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SUMMARY
Small non-coding RNAs can be secreted through a variety of mechanisms, including exosomal sorting, in
small extracellular vesicles, and within lipoprotein complexes. However, the mechanisms that govern their
sorting and secretion are not well understood. Here, we present ExoGRU, a machine learning model that
predicts small RNA secretion probabilities from primary RNA sequences. We experimentally validated the
performance of this model through ExoGRU-guided mutagenesis and synthetic RNA sequence analysis.
Additionally, we used ExoGRU to reveal cis and trans factors that underlie small RNA secretion, including
known and novel RNA-binding proteins (RBPs), e.g., YBX1, HNRNPA2B1, and RBM24. We also developed
a novel technique called exoCLIP, which reveals the RNA interactome of RBPs within the cell-free space.
Together, our results demonstrate the power of machine learning in revealing novel biological mechanisms.
In addition to providing deeper insight into small RNA secretion, this knowledge can be leveraged in thera-
peutic and synthetic biology applications.
INTRODUCTION

Small non-coding RNAs play a variety of regulatory functions in

the cell, including regulation of mRNA stability and protein

synthesis.1,2 However, some small RNAs also reside in the

extracellular space, packaged within extracellular vesicles or li-

poprotein complexes, for example, where they are thought to

play roles in cellular communication.3–6 Many recent studies

have focused on the role of these secreted small RNAs as po-

tential biomarkers in various diseases, particularly cancer.7–9

RNA secretion, however, is not a random process. While

some studies have focused on identifying the various mecha-

nisms through which small RNAs are secreted,10,11 our knowl-
This is an open access article und
edge of the underlying regulatory programs that govern extra-

cellular sorting remains incomplete.

To reveal the cis-regulatory grammar that underlies small RNA

secretion, we developed ExoGRU, a deep-learningmodel for pre-

dicting secretion probabilities of small RNAs based on their pri-

mary sequence. In addition to the commonly used machine

learning performance metrics, we also used two independent

experimental approaches to validate the veracity of our model.

WeusedExoGRUto (1) identifymutations that abrogate the secre-

tion of known cell-free small RNAs and (2) predict high-confidence

sets of synthetic sequences that are secreted or retained. Having

confirmed theaccuracyof ExoGRUusing these experimental stra-

tegies, we interrogated themodel to reveal the cis-regulation RNA
Cell Genomics 4, 100522, April 10, 2024 ª 2024 The Authors. 1
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secretion grammar that it has learned. In addition to recapitulating

knownRNA-bindingproteins (RBPs) involved insmallRNAsorting,

suchasYBX1,wealsodiscoveredandvalidatedRBM24asanovel

RNA secretory factor. We also developed exoCLIP, a variation of

cross-linking immunoprecipitation (CLIP-seq),12 that reveals

RBP-RNA interactions in the cell-free space using UV crosslinking

immunoprecipitation followed by high-throughput sequencing.

Application of exoCLIP to RBM24 and HNRNPA2B1, another fac-

tor that was nominated by our model and previously implicated in

RNA secretion, further confirmed their direct interactions with

target small RNAs in extracellular vesicles.

Our results collectively show the significance of machine

learning in uncovering previously unknown biological mecha-

nisms. In addition to capturing the sequence features that

mark small RNAs for secretion, our approach provides readily

testable hypotheses around the key trans factors involved. This

not only deepens our understanding of an intricate biological

process but also has practical implications for the design of arti-

ficial cell-free RNA species in synthetic biology applications.

RESULTS

ExoGRU, a computational model for accurate prediction
of small RNA secretion
To learn the small RNA secretory grammar, we first aggregated,

curated, and labeled a large compendium of small RNA datasets

in the extracellular (EC) or the intracellular (IC) compartment.

