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Abstract

This is a study of cell and developmental biology based on the principles of
mechanics. Cells anci embryos are idealized as axisymmetric shell-like bodies
containing a body of incompressible material. According to this view, this study
devotes its first part to developing computational tools based on the finite ele-
ment method. The tools formulated include an axisymmetric shell/membrane
element based on a stress resultant formulation, valid for modeling finite bend-
ing, shearing and rstretching: a volume constraint algorithm based on the
Lagrange multiplier method; and a contact algorithm based on the penalty
method. These analysis tools facilitate the study of three commonly used
mechanical experiments on sea urchin eggs -- the compression experiment, the
suction experiment, and the magnetic parf‘.icle experiment. These numerical
simulations are useful not only in obtaining mechanical property data, but in
providing insights to these mechanical experiments that other approximate
analyses cannot provide. The analysis tools are also utilized to study two
developmental events -- gastrulation in sea urchins and neurulation in amphi-
bia. By not focusing on the molecular basis of the cell shape changes during
development, but concentrating on the mechanical consequences of the motion

itself, this study reveals a great deal about the mechanisms driving embryonic

shape changes.
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Chapter 1
Introduction

k J_.I.l. Cell and d.evelopmenta'l biology.. Bas]c not.ions
A cell is a concentrated solutlon of chermcals bounded by a membrane
.. Almost all rnultlcellular orgamsms orlgmate from a smgle cell, the fertlhzed egg
" This cell through cell d1v1slons dlfferentla.tlon and reor;amcatlon develops
g mto a layered embryo mth speclal;.zed reglons whlch are the rudunents of _
R '_future organs 'I'he study of how cells develop mto organs 1s the subject of
' _ developmental bxology | | |
Readers rnay wonder .why mechamcs plays a role in cell and developmental
blology Exarmmng the ultrastruoture of a cell mll shed lxght on thls questmn
-The cytoplasm msxde a cell oontams protexn ﬂbers, many of whlch appears to
' _form a structured network The crosslmlclng of these ﬁbers enables the cell to
sustam tens1le and compresswe forces For thls reason. the ﬁber network is
_. often referred to as the cytoske.’.eton The cy'toskeleton contams the protem
actm. whlch mteracts mth rnyosm to generate actwe oontractlle forces in a
:manner sumler to muscle contrectlons Therefore, a cell 1s a mechamcal sys-
tem. ce.pable of passwely reslstmg forces. and a.ctw-ly generatmg forces Thls
mechamcal mechmery._reguleted by chermcal act1v1t1es. 1s responmble for the
_. shape changes thet an embryo and 1ts constltuent cells undergo durmg

development Therefore. mechanical studles vnll certainly u'nprove our under-

- standing of the_se developmental phenom_ena.
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'1.2. Scope.

| ‘The initial focus of this study is oln develop.ing computational tools'soited
for mechani_cal ahal_ys'ee of cells .andj erhb‘ryos. Our objective here is to develop
tools that .a_re 'b'oth aecurate:ahd efﬂclent. andyet generalenoughto hanrile' a
w1de ra_ng'e.'of problems 1ncell and 'develobr'ne'nztal':b.io'lo-éjr'.'.'Iin"'the .s.'ec:o-nd..'half of

‘this study we apply these tools to consider Speclﬂcproblems of interest.

| 1 3 'I'hecretlcal consulerauons ct cells and embryoa

We shall model cells and ernbryos as axxsymmetrlc shell—hke bodles con-
talmng a body of_ mcompresmb_le material. For cells, the thl_ckness of I;he cort_l-
cal Iayerxs generally sn'iall.'conipnar'e't.i t'o'il".e '.radi'lis' of c"tir\'r'a'.'.l".ore ‘Since the mem-
I_ 'brane actlon lS dom.mant in tl:us case. a membrune theory (m the sense of the
theory of shel[s) is sufflment to capture the. mechamcal behavmr of the cortex
.Eriibryos; oh th'e ol'._h'er"hand, are lined by one_o:' rnore c'elL layers. which resis_t
bending and shearing, in addition to stretching. Modeling these behaviors
requires a shell theory. o |
| Perhaps the main dlmculty in mechamcal modelmg of cells and embryos,

and for mosl'. other blologwal ma.terlals. hea in characterlzmg theu‘ materlal

: .propertles Slnce there 1.8 hardly any quantltatwe mater1a1 descrlptlon on cells' '

" and embryos. we shall assume a hnear stress etram relattonstnp Our su'nula-

tanS of mechamcal experu’nents in a Iater chapter w1ll prove th1s to be a good

ﬁrst approxxmatxon o

1.4. | Computational tools.

In C_hepter 2 we present an axisymmetric shell/membrane theory. This
shell theory, deduced from the three-dimensional theory of continuum mechan-

ics, is valid for modeling finite stretching, shearing and bending of the shell.
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The shell equations are then adapted to a cornputatlonal algcrlthm based on

the ﬁmte element rnethod

When the shell deformsm reep:cn;s'e”tc'lc"ad.i}n'g:'. th’e"inccmpressible material

| inside the shell constrains its rnctions We model this by a volume constraint

algorithm based on the Lagrange multlpller method. The theoretlcal detalls of

' the methcd are presented in Chapter 3.

Chapter 3 also contams th'e th’eore'tlcal'deecrlp-ticn of a contactalgcrlthm

-based on the penalty functlon formulatmn Thls algcnthm rncdels the mecham-

.cal Lnteractmns between materlal bcdles. whxch w111 be used in the next chapter

“to sun_ulate mechanical experunents.

‘1.5 'Edppﬁ'c'atldne. '

' These computational tools facilitate n"lechanical"'analyses’ for many p"r'ob-

'lems in cell and developmental b1ology In Chapter 4 we ccns1der several com- _
'monly used rnechamcal experlments on cells. The pr_lmary objectwe' of that
study is to demonstrate a theoretically s'c'und"prbc'edure’fc'r' 'a’na'lyéinﬁ mechani-

~ cal experunents ina umﬂed manner ‘This approach is not cnly useful for deter-

rmnmg mechamcal propertles of cells but it also gwes mvaluable mstghts to
expenments that apprcxunate analyses cannot prowde | |
Fmally, we utlhze these ccmputatmnal tools to study develcpmental blclogy

in _Chapter 5. There, we consxder two examples - gastrulatmn in sea urchm's

and neurulation in amphibia. By not focusing on t:he'-mbleeﬁlaf”basis‘ of the cell

shape changes, but ccnce'ntr'at'ingn::bn"the "'me':cha'nical'ccnsetjﬁences'o'f':t'h'e.
motion itself, we are able to learn a great deal’ abcut the mechamsms drmng

embryonic’ shape changes.
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Large Deformatlons of Amsymmetnc Shells and Membranes
. AStress Resultant Formulation

_ 2.1. Introduction.

We present here a nonhnear theory of axlsynunetr.le shells. subjected to
torsmnless ax1symmetr1c loadl.ng The formulatlon. derwed on the ba51s of the
: three dlrnensmnal theorles of contmuum meohamcs._Ls capable of modehng )
__ﬂmte stretchmg shearmg and bendmg of the shell | L

A basic feature of this formulatwn is, the descnptlon of the kmematlos of
_ the shell_by means of an orthogonal moving frame. ‘This approach._orlgmally
- employed hy _'Sirno [_1.982.19_84_-] for beams, identifies this moving frame _wr_ith_.the
q_efo_rmeo____seetion_:Q_f:_ t_h._e_' she_l_l_..__; By s_p_e.ei_fging_.the__:d_epentii_e_n_c_e_ of t_his__mOVing
_..fra'n.le on the transverse ooordine.-te of the shell a v'ariety of kinematic assump-.
'.:tmns can be enforced The formulatlon presented herem ernploys the stralght
"normal remams stralght" assumptlon._whmh 1s mtroduced by prescrlbmg the
moving frame to be invariant. over the deformed section of the shell. In con-
junotion Itﬁth.the notion of .the rnoving frarne is th..e use .of- the ﬁrst Piola—
Klrohhoﬂ stresses to denve the stress resultants These stress resultants. when
' resolved mto components relatwe to the movmg frarne, take on the dxrect phy-
' .sloal meanmg of the norrnal and shea.r foroes .as well as, the moments F'or thls.
rsason. the exact governmg -ﬂeld equatlons of the shell can_be_tl_ednc_ed___d_;reqt!y
from the rnaterlal form of the three dlmenslonal theory S e . : _'

‘Since both the shell and the loadmg are amsymmetru:. the theory involved
b.ecomes one-dimensional. Despite the simplification, the proper reduction of
this .th_eo.ry from the three-dimensional theory requires the use of curvilinear

cocrdinates. In Section 2.2, the use of special coordinate systems for the
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_ axisymmetric shell are introduced. The results regarding the geometry of these
coordinate systems are recorded in Appendix 1. Due to the axisymmetry of the
shell, the moving frame is constra'med such that the base vecto'r normal to the
.merldlan plane remalns normal throughout the deformation history. Detalls
. regardmg the klnematms of the shell are given in Section 2. 3
Th_e _rest_ of_the..ch_apter _1s: orgamzed.as follows. - The derivations of the
stress resultants and the equﬂlbrlum equatlons for the shell are gwen in Sec-
_tlons 2 4 and 2 5 The straln rneasures conjugate to the stress resultants are
' _derlved 1n Sectlon 2 6 through the v1rtual work expresslon We empbaslze that
the formulatlon derwed here reduces to the Kchhhoﬂ-Love theory for
'sufﬁclently small membrane and shear strams and small motlons ln Sectlon":"
| _ _2.'?. the shell 15 speclahzed to the membrane case. when the thlckness of the_
_shell is negllglble compared to lts radlus of curvature To complete the theory,
._several constltutwe relatlons are postulated for the shell and membrane cases.
~in Sectlon 2 8. | |
Sectlon 2 9 is concerned w1th adaptmg the resultmg set of shell equatlons '
to a oomputatlonal algorlthm. Here we employ the m.ured ﬁmte element method
based on the Relssner Helhnger variational formulatmn Consxstent hnearlza-_ '
| _tlon procedures of Hughes and Plster [1978] are utlhzed to cast the nonhnear _' :
problem Lnto an mcremental formulatlon A full Newton-Raphson lteratwe
' scheme is then used to obtam the solutlon o
We chSldet‘ the case of the follower _pressure loadmg m Sectlon 2 10.
'Because the loadmg term verles w1th the deformatlon. lmearlzatlon procedures
as in Sectmn 2.9 produce a tangent operator whlch is nonsymmetric.at the ele-.
ment level In the case of a conservatlve system. this "load" ta.ngent stlﬂ'ness
achleves a symmetrlc form at tbe global level conslstent vnth the ﬁndlng of I-hb-___- _

bitt, [ 1_979] and Schweleerhof an_d Ramm[1884]



g2 . Amisymmetric Shell/Hembrane Formulation ‘g

" Finally, we illustrate the performance ‘of the ‘formulation by means of

“‘numerical ex'a'mp'_les_.:" Results o'b_t'a'i'n'e_d here are compared with those found in

‘the literature.

2.2, Notahon. _

" We define the reference (matenal) ccnﬁguratlon B for an .axlsymmetrlc _
'_shell—hke body as a surface of revolutton havmg a constant th1ckness AR,
'obtamed by rctatmn of a mer1d1an about l:he axis of synunet.ry (Fig. 2. 1) For
"'su_nphclty. we c._on_s_1der ‘this meridian as mltlally--stralght. w_Lth 1ength L. Thus
body B assunes the shape of a frustrum. with its ‘orientation parametrized by
the angle o as shown | . |

“We refer to pmnts in B'as X. We further des1gnate a mapplng # to deserlbe
the de_formatlon of the shell, so that _Q(B) is t.he_rlefcrme_d.conﬁgura_tmn. ‘By this

deformation map ¥, point X is mapped to point x in the deformed configuration

: byx= i(X)E!'(B) (Fig. 22)

“ For this development we assugn the coordmate system of a mght c1rcular _
cone to desc’ribe- both the'referen‘ce 'a.nd _the deforrned c'onﬁguratlons; Appen_-
rlia:r: 1 records the results 'r'egﬁrdlﬁg fﬁé'é’ecmetrjf of this coordinate siyst'ern." Let
pomts XEB and xEQ(B) be referred to by thelr pos1tmn vectors X and x.
' respectwely Then a pclnt X in l'.he reference ccnﬂguratlon can be 1dent1ﬁed by
_ the coordinates X7,7=1,3, with covariant ba_se vectors GI. I=1,3 (Flg. 2.2). Simi-
larly. a point x in the deforme'd"éapﬂgﬁfatibri'}:aﬁ be described by another set
of 'do'o'r_dih'a't_es‘-z‘}«i% 13, with covariant base vectors g. 1= 1,3 (Fig. 2.2). Both of
these coordinate systems are considered to be fixed in space. .

" In employing the coordinate system of a circular cone, it is noted that the
ba.'s:e: vectors in the;'.hcth'd_irec'tion. namely Gy and gs, are not unit vectors. Thus

coordinates associated with these base 'irectcrs are nct. measures of 'l_i.n'en'r'
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...distances. Thropughout -this . development, we ..__..ident_ify_: a. unit vector with a
circumflex, a.nd a physical component of a =__t_e_n_s_o:r- qoantity.iwith bracketed
: indices | -
| Fmally. we shall use upper case sy.rr.x.bo.ls to denote verlables and indices for

“the reference conﬂguratlon and lower case symbols for those of the deformed
_ conflguration. Partial dlﬂerentmtlorx with respect to X! are d'e'n'oted b’y"a'_prim_e.
'2' 3 Kinemnl’.lc considerations |
_ 2 3 1 Kinematlc descnptlon L L
. : Smce both the geometry of the shell and the load actmg on 1t are ertsym-
:ﬁ-metnc, the deformatlon is constrained to take place only in the mendmn ple.ne
_.(1 e. the plane normal to the base vectors Ga and gs) A plctorml lllustra.tlon of -
__the kmematxcs of the shell in thls plane is glven in Fig. 2.2.

The kmema.tlc assumptlon employed in this theory is the strmght normal
remains st'rm.ght hypothems Based on this assurnptlon. the orlentatmn of the
deformed section can be described . by the angle ¥ thch is constant across the

_thickness of the shell. Thus. three kmematlc varmbles -- the ang[e 'w(Xl) and

_ the reference surface dlsplacements u(Xl) and w(X‘) in the directions of the

- base vectors gl and gg. respectwely -- fully characterlze the deformatlon of the

"shell ln the context of the mou'mg frame proposed by Slmo [1982 1984-] the

- angle 1/ descrlbes the orlentatxon of the frarne w1th respect to the reference

surface of the shell

Referrmg to Flg 2 2 the pomts on the shell after deformatlon X= i(x) can

be expressed in terms of these kmematm varla.bles by

L x=0 =000+ &0 0. (239)
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- The first im_e‘mbe'r' of (2.3.1), &, (X', X%), is the c_l'efcr'rﬁat'io'n map '_of the reference
e surage el 8, (X‘.‘X")-: i-(X)E}a':'a- Nhefe e T | '
S (xt Xﬁ) = ()(1+-u,(x1))gl 4-1.;(.1(1)g2 +X'3ga ™ (232)
' ;. Th.e. second ﬁlember QI(X‘ Xz) is the rotatlon of the cross sect.mn of the shell by
the __ar}gle. ¢:,:_a_r'1_d_1s g_;_ven_by _ | |

-p,(xl xz) =X [-51n¢(x1)g, + cos‘g!l(X‘)gz] - (233)
ﬁased on {2 3 1) a number of perl‘.ment kmematlc quantltles ean i:e eo?n— '

pul’.ed Fu‘st the deformatlon gradlent is deﬁned by F —'g—; w1th componenl'.s

F‘.‘f.g‘fﬁ- D.evf?tin_s- .the --‘iiﬂ?r.el.?t.ia.tion,.wri._th respect to X' by a prime, the

'-de‘f_e:r';natibn gredient::as.sociated--wi'th' thé':de'for'miatieh ‘map'in (2.3'.-1) ig
F =F“,.g.,®GA Ul Bt : (23 4)
r1+'u. L—X%Y'cosy —slm[& 0]

{p }: -—X""w smqb ~cosy Of.

The correspondlng Jacoblan J det1F°A| = smapr?LF?yF"'N. where cm
and .*:", are the permutatmn tensors correspondlng to l'.he shell coordlnate sys-

tem gwen in Appenduc 1 Makmg use of (2 3 4) a.nd (Al 13) the Jacob1an is

[(1+'u. )cosw +w'siny - X2y']. brcbi ol o :.'-('2.3_.5)

r
R
I-.Iere.'“:i".'.a_.r“ic.l' R are :t.;he radii in the 'de-f.en'n'ed' en'd‘.'t'h'e feferenee “cer.lﬁgurations.‘
- respectively, where |

r = (Xl+u-){25in1p)eirid + ('w +Xeeosvp)cose: .. R = X'sina + X?cosa.
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For later reference, we define a related quantity J, = Jlxg___a’; g 50 that
J = (1+'u. )cos¢+w smw | | (2.3.8)

The right Cauchy-Green tensor C is deﬁned by C FTF In component form,
C= C‘,‘BGA ®Gp = F"‘AF" gg,b,G‘ ®Gj. where the metric tensor fap for the shell
coordmate system is glven in Appendu: 1. For use'in later developments ‘the

| : __components C)z and Cez are evaluated here

Cp _=_-—(“1.+'u.')sin1// + w'c'osf;p., Cag = 1 o ._ .'.'_(2.3.'.?)

-' 232 Geometry of thedeformed s"ection_.
| n. subsequent sectlons we shall resolve the stress resultants into com—h.
| ponents relatlve to the rnovmg frame to give. physxcal forces and moments Itis '
‘ therefore 1mportant to keep track of the motlons of thls movmg frame. |
Smce an ax1syrnmetr1c shell does not deform in the d1rect1on normal to the
merldlan plane in Flg 2 2, a vector or1gmally lylng in'the hoop dlrectlon of the
'_ shell remams in the same d1rectlon after deformatlon. although the magmtude :
_. of thls vector may change We label th15 vector in the deformed state by .la and
| descrlbe the onentatlon of the deformed sect1on of the shell by the Vectors n__‘
andl(Flg 22) | | | | e .
| The umt normal fiis related to the unit base vector Gl ( Gl. see (Al 7)) by
" d—g-ﬁ = _._rr-?&, o (2_.3.5_)
.irhere“:co and N are cross 'sectionﬁals areas m th'e}"defo'rmed' and the reference
conﬁgurations. respective-ly.u The quantitv FT, comnuted from F in (234),

takes the form:

P =(F"T)"4g,®G‘ : (2.3.9)
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where

' RESRE [i::os"gb ';(-w' _)(21(, siny) 0 ]
[(F‘T}‘,.] — sm1p 1+u’ —X’%b cos';b 0

- -Evaluation.of (2.3.8) using (2.3.9) gives :t_'.h_e_ r-_e_sult_'_

R

W

. .Eﬁ= %(cos¢81+sm‘¢‘gz) .. . (2310) |

Since_the_'liase _vec_fo-rs & ".a'n_'d gz are umt vec'te'r's. 1t follo:i\re that. o

do
d}

7 O=cowm tsinyg. (@311

The other ‘unit base’ vectors Gz( Gz) and Gy ( G,/ ‘R) are’ mapped by the

"deformatmn gradxent F onto the vectors I and la

B l F%—-sxnwgli-cos'wga‘;“ (2312a)

rhrS

1'1; . (23.12b)

8

‘-‘dl'-‘
| ﬁl"_
2]

wherethe vectorsT and‘l; aboveare the un1t ﬁsec:.:t'o'rs.'ef land le respectwely It
is worth notmg that lx]ﬂ = :gn and that t.he umt vectors n. l. and la forrn an
orthogonal triad for the movmg frame

From (23 11) and (2 3. 12) we can now descnbe the geornetry of the _'

deformed section by a transformatmn matrlx A(X 1)

[cos'lp —sm'gb ] :
siny c_osw_ﬁ..OJ e, (R34

. Al = _

such that

AT | © (28.14)
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Since this theory does not account _fo__rth_e_ e_l_‘fee_t of ‘warping of the section,
} A(X‘) appears here as a t'unctlon of Xl only If warpmg of the section was

1neluded A would also be a functlon of X*? (see Slrno [1982])

2.4, Stresses and stress resultants.
In the study of large deformations of shells, the meanings of the quantities

such as stresses. and stress resultants must. .be further clarlﬂed from those

:_.used in the mﬁmte51mal case.. Dlstmctxons need to be rnade regardmg the state -

| of deformation these deﬁned quantltles are referred to. Our derivations of the
stress resultants will be besed on the ﬁrst Pf.olu. Iﬁrchhoﬁ stresses. Stress'.
'resultants derwed usmg these stresses wdl take on the dlrect physmal mean-.

“ings of forces and moments, as we shall illustrate m_thls section: vl e

" 2.4.1. Areas and stresses. Physieal eomponents.

We first evaluate the physwal components of areas and stresses. These
.' quentltles wlll be used for computmg the stress resultants Among the base
.':.veotors ernployed here only Ga and ga ‘are not d1mens1onless umt vectors ’
.. Therefore. only the eomponents essocmted mth thls dlreetlon are not in phym—
'eal dlmensmns | | E o S | i
Areaa Ve deﬁne an mﬁmteslmal area: vector dAm as an area whose normal
| '\;ector is parallel to the contravanant base vector G Those for the cases /=1
end I=3 are ﬂlustrated in Flg 2.3. ’I'he area vector expressed in component
.forrnzs.. : CE e B

| MAD=dAG [513 (nosummationonl). (24.)

For I=1,

dA) = dX2G, X dX Gy = £49;dX2AX5G! = RAX*dX°G!. ' (2.4.2a)
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" The last member in (2.4.24) ’is cbiﬁptite‘d usi'ng (Al.14a). 'Sirnil'arly.“- '

'ﬁ(z) RXmdX"’G-"-’ . dA(S) Rdxldxﬂes o '(2L4.2|5;'c)
Companson of (2 4. 1) and (2 4, 2) gives the expresswns for the area components

dA;. The correspondmg phys'i.ca.l area components. dA<_;>. _can be dst_erm.lr_x_ed

- _by applylng (Al 7) to (2 4 2) We then cbtam the followmg result
dA<,,.- = dA, RdX*dX"’
o dA<z> = dAz = Rax? dxﬂ it (243)
- dA<a>.— dA3/R dxldxe T el el
,. '. S&ssses | Ths ﬁrst..l.‘-’.wla-fﬁrchhoﬂ' stress tensor.P 1s selated to .t.h.e .Cauchy.
stress tensor g by o= 7FP- Whe.re-_fsl_s_t.he.de_f.o_rma.tm .8ra.si.1_ent_ tensor. The
tensor P.is a t_wo-point _te.nsoir. which can be exprsssed in _c_ornponeri_t form as
Cpopl G,@g, A g s (2&;..4)
.. Its supsrsc.:m[..“:t;. J:.l.sn a.ss.c.)c.latsd.w.li;l'::”ths force a.c.t.u.lg 1n th.s. du.'ect‘;xonnof g; in the
._current conﬁguratlon. _wh1le l‘.he superscnpt I mth the area in the reference

conﬁguratwn whose norma.l hes in the du-ectwn of G; For the axlsymmetrlc

shell cons;.dered hsre P"-f takes the form

[Fb' .le P*‘2 0 : - ' (2.4.5)

| 'i'hs .sor”n:.p.oner;t. é”. m (24—5) is”.nc.).t i.n.physical dimensi..sr.ls. Its physmal c&i}-
ponsnt Ppesd>, w1.11 be deterrmned next. | o

| We first consuler the forces actmg on the sectmns of the shell. We denote
the vector dF as an infinitesimal force a.ct,ing over an area dA!) with its nor-

‘mal vector parallel to G/, as:illustrated in Fig. 2.3a. .Expressed in terms of
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~ stresses,

dr'w PH dA, & - (2.4.8)
| -Ut111zmg (A1 7) and (2.4.2¢) for the case /=3

ar = pssama gs = paa(ﬁdxldxe)r 2. o - (2.472)
' The .same. force vector can be expreesed in ter_rns of physical components by
' insing (2.4.3c), |
| | dp(s) P<33>dA <s>s . P‘35>dX1dX2g3 RS (2 i ’?b) |
. Comperxng the last members of (2 4, 7a) and (2 4.7b) gives the desired result:

P> = pB Ry . | ' '(2':.4;'5)

' 2 4, 2 Stress resultants - forces

The deﬂmtlons of the normal and shear forces actlng on the shell wxll be
deterrmned here Agam we consxder the mﬁmtesunal force vecl’.or m (2 4, 8)

| 'Insertmg the area deﬁmtlon (2 4 2a) 1nto thls expressmn for the case I-l .
aFn) = P”dA;g, -PwﬁdxﬂdXBg,. S (2.4 9)

where the repeated mdex ﬂ 1mp11es summatlon over mdxces 1 and 2 only, in view
. of (2 4 5). ‘The stress components of P actmg on the sectlon of the. shell (1 e. on

the face normal to Gl) can be resolved mto components along the directions &
' and laccordmg to the followmg |

=8-(PTG;), . 7=T-(PTG). - . . - (24.10)
where ¢ is the normal stress and T the _shear stress. By reweiting A(X") in

(2.3.14) as a 2 x 2 matrix, such that

-~ oo v - imll]
[g;}mx*)[ %]. A(x') = [si,fy, _eisv; K (24.12)
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equation (2.4.10) becomes

