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Identification and Application of Physical
and Chemical Parameters to Predict

Indicator Bacterial Concentration in a
Small Californian Creek

Hun-Kyun Bae1*, Betty H. Olson1*, Kuo-Lin Hsu1, Soroosh Sorooshian1

ABSTRACT: This study of Aliso Creek in California aimed to identify

physical and chemical parameters that could be measured instantly to be

used in a model to serve as surrogates for indicator bacterial concentrations

during dry season flow. In this study, a new data smoothing technique and

ranking/categorizing analysis was used to reduce variation to allow better

delineation of the relationships between adopted variables and concen-

trations of indicator bacteria. The ranking/categorizing approach clarified

overall trends between physico-chemical data and the indicators and sug-

gested sources of the bacteria. This study also applied a principle component

regression model to the data. Although the model was promising for

predicting concentrations of total and fecal coliforms, it was somewhat

weaker in predicting enteroccocci. Water Environ. Res., 81, 633 (2009).

KEYWORDS: indicator bacteria, principal component analysis, physical

and chemical parameter.
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Introduction
The quality of water in coastal areas can affect human activities

and natural ecosystems. Reports raising water quality concerns in

coastal and beach areas coupled with large-scale studies of

California’s beaches have focused on indicator bacteria contamina-

tion of the surf zone. This contamination is the main public health

concern to state and coastal water quality agencies and managers in

charge of protecting beachgoers from exposure to disease (Ha and

Stenstrom, 2003; Grant et al., 2001; Reeves et al., 2004; Schiff and

Kinney, 2000; Steets and Holden, 2003; Noble et al., 2003). The

state has invested substantial resources in monitoring programs to

ensure beach water quality. The monitoring system, however, which

relies on grab samples and culture methodologies for indicator

bacteria concentrations, is labor intensive and does not provide real-

time data because results take 18 to 24 hours. Because 70% of

bacteria in waterbodies is naturally removed within 24 hours, beach

closures are often issued after the fact (Christen, 2002; State Water

Resources Control Board, 2001). Methods that provide bacterial

concentrations in timely manner are needed to manage water quality

effectively.

In addition to timely results, identification of pathogens and

management and treatment of sources of pollution are also essential

to maintaining water quality within federally mandated standards.

Grant et al. (2001) recommended the management of coastal

wetlands to protect beach water quality after finding high concentra-

tions of enterococci (ENT) in urban runoff, bird feces, marsh vege-

tation, and sediments. Reeves et al. (2004) focused on source

tracking of indicator bacteria pollution to urban runoff, particularly

residential runoff, from inland areas to Talbert Marsh in Orange

County, California. Schiff and Kinney (2000) found sources of

indicator bacteria were diffuse and widespread throughout the entire

upper watersheds in their study of Mission Bay in San Diego,

California. Indicator bacteria exceeded California water quality

objectives regardless of land use type within the watersheds.

Managing bacterial contaminations at the source presents managers

with several challenges. However, water quality monitoring systems

focus on the surf zones of beaches. These studies and current

monitoring systems suggest that the state needs to develop a rapid

method to predict indicator bacteria concentration based on moni-

toring results from upland areas to beach areas.

This study investigated the relationships between bacterial con-

centrations and other water quality factors that could serve as

surrogates for rapid detection of indicator bacteria concentrations

based on the Aliso Creek Watershed in California. The study then

estimated indicator bacteria concentrations upstream of a beach

using those identified surrogates. Principal component regression

(PCR) was applied to estimate indicator concentrations once the

orthogonal variables were identified by principal component

analysis (PCA). The application of PCA to PCR is an extension

of this approach in environmental engineering that previously had

been adopted only to discriminate pollution source apportionment

(Masunaga et al., 2001; Ozeki et al., 1995; Ehrlich et al., 1994;

Kennicutt et al., 1994; Buck et al., 2005; Papa et al., 2007; Pejcic

et al., 2007). The PCR approach is particularly important in this

research project because the physical and chemical factors produce

additive, opposite, or synergistic effects on indicator bacteria con-

centrations. The results indicated that surrogates could be used to

predict bacterial concentrations and could help improve water

quality management.

