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Abstract

A new method, which allows for the identification and prioritization of predicted cancer genes for future analysis, is
presented. This method generates a gene-specific score called the ‘‘S-Score’’ by incorporating data from different types of
analysis including mutation screening, methylation status, copy-number variation and expression profiling. The method was
applied to the data from The Cancer Genome Atlas and allowed the identification of known and potentially new oncogenes
and tumor suppressors associated with different clinical features including shortest term of survival in ovarian cancer
patients and hormonal subtypes in breast cancer patients. Furthermore, for the first time a genome-wide search for genes
that behave as oncogenes and tumor suppressors in different tumor types was performed. We envisage that the S-score can
be used as a standard method for the identification and prioritization of cancer genes for follow-up studies.
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Introduction

The availability of different ‘‘omics’’ technologies and the recent

development of next generation sequencing have brought new

perspectives to the field of cancer research [1]. The Cancer

Genome Atlas (TCGA) project, for example, has generated large

amounts of data by applying the different ‘‘omics’’ technologies to

study organ-site specific cancer specimens [2–5]. The TCGA data

include somatic mutations, gene expression, methylation and copy

number variation, which together with clinical information from

the patients represent an important resource for the development

of new strategies for diagnostic and therapeutic interventions as

well as providing baseline data for more detailed studies of specific

genes and pathways [2–5].

These genome-wide data have been used to identify genes that

are altered in cancer. These alterations typically occur in tumor

suppressor genes like p53 or oncogenes like KRAS. Alterations in

tumor suppressor genes usually lead to the loss of function of the

respective proteins while alterations in oncogenes lead to increased

or altered activity either due to higher expression or activating

mutations. Although there are genes that are frequently altered in

cancer, a striking example being p53, one of the main conclusions

from the first large-scale studies is that the tumorigenic process is

driven by alterations in a variety of genes, both individually and in

combination, depending on the individual context of the patient,

among other factors [2–7].

One important issue in the analysis of these ‘‘omics’’ data sets is

how to measure the impact of all genetic alterations found in a

cohort of samples. What is required for such an impact study is a

gene-specific score that is both qualitative (indicating if a gene is a

suppressor, an oncogene, either or both) and quantitative

(indicating the frequency of alterations for that gene in a given

set of tumors). Previous attempts to generate scores for cancer

genes have used a single type of data, either mutation frequency or

expression pattern [6,8]. More recently, Volgestein et al. [1]

proposed a strategy that takes into account both the type of

somatic mutations (recurrent missense for oncogenes and inacti-

vating mutations for tumor suppressors) and their frequency (they

adopted a 20% rule, i.e., those types of mutations had to appear in

at least 20% of the analyzed samples). Although this strategy may

efficiently identify the most common driver mutations in tumors, it

does not explore the whole spectrum of genetic/epigenetic

alterations that generate the characteristic genetic heterogeneity

in tumors. Another approach has involved the calculation of the

number of non-redundant samples in which a given gene or group

of genes is altered. Although this strategy has been widely used, as

for example in the CBio Cancer Genome Portal [9], it does not

discriminate between oncogenic and tumor suppressing alterations

and does not allow the user to provide different weights for the

type of genetic alteration found.

Here we propose the S-score, which integrates information on

mutation status, expression pattern, methylation status and copy
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number to produce a unique value directly proportional to the

frequency in which a given gene is altered in a cancer type. The

critical value of this method is that it facilitates the identification of

predicted cancer genes, rank orders them to prioritize them for

future in-depth analysis and indicates which features (e.g.,

mutation, expression, methylation, copy number change and

combinations thereof) should be further investigated. As a proof of

principle, here the S-score method was applied to data derived

from the Cancer Genome Atlas (TCGA) project for GBM,

colorectal, ovary and breast tumors.

Material and Methods

Data source
Expression z-scores, methylation and GISTIC CNV (copy

number variation) data were obtained from the cBIO portal by

using the CGDS-R package, which provides a basic set of

functions for querying the Cancer Genomic Data Server (CGDS)

via the R platform for statistical computing (http://cran.r-project.

org/web/packages/cgdsr/index.html). Somatic mutation data

was obtained from the COSMIC database [10] and from a local

compilation of all somatic mutations found in the literature.