These datasets, along with their EC vs. IC labels, were obtained

from three distinct sources: (1) a dataset of IC and EC small

RNAs (between 18 and 50 nt) we had previously generated

across eight cell line models,7 (2) the Extracellular RNA Commu-

nication Consortium Atlas13 dataset, and (3) The Cancer

Genome Atlas small RNA sequencing data.14 Given that the

cell-free RNA content is not correlated with the abundance of

small RNAs in the cell, we hypothesized that a cis-regulatory

grammar serves as a localization signal for small RNA sorting

into EC space. First, to search for EC-associated RNA sequence

and structural features, we compiled the primary sequence,

k-mer frequencies (k = 1, 2, 3, 4, 5, 7), in silico folding free energy,

and predicted secondary structures as input features to train our

model (Figure 1A). Starting with simpler models, we trained linear

support vector machines (SVMs), Gaussian kernel SVMs, and

random forests as classifiers. The poor performance of these

models (maximum area under the receiver operating character-

istic [AUC]: 0.71) motivated us to train more complex models

with increased learning capacity. We tested various neural

network architectures, starting with shallow convolutional neural

networks (CNNs) and recurrent neural networks, as well as

DeepBind, a previously developed CNN model.15 Upon hyper-

parameter tuning, we observed an increase in performance

upon switching to a gated recurrent unit (GRU)-based deep

recurrent neural network architecture (Figure 1B). As shown in

Figure S1A, we benchmarked our GRU model, which we named

ExoGRU (Figure 1C), against several existing machine learning

and deep-learning models. Figure 1D shows the performance

of ExoGRU, evaluated on the held-out test set, in which we

achieved an area under ROC of 0.95 and an area under the pre-

cision recall curve of 0.8, respectively. At 83% specificity, the
2 Cell Genomics 4, 100522, April 10, 2024
sensitivity of ExoGRU was 91% (see the confusion matrix in Fig-

ure S1B).We also sought to assess the contribution of each input

feature to the performance of ExoGRU. From our initial list of fea-

tures described above, we observed that the primary sequence

alone is sufficient to effectively distinguish IC sequences fromEC

sequences. Furthermore, we conducted a comparative evalua-

tion between our ExoGRU model and several established RNA

localization prediction models. Notably, many of these existing

models were primarily designed and trained for long non-coding

RNAs, which inherently differ from the shorter small RNAs that

we focus on in our study. Nevertheless, we conducted an exten-

sive analysis of our model’s quality metrics in comparison to

some of the existing models that accept short RNAs as input.

As shown in Figure S1C, the results revealed significantly supe-

rior performance with ExoGRU.

Experimental verification of ExoGRU predictions
To further evaluate the performance of our model, we sought to

focus on small RNAs whose status is predicted by ExoGRU with

high confidence, i.e., focusing on high-confidence true positives

and negatives. For this, we used ExoGRU to select those se-

quences with the highest and lowest secretion probabilities

and labeled them as ECX (high-confidence EC) and ICX (high-

confidence IC) (Figures S1D and S1E). Secretion probabilities

are computed from the sigmoid-transformed output of the

ExoGRU’s predictions. The ECX group consists of accurately

predicted EC sequences with a secretion probability exceeding

95%, while the ICX group consists of true IC sequences with a

secretion probability below 5%. Therefore, both the ECX and

ICX groups, by definition, exclude any falsely predicted se-

quences. Furthermore, we assessed whether the predictive

power of our model was consistent across broad small RNA

classes and biotypes. Figure S1F displays similarly strong per-

formance metrics for miRNAs (microRNAs), small nucleolar

RNAs, small cytoplasmic RNAs, and tRNAs (transfer RNAs), indi-

cating that ExoGRU is capable of accurately predicting small

RNA secretion across all these classes.

