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Abstract

Depression is linked to deficits in cognitive control and a host of other cognitive impairments arise 

as a consequence of these deficits. Despite of their important role in depression, there are no 

mechanistic models of cognitive control deficits in depression. In this paper we propose how these 

deficits can emerge from the interaction between motivational and cognitive processes. We review 

depression-related impairments in key components of motivation along with new cognitive 

neuroscience models that focus on the role of motivation in the decision-making about cognitive 

control allocation. Based on this review we propose a unifying framework which connects 

motivational and cognitive control deficits in depression. This framework is rooted in 

computational models of cognitive control and offers a mechanistic understanding of cognitive 

control deficits in depression.
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Introduction

Depression1 profoundly influences the way in which we process information and think 

about ourselves, others, and the world around us. An individual suffering from depression 
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will take a longer time to disengage from the processing of negative information and will 

experience difficulties in suppressing irrelevant thoughts, or shifting attention from one task 

to another in order to reach a goal. Such issues will make it difficult for that individual to 

regulate emotions and adapt to the changing environment. This is why cognitive processes 

are a crucial target for understanding and treating depression (Clark and Beck, 2010; Kaser 

et al., 2017).

Depression is characterized by impairments in attention, memory, and cognitive control 

(Millan et al., 2012). Cognitive control deficits are related to central features of depression 

such as concentration and memory problems and a host of other cognitive impairments and 

biases arise as a consequence of these deficits (Disner et al., 2011; Gotlib and Joormann, 

2010). Cognitive control is crucial in motivated, goal-directed behavior. It represents a set of 

processes that allow for the flexible adaptation of cognition and behavior in accordance with 

our current goals (Botvinick and Cohen, 2014; Friedman and Miyake, 2017; Shenhav et al., 

2013). For example, cognitive control is necessary if we want to inhibit negative thoughts 

and shift our attention to a new task. Impairments in such control processes are found across 

a wide range of psychiatric disorders (Millan et al., 2012), and they have been consistently 

linked with depressive symptoms (Snyder, 2013). However, our understanding of cognitive 

control in depression is limited in several important ways.

Current understanding of cognitive control in depression is predominately descriptive and 

research is focused on detecting deficits in specific cognitive processes, such as the 

inhibition of negative material (for a review see: Grahek et al., 2018). In spite of the 

important progress in charting cognitive control deficits related to depressive symptoms, the 

origin of these deficits remains poorly understood. It is not known why deficits in cognitive 

control develop, or how they are maintained. Most of the existing models view cognitive 

control deficits in depression as the reduced ability to exert control and do not offer 

mechanisms through which these deficits emerge. Currently there is a strong need for the 

development of a more mechanistic account of cognitive control deficits in depression. A 

mechanistic account moves beyond identification and description of a phenomenon. It does 

so by appealing to a mechanism: a structure defined by its components, their organization 

and interactions, which produce a phenomenon (Bechtel and Abrahamsen, 2005; Machamer 

et al., 2000). In this paper we argue that recent developments in research on motivation and 

cognitive control, as well as the development of computational theories of cognitive control, 

can contribute to such a mechanistic understanding of control deficits in depression. The use 

of such theories to explain cognitive control deficits in depression, instead of developing 

new models specific for psychopathology, holds the promise of advancing the understanding 

of cognitive control in both healthy and depressed individuals.

In this paper we first review disparate literatures on motivation and cognitive control in 

depression. Further, we describe computational models of cognitive control and demonstrate 

how they can be used to link motivation and cognition in depression. On the basis of this 

review, we rely on a computational model of cognitive control to propose a framework in 

which cognitive control deficits in depression arise from alterations in crucial components of 

motivation: reward anticipation, effort costs, and estimates of environment controllability. 

This view offers the possibility for re-conceptualizing depression-related cognitive control 
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deficits. Instead of a reduced ability to employ control, we propose that control deficits can 

be viewed as changes in the decision-making process underlying cognitive control 

allocation. This decision-making process relies on crucial components of motivation: reward 

anticipation, effort, and estimates of the ability to control the environment. We use 

simulations of two cognitive tasks to demonstrate how this framework can be used to derive 

behavioral predictions about the impact of motivational impairments on cognitive control.

Cognitive Control in Depression

Deficits in cognitive control have not only been documented in clinically depressed 

individuals (Snyder, 2013), but also in patients in remission (Demeyer et al., 2012; Levens 

and Gotlib, 2015), and in at-risk populations (Derakshan et al., 2009; Owens et al., 2012). 

Meta-analytic evidence from behavioral studies suggests that depression is reliably linked to 

deficits in cognitive control (Rock et al., 2014; Snyder, 2013). There is also emerging 

evidence that cognitive remediation training aimed at improving cognitive control processes 

reduces depressive symptoms (for a review see: Koster, Hoorelbeke, Onraedt, Owens, & 

Derakshan, 2017). At the neural level, depressive symptoms have been linked to changes in 

the activity of the dorsolateral prefrontal cortex (dlPFC) and anterior cingulate cortex (ACC; 

Davidson, Pizzagalli, Nitschke, & Putnam, 2002; Gotlib & Hamilton, 2008; Pizzagalli, 

2011). Meta-analyses of the neuroimaging studies also point to the differences between 

healthy and depressed individuals, both in activation in these two regions during cognitive 

tasks (McTeague et al., 2017), as well as in the gray matter volume (Goodkind et al., 2015). 

However, the neuroimaging studies have often been conducted on very small samples, and 

there is considerable heterogeneity in their results (e.g., Müller et al., 2016; for a discussion 

see: Barch and Pagliaccio, 2017). Multiple authors have proposed that the reduced activity in 

the dlPFC and the ACC is related to the diminished ability of depressed individuals to 

employ cognitive control (Disner et al., 2011; Joormann, Yoon, & Zetsche, 2007).