: [,‘;‘] = AT(Xl)[*;m]. (2.4.12)
_ Thus we can rewrite d]i'm in (2. 4 9) as

ar(n = (an+ r‘)mxedxs . (24a3)
Integrating (2.4.13) over the thickness of the shell. and defining F{!) as the force
vector perradiengives |
Fo=pmael o e

where

L hf oRdXE, V™ 1 hj'z Rd X?  (2.4.15)
I3 ’ B T. . A, .
~h/2 ~hs2 _

i

| .N"" and . V'"‘ are the normal and the shear forcee respeetwely. actmg on the
”deformed sectlon of the shell N B .. | - -
Smularly. by deﬂnmg ]i‘(a) as the force per umt. length and mtegratmg.
(2 4. 7b) over the shell thmkness. the result is D | o
. S Nse |

_' F.".a’._ fP‘?s?dX"gs N“ga o ~ (2.4.18)

'—hfz
In the above,
h/z

= fpgspdxz L (zaam

~h/2

" is the'normal force in the hoop direction. =
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- 2:4.3. Stress resultants - moments.
. Applying the analogous _tr_e_at_n_le_r;t_as__ ab_ove_.::w_e___c_an_."éys_temg_ti_c_a_].l_y_e;t._a_b-
lish the definitions of the moment resultants acting” on the shell The

mﬁmtestmal moment vector d.l{m induced by those stress components acting on

face / can be expressed as _ |
dl{m =_s_¢,,:_i":1?f{c;4; g L . (2.4.18)
_where. thg moment a_rmdabove.is ot . : |
| d(x) =x-x, = @(x) ﬁ(x)lxe . '_ o | (2. +.188)
F.‘:mp.loymg. thé e#i:ressmn of !i(x) in (2 a. 1) the componer.lts.of d(x) are
| = —stnw d? = Xacos'tp o (2 4.-..19b)
Usmg (2.4. 2a) (Al 7) and {Al. 13a) for the case I—1 (2 4 18) becomes
dM(t? = ¢ ,,,d“PUdAl g= e,,sd"PWRdXEdXS (2.4.20)
where the indices a,f are sumrmed b"vér*1 a'n‘a'é 6:’11’3& in view of (2.4.5). '-Deﬁn{ﬁg
l[m as the moment resuitant per radian, and mtegratmg (2. 420) over the
7_ -_thlckness of the shell
M = % j/‘ (d1p11+dEP12)Rdxﬂ . . ..(2'_4_2_1)

'Subé_tiit'gtion of {2.4.18b) into (2;4.21_)'yi"e__lds a:simple expres.s"i'on

) h/E . s
T = - - . [ (P‘as1n¢+P”cos'¢)XERdX2g3 = - M'“'ga - (R.4.22)
R_3;z e
where .
' g ke T
M == [ oxXfRdXx? (2.4.23)



g2 " Azisymmatric Shell /Hembrana Formulation Y
is the moment acting on the deforrned section of the shell, in thedLrectlon of s
: (note that g || g°): The relation of o to PBin (2.4, 12) has been utlhzed in estab-
sty (e aga), ¢ L R JP R .
_Neit we consider themﬁmt.emmal moment dM(®, From (2.4.18), and t..'a"k'i'ng
into aceez_mt. the form of P in (2.4.5), this moment can be expressed as: :
AM® = £,3,d% PP9dAy gF = £,54d* PP RAX'dX% g8, (2.4.24)

In terms o'f 'the_physical_compoﬂent P<33>_ in (248). B

| d_ms) = 7 eaged° £ —— RdX'dX? gﬂ = e,s,dﬂp<33> AX'dX® . (2._4.25)_
'Integratmg (2 4. 25) over the shell thlckness and deﬁmng l{(s’ as the moment
."'Iper umt length we obtam R R |

| nﬂ! A/' (dagl-d‘gz)P“s’dXe. - {(2.4.28)
/2 S AT F :'. e RS :
Smce g = gy, .and gz = g2 (Appendxx 1), substltutmg (.4. 11) and (2 4, 19b) into
:(2428) gives, T |
- where
o mrz R
M"‘" I X2P<33>dx2 o {2.4.28)
- is the moment acting on the deformed section of the shell in the direction nor-

~mal to this section. '

~ We shall denote the set of force and moment resultants derived above as §,
where

S = [Nmn NP8 gnn ggo0 ymi|T ~ (2.4.29)
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Box 2 4- 1 contams a summary of the deﬁmtwns of the eomponents of S It is

noted that our approach here not only gwes the magmtude of the forces and

illustrates the orientations of these resultants graphically. ..

Box 2.4.1. Definitions-of the s’t’r_‘-ess?resul_ten_ts acting on the shell.

.:S [N“"N”H““M'”V“‘]T“:

- '1- hs2
A= £ [ oRax?
-h/2

]

' hr2 '
NP = fP““)dX"'

~h/2
h/E

il

e L S axfﬁdxz

R_ise

: "M"B'-' S g

cher
YIS

= _
== | rRIX?
R-A/z

2 5 1 l[omentum ba.lmee

2 5 Balance o! forces and moments

‘ moments acting on the shell, but also the :dir‘e::tion's' in which they act. Fig. 2.3b

Neglectmg the mertlal eﬁects the balance of hnear momentum equatlon in

the metenal form 1s

DIVP+ pry (X)B(X)

(25.1)

where P is the first Piola-Kirchhof! stress tensor, p,.._r(X) the den51ty in the

reference conﬁguretlon B, and B(X) = B'g; the body forces per unit volume in 5.

In view of (2.4.4)



g2 Axisy mm;'etﬁ:_c-Sh.'e'u/Membmﬁg?rdmuzmon . 18

2 NP il +GJ i 9Gr . pis _
DIVP G-’ P il ax’ G,@g, P QX ®&+G P G"saxl

_-_-Util.i__:zing'_the Chris_to.ﬂ-’e.l symb_ol_s_:dé_fined; in .(_Al_'.:15).- the identit_ies-G;.-:;G'_’ =6, and

-F".4=-gz?. the above expression'can be simplified to become

'  {apt o ' o '
DIVP = B‘P;{J:i--l_'f;;'fPI? +P'm'}'kjiFjJ I PR (2.5.2)

The Chrlstoffel symbols for the shell coordlnate system are given in (Al 21) _
and (Al 22) Substltutmg these 1nto (2 5 2) and usmg the expresszons for the

' deformation gradLent 1n_ (2.3.4-)-. the c_:or_n_ponent form of the linear momentum

. balance_equation in (2.5.‘1) be_comes

lax‘ RP")] .F'sa +p"fBF ; A=12, - (2.5.3)

-ﬁhere the repeated index A implies summa_tion over 1 and 2, and

X -:—= sina, .:. Eafi_ = cosa . ' N (2.5.4)

In terms of the physi_cal c'ompon_ent P‘“”_> in (2.4.8). (25.5.3) becomes

: |
+ L(RP«»)J FZopss + p,.,sﬂ 0 :g=12. (255)

In tbe above, P‘“’ = P‘F for 4,8<3. For sunphmty. the brackets for theu'
superscrlpts ml}. be dropped . o h

The lmear moment balance equatlon (2 5. 5) forms a beme on rvhrch the bal—
ance of forees and of moments are determined. In the follomng development

the stress resultants will be referred to frequently ‘See Box 2.4.1 for reference
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:252 Balanceotforces _

The balance of forces actmg on the shell can be obtamed s1mply by the

-mtegratwn of the linear.moment balance equation (2.5. 5) over: ‘the shell thick-

eSS

S {5 B—XT(RPA )] _'§LP<33.>1+ Proy BFY RAXZ =0 ; g=1.2
_h/g . N .

. Perforrmng the above mtegratlon and dw1d1ng the expressmn by the factor R s

..Eweobtam
{ g M2 1. ht MR
1 p18 gy2 - L _OT Pcs&:-d .|._ dX%+pB{X] 0 2531:
R S F X Ra?,_!_‘c X fp,.,mxz p(X) ( 6)

where the last term_abov'e '-is the surfaee'trec_tldh acting-f::en the shell and is
defined as .

B .3 1y = pef|bs2 |

The l'.hird term re.presents the loading induced by the body force; we shall net
'mclude l:hxs el‘.’fect in: thls st.udy The remammg terrns ea.n now be replaced by
the stress resultants N’“‘ v, and N?8, gmng the ﬁnal fnrm of the force equlll-_

bnum equatmns for l'.he shell

19 NTR sina o
_Rext RA(XI)[ ] R |cosaf (257)

2.5.3...Ba.1ance of moments.

“The equxllbrmm equatmn for the resultant moments actmg on the
deformed section of the shell can also be derived from the hnear rnornentum
'balance equation (2.5.5). First we consider the moment M“" -deﬁned in (2.4.23)

by rewriting it in the form:
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_ h/2 TR TR RN SN SR I
g = - %% hfﬂdtpumxe (258

- where d* is given in (2.4.19). -We-diﬂerent_‘.ia_te the quantity #™ R with respect to

X1,

Neglectmg the term involving the body force. l:he ﬁrst of the equlhbrlum

_ equatmns in (2 5. 5) can be restated as

Substituting this into (2.5.9) gives
N2

RO 2
8 Jg;:R = ~ayq f &(puﬁ)_,_di aar B peans s g1 8(P J}-?!dea
- | 2|9

_ _.: . 'ad-i: . Aj . i_a'f_,. .._33 i [ a(PEJR) Bd
= "‘_f*’_-_fg oy (PO R) ! P - 7 w(ﬁpz )dea

f 68;‘ ( P“f R) + d‘ 637' P<33>
4 : _

2 (d‘Rsz)] dX?  (2.5.10)
| where the repeate mdex A lmphes summa.tmn on A 1 2 The last term in the

-above represents the contnbutlon by an applied external moment. This type of

loadmg w1ll not be consu:lered in thls development
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Using thls. and having the Cauchy stress expressed as Ju” F‘AP‘U the first

) term in (2.5.10) becomes

chr/2 h/E

'_'_-:_em f L{P“f}?)dﬁ-—égs l 15131? Ja‘i;?]dxﬂ

BX‘
In the above expression, the preduct 'i_nvolving:th’exSymmetric Cauchy -stt_‘ess’-.and
. ._thé.antisymmetric_ permutation symbol vanishes: : Using (2.3: 2) fc:r:x° (2.4.12)
. for the stresses.¢ and.T; and (2.4.15) for the force resultants Nmn and V"‘ the

ﬂrst term of (2.5. 10) can be further sunphﬂed as follows

hrz
ax4 -hs2

ad? 6:!:° ' hs2 | p11
:—e,ds [ _-(P“jR)dXE-B;js f 13){1 ”RdXE f[--w 1+u ][Pm}ﬁdxz

Che2

= [—w 14’ ]A(X‘) J { ]mﬁ: -R[w' -(;_+_u_')]A_(x1){?,‘,",L"],_
- -We simplify the secon_d"t_ern'i“;qf-. (2.-5.-1;0)5:\("1'_;: ‘the:substitutions of (2.4.19b)

and (2.5.4) for d and :—r respectively, which gives'_ _

z]
~eys [ di- "P<33>dxﬂ—sm(¢+a) _/' X2P<33>dxﬂ M‘”sm('¢+a)
hoz 8% Y |

' We can ‘now rewrite (2.5. 10) to glve the equlhbnum equation for the resul-

tant moments

FL7 N o] Bz, o

Expressing (2.5.11) in terms of the quant'ities J, and C); derived in (2.3.8) and

(2.3.7) réspec_ti\rely. one finally gets

FURE - Eagrzo, s
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“2'8. Conjugate Strain Measures.” =~

Next we identify the .etrain measures E for the shell that are ih_the' work
sense oonjugate to the stress resultants S deﬁned ln Seotmn 24 For this
development the rnaterla.l of the axlsymmetrlc ehell is conmdered to be hypere-
: lastie, with the strain energy denoted as W(X.F)

+ By the: fact.that thez-transpose of the first Piola-Kirchhoff _st’rese P and the
--d.efornla_tion'gradient-.F..ere_-canjﬁgote Measures, i_;he for'rher_ een be determined
from _the'.etrai;n. energy.eccc'!rding .to.ﬁ':;-" L

PT :_3_”’(&'1, Lo (e

_ For the same reaeon. we can also wrlte the var1atron of the stram energy stored

" in the shell of volume E as:

5W=[Pr:sFdV = [PSFTdy ~ - = (26.2)
B B Do .

where 6(-) denotes the variation of a Quentlty. |
We shall derwe the stram measures E such that the etress resultants S can .

' be deterrmned from a stram energy potentlal W(X‘ E) aecordlng to

| S' 8E e .(_2-'.-6..‘?)-
 And in analogy to (2.8.2),
SW(X.E) = [S-6ERIX' . (2.6.4)

'2 6 1. Vananons ol.' stra.ln measures. _ _
Our derwatlon proceeds w1th (2 8. 2) The mtegratlon of (2 8. 2) over the
thickness will reduce the expression to the form of (2.8.4). From this the strain

measures can be deternﬁned. In this derivation, we make use of the first Piola- _
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~ Kirchhoft stress P in. (2.4.5), and ‘the deformation gradxent F for the shell in

.(2 a. 4).

| ‘The 1ntegrand of the last mernber in (2 6 2) can be expressed in component _
form as | |
P:6F" = (PiG®g;): (g,,, 6F® BG‘B asc,,) Pfi JF" B9jb G‘BGM PlUdFi g,

'where the last member above anses as a result of the dlagonal nature of the

metric tensors Usmg t.he expressmn for the rnetrlc tensor in (Al B) the above

becomes
Pi6FT = PUGFY, + PYRR, + PRIGEY, 4 PRSRY, 4 (r)EPSSSFS,  (2.6.5)
= PMSFY + P2§FR, 4 pRISR, 4 PR2SRe, 4 T Pomspe
in which {2.4.B) is utilized to convert P38 to its physical component P<39>,
The variation' -bf the '.'deformation 'gradient. te’n’sor. &F is equal 'to-'the-COva'r‘i-
ant derwatwe of the vanatlon of the dlsplacement vector dv (Marsden and

'Hughes [1983]) ‘In component form B |
(dr)s L= .,,a| - B :  (es®)
In view of (2 3 1) .dv 3: 6{' Thusj TP e N
bv=oe = 6i=lgl+6¢2gg- S '_ _.(2.'6._'?)_
Whe:.'e. : ' SR e
68! .= fu - Xicosydy., 6“-:.3&&#&]&%‘5@_._ o

Carrymg out the covariant dzﬂerentiatlon in (2 8.7), (2. 6. 6) becomes

d
(or=ed, = BE e B Z‘jj. £+ 07

X“ ax4
where the summatmn of c=1, 2 is 1mphed above. and Yea® i8 the Chrlstoﬂel sym-

- bol associated with the deformed configuration. : As given in (A1.21). Yc3° is the
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" only non:z"e_ro"_;'cés'e_""fof'thé shell cob'rdihai:e ‘system.” Acéﬁrdinély,” S

56@‘ 66@2 5¢’sma+6@zcosa o
oxh Bt axdB T T 18, (268)

(GF)A =
Substitut.in.g (267) and (2.3.4)_ into (2.6.8) gives
lﬁm} broor o oo
o -0_'6'}*'53""' SRR I EE
‘”‘"1 1= 6‘”-' + Xai”'ﬁ‘wsin'l(‘ - X%Wcosqb., ...5Fl g% T .5'_‘4100510-

6}"‘21 = G'w - sz &wcosw dew sm’#: JF"’E = :Wrsm'gb

—

.d.Fﬂ - (6u—chos¢6¢)sma+(dw—Xzsm'wd'w)cosa i_.

' .-Thus the vanal:lon of the strain energy as deflned in (2 6 :2) becomes:

L ’l/ﬂ
. 6W Eﬂ' [du (P(Sﬂ) Sma) + 6w (P(SS) co‘Rsa.) + Gu .Pll + dw P12 .. (2.6‘10)
o [-A/2 . . AEREE .

+ dwxﬂw'[sin',o '_'cosﬂ[}’;:;]_—[édsv sin‘ill]{g:;].‘f_?‘af’_)&_ilt(qig)‘: L

.— 5y’ X‘[cosﬂa sxmb][F } ] RdXﬂ }dX‘ ..

We shall rewrit"e_: {2.6.10) in terms of the stress resuitants in Box 2.4.1. Dur-
ing this process, our references to terms in (2.6.10) will not include the integral
. s'lgnf dX! for con'\fe_n__i_en_ce, o
The first two terms in (2.6.10) which contain P<3%> can be combined to give

}./a

.P“*’E”d)f2 {sinabu + cosadw) = N* (sinadu + cosadw)
-hsz
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‘where we make use of the definition of %, The next two terms in (2.8.10) are
_simplified by converting the stresses P!! and ,P_‘?___to.t_l;g_- stresses o and 7 via
(2.4.12), followed by applying the definitions of N™ and V™. These terms

-hecome:
{du’ (COS_‘VIM" - s.i'.t;v V"‘) + 6w '. '(Si,h.-wN“" ¥ c':c;s-w.l.’“‘) ]R .

.By a smnlar approach the last term in (2 6. 10) mvolvmg 61& can be shown to
equal —§y’ R, e | | BRI
Next consider the terms assoc.i.ated with 61{1 in (2.8.10)._ First, the part_ |
involving P” and P!? equals - :
hse

‘hs2 s EE S :
f 610){21(1 [sm'w —cosw]{Plz] RdX% = hf 6¢X9¢ [sm‘qﬁ —cost]A(X ‘)[ ] RdX?

h/2
=—f dvxxw'-rﬁdxﬂ

~hs2
The relation (2 4, 12) is used to obtain the second member of the above equa— |
tmn Next the part contammg PPliand pPRR: equals

VI U Ay

- f 6¢[cos¢ sm'gla]{PH}}i’c!X2 - f 61& (TJ—-Clgﬂ') h?d)t’2
The detail of the denvatlon leadmg to thls result above 1s gwen in Append:.x 2
Fmally. the part mvol\nng P<9%> gquals — 6¢W51n(¢+a) when the deﬂmtxon of

M‘” is used._ Combining these three expressions, the term involving &v in

(2.8.10) takes the form .

hr2 S :
~6y f (S, - C,ga)RdXz + H""sm(¢+a) = _,,W,[J = CtzN""'l' sm{ﬂﬂq]
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.-ﬁnere-ﬁ; and C,; are definéd in (2.3.6) and (2.3.7), respectively.

| "Iﬁs'ertihg'_the' above results into _(2.6.10)' will gi'\ér_e the variation 'o_f'.t'he' strain
'"énet'gi"in'the"forr:n_'of (2.6.4). Smcethe 'co'eﬂicl'e'n'ts ef'the stt"é"ss'resdl'taﬁts' in
‘the 'resulting exﬁres‘s_sion are _the variations of the corresponding e"o'nj'u'gate
strain meesures_: for the st_z_"_ess_ resul_te.hts S in the form_ _ -

._S_=[N""_.N"’1’ H™ ot ym]T o (2.4.29)

thevanatwnsJE of th_e_c.or:'.l:':e;s'poh._cling:_eo.l.'.ijh.g.ate s:tra.ih rh_eese.:.‘:es Eare _ :
' lcosydu' +sinydw '+ Cipdy|
(sinqd'u+cosa5w)/}?_ S UL mrlvioe
SE={ -y S  (2.6.11)
| _. b '-6¢51n(‘50+a)/R it |
'—sin‘ﬂ/du +cos106‘w —J, 6
. C ' )

_ 282 ...S_tra.in-measures;_ .
| .We shall.demonstrate in the?seq'uel that-t’hese: -der-ived strain'svaria-tidns in
(=.8. 11) are in fact assoctated with stretches bearmg physmal 31gn1ﬁcanee We_
prcceed by exarmmng the physwal rneamngs of the stretches

A lme on the neutra.l surfa.ce of the shell orlgmally lylng parallel to the ba.se

. .v.'e.ctor G,. assumes the shape descrlbed by the vector ﬁeld A when deformed
_f’hete P
A= FG, | yenq = (1+u'lg1 +{wlge. Lo (=8a2)
Resolyihg h_i._n_te components in the directions ﬁ_and 1gives, |
- CasmEend o (@613)

where
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A =A-@= (l4uleosy tw'sing =4 ., (26.14a)
“ N B A'I=-_T(_.l".'_"_'--').sill.ﬂ"_+;w'-°°5¢.= Ciz. .. .(2.8.14b)
; -Th"es’e"c'd‘nipb'r‘xeh’ts:.--*)k;,'3-and"A;-." represent’ the '-'str"_'e'tching in the"direetioh fi and
“the shearing in the direction 1 respectively. Similarly, the stretch in the hoop

- direction Ay can be found by

M.= tFas)’ xB o= (F‘—) rggl xﬁeo £X1+u)51r;? +-wcos.a | (2615)

Taking the variations of these_str’etches "m'('z._s.14)f and%.(z.s-.;'5)-:r'e'v“e'als that
T 6Ag BN :and-ﬁ?\e are exactly the "co'efﬁcie’nt‘s for the stress resultants Nmp, pmi,
“and: N’” respectwely in (2.8.4)." The correspondmg conjugate strain measures
‘are therefore An =1, )\, and Ay=1. |
“The- remammg conjugate strain- ‘measures’ can be deterrmned by exarmnl.ng
‘their varlatlons in (2:6,11). Denotmg Ok, as the varlatlon of the stram rneasure

conjugate to H"". and’ mc,, ‘that of M, one can show that the correspondlng

eonjugate stram measures are

| Py ‘ﬂ___ .cos('w.-lr;)—cosa _ (2_.6.16‘)_.

' The term cosa in the Ky expression is meluded so that this strain cunverges to
.the approprlate mﬂmt.esunal stram m the mﬁmtesunal lnmt

In summary. the stra.m measures E conjugate to S in (2.4, 29) are’

[
) 7;::11 (usma+weosa)/ﬁ’ -
CB={ky f={ (2.6.17)
n | |costyra)-cosas Rl
Gz
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'2.7. Specialization to membrane theory.

- When the thickness 'of'th'e shell iS'hegligible eompered to its radius of cur-
. _d_o_r_mnant. the _be__nd__mg an_d_ the shear __c_l_ef_ormatlo_ns_: can then be._neglee_tec_l._ : In
this.ca'se. th.e shell theory eiscussed in the breviou__s_- sections can be .spe__ciali'z_ed

to capture only the membrane action of the shell.

2711(inemnl'.lc descr_iptieh._- it iy PR

o Be.c_auee__ e{.:the . _n_egligible amount of. ber;ding.and: shear deformations that
.j.fa_l_ce_ place in .a. niemb_r_a_ne, . th_e hypothesis. of sbreight normal remains straight
.mﬁst_ be augmented with an edditional requirem-e;ﬁ _th'at_t.his__ stra_ight.:nbrmal
-__.remaiﬁs-.ﬁo_rmal...-to the d.efor-me:d-_néutral:--sﬁrﬁace-. -Th.tiS:-.v?fé-:Characterizé t'he
-:ﬂefer_matjpn_.-_with{ the .k_i_n_ematie: eerieble_e-fr_r._.thé: refq_t_'ence -_eur-face; displace-
ments u(X!) and w(X'). The .-anglé__ ¥-now. becomes: a | f_lin.ction. of these two

~ kinematie vai:iables, such that

In addition to. u(X l) and w(X l) we employ a third kinematic variable A, (X‘) to

characterlze the stretchmg of the thlckness of the membrane -This mclusmn'

' allows for a broader class of constltutwe relatlons

Followmg the same approach outlined. in Section 2.3, a point on the mem-

brane after deforrnatmn x= i(x) can be expressed as
x= i(X) d, ()(l X3) + )\,,(J(‘)i,(.’(I X?) ' (2.7.2)
where &, and &, are deﬂned'in'(z.s.a) and '(2.3.3). : _-

The deformation gradient F fe_r this deformation map in (2.7.2) is

[1+u'—X2(7\,,¢'cos¢+)\,,'sm¢) =\, siny 0]
'[F‘A}; w'—xﬂ(mp'smw—x,,'comp) Acosy Of. (2.7.3)
0 ' ) 1 .
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where a prime denotes differentiation with respect to X',

The corresponding rig__h:t _Cauehy-Green tehs_o__r Cis _

f(1+u)2+('w)2 ol SRR I IRV

" The above uses ‘the relation-(z 7.1) and the fact that ‘the thickness h ‘is‘much
“less than the characterlstlc length of the: membrane L. Since the matrix C is

-already in a dlagonal form. the three prmmpal stretches are just the. square

roots of the corre8pond1ng d.1agona1 elements of:C-' Following:the naming cofi-

ventmn used before. we denote )\n as t.he stretch along the direction of fi; Ay as

that in the hoop dlreetmn. ‘and A, as the stretch of the thickness of the meri-

brane where '

A.,, vV (1+'u. )"’+'w 2 = (1+u )cos1b+w sm-w A,,

’(2.’7."5)

""UI".

2.7. 2 Equilibrium equations

_.The stress resultants V"‘ M, and M"" vanish in the case of a membrane

__The external loadmg is remsted by the membrane forces N“" and N“ only._

'Thus the stress resultants S take the furm o

s [N“" NW]" - _ - {2.7.8)

where the de_ﬂnitidns- of N*™® and N?? are given in Box 2.4.1. Because of this, the

balance of forces in {2.5.7) becomes:

Faliei) - el il @rn

while the balance of moments in ('2".5_'.;'-_12:)"reduces to the result C'2=0, in agree-

ment to (2.7.1).
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2. 7 3. Comugate stram measures.

