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Abstract 

 

Climate Change and Atmospheric Aerosols: Assessing the Limits of Human Intervention in 

Curbing Temperature-Dependent Particulate Matter in the United States 

 

by 

 

Pietro Federico Vannucci 

 

Doctor of Philosophy in Civil and Environmental Engineering 

 

University of California, Berkeley 

 

Professor Ronald C. Cohen, Co-chair 

Professor Robert A. Harley, Co-chair 

 

 

Decades of environmental legislation and emission reduction efforts have resulted in remarkable 

improvements in air quality in the United States, but we continue to find additional benefits to 

further abating atmospheric concentrations of toxic air pollutants such as particulate matter. This 

task, however, is becoming increasingly arduous on account of the current climatic transition. 

The atmospheric warming associated with climate change is dramatically altering the landscape 

of particulate matter pollution: influencing precursor emission rates, the chemical processes 

regulating its production, and the meteorology controlling its accumulation and dispersion. This 

effect is even more pronounced in urban areas, where warming is occurring fastest and where 

public exposure potential is greatest. Thus, continued air quality improvements in the face of 

climate change will necessitate a more precise understanding of the drivers of aerosol pollution 

that do or do not fall under our control. Focusing on summertime in the Eastern U.S., I begin by 

showing how the current enhancement of particulate matter with temperature is dominated by the 

behavior of organic aerosols, arguing that this represents a significant regulatory challenge on 

account of the myriad emission sources responsible for generating this subset of particulate 

matter. I continue by assessing the role of chemical transport models for investigating the 

enhancement of organic aerosols with temperature, showing how current model predictions are 

lacking in the representation of aerosol speciation at high temperatures, and making suggestions 

for future model evaluation strategies. Finally, I explore the role of meteorology in exacerbating 

the accumulation of pollutants, illustrating that the connection between ambient temperature and 

atmospheric stagnation can be exceptionally consistent, representing an amplifying factor to 

pollution that falls outside of our direct control but within our prognostic capabilities. Through 

this work, I inform strategies for probing the nature of air pollution in a warmer future, outlining 

the circumstances in which human intervention will be more or less effective in lessening 

exposure. 
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Chapter 1: Introduction 

 
Air pollution is among the greatest global public health hazards, representing the fourth 

most relevant risk factor for disease and mortality1. Exposure to air pollution harms the 

individual both in the short and long term, leading to cardiovascular, respiratory, and 

cerebrovascular diseases2–5. Exposure to air pollution also negatively impacts society at large, 

with costs related to healthcare expenses and lost productivity worldwide totaling in the trillions 

of U.S. dollars annually6. Though the risks posed by air pollution are universal, its public health 

burden is both disproportionately distributed and disparately characterized, with lower-income 

countries generally facing greater exposure while having fewer means for monitoring air 

pollution7. Therefore, it is imperative that we continue refining our understanding of the sources 

of air pollution and the drivers of high exposure events with the goal of improving our predictive 

capabilities and better informing future policy directives that might lead us to a cleaner, healthier, 

and more equitable world.  

Air pollution can take on many forms, but the most relevant species of interest tend to 

include carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), ground-level 

ozone (O3), a myriad of toxic organic molecules (e.g. benzene), and aerosols, otherwise referred 

to as particulate matter (PM). These pollutants enter the atmosphere either directly from primary 

emissions, from secondary formation, or a combination of both. Therefore, we care about these 

species both for their immediate impact on human health through inhalation as well as the role 

they might play in promoting the formation of additional pollutants. In this work, I focus 

primarily on the processes which govern the emissions, formation, accumulation, and removal of 

PM in our atmosphere, but it is important to note that these processes are profoundly intertwined 

with the above-mentioned gaseous pollutants, and a broad understanding of the system is 

necessary to assess the multitude of fates concerning atmospheric aerosols.  

A critical consideration with regards to the future of air quality and public health is the 

current climatic transition. Since the advent of the Industrial Revolution and the widespread 

adoption of fossil fuels, anthropogenic activities have resulted in a dramatic increase in 

emissions of both air pollutants and greenhouse gases (GHGs) such as carbon dioxide (CO2) and 

methane (CH4). The GHG emissions injected into our atmosphere have led us down a path of 

rapid warming and increased climatic variance, a trend that will likely persist, if not worsen, in 

the coming decades8. Facing unprecedented environmental variance and given that climate 

change and air pollution are intrinsically linked both by their shared sources and by the spatial 

domain they occupy, it is critical that we consider their synergistic interactions, how rising 

temperatures might influence pollutant emissions, atmospheric chemistry, and meteorology, and 

how the compounding effect of climate change on air pollution will impact public health. Several 

studies have examined this matter, highlighting a multitude of methods in which climate change 

has the potential to exacerbate future air quality concerns9–16. In my research, I have tried to 

expand on this body of work through the lens of identifying the extent to which management 

strategies effective for minimizing air pollution will change over time. My goal is to contribute 

to elucidating the suite of effective policy decisions for abating future air pollutant exposure in 

the context of a rapidly warming climate.   

In this introduction, I will summarize current understanding of connections between 

climate and PM, highlighting what are considered to be the most relevant factors, identifying 

knowledge gaps, and describing how my research has contributed to a deeper understanding of 
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this topic. In my work, I focus principally on summertime phenomena because in future years, as 

average global temperatures continue to rise, summers will become longer, harsher, and exhibit 

greater variability8. Therefore, understanding the implications of a more extreme summertime on 

air pollution will become increasingly critical for estimating the overall public health burden. I 

will begin by briefly characterizing the various types of PM and continue by elaborating on the 

manner through which climate change and rising temperatures are thought to play a role in 

modulating their influence, delineating between impacts on emissions, chemistry, and 

meteorology.  

 

Types of Particulate Matter  
 
Primary PM  
 Primary PM is the class of aerosols that are emitted directly into the atmosphere. A major 

subset of primary PM can be thought of as mechanically generated. Natural sources include 

wind-blown dust, which typically consists of minerals and soils and can be transported thousands 

of kilometers from the source region17–19, sea spray aerosols (SSA), which carry both salts and a 

wide variety of organic species into the atmosphere, impacting coastal air quality and influencing 

the formation of secondary aerosols as well as clouds20, and volcanic eruptions, which release 

significant quantities of sulfurous gases and aerosols21.  

Many anthropogenic activities are also responsible for mechanically-generated PM. 

Driving, for example, can result in PM emissions from the abrasion of paved surfaces, the 

resuspension of dust and soil, and from the wear generated on vehicle components such as brakes 

and tires22–24. A wide array of similar activities linked to construction, transportation, farming, 

and other industries contribute to direct mechanical generation of PM.  

Another major subset of primary PM is that which is emitted as a result of combustion 

processes, both biogenic and anthropogenic. Wildfire emissions, for example, represent a 

significant biogenic source of both organic carbon (OC) and black carbon (BC) aerosols. 

Similarly, the deliberate combustion of various types of organic matter, wood, charcoal, coal, oil, 

and other fossil fuel derivatives for cooking, heating, transportation, waste disposal, and energy 

generation also release large amounts of organic and inorganic primary PM25–28.  

 

Secondary PM 
 Secondary PM is the class of aerosols formed in the atmosphere as a result of chemical 

processes which transform and aggregate gaseous species into solid and liquid particles. The 

most common secondary inorganic aerosols (SIA) are sulfate (SO4
2-), nitrate (NO3

-), and 

ammonium (NH4
+), formed from the oxidation of sulfur dioxide (SO2), nitrogen oxides (NOx ≡ 

NO + NO2), and the protonation of ammonia (NH3), respectively. It is worth noting that SIA can 

originate both from natural sources (e.g. SO2 from volcanic emissions or sea spray and NOx/NH3 

from soil emissions) as well as from anthropogenic sources (e.g. SO2 from coal combustion, NOx 

from a wide variety of combustion sources, and NH3 from the use of fertilizer in agricultural 

applications).  

Secondary organic aerosols (SOA) can also result from both biogenic and anthropogenic 

processes, both forms occurring from the oxidation of volatile organic compounds (VOCs)29–32. 

Biogenic VOCs emitted from vegetation such as isoprene and monoterpenes are a major 

contributor to SOA. Wildfire emissions of organic compounds can also be a source of SOA33. 

Anthropogenic VOCs then represent a wide spectrum of molecules arising from a multitude of 
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industrial processes. These processes include solvent use, evaporative losses of stored chemicals 

and fuels, asphalt emissions34,35, incomplete combustion, emissions of volatile chemical products 

(VCPs)36–38 used in personal care and home cleaning, etc.34,39–42. It is then the interaction 

between precursor emissions, availability of oxidizing species, and abundance of preexisting 

aerosol that determines the SOA formation potential of these molecules. 

 

Decadal Trends in Particulate Matter 
 We can begin by considering trends in average PM2.5 (PM with diameter <= 2.5 microns) 

concentrations across the continental United States (CONUS) over the last twenty years. I do so 

by querying observations from the U.S. Environmental Protection Agency Air Quality System 

(EPA AQS). AQS sites, recording total PM2.5 observations on a daily basis and PM2.5 speciation 

observations on a 1-in-3-day schedule, allow us to probe long-term trends in the concentrations 

of PM2.5 and its major components at a glance. In terms of total PM2.5, we find that the air 

pollution control schemes of the last two decades have been successful in reducing average 

concentrations from ~14 g/m3 in 2000 to ~8.5 g/m3 in 2020. However, investigating trends in 

individual components is necessary for informing our future control strategies. For example, in 

Figure 1.1 we see that whereas the bulk of inorganic PM2.5 components (sulfate, ammonium, and 

nitrate aerosols) have been declining steadily from 2000-2020, organic carbon PM2.5 shows a 

different trend, with average concentrations rising again in recent years. This reversal, likely 

driven by increasing wildfire emissions43, is a useful representation of the fact that not all types 

of PM can be regularly controlled via policy and human intervention. Moreover, it suggests that 

continuing to decrease total PM2.5 concentrations in future years will increasingly necessitate 

targeting organic aerosols.   

 

 
 

Figure 1.1: Decadal trends in average concentrations of major PM2.5 constituents 

across CONUS, with observations from EPA AQS sites.  
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Climate Change Impacts on Particulate Matter 

 
Figure 1.2: Graphic depicting a selection of the many pathways through which a 

warming climate has the potential to influence aerosol production, by increasing: 

evaporative emissions of anthropogenic VOCs, asphalt emissions, emissions of 

biogenic VOCs from vegetation, emissions linked to energy production to meet 

cooling demand, and direct emissions of sea spray aerosols. 

 

Primary PM 
 Climate change and rising temperatures have the potential to influence direct emissions 

of primary PM in a number of ways. First, warmer temperatures exacerbate the risk of wildfires 

by drying out vegetation and depleting sources of water. In the Western United States, for 

example, the increased aridity combined with the excess heat greatly exacerbates the frequency 

and severity of wildfires, a major source of PM that is also expected to continue growing in 

relevance44–47.  

In addition, while there is still much uncertainty in how global and regional precipitation 

patterns will evolve as a result of climate change, predictions agree that increases in temperature 

and rainfall variability as well as extreme events are highly likely48–50. As wet deposition is one 

of the major removal mechanisms for atmospheric aerosols, these changes will no doubt affect 

aerosol abundance. Also, more frequent droughts will lead to greater uplifting and transport of 

surface dust. An example of this is the historical event commonly known as the Dust Bowl, 

where suboptimal farming techniques compounded by droughts in the American Great Plains of 

the 1930s led to substantial erosion of the topsoil and a subsequent period of severe dust storms. 

This phenomenon has also been explored more recently on a smaller scales, where elevated 

temperatures have been found to be associated with greater road dust emissions on account of 

enhanced surface drying51. 
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 Finally, shifting focus to marine aerosols, studies have identified a connection between 

SSA emissions and sea surface temperature52–54. This effect was found to be significant and 

distinct from the relationship between temperature and wind speed, which also regulate the 

churning of water at the surface and the release of particles. As atmospheric and oceanic 

temperatures continue to rise55, emissions of SSA are also expected to grow concurrently.  

 

Secondary PM 
 Climate change can also drive changes in the emissions of precursor gases leading to 

secondary PM formation, both directly and indirectly. One direct mechanism is that elevated 

temperatures will enhance emissions of biogenic VOCs (BVOCs). Isoprene and monoterpenes 

are emitted ubiquitously from vegetation in large quantities and exhibit a strong response to 

temperature29. Reacting with oxidants in the presence of sunlight to produce both O3 and PM,  

BVOCs can thus amplify the pollution from anthropogenic emissions in a temperature dependent 

manner56–58. This enhancement in SOA from BVOC emissions due to warm temperatures has 

already been identified in observations at regional and urban scales and is projected to increase 

in magnitude 59. This is also specifically relevant to human health because SOA are associated 

with a higher cardiorespiratory disease mortality than other PM components60. 

 Another direct manner in which rising temperatures can affect the emissions of secondary 

PM precursors is through enhanced evaporation of semi-volatile and intermediate-volatility 

organic compounds such as from motor vehicles61,62, building products63, and asphalt35. Recent 

research has shown how the fate of these intermediate volatility species is highly relevant for 

explaining the abundance of urban SOA; therefore, temperature-dependent increases in volatility 

and emissions from this sector will be important in influencing air pollutant exposure in cities64–

66. Additionally, the inclusion of intermediate-volatility organic compounds in emission 

inventories has been found to impact modeled SOA predictions in a temperature-dependent 

manner37. 

 Additionally, climate change might indirectly lead to greater emissions of secondary PM 

precursors due to influencing human behavior. For example, emissions from the energy sector 

can be impacted by temperature due to the incidence of increased air conditioning usage and the 

subsequent electricity demand on warmer days. This phenomenon has been observed in the 

Eastern United States, for example, where powerplant emissions of CO2, SO2, and NOx (NOx ≡ 

NO + NO2) in the summertime have exhibited robust linear correlations with temperature67. 

Emissions of these pollutants are not only linked to emissions of primary PM but also to the 

subsequent oxidation of SO2/NOx, leading to temperature-dependent enhancements in secondary 

PM formation68. Though decadal improvements in emission control strategies have reduced 

absolute emissions of these pollutants, the positive response to heightened temperatures has 

remained consistent. This is also exacerbated by the fact that energy demand in the hottest 

periods can necessitate the use of “peaker” electricity generating units, facilities that often 

employ dirtier fuel sources and are regulated through looser air quality guidelines69. The 

persistence of this trend will depend on the sources fueling our electricity generation in order to 

meet the increased demand. A recent modeling analysis shows how rising temperatures and the 

associated cooling required would result in significantly increased air pollution and mortality by 

the middle of this century, emphasizing the need for a transition to cleaner energy sources and 

greater energy efficiency70.  

 Other means through which climate change may impact secondary PM abundance is 

through the influence of rising temperatures on reaction rates and the chemical transformations 
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of PM precursors. A notable example in this is the documented relationship between temperature 

and the rate of oxidation of SO2 into SO4
2- aerosols71. Temperature can also contribute to 

reductions in aerosol mass, however, as is the case with nitrate aerosols volatilizing back to the 

gas phase at higher temperatures11,72. The relevance of this effect, however, is difficult to 

constrain, especially relative to the aforementioned ways in which increased vapor pressures are 

likely to contribute to enhanced secondary PM formation through other channels. Moreover, in 

the context of a future where anthropogenic emissions of SO2 and NOx are increasingly 

regulated, inorganic secondary aerosols may become less relevant in driving high PM 

concentration events. Nevertheless, a greater understanding of the impact of rising temperatures 

on the chemistry driving PM formation and removal will be important for constraining the 

influence from other factors such as changes in emissions and meteorology.  