Cognitive control processes are considered to be an important vulnerability factor for 

depression. Cognitive impairments in attention, interpretation, and memory may arise as a 

consequence of control deficits (Gotlib and Joormann, 2010; Millan et al., 2012; Siegle et 

al., 2007). For example, Gotlib and Joorman (2010) have suggested that depressed 

individuals’ difficulties in disengaging attention from negative stimuli, or forgetting such 

stimuli, could be caused by cognitive control deficits. This proposal has recently received 

empirical support (Everaert et al., 2017). Lowered levels of cognitive control increase and 

sustain depressive symptoms via their proximal links with emotion regulation strategies such 

as rumination (Joormann & Vanderlind, 2014; Whitmer & Gotlib, 2013). Research on 

cognitive control in depression has been focused on charting deficits in different cognitive 

control processes. Specific deficits in processes such as inhibition, shifting, and updating 

have been documented (Joormann & Tanovic, 2015). These deficits are commonly thought 

of as the lowered ability to inhibit certain thoughts or stimuli, shift attention away from 

them, or update the contents of working memory. However, it is important to note that not all 

accounts of cognitive impairments in depression postulate a reduced ability. For example, 

the cognitive-initiative account of memory in depression focuses on changes in initiative – a 

concept close to motivation – to explain memory impairments in depression (Hertel, 2000, 

1994).
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In a recent analysis of theoretical models of cognitive control in depression (Grahek et al., 

2018) we identified three main conceptual problems in the field: (1) the use of descriptive 

models of cognitive control, (2) the reliance on describing the impairments instead of 

searching for mechanisms, and (3) the lack of integration between cognitive, motivational, 

and emotional impairments. These issues are hindering further progress in understanding 

how and why cognitive control is impaired in depression. In order to overcome some of the 

problems that we have outlined in our earlier work, in this paper we propose an integrated 

framework that links alterations in motivational processes with cognitive control deficits. 

This framework allows us to move away from the view that cognitive control deficits in 

depression stem from a reduced ability to exert control. Instead, we will argue for a view in 

which the deficits arise as a result of altered expectations about the value of exerting control.

Components of Motivation in Depression

Cognitive impairments in depression are closely linked to impairments in emotional and 

motivational processes (Crocker et al., 2013). A wealth of depression research has focused 

on the relationship between cognitive and emotional processes. This approach has led to 

insights in key deficits related to the disengagement from emotionally negative material 

(Koster et al., 2011) and the ability to deploy cognitive control over emotional material 

(Joormann, 2010). While the processing of negative material and the presence of negative 

affect have been studied in relation to cognitive control impairments in depression, 

motivational deficits remain largely unexplored in this context. This is why we focus this 

paper on the link between motivation and cognition in depression. The links between 

motivation and cognitive processing of emotional material our out of the scope of the current 

paper.

Motivation is goal-directed when effort is invested in order to bring about desired outcomes 

(Braver et al., 2014). Here we will focus on components of motivation that are relevant for 

goal-directed behavior because of their relevance for cognitive control processes. Motivated 

goal-directed behavior is flexible and sensitive to the current state of the individual and the 

environment. Two types of representations are crucial in driving this type of behavior: 1) 

action-outcome contingencies, and 2) the value of potential outcomes (Balleine and 

O’Doherty, 2010; Dickinson, 1985; Wood and Rünger, 2016). Action-outcome 

contingencies represent the probability that an action will result in a desired outcome. We 

will refer to these representations as outcome controllability (one’s estimate of their ability 

to control outcomes in an environment) and outcome value (the expected reinforcement - 

total reward and/or punishment - for reaching an outcome). The third concept that we will 

consider is effort, a variable that is central to the study of motivation. Effort represents the 

intensification of physical or mental activity needed to reach a goal (Inzlicht et al., 2018; 

Kurzban et al., 2013). This intensification comes with a cost, and we will refer to the effort 

requirements for reaching an outcome as effort costs.

Goal-directed motivated behavior emerges with the integration of these three components. 

For example, imagine a person working long hours in order to get a promotion at work. This 

behavior is motivated and goal-directed because this person believes that working hard (high 

effort) will lead to the promotion (high outcome controllability), and the promotion is 
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desired (high outcome value). As we review next, there is evidence that each of these three 

components of motivation can be impaired in depression (Barch et al., 2015; Griffiths et al., 

2014).

Outcome Controllability

The classic paradigm for investigating the role of outcome controllability in response to 

stressors was developed by Seligman and Maier (1967). They demonstrated that animals 

who were subjected to uncontrollable stressors (inescapable shocks) exhibited passivity, a 

phenomenon they referred to as learned helplessness. They found that controllable stressors 

(escapable shocks) did not induce learned helplessness. Overall, uncontrollable stressors 

were found to induce responses that resemble some of the symptoms of depression (Maier, 

1984; Maier and Watkins, 2005). Further work by Maier and colleagues (2006) revealed that 

animals were able to detect the possibility of control over their environment. While animals 

have a default reaction of passivity when experiencing stress, this default response can be 

overcome by learning that the stressors are controllable. The medial prefrontal cortex 

(mPFC) in rodents detects whether a stimulus is controllable and inhibits the default 

passivity in response to shocks. In this way, the ability to exert control over the environment 

serves as a protective factor against negative behavioral and physiological effects of stress 

(Maier and Seligman, 2016). Seligman and colleagues demonstrated that learned 

helplessness is also observed in humans, and suggested that it has significant relevance for 

understanding depression and related disorders (Abramson, Seligman, & Teasdale, 1978; 

Maier & Seligman, 2016; Seligman, 1972).