The analogous treatment of Seeton 2. 6 results 1n an energy expresswn m_
the form (2 8. 10) There are addltlonal terms: lnvolvmg the stretch of the thlck-
.ness Ap. Assocxated w1th these terms are the moments and shear, whlch vanish
for the membrane case.’ Also assoclated with the terms oontaxnmg Ap is a
pmohmg force: actlng normal to the membrane surface This term also .vanish
.-__-slnce-._the membrane is 1_n: a-state of plane-s_tress Thus the stretch Ay, has no
'c'on_tributi_ons-_ to' the strai:n -'energ.f;'store.d- in .the system.-'-':'I'.he-stram measures

--conjugate to:the st:ress-result'ants.:.s in (2.7.6)-_are therefore::

{,;‘: 1} {(usma+woosa)/R} G e (278)

28, Constitutive relations.

| ‘Several e.onstltutive relations will be nresented herein Based on the strain
.measures E deﬁned in (2.6.17) for the shell and (2.7. 8) for the membrane. and
. the stress resultants summarlzed in Box 2.4.1, constltutlve equatlons for the
case of hyperelast).c).ty are formulated The spec1a11zatmn to the rnembrane

allows the melementatlon of the Mooney-Rwhn materlal Fmally. a wscoelastlc

o :constxtutwe model developed in terms of these stram measures E are formu-

lated.-

2.8.1. Hyperelastie material.
It is assumed in hyperelastlclty that the stress resultants S are derivable

from a potentlal W(X‘ E) such that

S.:_aw‘(xl..E) Gl et {2.801)

i)



2 | Azisymmaetric Shell/Membrane Formulation - 81

. "linear” material. One constitutive relation that satisfles (2.8.1), hen-

ceforth referred to as the "linear” material, has a potential of the form

W(XLE) = 2(1 Vz (A, - 1)2+(A,, 1)2-1-21:(7\,, Z1)(rgm 1)] (é.e;a) |
+ 24(1‘::'3”2) + n:.,, + Emc,,m.,,} +. —)\l

-'.-where ‘the: parameters B, G R, v and & are the Young s and the shear moduli,
~the thlckness of the shell the Pomson s ratm and the shear coemment resPec-.

- tively. From th15. the _\-gen_erahze_d.etress=etrem relation takes the form.
~8=DE . (283)
where

:--_I_i_u o o .
D= (1mw) 00 h%/12 vhis12
0 o uhE/ 12 h?/ 1z

oo 0 - 0 «:G(

(2.5.4)

'-‘cco.c

In the case of a membrane only the terrns contammg A,, and A,, in (2 B. 2)
‘are retamed The constltutwe matrlx D now becomes

Eh 1 u B A T
(1_,,2) v 1 ' : (2.8.5)

- Mooney-Rivlin material. We shall -omy'formula‘t'e the' Mooney-Rivlin material
for the rnembrane theory Here. the matenal 1s assurned to be incompressible

and the membrane is consxdered to be ina state of plane stress,.

- .. For this material, the_potential_.ﬂ((X '_;];1) takes the form

PEHECLG) ACD a2
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‘where C; and C; are the _inv'éﬁaxits of the right Cauchy-Green tensor, 4, and Aq
are mat'e.i-iel"':t::oﬁs'te;n{is:.::aﬂn'c'i h is the thickness of 'tﬁe meﬁlbfél_'ie'; "Using the form
::of Cfor membranes in (2 7. 4) . | |
| C,—cAA_MzH\hz-;-;\ﬂz o | (2.8.7)
Ca = ~H(Cl,Cl = Cyc?)) = =Ah2+a,.%=+ahw

-To -incorporate- the incompresmblhty. condit.ion';)\n)\.,,)\h-: 1, we modify the

L strain energy potenttal W by addmg in the constramt condltlon. so; that
w(xl c,.cg) = W(X' c,.cg) ¥ p(1—x,.a,,>\,,) S (2.8.8)

" "Hefei the parameter P is the Lagi-"alhg'ian multip_lier._ From (2.8.8), the strees

resultants can now be determined:

mn = B zm,.[A +A2(A,.z+m)} “p/h (2.8.9)

wes= AF am.,{A +A2(A,.=+m)] —p/ A

=|

Enforecing the plane- stress condition, i.e. Ba =0, will give the Lagrangien multi-

plier P
p =2hAAE{A1+AE(M2+M2)] S (28a0) :

- Combining (2.8.9).and (2_-8-1.0)-:gives.-_the- relations

o yma = 2::“ (&.2 2)(1+——A42) 7 (28.11a)
2h4,

Ao

e B e M) (1+—A,.=) 7 {(2.8.11b)

" Aithough the results in “(2.8."1 1) may appear et ﬁret gience to be different

from those recorded in the literature (see Green and Adkins [1960]), they are in
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: fact._id_entical results. One should recall that the stress res‘ultants der'wed here '
- are the ﬁ'rst Piola-Kirchhoff type, which are dlﬂ'erent from the Cauchy type

stress resultants workers often use

' '2.8.2. Viscoelastic material. < =
We first establish the. appropriate'measures of the. stress and strain rates.

. _:For ttus we rewrlte the movmg frame quantttles S and E as Sm and E,n such

that - .' . _ _
[wmn Pam1]
Sn={Mnl. Bn={ (28.12)
. 5 " .
.'-.Equatiori'(é.ﬂ;'a) now r'eeds as’

o where elements of D are reordered to form D,,l These stress and stram quantl-
t1es S and B, in the movmg frarne can be expressed in terms of thelr counter-
parts Sf and Ef in the ﬁzsd spatlal frarne. such that

S, = Tw)s,,. E, = w)n.n  (28.14)

'where T(y)is a tra.nsformatlon matnx constructed based on A(‘»ﬁ) in (2.3. 13)
Equation (2.8.13) can then be written as

S, =D T'E, (2.8.15)



@2 azisymmetric Shell/Hembrane Formulation a4

.:":Takmg the time derivative of (2.8. 15) and rnaklng use of the 1dentity:""zl":l"7'_.= L
gk gt e e P o L

&, __w S,) =D, TT(E, ~1TTE,)  (26.180)
éf __TTT.S! = .TDm TT_' (Ef "TTTE;') R (28161’})

. From (2:8.18), we can define _the stress rat_.es-_é m and' -é‘,.'as- Lo

&=y irs,. Ba.emd, 0 (e

: ai;a the correeponding strain rate.i: m _and 1-31 es | | e

- i

E, =& -T1"E,. E,=1TE, (2.8.17b)
‘such that

sm =DpEn. S J'.:':.-.”:"i'nm TE, .  (28.18)
Takirlg the derivative of (2.8.14), rewritten as S = _TT(W)S,. we. find ,that.the |
__ stress rate S m 18 sunply the matenal tlme derwatwe of Sm Both S m and S
are objectwe rates; moreover, S has the stronger property of bemg invariant
._under superposed I‘l.gl.d body motmn (Slmo ot a.l [1983]) Tl:us same coneldmen
| 'holds for the stram rate S S : o | o

 We propose here ev_isce'ellee’ﬁlielr'no'deil that m deﬂned by the rate e'quet'_ieri' '
S= fD(t-—-r)E(‘r)d."r (2.8.19)

where t denotes time; the eomponents of S and E (subscript m 1mphed) are now

: arranged as in (2.4. 29) and (2. 8. 17), respectwely. and

v 0 0 0

31 M R
D{t) = ?f(,,l) 00 h?%¥ 12 wvhi/12 0
0 0 vh3/12 h2%/12 0

oo 0 -0 kG(=—F~

(2.8.20)
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Here, the viscoelastic material assumes the behavior of a sfandard solid model,

'so that-&, ‘takes the form:

| .(2:..8.21)

29 _Sqlutiqn procedure. The finite element method. .

.- Box _2._9_._1._._Sumz_n__at_‘y_pf;Equat_ipns_.-for-_Axisymrne_t-r_ic-.Shell/Membrane:.’-.

-3Equa'ti'ons |

' Membrane theory

kinematic -

et _  ;-'?[ﬁ;-_w'f']?[-.._:.e
variables ' '

| w=[uw]’

Strains E=

N"

. .
Ag—1 (usina+wcosa)/ R

2 (CDS(‘W{)fcoga)/R o

f;«:-- } (usma+w ccsa)/

v o

|Stress © ['s= [N'“‘ N® g il v'“]”
| resultants | -

Equil;-Bg., -

axt

e &J B

Lo,
| Ra
' %—(—)— cmN'“‘ .rv'“—-”:s:n(w+a)—o"'

e L{Rcoswﬂf“"] A
R ax! | Esiny N™

b

Constit. Eq. | "Lfnear" fnatemal
| s=pE

"'.Vlscoelastlc matenal '

§= _[ D(t-7)E () dr

“"Linear" material
'8 "=:DE -'

G Vlscoelastlc ma.t.enal

S= f D(t —7)E (‘T)d'r

Mooney-Rivlin material

S = S(E)

Boundary
conditions

w= ﬁ at displacement boundanes By
S =5 at traction boundanes as

The equilibrium equations, the kinematic description, and the constituti{re .

relations given previously form the set of equations governing the response of
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‘an_ axisymmetric shell sub_j_ected_ to .axisymmetrie--. tors:ionless .loading. : These
equations. including the boundary conditions are summarized in Box 2.9.1. -
_ The solution procedure for these equatlons 1s presented here We circum-
..ve.nt the shear locking eﬁect eommon in ﬁmte elernent analyses of beams,
plates and shells by employmg a nuxed methodT based on the Relssner-Helhnger
'_varlatlonal formulation (Relssner [19_50a]) In contrast to the dlsplacement
~ type 'Eorxnulati'o'n- in ﬁr’hiéh’r t'he”-'constitut-i've equatmns 'are"enforced to’ hold_
' .strongly (pmntw'is'e) thlS rmxed method assumes these equatlons to be satlsﬂedi_'
in a weak (welghted) sense Aeeordmgly. we eonstruet the weak form of the;
- .equnhbnum equatmns as in’ the dlsplacement type formulatmn. and augment it .'
-w1th the weak form ot' the constltutl\re equatlons e |
Because of the geometrlcal nonlmearlty due to the large deformatmn, and 'i
~the addltmnal nonhnearlty due to’ the materlal behavtor. these two weak forms'
'-.are genera.lly nonhnear scalar dlﬂerentxal equatwns Conslstent Imeanzatmn;_; :
proeedures. as descr1bed in Hughes and Plster [1978] are ernployed to: obtaln'
'the hnear parts of these weak forrns The resultmg equatwns are then readlly
- adapted to an mcremental formulatmn For this rmxed formulatlon. an addx-_

tional step is requ1red to eandense out the stress varlables, so ‘that the ﬁnal set' '

- of algebram equatlons I.S expressed entlrely in terms of the dlsplacement varx—

ables

= (1vu! )cosqb+'w siny,
Cie = —(i+u")siny +]'w cosw ' o
AX') = sm:: eos'f >
-t Other apphca'uons of the mixed’ i'ormulatlom in finite element anslyses can be found in
Pian [1953]
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2.8.1. Admissible variations. Weak torms of equilibrium and constitutive equa-
2.9.1.1. Admissible variations.

| Th_e mixed _form_t.}l:ation_-_-__t're:a_ts both the_-_d_i_splaoer_nent_s___n _-_and the stress
resultants S as independent trariables Thus, a configuration in this case has to
be described by the palr (w.S) We select the admissible dxsplaoement varlatmns
_ 6w and the aclrmsmble stress vanatlons 6S to be' arbltrary w1th the requu'ement

that. dw vamsh at the dlsplaoement boundary B

2.9.1.2. Weak form of the equiﬁbrmm equations.

We speo1al1ze here to the oase of the shell and report only the final result :
for the membrane case. whlch are derlved in an analogous manner, Let
G(w._S.dw) represent the weak form of the equ11ibrium equations for a structure
modeled by a number of elements. and let G (w,S d'w) represent the contr:bu-.

: tlon from each element We denote the assembly Operator over all the elements

by 2 such that
'G(w.s;ﬁw) = 2 G,(w_.s._ay) =0. | (2.9.1)

‘Multiplying the equlhbrlum equatlons in' (2. 5. 7) and {2.5. 12) by the correspond- _

4 ing vanatlons éw, we e obtain the weak form for each element as follows: -
_ N s |

+ 610[1 —(—l + ClEN'“‘ J V"' - i['zism(w-a)]} RXm )

When integration by part is carried out, the above becomes -
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i 1
Gy (w.S.6w) = - 2nf [6u’ 6w ]A(w)[ ] + [ou 6wl 3;{;‘{;} [;z]] (29.2)
o=yt 510[0121\:’“" ~Jo Vu v-f-ar”’ff—lﬂy’ﬂl]]}i’azX1 + 2now’P
_where P [cosx(;N"f-sm‘gbV“‘ sm'WN““ 1-::::;5’#:]/“l : —M’“‘]n, is the. prescnbed
- _.tr_aetions over the boundary 83. By .def_ining..d'.'P;and-A as- .
o siar o 0
' 0 cosa/R- RN BREIRTEE TR AN ) MY N

0
VR
Cz 0 0 -sin{y+al/R -4 |
i gt T o i
0

n:

cosy - ’{(=.9.3b)

0
cfstng 00 o 0 eosgloocn
0 0o -1 0 0]

~..equation ..(2__._9_._2)_. takes theform . |

'~ G,(w.8,6w) = —2m [6WI[AS — P] RdX + 2r6wiP . (2.9.3¢)

2.9.1.3. Weak form of the constitutive eqdatiohs |
Let the weak form ot‘ the constltutwe equatmns for the structure be

represented by H(Ir.S 6S) and let H,(W,S 6S) represent the contnbutmn from

each element. Similar to (2.9.1)

"H(tr.-é.éﬁS)_fré:E:Hq'(i:lf.é.'ds) =0 Pl (2.9.4)'

In what follows, we shall trea_t each constitutive model _rt_i_s_cuss_ed in Section 2.8
separ_ately;
“Linear"” material. For this material, .

S = DE : (2.8.3)
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where S. E and D take on their respective forms for the sﬁell and theé membrane

‘cases in Box 2.9.1 and Seeti_on 2.8. The corresponding we_a'lfc" form equals
H,(w,8,68) = 2r [6ST[E ~ D-'S]rdx! , (2.9.5)
' (] o

' '_l'!ooney-RivI.i.n mnterio.l'.. Wé shall_expres_e the 'eons_lzitot_iive relation for this
material in (2.8.11) as.
- .s:'s‘(r:) N : (298)

'_where E now represents the stretches [_’)\ﬂ )\1,]" By oastmg thls eonstltutlve

relatlon in 1ts merernent.al form
&S=DEME. . (297)
we can formulate the correspon_ding___w_ea_l_c_ form as

_ L . _
ot Hy(wS:68) = 2 [6STDV[S(E)-S]ReX? - - - (2.9.8)
. . 0 : . . .

| '.'j.V.iScoeIastic material. 'S:irié"e"tﬁi's'_eoo:sti'toti'w:re model is rate dependent, the
'-'solutlon procedure 1nvolves first the: ternporal d1scret12atlon of its rate form.

(2 8.19). ‘First we combine (2 8.19) through (2 8.21) to give
© S(t) = DE() + (D, -D, )e -#‘E('b')"+" f (D, -D, )e Al -r)i: (Ndr,  (2.9.9)

where now E and § are functions of _time £, D, = E.T”’ and D, = E: .

-integrate the last member of (2 9. 9) we consider the dlSCI'EtB time 1nterva1

.[t,,.tnﬂ] where ¢, ,, = £, + At. Aeeordlngly, we write the response quantltles as
St =S, + A'S.:.- ”'E,.H' =E '+ AR (2.9.10)

where the subscripts'n’ and 'n+1 refer to the functions at'f, and t,,;, respec-

tively, and A denotes the incr_em_e_nt of the function over this time increment.
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Next we deflne::
et f et R, @eam
' n+l .. o .
M= / 9_’&“*‘_’);1(7):17 (29.110)

so that the _follov.v'mg. recursive reiation hold_s .
| IMQ = :'é*"p:s':'l," + AL o (2.9.11c)
Usmg the abm.re cieﬁnltlons and replacmg tin (2 9. 9) by tn“ and t results
in the following two expressions: A
Sps = ﬁ;'ﬁ;‘;; + (D-D) ey (2.9.12a)
S, =DiE, + (D, -Dal,. O @eam)
: Subtracl;mg (2. 9 12b) from (2.9. 12a) gwes an 1ncremental .;stress strain relation
sseneEeGeD)N (9
__i‘he integral Al in:(2.9.13) .can be: apf:_roximat.eq__by.._thé-use-. of the mean value
theorem and the_nﬁdepq_int rule.-which-_gives RN |

1—g Pt _
aE

'_A'Ia_@
Therefﬁ;'é
. AS: DWAE (2914a)
Where e R ST
D RD; (l_EA: —O-D) | -(_2-'9'-_14b)
By writing (2.8.18) as S = S(E). the corresponding weak form becomes . - - .-

H,(w.S.65) = 2r [ 657D, ~3[S(E) -S] /dX? . - (2.9.15)
0 ’ .
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2.9.2. Consistent linearization.

We carry out the lmearlzatlon procedures so that tﬁe nonhnear problem
can. be cast mto an mcremental formulatmn for computatlonal purpose First,
we demgnate the current conﬁguratmn as a- composmon of an 1ntermed1ate
| conﬁguratlon denoted by the pair. (w§) and a superposed rnotlon denol‘.ed by
(Aw,AS). In t.he following, the quantity (%) denol’.es {-) as: evalua.ted at the inter-

s medlate configuration.

The hnear part of t.he weak form G(W.S dw) at the mtermedxate

conﬁguratmn (vr,§) is deﬁned by
L[G](,s, G(w.s 6w) + D, G(w.S.tSw) Aw + DzG(w.S dw) AS (2 ) 16a)

where the differentials D, ¢ and DgG can be’ comput.ed from the definition of the

du:'ectmnal derwatwe

D, G(ig.dw) -Aw = E‘L G(w-l-sAw.S 6w)}=_o . | (2.9.16b)
DzG(',S dw) AS = di- G(w.SH:AS 6w)J -0 .. (2.9.16c)

The linear part for H(w.S dw) can be obtamed in the same manner. The hnear-

~ized version of equatmns (2.9:1) an_d (2..9.4) are

LHken =T Lt ey =0  (29.1m)

2 9 2 1 Lmearlzatmn Equlhbnum equntmns
h we denote that Aw [Aw Aw']T subsututmg (2 9. 3c) mto (2 g. 15) gwes

| L[G,'](,_,,-:. <2 { awfli's‘ ~ P+ AAW + EASJ RdX' + Bfrdir"-i'"' {(2:9.18)



g2 " Azisymmetric Shell /Hembrane Formulation | a2

where the matrix Kc takes the form

boo o oo
00 0 00 0 _'4—3'3'5' _J-Nnn C' 7 cosm-l-a!
. _ |00 A% A3 A% o0 5 12
ASE 0 0 Avﬂde 0 0 0 : Ag_EM-_ = .—smwﬂ""—cog‘bv‘“
S hozE e o of A= cosgNTmosigP
g ' _ . . . |
10 05000 =0 00 S

29 22 Linearization. Constitutive equations.
We linearize the weak form of the const1tutwe equatmns followmg deﬂmtwn
: (2 9. 16)

“Linear” material. From (2.9.5),
LA, ey =2nf asf{ﬁ-pﬂs’.a-i"aw—n-ms} RAX'. - (2.9.19)
' i L RTINS . _ _
l;[oor.ley-Rivlin.ﬁi.'n;l;.erin.l..From (297) and (2.9.8),
LI, )igg = n [ ¢57 D-{(E)S(E)-S] + AE - D-(E)AS|RdX!  (2.9.20)
Viscoélnst.ic material. From (2.9.14) and (__2.:9. 15)

L[H ](,,, =2n f .ssT -l(r:)[s@-é] + AE- D,,.‘l(E)AS} RX' (2.8, .21)

2.9.3. Spat.inl discretization.

The spatial dlscrehzatmn for the rruxed ﬂmte elernent method requu‘es
some attentmn regardmg the chmce of the shape functlons Smce the stress
varlables 1n (2 9. 2) appear mthout any derwatwes, they may be dxscontmuous
across: the  element bount_ia._n_es. On the other .hand.".‘_dlspl_ac.ement variables

have to be continuous across the element boundaries but not their derivatives.



T

§2  Azisymmetric Shell /Membrane Formulation 43

. We therefore interpolate the dis_pl__aceme_r_)_ti variables by hnéét_r_shape functions,

and the stress variables by constant vq_lue__s,___ .

Ehlﬁ""r- 88 = 65", (2.9.22a)

Ai: Z‘h,mr",_. AS:= ASh, - {2.9.22b)

'whera the shape functmns are. h.,—l—X’/L and hg-Xl/L and the superscmpt h

is to denote the dlscretlzed values

In terms of the shape funct_lp_ns_ in __(_2_._.9__.?2_). _thé__lgineméiic_:\rariq_bles_Jw:afjd

AWread as follows:

[h ;o 0 'o-]
C h; O .
. 0 0 hI ( ' )
2 . B= h ol 2.9.23
AW = ) BiAwWty L D =

O 0 hI ‘

o a2 )
W = ), B;swr,
i I=1

2 9 3 1 Dlscrehzat.lon Ethbnum equatlons o _
In terms of the shape functlons in (2 9 23) the hnear part L[G ]('ﬂ) in

(2 9, 18) becomes

L[G ](.ﬁgn) = '2"2('5"‘1)T[ﬁcr + _“ ,;Aw",; + AS"J (2.9.24)
where
K"y = [B,7AB, RiX", 7 = f , TARLX! {2.9.25a)

R% = K S PI PJ- .P:=fB]PRdX‘E-%" ~ (2.9.25b)
LR T e L S
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" The analogous derivation for the membrane theory also leads to results of
the form (2.8.24), ﬁhere now the mat::.:ié'és.. l_(ii,} and fl'ﬂf" are

' _ L N hy "-.l1 { "'sihzi i —sm';(/cosw

A .\/(1+ )2 _,2[ Sln‘IIJCDS‘l[I cosz'w

KMy ]RdX‘ (2.9.26a)

fc’l =

..(2T.9'_26b)

[h._, cos1p h,sma/ R]
1
h; sm’gb h;cosa/RJRdX

'2.9.3.2. Discretization. Constitutive equations.
When the shape functions in (2.9.23) are subétituted into the e”fp'ressidﬁs
-_fof_ the three _cons_’lt;'fiti:ti've :'eQL;alz;idn_s in Section 2:8.2.2, we obtain the follov_ﬁng _

_ result;
| L[f};](',;;,.);: gﬁkgsnjfiﬁﬂ+ 5 R'l,w,u‘cﬁasf-] (@920)

- The matrix K=l = (K")T where Kl= is defined in (2.9.25a) for the shell and
(2.9.26b) for the rnernbrane This symmetry condltlon will lead to a symmetru:
tangent operator The matrices l?" and l_%ﬂfor each rnatenal are hsted below '

'Imear" mnt.erial. Based on (2 9 19)

;' i*é?-fns—xmi ﬁﬂ[s'f[z(#f._m-@]ﬁm . (2928)
R L I T R

l[oonerRlvhnmtenaL Based on (2.9.20),
=~ [p (@) rRdxt, RE= [DY#)SF)-]RdX*. (2.9.26D)
Viscoelastic mateml. Baéed on (2.9.21),

iu = -ffD —1ng1 - R®= [, '[S(a"*)-Srex! .  (2.9.28c)
0 .
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_ 2 9 4 Iterative al,gonthm. Flmte element mntnces
- Droppmg the factor of 2m, (2 9 24) and (2 9 27) can be assembled accordmg

“to(2:9: 17) to gwe the followmg systerns of equatmns

E [(Gw")r(as")T] ”As,,l { J ” : (2.9.29) |

o Here, the matrl.x f" is the éenerahzed eterhent stlﬁhess matruc ..T.he comhohent__ .
KM s commonly referred to as the geometrlc stl.tfness matrix whlch arlses
~ because of the geometrxc nonlmearlty in ﬁmte det‘ormatlon analyses. The vec-
tors ﬁn and R¥ are the re51dua[ (out-of-balance) load terms from the equ111br1um

and the eonstttutwe relatmns, respectwely T
| The global coordmates. denoted as u, are related to the Iocal coordmates

.. w"‘ by a eoordmate transformatlon matnx T
wh=Tuh. 0 (2,9.80)

Substitution of this itito (2.9.29) gives .
' rigny prgee]l, ] bt i
B> [(au")"(dsh)f] T,-:.TT e l J {T’ﬁ“J ” (eoan)

.. The ferm (2.9.31) is Inot yet. an o.pt.i_ma.l s..e.tup t‘er computations. Compared
to the form for a displacement type. approach, this 3"f_o_:rr_r'1'ulet'iori has'the addi-
tional stress variables, which results in a sparsely populated stiffness matrix. It
is therefore 'desir.a_ble to eliminate these stress variables to reduce the comipu-
tational eflort. Noting that §S* is discontinuous across the element boundaries,
H=0in (2.9.4) is equivhl_ent to H, =0. We cen extract the incremental stress-

displacement r_e'latioh from (2.9.31) to give
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(R") lﬁﬂ+i"muh} S _(2.9.32)
Via this expressmn. it is. now possmle to. wnte (2 9. 31) entlrely in terms of the
| unknowns Au® as
. KA =R N  (29.33)

where the arbiti'_ary variation du® is dropped from the aBove expression; and

the stlﬂ.’ness matrlx K and the out of—balance Ioad R are:
. g :
- R=Y Tr{ﬁc___f(lqi#)-xﬁa} N . (2.9.34b)
Computationally, it is cenvehient'*'te':.eﬁfbfé'e "t'he:'e'e:ﬁditieﬁ'?'ﬁ 0in (2.9.32)

