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Abstract

Background: Previous gene-environment interaction studies of breast cancer risk have

provided sparse evidence of interactions. Using the largest available dataset to date,

we performed a comprehensive assessment of potential effect modification of 205
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common susceptibility variants by 13 established breast cancer risk factors, including

replication of previously reported interactions.

Methods: Analyses were performed using 28 176 cases and 32 209 controls genotyped

with iCOGS array and 44 109 cases and 48 145 controls genotyped using OncoArray

from the Breast Cancer Association Consortium (BCAC). Gene-environment interactions

were assessed using unconditional logistic regression and likelihood ratio tests for

breast cancer risk overall and by estrogen-receptor (ER) status. Bayesian false discovery

probability was used to assess the noteworthiness of the meta-analysed array-specific

interactions.

Results: Noteworthy evidence of interaction at �1% prior probability was observed

for three single nucleotide polymorphism (SNP)-risk factor pairs. SNP rs4442975

was associated with a greater reduction of risk of ER-positive breast cancer [odds ratio

(OR)int ¼ 0.85 (0.78-0.93), Pint ¼ 2.8 x 10–4] and overall breast cancer [ORint ¼ 0.85

(0.78-0.92), Pint ¼ 7.4 x 10–5) in current users of estrogen-progesterone therapy

compared with non-users. This finding was supported by replication using OncoArray

data of the previously reported interaction between rs13387042 (r2 ¼ 0.93 with

rs4442975) and current estrogen-progesterone therapy for overall disease (Pint ¼
0.004). The two other interactions suggested stronger associations between SNP

rs6596100 and ER-negative breast cancer with increasing parity and younger age at

first birth.

Conclusions: Overall, our study does not suggest strong effect modification of common

breast cancer susceptibility variants by established risk factors.

Key words: Gene-environment interaction, breast cancer, single nucleotide polymorphism, epidemiology, risk

factors, Europeans

Introduction

Breast cancer is a complex disease with both environmen-

tal and genetic factors contributing to risk. Well-

established modifiable and non-modifiable environmental

factors include age at menarche, parity, age at first birth,

breastfeeding, body mass index (BMI), use of menopausal

hormonal therapy (MHT) and alcohol consumption.1–6

In addition, high/moderate-risk gene mutations such as

BRCA1, BRCA2, TP53, ATM and CHEK2 increase the

risk of breast cancer,7–14 as well as multiple common,

low-risk single nucleotide polymorphisms (SNPs) discov-

ered through genome-wide association studies (GWAS).

Approximately 170 genome-wide significant breast cancer

susceptibility loci have been identified, including the

recently published 65 novel loci associated with overall

breast cancer and 10 loci with estrogen receptor

(ER)-negative breast cancer risk, identified through the

OncoArray project.15,16

Estimation of any combined effect of genetic and envi-

ronmental factors, including gene-environment (G x E)

interactions, is considered to possibly improve breast cancer

risk prediction, and hence identification of women at

high risk for targeted prevention. However, development

of these risk models depends on knowledge of the joint

Key Messages

• The association between common breast cancer susceptibility loci and breast cancer risk is not strongly modified by

established breast cancer risk factors.

• The combined effect of susceptibility loci and established risk factors is thus well described by a multiplicative

model.

• We found one noteworthy gene-environment (G x E) interaction with overall and with estrogen-receptor-positive

breast cancer risk, which was replicated, and two novel noteworthy G x E interactions with ER-negative breast cancer

risk.

• In an independent dataset, we replicated two previously reported G x E interactions.
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effects of genetic and environmental risk factors, in

particular departures from a multiplicative model (that is,

G x E interaction on relative risk scale).17 More impor-

tantly, G x E studies of individual susceptibility loci may

also provide insight on potential underlying biological

mechanisms that could mediate causal effects of a factor

on risk of breast cancer.

