAY_mic_knl=86

PE_TPSL_DEFAULT_GENCOMPILERS_INTEL_x86_64=16.0

SLURM_TASK_PID=17798

PE_MPICH_PKGCONFIG_VARIABLES=PE_MPICH_NV_LIBS_@accel �
erator@:PE_MPICH_ALTERNATE_LIBS_@multithreaded@: �
PE_MPICH_ALTERNATE_LIBS_@dpm@

↪→

↪→

PE_LIBSCI_DEFAULT_GENCOMPS_INTEL_x86_64=160

SLURM_CPUS_ON_NODE=48

PE_TPSL_64_DEFAULT_GENCOMPILERS_CRAY_mic_knl=8.6

CRAY_MPICH2_VER=7.7.3

CRAY_PMI_POST_LINK_OPTS=-L/opt/cray/pe/pmi/5.0.14/li �

b64↪→

PE_TPSL_DEFAULT_GENCOMPILERS_INTEL_x86_skylake=16.0

PE_MPICH_PKGCONFIG_LIBS=mpich

PE_HDF5_DEFAULT_FIXED_PRGENV=CRAY INTEL

PE_TPSL_DEFAULT_VOLATILE_PKGCONFIG_PATH=/opt/cray/pe �
/tpsl/18.06.1/@PRGENV@/@PE_TPSL_DEFAULT_GENCOMPS �
@/@PE_TPSL_DEFAULT_TARGET@/lib/pkgconfig

↪→

↪→

SLURM_PROCID=0

SLURM_JOB_NODELIST=nid0[1572-1573]

PE_NETCDF_DEFAULT_FIXED_PRGENV=CRAY INTEL

GPG_TTY=/dev/pts/0

COLOR_BROWN=\e[0;33m

PE_PARALLEL_NETCDF_DEFAULT_FIXED_PRGENV=CRAY INTEL

PE_MPICH_ALTERNATE_LIBS_multithreaded=_mt

PE_GA_DEFAULT_GENCOMPILERS_GNU=5.3 4.9

PE_LIBSCI_VOLATILE_PKGCONFIG_PATH=/opt/cray/pe/libsc �
i/18.07.1/@PRGENV@/@PE_LIBSCI_GENCOMPS@/@PE_LIBS �
CI_TARGET@/lib/pkgconfig

↪→

↪→

PE_NETCDF_HDF5PARALLEL_DEFAULT_VOLATILE_PRGENV=GNU

QT_SYSTEM_DIR=/usr/share/desktop-data

PE_HDF5_PARALLEL_DEFAULT_VOLATILE_PRGENV=GNU

PE_TPSL_64_DEFAULT_GENCOMPS_GNU_haswell=82 71 53 49

PE_MPICH_TARGET_VAR_nvidia35=-lcudart

SHLVL=4

HOME=/global/homes/w/USER

PE_PKGCONFIG_PRODUCTS_DEFAULT=PE_PAPI

JDK_HOME=/usr/lib64/jvm/java

CRAY_LIBSCI_VERSION=18.07.1

SLURM_PTY_PORT=62381

OSTYPE=linux

PE_TPSL_DEFAULT_GENCOMPILERS_INTEL_interlagos=16.0

LESS_ADVANCED_PREPROCESSOR=no

MIQS: Metadata Indexing andQuerying Service for Self-Describing File Formats

SLURM_LOCALID=0

PE_PETSC_DEFAULT_GENCOMPILERS_CRAY_interlagos=8.6

PE_MPICH_DEFAULT_VOLATILE_PKGCONFIG_PATH=/opt/cray/p �
e/mpt/7.7.3/gni/mpich-@PRGENV@@PE_MPICH_DEFAULT_ �
DIR_DEFAULT64@/@PE_MPICH_DEFAULT_GENCOMPS@/lib/p �
kgconfig

↪→

↪→

↪→

ALTD_PATH=/usr/common/software/altd/2.0

PE_TPSL_DEFAULT_VOLATILE_PRGENV=CRAY CRAY64 GNU GNU64

INTEL INTEL64↪→

GREP_OPTIONS=--color=auto

SLURM_CLUSTER_NAME=edison

SLURM_JOB_CPUS_PER_NODE=48(x2)