Methodology
Site Description. The Aliso Creek Watershed covers 78.7 km2

(30.4 mi2) in southern Orange County, California. Its main
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tributary, Aliso Creek, originates in the Santa Ana Mountains and

extends to Aliso Beach, the Regional Water Quality Control Board

has identified as an ‘‘impaired’’ stream for water quality problems.

The board’s Reconnaissance Study of Aliso Creek also noted

substantial issues with channel degradation, geotechnical instability,

loss of natural habitat and recreation opportunities, and potential for

flooding (Tetra Tech Inc., 2005). This watershed includes several

highly urbanized cities comprising commercial, industrial, and

residential areas and agricultural and undeveloped areas. Thus,

natural and anthropogenic sources could be generating nonpoint

source contaminants in this watershed. Water from inland areas

could affect the water quality of Aliso Beach because the main

tributary of the watershed is directly connected to the beach.

Figure 1 shows the study area and its land use.
Selection of Physical and Chemical Data for Trend Analysis.

A new technique—ranking/categorizing analysis—was developed

for trend analysis because raw data showed complicated patterns.

For the ranking/categorizing analysis, first the data was ranked in

respect to one of the independent variables and all other variables

were rearranged in ascending order to match. Second, the data were

categorized in uniform interval increments of the ranked variable’s

unit. For example, every 2 mg/L for dissolved oxygen or every 5

nephelometric turbidity units (NTU) for turbidity. After grouping,

geometric mean values for each group were calculated. Finally, the

geometric means of the independent and the dependent variables

were plotted to find the relationship between two variables. Using

this technique, extremes in the data are moved toward mean values

generating a new graphical expression in which relationships are

more clearly delineated.
Principal Components Analysis and Principal Components

Regression. In multivariate statistics, visualizing multidimension-

ality can be difficult. In multidimensional dataset, groups of

variables sometimes move together because more than one variable

may be measuring the same driving principle governing behavior

of the system. When this happens, we can take advantage of this

redundancy of information by replacing a group of variables with

a single new variable. Principal components analysis is one method

to achieve this simplification to find patterns in a high-dimensional

dataset. The method can capture variance in a dataset in terms of

principal components—which are a set of orthogonal variables—so

that they are uncorrelated and define a projection that extracts the

maximum amount of variation. The first principal component is a

single axis that lies on the data with maximum variance and

generates a new variable by projecting each observation on that

axis. The second principal component is an axis that is perpen-

dicular to the first axis and generates another new variable with the

second largest data variance. The full set of principal components is

the same size as the original set of variables. However, the data can

Figure 1—Study area, Aliso Creek Watershed, California (delineated using ArcView GIS 3.3 version and Automated
Geospatial Watershed Assessment; red circle shows the water quality monitoring station (ACJ01); light blue line
indicates the main tributary of watershed. The watershed consists of ten different land uses; the outlet of Aliso Creek is
directly connected to Aliso Beach.).
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be compressed without much loss of information by reducing the

number of dimensions and summarizing the most important parts of

the data. Overall, PCA is a powerful tool for analyzing and ex-

pressing multidimensional data while highlighting similarities and

differences; patterns in multidimensional data sets, however, could

be hard to find (Smith, 2002; Hsu et al., 2002).

Results and Discussion
Relationships between indicator bacteria and each physical and

chemical parameter were investigated. Relationships between

physical and chemical parameters and bacterial concentrations and

growth have been reported for both laboratory and field studies.

Lindqvist (2006) measured growth of bacteria using turbidity;

Augustin et al. (1999) studied temperature, and Toit et al. (2000)

studied pH. Watier et al. (1996) modeled effects of temperature, pH,

and ethanol concentrations on growth kinetics of the microorganism

Pectinatus sp. Field work by Byamukama et al. (2005) investigated

the relationships between two different fecal indicators, E. coli and

Clostridium perfringens, and five chemophysical parameters—

dissolved oxygen, pH, temperature, electrical conductivity, and total

suspended solids (TSS). Auer et al. (1993) and Steets et al. (2003)

reported that particle size and sediments have strong relationships

with indicator bacteria.