Previous G x E interaction studies of breast cancer have

reported nearly 30 potential G x E interactions, with little

evidence of departures from the multiplicative model.18,19

Most reported G x E interactions for breast cancer have

not been replicated in independent datasets. Two G x E

interactions were replicated using data from the Breast

Cancer Association Consortium (BCAC),20 but were not

replicated in a smaller study by the Breast and Prostate

Cancer Cohort Consortium.21 In this study, we assess

interactions between 205 known common breast cancer

susceptibility loci and 13 established environmental risk

factors in relation to risk of overall and of ER-specific

breast cancer for women of European ancestry, using the

largest available dataset to date from the Breast Cancer

Association Consortium (BCAC). Additionally, we

attempted to replicate previously reported potential G x E

interactions.18

Methods

Study population

We analysed data from 46 studies (16 prospective cohorts,

14 population-based case-control studies and 16 non-

population based studies) participating in BCAC

(Supplementary Table 1, available as Supplementary data

at IJE online). Participants were excluded if they were

male, were of non-European descent, had breast tumours

of unknown invasiveness, or had in situ disease or preva-

lent disease at the time of assessment. Women with un-

known age at reference date (defined as date of diagnosis

for cases and of interview for controls) were also excluded.

For each risk factor, only studies with risk factor informa-

tion for at least 150 cases and 150 controls were included.

All participating studies were approved by the relevant

ethics committees and informed consent was obtained

from study participants.

Data harmonization and variable definition

Data for risk factors from different studies were harmo-

nized according to a common data dictionary and were

centrally quality controlled. For both case-control and co-

hort studies, epidemiological risk factor data were derived

with reference to reference date (described above). We

used reference age as surrogate to categorize women as

probably premenopausal (<54 years) or postmenopausal

(�54 years) status. The environmental variables available

for analysis were: age at menarche (per 2 years); ever par-

ous (yes or no); for parous women, number of full-term

pregnancies (1, 2, 3 and �4), age at first full-term preg-

nancy (per 5 years), ever breastfed (yes or no), duration of

breastfeeding (per 12 months); and for all women, ever use

of oral contraceptives (yes or no), adult body mass index

(BMI) separately for pre- and postmenopausal women (per

5 kg/m2), adult height (per 5 cm), lifetime alcohol con-

sumption (per 10 g/day), current smoking (yes or no) and

current use of combined estrogen-progesterone meno-

pausal hormonal therapy (MHT) (yes or no) as well as cur-

rent use of estrogen-only MHT (yes or no) for

postmenopausal women.

Genetic data

Samples were genotyped using one of the two SNP arrays:

iCOGS22 or OncoArray.15 Included in the analyses were

28 176 cases and 32 209 controls of European ancestry

genotyped by the custom iSelect genotyping array

(iCOGS), comprising 211 155 SNPs,22 and 44 109 cases

and 48 145 controls genotyped using the OncoArray

500 K, comprising 533 000 SNPs, nearly 260 000 of which

were selected as a ‘GWAS backbone’ (Illumina

HumanCore).23 These data were used to impute genotypes

for �11.8 M SNPs using the 1000 Genomes Project (phase

3 version 5) reference panel.15,16 Details of genotyping and

quality control procedures for the iCOGS and OncoArray

projects are described in more detail elsewhere.15,22,23

A total of 205 common breast cancer susceptibility var-

iants were selected for evaluation of G x E interactions

(Supplementary Table 2, available as Supplementary data

at IJE online). These variants have been associated with

breast cancer risk either through GWAS24–34 or by fine

mapping of associated regions.35–52 Of these, 72 were

identified through the OncoArray project and had not

been previously evaluated for G x E interactions.15,16

For replication of the previously reported interactions,

we analysed a subset of 30 544 cases and 37 616 controls

genotyped using the OncoArray array, which had not been

included in previous G x E studies. We evaluated 33 poten-

tial G x E interactions that had been previously reported

(Supplementary Table 3, available as Supplementary data

at IJE online).18

Statistical analysis

Unconditional logistic regression analysis was employed to

assess associations of SNPs and risk factors with breast

cancer risk. For SNPs, the estimated number of minor
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alleles based on imputation was included as a continuous

variable. SNP-risk factor interactions were assessed using

likelihood ratio tests, based on unconditional logistic re-

gression models with and without an interaction term

between the SNP and risk factor of interest. All analyses

were adjusted for study, reference age and 10 ancestry-

informative principal components. To account for

differential main effects of risk factors by study design, we

included an interaction term between the risk factor of

interest and an indicator variable for study design (popu-

lation-based and non-population-based), along with the

main effect for study design.