"and (2934b) so’ that the stresses at the element Yevel may ‘be evaluated _

dlrectly Based on (2 9. 28) the stresses for the "hnear" ‘the Mooney-Rlvhn and

- -_thesvl_sc_oelastlc materials are

Linear material - S =p[E#F)Rdx'/ [RiXx", 7 {2.9.35a)
‘Mooney—Rivlin material S =[ /D !(#)RdX']-! [D-Y(#)S(F )RdX' (2.9.35b)

Viscoelastic material 5 = [S@)rRdx\/ [Rax . - (2.8.35¢)
i T N PO PN TRT ST

[Equations (2.9.33), (2.9.34), and (2.9.35) constitute the set of linearized alge-
braic equations lieguife_d :te:'co_nstr:ut_:t a Newton-Raphson. type iterative algo-

rithm, ._wt;_iqh.i_s: summarized in Box 2.9.2, ... ..o
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" Box 2.9.2. lterative algorithm for axisymmetric shell

o _For each tu'ne step &, .
e evaluate the strems E, and stresses S,,
|eform out-of—balance load vector R,
e advance to next time: step if']l' R, || <tol, otherwise |
|4 form the tangent st1ﬂness matrlx lq,

s solve ](,,Au,, R,, for Aun '
|sincrement uy by u, + Au,

2.10. Further discussions o.n element loading.
2.10.1. Extension to the follower load.

"I_‘he .lo_ading P ineluded in the. weak form of..the equilibriurn equations
.' (2.9.3) is assumed to remain consten.t throughout the:d'efo'rnietion"'histdry “In
-this sectlon,;__we shall extend this to ‘the.case m which the orlentatlon of the
"'_loadlng follows the deformatlon of the shell. Attentlon w111 be focused.on. the |
.ease of a umformly dxstnbuted loed w1th an 1nvar1ant load rnagmtude p. One_
_example of this type of follower loed is: the mternel pressure acting on the shell
~In that case, the pressure always acts perpendlouler t.o__th_e _def_o_rr_ned refer:eno_e
surface of the shell | | | |

The follower loed lS denoted here as t. We desxghate the vector m as the

_ .normal to the deformed reference surface III (X‘) of the shell Thus
Ct=Epmoi fn s B _'.(2.10_1)'

' The contrlbutlon of t to the weak form of the equilibrium equatlon in (2 9, 3).

can be formuleted as follows

G.f'“"_" = fdw-tda =pf61r-m da (2.10.2)
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where dw i is. the adrmsmble dlsplacement varlatlons mtroduced in Section 2.9,

and da is the defurmed surface area elernent Let. the vector M denote the nor-
mal to the reference surface m the undeformed conﬁguratlon Wl.th respect to_
the base vectors GI. M has coordmates [O 1 0]7'4 We a.lso denote the unde-
_ formed surface;a_rg_ea; e_Iem_e__:_xt;by_--d_A-,.: Th_en_we_ __c_a_n_.wr_;_t.e_._: e

mda = (JF‘T)lxg_ HdA R (2.10.3)
L where the quantltles J and F"'-" are those deﬂned in (2 3 5) and (2 3, 9) It follows .

that

G Jotow = p [ 6w (JF Tye_oM dA "= 2p [éw-bRax - (2.10.4)

where d4 = 2nRdX', and b= Tlw' 14w 0]
* Following the zlin‘eer-i:z_atio'n prot:edu're'_-'outl'ined in the previous section, the
linearized form Of_'_(:'z‘._lo'_-"#) is: i
L[G N g = zﬂPf 5."[""‘“5'} RaXx' - (2.10.5)
Here AW=[AwAw)",and ™
| —singw’ ; —cosow’ 0 -

00 —F0
ma(1+u) cosa(1+u) 0 "F 0 ol
0 0 0 0

The di_s_cretized form of (2.10.5), employing the shape functions (2.9.23), takes
thefollowing form - |
z [ 2 ] e
.L[G.‘rouw]('_s) = 211'2(5'})7'11’/0"““ - E Ky'rouuwlﬁw; '_(2.10.6)
s I=1 J=

In the above expressmn, the ﬁrst term P-f'"“‘“ is the luad vector here to replace

the vector Pin (2.9. 3c) for the ”non—follower load” case, where
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. L .
P < [phib RAX! (2.10.7a)

The second term Kf""""‘ 15 the "load stlﬂ’ness" tnatrlx arise due to the deforma-

'tlon dependence ot' the follower load In terms of the matrlx B mtroduced in

(2.9.23),
M"w = [ phiB, RAX* . - (2.10.7b)
: L' ' [-_ sinai'h; = cosai’hy+7h'; o}
= f Phyl-sina(1+7')h;~7h'; —cosa(l+u')h,; O| RAX!
i .

0 7 o 0

The “load’ stiffness” matrix K must be mcargai-_aee’a into (2.9.33) to assure |
“ solution convergence when fe_ll_:ewef. load 1sact1ng | Not.e. that this "load
" stiffness” matrix is not symmetrlc in zgene;'z."al..: 'Hevzve.v'er:."ih. the case of conserva-
tive l'o'adiﬁg'."t'.he load :sl.:i'ﬂneee':rr'ta':t;ix is neh'éjnﬁnetfie o'nl'j.r' a't','t;he"e.lemehtz.:le:\"rel
| .and the global load stiffness matrix is atwa.ys symmetrlc (see Hlbbltt [1979]

" ‘and Schwaxzerhof and Ramrn [1984])

12.10.2. Discretization of the :loading term. = _

It was pomted out by Halleux [1980] that the co'nszsten.t dxscreuzatmn of
‘the loadmg terrn does not necessarﬂy produce the best results in the axlsym-‘
- metric case. A simple test pro_hle;_n__tq __s_ho_u_r; this involves the pressurization of a
;_S.Pheri_c_ail shell. For this case, the spherical shape is preserved, and the defor-
mation only involves the _cha_nge in the radius of the sp__here, .
.. - For. gimpl_iei.ty_.;.w_e _er._)_nside_r_._pn.ly__t,he:._loa__d_i_ng th_a{:_ does. n_e_t. f_ol_l_ow_l;_he_.defer-
-_Ipat__ioh. _Th_e__eqnelu_siph of this equally _a_i_:p__l.i_es_ _i;o__:the case, of the follower load.
Consider th_e situation p_,.:_b_,_ Pe=p in (2.8.3), such that the contribution of the

loading to the weak formis
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G,lood = 2 [ 6w-[g] RdX' = 2n [ pw RaX!. ~ (2.10.8)
0 0 '

"'We shall t‘ocus our attentlon on the 2 node elements. and employ the shape

:' functlon hI such that '
o, | : G
B ‘Substitution of (2.10.9} into (2.10.8) gives .
L Gled =2 fp Y hpwy RAXY = 2n)) plw; (2.10.10)
: S R 3 ] e =1 -
_'_where p'r are the dlscretlzed nodal load values These values p are dependent
- on the chome of the shape functmn h;. and the numerlcal method used in
__evaluatmg the 1ntegra1 1n (2 10 10) Of course. the quahty of the analysxs
' results varies for dlﬂerent chowes of p’ We shall 1nvest1gate several dlﬂ.'erent
_posmblhtles next
The ncdal loads p! can be parametrized in term_s of the coefficient g as fol-
lows |
p‘=%[a-r,+(1-.a)re].~f o (210.1a)
p=~. Blli-wrrard  (ei0amm)

-'where'r.l' ‘and r; ‘are the radii at the two nodes. The 'parénietef a takes on a
“valie in the t'ange'[D;i']. For example, a= 2/3 'cdrresponds to the choice of
linear shape. (consistent) functions h; with exact integration in (2.10.10). For
the same Shai)'e functions, @ '='1/2 corresponds to one point .'integr;a'tion. and
a =2/3is obtained when nodal quadrature is used. Finally, @ = 3/4 can be
derived from exactly integrating (2.10.10) using the shape functions h, = 1 over

[0.L/2), hy =1 over [L/2,L] and h; =0 otherwise. This last example will be
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referred to as the case of "lumped load".
The choice of the 'vaiué a iéév‘&iﬁﬁ’téd"ﬁﬁ’ a test.prbhlem'ihvo'lﬁrlg:'.the pres-
- 'sunzatlon of a sphere We employ four ﬂmte elernent meshes w1th 5 10 20 and
.'4-0 shell elements respectwely to model the symmetne half of the sphere The
- shell. elements are. sub]ected to umformly dlstrlbuted loadmg, dlscretlzed by the
four dlﬁ‘erent choxces rnentloned above, namely a= 1 1/2 2/3 and 3/4 "The
. results, quantlﬁed in terms of the normahzed equatonal and the polar dlsplace-
ments. 'u., and 'u.p respectwely. are tabulated in Table 2 10. 1 These results show
_.::that the "lumped load" case (a 3/4) performs exeellently in prov1dmg the most
exaet answers and . mostly 1mportantly. in predletmg a spherlcal deformed -
| conﬂguratmn even by the crude mesh mth 5 elements Th1s result is eon51stent
' thh the ﬁndmg of Halleux [1980] The eonslstent d1scretlzatmn (a-2/3) gwes

.' good results. but the deformatlon is not, spherlcal except for the refined mesh

The other two lumping parameters (a = 1/2 1) give poor results

‘211, .-Nl_lmerieal- examples.

We present h.e.re ‘some nlrmerieal examples to demonstrate the eapabilities
of the shell/membrane formulatwn deveIOped above. The algorlthm is u'nple-
_.mented 1n a general purpose ﬂmte elernent program FEAP (see Zlenklewwz'
[1977]; Chapter 24). S IR s

The first example lllustrates the behavxor of the shell undergomg large dis-
placements.: For this’ pro’blem. we also 'exa'mine'the"’s"ehsitiirity of the ':'post-
_ huel_cling"resp:orise_s : to'c_halnges in loading and boundary conditions. Th'e.'nex't:'_

two examples compare the membrane responses to large stretching with known

Tu.. = computed equatorial d.wplacement. / exact, 'u, = computed polar displacement 7 ex- . -

ct,
see Equation (2.10.11).
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. Table2.10.1. Study of load discretization parameter a in (2.10.11).

. Pressurization of a Spherical Shellt

| shell elements

. Numberof

nodal quadrature:

. abt=1

- mid-point
a=1/2 |

“consistent load:
8RB

“lumpedload
..a=3/4

Cu,=1.003
w, =0.277

u, =0.973 |

w, = 1.699

o = 0.983
Cwp=1zEs

| u, =0.988
| w, =0.988

: :_-'u., =1.008 ..
w, =0.800

4, =0.991 |

1%, =1.198

:_u,--__=-0.995 o
up = 1.064

U= 0,997

| up =0.997

20

u, = 1.001
uy = 0.958

u, = 0.998

| U = 1.052

u, = 0.999

11,;' = '1.-0-1 o SO

 u, =0.999

‘= 0.999

A0

| =100
' u, =0988

u, =0.999

up = 1.013.

. __'.”-..._=-1-.d°°_ .
'u,"='1_.000_ |

u, = 1.000
Up = 1.000

solutions. 'Bot_.h..q_f_;_th_efs:e_gxal_;r_lpl_e_s___ut_il_ize the follower load (Section 2.10) to

_s_i_r_x_;qla_t_g the pressure acting on the membrane. The last example demonstrates

the viscoelastic behavior of the shell to creep, relaxation and cyclic loading. ..

The analyses of the post-buckling response pro_poséd-abnve reQuir'é' 's'I:I:Iecié'.l"

handling. Conventional methods that rely on force control algorithms cannot

trace the portions of the load-displacement curve having negative slopes. Here,
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we. employ the dlsplacement control method (detalls dlSCUSSEd 1n les [1972]
and Wempner [1972] for example) adapted to the analysxs program FEAP by

_.Karl Schwelzerhof |
...... The Newtoanaphson.lter.atlon scheme as outlmed 1n Box 2 9 2 1s employed
to solve for the solutlon of the nonhnear equatlons Thls solutlon method
_results in a quadratlc rate of convergence based on the Eucltdean norm of the
out~of—balance load o _ | |
.Example 2. 11 1. Spherlcal cap under eenter and r1ng loads |

The analytlcal solutlon based on Relssner [1950b] is provxded in Mescall _
| _ [1965] for the case of a concentrated load applied at the apex of a spherlcal
cap. Our 51mulat10ns employ the geometrlc parameters gwen in Zlenlnevncz

| :[19?7] Assum.lng the material as belng elastlc. the followmg parameters are

: used (see expression, (2 8. 4) and Flg. 2.4):

E= 10 x 10°ib/in?
a= 4.758in
|h= 0.01578 in
{&=" 110-.9035" '

- The geometric parameter J\a deﬁned by Mescall as )\2 = [12(1—%)]”(sm$)2a/h
| -._'1s approxu'nately 38 for this case ' ' '

We first present the responses of a spherlcal cap subjected to ring loads of
radii r = D 0 225 and 0. 3'?5 in. For each case we employ two ﬂmte element
meshes comprlsmg 12 and 24 shell elements respectlvely The loading is
dlsplacement.-drwen. mth the apex: d1splacement advances at 0.01 in. per load
step. The resultmg load- dlsplacement curve shown in Fig. 2.5, compares well
with those of Mescall and Zlenk1ew1ez ‘In Flg 2 6, the predlcted deformed

N shapes in apex dlsplacement 1ncrements of 0 02 in, are also 1llustrated
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" The béh’aﬁd}' :b'f"the: shell is q’uit'e diﬂerent if the 'béhu&éfy condition is
| 'ehanged W'hen the rim of the spherlcal cap is l:'ree to rotate. a concentrated
center load cau_ees the shell to enap-through”, as shown in the load-
‘disﬁiacemént :eur‘{}es*(ﬁg 2.7) and the co&e‘sﬁnd‘iﬁg deformed shapes (Fig.
2 B) If the honzontal restramt is also rernoved the ana1y51s ylelds a crltlcal
'load of 16 8 lb for snap through mstablhty to occur. in agreement w1th the
. _pred1ct10n of Mescall _ . | T

o _ Example 2. 11 2 Inﬂatlon ot‘ a sphermal shell

From equ111br1um. the Lnternal pressure p is related to the 1sotrop1c ten-

. ::smn N as :
= o _ {2.11.1
where R is the_und'eformed radius of the s’ph‘ere;"'eﬁd:){'i‘s the isotropic stretch.
For the Mooney-Rivlin material in (2.8.11),
_ 4h _i_ o 2 N |
poBuuems o
where h is the thlckness of the rnembrane Smularly, we otam for the "linear"

materlal in (2 8. 5)

'_- (12-%1? —A} - (2119) o

~ We eimu_l_ate the _Mooney—Rivlin case usin_g_ the following parameters:

la, =10 |
Az =0,0.1 and:0.5-
i R«~ 1000

For the "l_ir_xe_ar_"__ma_ter_ijal_ea_se. we use E = 60. This value is obtained by compar-

ing the linearized:'i‘forms of (2.8.5) and (2.8.11) for v = 0.5, which gives the
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following relation between the p_ara_meter__A,,. A-a and & o
E= fs(A1 +4z) . | (2.11.4)

A ﬂmte element mesh comprlsmg lb men'tbrane elements models the symmetric
half of the sphere. A umform follower :lo_a_.'d.n: i_s ap'plied over all the elements to
simulate the internal pressure. " e |

“The results 'of'the*sirnulati'ons.“ as shown in Fig. 2.9, demonstrate that the
"='ratlo Az/A, affect the pressure-stretch relatlon mgmﬁcantly ‘For AE/AI = 0.5,
“the’ pressure mcreases monotomcally mth the stretch On the other hand for
Ag/'A;'=0and 0.1, the pressure reaches a'peak and’ d'e'crease's with increased
': stretchmg For Az/ A,-- 0.1, this pressure decrease is agam fo[lowed by an
_'-mcrease at" hxgher stretch. The: response of the "hnear” case 1s similar in form
to the case Az/ A, = 0; although the pressure of the former is ‘three to’ four
‘t;mes that of the latter.

: In all ot‘ ‘the slmulatlons. the pressure stretch graphs are traced to be-
fmth:.n 0.3% error. Because only the radlus of the sphere 1s changed from pres- _
-surlzatxon the Newton Raphson method’ converges l:o the solutlon in one 1tera-
. tion. |
Ekample 2. 11 3. Inﬂatlon of a clrcular plane sheet.

. The analytlc solutlon for. thls problem is’ gwen m Green and Adkms [1960]
and numerlcal slmulatlons have- also ‘been performed by various workers (Oden
[1972) and Argyris[1969]). -
| A cir_culﬁr*pl'_a:ne_ ‘sheet of redi'u:s' R and thickness n is modeled with two
finite ‘element :nl'és'hes ‘comprising 10 and 30’ elements, *fésp”ec'tiv'ely. ‘The 3r_egion
near the fixed outer rim, over which significant straining is anticipe'ted. is’
represented by a finer meshing for the QD-element. model. We assume the

'rnateri.e“l to be the Mooney?'Ri\rlin materia.lvi.n"' (2811), and employ the following
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geometric and material'd:ate"f‘bi-""th’e"siintil'é"tic'n:l

A, =95 kp/cm?
A Ay =175 kpsem®
. {h =0.02em,

| R =508cm.

_ '_ The predicted: pressure ve_rsue__center ve_ntica._l .displacement curve, shown
| _in Fig-;_a- 10, agrees: welliwitb,-.t'he- .r..esu.lts..;of: Arsyris_-[1969.];- ..Despi.te- the difference
in mesh réﬁ.neri.ler.l't_'-. :_'thE-:.Pfésl.ié't_i.onS- by the---_t.Wd_:r'nédéls here are almost ldentl
.cal,. The _d.e_fo_rmed. shapes. for e__ever_all_.-lcat.i levels, .e.s shown euperimncsed in Flg
211, i_nﬁica_t.e. ?hf?? the two. 'mﬁd,els -'_-P'_r-et_iiC_t the Safné;----ex-t.elnt of deformation at
the nodes, As expected, the more refined model provides smoother contours of
the z_i_efc:r_rn_egi__ccnﬁg_nr._a_tiqn_e.-_:_ . | |
'ffe elec c'.on'si.de.r the casee with Ag/ A, = = 0.1 and 0 usmg the 30- element

'_model The results are. in. accordance mth the finding of Green and Adkm
_[1960] that the response 15 .very sensitive to. the materlal constants Az This is
: 1llustrated by the drastic dlﬂerences in the: stram d1str1bntlcns between the two
cases, as shown in Figs. 2.12. The deformed ehapes for these cases are also
._ shown in Fzg 2 13. |
Example 2.11. 4- Vlsceelastlc responses of the sheli

. f._We_ .d.em.ons_tr_ate -here the creep, r-_elax@t._m_n- -:a_nd : cyzc.iis: : rﬁesp_on_s.'es of ';t.h._e
: \_risccelast_ic shell. For illustfation purposes, we again _ccns_id_er_-_-_the:int_ia_.t_io’n--.of-:—._l__
spherical shell, which results in isotropic stress o and strain ¢ states... ... . |

-When a constant. st#esss o is suddenly applied at time ¢ = 0, the strain his-
tory e(f) is: | |

8(”‘0[(—-* BB L eus
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where fis a mater1a1 time constant, and £y, and K are the mstantaneous (short

term) and the asymptotlc (long term) moduli. The creep function. C(t) is
_L)_ L

defined by C(t)= and the creep time constant 1',,.,.,,1, -E—ﬂ- Interchanging

the roles of ¢ and &, when a constant strain ¢ is suddenly a'pplied at time ¢ = 0,

the stress history o(¢) is:
cr(t) =[5 +(E‘.-E¢)e #te - (2an 6)
m '
The relaxatmn functlon E’(t) is deﬂned by E‘(t) and the relaxatlon time

constant fﬂlms Equatmns (2 11 5) and (2.11. 6) are lllustrated in Flgs

™ | '-"

2. 14 and 2. 15 for E’ /E', ] and 10. As shown in these ﬁgures, the results from
sxmulatmns based on equatmn {2.9. 14-) are in good agreement vnth t.hese analyt-
- results S S _ _

When this v1scoelast1c shell is sub;ected to a smusmdal strain mput

'e(t) :-:,, smr.;t ‘the stress hlstory o(t) is:

E +'a=é. . |
‘ LT g - 1
o{t) =¢, _;,EL sinwt + E'T? -:—cosmt ) . (2.a17)
1+ﬁ—z' 1+E-2—

: As shown in Flg 2.18, our eimulation result _elps_ely approxirnetes (2.11.7).
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'Flg 2.2. Kmomatacs of an axlsymmetnc shell
~ on the merldlan plane. .



60

(a) |

T

1“1

FIQ 2.3. (a) Forces and moments (b) stress rasultants
acting on a volume of a shell. -
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F:g 2.6. Sphencal cap under ring Ioads
-Deformed shapes
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Fig. 2.7. - Spherical cap ‘under .-'c'ehter“load..f "
Force-displacement curve.
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Fig. 2.8. Sphencal cap under center Ioad
Deformed shapes .
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Fig. 2.9. Inflation of a spherical shell.
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: Inflation of "a:___c'ircular plane sheet.

Infl'uence“._of A’2___on. _the_ deformed ..=~.hapes.é



71

_.u__o._m_._ P1EPUBIS © Jo Bsuodses desiy pL-z Bly

~deoid
+ /ey

s="/% -
or = 'a/°a —
pondwmoy vy

'3 x uonounydesss



72

uoljexe|au

| U__omv._mucmam m “—o asuodsel | :o_umxm_wm m_, _. Nm_n_ _

+ /8wl

o1 =3/ —
pandwod V

0

0l



73

1ouis% = o

"Buipeo] 011942 03 PIIOS PJBpUBLS € JO Bsuodsey ‘9Lz "Bld

L so o don o

i\k__,u_w\a___”_. | um#:nEoo .a_.n_
=lgrsg | LE Z) :o:m:cm —_—

s$salig.



74

) - Chapter 3
Volume Constraint and Contact Algorithms

. 3.1. Introduction. ...
We view c'ells and ernbryos as mechanical sjrstems which cornprise a shell— :
o like body contamlng a viscous 1ncompre551ble ﬂu1d Chapter 2 has presented_

B -the shell formulatlon for modehng the mechamcal behavmr of the outer shell

Thls chapter w111 furmsh a numerlcal algonthrn whlch constrams the deforma- S

tion of this shell. so that the volume of _th__e-ﬂuld 1nslde is pr_eserv_e:_d.____ We shall
: ..._al_so .present'_a;contact algorithm tvhich_.-;_ceounte'for the mechah_ica:l ir_.l.tera_'etion_
| '-:E_.between material bodies. This addetl:eapabilit}; will allow for the analjses of
"_';':mechamcal experlments on cells, which is the sub]ect of the next chapter The'
:::._:'V01urne constramt and the contact algorlthms are su'mlar in that they both
.-_-.;_:serve to 1ncorporate an addltlonal constramt lnto the or1g1nal problem-
:: althot:gh the techmques used are dlﬂ.'erent The shell forrnulatwn, augrnented
by these two numerical algonthms. provides thefcomput_atlon_al basis for 1nves_-

:_'tigating various cellular phe:h"om_ena.

3 2. anume constramt algont.hm. Iagrange multlpher method

| A usual appruaeh in enforcmg thls mcompreemblhty cond1t10n is to
._':represent the _;enclosed volume of fluid by 'a_.n'u:mber c_:f finite elements whleh
_:.::.ensures the _'inieompressibility'.eb.ntliti:bh:flbcally. This approach is costly_::s_inc?e
':the added trarizables ih modeling the interior significantly increases the dimea-
sion of the re__s_t__:_lting é’y_stem-'ot equations. We preeent-hEre an-alternative algo-
rithm which eﬁforces this volume constraint eo_n:diti__o_n using the Lagrange mul-
tiplier method. By the introduction of:.-"Lag'ra:ri'ge mtittipliers. the original prob-

lem subjected to one or more volume constraints is transformed into an
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. unconstramed problem For typlcal problems Whlch mvolve a single volume
constramt thls approach increases the total number of equatlons by one.
Thus, the constraint can‘ be mcorporated using' t'his a_pproa'ch' _Withou't' :any_

- appreciable increase in the computational effort.