 

 Climate Change and Meteorology 
 In delineating the numerous and often intertwined ways in which climate change will 

impact atmospheric concentrations of pollutants, we cannot ignore potential changes in 

meteorological patterns. We have already briefly touched on how changes in precipitation 

patterns are likely to impact aerosol removal mechanisms as well as surface moisture and dust 

emissions, but future trends in this chaotic system are hard to forecast. There are, however, more 

predictable consequences of increased summertime temperatures. For example, warm summer 

days are often associated with stagnation conditions. During periods of atmospheric inversions, 

when both planetary boundary layer (PBL) height and wind speed are low, the lack of ventilation 

and dispersion leads to accumulation of pollutants. Various studies conducted in China, Europe, 

and North America have found significant associations between temperature, stagnation 

episodes, and elevated concentrations of O3 and PM73–77. The complex nature of the O3-

Temperature relationship is outside the scope of this review, but a study looking specifically at 

meteorological drivers of this relationship has shown that a large proportion can be explained by 

temperature-driven atmospheric stagnation78. Additionally, modeling analyses indicate that the 

incidence of stagnation episodes is projected to grow in the coming decades due to climate 

change79–81.  

 

Climate Change and Urbanization 
The association between a warming climate, air quality, and public health is also 

significant because we are currently experiencing a rapid population shift from rural areas to 

urban ones. This densification of both sources of emissions and receptors of pollutants represents 

a heightened influence of the detrimental effects of poor air quality82. Moreover, due to the 

radiative absorption associated with the built environment, urban spaces generally experience 

warmer temperatures than the less-developed surroundings, this is commonly referred to as the 

“urban heat island effect”83. This effect can therefore exacerbate the air quality issues plaguing 

urban areas. We can examine this phenomenon by considering decadal trends in average 

temperatures over CONUS in rural versus urban areas. In Figure 1.3, I investigate this matter by 

looking at temperature trends in two regimes: the dense urban domains (defined as areas with a 

population density greater than 1000 people per square kilometer) and the rural spaces (defined 

as the least populated settlements with a density of 1-10 people per square kilometer). Utilizing 

population density data from the NASA Socioeconomic Data and Applications Center84, I take 

five-year averages of temperatures in these two regimes sourced from ERA5 reanalysis data 

provided by the European Centre for Medium-Range Weather Forecasts (ECMWF)85 and 
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compare trends from 2000-2020 to the baseline year 2000 level. Comparing these two regimes 

across the past two decades tells us that on average, urban areas are ~3.3 K warmer than their 

rural counterparts. Moreover, Figure 1.3 shows how the increase in temperature over the last 20 

years has been more pronounced in urban versus rural areas, and that this difference is growing 

with time. These findings match a recent global analysis which found that on average urban 

clusters have exhibited ~30% greater warming than the rural background in the last two 

decades86. The continuation of this trend thus suggests that the additional warming over urban 

spaces will compound the temperature-dependent drivers of air pollution in an increasingly 

damaging manner. For this reason, large population centers are likely to experience more 

damaging effects from climate change than regional trends would suggest, an important 

consideration for public health forecasting.  

 

 
Figure 1.3: Relative increases (from a year 2000 baseline) in average five-year 

temperatures across CONUS in areas of population density greater than 1000 people 

per km2 versus areas with 1-10 people per km2.  

 

Summary 
 In this overview, I have described current understanding of climate impacts on aerosols 

from multiple perspectives. In the following chapters I explore some of these issues in detail. 

 In Chapter 2, I focus on temperature dependent SO2 emissions from electricity generating 

units of the Northeast U.S. As previously outlined, summertime power plant emissions of both 

NOx and SO2 in this domain exhibit a linear response to temperature on account of increased 

electricity consumption linked to air conditioning usage on warmer days. Through the 

subsequent conversion of SO2 to SO4
2- aerosols, this phenomenon has driven a substantial 

temperature dependent increase in PM2.5 across the Northeast U.S. For this reason, the highest 

summertime PM2.5 concentrations have long been associated with the warmest temperatures. 

Decadal reductions in coal combustion have significantly abated emissions of SO2. In doing so, 

we find a concurrent decrease in temperature dependent SO4
2- aerosols. Despite these reductions, 

average summertime PM2.5 concentrations continue to exhibit a robust dependence on 

temperature. In more recent years, however, this increase is now chiefly attributable to organic 

aerosols, the formation of which responds to temperature on account of increased BVOC 

emissions. Therefore, though the drivers of enhanced PM2.5 with temperature have shifted, we 

continue to observe the highest concentrations on the hottest days. This transition presents new 

challenges in our efforts to continue reducing PM2.5, suggesting that combating future high PM2.5 
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concentration events will involve targeting a different class of emissions. Specifically, I present 

how the growing relevance of organic aerosols in controlling summertime PM2.5 necessitates a 

more precise understanding of their origins and whether the emissions or chemical processes 

driving this enhancement can be controlled via policy or not.  

 In Chapter 3, I continue exploring trends in the Eastern U.S. summertime with the goal of 

further elucidating the present-day drivers of elevated PM2.5 with temperature. In this subsequent 

analysis, I utilize an atmospheric chemical transport model (CTM) to probe the mechanisms 

relevant for describing the PM2.5-temperature response of both SO4
2- and organic aerosols. For 

the study period of June-August 2019, observations in the Eastern U.S. show a significant 

temperature response for total PM2.5 of ~0.67 g/m3/K, and the Community Multiscale Air 

Quality (CMAQ) v5.4 regional model predictions closely match this value. However, the model 

predictions feature component-specific discrepancies with observations. Specifically, the model 

underestimates SO4
2- concentrations and their increase with temperature while simultaneously 

overestimating OC concentrations and their increase with temperature. Performing a series of 

model sensitivity simulations, I identify potential reasons for why model predictions fail to 

accurately describe the observed trends in both species, probing changes in emissions as well as 

formation and removal mechanisms. In doing so, I find that the coupling between the SO4
2- and 

OC systems necessitates a holistic approach to model design, and it is possible to design 

interventions that simultaneously address the biases in PM2.5 components as well as their 

response to temperature in a synergistic manner. This analysis thus suggests ways to advance 

CTM performance by improving its capabilities across a wider range of environmental 

conditions while simultaneously providing insight into species and processes pertinent to 

describing the summertime SO4
2- and OC response to increasing temperatures. This is relevant 

because a model that can accurately replicate the observed temperature dependence of PM2.5 and 

its components is essential to having confidence in predicting the future of aerosols in a warmer 

world and to evaluating policy options for curbing high summertime PM. 

 In Chapter 4 I turn my attention to enhancements in air pollution driven by temperature-

dependent stagnation events. Focusing on the Los Angeles metro area, I build on past work 

looking at the relationship between elevated NOx and temperature in this domain87. Though this 

trend was previously identified, no satisfactory causal explanation has been outlined. Here, I 

demonstrate how the enhancement of NOx concentrations with temperature is driven by 

nighttime stagnation episodes that are distinct from daytime trends. Warm nighttime conditions, 

marked by low planetary boundary layer heights and decreased ventilation, represent greater 

risks for exposure due to the accumulation of pollutants. High nighttime concentrations therefore 

have an outsized influence in driving overall daily means. I analyze 20 years of observations 

from LA to show how relative increases in NOx with temperature are consistent over time and 

are therefore independent of the dramatic decadal decreases in emissions. Moreover, by showing 

that concentrations of carbon monoxide (CO) mirror the same trends, I suggest that a common 

meteorological factor is influencing the ensemble rather than temperature-dependent chemistry. I 

conclude by showing how these temperature-dependent stagnation episodes are driving 

exceedances in daily average NO2 concentration guidelines. Though exceedances are less 

prevalent in the present day than they were in past years in absolute terms, their incidence is 

more strongly correlated with temperature than before, suggesting that the role of temperature as 

a control for dangerously elevated NOx concentrations is growing. Though I present an analysis 

chiefly concerned with NOx, largely due to data availability considerations, my results are 

representative of larger trends that extend beyond the city in question and the pollutants 
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described. This analysis highlights the value of considering the public health burden of air 

pollution on diurnal time scales, how nighttime may come to dominate over daytime trends, and 

the ways in which trends in exposure risks may be distinct from trends in air pollutant emissions 

and formation.   

  My research has thus advanced understanding of the influence of climate change on air 

pollution and public health from multiple angles: I have explored the evolution of PM2.5 

components controlling temperature-dependent high concentration events, noting the 

implications for the class of emissions meriting increased focus going forward; I have developed 

a novel lens for evaluating CTM performance, informing model design strategies as well as 

establishing a basis for identifying atmospherically relevant chemical mechanisms linked to the 

formation and removal of temperature dependent PM2.5; finally, I have highlighted a new 

perspective regarding the link between rising temperatures and the growing incidence of 

stagnation episodes, detailing the importance of considering diurnal trends for assessing 

exceedances in air pollutant guidelines. My analyses thus contribute to the body of work 

concerned with quantifying the effects of climate change on air pollution and delineating the 

future strategies that will be more or less effective in mitigating a portion of the environmental 

threats we are likely to face in the coming years.  
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Chapter 2: Decadal Trends in the Temperature 

Dependence of Summertime Urban PM 2.5 in the 

Northeast United States 
 

This chapter was adapted from: Vannucci, P. F.; Cohen, R. C. Decadal Trends in the Temperature 

Dependence of Summertime Urban PM2.5 in the Northeast United States. ACS Earth Space 

Chem. 2022, acsearthspacechem.2c00077. https://doi.org/10.1021/acsearthspacechem.2c00077. 

 

Abstract  
 Temperature has been identified as a key control over particulate matter of diameters 

smaller than 2.5 microns (PM2.5), however, the mechanisms controlling this phenomenon in 

urban areas have not been definitively elucidated. With increasing urbanization and associated 

heat-island effects as well as a warming climate, understanding the role that temperature plays in 

modulating urban aerosol mass is critical. We explore the link between temperature and aerosol 

mass using observations from seven cities in the Northeast U.S., finding that summertime PM2.5 

exhibits a strong linear dependence on temperature going back at least two decades. Early in this 

record, the leading cause of the PM2.5 mass increase with temperature was an increase in the 

ammonium sulfate aerosol mass. We suggest this was due to increased electricity consumption to 

support air conditioning on warmer days and the associated SO2 emissions from coal burning 

power plants. Later in the record and in the present day, the leading cause of the linear 

correlation of PM2.5 mass with temperature is the increase in organic aerosol mass with 

temperature. Effective policy for curbing high PM2.5 events in the future will depend on 

understanding the factors influencing this temperature-dependent enhancement in organic aerosol 

specifically; whether they are related to biogenic emissions, anthropogenic emissions, or 

chemical processes.  

 

Introduction 

Particulate matter of a diameter smaller than 2.5 m (PM2.5) is a significant public health 

hazard; exposure to PM2.5 has been linked to elevated occurrences of respiratory and 

cardiovascular diseases, increases in hospital admissions, and millions of deaths per year88
. 

Understanding the drivers of PM2.5 is critical for efficient and effective policy guiding reductions 

in PM2.5 and improving public health outcomes. PM2.5 can enter the atmosphere in the form of 

direct emissions from biomass burning, fossil fuel combustion, agricultural activities, volcanic 

eruptions, sea spray, etc. as well as from secondary processes where chemical reactions 

transform volatile precursors, both biogenic and anthropogenic, into non-volatile compounds that 

accrete to existing particles or form new ones. As cities around the world transition towards 

cleaner sources of energy, improve the energy efficiency of and add emission controls to 

industrial and transportation systems, primary emissions of PM2.5 will continue to decrease.  

This is also the case for secondary inorganic aerosols; the two most prevalent components 

being sulfate and nitrate. Sulfate aerosols, commonly in the form of ammonium sulfate 

((NH4)2SO4), are formed through oxidation of sulfur dioxide (SO2) which has its main source in 

the emissions of coal-fired power plants. SO2 emissions and sulfate aerosol concentrations have 

been declining steeply around the world89–91. Nitrate aerosols are formed from the oxidation of 

https://doi.org/10.1021/acsearthspacechem.2c00077
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nitrogen oxides (NOx ≡ NO + NO2), and these emissions have also been declining significantly 

both in the United States92,93 and globally94.  

Secondary organic aerosols (SOA) stemming from both biogenic and anthropogenic 

sources typically make up about half of PM2.5
95–97. Anthropogenic volatile organic compound 

(VOC) emissions have been dramatically reduced through regulations on solvent use, reductions 

of evaporative emissions associated with fuels, the use of catalytic converters on gasoline 

powered passenger vehicles, and other emission control systems used on electric generation 

facilities and diesel vehicles. These reductions have resulted in a notable decrease in associated 

SOA concentrations98.  

With the reduction of many combustion-related anthropogenic sources of SOA, the role 

of biogenic emissions and volatile chemical products (VCPs) in urban aerosol formation has 

taken on more prominence36. If biogenic emissions are now a dominant feature in SOA 

production, then temperature should be playing an increasing role as a control over the frequency 

of the highest aerosol events. For example, decadal reductions in anthropogenic emissions have 

changed the nature of PM2.5 in the Los Angeles (LA) basin99. Whereas in the past, PM2.5 in LA 

did not exhibit a strong dependence on temperature, in more recent times the highest 

concentrations of PM2.5 occur at the highest temperatures and the PM2.5 at high temperatures is 

increasingly organic. Research on VCPs is in an early stage, however to our knowledge no 

suggestion that VCPs are temperature dependent has been published. If VCP are not temperature 

dependent, then the observed temperature dependence of organic aerosol strongly points to a 

biogenic source or to temperature-dependent chemistry that accelerates the conversion of VOC 

to aerosol as temperature warms.  

To explore the role of temperature as a cause of high aerosol events in cities, now, and in 

the future as anthropogenic emissions of SO2, NO2, and VOCs from transportation continue to 

decrease, it is useful to have a perspective on the response of aerosol to temperature that expands 

beyond Los Angeles. Here we examine the relationship between temperature and PM2.5 in cities 

in the Northeast United States. The composition of urban PM2.5 in the Northeast differed 

significantly from California because of the much more important role of sulfate over the last 20 

years90,100. Throughout the last 20 years, a linear increase in PM2.5 with temperature is observed. 

Due to increased cooling demand on warmer days and the consequent energy consumption, met 

in part by coal-fired power plants, SO2 emissions in the Eastern U.S. summertime are 

temperature dependent67. Early in the record, the conversion of these emissions to sulfate 

aerosols explains most of the observed temperature dependence. This explanation for the 

temperature dependence of PM2.5 and sulfate differs from most prior analyses that focused on 

stagnation and the accelerated conversion of SO2 to sulfate as temperature warms101–104. 

With the dramatic decrease of SO2 emissions from the region’s coal-fired power plants, 

sulfate aerosol mass has decreased. Still, we find that a strong, linear temperature dependence of 

aerosol mass remains. We describe this transition and the current role of organic aerosols (OA) as 

a primary feature in the temperature dependence of urban aerosol in the region.  