We next implemented a variety of approaches to experimen-

tally verify the ability of ExoGRU to capture the small RNA

secretory grammar among these sequences. First, we gener-

ated an exogenously expressed a small RNA library composed

of two different sets of sequences: high-confidence secreted

small RNAs (ECX) andmutated variants of ECX (MUT). The latter

set of sequences was generated by randomly mutating ECX

small RNAs, in one or two positions, so that ExoGRU no longer

classified them as secreted RNAs. We cloned this library, con-

taining both ECX and MUT sequences, in a lentiviral construct

downstream of a U6 promoter (pLKO.1 backbone).16 We then

transduced the MDA-MB-231 breast cancer cell line, which

was among the lines used in our original dataset.7,13,14 We iso-

lated small RNAs from extracellular vesicle (EV), conditioned

medium (CM), and IC fractions of this library and performed

small RNA sequencing across all samples in biological repli-

cates. We then aligned the resulting reads to the reference li-

brary to assess the abundance of each small RNA in the EC

and IC space. It should be noted that expressing small RNAs

via an exogenous construct may result in RNA species that (1)

are mis-localized and therefore rapidly degraded and (2) lack



Figure 1. Predicting small RNA (smRNA) secretion from RNA sequence and structural features

(A and B) An overview of our strategy in this study: we used in-house and publicly available data to curate a dataset of intracellular (IC) and cell-free smRNA

species. Following extensive feature engineering and evaluating various modeling strategies, we selected the best machine learning models for prediction of

smRNA secretion. We observed that ExoGRU, a recurrent neural network model, outperforms other models in this task. We then performed feature attribution

scoring and model dissection to dissect the cis-regulatory grammar captured by ExoGRU.

(C) The architecture of ExoGRU following hyperparameter optimization.

(D) Receiver operating characteristic (ROC) and precision-recall (PR) curves for the ExoGRUmodel for the held-out test set. Positive samples are the extracellular

(EC) sequences, and negative samples are the IC ones. The performance metrics of this model are also listed.
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the endogenous molecular context they rely on for successful

secretion. Of the 400 pairs tested, in 55 cases, both the ECX

and MUT pairs were stably expressed and therefore success-

fully captured by our assay. In order to assign a secretion prob-

ability to each small RNA, we compared its abundance in the

EC fractions (EV or CM) to IC RNA. We observed that the result-

ing ‘‘enrichment scores’’ were significantly higher for EC

small RNAs (ECX), compared to their MUT counterparts, in

both CM and EV fractions (Figure 2A). We observed that a large

fraction (93%) of exogenously expressed ECX sequences were

indeed secreted, and more importantly, slight modifications to

these sequences, guided by ExoGRU, resulted in a substantial

and significant drop in their secretion potential. To assess

the concordance between experimental measurements and

ExoGRU predictions, we used a ROC curve to measure the as-

sociation between experimental and ExoGRU labels at every

classification threshold across the CM enrichment score (Fig-

ure 2B) and the EV enrichment score (Figure S2A). We used
the threshold resulting in a specificity of 0.75 to make EC and

IC calls based on the experimental CM enrichment score. We

used the resulting experimental classes to generate a confusion

matrix against the ExoGRU labels and to calculate performance

metrics (Figure 2C). We also performed a similar analysis for the

EV fraction, presented in Figure S2B, by calculating an experi-

mental EV enrichment score. Our observations in the EV

fraction were similar to the CM fraction, albeit with a lower per-

formance (70% accuracy vs. 82% in CM). This was not unex-

pected since EV purification often suffers from technical varia-

tion and the recovered RNA levels are substantially lower.

The ability of ExoGRU to generalize its predictions to
synthetic sequences
We next sought to determine whether ExoGRU can be used for

generation, as opposed to mere classification, of synthetic small

RNA sequences that are secreted effectively. Furthermore, we

sought to assess whether the patterns learned by ExoGRU
Cell Genomics 4, 100522, April 10, 2024 3



Figure 2. Experimental validations of ExoGRU predictions

(A) Enrichment scores of ECX vs. muted ECX smRNA in conditioned medium (CM) fractions and EV fractions are shown as log2 fold change of smRNA abun-

dances in the EV or CM fraction relative to the IC fraction. A total of 55 ECX and 55 matched mutated (MUT) ECX sequences were successfully expressed and

used for this analysis. p values are 0.0006 and 0.001 for CM and EV enrichments, respectively, calculated using Wilcoxon signed-rank test.

(B) ROC curve generated using ECX and MUT experimental CM enrichment scores and ExoGRU’s localization predictions to measure the association between

the experimental vs. ExoGRU labels at every classification threshold. The smoothened ROC curve was generated by performing 1,000 bootstraps.