Thresholds for all types of data are discussed below. Clinical data

for all samples were obtained from the TCGA web site (https://

tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp).

CNV amplification and deletion
Putative copy-number calls on samples were determined using

GISTIC [9]. The published GISTIC thresholds used in the

present study were: homozygous deletion, , = 22; deletion, .

22 to , = 21; neutral . 21 to , +1; gain, . = +1 to ,2; and

amplification, . = 2. Boxplots were generated using ggplot2, a

graphics tool for the R statistical package.

Expression analysis
Expression data from the cBio portal was used in the analysis

presented here [9]. The expression level given is the relative

expression of a given gene compared to the expression of that gene

in a reference population (either adjacent normal samples or

tumors that are diploid for that gene). Up and down-regulation

were inferred by the Z-score of that expression level, i.e., the

number of standard deviations from the mean of expression in the

reference population. The same expression data was used in the

calculation of the S-score in Figure 1 and also as an independent

dataset in Figure 2.

Somatic mutations
To calculate the S-score, we only considered nonsense

mutations (variable ns in the equations presented in the text)

found for the respective gene in that tumor type. The Nns variable

was stratified to two possible situations: Nns1 where only nonsense

mutations occurring in tumor samples from TCGA were

considered and Nns2 where nonsense mutations occurring in the

same tumor type (all samples available in COSMIC) were

considered. Nns1 was used for data presented in Figures 3 and 4

while Nns2 was used for the analysis presented in Figure 1, Figure 5

and Table 1.

Results and Discussion

The S-score is given by the equation #1:

S~ log
Sonc

Ssup

ð1Þ

where,

Sonc~100
Nampa

c
z100

N
eob

e
ð2Þ

and

Ssup~Nnsdz100
Nmete

m
z100

N
delw

c
z100

Neuc

e
ð3Þ

where,

Nns = number of nonsense mutations for the respective gene.

Nmet = number of samples in which the respective gene is

methylated.

m = total number of samples informative for methylation

analysis.

Ndel = number of samples in which the respective gene is

deleted

c = total number of samples informative for CNV analysis.

Namp = number of samples in which the respective gene is

amplified.

Neo = number of samples in which the respective gene is over-

expressed.

e = total number of samples informative for gene expression

analysis.

Neu = number of samples in which the respective gene is under-

expressed.

a = index for amplification.

b = index for over-expression.

d = index for nonsense mutations.

e = index for methylation.

w = index for deletions.

c = index for under-expression.

In case Sonc,1 and Ssup.1, then

S~{ log Ssup ð4Þ

In case Ssup,1 and Sonc.1, then

S~ log Sonc ð5Þ

In case Sonc and Ssup are both smaller than 1, then S~0.

Throughout this report, log is a representation of log2.

The use of log in equation #1 allows the S-score to range from

negative (indicative of tumor suppressing or reduced gene activity)

to positive (indicative of oncogene or increased gene activity)

values. The S-score as a ratio between Sonc (equation #2) and Ssup

(equation #3) also aims to give more value to those genes that

present an exclusive pattern of either tumor suppressing or

oncogene activity in a respective tumor type. Another important

issue to emphasize is that each type of data, CNV, mutation,

expression and methylation, is treated independently and has a

A Scoring System for Cancer Genes
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proportional weight given by the numerical index associated to

each data type.

The S-score method was tested using data from the TCGA

project for four types of tumors: glioblastoma (GBM), colorectal

tumor, breast tumor and ovary tumor. A critical parameter in

calculating the S-score is the numerical index used for each type of

data. To find the best index values for the parameters in equations

#2 and #3, two values for each index were tested. In all scenarios,

more weight was given to nonsense mutations due to the fact that

this type of alteration usually leads to a significant decrease in the

function of the respective protein. Furthermore, in all scenarios

methylation was not used due to quality control issues.