 

Observations 
 Seven cities in the Northeast U.S. were chosen for analysis of the temperature 

dependence of PM2.5 aerosol: Baltimore, MD; Boston, MA; Buffalo, NY; New York, NY; 

Philadelphia, PA; Providence, RI; and Washington, D.C. These cities all had relatively complete 

records (>90% data availability within period of study) of aerosol, aerosol composition, and 

meteorological observations located near or at the aerosol measurement sites. The observations 
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were obtained from the United States Environmental Protection Agency Air Quality System (US 

EPA AQS) and the associated Chemical Speciation Network (CSN). The period studied spans the 

months of June to August for the years 2000 to 2020. PM2.5 mass, NOx concentrations, and 

temperature are used in this analysis. Some observations are available hourly, others as 24-hour 

averages recorded daily and others as 24-hour averages on 3-day intervals. PM2.5 speciation 

values were available as noted in Appendix A, Table A.1 along with identifying information 

pertaining to the specific AQS sites in each city. Where one site was not sufficient to describe the 

full period of speciation data, a nearby site also located within the same urban region was used to 

supplement the record. All PM2.5 values were recorded at a fixed relative humidity and therefore 

do not reflect the effects of hygroscopic growth. Finally, organic carbon (OC) speciation data 

was only available from June-August 2016-2020.   

 Data was first screened for negative values and obvious outliers (values two to three 

orders of magnitude greater than adjacent points), and then grouped by subperiod (2000-2005, 

2006-2010, 2011-2015, 2016-2020). Data availability varies across cities and subperiods (with 

more recent data usually being more complete) and we see this reflected in the higher variance 

associated with observations from the earlier subperiods.   

 At the beginning of the millennium (2000-2005), ammonium sulfate (ASO4) comprised 

on average 51% of summertime PM2.5 mass across the seven cities, with total PM2.5 

concentrations averaging around 16.9 g/m3. In more recent times (2016-2020), ASO4 comprises 

only about 16% of summertime PM2.5, with total PM2.5 concentrations averaging 8.0 g/m3. We 

find that the mass of NH4 reported is a stoichiometric match to the sulfate mass and thus report 

ASO4 as the sum of the two without further adjustment.  

At the same time as the total PM2.5 mass and the sulfate fraction decreased, the 

temperature dependence of PM2.5 also decreased. In the seven cities, summertime PM2.5 mass 

and ASO4 mass shows a strong linear correlation with temperature throughout the record. Figure 

2.1 shows the example of Washington, D.C. Early in the record, the slope of PM2.5 mass vs. 

temperature was 2.0 ± 0.5 g/m3/°C, whereas in the most recent subperiod the slope was 0.6 ± 

0.2 g/m3/°C. For ASO4, early in the record, the slope vs. temperature was 1.3 ± 0.4 g/m3/°C, 

whereas in the most recent subperiod the slope was 0.2 ± 0.05 g/m3/°C. Parameters describing 

the linear fits to observations for all seven cities in each of the four time periods aggregated in 

Figure 2.1 are listed in Table 2.1. Sets of figures showing this relationship for the other six cities 

not featured here are displayed in Figures A.1 and A.2 of Appendix A. 
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Figure 2.1: (Left) PM2.5 and (Right) ASO4 mass concentrations vs. temperature for 

Washington, D.C. ⬤ : 2000-2005; ▲: 2006-2010; ■ : 2011-2015; ◆ : 2016-2020. The 

range shown at each point represents the central 66% of the distribution in that bin.  

 

To confirm that this phenomenon is not a result of the correlation of stagnation with 

warmer temperatures, we examined the temperature dependence of nitrogen dioxide (NO2). 

Figure 2.2 shows that there is a slight increase in the NO2 concentration that is correlated with 

temperature early in the record, but the slope is much, much less than observed for ASO4 or 

PM2.5. Later in the record the slope is near zero. Nitrate aerosol mass (also investigated but not 

shown), decreases linearly with temperature early in the record, presumably because of 

displacement by sulfate. Later in the record, the nitrate temperature relationship follows that of  

NO2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: NO2 concentrations vs. temperature for Washington, D.C. ⬤ : 2000-

2005; ▲: 2006-2010; ■ : 2011-2015; ◆ : 2016-2020. The range shown at each point 

represents the central 66% of the distribution in that bin. 
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Figure 2.3: Slopes of ASO4 mass vs. temperature vs. the slopes of total PM2.5 vs. 

temperature for the seven cities featured in this study. The x and y ranges shown at 

each point represent the central 95% of the distribution for each slope estimate. ⬤ : 

2000-2005; ▲: 2006-2010; ■ : 2011-2015; ◆ : 2016-2020.  

 

Figure 2.3 shows the correlation of ASO4 mass with temperature vs. the correlation of 

total PM2.5 with temperature. A slope of 1 would suggest that ASO4 explains the entire 

temperature dependent increase in PM2.5. Fitting the data to a line and taking into account the 

uncertainty in both x and y (using a weighted least squares fit as described by York et al. 2004)105 

gives the slope shown of 0.74 ± 0.1 [g ASO4/m3/°C]/[g PM2.5/m3/°C]. This indicates that 

ASO4 was the dominant source (~75%) of the PM2.5 temperature dependence in these seven 

locations over this period. The x-intercept of roughly 0.35 g PM2.5/m3/°C then represents the 

portion of the PM2.5 temperature dependence that is unrelated to ASO4.  

This residual is likely linked to OA. Though the EPA AQS does not measure OA directly, 

it measures organic carbon (OC), and literature suggests that an appropriate value for the ratio of 

OA to OC in the Northeast U.S. summertime is roughly 2.2106,107. Figure 2.4A shows OA 

(OC*2.2) vs. temperature in Washington D.C. for the most recent subperiod (2016-2020). The 

other six cities are shown in Figure A.3 of Appendix A. The slope derived from Figure 2.4A is 

0.32 ± 0.14 g/m3/°C. The magnitude of this correlation and that for the other three cities are 

roughly in line with the x-intercept shown in Figure 2.3, representing the fraction of PM2.5 

temperature dependence explainable by organic aerosols. This idea is supported by Figure 2.4B, 

which is constructed similarly to Figure 2.3. The slope of the correlation of OA with temperature 

vs. the slope of the correlation of total PM2.5 with temperature for these seven cities between 

2016-2020 is roughly three fifths of the observed temperature dependence of PM2.5. In Table 2.1, 

we list the temperature dependence of ASO4 and OA for the four 5-year periods we have 

analyzed.  
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Figure 2.4: A: Relationship between OA and temperature in Washington, D.C. 

between 2016 and 2020. The range shown at each point represents the central 66% 

of the distribution in that bin. B: Slopes of OM vs. temperature vs. the slopes of total 

PM2.5 vs. temperature for the seven cities featured in this study. The x and y ranges 

shown at each point represent the central 95% of the distribution for each slope 

estimate. 

 

Table 2.1. Slopes of PM2.5, ASO4, and OM versus temperature as well as the ratio of the 

slopes of ASO4 and PM2.5 across all cities and subperiods along with their 95% confidence 

intervals. Slope units are in g/m3/°C. 
City Data 2000-2005 2006-2010 2011-2015 2016-2020 

Baltimore  PM2.5 Slope 1.85  ± 0.37 1.81 ± 0.36 1.00 ± 0.21 0.56 ± 0.22 

 ASO4 Slope 1.29 ± 0.37 0.73 ± 0.08 0.41 ± 0.11 0.18 ± 0.04 

 OM Slope - - - 0.32 ± 0.08 

 mASO4/mPM 2.5 0.70 0.40 0.41 0.32 

Boston  PM2.5 Slope 1.11  ± 0.46 0.98 ± 0.30 0.53 ± 0.22 0.35 ± 0.14 

 ASO4 Slope 0.52 ± 0.40 0.42 ± 0.29 0.12 ± 0.11 0.08 ± 0.05 

 OM Slope - - - 0.23 ± 0.06 

 mASO4/mPM 2.5 0.46 0.42 0.22 0.22 

Buffalo PM2.5 Slope 1.91 ± 0.56 1.53 ± 0.46 0.54 ± 0.17 0.58 ± 0.19 

 ASO4 Slope 1.67 ± 0.94 0.72 ± 0.31 0.28 ± 0.15 0.14 ± 0.07 

 OM Slope - - - 0.28 ± 0.17 

 mASO4/mPM 2.5 0.87 0.47 0.52 0.24 

New York PM2.5 Slope 1.72 ± 0.52 1.49 ± 0.47 0.58 ± 0.16 0.70 ± 0.22 

 ASO4 Slope 1.19 ± 0.42 0.82 ± 0.30 0.22 ± 0.06 0.18 ± 0.07 

 OM Slope - - - 0.51 ± 0.16 

 mASO4/mPM 2.5 0.69 0.55 0.38 0.26 

Philadelphia PM2.5 Slope 1.32 ± 0.41 0.97 ± 0.48 1.03 ± 0.32 0.61 ± 0.12 

 ASO4 Slope 0.86 ± 0.37 0.77 ± 0.16 0.69 ± 0.39 0.25 ± 0.08 

 OM Slope - - - 0.30 ± 0.20 

 mASO4/mPM 2.5 0.65 0.79 0.67 0.41 

Providence PM2.5 Slope 1.44 ± 0.49 1.19 ± 0.31 0.75 ± 0.20 0.59 ± 0.10 

 ASO4 Slope 0.93 ± 0.6 0.64 ± 0.23 0.21 ± 0.06 0.13 ± 0.04 
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 OM Slope - - - 0.32 ± 0.12 

 mASO4/mPM 2.5 0.65 0.54 0.28 0.22 

Washington, D.C. PM2.5 Slope 1.99 ± 0.49 1.34 ± 0.40 0.96 ± 0.26 0.59 ± 0.21 

 ASO4 Slope 1.32 ± 0.42 0.69 ± 0.38 0.35 ± 0.16 0.17 ± 0.05 

 OM Slope - - - 0.32 ± 0.14 

 mASO4/mPM 2.5 0.66 0.52 0.36 0.29 

 

 

Early in this record (2000-2005), ASO4 represented ~67% of the temperature dependence 

of PM2.5. OC measurements are not available during this time period. However, if we assume the 

behavior of organic aerosol has been constant and use the values from 2016-2020, then the 

observed temperature dependence is explained almost completely by these two components 

(Figure 2.5, top). In 2016-2020, ASO4 represents only ~28% of the PM2.5 temperature 

dependence across our seven cities while organic components now represent ~57% (Figure 2.5, 

bottom). Again, the overall temperature dependence is almost entirely explained by the 

temperature dependence of these two terms, but the relative importance is reversed. 
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Figure 2.5: The temperature dependence of PM2.5 and its components in 2000-2005 

(Top) and 2016-2020 (Bottom). OM correlation values from 2016-2020 are displayed 

in both. Error bars shown correspond to the 95% confidence interval for each slope. 

■ : Total PM2.5 vs. T; ■ : ASO4  vs. T;  ■ : OM vs. T.  

 

Discussion 
In the Northeast U.S., summertime PM2.5 has been changing dramatically over the last 20 

years. Air quality initiatives have resulted in a reduction in primary emissions of sulfur dioxide 

and nitrogen oxides. As SO2 emissions were successfully curbed, sulfate aerosol concentrations 

tumbled90. Due to the positive correlation between summertime temperatures, energy demand for 

cooling, and SO2 emissions associated with energy production67, these reductions were reflected 

in the temperature dependence of ASO4 aerosol concentrations. The abatement of SO2 emissions 

has had the dual effect of reducing overall PM2.5 concentrations as well as the dependence of 

summertime PM2.5 concentrations on temperature. Across the Northeast U.S., the enhancement in 

PM2.5 due to temperature shrunk significantly comparing 2016-2020 to 2000-2005; the 

difference in PM2.5 concentrations between the top and bottom temperature deciles decreased by 
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10 – 17 g/m3. The World Health Organization (WHO) recommends that 24-hour average PM2.5 

concentrations should not exceed 15 g/m3
 more than 3-4 days per year 

(https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health). In 

the years 2000-2005, the percent of summer days with average PM2.5 concentrations exceeding 

this WHO standard was 58% in Baltimore; 46% in Boston; 43% in Buffalo; 54% in New York; 

56% in Philadelphia; 29% in Providence; and 63% in Washington, D.C. More recently, in the 

years 2016-2020, the percent of summer days exceeding the standard was below 5% in all seven 

of the cities we analyzed. Days exceeding the standard are exclusively the warmest days. By this 

metric, the emission reduction efforts of the last 20 years have had tremendous success in 

improving air quality in the cities of the Northeast U.S. Recent studies have shown how the 

negative health impacts of PM2.5 exposure can begin to manifest below this threshold of 15 

g/m3 (4,108,109). For this reason, understanding the pathways towards continued decreases of 

aerosol mass on the hottest days remains important.  

Warmer temperatures are still driving high aerosol events through their connection to 

enhanced OA (Figures 2.4B and 2.5). Strategies for reducing the occurrence of high aerosol 

events will vary depending on the cause of the temperature dependence of urban OA.  Biogenic 

VOC emissions are strongly temperature dependent110. If the aerosol source is from biogenic 

emissions outside of cities, then there may be few policy options.  However, if the biogenic 

emissions are within cities, then the types of trees planted will likely be important. Planting of 

trees is viewed as an important strategy for mitigating the urban heat island effect. Alternatively, 

if VCPs or temperature-dependent chemistry are responsible for increased aerosol mass at high 

temperatures, then a number of policies for control might be available.  
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Chapter 3: Temperature-dependent composition of 

summertime PM2.5 in observations and model 

predictions across the Eastern U.S. 
 

This chapter was adapted from: Vannucci, P. F.; Foley, K.; Murphy, B. N.; Hogrefe, C.; Cohen, 

R. C.; Pye, H.O.T. Temperature-dependent composition of summertime PM2.5 in observations 

and model predictions across the Eastern U.S. Under review – pending publication.  

 
Abstract 

Throughout the U.S., summertime fine particulate matter (PM2.5) exhibits a strong 

temperature (T) dependence. Reducing the PM2.5 enhancement with T could reduce the public 

health burden of PM2.5 now and in a warmer future. Atmospheric models are a critical tool for 

probing the processes and components driving observed behaviors. In this work, we describe 

how observed and modeled aerosol abundance and composition varies with T in the present-day 

Eastern U.S. with specific attention to the two major PM2.5 components: sulfate (SO4
2-) and 

organic carbon (OC). Observations in the Eastern U.S. show an average measured summertime 

PM2.5-T sensitivity of 0.67 g/m3/K, with CMAQ v5.4 regional model predictions closely 

matching this value. Observed SO4
2- and OC also increase with T; however, the model has 

component-specific discrepancies with observations. Specifically, the model underestimates 

SO4
2- concentrations and their increase with T while overestimating OC concentrations and their 

increase with T. Here, we explore a series of model interventions aimed at correcting these 

deviations. We conclude that the PM2.5-T relationship is driven by inorganic and organic systems 

that are highly coupled, and it is possible to design model interventions to simultaneously 

address biases in PM2.5 component concentrations as well as their response to T.  