(C) EC and IC labels were assigned to sequences from CMs (CM enrichment) using a specificity threshold of 0.75. These experimental labels were subsequently

employed to construct a confusion matrix for the classification of ECX and MUT sequences. Performance metrics are provided for this classification.

(D) The presented contingency table illustrates the experimental distribution of ExoGRU-generated REX and RIX sequences in CMs. The ExoGRU class pre-

dictions for these synthetic sequences achieved an accuracy of 73%, with 82% sensitivity and 59% specificity. A c2 test was applied to calculate a p value for the

observed counts (p = 3.6e�8).

(E) Ct values and normalized EV enrichment of REX andRIX sequences. All sequences were cloned under an RNA polymerase III promoter, and their expression in

EV was initially normalized against mir-16. Subsequently, the values were then corrected by their abundance in the IC fraction. The thresholds on Ct and EV

(legend continued on next page)

4 Cell Genomics 4, 100522, April 10, 2024
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based on natural small RNAs are sufficiently generalizable to

predict secretion probability of synthetic sequences. To these

ends, we randomly generated RNA sequences with an average

length of 20 nt and dinucleotide frequencies matching those

observed in the endogenous small RNAs. We then used

ExoGRU to estimate their probability of secretion and selected

�400 sequences that were classified as EC (labeled REX for

randomly generated ECX) and a similar number that were classi-

fied as IC (labeled RIX for randomly generated ICX). We synthe-

sized REX/RIX sequences and cloned them similarly to the

above. Finally, we transduced this library intoMDA-MB-231 cells

and profiled small RNAs from the CMs and EVs. If a given

randomly generated sequence was observed in the EC fraction,

it was given the EC label, otherwise it was labeled as IC. In

Figures 2D and S2C, we have provided the resulting contingency

table comparing the experimental and computational labels for

CM and EV fractions, respectively. The accuracy of ExoGRU

class predictions for these synthetic sequences in the CM frac-

tion was 73%, with 82% sensitivity and 59% specificity. We

also used a c2 test to calculate a p value for the observed counts

(p = 3.6e�8).

We were intrigued by the ability of ExoGRU to generalize

well to previously unseen sequences and to effectively identify

entirely synthetic sequences that are efficiently secreted.

Therefore, to independently verify the patterns observed for

the REX and RIX sets in our sequencing data, we selected

eight REX sequences (REX1 through REX8) and three RIX se-

quences (RIX1 through RIX3). We cloned these under an RNA

polymerase III (RNA Pol III) promoter (the same pLKO.1 back-

bone as the library) and generated MDA-MB-231 cell lines for

each construct individually. After isolating small RNAs from EV

and IC fractions in biological replicates, we performed RT-

qPCR to compare the enrichment of each sequence in the

EC fraction. We used both the abundance and enrichment of

small RNAs in the EV and CM fractions as our selection

criteria. We used miR-16, which is abundantly secreted, as

an endogenous control in this assay, and both IC and EV or

CM values were first normalized to miR-16. REX1 and REX5

small RNAs, which were significantly enriched in the EC frac-

tion based on small RNA sequencing data (corrected p value =

0.033 and p = 0.049, respectively), were further validated as

EC-associated small RNAs using targeted RT-qPCR (Figures

2E and S2D). Finally, we also tested the expression and secre-

tion of REX1 and REX5 in MDA-MB-231 cells when cloned un-

der a CMV promoter in the BdLV backbone.17 To do so, we

used self-cleaving ribozymes18 to express our REX/RIX se-

quences under this RNA Pol II promoter. In this case as well,

we observed a close to a 100-fold enrichment of REX1 and

REX5 in the EV fraction (Figure 2F). Together, our results vali-

date the performance and utility of ExoGRU as both a predic-

tive model that captures the small RNA secretory grammar

and a generative model that can nominate synthetic small

RNAs that are effectively secreted.
enrichment axes (shown as dotted lines) are set as one standard deviation from t

satisfy both constraints (based on their Z scores relative to RIX sequences), with