PE_TPSL_DEFAULT_GENCOMPS_INTEL_sandybridge=160

CRAY_PMI_INCLUDE_OPTS=-I/opt/cray/pe/pmi/5.0.14/incl �

ude↪→

XCURSOR_THEME=DMZ

PE_TPSL_64_DEFAULT_GENCOMPS_CRAY_interlagos=86

LS_OPTIONS=-N --color=none -T 0

SLURM_JOB_GID=74291

SLURM_SUBMIT_HOST=mom2

WINDOWMANAGER=

PE_MPICH_DIR_CRAY_DEFAULT64=64

PRGENVMODULES=PrgEnv-cray:PrgEnv-gnu:PrgEnv-intel:Pr �

gEnv-pathscale:PrgEnv-pgi↪→

ATP_MRNET_COMM_PATH=/opt/cray/pe/atp/2.1.3/libexec/a �

tp_mrnet_commnode_wrapper↪→

PE_TPSL_DEFAULT_GENCOMPILERS_CRAY_haswell=8.6

PKG_CONFIG_PATH_DEFAULT=/opt/cray/pe/papi/5.6.0.3/li �

b64/pkgconfig↪→

GCC_PATH=/opt/gcc/7.3.0

CRAYPE_NETWORK_TARGET=aries

SLURM_GTIDS=0

SLURM_JOB_PARTITION=regular

PE_TPSL_64_DEFAULT_GENCOMPILERS_GNU_mic_knl=7.1 5.3

PE_TPSL_DEFAULT_GENCOMPILERS_INTEL_sandybridge=16.0

BASH_ENV=/global/homes/w/USER/.bashrc

PE_TPSL_DEFAULT_GENCOMPILERS_GNU_interlagos=8.2 7.1

5.3 4.9↪→

COLOR_LIGHT_GRAY=\e[0;37m

PE_PETSC_DEFAULT_GENCOMPILERS_GNU_haswell=7.1 5.3 4.9

CRAY_LIBSCI_PREFIX_DIR=/opt/cray/pe/libsci/18.07.1/G �

NU/7.1/x86_64↪→

PE_NETCDF_DEFAULT_REQUIRED_PRODUCTS=PE_HDF5

PE_TPSL_64_DEFAULT_GENCOMPILERS_INTEL_sandybridge=16 �

.0↪→

PYTHONPATH=/opt/ovis/lib/python2.7/site-packages

PE_MPICH_NV_LIBS=

CRAY_GNI_HEADERS_INCLUDE_OPTS=-I/opt/cray/gni-header �

s/5.0.12.0-6.0.7.0_24.1__g3b1768f.ari/include↪→

PE_TPSL_64_DEFAULT_GENCOMPILERS_GNU_haswell=8.2 7.1

5.3 4.9↪→

MACHTYPE=x86_64-suse-linux

ALTD_SELECT_USERS=

LOGNAME=USER

COLOR_LIGHT_BLUE=\e[1;34m

PE_TPSL_DEFAULT_GENCOMPS_GNU_x86_64=82 71 53 49

LESS=-M -I -R

PE_TRILINOS_DEFAULT_REQUIRED_PRODUCTS=PE_MPICH:PE_HD �
F5_PARALLEL:PE_NETCDF_HDF5PARALLEL:PE_LIBSCI:PE_ �
TPSL

↪→

↪→

PE_HDF5_PARALLEL_GENCOMPILERS_GNU=8.2 7.1 6.1 5.3 4.9

PE_HDF5_DEFAULT_GENCOMPS_GNU=

PE_MPICH_GENCOMPS_CRAY=86

DMAPP_ABORT_ON_ERROR=1

PE_MPICH_DEFAULT_GENCOMPILERS_CRAY=8.6

CVS_RSH=ssh

PE_LIBSCI_OMP_REQUIRES=

PE_TRILINOS_DEFAULT_GENCOMPS_GNU_x86_64=82 73 51 49

SLURM_STEP_NUM_TASKS=1

SLURM_JOB_ACCOUNT=m2621

PE_LIBSCI_DEFAULT_REQUIRED_PRODUCTS=PE_MPICH

TOOLMODULES=apprentice:apprentice2:atp:chapel:cray-l �
gdb:cray-snplauncher:craypat:craypkg-gen:ddt:gdb �
:iobuf:papi:perftools:perftools-lite:stat:totalv �
iew:xt-craypat:xt-lgdb:xt-papi:xt-totalview