 

Introduction 
 Exposure to airborne particulate matter, specifically that of a diameter smaller than 2.5 

mm (PM2.5), has been linked to numerous deleterious health effects88. Efforts to decrease PM2.5 

in the United States have reduced average annual concentrations by 37% since the start of the 

millennium, reaching a national mean of ~8.5 g/m3 in 2021111. A growing number of studies 

suggest that negative health impacts of PM2.5 exposure occur at even lower 

concentrations4,108,109, and in 2021, the World Health Organization suggested an annual mean 

PM2.5 guideline of 5 g/m3 112. Strategies for achieving reductions to meet such stringent 

standards will involve controls on multiple sources of PM2.5 and likely require a speciated 

approach113  

 The most common PM2.5 components by mass in the U.S. are organic aerosols (OA), 

sulfate (SO4
2-), ammonium (NH4

+), and nitrate (NO3
-). Since 2002, U.S. emissions of nitrogen 

oxides (NOx) have decreased by 63%, and emissions of sulfur dioxide (SO2) by 86%114, leading 

to reductions in aerosol nitrate and sulfate. Reductions in OA have been slower. Myriad volatile 

organic compounds (VOCs), both biogenic and anthropogenic, are aerosol precursors and only a 

subset of the precursors are known to be controllable. In addition, primary emissions of OA from 

wildfires are not directly controllable. Since primary OA is only a fraction of total OA95 and 
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inorganic aerosol components continue to decrease, reducing OA precursors and their conversion 

to secondary OA represent potentially meaningful avenues for further abating PM2.5
114.  

 Ambient temperature has been identified as having a prominent role in promoting 

elevated summertime PM2.5 concentrations in diverse regions of the United States such as the 

Northeast, the Southeast, and Southern California58,68,99,115,116. The summertime temperature 

dependence of OA is primarily driven by an increase in biogenic emissions, whereas for SO4
2- it 

is driven by temperature dependent SO2 emissions67,117 and further modulated by temperature 

dependent solubility and conversion of SO2 to SO4
2- 101. In addition, SO4

2- can mediate OA 

production by regulating both particle-phase acidity as well as aerosol liquid water content which 

modulate the formation of OA by promoting uptake of isoprene epoxydiols (IEPOX) to the 

particle phase57,118. Therefore, a fraction of OA responds to temperature by virtue of chemical 

coupling between sulfate and temperature dependent biogenic emissions.  

Vannucci and Cohen show that temperature-dependent inorganic emissions controlled the 

behavior of PM2.5 in the Northeast in the early 2000s68. However, in recent years organic 

compounds were the primary driver of the observed temperature dependent increase in aerosol 

mass. Going forward, as our climate continues to warm, understanding the complex interactions 

between temperature and PM2.5 will be of critical importance so that future air quality can be 

properly estimated119. Here, we characterize the observed relationship between temperature and 

total sulfur (SO2 + SO4
2-), aerosol SO4

2-, and organic aerosols in the U.S. and compare it to that 

predicted by the most recent version of the Community Multiscale Air Quality model 

(CMAQ)120 with the Community Regional Atmospheric Chemistry Multiphase Mechanism 

(CRACMM)121. In addition, we explore how modeled temperature sensitivities can be impacted 

by changing select model processes with the goal of improving agreement with observations.  

 

Methods 
Observed concentrations of ambient SO2 as well as total and speciated PM2.5 were 

obtained from the Environmental Protection Agency Air Quality System (EPA AQS). For a 

complete list of AQS sites and final values utilized in this study, refer to the supporting data 

archive. PM2.5 concentrations were usually reported as daily 24-hour averages. For speciated 

PM2.5, concentrations were usually reported as 24-hour averages every third day. Observations of 

gaseous SO2 were reported hourly and resampled here as 24-hour averages for comparison to the 

PM2.5 data. Analysis focused on the sulfate and organic carbon (OC) components of PM2.5, both 

of which demonstrate a consistent positive temperature dependence. Sulfate reported in the AQS 

was measured through ion chromatography and does not include organic sulfate; it does, 

however, include sulfate in the form of hydroxymethane sulfonate (HMS), which is not included 

in the model’s chemical mechanism122,123. Ammonium PM2.5 was found to track sulfate PM2.5 in 

the observations, indicating that it serves primarily as a counter ion and does not offer 

meaningfully independent information on aerosol mass. Observed nitrate PM2.5 was small 

compared to SO4
2- and OC in summer and thus not considered for analysis as an independent 

component.  

CMAQ version 5.4, running with CRACMM version 1.0121,124 was used to predict 

atmospheric composition for the contiguous U.S. (CONUS) at 12 km horizontal resolution with 

35 vertical layers (though only the bottom layer, 0-20 meters, was used in this analysis) during 

the Summer of 2019 (June to August with 10 days of spin-up in May). Meteorological fields 

were simulated with the Weather Research & Forecasting Model (WRF) version 4.1.1 and 
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processed for use in CMAQ through the Meteorology-Chemistry Interface Processor 

(MCIP)125,126. For representing aerosol dry deposition, we used the STAGE-Emerson 

mechanism127. For anthropogenic emissions, emissions from the EQUATES project were 

processed through the Sparse Matrix Object Kernel Emission (SMOKE) framework128,129, and 

for biogenic emissions, we used the Biogenic Emission Inventory System (BEIS) within 

CMAQ130.  

Model predictions of PM2.5 and its components were matched in time and space to AQS 

observations using the EPA Atmospheric Model Evaluation Tool131. Model predictions of OA 

were converted to OC using factors specific to each OA species in CRACMM. The ratio of OA 

to OC typically ranges between 1.8 and 2.1 throughout our domain of interest132 and 

spatiotemporal variations in this value are therefore unlikely to affect observed trends in the OC-

T relationship. 

Only sites with datasets that were more than two-thirds complete were retained in the 

analyses (at least 60 days out of the 92-day period for daily observations, and at least 20 days of 

observations for measurements made every 3rd day). Model performance statistics in the form of 

mean bias/error, normalized mean bias/error, and Pearson correlation coefficients were generated 

based on modeled and observed concentrations for our species of interest (see supporting 

information for definitions of the metrics).   

In addition, we define a PM2.5-T sensitivity in units of g/m3 per K as the slope of PM2.5 

(or its constituent) versus modeled average daily temperature calculated using Theil-Sen 

estimators at each site. This method involves finding the median value of slopes determined by 

evaluating all pairs of points133 and was chosen to minimize the influence of outliers given the 

paucity of samples at individual AQS sites (especially for PM2.5 speciation observations). For the 

purposes of comparing modeled and observed T-sensitivities as shown later in Figures 3.4 and 

3.6, calculated slope values were only retained if the absolute value of the Spearman rank 

correlation coefficient was greater than 0.25 to eliminate outlying trends we are less confident in. 

Modeled temperature values were used to generate both observed and modeled PM2.5-T 

sensitivities because temperature measurements were not always available at sites with PM2.5 

observations. Where temperature observations were available, they were found to be in good 

agreement with the modeled values, with an average bias of 0.14 K across all observations 

(Figure B.1 in Appendix B).  

 

Base Case Results 
 PM2.5 concentrations measured at AQS sites during the summer of 2019 across CONUS 

(Figure 3.1A) are broadly higher in the eastern U.S. compared to the western U.S. with 

California being a notable exception of high concentrations in the West. We find positive 

correlations between PM2.5 and temperature across much of CONUS with, on average, higher 

concentrations and a stronger sensitivity to temperature east of the Texas panhandle (Figure 

3.1B). In the Eastern U.S., the average PM2.5-T sensitivity is ~0.67 g/m3/K, and the temperature 

response is particularly high along the Gulf Coast, where the average PM2.5-T sensitivity is ~1.4 

g/m3/K. This region is likely to exhibit such a strong response to temperature because of its 

proximity to large swathes of vegetation and BVOC emissions, heightened SO2 emissions from 

the shipping sector, and the overall warmer temperatures compared to the rest of the Eastern U.S.  

In addition, a notable departure from broad regional trends is found at a few sites in Southern 

California where elevated PM2.5 at low temperatures drives the overall negative sensitivity to 

temperature (not including the Los Angeles urban core, which instead features a positive 
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relationship between PM2.5 and temperature, as observed by Nussbaumer & Cohen99). Finally, 

the response of PM2.5 to temperature is weak in the Southwestern desert despite the high 

temperatures, likely due in part to lower biogenic VOC emissions as well as a higher 

contribution of desert dust to PM2.5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: A: Mean concentrations of total PM2.5 mass at AQS sites. B: Sensitivity 

of observed PM2.5 to temperature at AQS sites (see Methods section for details).  

 

OC and SO4
2- components of PM2.5 are also found to have a widespread sensitivity to 

temperature. As with total PM2.5, both OC and SO4
2- show the strongest positive relationships 

with temperature in the Eastern U.S. with average sensitivities of ~0.11 and ~0.12 g/m3/K 

respectively. Adding ammonium as a counter ion for sulfate and the non-carbon fraction of OA 

associated with OC brings the total sensitivity of PM2.5 vs T captured by OC and SO4
2- to 0.37 

g/m3/K, within one standard deviation of the total PM2.5 vs T sensitivity for co-located, 

temporally coincident PM2.5 (0.60 +/- 0.25 g/m3/K, a slight reduction from the value calculated 

utilizing all available PM2.5 observations). In work by Vannucci & Cohen68 the authors find that 

when utilizing select AQS sites with ample data availability (and averaged over five-year 

subperiods instead of a single year), the sum of the T sensitivities of OC and SO4
2- is adequate 

for convincingly explaining the total PM2.5-T sensitivity in the Eastern U.S. summertime. We 

thus focus on OC and SO4
2- as they account for the majority of the PM2.5-T sensitivity.  
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 We then assess model performance by considering the model bias and error in total PM2.5. 

Across all total PM2.5 observations throughout CONUS, we find a normalized mean bias of -17% 

and a normalized mean error of 36% for an average observed concentration of 7.29 g/m3 (Table 

B.1 in Appendix B). We also find the PM2.5-T sensitivity relationship in the model corresponds 

well with observed trends. Across all AQS sites there is only a slight underestimation of -0.07 

g/m3/K on average between modeled and observed PM2.5-T relationships (Table B.10 in 

Appendix B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: A: Mean difference between modeled and observed concentrations of OC PM2.5. 

B: The same for SO4
2- PM2.5.  

 

Despite the relatively good agreement between predicted and observed total PM2.5, model 

representations of OC and SO4
2- exhibit significant and compensating biases with broad regional 

features (Figure 3.2, Table B.2 in Appendix B). Figure 3.2A shows that modeled OC is 

overestimated by ~0.5 g/m3 in much of the Eastern U.S. (east of -100° longitude). Figure 3.2B 

shows that modeled SO4
2- is underestimated by ~0.5 g/m3 over the same broad region where 

OC is overestimated. Outside the eastern U.S., biases are more localized. For example, there is a 

large (> 1 g/m3) difference between model predictions and observations of both OC and SO4
2- 

in Southern California. In much of the rest of the country, model and observations are a close 

match. For this reason, we use the longitude of -100° as a dividing line and focus on the Eastern 
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half of the continent where the biases are widespread and largely homogenous for the remainder 

of our analysis. The southeastern U.S. is also of particular interest as it is projected to experience 

the greatest regional increase in PM2.5-attributable deaths due to climate change by 209516. 

 
Figure 3.3: Normalized mean bias of model predictions compared to observations (see 

supporting information for details) for both OC and SO4
2- concentrations split into equally-

sized bins representing temperature deciles. We include all available daily observations 

from the Eastern U.S. (Longitude > -100°) June-August 2019. Error bars represent the 

bootstrapped 95% confidence interval for the median of each bin. 

 

We find that normalized mean bias of predicted OC and SO4
2- PM2.5 compared to 

observations is not only ubiquitous but also dependent on temperature. Both OC overestimations 

and SO4
2- underestimations grow with temperature (Figure 3.3). At the low end of the 

temperature range, normalized mean bias is within ~10% for both OC and SO4
2-. As temperature 

grows, biases in both OC and SO4
2- grow linearly in opposite directions. At the top decile of 

temperatures, bias in OC grows to more than +60% (with an average observed OC PM2.5 

concentration of 2.0 g/m3) and bias in SO4
2- grows to nearly -90% (with an average observed 

SO4
2- PM2.5 concentration of 1.75 g/m3). As concentrations of both components grow with 

temperature, normalized biases consistently grow as well. This is also the case when looking at 

normalized mean error (Figure B.2 in Appendix B) which grows linearly with temperature for 

both constituents at a similar rate.  
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Figure 3.4: Modeled versus observed sensitivities of OC PM2.5 versus temperature (A) and 

SO4
2- PM2.5 versus temperature (B) at AQS sites in the Eastern U.S. (Longitude >-100°). 

Data shown only for sites meeting filtering criteria as described in the Methods section.  

 

Figure 3.4 shows the contrast between modeled and observed PM2.5-T sensitivities of OC 

and SO4
2- PM2.5 in the Eastern U.S. For organic carbon, the model overestimates the temperature 

response by a roughly constant 0.1 g/m3/K (Figure 3.4A). This error is largely consistent across 

sites, and it does not scale with the observed sensitivity of OC to temperature. On average 

throughout the Eastern U.S., the modeled sensitivity of OC to temperature is 2x greater than 

observed. In contrast, the model underestimates the relationship between sulfate and temperature 

across the board and appears to have a multiplicative error rather than an offset error (Figure 

3.4B). On average throughout the Eastern U.S., the modeled sensitivity of SO4
2- to temperature is 

3.5x smaller than observed.  

 

Model Sensitivity Simulations 
In this section, we explore model simulations to modify the relationship between PM2.5 

constituents and temperature with the goal of improving agreement with observations. Mean 

bias, error, and Pearson correlation coefficients for PM2.5, OC, and SO4
2- in the sensitivity 

simulations are provided in Tables B3-B8 in Appendix B for CONUS and the Eastern U.S.  

 

Sulfate 
Two factors drive the abundance of aerosol sulfate: the total sulfur emitted and the 

conversion of emitted sulfur to sulfate. To ensure that spatial mismatches in sampling locations 

do not influence our assessment, we restrict this portion of the analysis to AQS sites reporting 

both gaseous SO2 as well as aerosol SO4
2- concentrations (for the exact subset see the supporting 

data archive).  

The bias in model-predicted total sulfur (SO2 + SO4
2-) at the lowest temperatures hovers 

around -10%, whereas at the highest temperature the bias grows closer to -40% (Figure 3.5A). 

This suggests that the model is missing sulfur across the temperature range, but especially so on 

the hottest days (Figure 3.5A). Figure 3.5B shows how the observed conversion of SO2 to SO4
2- 

is higher at high temperatures, increasing from ~35% to ~55% from 291 to 302 K (18 to 29 °C). 

By contrast, the modeled conversion of SO2 to SO4
2- decreases as temperature rises, going from 

~55% to ~40% over this temperature range. These panels suggest both that the model could be 
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missing one or more sources of sulfur and that the modeled conversion of SO2 into SO4
2- needs to 

be revised to produce slower oxidation at low temperatures and faster oxidation at high ones.  

Note that neither the AQS observations nor the modeled concentrations for sulfate shown 

here include organosulfates. Therefore, model-observation disagreements in the proportion of 

inorganic to organic sulfate might also drive discrepancies here. For example, if the model 

features greater-than-observed conversion of inorganic to organic sulfate at higher temperatures, 

this might also manifest as a lower modeled ratio of SO4
2- to SO4

2-+SO2 because the organics are 

not being considered. Another confounding factor could be discrepancies in temperature-

dependent emissions of primary sulfate, but most of the summertime SO4
2- is expected to be 

secondary in nature134. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: A: Normalized model bias with respect to total SO2 + SO4
2- in g/m3. B: 

Modeled and observed ratios of SO4
2- to (SO2+SO4

2-). In both panels, data are represented 

as medians of ten bins with equal numbers of observations per bin from the Eastern U.S. 