The idea that environmental controllability is crucial for one’s health, security, and well-

being is supported by several other lines of research (Leotti et al., 2010). For instance, 

Moscarello and Hartley (2017) have recently proposed that goal-directed behavior is 

strongly influenced by estimates of agency. The authors propose that animals and humans 

infer their ability to control their environment by ascertaining the relationship between their 

actions and motivationally significant outcomes. These estimates are generalized and 

determine the probability of being able to exert control in a novel environment. Estimates of 

agency are used to calibrate ongoing behaviors. If the estimates of agency are high (i.e., high 

probability of being able to control the environment), goal-directed behavior is promoted. If 

the estimates are low, behavior is more likely to rely on an innate reactive repertoire. In this 

way, controllability of the environment, inferred from previous learning, is crucial for 

promoting either goal-directed or habitual behavior (Liljeholm, Tricomi, O’Doherty, & 

Balleine, 2011; Miller, Shenhav, & Ludvig, in press). Lowered estimates of outcome 

controllability, resulting in alterations of goal-directed behavior, could be an important factor 

in depression.

Recent theoretical frameworks of depression also emphasize the importance of outcome 

controllability. For example, Pizzagalli (2014) has proposed a model of anhedonia in 

depression in which stress plays a central role in the development of anhedonic symptoms. 

According to Pizzagalli, certain stressors, especially if they are uncontrollable, induce 

anhedonic behavior by causing dysfunctions in mesolimbic dopamine pathways crucial for 

motivated behavior. De Raedt and Hooley (2016) have argued that individual’s expectancies 
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about their ability to cope with future negative events play a crucial role in depression. These 

expectancies are proposed to be formed based on previous coping experiences and are one 

factor that determines the actual ability to cope with stressors when they occur. Notably, 

these authors suggest that expectancies influence the ability to cope with stressors by 

modulating the proactive allocation of cognitive control prior to encountering a stressful 

situation. In sum, altered estimates of outcome controllability seem to be an important factor 

contributing to the levels of depressive symptoms.

Outcome Value

Representations of outcome value are also strongly altered in depression. In recent years, 

motivational impairments in depression have received significant attention and a more fine-

grained view of these impairments is emerging (Pizzagalli, 2014; Treadway and Zald, 2013). 

Anhedonia is one of the two core symptoms of depression and is defined as a loss of 

pleasure in previously enjoyable activities or a loss of interest in pursuing them (DSM-5; 

American Psychiatric Association, 2013). Anhedonia is a good predictor of antidepressant 

treatment success (Uher et al., 2012), the course of depression (Spijker et al., 2001; 

Wardenaar et al., 2012), and the time to remission and number of depression-free days after 

antidepressant treatment (McMakin et al., 2012). In spite of the importance of anhedonia in 

depression, the conceptualization and measurement of anhedonia has been heterogeneous 

and inconsistent (for a discussion see: Rizvi, Pizzagalli, Sproule, & Kennedy, 2016). 

Traditionally, anhedonia has been primarily viewed as an impairment in consummatory 

pleasure (i.e. liking rewards when they are obtained). However, the evidence for impairments 

in consummatory pleasure in depression is mixed (Barch et al., 2015; Treadway and Zald, 

2013).

Animal models suggest that the mesolimbic dopamine system is selectively involved in 

reward motivation, but not in hedonic responses when rewards are gained (Haber and 

Knutson, 2010; Salamone and Correa, 2012). These insights have stimulated research on 

anhedonia in depression and schizophrenia, revealing impairments in motivation that are not 

related to hedonic responses. As a result, an emerging, more nuanced account of motivation 

in anhedonia, emphasizes multiple reward processing deficits such as anticipation of 

rewards, reinforcement learning, effort expenditure, and value-based decision making (Barch 

and Dowd, 2010; Der-Avakian and Markou, 2012; Pizzagalli, 2014; Romer Thomsen et al., 

2015; Strauss and Gold, 2012; Zald and Treadway, 2017). These deficits point toward 

changes in outcome value. They influence how outcome values are learned, anticipated, and 

translated into behavior.

Depression is related to a number of reward processing deficits (for reviews see: Barch et al., 

2015; Pizzagalli, 2014; Treadway & Zald, 2011). Converging evidence from self-report 

studies, behavioral tasks, physiological, and neuroimaging experiments suggests that 

depression, especially in the presence of anhedonia, is linked to reduced anticipation of 

rewards and impaired implicit reinforcement learning. For example, monetary incentive 

delay tasks (Knutson et al., 2000) were developed in order to decompose anticipatory (e.g., 

the period after notifying participants about a possible reward) and consummatory (e.g., 

receipt of a monetary reward) aspects of reward processing. In these tasks depressed 
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individuals, relative to healthy controls, display reduced behavioral and neural responses in 

anticipation of rewards (Pizzagalli, 2014). The literature on motivational impairments in 

depression suggests that depressed individuals, especially in the presence of anhedonic 

symptoms, assign value outcomes in a manner that differs from healthy controls. This can be 

caused by anticipating lower payoffs and/or impaired reinforcement learning.

Effort costs

Another important factor influencing motivated behavior is effort that needs to be expended 

in order to reach a desired outcome. Effort involves the expected cost necessary to reach an 

outcome. This cost is weighed against expected benefits in order to choose which actions to 

pursue (Wallis and Rushworth, 2014). Reduced effort exertion is associated with multiple 

mental disorders (Culbreth et al., 2018; Salamone et al., 2016). Clinical studies have focused 

on the exertion of physical effort in order to obtain rewards, demonstrating that anhedonia in 

depression is related to reduced effort exertion (for an excellent review see: Zald & 

Treadway, 2017). In order to investigate this process, Treadway and colleagues developed 

the Effort Expenditure for Rewards Task (EEfRT; Treadway, Bossaller, Shelton, & Zald, 

2012), which involves having participants choose how much effort they want to expend in 

order to gain varying amounts of reward. Using this task, the authors have demonstrated that 

depressed individuals are less willing to exert effort than healthy controls (see also: Cléry-

Melin et al., 2011; Yang et al., 2014). However, the research on effort exertion in anhedonia 

and depression has largely been focused on physical effort while ignoring cognitive effort.