↪→

↪→

↪→

SSH_CONNECTION=172.73.67.84 53311 128.55.209.26 22

PE_TPSL_DEFAULT_GENCOMPILERS_CRAY_sandybridge=8.6

XDG_DATA_DIRS=/usr/share

PE_TPSL_64_DEFAULT_GENCOMPILERS_INTEL_interlagos=16.0

DVS_INCLUDE_OPTS=-I/opt/cray/dvs/2.7_2.2.116-6.0.7.1 �

_8.11__g0dac9eb/include↪→

PE_MPICH_DEFAULT_GENCOMPS_GNU=71 51 49

PE_MPICH_DEFAULT_FIXED_PRGENV=INTEL

SLURM_JOB_NUM_NODES=2

PE_GA_DEFAULT_FIXED_PRGENV=CRAY INTEL

PE_LIBSCI_DEFAULT_VOLATILE_PKGCONFIG_PATH=/opt/cray/ �
pe/libsci/18.07.1/@PRGENV@/@PE_LIBSCI_DEFAULT_GE �
NCOMPS@/@PE_LIBSCI_DEFAULT_TARGET@/lib/pkgconfig

↪→

↪→

MODULESHOME=/opt/cray/pe/modules/3.2.10.6

PE_FFTW2_DEFAULT_REQUIRED_PRODUCTS=PE_MPICH

PE_TPSL_DEFAULT_GENCOMPILERS_GNU_sandybridge=8.2 7.1

5.3 4.9↪→

PKG_CONFIG_PATH=/usr/common/software/darshan/3.1.4/l �
ib/pkgconfig:/opt/cray/rca/2.2.18-6.0.7.0_33.3__ �
g2aa4f39.ari/lib64/pkgconfig:/opt/cray/alps/6.6. �
43-6.0.7.0_26.4__ga796da3.ari/lib64/pkgconfig:/o �
pt/cray/xpmem/2.2.15-6.0.7.1_5.10__g7549d06.ari/ �
lib64/pkgconfig:/opt/cray/gni-headers/5.0.12.0-6 �
.0.7.0_24.1__g3b1768f.ari/lib64/pkgconfig:/opt/c �
ray/dmapp/7.1.1-6.0.7.0_34.3__g5a674e0.ari/lib64 �
/pkgconfig:/opt/cray/pe/pmi/5.0.14/lib64/pkgconf �
ig:/opt/cray/ugni/6.0.14.0-6.0.7.0_23.1__gea11d3 �
d.ari/lib64/pkgconfig:/opt/cray/udreg/2.3.2-6.0. �
7.0_33.18__g5196236.ari/lib64/pkgconfig:/opt/cra �
y/pe/craype/2.5.15/pkg-config:/opt/cray/pe/iobuf �
/2.0.8/lib/pkgconfig:/opt/cray/pe/fftw/2.1.5.9/l �
ib/pkgconfig:/opt/cray/pe/atp/2.1.3/lib/pkgconfig

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

COLOR_WHITE=\e[1;37m

PE_MPICH_NV_LIBS_nvidia35=-lcudart

LESSOPEN=lessopen.sh %s

PELOCAL_PRGENV=true

Zhang, et al.

PE_PETSC_DEFAULT_VOLATILE_PKGCONFIG_PATH=/opt/cray/p �
e/petsc/3.8.4.0/complex/@PRGENV@/@PE_PETSC_DEFAU �
LT_GENCOMPS@/@PE_PETSC_DEFAULT_TARGET@/lib/pkgco �
nfig

↪→

↪→

↪→

COLOR_LIGHT_GREEN=\e[1;32m

LIBSCI_BASE_DIR=/opt/cray/pe/libsci/18.07.1

PE_TPSL_64_DEFAULT_GENCOMPS_INTEL_x86_64=160

SLURM_STEP_TASKS_PER_NODE=1

CRAY_NUM_COOKIES=2

PE_LIBSCI_DEFAULT_PKGCONFIG_VARIABLES=PE_LIBSCI_DEFA �
ULT_OMP_REQUIRES_@openmp@:PE_SCI_EXT_LIBPATH:PE_ �
SCI_EXT_LIBNAME