8.2.1. La,grange multiplier method
 The descrlptmn below w1ll assume. the case of a smgle volume c.onstramt
_ for sunphclty We denote X as the posztlon vector of a typlcal pomt on the sur- ._
' face enclosmg the volurne of mterest in the reference conﬁguratlon The posi-
.t1on vector of the same pomt in the deformed conﬁguratlon lS denoted by x.
_.Durmg the loadmg process. the. volume enclosed by the. undeformed surface
V(x) _take_s on-the_-value '_u-(x)_. _ Th_e_-_ob jective here is to constrainthe _deforr_natlon
- _pa__tt_'er_n.:- so_'_'th_a_t_ v{x) = V(X) . Our: __appo_'ac'h ---using: "the Lagrange multiplier
.Proceeds-as follows: - : - | 5
~We. ﬂrst augment the total potential energy in:the varlatlonal formulatlon

.-by an addltlonal term ;.o
nwx.p) plu(x)- v<x>] o @ed

:Wlthm the framework of the Lagrange multlpher method p is'the Lagrange mul-
itlpller Wthh can be mterpreted as the pressure actmg on the surface enclos-
..mg the volume of mterest The term v(x) = V(X) is the. constramt condltlon
being u:nposed : |

The weak form correspondmg to (3 2. 1) is evaluated next We first select
't.he admissible varlatlon of the conﬁguratlon dx. as bemg arbltrary everywhere
but vanishes at the. prescribed displacement -boun'dary. -and denote the arbi-
trary pressure varlatlon ‘as dp Then the followmg weak form can be con-

' structed
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_ Gﬁot (x;p ,'61':.6;0) ; Dll'l"I""‘ (K;p) e -"l.-'DEI'I'W"'(x,p') ¥ (.3.2.2>
~ where the differentials D;II** and D,IF* are computed from the definition of
the directional derivative: |

DI (xp) - 6x = _.?dg{n‘”' (x+e6x,p )}==0 : E '(3.2.3)

L Dzl_'_I“"__‘(x.p) - 6p _=_.dd—_y{1'1_‘_’?_‘ (x.p +ebp )_}cgp o
By evaluating (3.2.2) using (3.2.1) and (3.2.3), we obtain
Gixp.ontp) =pox- B L opum-vm]. (24
- In the above, v(x) is'typically a nonlinear 'fun_ctioﬁ__.'of- the"conﬁguratinn x. Thus,
| '.'e':fpt‘es_sioh'(3.2;4)'ha5'to be castin aniin'creme'ri'tal:-form: fo‘rl@:oihp‘utatibnal pur-
‘pose. For: this, we employ the linearization procediires in Hughes andPister
[1978]. '_Aecording_lj. the current configuration is decomposed into an’ inter-
'-mediate'._cohﬂguraEiOn (xp)and a superposed motion {(Ax.Ap). The linear part
" of the weak form Gv (x._p.tsx-_ﬁp_) at the intermediate configuration (X7)‘is
defined by
L[6" ] ggy=C" (7.6x.6p)+D, G (E5.6x.8p )-Ax+ Do G (T 5.6%,6p)-Ap - (3.2.5)
' By computing the differentials D, G** arid D,;G** analogous to (3.2.3), the follow- -
ing results are obtained. First, the term Gv (X 5.6x,6p) that contributes to the
_residual of the weak form of the equilibrium equation takes the form "~ =~
euiEpansp) = ox pBE L p@-vx]  (326)

-The-.remaining terms:contribute to'the tangent stiffness; where .-

D,G** - Ax + DpG*™ - Ap =6x-l§%§-:&x+ MaxglApl + 5pai(ax§l~Ax (3.2.7)
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Note that the "volume" tangent stiffness in (3.2.7) is symmetric.

" sze Numerical procedure. Axisymmetric case.

The derivation described above is valid for a general geometrioal's-etting

' Here we focus our attention on axially symmetrlc problems. For this case, the

‘surface enclosmg the volume 1s obtamecl by rotatlon of a prescnbed meru'llan

about an ax1s of symmetry For mmphclty. we shall conmder the meridian to be

plecemse hnea.r

The coordinates of each pomt desorlbmg the meridian have tWo com-

: ponents for amsyrnmetrlo problems -=.the radial and the longltudmal com-

.-ponents, . 'l‘hey are referred to in what follows by the pairs. (r;¥), z,(*)) -and

(lli'_;(‘J Z,Y)) for the deformed and the reference oonﬁguratmns Tespectively.

Here, the superscrlpt (i) refers to the ith line segment (or volume element)

.makmg up the merldlan. whlle !—1 2 refers to the two nodes associated with this

ll_ne segment. The volume of a disc obtained by rotation of the ith line segment

-about the axis of symmetry is

| 'ﬁﬂ = g('_z, —Z}(RP + R_,R) + Rf) l(,-, e (3.2.8a)

for the reference configuration: -.--The:"e'nologous formula for the deformed

~configurationis -

: u(i) —(z_,—z,)(rf+r;r_,+rf)l( (3_2_..9.],)

The total volume in both cases. can be obtamed by sumrmng the contributions
from all the volume elements For convemenoe, we shall drop the factor of /3
in (3 1. B) in what follows, and referenees to hne segment (1.) will be 1mphed

We descrlbe the deformed and the reference conﬂguratlons mth a fixed

- oommon frame. so that the dlsplaoement ﬁeld u relates these t.wo
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configurations by j'

x=X+u C O (3.29)

L I_t_f_o_llo__w_s that '

-.'--_6'x.=au..'r.f”Ax-—ﬁ-Au“ Dl (3.2010)
'F'bzr'e'ach :Ii'.ri.e_'é.ég'r:nént' (‘L).we v;r:'ite'.du' andAu as

= o.u:[gu,” du” 6urJ ...duz_'ljé._ '._' sl .. (3211)
| __'Au_:.__[;;q,; Augp by Au_z)]""_- B )
| 'v;'l;lgre ‘u and ﬁ._, 'idenote the -&isp’la:cem_ents'-in-’the?r’ 'a}'nd' z directions respec-
s ._t.iv_ely'.'._-fiiy' a’rz_"ang'i'ng ‘the: components 'of x in’the 'fd't'm (3.2.11), we can ‘show
._.gsing-(s;z.-at;) that @ |

D g | - (32.12)

where. ..
K = [(2F+7 ) (8)~2) —(FF+imy+is) (RFp+i)E—2) (T +im+)]T .
" Furthermore

CB® e |
“owox Ko | 2w

- where

2(5-5) ~(eFi) (52 (7))
. |Hemr) 0 —(eFR) O
(2,-2) —(zr,-m) 2(2,-27) <zn+m
@F+F) 0 (erp+r) 0

="§=

L
Let the merldlan descnbmg the surface be made up of N lme segments and

let 2 denotes the assembly operator over aIl 11ne segments, then the load I‘ESI.-

dual term in (3.2.8) becomes
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. r |
- K2 | e
Sumlarly, the contnbutlon of the stlﬂness matnx in (3 2. 7) becomes :
315 Dy o :Ei‘w" e _ ated
. Dl G"" Ax .|. Dz GWI Ap 2 [ } I;(up)r 0 {ﬁ;] (3.2.15)

From.(3.2.14) and (3.2.15), we can extract the expressions for the stiﬂ'ness

- matnx Kve and the out-of—balance load veetor R""l to be- added to. thei.r coun-

- _terperts in. (2 9 34)

r-Km. m -
E &) o (32.160)

3.3, Contact Algorithm: '-Penal_tj--l[ethod:*‘ .

' Conta'ct_.. .pr.o-blems_-i can be analyzed by the 'ﬂnite element method ba-s_ed- 'o'h a
.nurnber -of _:ap'proaehesl:'.-.::Two :'-eonunonly usedf approaches ‘are :the Lagrangian
' multiplier method (Hughes et al [1976] for example) and the penalty: rnethod
(K1kuch1 and Oden [1984] for example) Both of these methods transform the

. orlgmal oonstramed problem 1nto an unconstramed one The Lagrangmn mult.l- '

' pher method mcorporates the constramt by 1ntroduc1ng add1t1onal varlables t.o

the problem. While this method ensures the -oontact condition to be satisfied
.e'x'ae't'ljr.' the added .va.rjlab-l"e's not only anrease the computatlonal eﬁort but
also result in the presence of zero diagonals in the stiffness matrix that
requu'es s"p“eeial: solutmn oro':eeduresf.'. The 'p:enalt'y” ﬁiethod:.'o'ns.the :ot.h.:e:z_' ha'hd'.
_ overcomes these diﬂiculties by enforei_og the contact condition approximatel}.
The accuracy of the approximation depends on the magnitude of the penalty

parameter used although the cond1t10mng of the problem determrates as Lhis
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. parameter becomes Iarge N:[o.z-'e'f':i'ecent studiesr-hnve tried to combine the

' _attractwe features of the two approaches See Simo, angers and Taylor

[1984] and Landers and Taylor [1985] for example | o
We analyze ‘the contact problems in_ thls study based on the penalty

rnethod The detall of the method is furmshed below for completeness

8, 3 1. Problem statement

A contact problem anolvee the lnteraction of two bod1es, in accord ‘with
.the prmclples of contmuum mechamcs F'or the two bodl.es com.mg into con-
' tact “the current conﬂguratlon of each. body is denoted by b2,a=1,2; ‘and the
_-correspondlng boundary of: body o by ab“ When portions of #b! and 8b°%,
.'denoted by dc -Bb‘ M 863, come mto contact w1th each other, kmematlc a.nd
statlc_reqmrem_ents have to be u'nposed_ on these contact boundaries.
Let n denote a unit normal to dc. =We-;.also:.'.clenr.":.te:.)( and --x--as-the-position_
; ~vectors of po_ints ':in. -tne ‘reference and the current configurations, respectively.
-The position -;vectors-'.f._or-'points.--:on ‘3b% ‘are denot_ed:..wi_t'h -ag.'_sup_erscript_..a.
Further, let t% be the traction -.vectors;acting on Bb“,d_; 1,2. The conta'ct..condi-
;_:tion can: then' be stated as-.-fol_ibwsi..
: The first _=_=Pnﬁitiqn.ab9‘r’9 is a kinematic requirement that no material over-
lapping _sh_oul_d__t_a_ke_. pl_a‘ce_wh:_en__th:'e_::_two _po_dies come _into.___c_ontect.w';t];;__ ea.c_l__'l
°£ﬁ€f: _ the second requires that Fe':.tl_‘..l;.ﬂ_'_lb.rm_r_f}. should be maint?in_ed at the same

time.



g3 - Volume Constrwg‘.n_tand_Conta_et:,_Algaﬁth;ms .81

' 332 Penaltymethod B o
The contact eondltlon in (3 3 1) reprehsents an add.ltlonal constramt to be
lnlposed on. the or1gmal problem Computatmnally, I.t 15 convement to
o transform thls constramed problem to an uneonstramed one. so that no speclal
| restrlctlons need to be 1mposed on the adrmsslble dlsplacement ﬂeld y

The penalty method enforees (3 3 1) by the msertxon of stlﬁ (penalty)

sprmgs over reglons where contacts are estabhshed and the removal of these

sprmgs whenever contaets no longer pers1st Mathematlcally. thls oan be._

achleved by augmentmg the total potentlal energy 1n the varlatlonal formula-

‘tion by the stram energy stored in these contact sprmgs
- ncanhct (x) = %fgr(x) g(x) dT . | gy (3.3.2)
_ % P

In the ‘above, g(x) represents the amount of material overlappi.ng oser the
contaet reglon. 1ts formal deﬁmtmn mll be prow.ded later The extent of
| materlal penetratlon depends on the penalty parameter 1' _W'hlle the meenetra-
b111ty eondltlon g-0 can be satlsﬂed as 7-ee 1deall;y, 'r. ean only be a large but
ﬁmte number computatlonally Thus the 1mpenetrab1hty eondltmn is only

satnsﬁed approxu'nately in" the penalty ‘method. - Note also ‘that (33 lb) is

‘satisfied implicitly- by this approach.

3.3.3 Spetia.l d.iseretization.

Standard finite element te.chmques ean be..employed to dlscretlze the
bodles ba, Here. we restrwt the dxsplacement ﬁelds to be approxunated by bll—
inear shape functlons Thus the contaet boundarles Bb"‘ are represented by
plecemse hnear segments S e I o
In 'antieipating'"contaet p}ptle’ﬁ{s‘ 'i'n'vo:l\:rrlng' "l'af'g:'e 'aeforr}_ist-ioné; the Eﬁl—’féht

logic does not place the 'restrietitie' assumption of node-on-node contacts. In
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thls general settmg. one has to consider the potentzal contact of an.trnpa.‘ptmy
'.:-"node with a tu.'rget (master) surface. as Lllustrated m Flg 3 1 For the algonthm_
.".:_dlscussed below. the surface of the stlﬂer body should always be asslgned as the
target surface In the case when the two bod1es possess comparable stlﬂ.'ness. _
symmetrlc treatment should be ernployed to avotd btas m the solutlon o
Let I, 'I“ a= 1 2 be the posntlon vectors of an 1mpact1ng.node and two
. "_:nodes on a target surface. in the current conﬁguratton The assumptlon ot‘ a
.' ﬁat target surface allows the posxtlon vector for any poznt on t.hlS surt‘ace T to

'-be parametrlzed by SE[ 1, 1]
T(E) a'\"“(f)'l"’l %(T‘+T") + }fei (TE-T‘) - (3.3.3)
.rrhere
}5(1—5) N = }é(l+£)
The gap (or penetratxon) between the u'npactmg node I and any pomt on
the target place T(f) then becomes - A S | :
-1 'r(s) = 1-_N“(s)'1“ o (33.4)
_]_Jenotin_g__ith_e_:unit__v_ectors_n_or;na__l-:an_d tangent to: the target surface.as n'and s
respectively, the gaps in these directions, g, and gy, can be expressed as: '
gn=gn=I'n-N"T*-n=I-p-%Fn (3.3.5)
o gg-lgNﬂTﬂs i
where T Tl +Te I. 'I'E T1 and L ‘m = 0 since L11es normalton.

The case g,,)tal 1rnp11es the exlstence of .gapi whlle gHStol constltutes.
contact The parameter fol is-a tolerance used to act as a safeguard agalnst
r_oundoﬁ :e_r_ror. The case g,,__((fto_l_)__ 1_rnp__he__s_. tha__t _penetratxonzzto_ccurs. .This
- occurrence is qulte common in the numerlcal sunulatlon of contact problems _

: especxally those where the bodies Lmtlally have a finite gap The penalty method
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wil_l'eﬂeetively reduce the penetration to near zero, so that the true condition
- of contact abs(g,)=< ol is maintained.

“For'T{¢) to be an 'orthog'one'l projection of the vector 1 onto the target sur-
face, g, =0 has to hold. The valie ‘of ¢ ‘in’ this case ‘can be determined from
(Ba3sbyas |

E | I "i"s :(3”.3_3)

}éLs

: A contact condltlon for an u'npactmg node approachmg a target surface
can now be stated: |

...__s.ﬁ._t_ol .ﬂvbs..(f)._e_}..-;._..:__ R ...(3_-357)

3.3.4. Contact stiffness matrix and load vector
- With the deﬁmtlon of g established in (3 3. 4) the potentlal energy of the _

‘contact sprmgs in (3.3.2) can be rewritten in a discrete form:
B A

~where X =[I T'T?)" € x; #° = [1 =N —N?]; M is the total number of target sur-

face segmerlts cur-rent.ly in conta_ct with the opposite surface, and 2 represents
: R e =

en assembly .operator over H surface segrnents o

The ﬁmte element formulatlon followmg t.hls is standard for nonhneer '
problems Fu‘st we select the adnussxble vanatlon of the conﬁguratlon 0x, as .
bemg arb1trary everywhere but vanishes at.the prescnbed displacement boun-

dary The weak form assomated with (3 3.8) takes the following forrn
Gc&fi‘dot (i.dx) =DHco'Mact(x) 6x =:::'é—délﬂééil¢iiél ('x:_l. aﬁx)}c:t! R (339)

=t Y (6x°)7(®°) @ x°
M
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-_;-where 6!‘ €0xX.

- Equation (3 3.9) is nonhnear because the contact. area varies nonhnearly
. with. the applied loading: its solution therefore requires a linearization pro-
...cedure.  Again we employ that es outlined in Hughes and. Pister[_lB.,'?B].__ in which
the current conﬁguraticn is decompcsed_ into an intermediate conflguration X
and a superposed motmn Ax. The lmear part of the weak form G""““"‘ (x.0x) at
' the Lntermedlate conﬁguratmn X !.S therefore
| LGty = --'ejww (£6%) + DE=mect (T o) -hx  (3.8.10)
By describing the deformed and the reference configurations with a fixed
" cornmon frame, the displacement%ﬁel‘d.u'can:be' e)rpressed as
x=X+u. . - {3.3.11)
It follows that
bx=fu;  Ax=fw, . (3312
_ Thus, the contact fo'rce vector F_"’“‘“' and the cantact tangent stiffness
'matru: Keontaet can be extracted from (3 3. 10) These contributions, as listed
. below, are to be.added to the tangent stiﬁness matrix 'a.n'd_thé’ load vector in
(2.9:34);
G et _ oy @y TEgEE . (33.13a)
o X : ' o
Keontact = - 30 (3%) T | (3.3.13b)
. 'The additional contributions do not afféct the size of the original problem:
However, changes in’ the profile ‘of the’ tangent stifiness matrix" are likely
because of the addltlonal ccuphng uf the degrees of freedom assomated with

the contacted nodes
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| Chapter 4
Analyses of Mechanical Experiments on Sea Urchin Eggs

'4.1. Introduction.
Knowledge of the mechanical properties of cells is important for under-
standing .cellular. activities. By" 'b'erfor'.r:r'l'iiig='-'-n1eehanieal éxperinlents on sea

~urchin eggs, Cole [1932] found that the protoplasm of a cell is more than a body

i 'of viscous fluid, 1t also possesses some elastlc structures near the eell surface

. Slnce then, workers'have 'dev1sed a number of ex-perlmental techmq_t_:_es to study
the mechanical propert1es of various cellular eomponents For example, the
.mechanlcal propertles of cells undergo drastm changes during fertlhzatmn and
cell _dw_xsmn (see Hiramoto [1981]. Rappaport ;[1971]). Mechanical expertments
- have shed light on'. the b_ehavio:r. pf red .blood cells. which expertence large defor-
mations as thef eirculate thrt:ugh the body '(see Evans and Skalak [19'?9a b]).
Although these cells normally assurne a blconcave shape their shapes also
depend on thelr ehemleal env1ronment These, and other examples testlfy that
a clear understandmg of the mechamcal roles played by the constituents of a
cell is an meortant aspect of. eell blology, both. from the standpomt of basic
.biology and from the practlcal aspects of dlsease treatment | |

-‘Reviews of various 'meeha_mcal experlrnents ‘can 'be -.f_ounti_'in.'._:Hir'ameto'
_ [1970]_and Evans and Skalak [19?9a.b]_. These experiments_tygicalis;-_tnvolve the
application of an external force to the cell, which produces a niee_hantc_e._l defor-
mation that can b_e measured. Difficulties do arise in this seemingly.e‘irnp_le:{. task.
First, the size of many celis is extremely small. At this microsco,nie l.ev.el... accu-
( rate control and meesureme__nt_'of' forces and:displacements _be_c"c_)_rne_e A:major
obstacle for the e::xperirnentalist. Second, the experiments only measure pro-

-perties of a cell as a whole; unless one can design extremely small and sensitive
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gtrain gauges, the mechanical properties of cells must be d_eaucedfana‘_ly’tic%ﬂly.

 "The analysis of these'mechanical experiments is the focus of this chapter.

~ Analyses of-'mec-h'anic'eL:e'xp'er'iment's"pre_s'efited"iri'th'e' p'ast-h'a'veflergely
relied on simplifying assumptions made so that the mathematics remains tract-

able. Implicit in‘'many of these analyses' is the assumption’ that the tension in

: the: m_erhb’r'ane-'o'f the ¢ell is'uniformly diStributed- over 'thec'ell' s'lirfa:ce3 Another
'-"common assertlon l.S that at every pomt on ‘the surface the dorrunant force
i'_'-resultant in the membrane is the wotrapzc tensmn (equal tensmns in all dlree-

i tlons tangent to the mernbrane surface). Whlle these assumptlons are appropn-

ate for some 51tuat10ns. they are not vahd in general

~ Other' issues " elso arise’ from these approxunate analyses Often the

- rhaterial property in questlon e.g."the " Young's modulus of the’ membrane, is
s correlated_'mthfd-at_a--that- ar’e‘-dxfﬁ_e'ult to measure ac’curately. leading to large

‘uncertainties in the result.’ -

“In- the following section’ we present a modeI for analyzmg meehamca.l

‘ experlments based on’ the: finite elernent method (see Zlenklewu:z [1977])." By
'.nun-lnnelng ‘the total .__energy_m.the mec_hamcal-‘ system; ‘this method 'e.ut'erneti-
'. cally’ corhpi._t'te’s*’ the deforme d--ebnﬁEUration" as well a.'s'"th'e' dis’tr:ibu'tidns: of stress
‘and stram resultmg from the apphed loadmg This' avmds a number of assump- h '
' tlons mede in earher approxlmate analyses Furthermore, smce the method_

‘can be applied ‘to pr.obleme with arbltrary geo'metry.’it'ie eap'eblé'of tre_'eting a

number’ of mechanical experiments in a unified manner. Thus given an estimate

‘of the mecharical property ‘data; 'seir'erel':meéhahi'cal ei':perime'nts: can be simu-

lated to provide a‘broad basis for ‘assessment, which increases our tonfldence
in the reliability of the data,
To illustrate'the use of the finite elerent analysis method, 'three'eenir,n'cnly

used mechanical experimenits will be analyzed: (1) the compression experiment;
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~(2) the suction (micropipette aspiration) experiment; and (3) -the_-:hagnetic. par-
ticle experiment. Discussions presented here are.based on unfertilized: sea
- ._n_rcn_in_eg_gs_as_ :e:;_p_er_imental__materials,__.al_t_lf_m_ng'h the analysis:method is not Iim-
. ited to this particular species.. » T | |
. We. shall. simnlate _only ‘.the_.deformatien -nf the:egg -at..steady: state, : when-all
.. viscous effects have vamshed Durmg that. tlme. the egg can be viewed. mecham-
: _.-cally as a body of. mcompresmble materlal enclosed by an. elastlc membrane _
-'.'._la.yer Thxs thin membrane layer (on the order of several pm thlck) is . assumed
__-.to re51st : only -1n-p1ane tensmns the bendlng stlffness of the . membrane
' neglected (see Evans and Skalak [1979a])
_,Tl'__le_ srm_nlatr_ons. -.__of_. ._theee_ mec_:h_am_c_al experirnents_ consist. of. three
__:_ingredients wboée details have been-prese:nted in the p.revious chapters . First,
owe model the .cortex of the egg by the. axlsymmetrlc membrane eglements
| _descrlbed in Chapter 2. The materlal w1thm this membrane is assumed to. be
linearty elastic _(sse;eq- (2-6.-_.5).)_--. Second, we e__nsure_ that the volume enclosed by
. the -r_r_lémb_r_a'nel ls constant throughout the deformation. history -by. using the
#D.l*imt?-. .conéffaint. .als.t?rithm: discussed in Chapter 3.. Finally, we: simulate. the
:meehanieal.contaet--condition.between the..egg.--and the lnadi_ng apparatus. by
the contact. algorlthm dlscussed in, Chapter 3 In: all cases, _the analysr.s is vahd :
_ ;_ifur large deformatlons | L | » 8
- The :meeh__a__ni__ca_l. data. for unfertilized:sea: urchin eggs are-obtained from
'p ubi:isheci reports on ;_defb_rrr_la_tion experiments. We assume the diameter of an
-egg to be. 190_ pm (95-100 um based on Yoneda [1964] and Hiramoto [1870]) and
that the e_gg_._.me:mbra_n:e_ is. i_niti_al_ly_ stretched. ¥Yor unfertilized sea urchin eggs,
Mitchison and Swann [1954a] estimated the upper limit .of this initial stretch to
be roughly. 14 percent, Here, a representative value of 5 percent, as assumed by

Hiramoto [1963]. s used. By :a_._s:sumi_n__g : that -a material is isotropic and linearly
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- ‘elastie, its behavwr can be characterized by two elastic constants the Young s
- modulus (F) and the Poisson's ratlo (v). ‘Workers studymg membrane elast1c1ty
 frequently use the surfuce elasticity modulus (£t), deﬁneg by the-product of
.'-the Young's ‘modulus time's‘the’f membrane th.ickn'e"s's. 'rat..h'.'er ‘than the Young's
-~ modulus itself, siricethe cortlcal thlckness is not easxly measureable The value
-of Et- derwed from: various ‘mechanical expenrnents ranges from 0. 37 -°1.6
dyn/cm (Hiramoto [1970]) ‘Here, we assume the surface elastmlty modulus (E‘t)
: and the Pmsson s ratio (u) to be 0 5 dyn/cm and 0 5, respectwely This set of |
| ..mechamcal data for unfert.lhzed sea urchm eggs are summ.anzed in Box4.1. We
- shall employ this same set of mechanical data for simulations of the three

tne_ch_an_ica__L experiments described next. -

Box 4.1, Mechanical property data for unfertilized see. urchinegg ..