Although cognitive effort has been an important topic of research for a long time 

(Kahneman, 1973), in recent years there has been an upsurge in cognitive and neuroscience 

research on this topic (Kool and Botvinick, 2018; Westbrook and Braver, 2015). More 

specifically, research on cognitive control has focused on the role of effort costs in decision-

making about control allocation (for a recent review see: Shenhav et al., 2017). Cognitive 

control processes require more effort than automatic ones, and effort needs to be expended 

in order to override automatic processes in order to reach a goal. Research is starting to 

demonstrate that there are individual differences in the exertion of this type of effort 

(Westbrook et al., 2013). To date, there are not a lot of studies on cognitive effort in 

depression. However, a recent study has demonstrated the inverse relationship between 

depressive symptoms and a questionnaire-based measure of the willingness to exert 

cognitive effort (Marchetti et al., 2018). Also, the first experimental study of cognitive effort 

in depression revealed similar results to the results obtained with physical effort 

(Hershenberg et al., 2016).

Cognitive Control as a Process Reliant on Motivation

Controllability, value, and effort of a desired outcome depend on previous learning. They 

have been studied extensively in the context of animal and human learning at both 

behavioral and neural levels (for an overivew see: Daw and O’Doherty, 2014). The 

importance of these components of motivated behavior has also been recognized in other 

fields of psychology and neuroscience. For example, in social psychology the concepts of 

self-efficacy (Bandura, 2001, 1977) and locus of control (Rotter, 1966) are closely linked to 
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controllability. Also, concepts of feasibility and desirability of goals (Oettingen and 

Gollwitzer, 2001) correspond to the concepts of controllability and outcome value. Similar 

concepts can be found in psychology of motivation (Atkinson, 1957; Wigfield and Eccles, 

2000) and work psychology (Bonner and Sprinkle, 2002). The role of motivation is now 

increasingly recognized in cognitive psychology and cognitive neuroscience.

Automatic or habitual responding can be suitable for a number of everyday situations, but 

for tasks that are more novel, uncertain, or complex, individuals need to engage cognitive 

control. This set of processes helps to overcome automatic response tendencies in favor of 

controlled modes of information processing and behavior. This allows for the coordination 

of our thoughts and actions in accordance with our goals. Recent research has started to 

emphasize the role of motivation in the timing, intensity, and direction of cognitive control 

allocation. It is now recognized that the allocation of cognitive control is driven by goals and 

therefore closely linked to motivation (Braver et al., 2014).

Reward prospect enhances cognitive control processes (for reviews see: Botvinick and 

Braver, 2015; Krebs and Woldorff, 2017). This effect has been observed on various tasks 

that tap into different components of control such as: attentional control (Padmala and 

Pessoa, 2011), response inhibition (Leotti and Wager, 2010), conflict adaptation (Braem et 

al., 2012), and task-switching (Aarts et al., 2010). The effect is not restricted to situations in 

which reward is signaled by advance cues augmenting preparatory control processes. 

Comparable results are found when reward is signaled simultaneously with the target 

thereby promoting fast control adjustments (Krebs et al., 2010). But why is there a need to 

adapt control in the first place? Is it not the most optimal strategy to always exert maximal 

control over our thoughts and actions? The emerging answer is that exerting cognitive 

control carries intrinsic effort-related costs (Shenhav et al., 2017). It has been shown that 

exerting control is effortful and that individuals tend to avoid it (Kool et al., 2010). Both 

reward prospect associated with an outcome, and the effort needed to reach that outcome are 

important factors in determining the way in which cognitive control is allocated.

Another important factor in determining how cognitive control is allocated is the learned 

contingency between actions and outcomes. Although this factor has received less empirical 

attention, several computational models of cognitive control emphasize its importance. For 

example, the model of Alexander and Brown (2011) stresses the importance of predicting 

mappings between responses and outcomes in cognitive control. The model proposed by 

Shenhav and colleagues (2013) posits that the allocation of cognitive control relies, among 

other factors, on the probability of an outcome conditional on the type and intensity of 

control. In this way, allocation of cognitive control depends on predictions about 

probabilities of certain actions (e.g., intense control allocation or a certain response) 

producing desired outcomes (e.g., solving a task correctly).

Computational Models of Cognitive Control

The insight that cognitive control is closely related to motivation is formalized in a growing 

number of computational models of cognitive control. At present there are multiple 

theoretical and computational models which deal with the problem of how cognitive control 
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is allocated (for recent reviews see: Botvinick & Cohen, 2014; Verguts, 2017). These models 

specify a set of components needed for optimal decision-making about control allocation 

and they are not mutually exclusive. Many of them include the representations of outcome 

value and/or outcome controllability (Brown and Alexander, 2017; Holroyd and McClure, 

2015; Shenhav et al., 2013; Verguts et al., 2015). Also, many of these models assume that 

learning is crucial in forming these representations and emphasize the importance of 

learning for cognitive control (Abrahamse et al., 2016; Bhandari et al., 2017). Our 

framework relies on the current formulation of the Expected Value of Control (EVC) theory 

(Shenhav et al., 2013). This theory includes representations of outcome controllability, 

value, and cost in the decision-making process about cognitive control allocation.

The EVC theory provides a normative account of cognitive control allocation as resulting 

from a decision-making process in which potential gains of control allocation are weighted 

against their costs (Shenhav et al., 2013). The theory postulates that these decisions 

determine how control is allocated across candidate control signals. These control signals 

vary on two dimensions: signal identity, which determines the processes which are engaged 

(e.g., paying attention to the ink color in a Stroop task), and signal intensity which 

determines the amount of control allocated (e.g., how intensely to pay attention to the ink 

color). The theory proposes that control signals are selected in such a way that maximizes 

the expected value of control at any given moment.