Analyses were conducted separately for overall breast

cancer risk and for ER subtype-specific breast cancer risk.

The analyses were performed separately for women geno-

typed by iCOGS or OncoArray, and the results were meta-

analysed using a fixed-effects inverse-variance weighted

model. Between-study heterogeneity in the G x E interac-

tion effect estimates was assessed by Cochrane’s Q test and

I2 index.

MHT was classified into estrogen-progesterone therapy

(EPT) and estrogen-only therapy (ET). Models assessing

the association with current MHT use by type were ad-

justed for former use of MHT and use of any MHT prepa-

ration other than the one of interest. All analyses of MHT

use were restricted to postmenopausal women. Models

evaluating the association with current smoking were ad-

justed for former smoking.

To assess the noteworthiness of the observed G x E

interactions, we calculated Bayesian false discovery proba-

bility (BFDP) at five different prior probabilities for a true

association (20%, 10%, 1%, 0.1% and 0.01%). G x E

interactions with BFDP <80% were considered as note-

worthy. This was based on the assumption of a 4-fold cost

of a false non-discovery compared with the cost of a false

discovery and that the probability of observing a true inter-

action odds ratio (OR) inside the range of 0.66-1.50 was

95%, as proposed by Wakefield et al.53 We also computed

a complementary measure to BFDP known as approximate

Bayes factor (ABF). This approximates the ratio of the

probability of the data given that the null hypothesis is true

to the probability of the data when the alternative hypothe-

sis is true, the null hypothesis being absence of any interac-

tion. Therefore, a lower ABF favours the alternative

hypothesis over the null hypothesis of absence of an inter-

action. For noteworthy G x E interactions, we performed

stratified analyses by categories of the environmental risk

factor using logistic regression. Analyses were carried out

using SAS 9.4 or R version 3.4.2. Meta-analyses and tests

of between-study heterogeneity were conducted using the

R package ‘meta’ (version 4.9–2).

Results

The studies included in this analysis are listed in

Supplementary Table 1, available as Supplementary data

at IJE online. The number of cases and controls with data

for each risk factor varied, ranging from 23 755 cases and

30 153 controls with data for parity to 5078 cases and

6867 controls with data for cumulative lifetime intake of

alcohol in the iCOGS dataset, and from 37 863 cases and

44 533 controls with data for parity to 12 213 cases and

13 232 controls with data for lifetime alcohol intake in the

OncoArray dataset (Supplementary Tables 4 and 5, avail-

able as Supplementary data at IJE online).

The SNP associations with risk of overall as well as ER

subtype breast cancer were consistent with those reported

in literature15,16 (Supplementary Tables 2 and 3, available

as Supplementary data at IJE online). The associations of

the environmental risk factors with breast cancer risk were

as expected in the population-based studies; in brief, age at

menarche, being parous, number of full-term pregnancies,

ever breastfeeding, cumulative duration of breastfeeding

and premenopausal BMI were negatively associated with

breast cancer risk, whereas age at first full-term pregnancy,

ever use of oral contraceptives, postmenopausal BMI, cur-

rent use of EPT, adult height, current smoking and cumula-

tive alcohol consumption were all positively associated

with breast cancer risk (Table 1; Supplementary Figures

1–3, available as Supplementary data at IJE online).

We identified three SNP-risk factor interactions as note-

worthy (BFDP <0.8) at �1% prior probability (Table 2).