A list of 138 cancer genes identified by Volgestein et al [1] was

used as a benchmark to evaluate which set of indexes would select

more known oncogenes and tumor suppressors. Although this list

was compiled using data from several tumor types and here we

have only analyzed four tumor types, we believe our analysis is

comprehensive enough for such test. For each tumor type

analyzed here the number of genes with S-score ,22 or .+2

was calculated for each scenario (Table S1). To test for a possible

enrichment, a Monte Carlo simulation was performed where

random sets of 138 genes (out of all known human genes with an

S-score for the respective tumor) were selected and the number of

extreme S-scores calculated. Among all tested scenarios, the one

with a higher value for nonsense mutations (d = 5) and a value of

0.5 for all other indexes promoted the most significant enrichment

of known cancer genes for all tumor types (Table S1). Further-

more, to avoid any bias due to an arbitrary threshold (S-score

,22 or .+2), we used a new threshold for each tumor type

defined as the S-score with a Z score of 2 (average of all S-scores

plus or minus two standard deviations) (Table S2). The same set of

indexes, as with the previous analysis, showed the higher

enrichment of known cancer genes. This set of indexes (d = 5;

a = 0.5; b = 0.5; w = 0.5 and c = 0.5) was then used for all other

studies.

To gain more information on the predictive capacity of the S-

score method, a different benchmark strategy was performed to

define ‘‘positive predictive value’’ and ‘‘negative predictive value’’

for each tumor type. A thousand random sets of 50 genes were

selected from the list of 138 genes from Volgestein et al. [1] and

were used to calculate the average number of true positives and

false negatives. In a similar fashion, one thousand random sets of

50 genes were selected from all human genes (minus the 138

cancer genes) were selected and used to calculate the average

number of true negatives and false positives for each tumor type.

These values are shown in Table S3 It is worth mentioning,

Figure 1. S-score distribution for the four types of tumors analyzed here. Transversal gray lines indicate a Z-score threshold equal to 3.
GBM, glioblastoma; OV, ovarian cancer; BRCA, breast cancer; and COADREAD, colorectal cancer.
doi:10.1371/journal.pone.0094147.g001
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however, that the list of cancer genes from Volgestein et al. [1] is

not the golden standard for this type of analysis since it contains

several genes that are either oncogenes or suppressors in tumor

types different than the ones analyzed here. These features likely

underestimate the predictive capacity of the S-score method.

These previous analyses show that the S-score method is able to

identify bona fide oncogenes and tumor suppressors. Data shown in

Table 1 confirms that the compilation of cancer genes from

Volgestein et al. [1] is biased towards extreme S-scores (.+2 or

,22). When a normalized threshold is used (S-scores representing

the average S-score plus or minus two standard deviations) the

same pattern is observed (Table S4).

Figure 1 plots the distribution of the S-scores for all human

genes in each tumor type. Those human genes with S-scores that

were positive or negative extremes (Z score .3) in at least one

tumor type are listed in Table S5. As a confirmation of this

method, previously known tumor suppressors and oncogenes show

extreme S-score values for these types of tumors. In GBM, for

example, the gene with the highest S-score is EGFR. Other genes

with high positive S-scores include those that are mapped to the

same locus as EGFR (like SEC61G, LANCL2 and ECOP) and are

therefore amplified together with EGFR. While these genes are

not necessarily causally involved in the tumorigenic process, they

represent bona fide genetic alterations in the tumor type that

might provide new therapeutic and diagnostic opportunities, as

reported for passenger genes deleted in tumors [11], and as such

should be reported. The efficiency of our method is also illustrated

at the other end of the S-score distribution. Among the genes with

the most negative S-scores are well known tumor suppressor genes

like CDKN2A (the most negative S score for GBM), PTEN, NF1

and RB1. The S-scores for all human genes in the four tumor

types is provided in Table S6.