The EVC for a given control signal within a given state is determined by three components: 

efficacy, value, and cost. Efficacy is defined as the probability of a certain outcome given a 

signal of a particular identity and intensity, and the current state. In other words, the efficacy 

component can be described as the probability that certain outcomes will occur (i.e., that our 

actions lead to what we desire) or simply as action-outcome contingencies inferred from 

previous experience. In standard cognitive control paradigms, such as the Stroop task, an 

outcome can be a correct or an incorrect response on a particular trial. In this context, we 

can assign a probability to each of the two possible outcomes given each of the possible 

signal intensities and identities. Value is assigned to each of the possible outcomes and it 

represents the value of an outcome in terms of possible rewards or punishments associated 

with the outcome. The rewards can be both intrinsic (i.e., motivation to do the task well) and 

extrinsic (i.e., monetary rewards for good performance). Punishments can also come from 

multiple sources such as monetary loss or poor task performance. Outcome values are also 

modulated by the time it takes for the outcomes to occur, as individuals try to maximize 

reward rates (rewards per unit of time) and not rewards per se. Cost is defined as the 

expected cost associated with the specified intensity of control allocation. Within the EVC 

theory, cost arises as the property of the neural system. This means that as the intensity of a 

signal to allocate control becomes stronger, so does the cost of allocating control. In sum, 

the EVC is determined by the probability of an outcome for a given control signal (efficacy), 

the value of that outcome, and the cost associated with control allocation.

At the neural level, the EVC theory was developed to explain the function of the dorsal 

anterior cingulate cortex (dACC). The theory assigns the critical role in decision-making 

about control allocation to this region. It is proposed that the dACC plays a key role in 

calculating the EVC and that the outcome of this process is then signaled to other regions 
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which implement control, such as the dlPFC (Shenhav et al., 2016, 2013). The dACC is 

assigned a role in both monitoring for the changes in the environment relevant for control 

(rewards, punishments, errors, etc.), and, based on this, specifying which control signals 

maximize the EVC.

The EVC theory provides a detailed and formal account of how cognitive control is 

allocated. One of the main advantages of the theory is its ability to integrate a wide range of 

behavioral and neural findings. The computational implementation of the theory has been 

shown to account for various effects associated with the allocation of cognitive control such 

as the sequential adaptation effects and post-error slowing (Musslick et al., 2015), including 

how individuals can learn about features of their environment that predict incentives for and 

demands of control allocation (Lieder et al., 2018).

Proposed Framework

We propose a framework that integrates disparate areas of research: cognitive control deficits 

and motivational impairments in depression. This framework encompasses the 

controllability, value, and effort of outcomes in order to provide a more mechanistic 

understanding of these deficits. Furthermore, the framework emphasizes the crucial role of 

learning in the process of allocating cognitive control. In this way the framework allows for 

the integration of motivational, learning, and cognitive control deficits in depression. We put 

forward direct links between components of motivation and reduced cognitive control in 

depression and propose how these links emerge through learning. In this way our framework 

offers a first step toward understanding how cognitive control deficits arise. In order to do 

so, we rely on the EVC theory which offers a computationally explicit model of cognitive 

control (Shenhav et al., 2013). This allows us to focus on the ways in which expected value 

of control might be reduced in depression, which results in allocating cognitive control with 

reduced intensity. We propose that cognitive control deficits in depression arise as a 

consequence of changes in the decision-making process about control allocation. These 

deficits in depression occur due to lowered expected value of control. The expected value of 

control relies on three components of motivation: controllability of outcomes, their value, 

and the effort needed to attain them.

We argue that research on motivation in depression provides insights into mechanisms 

leading to a reduction in the expected value of control. The efficacy component in the EVC 

theory is closely linked to what we have termed outcome controllability - the estimates of 

the probability that actions will lead to desired outcomes. These representations are central 

in guiding motivated behavior (Moscarello and Hartley, 2017). As we have reviewed, there 

is emerging evidence that estimates of outcome controllability and beliefs related to 

controllability of the environment, are changed in depression. The value component in the 

EVC theory is related to what we have termed outcome value - the expected reinforcers 

following an outcome. We have outlined how reward anticipation and reinforcement learning 

are impaired in depression, especially in the presence of anhedonic symptoms (Treadway 

and Zald, 2013). The cost component in the EVC theory is linked to the cost of effort needed 

to obtain rewards. We have reviewed how this process is altered in depression. All of these 

components of motivation rely on previous learning to estimate the probability of being able 
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to exert control in a new environment, the value of outcomes in that environment, and the 

effort needed in order to reach them. These insights from the study of motivation in 

depression offer evidence for the reduction in efficacy, value, and cost of control. This leads 

to lower expected value of control which in turn results in reduced allocation of cognitive 

control (Figure 1).

Without a doubt, estimates of controllability, value, and effort of outcomes, are formed 

through prior learning. Estimates formed in one situation are generalized and used in novel 

similar environments. For example, imagine a person who developed low estimates of 

controllability in the work environment. Over the years that person may have learned that no 

matter what they do in the work environment, it is unlikely that desired outcomes occur. 

That person will tend to allocate less cognitive control in that environment and will develop 

beliefs about the inability to do the job well. This will lead to a reduction in motivated 

behavior and will further strengthen existing low controllability estimates and beliefs. 

Alternatively, another individual might estimate high controllability in the same work 

environment. However, that individual can anticipate low amounts of rewards associated 

with achieving good results in work, or high amounts of effort needed to do so. That 

individual does not anticipate pleasure in work anymore and will also tend to allocate less 

cognitive control during work hours.

Within our framework, depression-related deficits in cognitive control processes such as 

inhibition, task switching, or working memory updating (Joormann & Tanovic, 2015), can 

be conceptualized as products of changes in the expected value of control. In this way our 

framework integrates cognitive research on depression with impairments in other domains. 

Our framework outlines the links between cognitive control deficits and the study of 

motivation in depression. The framework can account for both the existing research findings 

and further develop the field by connecting these findings to previously unrelated literatures. 