The strongest G x E interaction was found for SNP

rs4442975 and current use of EPT [ORmeta-int ¼ 0.85,

95% confidence interval (CI) ¼ 0.78-0.92, Pmeta-int ¼ 7.4 x

10–5, BFDP ¼ 0.73] with overall breast cancer at 0.1%

prior probability. The minor allele of SNP rs4442975 was

associated with a stronger reduced risk of breast cancer for

current users of EPT (ORmeta ¼ 0.74, 95% CI ¼ 0.69-

0.80) than for never users of MHT (ORmeta ¼ 0.87, 95%

CI ¼ 0.84-0.90) (Figure 1A). This interaction was also

found to be noteworthy at 1% prior probability for risk of

ER-positive breast cancer (ORmeta-int ¼ 0.85, 95% CI ¼
0.78-0.93, Pmeta-int ¼ 2.8 x 10–4, BFDP ¼ 0.46). The asso-

ciation of rs4442975 with reduced risk of ER-positive

breast cancer was stronger for current users of EPT

(ORmeta ¼ 0.73, 95% CI ¼ 0.68-0.79) than for never

MHT users (ORmeta ¼ 0.86, 95% CI ¼ 0.83-0.89)

(Figure 1B).

The two other noteworthy SNP-risk factor interactions

were found for ER-negative breast cancer risk. The interac-

tion between rs6596100 and number of full-term pregnan-

cies was noteworthy at 1% prior probability (ORmeta-int ¼
0.91, 95% CI ¼ 0.85-0.96, Pmeta-int ¼ 8.2 x 10–4, BFDP ¼
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0.74). The minor allele of the rs6596100 variant was asso-

ciated with a reduced risk of overall breast cancer (ORmeta

¼ 0.96, 95% CI ¼ 0.94-0.98) and ER-positive breast

cancer (ORmeta ¼ 0.94, 95% CI ¼ 0.92-0.96), respectively,

but not ER-negative breast cancer (ORmeta ¼ 1.01, 95%

CI ¼ 0.97-1.05). The rs6596100 associated risk of

ER-negative breast cancer appears to decrease with num-

ber of full-term pregnancies for parous women, with the

estimated per-allele ORmeta being 1.06 (95% CI ¼ 0.95-

1.17) for women who had had one full-term pregnancy

and 0.92 (95% CI ¼ 0.82-1.04) for women who had had

four or more full-term pregnancies (Figure 1C).

For parous women, we observed noteworthy evidence

that the ER-negative breast cancer risk associated with

rs6596100 was also modified by age at first full-term preg-

nancy (ORmeta-int ¼ 1.12, 95% CI ¼ 1.05-1.19, Pmeta-int ¼
3.3 x 10–4, BFDP ¼ 0.56). The risk conferred by

rs6596100 on ER-negative breast cancer was decreased for

women with age at first full-term pregnancy below

20 years (ORmeta ¼ 0.90, 95% CI ¼ 0.79-1.03) but

increased for women with age at first full-term pregnancy

�30 years (ORmeta ¼ 1.10, 95% CI ¼ 0.97-1.24)

(Figure 1D). However, we observed between-study hetero-

geneity for the interaction between rs6596100 and age at

first full-term pregnancy (Supplementary Figure 4, avail-

able as Supplementary data at IJE online). Several other

interactions were found to be noteworthy (BFDP <0.8) at

5% prior probability (Supplementary Table 6, available as

Supplementary data at IJE online). Meta-analysed results

of all the G x E interactions for overall and ER subtype

risk are shown in Supplementary Tables 7–9, available as

Supplementary data at IJE online.

In replication analyses, we found evidence for two pre-

viously reported associations in the independent subset of

OncoArray data (Supplementary Table 10, available as

Supplementary data at IJE online). We estimated an inter-

action OR for overall breast cancer of 0.80 (95% CI ¼
0.69-0.93, Pint ¼ 0.004) for current EPT use and

rs13387042, a SNP for which we had previously reported

an interaction OR of 0.83 (95% CI ¼ 0.74-0.94, Pint ¼

Table 1. Main effects for the epidemiological variables included in the analyses, derived from population-based studies only

Environmental risk factor Overall breast cancer risk ER-positive breast cancer risk ER-negative breast cancer risk

Cases/controls OR (95% CI) Cases/controls OR (95% CI) Cases/controls OR (95% CI)

Age at menarche

(per 2 years)

36 893/46 854 0.91 (0.89-0.92) 26 630/46 854 0.91 (0.89-0.93) 4255/25 233 0.89 (0.85-0.93)