(Longitude > -100°) June-August 2019. Error bars represent the bootstrapped 95% 

confidence interval for the median of each bin.  

 

To correct the model bias in total sulfur, we first test the effects of increasing sulfur 

emissions by utilizing the CMAQ Detailed Emissions Scaling, Isolation and Diagnostic (DESID) 

module135 to implement a constant scale factor aimed at bringing the modeled and observed total 

sulfur into agreement. Given that normalized bias in total sulfur varies from -10 to -40%, we 

conduct an assessment at the upper bound by increasing sulfur dioxide emissions by 40% 

(intervention #1). We conduct this intervention as a hypothetical simulation to probe how the 

model might handle a large increase in SO2 and whether that would result in substantially greater 

SO4
2- PM2.5 production. This emission increase results in a smaller normalized bias in total 

sulfur, moving it from an average of -20% to an average of +8%.  However, we find that this 

emission increase does little to address the temperature-dependent model bias in sulfate as it does 

not affect the distribution of sulfur among phases. The normalized mean bias in SO4
2- PM2.5 

changes from -46% in the base case to -36% with the increased emissions, and the normalized 

mean error changes from 50% to 44%. Though we achieve modest improvements in absolute 

concentrations of sulfate, we do not sufficiently alter the representation of the SO4
2—T 
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relationship, as shown in Figure 3.6B, indicating that we are still not targeting the major 

atmospheric process causing bias.    

Given the need for additional conversion to SO4
2- in the model, we then separately tested 

the ability of adding chemical processes to increase sulfate (intervention #2). The CMAQ model 

oxidizes SO2 to form sulfate in the gas-phase and in cloud droplets but not in aqueous particles. 

This aqueous aerosol-mediated pathway is estimated to produce significant amounts of sulfate as 

well136. We introduce an uptake coefficient to bring SO2 into aqueous particles as sulfate, 

selecting a value of 10-2, at the high-end of what has been suggested in the literature137. Including 

aqueous aerosol uptake has a notable effect on sulfate concentrations, resulting in a new 

normalized mean bias for SO4
2- PM2.5 of +5% and a new normalized mean error of 57%. Though 

this intervention significantly improves mean biases, it results in greater variance in model-

observation agreement and worsens model error. This is also readily apparent when considering 

the degradation of the Pearson correlation coefficient between model predictions and 

observations, from 0.62 in the base case to 0.38 in intervention #2 (Table B.8 in Appendix B). 

However, this intervention results in a dramatic enhancement in the modeled SO4
2—T 

relationship (Figure 3.6B). Overall, while this intervention shows mixed results, it underscores 

the relevance of this pathway for SO4
2- production and invites further consideration in future 

analyses.  

To reiterate, the black line in Figure 3.6B (identical to the best fit line in Figure 3.4B) 

shows how our base case model representation of the sulfate temperature dependence was 

limited, showing a growing deviation from the 1:1 line of agreement as observed SO4
2—T 

sensitivities increase. The dashed orange line then represents the line of best fit through the 

modeled versus observed SO4
2—T sensitivities following intervention #1, demonstrating how 

boosting SO2 emissions had only a minor effect in correcting this relationship. However, the 

dotted blue line representing the implementation of aerosol SO2 uptake (intervention #2) shows 

remarkable improvement in model-observation agreement, highlighting the efficacy of the 

aqueous particle formation pathway for producing sulfate and doing so in a temperature-

dependent manner. Since the SO2 uptake was implemented without a strong temperature 

dependence (a 10 K temperature increase enhances the uptake by ~2%), this effect is likely due 

to increased conversion of already temperature-dependent SO2 emissions or to increased aqueous 

aerosol surface area at higher temperatures.  

 

Organic Carbon 
Overestimations in the temperature dependence of OA could be due to errors in VOC 

emissions, VOC oxidation to SOA, and/or a lack of SOA removal processes. We explored a 

different representation of biogenic emissions (MEGAN138) and determined that BVOC 

emissions impact OC predictions and the OC-T sensitivity significantly (Figure B.3 in Appendix 

B). When utilizing the MEGAN inventory, we find that overestimations in OC are higher than 

when using BEIS and that the growth of biases with temperature is even more pronounced; at the 

highest temperatures (top 10%), the normalized mean bias for modeled OC is 3x higher 

comparing MEGAN to BEIS. We thus proceed here with BEIS emissions given they produced a 

lower bound on total OC and OC sensitivity to temperature resulting in lower model error and 

bias. Here we explore three model modifications aimed at reducing OC and its sensitivity to 

temperature.  

Reductions in IEPOX aerosol uptake, a major source of SOA, are likely to be effective at 

improving model-observation agreement. We decrease the condensed phase rate constant for the 
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HSO4
--catalyzed uptake of IEPOX to a more realistic value of 1.31×10-5 moles-2 L2 s-1 

(CRACMM v1.0 overestimated the rate by assuming the same value for HSO4
- as for H+). 

Altering this pathway (intervention #3) affects both OC as well as SO4
2- concentrations as 

organosulfates are a major product (the coupling will be further discussed in the following 

section). As a result, this analysis probes the question of how overestimates in IEPOX SOA can 

affect the PM2.5-T sensitivity of both PM constituents. Reducing SOA from IEPOX in this 

manner improves the modeled representation of OC, with the normalized mean bias for the 

Eastern U.S. in OC PM2.5 falling from +22% to +8% and the normalized mean error falling from 

42% to 35%. The response of OC to temperature is also improved significantly (Figure 3.6A; 

purple dotted line). 

Our second OC model intervention focuses on photolytic destruction of OA. Photolytic 

aerosol removal pathways that are competitive with deposition and represent a significant portion 

of the fate of tropospheric OA have been demonstrated in laboratory settings and found to 

improve model predictions of OA139–143. Monoterpenes in particular are a major source of OA 

ubiquitous throughout the eastern U.S.144,145. Monoterpene oxidation products found in aerosol 

include labile peroxides146 and nitrates, and photolysis loss of monoterpene OA has been 

observed in laboratory experiments142,147. We set the photolysis rate of monoterpene-derived OA 

at 1% of the NO2 photolysis rate, corresponding to average rate values reported in literature143, 

giving a lifetime of approximately 3 hours for monoterpene aerosol during the daytime 

(intervention #4). Adding this photolytic process significantly reduces the normalized mean bias 

in OC to –2% and the normalized mean error to 35%. We also see improvements in the modeled 

OC-T sensitivity, with the gold dotted line in Figure 3.6A showing the trendline much closer to 

approaching the 1:1 line of agreement. A similar scheme, implementing the photolysis of 

monoterpene SOA set at 2% of the NO2 photolysis rate has been recently explored by Liu et al. 

who also found the change to have a positive effect in achieving model-observation agreement 

for OA59.  

Our next model intervention aimed at OC PM2.5 explores monoterpene-derived organic 

nitrates (ONs), which can be found in the gas or particle phase and whose fate has implications 

for both SOA and ozone. The SOA formation potential of nitrate radicals reacting with select 

monoterpene species is high and described in several recent studies148–150. The loss of ONs by 

hydrolysis can contribute to SOA, but parameterizing the reaction is difficult due to the number 

of ON structures with different rates151–154. Our base case assumed gas-phase monoterpene ONs 

either deposited or reacted to form highly functional species that condensed as SOA. Here, we 

lower the yield of SOA from gas-phase ON reactions to 50% to reflect a broad array of 

structures155 and introduce particle-phase uptake and hydrolysis as a competitive removal 

mechanism for the ONs following Pye et al.153 (intervention #5). With these modifications to the 

monoterpene ON fate, there are significant reductions in OC PM2.5 throughout the Eastern U.S., 

with normalized mean bias falling to +7% and normalized mean error falling to 36%. The 

magnitude of the reductions suggest that the fate of ONs is highly relevant in modulating OC 

concentrations and that correctly representing their formation and removal in a manner consistent 

with our current understanding of the chemistry involved will be an important improvement in 

model design. Figure 3.6A demonstrates how each of the three OC model interventions outlined 

has a positive effect in moving the modeled slopes closer to agreement with observations but that 

none of them individually eliminate model bias. Rather than a providing a definitive resolution to 

model bias, the impact of these interventions on the OC-T relationship motivates further 

consideration in future analyses.  
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Cross-system Coupling 
 Evaluating model performance for OC or SO4

2- in isolation is not recommended because 

the two systems are coupled and model interventions aimed at targeting one can influence the 

other. This coupling primarily stems from the role of sulfate in particle-phase acidity and aerosol 

liquid water content which cause increases in SO4
2- concentrations to lead to an enhancement in 

OC as well. We observe this effect in both model interventions aimed at tackling low sulfate 

(interventions #1 and #2). For the case of boosting SO2 emissions, the normalized mean bias in 

OC increases slightly from +22% to +26%, and the normalized mean error increases from 42% 

to 45%. In the case of introducing aerosol uptake of SO2, we see even more dramatic results, 

with normalized mean bias rising to 42% and normalized mean error to 58%.  

Furthermore, these model interventions also worsen the OC-T sensitivity (Figure 3.6A; orange 

dashed line and blue dotted line).  This suggests that correcting the model’s representation of 

SO4
2- requires concurrently introducing measures to counter the resulting worsening of the 

overestimations in OC.  

 For the model interventions aimed at improving the representation of monoterpene OC 

(#4 and #5), we find no meaningful feedback on the sulfate system, as expected. On the other 

hand, changing the rate constant of the HSO4
--catalyzed IEPOX reaction does affect inorganic 

sulfate, this time slightly improving both average concentrations of SO4
2- as well as the modeled 

SO4
2--T sensitivity (Figure 3.6B, purple dotted line). Here, the normalized mean bias for SO4

2- in 

the Eastern U.S. falls from -46% in the base case to –30%, and the normalized mean error falls 

from 50% to 38%. Moreover, we also see a notable improvement in the Pearson correlation 

coefficient, going from 0.62 in the base case to 0.70 here as a result of intervention #3 (Table B.8 

in Appendix B). These results suggest that the IEPOX pathway for OC production is also an 

important mechanism for converting inorganic sulfate to organic sulfate, the latter of which is not 

routinely measured. 

  

 

 

  

 

 

 

 

 

 

 

 

 

Figure 3.6: Analogous to Figure 3.4, showing only lines of best fit for clarity, 

restricted to the subset of AQS sites meeting the filtering criteria described in the 

Methods section for all interventions. A: Trends between modeled and observed 

sensitivities of OC PM2.5 to temperature in the base case and after our five model 

modifications. B: the same for SO4
2- PM2.5. Note the different axis limits. Also note 

that the lines of best fit for interventions #4 and #5 for SO4
2- PM2.5 are identical to 

the base case.  
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Figure 3.7: Left: Percent normalized mean bias in model predictions of SO4
2- and OC 

PM2.5 concentrations in the Eastern U.S. summertime in the base case and after the five 

model modifications pursued in this study. Right: The same but for percent normalized 

mean error.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8: Left: Percent normalized bias in model predictions of the PM2.5-T sensitivity 

for OC and SO4
2- in the Eastern U.S. summertime in the base case and after the five 

model modifications pursued in this study. Right: The same but for percent normalized 

error.  

 

Discussion  
Figure 3.7 represents tabulated results for how normalized mean bias and error in PM2.5 

component concentrations vary from the base case throughout our five model design 

interventions. Figure 3.8 then represents the normalized mean bias and error in the modeled 

representations of the SO4
2- -T and OC-T relationships (see also Tables B.9-B.10 in Appendix B). 

The comparison of Figures 3.7 and 3.8 shows how model-observation agreement for the T 

sensitivity of OC and SO4
2- across our interventions mirrors model-observation agreement in 

absolute concentrations. We thus find that model biases in PM2.5 component mass concentrations 

are linked to biases in their temperature dependence, and model modifications to improve PM2.5 
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component mass predictions can address both biases simultaneously. Five model modifications 

were tested to evaluate their efficacy for improving the representation of how PM2.5 components 

change with temperature: two enhanced SO4
2- production, two targeted OC removal and fate, and 

one addressed both SO4
2- and OC. We note that these model interventions were not specifically 

aimed at temperature, and temperature is one indicator of meteorology. Meteorological biases in 

the model could affect the PM2.5-T relationship. However, SO4
2- and OC temperature-dependent 

biases were in opposite directions, suggesting that a common meteorological driver is not 

primarily responsible for biases. Nevertheless, this work does not preclude errors in 

meteorological drivers from contributing to model bias. For example, if our WRF fields 

underestimate cloud cover at high temperatures, this might limit the aqueous-phase oxidation of 

SO2 into SO4
2- in clouds. 

In attempting to address the model’s low bias with respect to sulfate aerosols, we find that 

increasing SO2 emissions by 40% broadly improves modeled SO4
2- concentrations, but it does 

not improve the modeled response of SO4
2- to temperature sufficiently. Summertime SO2 

emissions have been shown to be sensitive to temperature on account of heightened electricity 

demand to meet cooling needs on the hottest days and the coal combustion utilized to meet that 

demand67,117. While SO2 emissions from power plants are generally monitored and thus well 

characterized, exploring missing sources of temperature dependent SO2 emissions such as from 

“peaker” plants and behind-the-meter electricity generators that may be more active during 

periods of high summertime temperatures and electricity demand may be a future avenue to more 

specifically target model performance at high temperatures69.  

Introducing an aerosol uptake coefficient for generating particle-phase SO4
2- consistent 

with the upper limits established in literature substantially reduces the model’s low bias in SO4
2- 

PM2.5 but increases model error and variance, indicating that this intervention does not work 

equally well across all AQS sites probed. However, this model intervention significantly 

improves agreement between modeled and observed SO4
2--T sensitivity at AQS sites in the 

Eastern U.S., highlighting the relevance of particle phase oxidation or other chemical conversion 

of SO2 for SO4
2- formation. A more detailed representation of SO2 uptake to the aerosol phase, 

modulated by temperature-dependent solubility, transition metal abundance, particle acidity, and 

water content could add spatial nuance and a more complete representation of this chemistry to 

better reflect these atmospheric processes as we currently understand them156. Future analyses 

should investigate how such schemes may impact model predictions.  

 In attempting to address the model’s high bias with respect to OC PM2.5, we find that 

model modifications based on laboratory experiments concerning OC production and removal 

processes are highly effective in reducing concentrations and improving both bias and error. 

However, no individual modification that we explored removes all bias. Implementing some 

combination of changes to model chemistry could yield even better agreement. Introducing both 

photolysis of monoterpene OC as well as updating the fate of organic nitrates had a large impact 

on average OC concentrations across the Eastern U.S. Nevertheless, the remaining discrepancies 

between modeled and observed slopes of OC versus temperature suggest the need for further 

model adjustments such as introducing additional temperature-dependent removal processes, less 

temperature-dependent biogenic VOC emissions, and/or a less temperature-dependent 

conversion of VOCs to OC. Additionally, the increase in OC bias as SO4
2- is corrected 

demonstrates how these two major PM2.5 components are best addressed together. We see this in 

our third model intervention, where we introduce a lower rate constant for HSO4
--catalyzed 

uptake and find notable improvements in both OC and SO4
2- modeled concentrations and 
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temperature response. This linkage may become even more important going forward, especially 

in the Eastern U.S., as organosulfates are expected to increase in abundance relative to inorganic 

sulfate157. 