↪→

↪→

PE_MPICH_NV_LIBS_nvidia60=-lcudart

PE_TPSL_64_DEFAULT_GENCOMPS_GNU_sandybridge=82 71 53

49↪→

PE_TPSL_DEFAULT_GENCOMPS_INTEL_mic_knl=160

LIBSCI_VERSION=18.07.1

INFOPATH=/opt/gcc/7.3.0/snos/share/info

SLURM_STEP_NODELIST=nid01572

CRAY_COOKIES=4041998336,4042063872

XDG_RUNTIME_DIR=/run/user/74291

PE_LIBSCI_GENCOMPILERS_INTEL_x86_64=16.0

CRAY_PRE_COMPILE_OPTS=-hnetwork=aries

CRAY_ALPS_INCLUDE_OPTS=-I/opt/cray/alps/6.6.43-6.0.7 �

.0_26.4__ga796da3.ari/include↪→

CRAY_CPU_TARGET=sandybridge

PE_FFTW_DEFAULT_TARGET_broadwell=broadwell

NERSC_HOST=edison

PE_TPSL_64_DEFAULT_GENCOMPILERS_GNU_x86_64=8.2 7.1

5.3 4.9↪→

MPICH_GNI_ROUTING_MODE=ADAPTIVE_1

CRAY_UGNI_INCLUDE_OPTS=-I/opt/cray/ugni/6.0.14.0-6.0 �

.7.0_23.1__gea11d3d.ari/include↪→

PE_PAPI_DEFAULT_ACCELL_FAMILY_LIBS=

PE_TPSL_64_DEFAULT_GENCOMPS_CRAY_x86_64=86

PE_LIBSCI_REQUIRED_PRODUCTS=PE_MPICH

CRAY_XPMEM_INCLUDE_OPTS=-I/opt/cray/xpmem/2.2.15-6.0 �

.7.1_5.10__g7549d06.ari/include↪→

craype_already_loaded=0

PE_HDF5_PARALLEL_REQUIRED_PRODUCTS=PE_MPICH

PE_TPSL_DEFAULT_GENCOMPS_INTEL_haswell=160

PE_LIBSCI_DEFAULT_GENCOMPILERS_GNU_x86_64=7.1 6.1 5.1

4.9↪→

PE_LIBSCI_GENCOMPS_GNU_x86_64=71 61 51 49

SLURM_CPU_BIND=quiet,mask_cpu:0xFFFFFFFFFFFF

PE_PETSC_DEFAULT_GENCOMPILERS_INTEL_x86_64=16.0

PE_FFTW_DEFAULT_TARGET_x86_64=x86_64

LESSCLOSE=lessclose.sh %s %s

ATP_HOME=/opt/cray/pe/atp/2.1.3

PE_HDF5_PARALLEL_GENCOMPS_GNU=

SLURM_MEM_PER_NODE=57344

SCRATCH=/scratch2/scratchdirs/USER

PE_TPSL_64_DEFAULT_GENCOMPILERS_INTEL_x86_skylake=16 �

.0↪→

ALTD_WORKDIR=/scratch1/scratchdirs/altdlogs

PE_FFTW_DEFAULT_TARGET_haswell=haswell

PE_PETSC_DEFAULT_GENCOMPILERS_INTEL_haswell=16.0

PE_GA_DEFAULT_VOLATILE_PKGCONFIG_PATH=/opt/cray/pe/g �
a/5.3.0.8/@PRGENV@/@PE_GA_DEFAULT_GENCOMPS@/lib/ �
pkgconfig

↪→

↪→

G_BROKEN_FILENAMES=1

PE_GA_DEFAULT_GENCOMPS_GNU=53 49

PE_PETSC_DEFAULT_GENCOMPILERS_GNU_interlagos=7.1 5.3

4.9↪→

PE_PAPI_DEFAULT_ACCEL_LIBS=

PE_INTEL_DEFAULT_FIXED_PKGCONFIG_PATH=/opt/cray/pe/p �
arallel-netcdf/1.8.1.3/INTEL/16.0/lib/pkgconfig: �
/opt/cray/pe/netcdf-hdf5parallel/4.6.1.3/INTEL/1 �
6.0/lib/pkgconfig:/opt/cray/pe/netcdf/4.6.1.3/IN �
TEL/16.0/lib/pkgconfig:/opt/cray/pe/mpt/7.7.3/gn �
i/mpich-intel/16.0/lib/pkgconfig:/opt/cray/pe/hd �
f5-parallel/1.10.2.0/INTEL/16.0/lib/pkgconfig:/o �
pt/cray/pe/hdf5/1.10.2.0/INTEL/16.0/lib/pkgconfi �
g:/opt/cray/pe/ga/5.3.0.8/INTEL/18.0/lib/pkgconf �
ig