One utility of the S-Score system is that it allows easy

identification of genes of interest for additional analysis. For

example, consider the genes FBXO25 (S-Score = 23.18 in ovarian

cancer), TMEM101 (S-Score = 21.6 in ovarian cancer) and

ACTR5 (S-Score = +3.69 in colon cancer) that are classified by

our analysis as suppressor, putative suppressor and oncogene,

respectively. Evaluation of plots of expression vs. copy number or

methylation for these genes, as appropriate (Figure 2) readily

identifies these genes as having an identifiable fraction of TCGA

cases associated with reduced copy number and reduced

expression (candidate suppressor gene), reduced expression and

increased methylation (candidate silenced suppressor gene) and

increased copy number and increased expression (candidate

oncogene), respectively. To illustrate the usefulness of such strategy

plots for known oncogenes and suppressors are provided as Figures

S1-S3. This type of more detailed classification will then facilitate

follow-up studies by providing a prioritization of the genes, based

on score, for further analysis. None of the three genes above have

Figure 2. Examples of genes of interest. Each data point corresponds to a sample. (A) Scatter plot showing expression (Y axis) and methylation
status (X axis) for TMEM101 in the set of ovarian tumors from TCGA. (B) Scatter plot showing expression (Y axis) and copy number status for FBXO25
for ovarian cancer from TCGA. Based on Gistic values, samples were split in different categories (X axis). See Methods for Gistic thresholds. (C) Scatter
plot showing expression (Y axis) and copy number status for ACTR5 in colon tumors from TCGA. Based on Gistic values, samples were split in different
categories (X axis).
doi:10.1371/journal.pone.0094147.g002

Figure 3. Genes associated with short and long-term survival. A heatmap plot showing genes with S-scores significantly different between
short-term and long-term survival patients with ovarian tumors. Blue is indicative of negative S-score while yellow is indicative of positive S-score.
doi:10.1371/journal.pone.0094147.g003
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been previously identified as been involved in the development of

the respective tumor types.

The S-score also allows for a direct comparison between

samples classified differently according to a biological and/or

clinical parameter. To illustrate this application, the samples in the

TCGA high-grade serous ovarian cancer data were divided into

quartiles according to overall survival. We then calculated the S-

score for all human genes using the samples belonging to the first

(shortest survival) and last (longest survival) quartile of the survival

distribution. A comparison of S-scores calculated from the two

groups allowed us to identify putative oncogenes (with positive S-

scores) and putative tumor suppressor genes (with negative S-

scores) associated with either the shortest or the longest survival

(Figure 3). Several of the genes identified are known markers for

survival. For example, CDC42 inhibition has been associated with

longer survival in mice with prostate cancer xenografts [12].

Another example is CANX whose down-regulation has been

associated with longer survival in GBM patients [13]. Further-

more, genetic variants of RGS12 have been associated with

survival in late-stage non-small cell lung cancer [14]. Another

interesting gene is TJP2 whose over-expression has been associated

with long-term survival in GBM [15], in agreement with the

pattern shown in Figure 3.

Among the genes identified by this scoring system to be

associated with survival, the most interesting are those with

opposite classifications (positive and negative scores) in the shortest

or the longest survival quartiles. We found that glucoronidase B

(GUSB) had a positive score (+3.04, indicative of oncogene) for the

shortest survival group and a negative score (21.40, indicative of

tumor suppressor) for the longest survival group. Glucuronidases

are known for being involved in the spreading of tumor cells from

the primary site [16] and GUSB has been recently included in a

signature for predicting lymph node metastasis in cervical cancer

[17]. The S-score method confirms the idea that GUSB has an

oncogenic function in the more aggressive tumors (shortest

survival). However, its negative S-score in the less aggressive

tumors indicates that the loss of GUSB might also drive ovarian

cancer development with the resulting tumors being less aggres-

sive. An interesting finding in our analysis is the association of

RAD23B and XPC, both with negative S-scores, with short-term

Figure 4. Oncogenes and suppressors in two breast tumor sub-types. S-score comparison for the 50 top oncogenes and 50 top tumor
suppressors between ER-PR- and ER+PR+ breast cancer subtypes. Each datapoint is a gene. X and Y axes represents the S-scores for ER+PR+ and ER-
PR- sub-types, respectively.
doi:10.1371/journal.pone.0094147.g004
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survival (Figure 3). Proteins encoded by these genes form a

complex involved in DNA-damaged repair. A number of other

genes with opposite S-scores in the shortest and the longest

survival groups are presented in Figure 3. These genes may

represent potential prognostic biomarkers as well targets for the

development of new therapies.