We conclude that achieving an accurate model representation of PM2.5 and its sensitivity 

to temperature will require addressing the processes governing the formation and removal of 

individual components as well as their synergistic interactions. Evaluating model performance 

through this lens provides additional insight into model chemistry and the processes which are 

most atmospherically relevant. With more accurate descriptions of the nature of PM2.5, models of 

future scenarios will offer more robust predictions across a wider range of environmental 

conditions, an ever-growing concern in our warming climate. In addition, through the added 

insight into the chemistry resulting in high summertime PM2.5, models will be better able to 

evaluate possible policies aimed at reducing high aerosol events, a crucial aspect of our 

continued efforts towards curbing exposure and the adverse health effects of aerosol pollution.  
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Chapter 4: Temperature-dependent nighttime 

stagnation episodes driving decadal air pollutant 

exceedances in Los Angeles  

 
This chapter was adapted from: Vannucci, P. F.; Cohen, R. C. Temperature-dependent nighttime 

stagnation episodes driving decadal air pollutant exceedances in Los Angeles. Under review – 

pending publication.  

 

Abstract 
 Nitrogen dioxide (NO2) is a toxic air pollutant originating primarily from anthropogenic 

combustion processes. Because NO2 is linked to adverse health outcomes and increased 

mortality, understanding its drivers and limiting exposure to high concentrations remains a key 

objective. Focusing on the Los Angeles metro area, previous studies have identified a 

relationship between NOx (NOx ≡ NO + NO2) concentrations and temperature, but did not 

convincingly explain its drivers. We expand on past work, demonstrating how the relationship 

between enhanced NO2 concentrations and temperature is driven by nighttime stagnation 

episodes that are distinct from daytime trends. Warm nighttime conditions, marked by low 

planetary boundary layer heights and decreased ventilation, lead to the accumulation of 

pollutants. The high nighttime concentrations therefore have an outsized influence in driving 

overall daily means. Here, we analyze 20 years of observations to show how relative increases in 

NO2 with temperature are consistent over time and are therefore independent of the dramatic 

decadal decreases in emissions. Moreover, by showing that concentrations of carbon monoxide 

(CO) mirror the same trends, we suggest that a common meteorological factor is influencing the 

ensemble rather than temperature-dependent chemistry. We conclude by showing how these 

temperature-dependent stagnation episodes are driving exceedances in daily average NO2 

concentration guidelines. Though in absolute terms exceedances are less prevalent today than in 

past years, their incidence is now more strongly correlated with temperature, suggesting that the 

role of temperature as a control for dangerously elevated NOx concentrations is growing. 

 

Introduction  

Nitrogen dioxide (NO2) is a widely recognized atmospheric pollutant that represents a 

significant burden to public health158. As such, assessing and understanding the drivers of 

exposure to high NO2 concentrations is an important objective. In the context of a warming 

climate, understanding how increases in NO2 may be linked to temperature is relevant for 

predicting metrics of exposure in the future. NO2 occurs in the atmosphere primarily as a result 

of the chemical conversion of nitric oxide (NO) to NO2 by reaction with ozone and peroxy 

radicals. The sum of NO+NO2 is commonly referred to as NOx. Here, we consider trends in 

summertime NO2 and NOx in order to better elucidate its behavior at the warmest temperatures. 

This spatial focus of this study is Los Angeles (LA), California. The greater LA area is a 

domain of interest for air quality given its large population and unique geography: a central basin 

bounded by mountains on all sides excepting the coast. The role of temperature with respect to 

NOx and O3 in the LA basin has previously been explored. For example, Nussbaumer and 

Cohen87 observed a spatially heterogenous relationship between summertime NOx and 

temperature; at one location NOx concentrations appeared to increase linearly with temperature, 
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and at others, NOx concentrations peaked at the middle of the temperature range before 

decreasing. In this previous study, a satisfactory explanation for why NOx concentrations should 

increase with temperature was not suggested, given that the large majority of NOx emissions in 

the LA basin are from temperature-independent mobile sources159,160. The relationships 

previously observed consisted of daily average values derived from hourly observations taken 

between the hours of 10:00-14:00. Here, we expand on this work by considering the relationship 

between NOx and temperature at all hours of the day to better understand the phenomena that 

might influence the enhancement of NOx on warmer days. Given the wide array of chemical 

reactions NOx can participate in, we also consider the behavior of carbon monoxide (CO) with 

temperature. Because CO reacts at much slower timescales than NOx, we use it as a pseudo-

tracer species to track its enhancement with temperature as independent of chemistry— also with 

the assumption that CO emissions are independent of temperature.  

 

Methods  

 We use hourly observations of NO2, NOx, and CO from the Environmental Protection 

Agency Air Quality System (EPA AQS) for the months of May-September and the years 2000-

2019. A complete list of AQS sites used in this analysis are shown in Table C.1 of Appendix C. 

Site selection within the greater LA area was based on the locations featuring complete data 

records for the three species of interest throughout the entire period of analysis. For each species, 

we create three sets of daily averages, one utilizing only the hours of 10:00-17:00, one utilizing 

only the hours of 22:00-05:00, and one utilizing every hour of the day (00:00-23:00). In this way, 

we probe how trends differ when considering daytime versus nighttime trends. We then pair each 

daily average concentration with a daily average temperature. Because not all AQS sites report 

temperature observations, we utilize temperature values from the ERA5 reanalysis provided by 

the Copernicus Climate Data Store of the European Centre for Medium-Range Weather Forecasts 

(ECMWF)161. Temperatures are synchronized to each AQS site on a daily basis and spatially by 

the average grid-cell value within 0.2 degrees of latitude and longitude. Doing so allows us to 

consider every AQS observation available and not exclude sites which do not report temperature 

readings.  

 We then split our observations into four five-year periods: 2000-2004, 2005-2009, 2010-

2014, and 2015-2019.  We do so to gauge decadal trends and also to ensure fair comparisons 

within each period given the dramatic decline in absolute concentrations of these pollutants over 

the two decades. For a list of average concentrations of NO2/NOx/CO at each AQS site in each 

period, see Table C.2 of Appendix C. We utilize these average concentrations to normalize all 

observations by their five-year average at each respective AQS site. This allows us to compare 

relative increases in these pollutants with temperature despite spatial and temporal variations in 

concentrations. By then binning these relative enhancements in NO2/NOx/CO by temperature 

deciles, we assess how average concentrations vary at each AQS site for each five-year period as 

a function of temperature.   

 

Results  
 We first consider how daily average concentrations of NO2 correlate with temperature 

when resampled from all hours of the day. For each five-year period, NO2 observations are 

divided by the average concentration at their respective AQS site during that time and then 

binned by daily mean temperature deciles. Figure 4.1A shows how this results in a remarkably 

consistent linear relationship between normalized NO2 concentrations and temperature. Across 
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the period 2000-2019, the lowest decile of temperatures is associated with NO2 concentrations of 

roughly 70% of the mean, and the highest decile of temperatures is associated with NO2 

concentrations of roughly 130% of the mean. Even as absolute concentrations of NO2 have fallen 

dramatically from 26.1 to 11.4 ppb (Table C.2 in Appendix C), this relationship between relative 

enhancement and temperature has remained robust. Figures 4.1B and 4.1C then replicate this 

analysis for daily averages calculated from either (B) only daytime hours and (C) only nighttime 

hours.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Mean daily normalized concentrations of NO2 binned by temperature 

decile resampled from either (A) all hours of the day, (B) 10:00-17:00, and (C) 22:00-

5:00. Error bars represent the bootstrapped 95% confidence interval for the median 

of each bin. 

 

The daytime enhancement in NO2 with temperature is weaker than the 24-hour 

enhancement, with a range of ~80-110% of the respective means across the full temperature 

range (Figure 4.1B). However, the nighttime enhancement of NO2 with temperature closely 

tracks the 24-hour enhancement (Figure 4.1C). Given that nighttime conditions feature lower 

planetary boundary layer (PBL) heights, and therefore represent a greater potential for 

accumulation and generally higher concentrations, it is not surprising that nighttime trends 

dominate the 24-hour average. This persistent nighttime increase in NO2 with temperature is 

indicative that atmospheric stagnation is important. On warmer days, we could expect lower 

wind speeds and atmospheric inversions that result in lower PBL heights and a consequent 

accumulation of primary pollution. The unique topography of LA also facilitates this 

phenomenon by trapping air in its basin. Other potential explanatory variables for this 

enhancement might be temperature dependent chemical processes or emissions. Given that the 

lion’s share of NOx emissions in LA are from temperature-independent mobile sources, 

emissions are unlikely to be driving the observed behavior. In addition, the fact that the relative 

increase in NO2 with temperature remains virtually unchanged despite reductions in absolute 

NO2 concentrations of more than a factor of two during the study period suggests that 

temperature dependent emissions are unlikely to play a role. To then investigate the potential role 

of chemistry, we repeat the analysis conducted in Figure 4.1 for the species of NOx and CO. 

Given the strong similarities between the analyses conducted on NO2 vis-à-vis NOx 

concentrations, we relegate the plots showing the decadal increases in normalized NOx 

concentrations versus temperature to Appendix C (Figure C.1). The plots for CO are then shown 

in Figure 4.2.  
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Figure 4.2: Mean daily normalized concentrations of CO binned by temperature 

decile resampled from either (A) all hours of the day, (B) 10:00-17:00, and (C) 22:00-

5:00. Error bars represent the bootstrapped 95% confidence interval for the median 

of each bin. 

 

Figures C.1 and C.2 in Appendix C demonstrate how the trends we observe in NO2 are mirrored 

when considering both NOx and CO. Here too we see normalized concentrations of 60-80% of 

the mean at the lowest decile of temperatures and 120-140% of the mean at the highest decile of 

temperatures. The fact that the normalized concentrations of these three species increase in the 

same linear fashion with temperature, especially at nighttime, suggests that a common factor is 

controlling the ensemble. Chemical processes are unlikely to be a factor here, given that we don’t 

expect CO to participate in substantial transformations at this timescale, especially at night when 

photochemical sources should be negligible. In addition, we observe little distinction between the 

temperature-dependent enhancement in CO relative to NO2/NOx, again suggesting that 

temperature-dependent chemistry is not influencing one species differently than the other. Also, 

given that the daytime concentrations of CO and NOx are much less responsive to temperature, 

we do not expect these trends to significantly affect the temperature dependence of daytime 

ozone and aerosols.  

 Another useful analysis is to consider how this temperature dependent enhancement is 

contributing to exceedances of air quality standards. The World Health Organization (WHO) 

suggests a guideline 24-hour mean concentration for NO2 of 25 g/m3 (~13 ppb)162 and this 

threshold is routinely crossed throughout the period of study (May-September, 2000-2019). 

Figure 4.3 shows the probability of mean daily NO2 concentrations exceeding the guideline 

binned by temperature decile in each five-year period. Panel A represents the probabilities of 

exceedances considering only weekdays and panel B considering only weekends.   
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Figure 4.3: Probability of exceeding WHO 24-hour NO2 guideline binned by 

temperature decile during (A) weekdays only and (B) weekends only. Error bars 

represent the bootstrapped 95% confidence interval for the median of each bin. 

 
 Figure 4.3 shows how in absolute terms, we are much less likely to exceed the NO2 

guideline value in recent years. Across all days of the week between 2000-2004, NO2 

concentrations were in exceedance of the guideline 87% of the time, whereas between 2015-

2019, this value is just under 40%. Comparing then between weekdays (Figure 4.3A) and 

weekends (Figure 4.3B), we find that weekdays feature higher probabilities of exceeding NO2 

standards across the board. This is consistent with lessened NO2 emissions during the weekends 

due to there being fewer cars and trucks on the road. However, across all time periods and days 

of the week, we find that the probability of exceedance grows with temperature, and this increase 

in exceedances with temperature is becoming starker. In recent years, the coldest decile of days 

saw a ~8% probability of exceeding the NO2 guideline (~12% on weekdays and <1% on 

weekends), whereas the probability at the hottest decile of days was ~75% (~82% on weekdays 

and ~57% on weekends). This highlights how temperature is becoming a very strong control for 

predicting summertime NO2 exceedances in LA. Though Figure 4.3 is constructed from daily 

averages resampled utilizing all hours of the day, Figure 4.1 tells us that it is specifically the 

nighttime trends that are driving these exceedances. In this way, nighttime stagnation and 

accumulation of NO2 on warm days currently represents the greatest exposure risk during LA 

summers.  

 

Discussion  
 During summertime in LA, we find that daily average NO2 concentrations are strongly 

temperature dependent, and this dependence is dominated by nighttime accumulation. 

Similarities in the enhancements of total NOx and CO show how this effect is not unique to NO2 

and likely meteorological. Even in recent years, we continue to exceed NO2 guidelines on a 

regular basis. Considering that each point in Figure 4.3 represents a tenth of the time range, we 

see that half the weekdays had a 50% chance or better of exceeding NO2 standards. We can also 

deduce that every 1 K increase in mean daily temperature is associated with a ~5% increase in 

probability of exceeding standards.   
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Emission control schemes have been largely successful in decreasing NOx concentrations 

in LA; from 1994 to 2019, observations from downtown LA have seen reductions of nearly 

80%87, but there are additional public health benefits to continuing to bring down concentrations. 

In the 2022 Air Quality Management Plan (AQMP) prepared by the local South Coast Air 

Quality Management District163, the authors assert that current regulation strategies are projected 

to decrease NOx emissions by 47% comparing 2018 to 2037. If we imagine that these emission 

reductions will result in a comparable decrease in NO2 concentrations, this abatement should be 

successful in keeping NO2 concentrations below WHO guidelines ~95% of the time. However, 

an increase in air pollutant accumulation due to stagnation would jeopardize this progress.  

Therefore, this analysis shows that a major source of uncertainty for forecasting future exposure 

risks in LA remains the extent to which climate change worsens the frequency and severity of 

stagnation episodes. This is concerning because it represents a hazard that is difficult to predict 

and even more difficult to control via policy.   

Another important consideration is the matter of nighttime exposure. A growing number 

of studies are finding that exposure to air pollution, both ambient and indoor, is a contributor to 

adverse sleep health164 and NO2 exposure specifically has been linked to sleep disorders in both 

children and adults165,166. The link between temperature, summertime air pollution, and 

stagnation has been investigated in past research73–78,80, but this analysis is novel in scope in 

demonstrating how it is nighttime stagnation specifically that is contributing to present-day air 

quality guideline exceedances (and doing so in a temperature-dependent manner). In addition, 

past studies have focused primarily on stagnation as a driver of aerosol and O3 accumulation, and 

to our knowledge, no study has shown NOx concentrations to be temperature dependent as a 

result of stagnation. In this way, we build on previous findings by Nussbaumer & Cohen87 and 

highlight the importance of considering nighttime trends specifically for accurately assessing 

exposure risk. Correctly modeling and predicting future air quality in LA will thus necessitate a 

more complete understanding of the meteorological mechanisms through which stagnation 

events occur.  
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Chapter 5: Conclusions 

 
Among the countless unforeseen consequences of climate change, the influence of rising 

temperatures on air quality represents a uniquely compelling factor to consider. This is because 

rising ambient temperatures will shift the landscape of biological processes, human behavior, 

atmospheric chemistry, and meteorology in unprecedented ways. Throughout my work, I have 

considered both the direct impact of rising temperatures on drivers of air pollution as well as the 

ways in which temperature may act as a proxy for other explanatory variables. In both instances, 

however, the power of temperature as a predictor for poor air quality is made evident. To frame 

the problem through this lens is thus useful not only for understanding the underlying 

mechanisms enhancing air pollution, but also to inform public health strategies in order to 

minimize exposure. Here, I outline the principal conclusions of my research in this matter, 

elucidating potential directions for future work as well as considering the implications these 

findings may have on future policies.  