Because Orange County Watershed and Coastal Resources

Division (OCWCRD) collects water quality data, it would be ideal

if these data could be used as surrogates to predict periods of

indicator bacteria violations. The physical and chemical parameters

for this study included dissolved oxygen, turbidity, streamflow, pH,

and temperature because they often are related bacterial growth or

concentration in water. Water quality samples were taken during dry

season from May to September from 2003 to 2005 at a sampling

station (ACJ01). Truncated indicator bacteria data (greater than or

less than detection limits) were removed along with the corre-

sponding data points for ranking/categorizing analysis because their

exact values were unknown. Cyclical patterns of varying periodicity

and magnitude are shown for each of the parameters, but all of the

temporal representations were somewhat obscured by variation

within the data sets. Figure 2 shows the raw data.
Physical and Chemical Parameters Versus Bacterial

Concentration. Removing the temporal aspect of the data em-

phasized the magnitude of variability for several parameters ex-

amined. Figure 3 shows compares indicator bacteria data and raw

data of physical and chemical parameters. As shown, variation

made it difficult to find relationships between indicator bacteria and

physical and chemical parameters. The data sets required smoothing

because of variability between instantaneous measures and culture-

and-grab samples and weak, biphasic associations. As a result, the

ranking/categorizing analysis was used. The ranked data sets were

grouped by intervals based on physical or chemical parameters, and

the mean value within the corresponding bacterial grouping was

computed to reduce the effect of high variability. For example, to

find the relationship between total coliform and dissolved oxygen,

the dissolved oxygen data were ranked in ascending order and each

total coliform value moved with the dissolved oxygen value. Then,

the dissolved oxygen data were categorized in uniform interval

increments of 2 mg/L, and geometric mean values were calculated

for both dissolved oxygen and total coliform data falling within

each interval. Finally, geometric means of the independent variable,

dissolved oxygen, and the dependent variable, total coliform, were

plotted. Raw total coliform and dissolved oxygen data showed

a clear, but negative, relationship after the ranking/categorizing

method was applied (Figure 4a). In some instances, such as ENT

and dissolved oxygen, outliers in the raw data made interpretation

of the trend difficult (Figure 3c). These relationships, however, also

were clarified after the ranking/categorizing methodology was ap-

plied to pH and temperature for all indicator bacteria. The results of

applying this smoothing technique to all physicochemical variables

and indicator bacteria are shown in Figure 4.

Figure 4a, 4b, and 4c shows a negative relationship between

dissolved oxygen and indicator bacteria concentration. As expected,

total coliform and fecal coliform showed the same negative pattern

with dissolved oxygen (fecal are a subset of total coliform). The

relationship between ENT and dissolved oxygen was slightly

different; the negative effect of oxygen was not observed until

dissolved oxygen was greater than 7 mg/L (threshold effect). These

results for dissolved oxygen reflect the role of oxygen in the

metabolism of each group. Aerobic, anaerobic, facultative, micro-

aerophilic, and aerotolerant anaerobic bacteria span a continuum

from oxic to anoxic metabolism. Because total coliform, fecal

coliform, and ENT are facultative anaerobes with a preference for

a fermentative metabolism, the biology of the organisms correspond

with the data showing negative relationships. As would be expected,

total coliform and dissolved oxygen showed a weaker negative

Figure 2—Physical, chemical, and biological data for
Aliso Creek Watershed (total coliform during 2004 con-
tained truncated data because the dilution series used did
not allow for more than 100,000 CFU/100 mL; sampling in
2005 for total coliform was adjusted to cover higher
concentrations of indicator bacteria).
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relationship compared to fecal coliform or ENT and dissolved

oxygen. This difference is because total coliform grow in a broader

range of environments, including plant matter, soil, and animal

intestines. Low redox potential of the gut would suggest a negative

association with oxygen; in fact, the two fecal bacteria (fecal

coliform and ENT) have a stronger fit than the total coliform group.