‘| Diameter | 100 Mm
Initial streteh ... . .8%Z .. .| %
| Blasticity modulus £t - 0.5 dyn/cm R

.| Poisson's ratiov = ... . ;0_._5_ :

4.2. Con:preson Experiment

‘ The compresswn experunent 1nvclves squeezmg an egg between two paral-
lel plates. as 1llustrated in Fig. 4.1a. Cole [1932] first used the experiment to
estabhsh that the cortex of a sea urchm egg possesses some elastlc structure
Hiramoto [1983] and Yoneda [1964],__e_n_d__.more:_reeently__ Evans and. Skalak
| [1979b], have further analyzed the experiment and .provid_ed estimates of the

surface forces as well as the elastic modulus of the cell membrane.
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_.'._:Th_e_ m_e_th_od_.__cf.__cal_cul_a__tic_n by Cole [1932], and later modified by Hiramoto
[1963]. is as fol_lows._. __G.iv'e_r_x_ the current _gecmetry_ of-the _egg.. the surface forces
Nrm (or. N,) and- N** (or N,,) in dir-ec.tions- of -the meridian and the- equator,
- :respectweiy, can. be derwed based on equ111br1um consxderatlons alone. Con- _
sider a typlcal pomt on the equator;. let A nR,z be the area of contact; F be
-, the total applied. force. and Rl and ./, be the prmclpal radu of curvature at that

: _pmnt._a_s_.shcwn_ in Fig. 4.1a. The equilibrium equations-are: :

CRTEN™™ + F=nR*F/A. 0 o0 o . (41b)
In the above expression, 4, f?, an"d -Raf-'ar‘e ."e'i:'perimenta'lly- measured from
'_photographs of the eggs These quantltles. together w1th the known apphed
'.force F, can be used to compute the surface ‘forces N’“‘ and NP9, H1ramoto
[1963] further develcped the equation to. determme the Young's modulus based
on these data. ; _ |
A__s pcinted out_hy Mitchiso'n' and S_wann'-":['1'954b]'.- the major difficulty associ-.
ated.with this app_rcach lies'in the accurate 'm'e'asurementgof the area of contact
from photographs. bther procedures develbpe'd"'by'fcneda [1964] and Evans
'and Skalak [1979b] were able to elumnate the dependence on the area A. How—
| ever, these analyses had to assume that the egg membrane was in a state of iso-
troplc tension. The nume_ncal su'nulatinn discussed' below do"e_s not’ req'uit"e such
" an assumpt-ian:,“s-mea it automatically computes the area of contact based on
kinematics and equibrium considerations. Therefors this method allows more
accurate tepf'esentaticn' of the expenment, and provides an assessment of vari-

ous approximations employed by workers.
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4.2.1. Compression experiment -- modeling. = - : S
-As. shown in_Fig; 4.1b, _the__mo_del.represents_the-.synunetric-'half of an egg
. __comprjesse_d_:by a rigid flat plate. -We _-rnode_l the membrane ot the egg with forty
: __rn_e_r_nbrane .ele_ments:- and_.maint_ain the _vo_lume enclosed.by these elements. to be
_.'_cons_tant._ -We consider the plates :comp:ressing_ the egg.- to: b_e-r_igid.*and‘ the frie-
. tio_n between the plates and.the egg as negligible.: .
In the slrnulatlon. we apply the loads to the egg numerlc.ally over a number
s of load steps The ﬂrst step prestretches a: stress-t‘ree sphencal egg by 5 per-
_ cent As prestretchzng is completed the egg reaches a dlameter of 100 p.m. and
: each pole ol:' the egg touches the plate The subsequent load steps simulate the
'::compresslcn of the egg at a closure mcrement of 10 am per. step The force
-.requxre_d_ to .pr_oduce_--_thxs prescribed deformation  is -j_then ccmputed_-.i_n..the

;a_nalysis,..._ S

. 4.2.2.. Compressmn experiment -- results and dJscusslons
| Flg 4 2 shows .the deformed. shapes of the -egg ‘superimposed throughout
the loading hlstory. To compare these predicted--geometri'c forms:with meas-

_urements from. experlments. the graph. of the relative radius rp =R, / 2, versus

- the relatwe thlckness 2=Zf Z, is: plotted in Fig. 4 3 ‘where Z ‘is: the ‘initial

' chameter of the. egg These results are in. close agreernent w1th those obtamed
__from the. average of about twenty photographlc records, |

.The. force-closure d1splacement curve:in, Flg 4.4 shows ‘that the response of
.the egg to: ccmpresswn is stiffer at large closures ‘This data: trend ‘as-well ag
the actual magmtude of the. forces. compare well with the experlmental data.
At large closures, _the cornputed curve. dewates more from the experlmental
curve. This possibly _reﬂe_cts_ the gradual weakening of the cortex as observed

by Yoneda [1964], which has not been accounted for in this simulation.: -
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Figs. 4.5 and 4.8 show the comparisons of the computed contact area with
.results from experiments. ‘It majr--ap'p'ear-'that' _these‘ results deviate more for
.larger-ra_dius; { In_ fact, the contact area'is compute.d-'by squaring ‘the contact
- radius- o'biained :' from the computation. 'Thus, any '-deviatio'n“- of the computed
.-from- l'.he.' earperiment'al .'dat.'a'--is' -magn’iﬂed in i:reportie'n -to the radius s’qu'ared.
Nevertheless. the predlctlons agree well with’ the data measured photograp]:n—
e cahy. and roughly form an upper bound for the Browman motion’ data of Ynneda
'-_r.[1364] The s1mu1atlon alsg- shows that ‘the pressure dxstrlbutlon over l;he con-
~taet surt‘ace is approxlmately umforrn .
. --The_- dlstrm_utmn of the:surface force'S'-ever the entire -'surfa‘c"e":'_o'f- th’e*'eg_g' at
| -va'ri.ou's heights are'sho'wusup'erimp'osed- in"'Fig 4.7. These'rezsmts :s'up'po'r't the
- .findings-of - Cole [1932] end Hiramoto [1963] that surface forces increase with
| _..mcreasmg closures At low to moderate closure dlsplacements (z =D. 5) ten-
swns. remain roughly uniform over th_e region of the egg which is not yet in con- .
tact with the plate. This*--is_-be.’c-'a.use_ the inﬂuenée:'bf-'ﬁhe' contact region is n'pt
"s_igniﬁcantlf. felt n'ear.a'the:"equal:or-'.ai';' these stages. As the"egg= is+ further
- ce'mpreSSed,._.;he state'nf tens.ion'b_e'cbmes nonuniferm :
-There has been much' :d.isp'ute regarding the state ‘of ‘ténsion in the egg
membrane Cole [1932] Yoneda [1964] and. Evans and Skalak [1979b] con-
' -cluded thal'. lSDtrOp!.C tensmn was dormnant because the membrane at the équa-
tor exhibited eonst_an.t total eurva’ture; whereas-Hiramoto [1983] estimated that
“the: ratio.of heop st:ension to meridianal tension was about ‘1.5to 2 based on the
-caleulation oul_‘.lineﬁ abbr_e. The results in Fig. 4.7 support Hiramoto’s view. The
tensi.on.ratio. is.about 1.5 at various_.c10sure-.displac'ements.r SRR
-This: result can be better understpod by ?ex.anﬂnin'g the strain ‘variation at
the equator throughout_the .deformationihistory. as 'shown in Fig. 4.8. At small

closure displacement-. - Fig. 4.8 reveals that the meridianal strain “actually
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- decreases while the hoop strain increases. This finding is in accord with the
~ observation of Hiramoto [1867].- As & result, the hoop strain is larger than the
~meridianal strain by as much as sevenfold.” For an elastic membrane; the sur-
face forces computed IfrOm strai_n's _With this'large difference are not likely to"be_
: isotropic.‘

In ‘summary, -employing" esti'mat'e's-'of the -mem'b'ran'e '.'elastic' properties by
hlramoto [1963] the present study has predtoted results’ that are con51stent
. :w1th vanous experlmental observatlons Therefore, one can conclude. that the
contact area measur_ement of le_amoto [1963] is roughly correct, despite oth-
.-ers' 'doubt about its accuracy. 'Fnrthermore. the simulations have shown that
_the membrane 1s not in 1sotrop1o tenswn when compressed Methods that rely _

on ttus assurnptlon need to be reexanuned leamoto [196'?] has pomted out

.i_that the analysxs of Yoneda [1964] would lead to a serlous error m estunatmg
.-the surface forces 1f the membrane was not ln 1sotrop10 tensmn The results

'here shov'ur that thls is mdeed the oase

43 Suction Experiment.

" This method of measu'rtng the elastic prooerties of sea urchin eggs was
mtroduoed by Mltchlson and Swann [1954a] Rand and Burton [1964] later utll-
- 1zed the teohmque for work on red blood oells Slnoe then the method has
gamed wide acceptance in both ﬂelds. and has become one of the standard
methods for deterrmnmg the elastic properties of__:_cel_l membranes. 'B_y__e_mploy_-'
mg a pipette with mternal diameter smaller than that of the cell, a suction pres-
sure is applied to a part of the cell surface. as shown in Fig. 4.9a. The dlsplace-
ment of th_e ce___ll__surfaoe_ into the p_ip.e_tte caused by thts pressure provides a

measure of the "stiffness"” of the cell surface.
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) - Various attempts have. been made to _.c-onv_er_t. this stiflness! value :into
_elastic prppert_.ies of the cell mem_b_rene. : Mitc_h’isou and Swann [1954a] analyzed
| .the problem .ba_s_ed. on. membrane tpe_o:*jr._ They a_ssur__nec_l_ that no adhesion or

friction exiéted between-'the i)ipette and the. cell membran.e.-.so- that the mem-
..brane tensmn was umform over the entlre cell surface This surface tension
_ was; Eurther cons1dered as 1sotrop1c Thelr analy515 is as: follows.. Equa.tlons of

'; equlhbrlurn for the cell membranes inside and outsuie the. plpette are:

R-p=2L . a2

.'.'where T is the I.SOtI‘OplC surface tensum. P,. P and P are the ﬂuld pressures
.' '1ns1de and outmde the cell and in the p;pette, respectlvely. as shown in Fzg 4, 9b
":The radu of curvature of l'.he ceIl surface 1n51de and out51de the p1pette ('r and R
respectwely) charactenzes the geornetry of the deforrned cell as 111ustrated in
.' Fig. 4.9a. By ehrmnatmg P, in (4 2a) and (4 2b) an expressmn for the pipette

asplratmn pressure P(= Py ) is established:
P=P -P =.2T(,.1__l)- _ e {4.8)
a P ?'R SO I
" Another relation can be derived from the egg's geometry shown in Fig. 4.9a:
TR (ERA 2. (a4)

Combining (4.3} and (4.4} gives -

_‘?_-*_2.?.[:?+-d2/4: _R]_- o 4B

Equation (4.5) gives a relation of P versus z. However, 'a:plo:t: of {4.5) shows

that this curve is concave towards the x-axis, whereas the experlmental curves
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. are.almost linear (Mitchison and Swann [1954a]). ‘This- discrepancy seems to
result frqm the assumption _-.that._ -tension remains as constant with increasing
. deformation, when it probably increases due to the elasticity of the cell surface
-(H_ira.moto-[-la'?_o])-.--. Lot e

Evans-et al [1976] also used (4.3) as'the basis for their study of preswollen
red blood- cells - which. experlence large: isotropic tensions. : Together with the.

-__da.ta for p versus: z. they derived.the relatlon of the: membrane 1sotroplc ten-

o .-_-sxon versus fractmnal mcrease in. area of the cell surface

-.Ru::ha_rdson [1975] -employed’ a--_d;ﬂerent approach to det_.e_rrnine the elastic
moduli for red blood cell membranes Assuming the cell membrane "sticks" to
the plpette mouth (1 E. no-shp assumption), the deforxmty of the cell rnembrane
inside the plpette was modeled as the mﬂatlon of a spherlcal cap:. The solutlon
of this problem was _ob__t.amed by solving the membrane -equat,mne with an itera-
; t_._ive procedure. -__:A_mong': other-ﬁnd_i_r_l_gs,-_'the resulfs_--;showed-I_that.the state of ten-

. ;ls_io_n:v_ras not ieotrepic .at-__exf'e_ry. point on the cell m_embr_an'e. |
o .__-A'nalys_ee such as these have provided workers with_estimates_-.of .the'.ela_stic _
B p_z_‘o_perties..o_f__cell__-rnembran_es. ~However, the guality of _.._i:he-s_e. e_stimatee; largely
ﬁepends on whether the various- assumptions made:in the ahalytical model .'are
. _va.hd One of the rnost important, but perhaps the least understood ‘assump-
.tions regards the frlctmnal mteractmn bel'.ween the cell membrane and the
pipette. ... ...

It ie-_:very .difficult to:assess directly the effect of friction on stiffness meas-
__urements. Mitchison and Swann:[1954a)] observed that the:.surface of a sea

urchin.egg does slip. over the edge of the. pipette; however, -mes_t- other cells: of
' int._e_res't_- are too.small fo_r:__d_ir.ec_t_'ob_servatien._ Furthermore, -the amount of: fric-
tion (or slipping) may vary from one test specimen to another, and from one

species to another. An alternative to studying friction directly is to investigate
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: tne:-extr_em_e situations: (1) the'case in which friction'is 'very':'largé'.'-'allo'wing’ no
= siip.’ and 'f?.)-_the oaserin_which-_no:friotion'e'xists--at. the interface.: .

.- Most previous-analyses have: assurned ' either-the_-no¥slip-'o'r. the: no'éfriction
_condition; however, the theoreti.-cal. analyses were often spe.oialize_d't'o -'theipo'int
- that .:only one of tne"t'v\r.o"'.ei:treme* situations could: be: t’reated; ‘As’ 'a'-re:'sult._._ no
‘direet co'mpar;lSDns of these two '-extremeﬁ.cases'h'ave been ’made‘" T‘he'ﬂn’it.'e ele-
ment mel:hod developed here is capable of analyzmg both of: l'.hese sxtuatmns
and SO J.t provxdes a: means for thelr dlrect comparlsons T-he--results of':the‘

- simulations. suggest that frlctlon has a subtle effect on the response ‘of a cell to

-suction pressure.: . .ot Eon

-:4.3.?1‘-.-: Suction: experinie'nt -—'-*modéliﬁg; e
- Similar models-are -employed for the '-ease'Of :no'-'slipf and ‘that of no-friction.
- ’For both cases, we assume: a 5pher1ca1 initial’ conﬁguratlon (Fig. 4:10).: We ‘model
the portlon of the membrane inside the: -pipette: usmg ‘ten membrane elements,
-.and-.:I:he"r'emalnmg.--portwn"-by _-thlrtyr-membrane' elemenl'.s.- For the‘_-no-friction
“case; in: whioh---slipping of the egg -'m'er_nbra'ne' ‘over the pipette' mouth is‘antici-
':pal:ed 3 rneshing' is iﬂnerr near that re"gion": ‘We -also maintain the -'volume -'encl_os'e'd
- by the entire:surface of the egg as constant at alI times.

“The: analyses employ plpettes mth inner dlarnet.er of" 50 ,u.m for suctlomng
sea urchin eggs, whose diameter is roughly 100 um. Mitchison and Swann
[1954a) a.fou_nd: this pipe'tl';e/egg".-diamel'.’erira'ti_o to give the: best accuracy in
._-measdri_ng-.-deformati_ons:.-Here', the inner wall of the pipette piayS'-f'the role of ‘a.
‘contactsurface, and is assumed to be rigid. Accordingl;v; ‘the contact algorithm
constrains-the inflation of the-.egg_- 'surface to:take place within the inner.sp'aoe

of the pipette, .-
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The relatnre positioning of the egg membrane and the’ plpette depends on
- the following: factors Fu‘st the eggis: to be prestretched by 5 percent to reach’
‘al d:amete_r of 100--p,m._-and-that the- prestretched'-egg and the pipette ‘mouth
- then contact each -oth_er. “Another issue is the _'co_nta“_ét condition (ne-slip ‘or no-
: friction) at the 'egg .'metnbrane/pipette mo'uth"-inte"rface.'""FOr'the "'no-"'sli'p': case,
© the egg -a'nd the '-pipe'tt'e are placed such ‘that they"are'in' contact at the stress-
. free stage (F'l.g 4 10a) and a pomt on the egg 1s held ﬁxed at the plpette mouth
'. at all tlmes Thxs not only accounts for the no- shp assertlon but a[so prowdes -
a boundary condltlon that’ elmunates !‘lgl.d body motlons For the no- frlctlon_
B case; -__Ln which points on'the egg: sur_face--are allowed to move over the 'pipe'tte. '
mouth, the rigid body motions have to be eit:l_tidéti'in-a' different way. For this,
-"_the-'moa_el emplofs an‘artificial spring "ivil‘jh' very little stiffness at the top of the
'eg'g;'aé: shown'-in Fig. 4.-1bb.‘ ‘We add this spring in'such a Way 'th’at the a'co:ura:c'y
of the solutmn to the ongmal problem is mamtamed at the expense of sorne-
what comprormsxng the convergence rate of ‘the’ solution (contmbutmn only
-added to the- stlﬁness matrix, but not to-the- unbalanced load) --For this ‘no-
frlctwn case, 'we prescmbe a gap between the' egg and the plpette, as Lllustrated
in Flg 4.10b, so that they touch each other after the egg is'prestretched. Once
this contact is: estabhshed the artlﬁclal sprmg 15 no 1onger requlred :
The sunulatlon of the suction experu'nent proueeds ina sequence of 1oad1ng |
steps The first step involves prestretching the egg by 5 percent. The suction
.press.ure is then applied to the membrane inside the pipette at incrermients of 30

dyn/ cm?, based on the formulation outlined in‘Section 2,10,
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-.4.3.2. Suction experiment —- results and discussions. . ... -

Fig._._4.11___shows __th_e.sup-erp_o:_sed a_spirat_ed-;,shap_e_s of the egg; for the cases

- ..of n_o-slip' and of no-friotion. Cornpar_ison of these_--shapes indicates-that:friction
. does not sgmﬂoantly aﬂect the deformatlons of the egg. A close-up view of the
predlcted membrane movements near the pipette mouth is shown in Flg 4.12.
| Here, the outhne of the egg. rnembr-ane is.traced.by a number of .nodes. Ar-roWS

- are. drawn, to trace the path that each -of these nodes takes throughout the

'.?___.'__deformatlon hlstory For the no- slr.p oase, all Arrows’ are. found ms1de the

_' _. :_plpette Nodes msxde the plpette converge towards the pipette wall and adhere
to the 1ocatlon of ﬁrst eontact on.the wall, whereas those outslde of the: prette
._.;mouth tend to. remam statlonary Exammatlon of ‘the no- -friction case shows
that. the nodes. move: over the plpette mouth and progress downward along the
-_P.lp.e_tt.e_wa.ll- - This was F__Jb_S_EIj_V_Ed_ O_Q_:-Sea;-umhin: eggs by Mitchison and Swann

'__[1954a] | | "

ThlS dlﬂerence in the shdmg characterlstles between the two cases has vir-

N tu_al_ly___no___inﬂuenc_e on _.__t_he:pressure/d_is_placem_ent curve; as-shown in Fig. 4.13.
Both curves exhihit-. near ltnear.behavior. .and compare well with the experimen-
tal data of MLtol:nson -and Swann [1954a]. In.the figure, the slope of the no-slip

‘gurve is shghtly steeper than: that of .the no- frlotlon eurve, Th15 Ls reasonable
sxnce the no shp oondltlon constralns the deformatlon of the egg. thereby

| stlﬂenmg its response to. external loadings...

. Figs. 414 and 4.15 p l‘.ﬂ_v_i_.de side-by-side comparisons. of the spatial distri-
'butions of tensi_ons _and; strains in their principal directiens. ‘While.workery-kave
belieVed. that friction may signiﬁcantly affect the distribution of tension over
the egg surface, the results indicate that the distributions are almost identical
for the two cases. Furthermore, the tension exerted on the membrane inside

the pipette far exceeds that outside the pipette. This implies that the combined
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“actions of the tension of the rnernbrane inside the 'plpette and ‘the reactlon

“‘force exerted by the pipette’ mouth nearly counterbalance the net force due to

the' suctlon pressure The dlﬁerence between these force components is then

taken up by: the tension in the membrane out51de ‘the pxpette A force balance

“check at’ the’ pipette mouth shows that this is 1ndeed the case. o
- ‘Despite ian- indications that the effect of friction is’ .n'at* :1'}np6ftaﬁ-t“ to the

.--'overall response of the egg ‘to suction’ pressure there remams an 1mportant
'.-5.'d1fference between the no-sllp and the rio- frlctlon cases Thls requlres ‘a close

: :exarmnatlon of Flgs 4 14 and 415, Whlle the membrane is stretched over the

“‘entire egg surface in the no-shp case, it 1s'not som' the'no—friction'-'ca'se' In the :
| '-:reglon near the pipette mouth;’ the rnembrane is’ stretched along the mer1d1ana1
direction, yet compressed along the hoop direction. Compress:on in the mem-
' brane arxses ‘here since the model has assumed that the membrane has equal.
--'-reswtance for both tension and compressmn In reahty, th1n membranes have

extremely low re51stance to compressmn, thus any shght amount of compres- _
- ‘sion causes the membrane to fold. When th1s type of 1nstab1hty takes place. the
'-asplrated shape ‘may’ not remain amsymmetr:c Therefore. thls seenungly minor
'dlﬁerence between the two cases has slgmﬁcant lmphcations to the'b'ehavior of
.the egg. Smce some degree of friction exlsts in most cases,’ the egg may there-
: fore deform in an ansymmetnc mode 1n1t1ally Foldmg may then occur at some -
point, beyond whu_:h the deformatlon assumes an asymme_trlc buckled' mode.
Although this phenomenon has not been reported for sea urchin eggs, it is com-

monly :'obs_erve'd 'whe'nfr'ed blood cells are aspirated (see Evansi" [1983))." o
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| 44, Magnetic Particle Fxperiment.

o leamoto ﬁrst introduced this experlment to study the "nechanleal proper-
_ tles of protoplasm in sea urchm eggs. (leamoto [1969a 1969b,1970]). .An iron
:-_par_t_xcl_e_ _ol_.’_ 5 to _7___;._41'1_1 1__n diameter is first placed ms_ld_e_ the egg, .-and an -_elec-
_tromagnetlc force 15 apphed to mduce movements of the partlcle .The. speed at
__whlch the partlcle moves ms1de the protOplasm Bives a measure of the ‘viscoe-

_lastlc propertles of the egg-. leamoto [1974] employed the same techmque to

e measure the m.eehamcal propertles of the cortleal rnembrane There. the partl- . :

_ _cle lS ﬁrst drawn near the surface of the. egg Applylng the electromagnetlc _
::Eforce results in the bulgmg of the egg: membrane near the parthle -This gwes
: :the relatwn between the helght of this bulge and the apphed force whlch meas-
| ures the stlﬂness of the membrane | |

It l.S dlfﬂcult to establish an apprommate solutton for this- mechameal prob-
: _lern Evans and Skaiak [1979b] employed a numerical. solutlon to. eompute the
force-dlsplacement relatlon They assumed the tensmns .in. the egg membrane
to be dormnated by isotropic tenston . Here, Jwe employ the finite element

_method to analyze the experlment to demonstrate further the applications of

themethod. o

4.4.1. Magnetic particle experiment — modeling,

The _mo__de_l emp_l_o_ys_._S:O.me_mbrane elements to.represent. the t_op_.half o,f_--th_e
egg. as shown in Fig. 4. 16. In order to capture the detailed deformed: shapes at
large deforrnatlons the mesh is ‘more refined at the region near the particle.
The egg membrane_ is restrained from vertical movements at the equator.
Throughout the analysis, the volume of the entire egg is constrained to be con-
stant. The model assumes the iron particle to be rigid; the contact algorithm

simulates the mechanical contact at the particle-membrane interface
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accordingly.

- As in the.previous simulations,: the loading sequence is carried out in a
sequence of load steps. The first step involves pr'estressing. the. egg by 5.per-
-cent ~The .unstressed egg is. mzed such that its diameter is. 100 um when
: stressed Followmg this prestress operation, -the entlre particle is: dlsplaced
: up_ward_ at a constant rate.. The force required to stretch the egg membrane is
_ l_a_ter_dete:ﬁm.inegi in the analysis.

4.4.2. Magnetic pa_.r_ticle exper_iment..-_- results and discussions. . - =

'..The deforrned.shapes: for 'mcreasing electrofnagnetic- force are shown
:_superlmposed in Fig. 4.17.. Whlle the. applied force draws out" the egg: surface
| near the particle, the dlsplacement of -the .internal volume causes: the lateral
..dnnenslon of the egg to deereas_e elightly. so that the total volume of the egg is
conserved. .Ae a result, the hoop tension near. t';_he-eqﬁatcr; drops when tensions
near the particle continue to rise (see Fig. 4.18)..

.. - Figure 4,18 also _ill_ust_.r-ates ,t:hat r_nemb_rene s_t_.r.e'tching ijr;ainly-.occurs'nee.r
- the particle. The stiﬂhess;value of-.._the_ membrane obtained by this-.rﬁeth'od'
there_fore_ reflects a local membrane property. For this_:reasoni the me_tho'd is
useful to detect possible difference. in mechamcal prepert1es ‘over. .various
"regmns of the egg. | | | |
: __._The._a.pplled._fprce versus the height of the bulge shown in Fig. 4.19 exhibits’
a stiﬂening behavior. This agrees with the prediction of Evansand Skalak
[1979b]. However, there is hardiy any experimental data available for com-
parieon purposes. The curve in Fig. 4.19 compares well ﬁrith the single force-
disPIaeeinent dat.a given in Hiramoto [1974]. More data are needed to judge the

quality of the predictions this simulation makes.
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4.5. Closu;e.