 

Major Findings 
In Chapter 2, I present an analysis of a regime transitioning from a summertime PM2.5-

temperature dependence dominated by sulfate aerosols to one instead regulated by organic 

aerosols. This transition underscores a profound improvement in air quality as a result of decadal 

reductions in coal combustion in the region. However, the drastic elimination of sulfate aerosols 

also signifies that the benefits of curbing SO2 emissions are diminishing. Whereas targeting this 

fraction of PM2.5 has been relatively straightforward on account of the limited sources of SO2 

emissions, addressing the broader class of organic aerosols will necessitate a multifaceted 

approach. This is not only because a much wider array of precursors can contribute towards 

forming organic aerosols, but also because a large fraction of these precursors is biogenic and 

thus lies largely outside of our control. This challenge is then further complicated by the fact that 

emission rates of both biogenic and anthropogenic OA precursors are expected to increase with 

temperature, as discussed in Chapter 1. In a warmer future, the highest summertime exposure 

risks in this region will continue to be associated with the highest ambient temperatures, but 

unlike in our sulfate-modulated past, we will have to contend with myriad drivers of enhanced 

PM2.5. Though the region of study is notable in that it represents a domain unobfuscated by 

temperature-independent primary PM2.5, allowing us to readily glimpse the trends in secondary 

formation, these processes are not unique to the Northeast U.S. The enhanced production of 

organic aerosols with temperature will occur even in regions where it is not the dominant feature 

of total PM2.5. This analysis thus highlights the necessity of considering detailed PM2.5 speciation 

when designing and evaluating policies to curb high aerosol concentrations, a task that is set to 

become increasingly complicated in the coming years.  

In Chapter 3, I explore how atmospheric chemical transport models can aid us in 

delineating the sources of enhanced PM2.5 with temperature. Using model predictions to evaluate 

the impact of shifting precursor emissions or evolving meteorological conditions on aerosol 

formation can be particularly informative. However, to meaningfully guide our understanding of 

the drivers of enhanced PM2.5, predictions must be correct in both magnitude and composition. In 

this investigation of summertime PM2.5, a comparison of model predictions to regulatory-grade 

observations across the Eastern U.S. yields good agreement in both mass concentrations as well 

as the response of total PM2.5 to temperature. However, this agreement masks competing biases 
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in the two major temperature-dependent PM2.5 components, sulfate and organic aerosols, 

underestimating the former and its response to temperature, and overestimating the latter and its 

response to temperature. Adjusting model parameters to address these biases is problematic 

because of the significant coupling between the two systems, where sulfate abundance promotes 

organic aerosol production. Nevertheless, by introducing additional pathways for sulfate 

formation in tandem with organic aerosol removal mechanisms, it is possible to address both 

biases simultaneously. These interventions, though inspired by recent literature advances, may 

not necessarily represent a complete picture of the atmospherically relevant processes at play. 

Future model simulations may reveal further ways in which to tune these parameters, among 

others, to achieve even better agreement with observations and theory. Still, this work presents a 

valuable framework for examining model performance through a novel lens, suggesting that 

upcoming assessments of aerosol predictions should consider the composition-specific 

temperature dependence. This aspect will be crucial for designing models able to thoroughly 

capture the landscape of aerosols in a warmer future, allowing us to better answer our original 

question of what precursors and chemical processes are primarily responsible for driving 

enhanced organic aerosol production with temperature, and what strategies may be more or less 

successful for its curtailment. Being able to accurately forecast PM2.5 speciation will also be an 

important factor for predicting the damaging effects of future aerosol pollution, because 

designing effective PM mitigation strategies will comport considering not only total 

concentrations but also the characteristics of the inhaled particles and their specific health 

consequences.  

In Chapter 4, I focus on the role of meteorology in controlling air pollutant 

concentrations, examining the interactions between temperature and atmospheric stagnation. 

High temperatures drive stagnation because they are associated with atmospheric inversions and 

lower wind speeds, limiting ventilation of pollutants. In this study, I show how despite 

significant decadal reductions in primary emissions, the temperature-driven relative enhancement 

of air pollutants in Los Angeles summers follows a steady trend over the last twenty years. The 

lowest temperatures are consistently associated with the lowest concentrations, and increases in 

temperature are linearly associated with increases in concentrations across the full temporal and 

spatial range of this study. Moreover, I show how it is specifically nighttime stagnation that is 

driving these trends. At night, when planetary boundary layer heights are at their lowest, the 

potential for accumulation is highest. Here, I focus on NO2 and CO as the primary pollutants of 

interest because their concentrations are reported at the hourly level going back 20+ years. 

However, the atmospheric processes regulating their accumulation are certainly impacting 

aerosol concentrations as well (among several other factors previously described). A warmer 

future with greater periods of atmospheric stagnation thus represents an increased risk of 

exposure for a variety of air pollutants irrespective of enhancements in emissions or the 

acceleration of chemical processes. This study emphasizes the importance of taking spatially and 

temporally dense PM observations for elucidating these trends. A simple daily average 

measurement can disguise diurnal trends that are highly relevant for estimating exposures and 

making public health recommendations. Finally, though the effects outlined in this work are 

certainly exacerbated by the unique topography of Los Angeles, the association between 

temperature and stagnation is not unique to the region in question, and a warmer future impels us 

to consider temperature-driven nighttime stagnation as a distinct exposure hazard beyond this 

domain.  
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Future Research 
Given the rising role of organic aerosols in governing summertime PM2.5, a major avenue 

to explore in future work will be to more precisely delineate the relative contributions of various 

types of precursors. It will be necessary to understand what fraction of OA can be attributed to 

biogenic VOCs, anthropogenic VOCs, VCPs, etc. Moreover, we should also seek to understand 

how this source profile varies with temperature, and what precursors will be most influenced by 

a warmer climate. Exploring this matter will necessitate looking at aerosol formation from 

multiple perspectives; we will need greater resolution in aerosol speciation measurements as well 

as more sophisticated models able to consider an ever-expanding field of molecules and 

interactions we discover to be atmospherically relevant. Initiatives such as the Atmospheric 

Science and Chemistry Measurement Network (ASCENT)167, a network currently in 

development at 12 sites across the U.S. which aims to provide high temporal resolution 

measurements of fine aerosol abundance, composition, and size distribution, will be critical in 

filling these knowledge gaps. Being able to speciate PM2.5 with increased frequency and fidelity 

will make corroborating model predictions a more accessible task. Additionally, being able to 

compare organic aerosol abundance in urban and rural areas with different vegetation profiles, 

population densities, traffic patterns, and industries will also inform our understanding of the 

most pertinent factors influencing aerosol production. Expanding the class of molecules that we 

consider organic aerosol precursors is therefore an important angle to future model development. 

Another relevant angle is to continue refining model representations of the sulfate-OA coupling. 

In my work, I find that aerosol-phase oxidation of SO2 is massively impactful in regulating total 

sulfate concentrations. However, the formation pathway I implement in the analysis featured in 

Chapter 3 is exceedingly simplistic. An important direction for future research in this space is to 

represent particle phase SO2 oxidation in a manner more reflective of the actual atmospheric 

processes at play, mediated by particle acidity, water content, and transition metal abundance, 

among other factors. Despite the diminishing role of sulfate aerosols in influencing air quality in 

the present-day U.S., nailing model representations of sulfate will be crucial for properly 

predicting OA concentrations. Constraining the influence of sulfate on OA production will thus 

allow us to better understand the numerous other parameters influencing OA formation and 

removal. Achieving greater confidence in our modeled representation of OA will then allow us to 

better answer the original question of which fraction of aerosol we may hope to control via 

policy directives going forward.  

 

Policy Implications 
The state of air quality in urban areas across the United States is approaching an 

inflection point. Over the past several decades, environmental legislation has been largely 

effective in reducing atmospheric concentrations of many dangerous pollutants168. Still, our 

growing understanding of the true societal burdens associated with poor air quality suggests that 

there are additional public health benefits to be gained in continuing to limit exposure. For this 

reason, we are continuously reassessing what should constitute an acceptable level of 

exposure169. However, our methods for judging adherence to these standards are fundamentally 

biased, and we continue to find spatial, racial, and socioeconomic inequalities in urban exposure 

risks across the nation170. We are therefore impelled to revisit our strategies both with regards to 

abating air pollutants as well as evaluating the results of our efforts. The success of the policies 

of the past decades demonstrates the power of concerted action in throttling vehicular and power 

plant emissions, for example, but these approaches may start to yield diminishing returns. 
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Continuing to work towards a cleaner and more egalitarian future for U.S. cities will necessitate 

adopting dynamic policies that can respond to rapidly evolving environmental conditions. As our 

understanding of what sources present the greatest exposure threat at any given time progresses, 

so must our control strategies.  

 For example, a recent analysis of air pollution drivers in Los Angeles outlines the 

growing prevalence of biogenic VOCs in regulating both ozone and SOA formation potential171. 

Though a large fraction of biogenic VOC emissions remains squarely outside of our control, this 

study suggests that we should exercise more agency in how we manage our urban forests. Given 

the close proximity of urban vegetation to both anthropogenic oxidants (necessary to convert 

VOCs to SOA or ozone) as well as to the receptors vulnerable to air pollutant exposure, we need 

to consider their characteristics judiciously. Specifically, in our urban greening efforts we should 

favor the planting of species of vegetation with low VOC emission profiles. We should also seek 

out species whose emissions will respond less intensely to environmental stressors such as rising 

temperatures and aridity. The benefits of urban reforestation with respect to mitigating surface 

heating and preserving ecosystems impel us to continue exploring best practices for introducing 

additional vegetation to urban areas in ways that minimize the negative impact on air pollution, 

now, and in a warmer future. 

Another way we can frame our policy strategies is in how to best adapt to environmental 

threats we cannot hope to control. For example, there is no sensible direct action we can take to 

disrupt an episode of atmospheric stagnation. However, what I outline in Chapter 4 is that the 

regularity of the response of stagnation events to temperature can help us design proactive 

measures. If we know that the incidence of stagnation is robustly correlated with temperature, 

and that the effect will be felt most strongly at nighttime, then we know we must prioritize the 

cessation of emissions in those periods. Policy strategies in this space might thus involve 

providing incentives to limit vehicular, industrial, and power plant emissions during the warmest 

days and especially the warmest nights. Additionally, we should continue investing in 

technologies that would allow us to store electrical energy produced in periods of high renewable 

generation availability to offset later periods of high demand and low renewable availability. By 

tying the extent of these emission reduction incentives to a tangible measurement like ambient 

temperature, we can better predict short-term constraints and simplify enforcement of such 

policies.  

Finally, though the bulk of the analyses presented here focus on secondary OA formation, 

it is important to reiterate the importance of primary OA originating from wildfires in controlling 

PM2.5 abundance and air quality guideline exceedances. PM2.5 concentrations seen under wildfire 

events greatly exceed secondary OA production on even the hottest days. Therefore, and given 

that the frequency of wildfire events will continue to grow in coming years, we must continue 

pursuing active forest management as a means for preventing the degradation of both ecosystems 

and regional air quality. Internalizing the true societal costs of wildfire events and supporting 

collaboration across jurisdictions to implement precautionary efforts will be a key aspect of our 

policy strategies in this regard.   

 I conclude by considering the privilege that I have had in focusing my attention on the 

United States, a domain that can boast of substantial successes both in air quality monitoring and 

management over the past decades. The public health risks that I identify for U.S. cities are 

profoundly different in magnitude and nature than the challenges present in other nations. 

Though climate change promises to complicate future efforts in air pollution control, we are 

fortunate still to be able to pose these questions and contemplate if the limit of human 
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intervention on improving air quality is on the horizon. If this is an attainable future, for the U.S. 

and for other nations as they transition away from regimes dominated by primary anthropogenic 

emissions, then I hope the considerations I have brought forth will prove useful in informing the 

continued pursuit of clean air for all.  
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Appendix A: Supplement to Chapter 2 
 

Table A.1: Summary of AQS sites queried to obtain data used in this study. Data was 

obtained for the period of June-August 2000-2020 whenever available with the exception of 

organic carbon (OC) speciation data, which was only available for the period 2016-2020.  

 

 

 

 

 

 

 

 

 

 

City Latitude Longitude EPA AQS 

Site ID 

Data Collected Years Collected 

Baltimore 39.31 -76.47 24-005-3001 PM2.5, Temperature 

Speciation 

2000-2020 

2001-2020  

Boston 42.35 -71.10 25-025-0002 PM2.5, Temperature 2000-2020 

 
42.33 -71.08 25-025-0042 Speciation 2001-2020 

Buffalo 42.88 -78.81 36-029-0005 PM2.5, Speciation, 

Temperature 

2000-2020 

New York 40.80  -73.93  36-061-0079 PM2.5, Temperature 2000-2020 
 

40.74 -73.82 36-081-0124 Speciation 2001-2020 

Philadelphia 39.99 -75.05 34-007-1007 PM2.5, Temperature 2000-2020 

 40.01 -75.10 42-101-0004 Speciation 2000-2005 

 39.92 -75.19 42-101-0055 Speciation 2006-2020 

Providence 41.84 -71.36 44-007-1010 PM2.5, Temperature 2000-2020 

    Speciation 2010-2020 

 41.81 -71.41 44-007-0022 Speciation 2002-2010      
 

Washington 

D.C. 

38.92 -77.01 11-001-0043 PM2.5, Speciation, 

Temperature, NOx 

2000-2020 
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Figure A.1: Correlation between PM2.5 and Temperature in Baltimore, MD; Boston, MA; 

Buffalo, NY; New York, NY; Philadelphia, PA; and Providence, RI. Error bars indicate the 

range of values representing 66% of the distribution within each decile bin. 

⬤ :  2000-2005; ▲: 2006-2010; ■ : 2011-2015; ◆ : 2016-2020.  
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Figure A.2: Correlation between ASO4 and Temperature in Baltimore, MD; Boston, MA; 

Buffalo, NY; New York, NY; Philadelphia, PA; and Providence, RI. Error bars indicate the 

range of values representing 66% of the distribution within each decile bin. 

⬤ :  2000-2005; ▲: 2006-2010; ■ : 2011-2015; ◆ : 2016-2020.  
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Figure A.3: Correlation between Organic Matter (OM ≡ OA = OC*2.2) and Temperature in 

Baltimore, MD; Boston, MA; Buffalo, NY; New York, NY; Philadelphia, PA; and 

Providence, RI. Error bars indicate the range of values representing 66% of the 

distribution within each decile bin. ◆ : 2016-2020. 
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Appendix B: Supplement to Chapter 3 
 

Definitions of evaluation metrics: 

 

The mean bias (MB) is defined as 

MB =  
∑ (𝑀𝑖−𝑂𝑖)𝑛

𝑖=1

𝑛
         (S1) 

where the summation is over n data points with model values, Mi, and observed values, Oi. 