(F) Independent validation of EV enrichment for REX1, REX5, and RIX1 sequen

conducted in a manner similar to that depicted in (E).
Gaining insights into the RNA secretory mechanisms by
dissecting the grammar learned by ExoGRU
ExoGRU effectively captures the probability of secretion from

the primary RNA sequence alone, which implies the presence

of an underlying shared sequence grammar that governs this

process. Cis-regulatory elements often mediate interactions

withmaster regulators, such as RBP, to influence the RNA life cy-

cle. In fact, several RBPs have already been shown to play a

direct role in RNA sorting into exosomes.3 In order to systemat-

ically explore the role of RBPs in small RNA sorting and secre-

tion, we first focused on applying motif discovery methods to

the ECX and ICX sequences to find highly discriminative and

class-specific motifs. We used three separate motif finding stra-

tegies, namely MEME,19 Homer,20 and FIRE.21 We identified

multiple sequence motifs that were enriched specifically in the

ECX sequences. In parallel, we also used CLIP-seq data from

the RNA ENCODE project22 to identify RBPs whose binding sites

are enriched among the secreted RNAs. Using signal and peak-

calling results of each RBP, and genome coordinates of ECX and

ICX sequences, we sought to identify RBPs that are enriched for

interactions with the ECX sequences. We applied the Mann-

Whitney statistical test to detect such significantly greater

overall signal values among the ECX and ICX regions. In contrast

to the motif analysis, ENCODE’s eCLIP data resulted in few, if

any, leads. This is not surprising since CLIP data originates

from longer RNAs that are nuclease treated into shorter cross-

linked fragments. As a result, the much stronger signal from

longer RNAs largely masks bona fide small RNA-RBP interac-

tions. In fact, CLIP analysis for small RNA binding has been

reported for only a handful of RBPs, notably AGO223 and

YBX1.24 Therefore, for the purpose of this study, we focused

our downstream analyses on RBPs with enriched bindings sites

(Figure S3A).

Among theRBPmotifs enriched in ECX small RNAs,we focused

onYBX1,HNRNPA2B1, andRBM24binding sites since their asso-

ciatedRBPsare also foundwithin theECspace.25As shown inFig-

ure 3A, the known motifs for these RBPs were significantly en-

riched among cell-free small RNAs, even when controlled for

length and dinucleotide content. Reidentification of YBX1 through

this approach serves as a validation of our strategy given that it is

known to be a major factor in miRNA and small RNA sorting into

the exosomal compartment.26 Similarly, while not as well charac-

terized, HNRNPA2B1 has also been previously implicated in

miRNA sorting.27 RBM24, on the other hand, does not have a ca-

nonical role in RNA secretion; however, it is known to be present

within exosomes.28 To gain deeper insights into these sequence

features usedbyExoGRU,we implemented a signal ablation strat-

egy to investigate the influence of masking the identifiedmotifs on

the model’s predictions. Specifically, we collected approximately

5,000 sequences from the IC and EC datasets that contained

matches to our three specified RBPmotifs.We subsequently con-

ducted a comparative analysis of the model’s mean secretion

probabilities before and after masking or completely removing
he average of these values for RIX RNAs. REX-1 and REX-5, highlighted in red,

combined Fisher’s p values of 1e�11 and 1e�2, respectively.

ces expressed under RNA polymerase II promoter. The qPCR analysis was

Cell Genomics 4, 100522, April 10, 2024 5
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Figure 3. Use of ExoGRU in dissecting RNA secretory mechanisms

(A) As predicted by exoGRU, YBX1, HNRNPA2B1, and RBM24 motifs are enriched in EC. Each RNA structural motif is shown (far right) along with its pattern of

enrichment/depletion across the range of RBPs’ expression (far left). In the heatmap representation, a gold entry marks the enrichment of the given motif in its cor-

responding expression bin (measured by log-transformed hypergeometric p values), while a light blue entry indicatesmotif depletion in the bin. Statistically significant

enrichmentsanddepletionsaremarkedwith redanddarkblueborders, respectively.Alsoshownare themutual information (MI) valuesand their associatedZscores.21

EachMI value is used to calculate a Z score, which is the number of standard deviations of the actual MI relative to MIs calculated for randomly shuffled expression

profiles. Also shown are the MI values and their associated Z scores measuring the association between motif presence and absence and EC enrichment.