To further explore the potential of the S-score system to identify

genes related to different clinical parameters, breast cancer

patients from the TCGA cohort were divided according to two

hormonal subtypes: ER+PR+ and ER-PR- (ER: Estrogen

receptor; PR: progesterone receptor). Data from patients in each

subtype were then used to calculate the S-scores for all human

Figure 5. Genes classified as oncogenes and suppressors in different tumor types. Genome-wide analysis of genes behaving as tumor
suppressor in one tumor type and oncogene in a different tumor type. Sixty-seven genes with S-score,22.5 in one tumor type and S-score .2.5 in a
different tumor type were selected and a heatmap showing their S-score for all tumor types is presented. Blue represents negative S-scores while
yellow represents positive S-score.
doi:10.1371/journal.pone.0094147.g005

Table 1. Known cancer genes have extreme S-scores.

GBM OV BR CR

Real Set 19 54 56 22

10,000 Simulated Sets 8.08 (2.49–13.66) 34.07(23.76–44.38) 23.07(14.27–31.87) 9.15(3.19–15.11)

p-value 0.0002 0.0001 ,0.0001 0.0001

Number of genes (Real Set) with S-score .2 or ,22 in the 138 cancer gene list from Volgestein et al. [1]. Numbers in the ‘‘10,000 Simulated Sets’’ row correspond to
average number of genes with S-score .2 or ,22 in 10,000 sets containing 138 genes randomly selected. Between parentheses is the interval corresponding to the
average +/2 26 standard deviation. P-value of the difference between real and simulated sets is shown in the last row.
doi:10.1371/journal.pone.0094147.t001
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genes. While the oncogenes in the two subtypes are basically the

same, a much larger discordance is observed for tumor suppressor

genes. This is shown in the scatter plot in Figure 4, which contains

the top 50 putative oncogenes and 50 putative suppressors

(classified according to the ER+PR+ subtype). While all the

oncogenes in the ER+PR+ subtype (S-score around 4) are also

classified as oncogenes in the ER-PR- subtype (S-score ranging

from 1.42 to 5.50), the tumor suppressors in the ER+PR+ (S-score

around -4) have a different classification in the ER-PR- subtype (S-

score ranging from -4.85 to 2.69). In fact, a large fraction of the

suppressors in the ER+PR+ subtype were classified as oncogenes

in the other subtype (Figure 4). These results suggest that the

differences in biological and clinical features between these two

breast cancer subtypes may be due to differences in their tumor

suppressors genes. These gene signatures represent an opportunity

for the development of targets for new diagnostic, prognostic and

therapeutic approaches.

The S-score method was also used in a genome-wide search for

genes that can behave as suppressor in one tumor type and

oncogenes in a different tumor type. In the last few years some

genes have been shown to present such pattern. NOTCH1, for

example, is a known oncogene for T cell acute lymphoblastic

leukemia [18–19] but also presents tumor suppressive activity in

skin tumors [20] and hepatocarcinoma [21]. Using a set of

stringent criteria (S-score.2.5 in one tumor type and S-

score,22.5 in a different tumor type), we found 65 genes that

showed oncogenic and tumor suppressive activities in different

tumor types (among the four types analyzed here). Our analysis

identified LMO7 as a gene behaving as tumor suppressor and

oncogene. This gene has been reported to be down-regulated in

lung cancer [22] and mice lacking this gene have an increased

susceptibility to spontaneous lung cancer [23]. On the other hand,

the gene seems to be an oncogene in both breast [24] and liver

cancer [25]. Another interesting candidate is USP12, a gene

coding for a deubiquitinase. Recently, USP12 has been shown to

be a positive regulator of androgen receptor acting in a pro-

proliferative manner in prostate cancer [26]. USP12 can also act

as a tumor suppressor by negatively regulating AKT activation

and thus promoting apoptosis [27]. Further analyses are needed to

fully explore all genes shown in Figure 5. It is important to

emphasize that NOTCH1 has not appeared in our list due to the

fact that we haven’t used leukemia data in our studies.

A drawback of the S-score method, which is a limitation in any

attempt to establish this type of scoring system, is the lack of an

index for activating mutations occurring in oncogenes. For

example, activating mutations in KRAS are known to be a

determinant factor for many tumor types [28]. Although the S-

score for KRAS was positive for three out of four tumors analyzed

here, our method was not able to fully measure the impact of these

types of activating mutations in oncogenes. One possibility would

be the use of missense mutations, as argued by Volgestein et al.