Because organisms associated with soil and plant materials are

adapted to lower temperatures than those of warm blooded organ-

isms (fecal coliform and ENT), the effect of increasing temperature

were inversely related to concentration (see Figures 4d, 4e, and 4f).

Optimum temperature for environmental strains of bacteria in tem-

perate zones is approximately 208C. In Figures 4d, 4e, and 4f,

the difference in characteristics between bacteria of fecal origin

(coliform and ENT) and those of mixed origin (total coliform)

is reflected in temperature results. Fecal coliform and ENT were

proportionally related to temperature; whereas, total coliform were

inversely related. Faust et al. (1975) reported that temperature was

a significant parameter that could affect the rate of decline of E. coli.
At low temperatures (approximately 98C), multiplication of bacteria

did not occur and the rate of decline in cell number was slow; at

Figure 3—Raw data obtained for indicator bacteria and physical and chemical parameters at location ACJ01 in the Aliso
Creek Watershed.

Figure 4—The results of ranking/categorizing analysis (relationships of indicator bacterial concentrations at ACJ01 in
Aliso Creek Watershed after application of ranking/categorized means technique; coefficient of correlation values
indicate the relationships among indicator bacterial mean concentrations linked with ranked and categorized mean
values of physical/chemical parameters).

Bae et al.
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medium temperatures (approximately 178C), the number of bacteria

increased during the first 24 hours; and at the high temperatures

(approximately 288C), the decline in cell numbers started immedi-

ately, and the rate of decline was rapid. Jiang et al. (2007) reported

that fecal bacteria grew in dry weather runoff water from Aliso Creek

at approximately 218C. Results of these works support the outcome

of this study, especially for fecal coliform and ENT versus

temperature. Total coliform didn’t follow fecal coliform results

because soil and plants survive well at ambient temperatures. Fecal

coliform and ENT showed similar patterns relative to temperature,

which is consistent with the work of Faust (1975). Total coliform

contains bacteria of environmental and animal origin and will vary

depending upon which is the dominant portion. Total coliform in this

study probably came from the storm drain from irrigation

of residential areas, whereas fecal coliform and ENT came from

animal feces.

At higher temperatures, which are associated with increased

sunlight, die off would be expected because of increased UV

radiation. Increased metabolic activity linked to temperature may

also result in more rapid die-off because of starvation related to

metabolic rates. Fujioka et al. (1981) reported that fecal coliform

and fecal streptococci in seawater were inactivated within 1 to 3

hours in the presence of sunlight (solar radiation measurements

were between 415 and 703 cal/cm2 � d), whereas these organisms

survived for days in the absence of sunlight. This study data agreed

with this finding as fecal coliform and ENT decreased at higher

temperatures. Much of the creek receives direct sunlight because the

creek is not lined with trees.

Concentrations of all indicator bacteria increased as turbidity

increased (see Figures 4g, 4h, and 4i). Fecal coliform and ENT

showed better relationships with turbidity than total coliform,

although an approximately log 1.0 (CFU/100 mL) increase in total

coliform is observed as turbidity increases from 5 NTU to 25 NTU.

The initial increase in slope for ENT was low compared to that of

fecal coliform, which had a more rapid rate of increase. On the other

hand, at the highest turbidity levels, fecal coliform reached an

asymptote, whereas ENT appeared to increase steadily. These dif-

ferences may relate to different types of source inputs. The fact that

bacteria had a positive relationships with turbidity has been reported

in the literature (Steets and Holden, 2003; Byamukama et al., 2005;

Auer et al., 1993; Faust et al., 1975).

The association with particles and sediments has been shown

to relate to survival rate. The strong positive relationships between

turbidity and bacterial concentrations in this study are reasonable

results and may precipitate after entering sea water. Fecal indicators

associated with particles that settled during low-flow periods could

be released to the waterbody by resuspension of sediments from

activities such as swimming or boating. More data would be required

to determine if there is actually a trend between these two variables.

However, relationships between total coliform concentrations and

turbidity have been demonstrated during storm events, although

concentration of both are much greater (Noble et al., 2003).

Total coliform and fecal coliform showed a strong positive rela-

tionship to streamflow (Figures 4j and 4k), but ENT had a different

pattern for which there is no biological explanation (Figure 4l).