Within our framework, cognitive control deficits in depression (Gotlib and Joormann, 2010) 

can be studied in relation with reward processing impairments in depression (Admon and 

Pizzagalli, 2015) and changes in perceived controllability of an environment (Moscarello 

and Hartley, 2017).

This framework has several key implications. First, cognitive control deficits do not have a 

single cause and can be caused by impairments in different processes. Deficits can thus be 

present in depressed individuals with different clusters of symptoms (e.g., mainly depressive 

mood or mainly anhedonia). Second, cognitive control deficits are causally related to reward 

processing impairments, effort costs, and estimates of controllability of an environment. 

These impairments influence allocation of cognitive control through learned estimates of 

reward probability, action-outcome contingencies, and needed effort. Third, cognitive 

control deficits are not a product of the simple reduced ability to exert control. They are a 

result of lowered expectations about the value of exerting cognitive control.

The proposed framework goes beyond the current understanding of cognitive control deficits 

in depression. It does so by providing a more mechanistic understanding of such deficits. 

First, it identifies the three crucial components that give rise to these deficits. Second, it 

proposes that the three components play a crucial role in the lowered expected value of 
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control which, in turn, leads to deficits in cognitive control. Further, we propose below how 

this mechanistic understanding can be used to derive model-based behavioral predictions, as 

well how it can be related to the neurobiology of depression.

Simulation-based Behavioral Predictions

The proposed framework outlines the three key motivational components which determine 

how cognitive control is allocated. By relying on a formalized model of cognitive control, 

the framework is able to generate precise predictions about the influence of each of these 

components on the behavioral performance in tasks which require cognitive control. In this 

section we describe how the computational implementation of the EVC theory can be used 

to make such predictions. This allows our framework to go beyond the currently existing 

data and make testable predictions that can be falsified or corroborated in future studies.

After the original formulation of the EVC theory (Shenhav et al., 2013), the more recent 

work has developed a computational implementation of the theory (Lieder et al., 2018; 

Musslick et al., 2015). In the computational implementation, performance of each task (e.g., 

responding to the color or to the word of a Stroop stimulus) is implemented as a process of 

evidence accumulation toward a decision boundary. Allocation of control can modify the 

parameters of this decision process (e.g. the rate of evidence accumulation) to improve 

performance, depending on the current goal and environment. This implementation relies on 

the drift-diffusion model of decision making, which has been widely used to describe 

decision-making (Forstmann et al., 2016; Ratcliff et al., 2016), value-based choice (Krajbich 

and Rangel, 2011; Tajima et al., 2016), as well as cognitive control processes (Bogacz et al., 

2006; Cohen et al., 1990; Dunovan et al., 2015; Dutilh and Vandekerckhove, 2013; Schmitz 

and Voss, 2012; Ueltzhöffer et al., 2015).

The computational implementation of the EVC theory (Lieder et al., 2018; Musslick et al., 

2015) has been successfully used to simulate a wide range of the existing empirical results in 

the domain of cognitive control (e.g. congruency effects, congruency sequence effects, task-

switching costs) and the influence of motivation on cognitive control (incentive-based 

enhancements in the processes such as inhibition, task-switching, and conflict adaptation). 

Here we use this model in order to provide behavioral predictions about cognitive control in 

depression. Specifically, we explore how the depression-related changes in the efficacy, cost, 

and value components should influence behavior on tasks that require cognitive control. 

These simulations, based on a model that predicts well the existing data in healthy 

individuals, provides clear predictions related to cognitive control allocation in depression.

To demonstrate how control-demanding behavior is affected by changes in the decision-

making process about control allocation, we simulated the behavior of an agent across two 

paradigms while varying parameters of that agent’s EVC-driven control valuation (Musslick 

et al., 2015; for a detailed description of these simulations, see Supplementary Materials). 

We first simulated performance in a Stroop task in which the simulated agent had to 

categorize a the ink color (e.g. red or green) of a color word (e.g. “RED” or “GREEN”) on 

each trial (Stroop, 1935). We assessed the overall control allocation and the resulting 

performance cost associated with responding to a color that is response-incongruent with the 
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word (e.g. “RED” displayed in green) compared to responding to a color that is response-

congruent with a word (e.g. “RED” displayed in red). We also simulated behavior in a 

cognitive effort discounting (COGED) task, in which the agent must choose between 

performing a difficult, high-demand task for $2 and an easy, low-demand (baseline) task for 

a variable amount of monetary reward on each trial. We assessed the subjective value of 

performing a high-demand task by measuring amount of monetary reward offered for the 

baseline task for which the EVC agent is indifferent between the two tasks, and by 

normalizing this amount by the reward offered for the high-demand task ($2). We evaluated 

how these complementary measures – of task performance vs. task preference – were 

influenced by changes in the agent’s (a) cost of cognitive control (b) sensitivity to reward, 

and (c) expected efficacy of exerting cognitive control (control efficacy).

Consistent with observations in healthy human subjects, our simulated agents demonstrated 

an incongruency cost, generating more errors when performing incongruent trials compared 

to congruent trials (Stroop, 1935). Critically, agents chose to exert less control (Fig 1A–C), 

resulting in higher incongruency costs (Fig 1D–F) when they had (i) higher costs of control, 

(ii) lower reward sensitivity, and/or (iii) when they perceived their control as being less 

efficacious. The simulated agent also replicated the behavior of healthy human subjects in 

studies of cognitive effort selection, assigning lower subjective values to tasks that 

demanded higher amounts of cognitive control (Westbrook et al., 2013). However, the 

subjective value for a given task decreased as (i) the cost of cognitive control increased, (ii) 

reward sensitivity decreased, and/or (iii) the control efficacy decreases (Figure 2G–I). 

Interestingly, the influence of these changes in parameters are slightly magnified for high 

task difficulties compared to low task difficulties.