We :heve:-dexﬁonstrated here 'that the finite element tools developed in
-Ch_ap.terS“_Z__-.-.ahd'S. -are:'use'fu_l in '. aneljrzing -v'arioﬁ's -‘fhechanicel e"i_tp"ez"i_m'ents'bn
. cells, :'_'We belie\_re'-t_his approach:is nof only ﬁseful.for_&eternﬁnin’g.mechanical
properties ef cells, but it also gives _insights-thaf‘. 'approi:irﬁate-aha'lyse's:{:annor.
.'pr"'ovide.-.; Based on .th.e 'ﬁnite.--e_lemem' -'analysias,'- we now under_sta;nd_'the' role __of
friction in the suction experime.nt. We are better able:-t'o' judg’e-th'e' validity of
' varmﬁs assumptlone workers have made in .thelr eﬂorts to del‘.errmne the |
-mechamcel property -'data Wlth these mmg’hts-.'--we-' can’ deSLgn“-lmprove'd
_me_thdd_s. which ‘may: yield 'better jda.te.._' Since “the _t.‘ln.ite :eleme':n't' approach
'impbses few: r_esﬁrictions on:the--g_'eo'metry of the "ﬁrobiel‘e. we need_ net'- 't’._"dr._l’c'ern
ourselves ' with' the -g.eemetric- .comi:lexitiee ~while cieeigning : 'imp'rmreci .- experi-

A.lthot_lgh we-have'restricted our discussion to unfertilized sea urchin eggs,
the methodology applies equally’ to other 'eells and tissues. In _mo&eliﬁg' red
blood:cells,-we will need to ‘.a'c_::couht. for its large resistance to area deformation.
Details. of the formulation have already been worked eﬁt-in Evans and Skalak
[197.9a].-. By including: the!-be-riding’ eflect, the method can also ‘analyze experi-
ments on thick tissues. Fmally, we can mvestlgate mechanisms underlylng vari-
"ous developmental events in t‘ertthzed eggs There. we need to model the SLmul— :
taneous actions of the natural: event:(such as"c}rtoki'ne'sis.- ‘gastrulation,’ etc.)

and the external influence the experiment imposes.
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Fig. 4.2. Superposed deformed shapes ofa sea wchnegg
- compressed. by rigid plates.
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Expenmental data '
: ” from Yoneda (1964)

o N
Slmulatlon o | )

(1073 dyn )

| Appli'ed force

50

'-"-"___:'_fclosur_e_; :_:d'isplaceme'n_t Z,-Z (um) '_

Fig. 4.4. _Compre_s'ision" experiment —— force vs closure displacement.
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(1076 dyn Jum )
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O

- closure

‘Meridianal tension

‘equator

closure

Hoop tension (10-% dyn/um )

0 - .
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Fig. 4.7. Tension d_isfribdtiqns: on membrane of a compressed egq.
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Fig 4.9b. Fluid pressure acting at various locations.
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Fig. 4.12. Loci of points on membrane of a sea urchin egg in suction experirhént
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Ny Stress—free egg
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Fig. 4.16. Analysis model for the magnetic particle experiment,
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F|g 4.17. Supenmp sed deformed shapes |n magnetlc partlcle
experlment on sea urchin egg. |
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Chapter 5
Mechanical Aspects of Morphogenesis

| b.1. l.ntroduction and overview.
The shapmg of an embryo. or morphogenes1s. results from a sequence of {;
orchestrated movements of its constxtuent cells. Dur1ng morphogenesls shape__
.:':'f:-'changes in cells embedded in cell sheets (called epzthelm) cause the sheets to
| roll, fold 1nvag1nate or undergo other types of deformatlons A second type of
.'.f:j?:cells (mesenchyme) rmgrates as loose 1nd1v1dual cells. the1r shape changes. |
"-.'_result in rmgratory movements Moreover, cells frequently convert between_ f
:'.'..iepltheha and mesenchyme These movements brmg about rearrangements in .
tahe embryo. Erom a state that is more or less homcgeneous to one comprlsmg
_;_::'oell.layers -'mth spectahzed functions whlch ar’e the rud1rnents of future organs.
The molecular details drwmg these shape changes are not well understood_
| at th1s tlrne However we now know that the elastlc propertles of the consti-
.::tuent cells, and their ablllty to actlvely contract in a manner analogous to that
of muscle ﬁbers. are largely responSLble for these activities (Oster and Odell
B _:[1984]) Therefore. it is. p0551ble to study the shaplng of embryos frorn a purely
:mechamcal v1ewpolnt In part1cular. we need to determlne the forces that drwe
_._'_;these shape changes, _and the eﬂ.'ect of these forces on the embryo as. a whole
Understandmg of morphogene51s from this perspectlve will help gulde the next
.level of mvestlgatlon -- to understand the molecular basis for these driving
"forces. . | |
The tools developed in the earlier chapters provide a basis for studying
| v.arlous. aspects of animal 'Ihlorphog"enesis." We focus here on two significant
developmental events -- gastrulation in sea urchins and neurulation in amphi-

bia. In these studies. our emphasis is not on the molecular basis of the cell
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..shape changes, but.on the mechanical consequences of.the;motlon itself.. . -

_ .After_fert_ilization, ‘an egg undergoes a sequence-offéell divisions, and is

. subdivided into a large number of cells. (Stages 1-8B, Fig.. 5 1). These cells are
' arranged to form a cell sheet. layer which encases a cav1ty in the center (Fig 5 2
for sea. urchln ernbryo) Durmg gastrulatlon. the basw body plan of the animal

is estabhshed (Stages 9 14, Flg 9.1 for newt embryos, and Flg 5.2.for sea urchin

embryos) The reorgamzatlon and rearrangement of the oell sheet produce

E three cell layers The outermost layer. the ectaderm.. will eventually gwe rlse to: -

the .nervous system and the eptdermzs - the outermost body wall the:inner-
most layer the endode'rm -will. become -the : gut and other mternal ‘Organs
related to the dlgestwe tract; and the layer in. between these two, the ' ‘meso-
den_n;.. will -_fP-_F.l?l_: tissues such as _;the_:skel_etal_.sys.tem._.-muscles -and connective tis-
sue:s.. Following gastru_la_tion-. .ver-tebrates' undergo .theﬁpr.oce's's .of neurolation.
which establishes the spmal body axis. Durmg this process, the: dorsal side:of

the outermost cell layer rolls and elongates to form. the rudlment of the future'

nervous system ;(S_t_ages -15~20,-.-Fig._._5.1).' :

5.2. Secondary invagination in sea urchin..:: : |

5_..2.1.'Introducti.on.- pes
---.-The sea urchin'is a favorite organism to -stUdy -gastrdlation.-:beca’u"s"e""the
movements involved: are: less cornplex than the analogous processes ‘in other
embryos. Furtherrnore, these: embryos are easxly obtamed in large" numbers,
they develop rapldly and synchronously. and many BPECIES ‘are transparent :
allowing detailed observatiorn of cellular movements durmg morphogenesxs.' He
| 'Castrulation"in.'sea'-urc.hin:e'rnb"ryOs occurs in two phases (Dan 'an:d"Okasaki'

[1856]. Gustafson 'and Kinnander:[1958]). mmaryrimezgﬁimoﬁ involves the
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inward buckling of the embryo wall at its vegetal pal'e(s'eeFig 5.2a,b), to form
the gut rudlrnent or’ crchenteran AS’ pnmary mvagmatlon proceeds, ‘the gut
' :-rudlment whlch is roughly cylmdncal in shape, extends 1/4 to 1/2 of the wa}.
. across’ the blastocoel {the large ‘central cav1ty w1th1n the ernbryo) the length of
. the gut rudu’nent varzes dependmg on’the SpEClES CA shght pause marks the end
. of prlmary mvagmatwn. durlng whlch time the gut rudlment does not- apprecl-
'-: 'ably increase in’ length (Gustafson ‘and’ Kmnander [1960]) o
The onset of secandary mva.gmatmn is marked by the appearance of long,
| ---.narrcw-.cytoplasnnc ﬁlaments --kncwn as ﬁl_apodw_ -prot-rudln_g from the secon-
: dary-.msenchymé: cells at the tip of the gut rudiment (Fig. 5.2c,d). The .ﬂ'l'o'po'-.
~dia contmuously probe the ‘inner surface of the" embryo wall as’ gastrulatwn
: contmues. those whwh make stable: contacts with cells'in’ the oppomte wall, the
.' cntma!;pale.of t-h.e._ern_bryo. stl.ck-thereand-:form -’-‘ccnes of attachrnent"-. EIOn-
..gatwn of- the gut rudlment alsc resumes at: approxu’nately this: tlme. and contm-
.'-_ues untll l.t reaches the oppomte wall of the embryo. (F1g 5 2c,d). Where the gut
rudiment makes contact, it fuses v_nth the cpp_omte-'wall of the embryb'; thi's will
 be the sit_.e of the future mouth. The blastopore, the external opening .of the
-'archenteron shown in Fig. 5.2, will become.the anus o‘f:the' f.uture larva.: -
A number of workers have anestlgated the role of secondary mesenchyme_
! cells durmg gastrulatmn in sea urchln embryos F110p-od1al-pu1hng by_th_ese :
mesenchymal .cells -has -tradltlonally-. been regarded: as “the:sole mechanism
'.respcnSLble for. secondary lnvagmatlon durmg sea urchin gastrulation. Studles- ;
have shown. that treatments :which - norrnally dlsrupt ﬁlcpcdlal formation. and
a_ttachme_nt_fu;deed-_Lnterf_ere with gastrulation of sea ur_.chln -embryos (Gustafson
.E,l‘nd Wolpert [1963], Dan and. 0_ka_zaki';[.195___6.])_- - However; these treatments may: -
h_av_‘_e _affet__:_:te;__i_p.ther._._.prccesses_which.ar.e-.._imp_or-t_an_t in: secondary. invagination.

F_nrth_ernlc_re_. the phenomenon. of -ezagastrulation, the formation of an. everted:
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___gut (D-an and Okazaki [195_8]. Horstadius, [.1973]) suggests that the gut rudi-

ment 1tself has some mherent oapamty to elongate. To clarlfy the processes at

: work durmg secondary mvagmatmn, 1 have collaborated w1th an experimental

 biologist, Jeflrey Hardin, to investigate the cellular mechanisms and mechanics
of gut rudiment elongation in two species of .s_ea__urchin. Ly_tec_h_'inus picfu‘s_.a_nd
_Strangylocentroms pu'rpurums Our  studies (Hardm -and Cheng _[1986])
..strongly suggest that m addltlon to whatever tension i is generated by. contract-
' :mg ﬁlopod1a. actlve forces exlst whmh cause oells w1th1n the gut rudlment Ltself

to rearrange to form a longer. narrower tube

522, Numerical simulations. Archenteron elongation during sea urchin gas-
trulation. | | |

__ .lt is not lrnown whether the forees responsible for the inward rolling of the
vegetal plate durmg prlmary 1nvag1natmn contmue to act durlng seeondary
.mvagmatlon lf the embryo is made of elastle materlals. then "unloadnng” these
for_c:e_s_ _mll___eagse the__ vegetal __plat_e_ t_o_:_un_ro_ll_. The fact that this. unrolling is not_
'observed suggests th.at if the embryo. is elastie this ao-tive force. ml.ist persist
throughout seeondary 1nvagmatlon On the other hand the embryo may be
cornposed of a v1scoelast1c mater1al whose memory of l.tS stram hlstory "fades!
'-mth tlme In that case. "unloadmg" the active forces w1ll not undo the deforma-_'
tlon that has taken plaee. and, the embryo remains in 1ts newly deforrned-
conﬁguratlon Smce the meohamsm causmg prlmary mvaglnatlon is not clearly
understood our sunulatlons adopt the latter view. Accordmgly. we treat the.

shape of the embryo after prlmary mvagmatmn as the initial  stress-free

conﬁguratlon T
Figures 5.3a,b show tracings of embryos such as L pictus, which are some-

what_pe_ar_—_s_haped, have rel_ativ_e_ly.thin_ w_all_s, and which h_ave_ relatively short gut -
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rudiments at the end of p'rinia'ff invagination. In contrast, Fiigur'eéfs.séia show
.*I'._r:a'o'in_g”s of 'érrib'ryo's'. such as 'S purpuratus, which are more flattened, have
::_'somé'ﬁrha_t".thiok_ér'_'.wa'l'l's.' and 'w'hich'hai'rez a relatively short distance to traverse
" during secondary iﬂ?aéiﬁ&tiohf {Bc}thi models take into aéedﬁﬁt' the thicker wall
at the animal pols of the embryo. ~ ° S

U We use fifty axisymmetric shell elements to model the bending, shearing
“whnd -Z's.ti-etohihg' in the éfribrya wall. 'we’assume the ‘material of the wall to be
:"'elastw, (see Equatlon 2.8, 4) and undergoes large deformatlon durmg gastrula-_
tion. We also maintain the ﬂuld ﬁlled volume bounded by the ernbryo wall the
blastocoel, t_o be_c-onstant throughout the deformation history.
“ In order to simulats fllopodia pulling on the eeiling of the embryo, we
. impose a uniformly 'dist_ri_buted load acting over a_soheoicél cap in that region,
and directed towards the tip of the gut rudlment Since theﬁlopodla also pull
‘the tip of the gut r;u'di:m'ent by equal and opposite forces, we model this by main-
5 téim'n_g'f the tip “of the gut Fudiment stationary. Accordingly, the reactions
induced by this kinematic constraint are the desired equal and opposite forces.

* The fist result of the stmulations is that when the gut rudiment possesses

l:h"é sarhe'riiéoh'a'nicol pg.ro"p'értié's' és:t:l'x}e'z:ost of the embryo, denting of the roof
of the ernbryo 1nvar1ably results Dentmg is especxally pronounced in the case'
of L. pmms (Fxg 5 Sa) but it also occurs in the case of S’ ;purpurahw although ;
to a lesser e_xtent (Flg. 5.3c). ’I_‘hls result is conswtent w1th the fact that the gut'
rudiment and the roof :of'the:ér'u.ﬁfyo', having fou_éhly equal stiffness, 'aréisuiléd'
by the filopodia with equal tensions. When the shapes of the actual embryos are
‘compared with the predicted shapes, however, one sees that marked deflection
of the enibryo roof is never observed, at least in the two species ﬁré"":have 's'iﬁ- |
died. : An occasional 'S, pwpuratus embryo will exhibit a small r..lé:g'fe'é of dent-

ing, but L pictus embryos have never been obs;éi"v’e{:d'::to"'u_n'der'gd 'ttii's ‘type of
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deformation.
-_Wh_e_n the gut rudiment is made relatively more compliant than the rest of

-the embryo (fivefold or more), _the embryo roof does not deflect (Fig. 5.3b,d). In
this _t:ase. less tension.is required to distend the gut rudiment, and the:rela_tive.ly
_st_iff__ roof is ab_le.'.-_to —withsténd;.the :tract_ioﬁ exerted by the filopodia: : Thus in
order. for the =classical-notion of..ﬁlopodial--traction to be -con'siste.nt'with--the
_observed shape of the embryo. the wall of the gut rudlment must be rnuch more
.comphant than the roof of the embryo . | | |

: -However, -even when the archenteron is.assumed-tobe much more compli-
..ant than the rest.of the embryo -two .additional mechamcal consequences: of
ﬁlopodlal pulhng are apparent.. First, the blastopore {the external -opening: of
the gut) does not constrxct as the gut rudlment lengthens:: 5 pmpuru.t'u.s gas--
'trulae do exhibit .a relatwely wide blastopore (Flg 5.3d); however, the blasto-
pore . of L. pwtus gastrulae show. marked constrlctlon (Flgure 5.3b).: Second
ﬁlopodlal contr.action--- results in. a- slight- ﬂattening of: the embr-yo --Here-again.
"embryos such as. S. puvpurutus do: exhlblt some-flattening (Flg 5 3d); in con-

trast .embryos: such as L. pwtus maintain.their pear-shaped structure (Flgure-

5.3b). - T T P R R

5_.2'.3..- Fllopod.mlpullmg is: nt;t the-aolé mechanismtor ﬁtchelitéron éloﬁéatioﬁ |
The . questlon posed . here :is whether ﬂlopodml contractmn itself . is-a-
suﬂ'icwnt mechamsm responsible for elongating the gut rudiment. For a Iong-
time, the answer to this-question has been.yes. Qur:numerical and experimen-
tal studies (Hardin and Cheng [19B6]), ;ho_weveri__stronglf suggest that it is. in-
‘fact the combined effect of filopodial contraction _an-d-_an:additio-n'al -éctive :':for..ce :

system that drives secondary invagination.- - -
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The following observations have been made based on the mechanical simu-
‘lations: of filopodial '_'pulling ‘alone. ' First, denting ‘of “the embryo ceiling and
:'.ﬂattening of ‘the e'nt.:.ir_e _ernbryc will oeeur if 'l:he gut rudiment ‘has 't.he' ‘same
'-mec’hanical:p:'rop'erl:ies .las ‘the:rest of :the"em'bry'o'.' Denting does occur ‘in some
.:s'pecie's- in .e'xtreme cases some' embryos'-take =cn:- an almost "biconcave" appear-
‘ance (Okazaki [1956]) :This. extrerne case rnay represent a sxgmﬁcant contrlbu-
-tmn by: ﬁlopodlal pullmg If no; dentmg is’ to occur, the gut’ rudlment rnust be
very cornphant in compa.mson w1th the rest of the embryo S1nce 1t is nol'. known
whether such a-difference in: mechamcal propertles actually exlsts in these
embryos. . thr.s case. of no: dentmg suggests that other mechamsms besuies
-ﬂlopodlal pulhng. rnay ex15t to help elongal:e the gut rudLment |

Second ﬁlopochal pulling alone ‘will produce ac relatwely wide blastopore
'Indeed the thicker-walled embryos we have exanuned tend to have wider blas-
N topores (e. g S. pwjpurams) However. embryos such:as L: pwtus possess con-
_ -trlcted--.blastopores w‘tuch actually'- decrease’ in’ ‘diameter :as gastrulatl'on'

'proce_eds'. This 'ag:ein suggests the pcss'ibility' that an additional mechanism may

“be: .at' .'_wor.k..::Howe'ver;-.this ‘additional mechanis’m may.not- necessarily be: the
same mechanism that helps the gut rudi'menl:. l'.o elongate.'

- Our experunental findings (Hardm and Cheng [1986]) augment the above
: arguments Eased on: tlssue sectlons we. found that the number of: cells in’ the'-
- circumference of the gut. rudunent. decreases ‘sharply: durmg gastrulatmn At
the: same txme. the ‘aspect ratio (the dunensmn ‘along: the longltudmal axis
versus the: dimension in-the -clrcurnf_erentxal"-dlrectmn) ‘of thes’e cells in‘the gut’
_rudiment rema-in_s:consta_nt while the gut r_udiine_nt lengthens. ‘These two obser-
vations suggest that :.extensive cell rearrangements do occur in the gut rudi-
- ment during secondary invagination -- the cells in the wall -oE the gut rudiment -

repack preferentially along the longitudinal axis to form a longer tube with
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smaller diameter,

1t could be argued that the cell rearrangements observed'here ‘occur-as &
-:passwe response to stretching, and not because the gut rudlmenl: actively
;elengat.es However, :our experlmental findings strongly suggest that the latter
- is indeed the case. In Hardin'and Cheng [19886], we 'artiﬁc'ia'lly'induee'c_l"eko'gam
‘trulation in L. pictus via treatment with -lii:hiuni' chloride. 3whe'n so treated, the
- evaginated: gut rudiment: lengthens followmg the first’ phase of evagmat’.lon {Pig.
. 4a) in a manner resembhng the normal proeess of secondary mvagl.natmn
/(Fig.-5.8b).: -However, elongation ocours wzthoutﬁl_opadidl pu,llihg by secondary
. mesenchyme cells. .Fur.thjermore. :-see'ondar-y ‘eévagination seems to be- -aeee'm-
‘panied by a: decrease in. ‘the number of cells in the clrcumferenee of- the ‘gut

-rudlment as:in the normal case;

- We. conclude that; the combined eﬂect of ﬁlopodLaI eontraetmn and'active

N .eell rearrangements drives seeondary mvagmatmn 1n the sea urchln The rela-

tive eontrlbutlons of the two' proeesses seem to vary arnong dlﬂerent SpEClES
E whlch could aeenunt for the wide'range of morphologles observed amongst sea’
. ureh_m.-.embryos.“ Based on sur findings, a greater contribution by fllopodial

contractions produces ‘denting in the embryo ceiling while the gut rudiment

elongat.es, whereas actwe ‘cell rearrangements does not result in such dentmg '

- In both cases ﬁlopodlal contraction is: unportant for the proper eompletmn of'
gastrulatlon. both by stablllzlng the lengthening gut rudiment, and subse-

| quently guiding it to the site of the future mouth. -
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- 5.3. Neurulatmn in amphibia.
53.1. htrnductlon

_ Neurulatmn ln vertebrates is another example of: cell sheet: invaginations.
_Amon_g__?ert_ebrate_s. amphtblan neurulation:is. the simplest-to stu_dy_:'.thelr'ner-
. Yous .system do net.-grow '-'during .- that perlod of-time. :and some aﬁlphibia"'have
: '_ large cells so that chreet observatlon of cellular activities is possible. - In the fol-
- ._lowmg. our. study of neurulation mll focus on the Callforma newt. Taneha. torosa
.-._'.(Ja.cvl?_.son.[.19_8_1_]_)--__ | i |
As. gastrulatleh IS -completecl' the. elnbryo is 'reorganized inte'theithree’eéll
.layers discussed. above ---the. endoderm. the ‘mesoderm” and the eetoderrn. In
Durmg neurulatlon, the hermsphere of ectoderm on the dorsal side of the
:embryo ﬂattens to form the ne'u.'ral plate Underlymg the neural plate along the .
'_mldlme is the notachora‘. (Fxg B 5) ‘The portlon of: the plate: dlreetly above the
notochord is. referred to as:the: natapla.tl Whlle the ﬂattemng takes plaee the
'WLdth of the neural plate decreases, and cells-in: the neural plate change shape
'from cubmdal to eolum.nar (stage 17.in: Flg 0. 5) The plate then elongates along
'the_._r:mdll_he_a.nd_ -_ce_l_ls_ in the notoplate undergoes_systematlc--ne_lghbor- changes.
“As a. _:re_sul_t of _thesﬁ_g_;_n.l_overnents, the disc-shaped plate distorts: in.to-_a key-hole
- ahape._.(Flg._.5_.6_)._'_1.?;i:_1'1_'a_11y.- ﬁr_hile- the-;_elongatien;_persists; the neural' 'plate rblls'-
| into a tube (Fig. 5. 6 and stages 17-21-in Fig: 5.5). This closed tube is the rudi-:
' ment of the eentral nervous system. from:which the braln and:the spinal cord'-
will form. E
o It is not easy to ascertain the underlying mechanisms driving the various
ntovements that talte place during neurulation. A number of workers have pro-
posed models to explam how cell sheets invaginate (Ettensohn [1985]). Among

various proposals the apical constriction hypothe51s of Burnside [1971 1973]'
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;ap_pears -to..be most. favored. Ultrastructural - studies: have shown that
;-mi_c_rcﬂl_arnents ~are circumnferentially. cr'ganized near the ‘apical surface of
" neural -plat_e.cel_ls_ (Fig. 5.7): -The possible.constriction: of these rnic_roﬁlaments
| - induces ce_lls to become ._-t_aller -and -at-the-.sa'me_ ‘time expand basally. The basal
- expansion pr_od_u_c_es @ bending moment that roll_s t:he:.neural plate into a tube.:
3 R'ecently, Jaccbscn, Odell and Oster [1985] presented the-carticcl_'ztractor
model for driving the mcvements of cell sheets They view a cell sheet as a
dynazmc structure each cell cortex drwen by its- contractlle machmery. cycles
-its cytoplasm in-a: ﬂow pattern whose tune average is shown in Fig.'5.8. Mem-
.brane and adheswe structures are mserted 1nrthe-basa1 and'-lateral-surfaces.
ﬂow aplcalward and are recycled to the cell mterwr in the. aplcal region: June-
.tlonal structures pile up at the aplcal cu‘cum.t'erence and maintain: the “seal
_wh_xc_h_ isolates .the.___e_mbryo fr_crn_-t_h_e external.chenucal envu-.onment. :The corti-
cal tfactor model further_._ 'attl_jibute_s rnt‘)rphogenesis_.of --an-'epithellurn._t'o the
diﬁesence m tractor:intensity amongst cells within.a. _cell- -'sneet.: which ‘may be
stimulated 'by local ionic conditions Accordlng to this model cells can "trac-
tor! within the: plane of the cell sheet, thereby: changmg their neighbor relation-
Shlps, without vm-latmg the integrity of the _aplcal seal. Furthermore..'cell.:trac-_
toring in the. du‘ectlon norrnal to the sheet surface can cause cell shapes to .
'.."change from cubondal to columnar These two motlle--_ actrnt_les.:'are indeed
observed in neural plate cells during .'-neur.'_ulation.- The cortical tractor: -n-lodel
f_ur_ther suggests.that neural plate cells; tractoring faster than:the neighboring
epidernl_al; cells. (see- Fig. _.5.9). ;w-il_lzcrawl.;_b'ene_ath_ the.'-epidernﬂs.«. {This- active -cell'- |
cr_awl_ing.-.is_ _b_elleved to calus_e--the neural plate/ eplderrn_is boundary:to-elongate,
and meanwhile produce a .ben_ding moment £o roll the plate l_nto. a tube (see Fig..
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The cortical tractor-:andéthe-.apical:e'onstr-i'ctidﬁ modéls provide a number
wof pessi_ble rneehanis'rns for the various:cellular '-'events.'during'neﬁruldtidn.“'We
_:shall perform numerical snnulatluns to | assess. the relative importance of several
of these mechamsms Based on: these results. and on results by other workers,

we shall try and deduce how the various processes eont’.rlbute and fit together

durmg neurulal‘.l.on

o ¥ 3 2 Neuru.latxon in amphlbla Numerlcal snmulatlons

We study here several: posmble mechamsms of neural plate deformatwn
_separately-.m order to :'assess'thelr'..relat-we' 'contnb'utlo'n's to fthe’- obsen'r'ed: mor-
i phologicel'-ch'anges Qur focus is on: the three: pr1r1e1pal cell . muvements ‘that

' drwe the: process of neurulatlon .
1. columnarization of cuboidal cells (i.e. inerease in the'cell height/cross sec-

-._.tional_:'.area..'_i;atio) to form the.initial neural plate. .