Hence, no interpretation should be made of the relationship between

stream flow and ENT concentrations. However, positive relation-

ships between contaminants and streamflow can be predicted easily

if runoff from inland sources contains contaminants from dry

deposition and irrigation practices. Increasing streamflow also may

cause the resuspension of sediment in streambeds to which con-

taminants can be adsorbed or absorbed. Based on this, bacteria

should have a positive relationship with streamflow. The ENT,

however, showed a sinusoidal pattern with streamflow, which might

reflect dual inputs: directly into the stream and via runoff. These

results might explain spikes in ENT concentrations, which were

unrelated to those of total coliform and fecal coliform in this study.

Further support comes from densities of fecal streptococci in bird

feces, which have been found to be 40 to 1000 times that of fecal

coliforms (Gray, 2004). Jiang et al. (2007) found that bird bio-

markers were a significant source of fecal pollution in Aliso Creek.

Grant et al. (2001) also has reported high concentrations of bird

waste entering coastal beaches from wetland drainage.

Although variations in pH are shown in the data, the literature

suggests that survival for this group of organisms should not be

affected at pH greater than 7 to 8.5. The pH values for this study

remained within this range. Polynomial relationships were dis-

played for all indicator bacteria. Toit et al. (2000) reported that

Enterococci species grew from 3 to 10 pH and maximized growth

between 8 and 9 pH. The relationships derived from the ranking/

categorizing analyses suggest the following hypotheses: total coli-

form in Aliso Creek came from natural systems such as soil and

plants, whereas fecal coliform and ENT came from warm-blooded

animals. Total coliform and fecal coliform most likely came from

dry-flow runoff, whereas ENT appears to come from both direct

deposition and dry flow runoff.
Multi-Variables of Water Quality Versus Bacterial

Concentration. In this section, the relationships between each

indicator bacteria group and multiple physical and chemical param-

eters were investigated. Single variables of physical and chemical

parameters showed good relationships with bacterial concentrations

using their grouped mean values and the relationships could be used

for tracking origins of each indicator bacteria. However, the rela-

tionships between single variables and indicator bacteria concen-

tration obtained from the ranking/categorizing analysis were not

sufficient to use for prediction purposes because no single variable

appeared dominant. Considering multiple parameters simultaneously

was, therefore, another option to augment the difficulties of single

parameter analysis. Some physical and chemical parameters can be

related to each other, and sometimes in inverse relationships such as

dissolved oxygen and temperature. As a result, multiple variable

relationships between indicator bacteria concentrations and physical

and chemical parameters were investigated.

The PCA was adopted to investigate the effects of multiple

physical and chemical parameters on bacterial concentrations and to

determine whether the number of dimensions for input variables

could be reduced. Additionally, PCA reduced any co-linearity that

may exist between variables and the number of dimensions without

losing important data. Both cases were used for principal com-

ponent regression approaches. Although each principal component

showed different variances, none had significantly high variance.

Therefore this study tested two cases; one considered all the princi-

pal components that satisfied more than 95% of total variances; the

other considered the first four principal components that satisfied

more than 90% of total variances. The variances were: first principal

component with 35.1%; second principal component with 25.3%;

third principal component with 19.9%; four principal component

with 10.8%; and fifth principal component with 8.9%.

The principal component analysis showed that pH and temper-

ature were the most important variables of the five in the first

principal component. Streamflow and dissolved oxygen were the

most important in the second principal component. And turbidity

Bae et al.

June 2009 637



and pH were the most important in the thrid principal component

(Table 1). Hence, none of the variables was dominant in all the

components. This result explains why all five components are

necessary for the principal component regression analysis.