The computational implementation of our framework offers a possibility of studying 

cognitive control deficits in depression within the developing framework of computational 

psychiatry (Huys et al., 2016; Montague et al., 2012). Several computational frameworks 

have already started to model behavioral control in depression (Huys et al., 2015; Huys and 

Dayan, 2009) and our framework offers the possibility of extending this research into the 

domain of cognitive control deficits in depression. Our framework provides a clear path 

forward by applying a normative theory of cognitive control to understand cognitive control 

impairments in depression. Further, it points to the crucial components which interact to 

produce control deficits. We have described the advantages of the EVC theory above, but we 

do recognize the importance of other related computational models of cognitive control. 

Outcome value, outcome controllability, and effort costs are being recognized as crucial in 

allocation of cognitive control across different models of control. Because of this, our review 

of the relevant literature, and the proposed framework, will be useful in guiding future 

research beyond the boundaries of the EVC theory. The further use of the computational 

models developed in cognitive neuroscience to understand cognitive control deficits in 

depression will advance the field in several ways. First, it will allow for the more unified 

understanding of cognition in both healthy and in individuals suffering from mental 

illnesses. Second, it will avoid the creation of models that are tailored specifically to 

understand cognition in depression. Finally, the application of these models to depression, 

and other mental disorders, will be able to inform and help improve the existing 

computational models of cognitive control.
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Neural Level

Cognitive control deficits in depression are proposed to be related to functional changes in 

the dlPFC and the ACC (Disner et al., 2011). This view is based on the conceptualization of 

cognitive control functions as reliant purely on the prefrontal cortex. However, this view has 

been challenged by the discovery of the role of other regions, such as the basal ganglia and 

corticostriatal loops in cognitive control and goal-directed behavior (for reviews see: 

Balleine & O’Doherty, 2010; Chatham & Badre, 2015; Haber, 2016). By building on the 

EVC theory, our framework offers a more specific view on the role of these two regions in 

depression. We propose that depression-related changes in the decision-making process 

about control allocation are related to the activity of the dACC. These changes can further 

result in lower levels of dlPFC activation which implements control based on the signals 

from the dACC. In this way, depression is not related to a lowered ability of the dlPFC to 

implement control, but related to changes in inputs to the dACC used in decision-making 

about control allocation. In line with the importance of the dACC in our framework, current 

research has pointed to the crucial role of the ACC in depression (Holroyd and Umemoto, 

2016; McTeague et al., 2017), as well as to the specific role of the dACC (Goodkind et al., 

2015). Our framework also points to the important role of efficacy and value representations 

which serve as inputs in the decision-making process. In this way, it can guide further 

research in connecting the role of the dACC and other regions and networks related to 

encoding value, reward processing, and efficacy (Haber and Knutson, 2010; Moscarello and 

Hartley, 2017; Treadway and Zald, 2011).

Relationship with Other Constructs Relevant for Depression

Lowered levels of cognitive control have a reciprocal relationship with negative beliefs and 

attributions. Negative beliefs about the self, the others, and the world represent a crucial 

cognitive vulnerability factor to depression (Beck, 1972). Attributions that are global, 

internal, and stable are also an important vulnerability factor (Abramson et al., 1989). 

Cognitive control deficits can strengthen those beliefs, but are also strengthened by them. 

Interestingly, there is already some progress on studying the maladaptive beliefs within the 

framework of computational psychiatry (Moutoussis et al., 2017). Finally, lowered levels of 

cognitive control are related to maladaptive use of emotion regulation strategies such as 

rumination (Nolen-Hoeksema et al., 2008) which contribute to the onset and maintenance of 

depressive symptoms (Joormann & Vanderlind, 2014). Impaired cognitive control also 

affects other cognitive processes thus producing cognitive biases in attention, interpretation, 

and memory, which further promote the maladaptive use of emotion regulation strategies 

(Everaert et al., 2012; Gotlib and Joormann, 2010).

An important research line has focused on the relationship between depressive symptoms 

and cognitive control over affectively negative material. These studies have demonstrated 

specific impairments in shifting attention away from negative material, removing negative 

material from the working memory, and inhibiting negative stimuli (Gotlib and Joormann, 

2010; Joormann and Vanderlind, 2014; Koster et al., 2011). In its current form, our 

framework does not focus on these deficits. However, we hope to integrate this body of work 
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in the framework in future studies. One of the interesting possibilities for such integration is 

the influence of negative material on efficacy estimates through prior learning.

Future Directions and Open Questions

The proposed framework opens novel avenues for research, namely the links between 

cognitive control in depression and alterations in components of motivation. Future studies 

in this domain can more directly test some of the implications of our framework. To date 

there are not many studies that have investigated the links between components of 

motivation and cognitive control deficits in depression. We hope that our framework will 

inspire more studies in this direction. Here we outline some of the existing evidence and 

propose the paradigms that could be used in future research.

Several studies have already demonstrated the importance of motivation for cognitive 

functioning in depression (Moritz et al., 2017; Scheurich et al., 2008). Recently, studies have 

focused on more specific components of motivation. For example, several studies have 

demonstrated that reward-based improvements in cognitive control and attention are related 

to depressive symptoms (Anderson et al., 2014; Jazbec et al., 2005; Ravizza and Delgado, 

2014). Future studies should focus on precise distinctions between different types of 

impairments related to reward processing. In this context, we believe that reward 

anticipation and effort costs are the most interesting processes to investigate in relation to 

cognitive processes in depression. Depression research can rely on paradigms developed in 

cognitive science to study motivation and cognitive control (Botvinick and Braver, 2015). 

The study of effort expenditure is also gaining a great deal of attention and paradigms to 

study physical effort already exist (Treadway et al., 2012). For depression research, novel 

insights on cognitive effort (Shenhav et al., 2017) can be of particular relevance. Also, the 

relationship between anhedonic symptoms and cognitive control deficits in depression will 

be a crucial next step in better understanding cognition in depression. In this domain 

research should be guided by recent developments in measuring anhedonia through 

behavioral tasks and questionnaires (for a review on measures of anhedonia see: Rizvi et al., 

2016).