Ever parous (yes/no) 37 242/47 173 0.81 (0.77-0.84) 26 937/47 173 0.78 (0.74-0.81) 4309/25 585 0.94 (0.85-1.04)

Number of full-term

pregnancies (1, 2, 3, �4)

31 390/41 215 0.87 (0.85-0.88) 22 720/41 215 0.86 (0.84-0.87) 3273/18 267 0.90 (0.86-0.94)

Age at first full-term

pregnancy (per 5 years)a
30 168/39 850 1.14 (1.12-1.16) 21 869/39 850 1.17 (1.14-1.19) 3472/21 422 1.02 (0.97-1.06)

Ever breastfed (yes/no)a 27 786/30 582 0.91 (0.88-0.95) 19 691/30 582 0.92 (0.88-0.96) 3533/19 606 0.96 (0.88-1.03)

Duration of breastfeeding

(per 12 months)a
24 553/25 524 0.96 (0.93-0.98) 17 355/25 524 0.95 (0.93-0.98) 3315/18 012 0.98 (0.94-1.03)

Adult height (per 5 cm) 35 767/46 506 1.09 (1.08-1.10) 25 763/46 506 1.10 (1.09-1.12) 3954/24 342 1.03 (1.00-1.05)

Premenopausal BMI

(per 5 kg/m2)

7994/10 066 0.95 (0.92-0.98) 4835/9490 0.92 (0.89-0.95) 913/2030 1.07 (0.98-1.16)

Postmenopausal BMI

(per 5 kg/m2)

27 495/32 495 1.07 (1.05-1.09) 20 503/32 283 1.07 (1.05-1.09) 1758/11 859 1.05 (1.00-1.11)

Ever use of oral

contraceptives (yes/no)

35 126/44 608 1.22 (1.18-1.26) 25 271/44 608 1.24 (1.20-1.29) 3939/24 225 1.14 (1.05-1.23)

Current use of EPT (yes/no)b,c 16 637/17 946 1.75 (1.65-1.87) 12 566/17 946 1.93 (1.81-2.06) 1190/7353 1.11 (0.92-1.34)

Current use of ET (yes/no)b,c 16 444/17 920 1.10 (1.03-1.17) 11 829/16 844 1.11 (1.03-1.19) 936/6262 1.35 (1.11-1.64)

Lifetime intake of alcohol

(per 10 g/day)

15 827/18 723 1.07 (1.05-1.10) 11 302/18 723 1.09 (1.07-1.11) 1612/11 562 1.03 (0.98-1.08)

Current smoking (yes/no)d 33 737/43 222 1.18 (1.13-1.24) 24 123/43 222 1.18 (1.12-1.25) 3707/22 573 1.06 (0.96-1.18)

Pack years smoked

(per 10 pack-years)e
79 75/11 709 1.02 (1.00-1.04) 5944/11 709 1.02 (1.00-1.04) 896/6400 1.00 (0.95-1.04)

All models were adjusted for reference age and study.
aAmong parous women.
bAmong postmenopausal women.
cAdditionally, models were adjusted for former use of menopausal hormonal therapy and use of any other menopausal hormonal therapy preparations.
dAdditionally, model was adjusted for former smoking.
eAmong ever smokers.
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2.43 x 10–3).20 SNP rs13387042 is in strong linkage dis-

equilibrium with rs4442975; hence this result is consistent

with the interaction observed for rs4442975 in the full

dataset. In addition, we also observed evidence for a G x E

interaction between rs941764 and cumulative lifetime in-

take of alcohol (<20 g/day vs �20 g/day) with ER-negative

breast cancer risk (ORint ¼ 0.64, 95% CI ¼ 0.45-0.92, Pint

¼ 0.01), compared with ORint of 0.53 (95% CI ¼ 0.36-

0.76, Pint ¼ 6.8 x 10–4) in Rudolph et al.54 The corre-

sponding meta-analysed interaction OR (per 10 g/day cu-

mulative lifetime alcohol intake) based on OncoArray and

iCOGS datasets was 0.90 (95% CI ¼ 0.81-0.99, Pint ¼
0.03). For the G x E interaction between SNP rs3817198

and number of children for parous women, which had the

strongest evidence for overall risk of breast cancer in previ-

ous analyses (ORint ¼ 1.06, 95% CI ¼1.04-1.08, Pint ¼
2.4 x 10–06),20 there was weak evidence of interaction, but

in the opposite direction in the replication analyses (ORint

¼ 0.94, 95% CI ¼ 0.94-1.00, Pint ¼ 0.03).