2.1 .elongation of ‘the neural plate -associated: with _::aeti've3e.ell'-repa:ck'ing”:-'(i-.:e.
~‘neighbor-exchange). i/ ;.0
3. . apical .c":onstrict-ion.:__an'd. basal expansion:of -ela_te' cellswhich' roll the plate

i '-into:_a'l:ube.*

5.8.2.1. Columnarization. |

shi -Odell 'et'al--[lgﬁ_l] simulated ‘the neural plate by a finite element plane
“stress truss m_edel-'t-ha-tt-:inirolved. only bending momerts generated by ‘apical
constriction. They. found that, regardless of how the contraction initiated (eg’
at the C_en.l':er. or at the plate edges) the first event'was the columnarization of
the active: cells and the:flattening of the active cell pcipula.tio'_n-;into ‘a plate. 1"
have collaborated with these workers in constructing a model for epithelial-

deformation driven by the cortical tractor mechanism. Our study, as described
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below, shows that cell tractoring: can also. produce co:in.nmarization of :the

neural plate (Cheng, Murray, Odell and Oster [1986]). ..
First, we consxder two adjaoent cells of the neural ple.te by trapezoidal ele-
. ments whose vertices are denoted by (1, 1 i 1.+1) and refer to the cell mth
_ _boundarles i+l as cell i:(see F1g 5. 10) We shall employ the: follomng nota-
. tion: _ :
. * . H =the height at node 4 (1 e..the. boundary between cell i.and cell i~ =1).
B : - H, = the lmtlal (unst’.ressed) helght of each cell |
o Bo=the width of cell 4.
W= the-initiﬁ_l-(unstreSSed) width of eaoh-'cell.-..
TRy 1 l‘.h_e'velol':;ll:y= of the oorticel :f_low- incell'i:
. s ¢ k. =the passive 'extensional--modi:lu's of each cell. - Sairnnne
oGz the :passire shear-- moduilus of feaeh. cell,
: - i . o =the: actwe shear: modulus for. each cell'due to tractor motion, -
s The equatmns of motion: of cell i are der1ved by wrltmg down balance equa-
.tlons on node 4 for the vertical force components ‘Since the mertml force act-
'mg on embryos of this scale is negligible: (Odell et al [1981]) the force balance

_equatlon for node i at steady stateis

I
(m"'ﬂi-l I#) (Iii 1+I£ H) I. l|+Gl(ﬂ Ht 1)+(& f‘ﬁi—l)] (5 1)

. —al('vi—ﬂt—q)Hil S

_The terms on the left hand mde above are the.p.a.ssrveres.letln.g foroee to .el.rten-.
' sion at node i and to shearing by the celle on both SIdES of node i, respectwely.
The nght hand 31de gives the active shear forces generated by the traetormg
 motion. Here, the absolute value is present since any rele_twe velocity change

will generate an active shearing force. The active shear moddlus per unit height
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'is o, and so must:'be"multiplied'b_y' the cell height, A/, -~

We also impose an incoripressibility constraint on each ¢ell: -

Thus itis possible :.:to' express the equilibrium equations (5.1} in'terms of H, only.

The slmulatio_n o.f (5_.1) and (5.2) is straightforward. The equations lead to
a .stiﬂness matrlx'.f that: is 'syrnrnetric- ‘and tridlagonal'-Whieh“can- be solved by
.standard equatmn solvmg packages Two results are shown in Flg 5 11 whmh
1llustrate some eountermtmtwe propertles of the cortlcal tractor model. The
| tractor v_elomty is a mon-otone.functmn of local -chermoal-cond_ltlons, and so the
‘lrariati.on. in the traetor velocity ﬁel‘d..'can‘ 'be--taken.- as reflecting the -'spatial
chemical concentratmn dlstnbutlon In Flg 5.11a, a unlform gradient in trac-
tor veloc1ty. v, produces a plaeode of constant helght iie.;aconstant displace-
ment ﬁeld .-ln- -F-1g -'5 11b, a.pemodlc tractor .veloclty'-.-ﬁeld- "u(z)“ producesr-a d.lS-
.placement field. whleh is shlfted with: respect to the: veloc1ty fieid.’ Thus the mor- .
phogenetic movements generated by the: eortxeal ‘tractor do not: correspond
'_Smely to the pattern of ehenueal coneentratlons but to the grudzents in:con- _
: centratlons | |

ThlS model demonstrates that cell tractormg can also produce colurnnarl-_ :
zatlon of the plate Therefore on the basls of this model and that of Odell et al
-{1981], it is only p0551ble to assert that elther. or both, mechanisms -- acting
mmultaneously and umt‘orm.ly over the presumptwe plate -- can produce the 1n1—

tlally ﬂattened neural plate _ ._
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5_322 Rolling

The combmed eﬂects of aplca.l eonstnotmn (vxa apleal ﬁlament constrlctmn
”and/ or tractormg) and cell crawling is to produce a rollmg moment Elongatlon
' :.of the notoehord can also mduce a rolhng moment by generatmg a transverse
_:eompressmn ("Pmsson buckhng”) We ﬁrst study the .pure rollmg problem
_.employmg the axlsymmetrlc shell elements developed in Chapter 2 The elonga—
..tlon problem will be studied next. |
_ _. We model the embryo as a torus. mth a very 1arge ma]or radlus (see F1g
‘.5 12) By thlS approach the embryo is eﬁectlvely modeled as a eyhnder We
_cb_oes_e, the thickness/ ._rﬂd“_lS_'°.f:°!4rvature ratio to be 1/10 for the epidsrmal
" cell leyer, and ?‘?iét? that for the ne‘#ral .élatie: These represent the approximate
s.'.iz.e.prop.ortions at the tirne of tube'formatio‘n- We employ forty shell elements
to represent the cross-sectmn of the embryo and assume the volumne w1thm the
embryo wall to remam constant whde the embryo is deformed |

 The effects of apical consriction and cel erawiin i to produce an actue
rolling moment acting on the neural plate, This active moment can simply be
lncurépratétl in:_the: coril___sti:tu_t_i_ve. reil:at_ion:ln: (284) . | |

S=DE+Sewe o oo (5:3)

where S is‘the stress resultant vector. E is the stram vector. and Dis the const1—€. h

: tutwe matrl.x (see Box 2.9.1). In th1s case, Suuw tﬂkeS the form: :_. o

| ‘l‘lef.?: J‘é:lv-.i?: ﬂ !ésrlins f_un_ctipﬁ to be prescribed spatially and temporally. .
| Mth"“Eh tﬁ.#_s;ﬂes@s of apical constriction and cell crawling both er:eet_e__a_n__

active :_roll_ing moment, “t:her_e aredlﬁer ences between t_h'_ese two _._mec_h._a:nig@g_ __

Cell crawling initiates near the plate margin (see Fig. 5.9), and progresses

towards the midline of the plate. It is not clear whether apical constriction
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follows this pattern of activity, or slmply acts over the entire neu"r:al.p'late s1mu1-
' taneously We shall study both of these cases in the followmg. via the prescrlp-
:tlon of Mu‘m in (5.4). | | A
“The results of our s1mulat10ns..as shown in Flg 5. 13 are essentlally the
."'same as the predlctlons based on the plane stress model of Odell et al [1981]
'bendmg moments generated e1ther by aplcal constr1ctlon or by tractormg can
roll the neural tube | . | | A
Flg 5. 13a shows the results of applymg.a.umform rolhné moment across
"'the neural plate. due to tractormg and/or apmal constrlctlon The sequence of.
deforrned conﬁguratzons for mcreasmg magmtudes of the apphed moment are
'shown superlmposed These results are quahtatwely s1n'ular tc those of Odell et
al [1981] who demonstrated that the rolhng mornent alone is capable of
'deforn'ung the neural plate in the proper sequence of shapes ﬁrst a ﬂat plate
forrns. Whlch then rolls mto a tube The mmulatxons in Flg 5. 13 also show
'several other 1nterest1ng features of neurulatmn Flrst the formatlon of the
cally mimicked by the s1rnu1atlons if the notochord is ﬁxed (Flg 5 13b) Thxs
.suggests a role for the notochord during ‘neurulation guite dlfferent than has
. heretofore been proposed as a structural remforcement supportmg the ‘neural
plate Second the lntermedlate shapes of. the neural tube durmg rolhng are.
much more realistically reproduced if the roll1ng commences at the plate edge
| and proceeds inward towards the centerlme (F1g 5 13c) This, coupled with the
_hypothe‘s1_s' that crawhng of'plate' cells on the epithelium generate the rolling':
moment, leads us to conclude that the rol"ling; moment generated by t'l.'i:e':.'plate

edge, rather than beginning at the centerline, as simulated by Odell ef ol [1981].
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5 3. 2 3 Elongat.mn

In order to 1nvest1gate the role of rmdhne and/or margmal elongatlon a full
__..three du’nensmnal model 1s reqqued We employ for thls a general purpose
| ﬁmte element program called ABAQUS (H1bb1tt Karlsson and Sorensen [1982])
___The neural plate is modeled as flat plate._as shown in F1g 5 14 We apply a
_ tangentml force to the plate along the rmdlr.ne to produoe the elongatlon,_and
impose a umformly dlstrlbuted vertleal pressure. wh1eh produees a sma.ll per-
: turbatlon to initiate the buckhng 1nstab111ty | o |
| F|g 5.14 shows the results for plate with thlckness/ length ratios. of around
1/20 and 1/2_00. These _r_esults demonstrates that pure elongation of the neural
' pl_ete boundary cannot reproduce the.'pr_op_er sllap_e of the neural fold; and can-
not roll the_plet_.e into a tube unless the.plate is unrealistically thin. However. in
oonjunction with..th_e rolling moment, elongation eontrloutes somewhat to the

‘proper shaping of the neural folds.

5.3.3. The sequence of events during neurulation.

: _W_e have Conoluded from the simulations that the sequenoe that best repro-
duces the observed ehanges is as.f:ollows.. First, the plate forms lJy movements
that are uniform over the entire neural plate. These movements produce
-_"commnarizatien of the initially cuboidal plate cells, and csn be generated by
apical constriction, tractoring, or a c_ornbin_ation of the two. Concurrently, elon-
gation of th_e neural plate occurs both at the centerline and at the plate edges.
- The_. elongation is _drlven by the .aotlve inter_digitation of not.opla.te cells at the
centerllne, and the crawling end interdigitation of plate eell_s- at the neural.
plate/epidermis boundary. Thls elongation is not sufﬁoient by itself to generate
rnuch of a rolling nmment because of the thickness of the plate; howetrer. it

does appear to contribute somewhat to the rolling forces.
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.Subsequently. rolling of the neural tube commences at the '.pllate"'b'o'un-
'darles. ‘and proceeds inward (rather than from the center outward as sug-
:gested by the smulattons of Odell et al [198 1]) ‘As we mentloned above the rol-
lmg moment can be generated by aplcal constrletlon or tractorma alone or in
'. eornblnatlon However. the conﬁguratlon of cells shown in Flg 5. 9 glves strong
support to the supposltlon that erawhng of the margmal cells on the ep1dernus

'1s a strong component of the rolhng mornent
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Fig. 5.5. (Contixiﬁéd on th‘e'll:lext‘page)'..
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STAGE 18

Fig. 5.5. The neural plate and the tlssues that underlle it, are
shown in cross section at stages through the period of
neural fold formation and rolling of the plate into a
tube, in newt embryos. (From Jacobson, Oster, Odell

and Cheng [1986])
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NEURAL |PI.ATE

EPIDERMIS

Interpretation of events Tracings of cells from cross sections
o | of newt neurulae at stages 15, 16 and 17.

Fig. 5.9. The “cortical tractor” hypothesis. Neural plate cells
- tractor on the bottoms of the epidermal cells, pulling
‘them into a fold, and at the same time stretching the
~neural plate cells until their apical surfaces are points,
or even become released. This tractoring motion pro-
duces a rolling moment toward the midline and lifts
the folds up out of the plane. S |
(From Jacobson, Oster, Odell and Cheng [1986]).



150

' Folntlc '
ry

F1g 5 10 A free body dlagram of two adjacent cells showmg the
elastlc shear and tractor forces.



MM,

151

tractor velocity

tractor viloclly

\
H/R,

Fig. 5.11. " The deformation fields corresponding to (a) a linear
| - tractor velocity field, and (b) a periodic velocity field.
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Chapter 6

" Closure |

_T:h__e ﬁ_r_s_p part of this St._udy_ was ..t_:_lev_t_:_ted:._t_.o_ developing efficient and .accurate
methods for mechanical ena[yses of cells and embryos. Using the finite element
method .as the computatlonal framework 1 have developed an: ax1symmetrlc
shell/membrane element based on a stress resultant formula.tmn. a.volume

;_constramt algorithm based on the Lagrange multlpller method -and. ﬁnally a
B contact algorlthm based on. the penalty method |
- _U_S_;{’J_g_ these f_in_l_te_ elerp_e_n_t_- tools, I sitnulated. l_;hr_ee.c_orm_nenly _es_ed mechani-
_c__:__al e_x_pe_r__i_me_n__t;s on.sea _urehi_p__egg_g__ -- the _:eernpz;ee_sion. e.x_pe_r:in'_lent. the. _sue't';ion
.__ex_pe_;:'i_meri_t. and the m_a_g'_n_etie_ particle experiment. -1 have also . studied tﬁo_
developmental eve_nts == g.a_st_;_n.zlat_ion in se_a_._ur_chins_ -an_d--neurul_at_ion; in .ai’nphi-
bia. These examples demonstrate how valuable it is to apply mechanics to cell
and develoPmental bmlogy
'l_‘here are numerous possible. extensio_ns to further study problems in cell
and c.leve.lopmental' biology. 1 have included_below a brief list of interesting '
future topies: | |
. Analyses of other mechanical exp'eriments, such as the sessile drop experi-
ment (leamoto [1967]) There, the effect of the cen’cnfugal foree has to be
j'mcluded ) | ' ) ' |
. Analyses of mec'hanic_al experiments on red blood ce}ls (Evans and Skalak
| [1.9'?9a.b]). There, we ﬁeed to account for the red cell's large resistaﬁce to
~area deformation. |
»  Study of surface adhesiveness of cells (see Evans [1980] for work on red
blood celis). This requires modifications to the current contact algorithm.

. Analyses of mechanical experiments on tissues and embryos.
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Su.'nulat.lon of cell division (see Pujara and Lardner [1979), Akkas

[1980, 1981])

- “Analyses of ' mechanical” experiments’ on 'di:vidiﬁg_ ‘cells’ (see ‘Hiramoto
= [1981]).

- Simulations of mechanical waves in amphibian eggs (see Cheer, Nuccitelli,

. Oster and Vincent [1996])'.'

= Simulations- of plasrnodlal oscdlatmns in Ph'ysa.mm (see Oster ‘and Odell
_ _'[1984]) -The perlodlc contractmn rhythms observed Ln Fh.ysamm strands _
‘are beheved to'be: orchestrated by a mechanochermcal mechamsm. This

i requl.res"'solvmg-’_a coupled’ me_cha.nocherr’uc'al problem which '_invclve's the

' /diffusion/reaction of chemicals, the large deférmations of the strands, and

' “the coupling of the chemical and the mechanical variables,
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- Appendix 1 _
' Shell Coordinate System *~

'I‘wD coordioate syetel!ls are used for the develoomerl?t_:,_ of__tl;ls:___nonlirl_e_ar
~ theory of the axisymmetric shell. 'l‘he reference conﬁguration is described by
“coordinates XX with covariant base?'vectzors Gy K=1,3. As for the current
(deformed)_eon_ﬁgur:ation.___the__ _ooord_i_nate_s ..";" . with eo.va"ria__nt base.  vectors
.'_g,‘ lc 1 3, are used These two coordmate systerns are 111ustrated in. Flg 1.. In
the evaluatmn of the klnernatxc relatlonshlps. and the expressmn of the eqmll-
brium equations for the shell quantltles such as the metrlc tensors and the
Christoffel symbols for these coordmate systems are called for. These quanti-
ties w1ll be evaluated in the followmg More formal presentatlon on thlS subject
' can be found in Naghdi [1972], Malvern' [1965] and Fliiugge [1972]

 Base vectors. For the current configuration, we denote the .C_Oninavariiant
base vectors. co'oju'gate to .the covariant baSE vectors g,, by.g" and: the
correspondmg components by zk, k= 1,3, These bases can be related to the
cartesian eoordxnate as follows A posmon.veetor dp in space can be expreesed
a_.s i o - .

| :'lcip = d;k"i,;’ e '_ (. la)

_ where d,z" is the icth component of dp in. the carte51an bams l,b Ic 1 3 Here. the
sum.matmn conventlon is 1mp11ed for repeated mdlces Thls same pomt:on vec-
tor dp can be smularl_y-wntten in terms of the shell coordmates, we have

‘dp =dz'g, = 'dé_,:gj- RERe (A1.1b)
From these two expressions"-.(A".l 1a) and-:’(A'-i 1b), we can establish the relation-
Shlp of the covarlant base vectors gk and the cartes1an base vectors 1m by

dzfl‘erentlatlon.

) |
8p _ Bp @dz™ _ 92" . Clooi o (ALLR)

BT gk T Bem BzF | 6z ™
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Since the contreVariant__ b_as_i:e; '1_5: d:e_ﬁr_x_ed:.__a_s_;th_e_-dual basis of g; such that
g g = 6¢ . its relationship with the cartesian basis i™ (same as 1,,,) can be

“obtained from (Al 2) as

gk E g:m ™o AL

“For the shell coordmate system here relatlons (Al 2) and (Al 3) can be
-”evaluated first by exarrumng Flg 1. Deﬂmng the radlus in the current

_-.'conﬁguratmn asr=zx sma+zacosa, we can deterrmne that
o 'g_;ec;s.ea_ N
g E_g_a' = f;*_.i§¢psa-.+. zsinoc e v e |
'Eva.luatiﬁ':gii_.(ﬂi'-:zz) .ﬁei'n'g'* (Al 4), ‘we ‘obtain the’ e:xpressi:o'n': for the covanant baee
vectors: | | | .
" g = sinacosz%i; - sinasinz®l, — cosads
gg = co.s:‘xco.s;:.ﬁil. _ c.e.s.asinxsie + sinct 15 : .. . | (AI.S_)
g = - rsir__u_:_?i,_—_ rcoszsie
. Usmg i:ﬁe 1nverse relatlon of (Al 4) the contravanant base vectors 1n (Al 3)
"'becomes. | “ | i
@' = sinacosz®i! —sinasinz®# ~ cosa i
gz = cosacosz?i' ~ cosasinzif + smoua | (A1.8)

. gs _ _ sinz® e cosz? &
- = =

ij:

Companson of (A1. 5) and (Al 6) reﬁects an 1mportant. character about l:he Iocal
.coordmate system chosen the covariant and the contravarla.nt base vectors

are identical in the ﬁrst two d_;;ectmns__,- ar;_d__ -they-a__re different only in magnitude
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in the third direction. Furthermore, the base vectors g;, gs, g! and g® are all
" unit vectors. The unit vectors in the 3-;dire'clt'i'on can be found from (A1.5) and

(A1.8) to be

L s

‘1||-

&= .

"‘l'l—a

¢ :_;. O (aLa)

for the current conﬁguratmn Slrmlar results are found for the reference

conﬁguratxon
CGEEG @=ge. - (AL.7D)

Hetrlc tensors. The metrtc tensors. deﬁned as gu g‘ gj and _q‘J' = g. g,

can be obtamed d1reetly frorn (Al 5) and (Al 6) They are

ho ol | .
{g,, =101 J | ~ (A1.8)
0 0 {r)® S
and
e 1 o o] )
lg j=p 1 _0 | (A1.9)
oo ('r)2

where the superscrlpt assoc1ated with a bracketed quantlty denotes its power.
It i is noted that both metnc tensors gwen above are d1agona1 matrlces, 1mp1y1ng
that the shell coordlnate system is an arthagonal system This will result in
some 1mportant sunphﬁcatlons to the subsequent developrnent | o
Following the same method used above, the metric tensors Gyand 'C_;'.'r.i'

_ e_o'r'r.e'sponding to the reference .conﬁgnration c_an.be found to be

[G"’J-Ol DJ R ( VR 1))
00 (R)E B ST e s

and
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qe¥j=ler oL (ALY
00 |

~where R is the radius. in. the r__e_féren.ce configuration defined as
REX‘_sinas-X?cosa.
' Permutation tensors. A pernlhtetion syrnbol e;,,,,; (or e‘f’““) is defined as
1 if lmn = 123,231,312

e,mn'—e"'“‘_ ={=1 if lmn =321,213, 132
0 atherwwe

' The permutatmn tensors a,m,, _and s"'“‘ for any coordmate system are related to
these permutation symbols Eimn, and e‘"‘“ by
s;,,.f,_,____j:___\/ d‘z;e__t'(gg)“e,m,. R (A1.12)
'slmn = '\/_ det(g"f) gimn
With the results from (A1.8) and (A1.9), (A1.12) becomes
Eimn = T 91;11; S elmn ="::e£mn/ T ' (A1.13) _
These permut_ation. tensors abov_e' are associated with the current
configuration.’ Similarly for the reference configuration, they are given '_By_ e
"emﬁ}i’e‘m: sm=em/}? o (A114-)
Chrmtoﬂel symbols The Chrlstoﬂfel symbols for the current conﬂguratlon,_
denoted here as 7,# and 7¢J , are deﬁned as '
-8y =‘J_’='jk'gk::.=_.:7ij"8k T BRI I L -(A1.15) |

where ,j denotes differentiation w1th respect to ..":-f Prior to evaluating them for

the shell coordinate system, some general properttes of the Christoffel symbols

are stated.
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From its definition in (A1.15), it follows that
Ve T8y B ; (A1.18)
and
ik = i ¥ Grig — Qijk o (A1.17)
It can also be shown that the two Christoffel symbols, Vi é.ﬁd yy4*, are related
to each other by ' |
Yo =Yg vpg® =rt 0 (AL1B)
F_inally. the Christoffel symbols are symmetric with respect to the first two sub-
‘scripts: .
Yoe = Vs vt = vk (A1.19)
Because the met_ric_ tensor gy, is diagonal for orthogonal systems, the only

nonzero components of the metric tensor after diﬂereﬁtiatiqﬁ are
Gasy = ér.sincx ; .9.33“2 =.2-r cosa | (A1.20)
As a conse.quence. tﬁe only nonzero Christbﬁel symbols, by (:Al.l?) and (A1.18),
are | | ' : ' "
- 1351_ = —_fsina
7332'_-' -réosd R o L (A121)
731° = 713° = sina/ r |
Ys2® = Yes® = cosa/ T

In the reference configuration, the Christoffel symbols are denoted by 'y and

I'yX. The counterpart of (A1.21) is
Fsa‘ = —Rsing

- Igg? = ~Rcosa - , (A1.22)
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Ty,8=T,¢° =sina/ R
. 1-‘323. = Fgas =cosa/ R

" where R=X1sina+X?cosa.
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Appendix 2
_ Deﬁvaﬁ““'Léadihg-'-rb'(g_g_i1);-. -

- This appendix contains £I.;§....derivﬁtidnzg ofthe reSﬁlts'-ugeﬂ__in proceeding
from (2.6.10) to (2.6.11). The term of concefn here is the one involving &y mﬁl-_
tiplying Pé‘ and P?2,

| .. e B _
- [/ 69¢[cosy smw][Pag]RdXz | {Az.1)
: _ Fir'st_ consider the étre_sses deﬁned in the defprmed se.cticu.: g am;l -r.. Com— '.: :

bining (2.3.8), (2.3.11a) and the definition or_& in (2.4.10a)

a'—( )J(FHG;) (PG, = (42) g, O

( ) JG, S"Gl-( ) JS"-—JS“

where the relatlon P= SFT is used above From (2.4. lﬂb) using (2 3. '?) and the

expressmn of o above.
T ='1-(PTGI) = (Fcz)-(rsfcl) ' - ) o (a23)
=Gy (€876, = £S5 + CeaS®! = Cia 2 + s

‘The product in (A2.1): (cus'w.Pz‘ +sinyP?2) can also be written as n (PTGy),

in view of (2 3. 11b) Utilizing the expressmn of Tin (A2 3) it can be su’nphﬁed to

' become

n (PTGz) —( ) J(FT"G:) (PTGa) ‘( ) JG: (F'PTGy) (A2.4)
( ) JGI (STGE) _( ) Jszl = —J(T Clﬁ%)

=gk _
-TJT CIEU'
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Using this res_ult_. (AB_._I)-tak_es_the_ﬂnal form ..

a2 h/2 ' o
=1 w[cosw smw{}ﬂ]ﬁ’urx? = - f 610(1'.1'——6',20)}?:!}{2 - {a2.5)

/2 ~h/2
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