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

CRAY_LD_LIBRARY_PATH=/opt/cray/pe/hdf5-parallel/1.10 �
.2.0/GNU/7.1/lib:/opt/cray/rca/2.2.18-6.0.7.0_33 �
.3__g2aa4f39.ari/lib64:/opt/cray/alps/6.6.43-6.0 �
.7.0_26.4__ga796da3.ari/lib64:/opt/cray/xpmem/2. �
2.15-6.0.7.1_5.10__g7549d06.ari/lib64:/opt/cray/ �
dmapp/7.1.1-6.0.7.0_34.3__g5a674e0.ari/lib64:/op �
t/cray/pe/pmi/5.0.14/lib64:/opt/cray/ugni/6.0.14 �
.0-6.0.7.0_23.1__gea11d3d.ari/lib64:/opt/cray/ud �
reg/2.3.2-6.0.7.0_33.18__g5196236.ari/lib64:/opt �
/cray/pe/libsci/18.07.1/GNU/7.1/x86_64/lib:/opt/ �
cray/pe/mpt/7.7.3/gni/mpich-gnu/7.1/lib

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

PE_SMA_DEFAULT_DIR_PGI_DEFAULT64=64

COLORTERM=1

PE_PETSC_DEFAULT_GENCOMPS_CRAY_haswell=86

PE_PETSC_DEFAULT_GENCOMPS_GNU_x86_64=71 53 49

PE_PETSC_DEFAULT_GENCOMPS_INTEL_x86_64=160

PE_MPICH_DEFAULT_DIR_CRAY_DEFAULT64=64

JAVA_ROOT=/opt/java/jdk1.8.0_51

BASH_FUNC_module%%=() { eval

`/opt/cray/pe/modules/3.2.10.6/bin/modulecmd

bash $*`

↪→

↪→

}

+ lsb_release -a

LSB Version: n/a

Distributor ID: SUSE

Description: SUSE Linux Enterprise Server 12

SP3↪→

Release: 12.3

Codename: n/a

+ uname -a

Linux nid01572 4.4.103-6.38_4.0.153-cray_ari_c #1 SMP

Thu Nov 1 16:05:05 UTC 2018 (6ef8fef) x86_64

x86_64 x86_64 GNU/Linux

↪→

↪→

+ lscpu

Architecture: x86_64

CPU op-mode(s): 32-bit, 64-bit

Byte Order: Little Endian

MIQS: Metadata Indexing andQuerying Service for Self-Describing File Formats

CPU(s): 48

On-line CPU(s) list: 0-47

Thread(s) per core: 2

Core(s) per socket: 12

Socket(s): 2

NUMA node(s): 2

Vendor ID: GenuineIntel

CPU family: 6

Model: 62

Model name: Intel(R) Xeon(R) CPU E5-2695 v2

@ 2.40GHz↪→

Stepping: 4

CPU MHz: 2401.000

CPU max MHz: 2401.0000

CPU min MHz: 1200.0000

BogoMIPS: 4799.59

Virtualization: VT-x

L1d cache: 32K

L1i cache: 32K

L2 cache: 256K

L3 cache: 30720K

NUMA node0 CPU(s): 0-11,24-35

NUMA node1 CPU(s): 12-23,36-47

Flags: fpu vme de pse tsc msr pae mce

cx8 apic sep mtrr pge mca cmov pat pse36 clflush

dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx

pdpe1gb rdtscp lm constant_tsc arch_perfmon pebs

bts rep_good nopl xtopology nonstop_tsc aperfmperf