Figure 5 shows the results from both PCR tests for each indicator

bacteria. Figure 5a, 5c, and 5e shows the results of PCR using all

principal components (100% of total variances); Figure 5b, 5d, and 5f

shows the results using the first four (91%). Root mean squared error

(RMSE) of each case was measured as an objective function; each

result indicated that estimations from PCR using all principal

components were slightly better than those using the first four

principal components. The only exception was ENT, in which there

was no difference (RMSE 5 0.32). The RMSEs for estimation from

PCR using all principal components for 100% of total variances were

0.42 for total coliform and 0.39 for fecal coliform. Those using the

first four principal components for 91% of total variances were 0.49

for total coliform and 0.46 for fecal coliform. Error values were within

the range of 7 to 10% of the average value of actual indicator bacteria

concentrations, 4.95 log (CFU/cell) for total coliform; 4.50 log (CFU/

cell) for fecal coliform; and 4.39 log (CFU/cell) for ENT would be

considered to be a good representation of the actual data. The RMSE

did point out differences in the fit between the regression models and

observations. Therefore, RMSE cannot adequately address whether

the model predicts extreme values which, would be important in

determining if PCR would be useful in instantaneously predicting

violations in standards. In this respect, PCR using all principal

components corresponded better with extreme changes in concen-

trations (high or low peaks) for total coliform and fecal coliform than

Table 1—Eigenvector and eigenvalue of each principal component.

1st principal

component

2nd principal

component

3rd principal

component

4th principal

component

5th principal

component

weight Streamflow (cfs) 20.3798 0.6818 20.0400 0.0040 20.6239

Dissolved oxygen (mg/L) 0.2939 0.7102 0.0751 0.2258 0.5939

pH 20.5856 0.0529 0.4444 20.5573 0.3823

Turbidity (NTU) 0.3457 20.0290 0.8797 0.1313 20.2976

Temperature (oC) 20.5540 20.1647 0.1464 0.7881 0.1529

Eigenvalue 1.7581 1.2677 0.9940 0.5385 0.4418

Figure 5—Results of principal component regression.
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did the four principal components. The objective function (RMSE),

however, showed no significant difference between estimations using

all principal components and those using the first four principal

components. This is significant, because standards for fecal indicators

are based on an excess established concentration. As shown in Figure

5, black arrows indicated estimations that closely followed changes in

actual bacterial concentrations, and red dotted arrows indicated over-

or under-estimations of actual bacterial concentrations. Furthermore,

PCR estimations using all five principal components for total

coliforms indicated that 52% of actual concentrations fell within the

95% confidence interval of estimations (Figure 5a); whereas, using

the first four principal components resulted in 28% of total coliform

concentrations within 95% confidence intervals (Figure 5b). For fecal

coliform estimations (Figure 5c and 5d), 45% of actual events fell into

95% confidence areas for both cases. For ENT estimations (Figure 5e

and 5f), both cases of the PCR test showed similar results, which

means the dimensions of the PCR could be reduced to four. Neither

estimation for ENT, however, predicted extreme events. Overall, total

coliform PCR estimations were the best among the three different

indicator bacteria.

Conclusion
Clear relationships for physical and chemical parameters versus

indicator bacteria concentrations from raw data were difficult to

identify because biological variables respond differently as vari-

ables change. The new technique developed in this study, ranking/

categorizing analysis, however, generated clear patterns that could

be used to track the factors that most influenced indicator bacteria

concentrations. The authors hypothesize that total coliform in

Aliso Creek came from natural systems such as soil and plants,

whereas fecal coliform and ENT came from warm-blooded animals.

This suggests that multiple parameters that could be measured

instantaneously also are useful in predicting indicator bacteria

concentrations.

Using PCR with five physical and chemical parameters showed

reliable estimations for indicator bacteria and could be used to

rapidly identify the indicator bacteria concentration in a waterbody.

The application of PCR would require measurement of all five

physical and chemical variables, which easily could be obtained

through online measurements and submitted to automated modeling

programs. The PCR approach was promising for predicting concen-

trations of total coliform and fecal coliform, but was somewhat

weaker in the prediction of ENT. The analysis also suggested that

different sources were responsible for the occurrence of these two

groups of indicator bacteria, which could explain the reduction in

prediction reliability in the case of ENT. Additional studies with

larger data sets are needed to validate these findings in physical and

chemical parameters and bacterial concentrations in dry season

flow. Data from wet seasons also should be examined.
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