Discussion

In this study, we evaluated all known common susceptibil-

ity loci for interactions with breast cancer risk factors, and

found little evidence for departures from a multiplicative

model. We refer to G x E interactions as effect modifica-

tion conferred by epidemiological risk factors on the asso-

ciation between SNPs and breast cancer risk, but it can

very well be SNPs modifying the association of risk factors

with breast cancer risk. We identified three noteworthy

(BFDP <0.8) G x E interactions related to breast cancer

risk based on prior probabilities �1%. The strongest evi-

dence was found for effect modification between

rs4442975 and current use of EPT with overall and ER-

positive breast cancer risk. Moreover, we found evidence

of interactions between the SNP rs6596100 and number of

full-term pregnancies and age at first full-term pregnancy,

respectively, for ER-negative breast cancer risk.

The SNP rs4442975 is located in an intergenic region

on the long arm of chromosome 2 (2q35). Another SNP

within the same genomic region, rs13387042, was previ-

ously reported to show an interaction also with current use

of EPT.20 We replicated this interaction between

rs13387042 and current use of EPT using the OncoArray

dataset. The two SNPs rs13387042 and rs4442975 are

highly correlated (r2 ¼ 0.93) and conditional analysis

yielded a significant association only for rs4442975, so

that these results reflect the same interaction. Fine-

mapping and functional analyses have identified

rs4442975 to be the most likely causal variant in this re-

gion.43 Thus despite the small difference in the risk esti-

mates between never and current EPT, replication of thisT
a
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G x E interaction reinforced what we found previously,

implicating the role of the IGFBP5 gene and estrogen

pathway in breast cancer.

Functional analyses indicate that SNP rs4442975 lies

near a transcriptional enhancer which physically interacts

with the IGFBP5 promoter, suggesting that the T-allele of

rs4442975 decreases susceptibility to breast cancer via in-

creased expression of insulin-like growth factor binding

protein 5 (IGFBP5).43 IGFBP5 is a key member of the

insulin-like growth factor (IGF) axis which plays an

important role in cellular differentiation, proliferation and

apoptosis in breast cancer.55 Activation of the IGF

receptors by IGF causes phosphorylation of insulin recep-

tor substrates (IRS-1 and IRS-2). This phosphorylation

cascades multiple downstream signalling pathways such

as Ras/mitogen-activated protein kinase (MAPK) and

phosphoinositide (PI3K) serine-threonine kinase (AkT),

which play a role in breast carcinogenesis.56,57 Estrogen

can stimulate the IGF pathway via increased expression of

both insulin-like growth factor receptor-1 and IRS-1. Some

studies have also reported a positive correlation between

overexpression of IGFBP5 and the presence of ER in breast

cancer cell lines. Progesterone has been shown to act by in-

creasing levels of IRS-2 and sensitizing breast cancer cells

to downstream signalling pathways such as MAPK and

Akt.58–60 It is plausible that exogenous hormone exposure

due to estrogen and progesterone therapy may affect the

regulation of the IGF pathway and thereby modulate germ-

line IGFPB5 variant-related susceptibility to breast cancer.

Note however that two other independent breast cancer

risk variants in this region (tagged by rs1685760913 and a

1.3 kb insertion/deletion49) are also believed to target

IGFBP5, but we did not find evidence for interactions

between these variants and current EPT use.

Women of young age at first pregnancy are known to

have increased circulating sex hormone-binding globulin

and prolactin but decreased total estrogen levels.61,62

Likewise, women who have had multiple full-term

Figure 1. Odds ratios and 95% confidence intervals for associations between SNP and overall breast cancer (A), ER-positive breast cancer (B) and ER-

negative breast cancer (C, D), stratified by categories of environmental risk factors.
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pregnancies have an overall decreased lifetime exposure to

estrogen.61,63,64 The association of rs6596100 with ER-

negative breast cancer risk was found to be modified by

number of full-term pregnancies and age at first full-term

pregnancy for parous women. Based on INQUISIT,15 the

target genes of rs6596100 and highly correlated SNPs are

predicted to be heat shock protein family A member 4

(HSPA4) and AF4/FMR2 family member 4 (AFF4).