eagerfpu pni pclmulqdq dtes64 monitor ds_cpl vmx

smx est tm2 ssse3 cx16 xtpr pdcm pcid dca sse4_1

sse4_2 x2apic popcnt tsc_deadline_timer aes xsave

avx f16c rdrand lahf_lm ida arat epb pln pts

dtherm spec_ctrl kaiser tpr_shadow vnmi

flexpriority ept vpid fsgsbase smep erms xsaveopt

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

+ cat /proc/meminfo

MemTotal: 65938820 kB

MemFree: 62827876 kB

MemAvailable: 62558036 kB

Buffers: 4988 kB

Cached: 268892 kB

SwapCached: 0 kB

Active: 163620 kB

Inactive: 229076 kB

Active(anon): 148272 kB

Inactive(anon): 205596 kB

Active(file): 15348 kB

Inactive(file): 23480 kB

Unevictable: 2576 kB

Mlocked: 2576 kB

SwapTotal: 0 kB

SwapFree: 0 kB

Dirty: 0 kB

Writeback: 0 kB

AnonPages: 121548 kB

Mapped: 57736 kB

Shmem: 234884 kB

Slab: 382700 kB

SReclaimable: 22840 kB

SUnreclaim: 359860 kB

KernelStack: 13584 kB

PageTables: 4656 kB

NFS_Unstable: 0 kB

Bounce: 0 kB

WritebackTmp: 0 kB

CommitLimit: 32969408 kB

Committed_AS: 559876 kB

VmallocTotal: 34359738367 kB

VmallocUsed: 0 kB

VmallocChunk: 0 kB

HardwareCorrupted: 0 kB

HugePages_Total: 0

HugePages_Free: 0

HugePages_Rsvd: 0

HugePages_Surp: 0

Hugepagesize: 2048 kB

DirectMap4k: 12028 kB

DirectMap2M: 2048000 kB

DirectMap1G: 67108864 kB

+ inxi -F -c0

sc_env_info.sh: line 14: inxi: command not found

+ lsblk -a

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

loop0 7:0 0 128K 0 loop

/var/opt/cray/imps-distribution/squash↪→

loop1 7:1 0 1.1M 0 loop

/var/opt/cray/imps-distribution/squash↪→

loop2 7:2 0 2.4G 1 loop /.rootfs_lower_ro

loop3 7:3 0 23.8G 1 loop

/var/opt/cray/imps-image-binding/PE_x8↪→

loop4 7:4 0 0 loop

loop5 7:5 0 0 loop

loop6 7:6 0 0 loop

loop7 7:7 0 0 loop

loop8 7:8 0 0 loop

loop9 7:9 0 0 loop

loop10 7:10 0 0 loop

loop11 7:11 0 0 loop

loop12 7:12 0 0 loop

loop13 7:13 0 0 loop

loop14 7:14 0 0 loop

loop15 7:15 0 0 loop

loop16 7:16 0 0 loop

loop17 7:17 0 0 loop

loop18 7:18 0 0 loop

loop19 7:19 0 0 loop

loop20 7:20 0 0 loop

loop21 7:21 0 0 loop

loop22 7:22 0 0 loop

loop23 7:23 0 0 loop

loop24 7:24 0 0 loop

loop25 7:25 0 0 loop

loop26 7:26 0 0 loop

Zhang, et al.