In the domain of efficacy, there are no readily available paradigms that could directly inform 

us about its relationship with cognitive control. However, developments in the field of 

learned helplessness suggest that the interactions between stress and controllability are 

crucial for stress regulation (Maier and Seligman, 2016). Recent research is starting to 

provide paradigms to study stress controllability in humans (Bhanji et al., 2016; Hartley et 

al., 2014). The critical next step is to develop paradigms that would allow the investigation 

of cognitive control processes in relation to controllability. Recently, paradigms aimed to 

investigate different components of motivated action and learning have been developed in 

schizophrenia research. Using a novel paradigm, Morris and associates have demonstrated 

impairments in action-outcome learning in schizophrenia (Morris, Cyrzon, Green, Le Pelley, 

& Balleine, 2018; Morris, Quail, Griffiths, Green, & Balleine, 2015; see also: Liljeholm et 

al., 2011). The use of similar paradigms would allow for further work on computational 

models of motivation and cognition in depression. Recent computational work has 

demonstrated that generalization of learned action-outcome contingencies can account for a 
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wide range of behavioral features associated with learned helplessness in animals and 

humans (Huys and Dayan, 2009; Lieder et al., 2013). However, there is a strong need for 

more empirical work which could precisely measure the importance of outcome 

controllability in depression.

Cognitive control deficits (as well as anhedonia) are transdiagnostic in nature and co-occur 

in many disorders (Goschke, 2014; Whitton et al., 2015). Although our model is focused on 

depression, the links between cognitive control and reward processing are relevant for other 

psychiatric disorders as well. Future studies in this domain hold the promise of not only 

detecting transdiagnostic constructs such as the positive valence and cognitive systems 

(Cuthbert and Insel, 2013; Insel et al., 2010), but starting to investigate the relations between 

these systems. In this context, the relationship between reward processing (positive valence 

system) and cognitive control (cognitive system) across different clinical populations can be 

of great interest.

In current research, depression is often regarded and measured as a single, homogeneous 

disorder and we have treated it as such in this paper. Importantly, diagnosis of depression 

requires only presence of one out of the two core symptoms: prolonged negative affect and 

the loss of interest in previously pleasurable activities (DSM-5; American Psychiatric 

Association, 2013). A growing amount of evidence is pointing to the heterogeneous nature 

of depression and the need to analyze specific symptoms of depression (Fried and Nesse, 

2015). Our framework emphasizes the possibility that cognitive control deficits in 

depression emerge from different causes. This allows for a study of how potential different 

causes of cognitive control deficits in depression can be related to different symptom 

clusters. For example, reward processing impairments, resulting in lowered levels of 

cognitive control allocation, can be related to anhedonic symptoms. In the same way, 

changes in efficacy estimates can produce control deficits, but they could be more related to 

the presence of negative affect.

The study of mechanisms through which cognitive control deficits in depression emerge is 

of great relevance for developing future cognitive treatments for depression. While there is 

no evidence for the effectiveness of cognitive training in healthy individuals (Simons et al., 

2016), cognitive trainings in depressed individuals are showing considerable promise 

(Koster et al., 2017; Motter et al., 2016; Siegle et al., 2007). However, the mechanisms 

through which cognitive trainings improve depressive symptoms remain unknown. 

Moreover, studies on cognitive training in depression have not focused on motivation yet. 

Understanding the components of motivation that are affected by these trainings, as well as 

including incentives in the trainings, will allow for more precise and individualized 

treatments.

Conclusions

Cognitive control deficits represent an important vulnerability factor for depression and play 

a central role in cognitive impairments in depression. We propose a framework of cognitive 

control in depression in which these deficits emerge as a consequence of changes in the 

decision-making process about control allocation. We argue that alterations in core 
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components of motivated behavior – reward anticipation, effort costs, and estimates of 

environment controllability – are crucial mechanisms contributing to dysfunctional cognitive 

control in depression. This view provides a more mechanistic understanding of cognitive 

control in depression, offers a better computational and neural understanding of the deficits, 

and connects cognitive research on depression with other fields of study such as motivation 

and agency. We believe that our framework can guide future research on mechanisms 

underlying depressive cognition which can result in improving treatments for depression.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Review of motivational and cognitive impairments in depression

• Impairments in key components of motivation contribute to cognitive control 

deficits in depression

• Proposed framework focuses on the reduced value of control in depression

• Simulations provide predictions about the influence of motivational 

impairments on cognitive control
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Figure 1. 
The schematic representation of the proposed framework. Depression-related changes in the 

outcome value (e.g. reduced reward anticipation), outcome controllability (e.g. lowered 

estimates of controllability), and effort costs (e.g. reduced effort exertion), lead to the 

reduced value of control. This leads to the lowered amounts of control being allocated. The 

expected value of control (EVC) for a signal of a given intensity is calculated as the sum of 

the values of each possible outcome weighted by the probability of reaching that outcome 

for the given signal. The cost of allocating control is subtracted from that sum. The figure 

was adapted from Shenhav et al., 2013 with permission from the authors.
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Figure 2. 
Effects of control cost, reward sensitivity and control efficacy on simulated behavior of the 

EVC model. Behavior of model was simulated in the Stroop paradigm and COGED 

paradigm (see supplementary Materials for details). (A-C) The amount of cognitive control 

allocated in a Stroop task is shown as a function of control cost, sensitivity to reward and 

expected control efficacy. (D-F) The error rate on incongruent and congruent trials is shown 

as a function of the three model parameters. (G-I) The subjective value of a task in the 

COGED paradigm is plotted as a function of task difficulty for different values of control 

costs, sensitivity to reward and control efficacy.
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