(B) Heatmap showing enrichment score of smRNAs containing HNRNPA2B1 motifs in IC, EV, and CM upon decreasing HNRNPA2B1 expression. The log-fold

enrichment values were divided into nine equally populated bins, and the enrichment and depletion patterns across the bins were depicted as described in (A).

Red and blue borders mark highly significant motif enrichments and depletions, respectively. From left to right, we show the motif names and their sequence

information (‘‘motif,’’ in the form of an alphanumeric plot), their associated MI values, and their Z scores.

(C) Similar heatmaps showing enrichment score of smRNAs containing RBM24 motifs in IC, EV, and CM upon decreasing RBM24 expression.
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theseenrichedmotifs linked to theproteinsof interest.Notably, this

analysis revealed a substantial reduction in the model’s secretion

probabilities for all three selected motifs (Figure S3B). Among the

previously labeled ECX sequences, more than 94% of them are

no longer classified as ECX when the YBX1 motif (CCUGGC) is

masked, with an average secretion probability drop from 0.97 to

0.52 (Figure S3B). Additionally, for the RBM24 motif (GAGUC),

more than 77% of ECX sequences are no longer predicted as

ECX (average secretion probability drop from 0.97 to 0.81). Also,

for the HNRNPA2B1 motif ([ACU]AG[GU][GU]), more than 67% of

previously ECX-labeled sequences are no longer ECX (average

secretion probability drop from 0.97 to 0.76; Figure S3B). These

findingswereconsistentwith those from theapplicationof saliency

maps and DeepLIFT29 to sequences containing the specified mo-

tifs, reinforcing the crucial role played by these identified motifs in

shaping the model’s predictions.

To further explore the role of HNRNPA2B1 and RBM24 in small

RNAsecretion,weusedCRISPR interference toknockdownthese

RBPs andmeasure their consequences on the cell-free RNA con-

tent. We achieved a 77% knockdown for HNRNPA2B1 and 88%

for RBM24 in MDA-MB-231 cells using lentiviral transduction, as

described in the STAR Methods. We then isolated RNA from EV,

CM, and IC compartments for small RNA sequencing. As shown

in Figures 3B and 3C, silencingHNRNPA2B1 andRBM24 resulted

in a significant reduction in the abundance of small RNAs that con-

tained their binding sites in both the EV and CM fractions. This

observation confirms the involvement of these RBPs in RNA sort-

ingandsecretion. Inaddition, to furtherdemonstrate thespecificity

of HNRNPA2B1 and RBM24 for their targets, we grouped the EV

enrichment values of small RNAs based on their matches to

HNRNPA2B1 and RBM24 motifs, respectively. Figure S3C dem-

onstrates that EV enrichment of small RNAs carrying

HNRNPA2B1 and RBM24 motifs was significantly decreased

upon knockdown of HNRNPA2B1 and RBM24, respectively.

Notably, this decrease was specific to their cognate motifs.
6 Cell Genomics 4, 100522, April 10, 2024
We next sought to confirm that, as previously claimed,

HNRNPA2B1 sorts small RNAs it binds into exosomes. For this,

we took advantage of UV crosslinking co-immunoprecipitation

followed by sequencing. CLIP-seq often includes a nuclease

digestion step to footprint RBP binding sites across the transcrip-

tome; however, by omitting this step, the small RNA targets

bound by an RBP of interest can be profiled instead. We and

others have previously used this approach for other RBPs, such

as AGO223 and YBX1.24 Visualization of radiolabeled RNA cross-

linked to HNRNPA2B1 on a denaturing gel revealed a faint but

visible band at the correct size range (Figure S3D). We extracted

theseHNRNPA2B1-boundRNAs and performed high-throughput

sequencing. Motif analysis of the identified binding site showed a

strong and highly significant enrichment of the HNRNPA2B1motif

among the bound small RNAs (Figure S3E), which serves as a

technical quality control. Finally, we asked whether these

HNRNPA2B1-bound small RNAs were among those depleted

from the exosomal space upon HNRNPA2B1 knockdown.