loop27 7:27 0 0 loop

loop28 7:28 0 0 loop

loop29 7:29 0 0 loop

loop30 7:30 0 0 loop

loop31 7:31 0 0 loop

loop32 7:32 0 0 loop

loop33 7:33 0 0 loop

loop34 7:34 0 0 loop

loop35 7:35 0 0 loop

loop36 7:36 0 0 loop

loop37 7:37 0 0 loop

loop38 7:38 0 0 loop

loop39 7:39 0 0 loop

loop40 7:40 0 0 loop

loop41 7:41 0 0 loop

loop42 7:42 0 0 loop

loop43 7:43 0 0 loop

loop44 7:44 0 0 loop

loop45 7:45 0 0 loop

loop46 7:46 0 0 loop

loop47 7:47 0 0 loop

loop48 7:48 0 0 loop

loop49 7:49 0 0 loop

loop50 7:50 0 0 loop

loop51 7:51 0 0 loop

loop52 7:52 0 0 loop

loop53 7:53 0 0 loop

loop54 7:54 0 0 loop

loop55 7:55 0 0 loop

loop56 7:56 0 0 loop

loop57 7:57 0 0 loop

loop58 7:58 0 0 loop

loop59 7:59 0 0 loop

loop60 7:60 0 0 loop

loop61 7:61 0 0 loop

loop62 7:62 0 0 loop

loop63 7:63 0 0 loop

loop64 7:64 0 0 loop

loop65 7:65 0 0 loop

loop66 7:66 0 0 loop

loop67 7:67 0 0 loop

loop68 7:68 0 0 loop

loop69 7:69 0 0 loop

loop70 7:70 0 0 loop

loop71 7:71 0 0 loop

loop72 7:72 0 0 loop

loop73 7:73 0 0 loop

loop74 7:74 0 0 loop

loop75 7:75 0 0 loop

loop76 7:76 0 0 loop

loop77 7:77 0 0 loop

loop78 7:78 0 0 loop

loop79 7:79 0 0 loop

loop80 7:80 0 0 loop

loop81 7:81 0 0 loop

loop82 7:82 0 0 loop

loop83 7:83 0 0 loop

loop84 7:84 0 0 loop

loop85 7:85 0 0 loop

loop86 7:86 0 0 loop

loop87 7:87 0 0 loop

loop88 7:88 0 0 loop

loop89 7:89 0 0 loop

loop90 7:90 0 0 loop

loop91 7:91 0 0 loop

loop92 7:92 0 0 loop

loop93 7:93 0 0 loop

loop94 7:94 0 0 loop

loop95 7:95 0 0 loop

loop96 7:96 0 0 loop

loop97 7:97 0 0 loop

loop98 7:98 0 0 loop

loop99 7:99 0 0 loop

loop100 7:100 0 0 loop

loop101 7:101 0 0 loop

loop102 7:102 0 0 loop

loop103 7:103 0 0 loop

loop104 7:104 0 0 loop

loop105 7:105 0 0 loop

loop106 7:106 0 0 loop

loop107 7:107 0 0 loop

loop108 7:108 0 0 loop

loop109 7:109 0 0 loop

loop110 7:110 0 0 loop

loop111 7:111 0 0 loop

loop112 7:112 0 0 loop

loop113 7:113 0 0 loop

loop114 7:114 0 0 loop

loop115 7:115 0 0 loop

loop116 7:116 0 0 loop

loop117 7:117 0 0 loop

loop118 7:118 0 0 loop

loop119 7:119 0 0 loop

loop120 7:120 0 0 loop

loop121 7:121 0 0 loop

loop122 7:122 0 0 loop

loop123 7:123 0 0 loop

loop124 7:124 0 0 loop

loop125 7:125 0 0 loop

loop126 7:126 0 0 loop

loop127 7:127 0 0 loop

+ lsscsi -s

+ module list

++ /opt/cray/pe/modules/3.2.10.6/bin/modulecmd bash

list↪→

Currently Loaded Modulefiles:

1) modules/3.2.10.6

2) cray-mpich/7.7.3

3) gcc/7.3.0

4) craype-ivybridge

5) craype-network-aries

6) craype/2.5.15

7) cray-libsci/18.07.1

MIQS: Metadata Indexing andQuerying Service for Self-Describing File Formats

8) udreg/2.3.2-6.0.7.0_33.18__g5196236.ari

9) ugni/6.0.14.0-6.0.7.0_23.1__gea11d3d.ari

10) pmi/5.0.14

11) dmapp/7.1.1-6.0.7.0_34.3__g5a674e0.ari

12) gni-headers/5.0.12.0-6.0.7.0_24.1__g3b1768f.ari

13) xpmem/2.2.15-6.0.7.1_5.10__g7549d06.ari

14) job/2.2.3-6.0.7.0_44.1__g6c4e934.ari

15) dvs/2.7_2.2.116-6.0.7.1_8.11__g0dac9eb

16) alps/6.6.43-6.0.7.0_26.4__ga796da3.ari

17) rca/2.2.18-6.0.7.0_33.3__g2aa4f39.ari

18) atp/2.1.3

19) PrgEnv-gnu/6.0.4

20) cray-hdf5-parallel/1.10.2.0

21) java/jdk1.8.0_51

22) altd/2.0

23) darshan/3.1.4

24) Base-opts/2.4.135-6.0.7.0_38.1__g718f891.ari

+ eval

+ nvidia-smi

NVIDIA-SMI has failed because it couldn't communicate

with the NVIDIA driver. Make sure that the latest

NVIDIA driver is installed and running.

↪→

↪→

+ lshw -short -quiet -sanitize

+ cat

sc_env_info.sh: line 19: lshw: command not found

+ lspci

sc_env_info.sh: line 19: lspci: command not found