[1]. One problem with missense mutations, however, is how to

evaluate their impact at protein level, whether they are activating,

inactivating or neutral. Although there are computational tools

aimed to infer the effect of a missense mutation at the protein level,

we still think that their performance in general is poor [29].

However, as we improve our understanding of the nature of

missense mutations, these types of genetic alterations can be

incorporated in the calculation of the S score.

To make the S-score system more useful to the community, a

web portal is provided at http://www.bioinformatics-brazil.org/S-

score with genome-wide scores available for download as well as a

retrieval system for customized queries. Furthermore, users can

modify the values for all the parameters in equations #2 and #3

and generate S-scores for all known human genes. A list of all

TCGA samples from each tumor type used in this study is

provided as Table S7.

Supporting Information

Figure S1 Expression X methylation plot for the known
tumor suppressor MGMT. Each data point represents a

GBM sample. Data shows the silencing of MGMT in several

GBM samples.

(TIF)

Figure S2 Expression X copy number variation plot for
the known tumor suppressor CDKN2A. Each data point

represents a GBM sample. Categories of copy number variation

were defined by the GISTIC classification. Homdel = homozy-

gous deletion; Hetloss = loss of heterozygosis.

(TIF)

Figure S3 Expression X copy number variation plot for
the known oncogene ERBB2. Each data point represents a

breast tumor sample. Categories of copy number variation were

defined by the GISTIC classification. Hetloss = loss of

heterozygosis; Amp = amplification.

(TIF)

Table S1 Selection of indexes for parameters in the S-
score equations. Each row represents a scenario of values for

indexes. The number in parenthesis corresponds to the number of

genes above the threshold (S-score .+2 or S-score ,22) in the real

set of 138 genes from Volgestein et al. [1]. Numbers in each cell

correspond to the number of simulated sets in which the number of

genes with S-scores above the threshold is equal or higher the

corresponding number in the real set (number in parenthesis).

(DOCX)

Table S2 Selection of indexes for parameters in the S-
score equations. Each row represents a scenario of values for

indexes. Number in parenthesis corresponds to the number of

genes above the threshold (S-score values corresponding to the

average plus or minus two standard deviations) in the real set of

138 genes from Volgestein et al. [1]. Numbers in each cell

correspond to the number of simulated sets in which the number

of genes with S-scores above the threshold is equal or higher the

corresponding number in the real set (number in parenthesis).

(DOCX)

Table S3 A thousand random sets of 50 genes were selected

from the list of 138 genes from Volgestein et al. [1] and were used

to calculate the average number of true positives and false

negatives. Positive Predictive Value (PPV) was calculated by the

following equation: true positive/true positive + false positive. In a

similar fashion, one thousand random sets of 50 genes were

selected from all human genes (minus the 138 cancer genes) and

used to calculate the average number of true negatives and false

positives for each tumor type. Negative predictive value was

calculated by the following equation: true negative/true negative +
false negative.

(DOCX)

Table S4 Known cancer genes have extreme S-scores.
Number of genes (Real Set) with S-scores greater than the average

plus two standard deviations (Z score = 2) or smaller than the

average minus two standard deviations (Z score = 22) in the 138

cancer gene list from Volgestein et al. [1]. Numbers in the ‘‘10,000

Simulated Sets’’ row correspond to average number of genes with

S-score above or below the threshold in 10,000 sets containing 138

genes randomly selected. Between parentheses is the interval
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corresponding to the average +/2 26 standard deviation. P-value

of the difference between real and simulated sets is shown in the

last row.

(DOCX)

Table S5 Correlation between Z-score and S-score for
BRCA tumor. Each spreadsheet lists all human genes with S-

scores that were positive or negative extremes (Z-score .3).

(XLSX)

Table S6 S-scores for all human genes. For each of the

four tumor types analyzed here, all human genes are alphabet-

ically listed with their corresponding S-scores.

(XLSX)

Table S7 Identification of all TCGA samples used in
this study. Identification number for all TCGA samples used in

this study.

(XLS)
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