INQUISIT predicts HSPA4 as the most likely target, due to

overlap of multiple correlated SNPs lying in HSPA4

promoter region, distal regulatory elements and coding

sequence. HSPA4 gene is responsible for production of

heat shock proteins (Hsps), particularly those belonging to

the family HSP70. The underlying mechanisms regarding

the relationship between rs6596100 and these pregnancy-

related risk factors are unknown at present. It is plausible

that a lower estrogenic milieu due to reproductive factors

may affect the formation of multicomplexes between ste-

roid receptors like ER and heat shock proteins (HSPs),

therefore affecting signalling pathways such as Wnt, ErbB,

serine/threonine and tyrosine protein kinase, which are

known to be involved in breast carcinogenesis. Whereas

there is some biological plausibility regarding the observed

interactions with rs6596100, the findings nevertheless

could be by chance, and thus require independent

replication.

The SNP rs941764 is located on chromosome 14 in in-

tron of CCDC88C gene.15,22 The effect modification of

rs941764-associated ER-negative breast cancer risk by

lifetime intake of alcohol was first reported by Rudolph

et al.54 We replicated this G x E interaction in an indepen-

dent dataset in our study. Mutations in this gene region

have been associated with dysregulation of Wnt signalling

in neural disorders such as congenital hydrocephalus.65

This gene codes a Hook-related protein (HkRP2) that

binds to an important scaffold protein, Dishevelled, in

the Wnt signalling pathway, affecting all downstream

activity.65

A role of alcohol has been well recognized in initiation

and progression of breast cancer, presumably via multiple

cellular and molecular mechanisms, including the EGFR/

ErbB2 pathways. Downstream to EGFR/ErbB2 pathways

lie multiple pathways such as the MAPK, Wnt/GSK3b/b-

catenin pathways.66 Therefore, alcohol consumption could

affect the risk of ER-negative breast cancer through

dysregulation of Wnt signalling.

Our study provides the most comprehensive evaluation

to date of potential effect modification of all known

common genetic susceptibility variants by environmental

risk factors for breast cancer. Our findings are based on

the largest available dataset on breast cancer. Despite its

large sample size, the study may remain statistically

underpowered, considering the rather modest effect sizes

of most of the common variants associated with breast

cancer risk, and particularly for risk factors for which we

have fewer data (Supplementary Table 11, available as

Supplementary data at IJE online).18 Statistical power was

further diminished for subtype-specific analyses due to re-

duced sample sizes, especially for ER-negative breast can-

cer (10 896 ER-negative cases in the combined iCOGS and

OncoArray dataset).18 The lack of strong effect modifica-

tions for breast cancer could also be explained by the over-

all weak to moderate associations of environmental risk

factors, except for MHT use with breast cancer risk along

with the modest associations of common genetic variants.

A further limitation of our study is that the findings may

not be generalizable to other racial/ethnic groups since the

analyses were restricted to women of European ancestry.

In conclusion, our analyses suggest that most of the as-

sociated effects of breast cancer susceptibility loci and envi-

ronmental risk factors are consistent with a multiplicative

model. The strongest evidence for an interaction was be-

tween the candidate causal variant rs4442975 at 2q35 and

current use of EPT. The associated effect is supported by a

plausible underlying biological mechanism, but further epi-

demiological and functional validation will be required to

determine whether the interaction is genuine. The newly

reported results for ER-negative breast cancer risk generate

plausible biological hypotheses and may inform future

functional studies. Overall, the results from our analyses

do not suggest strong effect modification of the association

between breast cancer susceptibility loci and risk of breast

cancer by established epidemiological risk factors.

Supplementary data

Supplementary data are available at IJE online.
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Anne Grundy,53 Pascal Guénel,14 Lothar Haeberle,54 Christopher A
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