 

The mean error (ME) (also known as the mean absolute gross error) is defined as 

ME =  
∑ |𝑀𝑖−𝑂𝑖|𝑛

𝑖=1

𝑛
         (S2) 

where the summation is over n data points with model values, Mi, and observed values, Oi. 

 

The normalized mean bias (NMB) is defined as: 

NMB = 
∑

(𝑀𝑖−𝑂𝑖)

�̅�
𝑛
𝑖=1

𝑛 
         (S3) 

where the summation is over n data points and �̅� represents the mean of the observed values. 

         

The normalized mean error (NME) is defined as 

NME = 
∑

|𝑀𝑖−𝑂𝑖|

�̅�
𝑛
𝑖=1

𝑛 
         (S4) 

where the summation is over n data points and �̅� represents the mean of the observed values. 

 

Specifically, 

�̅� =
∑ 𝑂𝑖

𝑛
𝑖=1

𝑛
         (S5) 

 

The Pearson correlation coefficient is defined as  

        

𝑟 =  
∑ (𝑂𝑖−�̅�)(𝑀𝑖−�̅�)𝑛

𝑖=1

√∑ (𝑂𝑖−�̅�)2𝑛
𝑖=1  √∑ (𝑀𝑖−�̅�)2𝑛

𝑖=1  
        (S6) 
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Table B.1: Base case model-observation summary statistics. Set represents all data points 

available at AQS sites across CONUS for the period June-August 2019. OC stands for 

organic carbon, SO4
2- for sulfate, NH4

+ for ammonium, NO3
- for nitrate, EC for elemental 

carbon, NaCl for sodium chloride, “Metals” represents Fe, Al, Si, Ti, Ca, Mg, K, and Mn 

aerosols, O3 is ozone, and SO2 is sulfur dioxide gas. Note: NaCl and metals represent Aitken 

and accumulation mode aerosols rather than all aerosols of aerodynamic diameter smaller 

than 2.5 microns.  

 

 

  

Species Mean Observed 

Concentration 

(mg/m3) 

Mean Modeled 

Concentration 

(mg/m3) 

Mean Bias 

(mg/m3) 

Mean Error 

(mg/m3) 

Sample 

Size (#) 

Total PM2.5 7.29 6.06 -1.23 2.63 89,469 

OC PM2.5 1.52 1.64 0.12 0.62 7,209 

SO4
2- PM2.5 0.91 0.50 -0.41 0.46 7,519 

NH4
+ PM2.5 0.32 0.11 -0.21 0.23 7,452 

NO3
- PM2.5 0.29 0.15 -0.14 0.18 7,479 

EC PM2.5 0.37 0.19 -0.18 0.20 7,091 

NaCl 0.10 0.076 -0.03 0.07 6,103 

Metals 0.45 0.33 -0.12 0.34 7,266 

O3 61.5 65.8 4.36 13.73 51,608 

SO2
 3.14 1.88 -1.25 2.63 35,977 
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Table B.2: The same as Table B.1 but for AQS sites east of -100° Longitude. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Species Mean Observed 

Concentration 

(mg/m3) 

Mean Modeled 

Concentration 

(mg/m3) 

Mean Bias 

(mg/m3) 

Mean Error 

(mg/m3) 

Sample 

Size (#) 

Total PM2.5 8.23 7.20 -1.03 2.74 52,525 

OC PM2.5 1.92 2.34 0.42 0.81 3,725 

SO4
2- PM2.5 1.10 0.60 -0.50 0.56 3,911 

NH4
+ PM2.5 0.35 0.14 -0.21 0.24 3,849 

NO3
- PM2.5 0.30 0.15 -0.15 0.19 3,872 

EC PM2.5 0.50 0.26 -0.24 0.27 3,705 

NaCl 0.09 0.07 -0.02 0.06 2,916 

Metals 0.43 0.41 -0.02 0.36 3,777 

O3 57.6 64.6 7.02 12.83 38,390 

SO2
 3.06 2.03 -1.03 2.53 28,191 
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Table B.3: Model evaluation metrics of mean bias and normalized mean bias for OC, SO4
2-, 

and total PM2.5, in our base case and after performing our five sensitivity simulations: (1) 

increasing SO2 emissions by 40%; (2) introducing aerosol uptake of SO2; (3) lowering the 

rate constant for HSO4
—catalyzed aerosol uptake of IEPOX; (4) introducing organic 

aerosol photolysis; (5) altering the fate of organic nitrates to produce fewer aerosols. Set 

represents all data points available at AQS sites across CONUS for the period June-August 

2019. 

 

 Mean Bias  

(mg/m3) 

Normalized Mean Bias  

(%) 

 OC SO4
2- Total PM2.5 OC SO4

2- Total PM2.5 

Base 0.12 -0.41 -1.23 7.9  -44.8  -16.8  

1 0.16 -0.33 -1.03 10.8  -36.3  -14.1  

2 0.33 -0.02 -0.29 21.7  -1.7  -4.0  

3 -0.03 -0.30 -1.46 -2.2  -33.6  -20.0  

4 -0.21 -0.40 -1.83 -13.6  -44.6  -25.0  

5 -0.09 -0.40 -1.63 -6.1  -44.6  -22.4  

 

Table B.4: The same as Table B.3 but for AQS sites east of -100° Longitude. 

 

 Mean Bias  

(mg/m3) 

Normalized Mean Bias 

(%) 

 OC SO4
2- Total PM2.5 OC SO4

2- Total PM2.5 

Base 0.42 -0.50 -1.03 21.7 -45.9 -12.5 

1 0.51 -0.39 -0.76 26.0 -35.5 -8.7 

2 0.79 -0.01 0.32 41.9 5.3 4.6 

3 0.18 -0.33 -1.42 7.6 -30.0 -16.9 

4 -0.002 -0.50 -1.79 -1.9 -45.6 -21.4 

5 0.16 -0.50 -1.55 6.6 -45.7 -18.4 
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Table B.5: Model evaluation metrics of mean error and normalized mean error for OC, 

SO4
2-, and total PM2.5, in our base case and after performing our five sensitivity 

simulations: (1) increasing SO2 emissions by 40%; (2) introducing aerosol uptake of SO2; 

(3) lowering the rate constant for HSO4
—catalyzed aerosol uptake of IEPOX; (4) 

introducing organic aerosol photolysis; (5) altering the fate of organic nitrates to produce 

fewer aerosols. Set represents all data points available at AQS sites across CONUS for the 

period June-August 2019. 

 

 Mean Error 

(mg/m3) 

Normalized Mean Error  

(%) 

 OC SO4
2- Total 

PM2.5 

OC SO4
2- Total 

PM2.5 

Base 0.62 0.46 2.63 40.5 50.3 36.1 

1 0.65 0.41 2.61 42.4 44.9 35.8 

2 0.77 0.5 2.83 50.5 55.0 38.9 

3 0.55 0.38 2.67 36.2 41.8 36.7 

4 0.59 0.45 2.84 39.0 50.2 39.0 

5 0.59 0.45 2.77 38.6 50.2 38.0 

 

Table B.6: The same as Table B.5 but for AQS sites east of -100° Longitude. 

 

 Mean Error  

(mg/m3) 

Normalized Mean Error 

(%) 

 OC SO4
2- Total PM2.5 OC SO4

2- Total PM2.5 

Base 0.81 0.56 2.73 42.2 50.4 33.3 

1 0.87 0.48 2.72 45.2 43.7 33.0 

2 1.11 0.63 3.1 57.7 57.0 37.7 

3 0.68 0.42 2.79 35.1 38.4 34.0 

4 0.67 0.55 2.94 35.0 50.3 35.8 

5 0.70 0.55 2.87 36.4 50.3 34.9 
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Table B.7: Pearson correlation coefficient between model predictions and observations for 

OC, SO4
2-, and total PM2.5, in our base case and after performing our five sensitivity 

simulations: (1) increasing SO2 emissions by 40%; (2) introducing aerosol uptake of SO2; 

(3) lowering the rate constant for HSO4
—catalyzed aerosol uptake of IEPOX; (4) 

introducing organic aerosol photolysis; (5) altering the fate of organic nitrates to produce 

fewer aerosols. Set represents all data points available at AQS sites across CONUS for the 

period June-August 2019. 

 

 Pearson R 
 

 OC SO4
2- Total PM2.5 

Base 0.60 0.63 0.52 

1 0.60 0.64 0.53 

2 0.61 0.41 0.52 

3 0.59 0.69 0.52 

4 0.57 0.63 0.51 

5 0.58 0.63 0.52 

 

 

Table B.8: The same as Table B.7 but for AQS sites east of -100° Longitude. 

 

 Pearson R 
 

 OC SO4
2- Total PM2.5 

Base 0.58 0.62 0.50 

1 0.57 0.63 0.50 

2 0.57 0.38 0.49 

3 0.59 0.70 0.50 

4 0.55 0.62 0.49 

5 0.57 0.62 0.49 
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Table B.9: Observed and modeled temperature sensitivity of OC, SO4
2-, and total PM2.5, in 

our base case and after performing our five sensitivity simulations: (1) increasing SO2 

emissions by 40%; (2) introducing aerosol uptake of SO2; (3) lowering the rate constant for 

HSO4
—catalyzed aerosol uptake of IEPOX; (4) introducing organic aerosol photolysis; (5) 

altering the fate of organic nitrates to produce fewer aerosols. Set represents data 

aggregated by AQS sites across CONUS for the period June-August 2019 and meeting the 

filtering criteria described in the Methods section. 

 

 Observed Temperature Sensitivity 

(mg/m3/°C) 

Modeled Temperature Sensitivity 

(mg/m3/°C) 

 OC SO4
2- Total PM2.5 OC SO4

2- Total PM2.5 

Base 

0.09 0.08 0.56 

0.13 0.02 0.49 

1 0.14 0.03 0.52 

2 0.17 0.05 0.61 

3 0.12 0.04 0.46 

4 0.10 0.02 0.43 

5 0.12 0.02 0.46 

 

 

 

Table B.10: The same as Table B.9 but for AQS sites east of -100° Longitude. 

 

 Observed Temperature Sensitivity 

(mg/m3/°C) 

Modeled Temperature Sensitivity 

(mg/m3/°C) 

 OC SO4
2- Total PM2.5 OC SO4

2- Total PM2.5 

Base 

0.11 0.12 0.67 

0.22 0.03 0.61 

1 0.23 0.04 0.65 

2 0.29 0.08 0.78 

3 0.18 0.05 0.56 

4 0.16 0.03 0.52 

5 0.19 0.03 0.56 
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Figure B.1: Agreement between modeled and observed daily average temperatures for all 

data points available at AQS sites across CONUS for June to August 2019.  
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Figure B.2: Analogous to Figure 3.3 in the manuscript but featuring normalized mean 

error rather than normalized mean bias.  

 

 
 

 

Figure B.3: Analogous to Figure 3.3 in the manuscript, showing how normalized mean bias 

in OC PM2.5 with temperature increases as a result of utilizing the inline MEGAN 3.2 

biogenic emissions module instead of the default BEIS module.  
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Appendix C: Supplement to Chapter 4 
 

Table C.1: EPA AQS Sites utilized in this study. Sites were queried to obtain hourly 

observations of NO2, NOx, and CO for the period of May to September (inclusive) from 

2000-2019.  

  

EPA AQS Site ID Latitude Longitude 

06-037-0002 

7-0002 

34.1365 

 

-117.92391 

 06-037-0113 34.05111 

 

-118.45636 

 06-037-1103 34.06659 
 

-118.22688 
 

06-037-1201 34.19925 
 

-118.53276 
 

06-037-1701 34.06703 
 

-117.7514 

 
 

06-065-8001 33.99958 -117.41601 

06-071-9004 34.106678 
 

-117.274063 
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Table C.2: Average concentrations of all day (A = 00:00-23:00), daytime only (D = 10:00-

17:00), and nighttime only (N = 22:00-05:00) NO2, NOx, and CO at each of the above AQS 

sites for the periods of 2000-2004, 2005-2009, 2010-2014, and 2015-2019. Units are in parts 

per billion (ppb). 

 

 

  

AQS Site 

ID 

Species 2000-2004 2005-2009 2010-2014 2015-2019 

  A D N A D N A D N A D N 

06-037-0002 NO2 30.9 30.1 29.

0 

24.0 22.1 23.4 19.7 16.7 20.7 14.7 12.1 15.6 

NOx  44.0 36.1 43.

8 

33.6 26.6 32.9 24.8 19.2 25.2 18.0 13.6 18.8 

CO 741 704 714 437 410 421 394 371 398 340 320 341 

06-037-0113 NO2 16.6 10.9 20.

7 

12.6 7.9 16.2 9.4 5.2 13.2 6.4 3.4 9.1 

NOx  25.7 13.6 36.

7 

20.2 10.9 27.3 12.4 6.3 17.4 7.7 3.9 10.5 

CO 281 157 388 287 200 352 237 186 274 233 185 273 

06-037-1103 NO2 32.0 28.8 31.

6 

24.0 20.6 25.3 19.1 14.9 21.0 14.6 11.1 16.7 

NOx  50.3 34.4 58.

2 

36.7 25.1 41.5 27.4 18.4 31.0 19.9 13.4 22.7 

CO 682 574 703 372 303 390 396 345 411 326 280 356 

 

 

 

 

 

 

 

06-037-1201 NO2 23.6 16.2 28.

0 

16.8 11.0 20.6 13.1 8.1 16.8 9.0 5.5 11.4 

NOx  31.5 17.8 40.

1 

22.8 13.4 27.8 15.5 8.7 19.4 10.8 6.4  13.1 

18 

 

 

 

 

 

 

 

 

 

 

 

 

 

CO 591 427 683 368 273 415 300 240 328 310 259 340 

06-037-1701 NO2 36.3 33.7 34.

6 

27.9 23.2 29.8 20.6 15.4 23.6 15.3 10.5 18.4 

NOx  61.2 42.4 69.

0 

44.6 30.2 50.6 29.9 19.1 34.2 21.2 13.4 24.3 

CO 810 676 838 498 416 521 252 194 277 263 219 282 

06-065-8001 NO2 20.1 13.6 23.

8 

16.8 11.2 20.5 12.2 7.2 16.0 9.8 5.3 13.1 

NOx  31.7 14.7 42.

7 

25.6 13.2 32.6 17.1 8.2 22.5 12.9 5.7 17.2 

CO 630 499 717 390 306 442 337 277 380 269 217 306 

06-071-9004 NO2 31.5 25.1 34.

9 

24.4 18.2 28.7 17.7 12.0 22.2 14.2 8.8 18.5 

NOx  44.2 30.4 52.

2 

33.2 22.1 39.1 21.5 13.7 25.8 17.3 10.2 21.7 

CO 694 561 771 388 318 419 356 309 385 344 300 370 
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Figure C.1: Mean daily normalized concentrations of NOx binned by temperature 

decile resampled from either (A) all hours of the day, (B) 10:00-17:00, and (C) 22:00-

5:00. Error bars represent the bootstrapped 95% confidence interval for the median 

of each bin. 

 

 

 