Consistently, we observed a marked reduction in the secretion

of these RNA, with a higher statistical significance compared to

the HNRNPA2B1 motif analysis (Figure S3F). Together with the

prior reports, our results show that HNRNPA2B1 binding to small

RNAs is required for their effective secretion.

HNRNPA2B1 and RBM24 exoCLIP shows enrichment of
EC predicted sequences
ThepresenceofRBPsHNRNPA2B1andRBM24 inEVs alongwith

their putative small RNA targets strongly suggests direct interac-

tions within the exosomal space. However, direct evidence of

RNAbindingand the identityof their targetRNAsremained lacking.

To tackle this problem, we developed a novel approach for

capturing the specific RNA molecules that a given RBP interacts

with in the exosomal space. This approach,whichwehave named

exoCLIP, is similar to CLIP-seq but uses UV treatment of CMs to

crosslink RBP-RNA complexes in the cell-free fraction (Figure 4A).



Figure 4. Applying exoCLIP to look at the enrichment of HNRNPA2B1- and RBM24-bound smRNA sequences in cell-free media

(A) Overview of exoCLIP workflow: UV treatment of CMs to crosslink RBP-RNA complexes and using co-immunoprecipitation (coIP) to pull down the RBP-RNA

complexes of interest followed by RNA library preparation and sequencing.

(B) Examples of tRNA fragments that are associated with HNRNPA2, HNRNPB1, and RBM24 proteins, as extracted from exoCLIP data. The positions of

crosslinking-induced deletions (CIDs) are also highlighted in each case by the yellow arrows. In total, the HNRNPA2 exoCLIP yielded 34 unique reads, with 23 of

them exhibiting CIDs at a statistically significant level (p = 0). The HNRNPB1 and RBM24 exoCLIPs each resulted in 88 unique reads, where 87 reads from

HNRNPB1 and 2 reads from RBM24 showed CIDs (p = 0). p values are calculated by the CTK package.30

(C) Heatmaps illustrate enrichment levels of ExoGRU-predicted EC and IC smRNAs in smRNA targets extracted from HNRNPA2, HNRNPB1, and RBM24

exoCLIPs. Red and bolded borders show statistically significant enrichments, as determined by a hypergeometric test (corrected p < 0.05). MI value and

associated Z score are shown.
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Using exoCLIP, we sought to demonstrate a direct interaction be-

tween HNRNPA2B1 and RBM24 and their target small RNAs. In

the case of HNRNPA2B1, we tested both the A2 and B1 isoforms.

We transduced MDA-MB-231 cells with FLAG-tagged copies of

HNRNPA2, HNRNPB1, and RBM24, respectively. We then per-

formed exoCLIP-seq for each line using FLAG co-immunoprecip-

itation. We used the CLIP Toolkit30 to call peaks for each of the

RBPs using two strategies: one based on sequence coverage or
signal and the other based on crosslinking-induced mutations.

Both strategies yielded between hundreds and thousands of

RNA targets, a fraction of which mapped to annotated small

RNAs (Figure S4A). These results indicate that HNRNPA2B1 and

RBM24 indeed bind their RNA targets directly in the cell-free

space. Interestingly,whileweobserved somecorrelation between

theHNRNPA2andHNRNPB1 isoforms, therewere alsomany iso-

form-specific binding sites for these RBPs (Figure S4B). In
Cell Genomics 4, 100522, April 10, 2024 7



Table 1. Breakdown of number of samples used from each

dataset

Label Split Number of data

EV train 26,374

EV valid 3,271

EV test 3,437

IC train 114,340

IC valid 14,267

IC test 14,270

Table 2. Number of smRNA sequences categorized as EC(X) and

IC(X) and their corresponding secretion probability as predicted

by ExoGRU

True label

Secretion

probability

Prediction

label Label type

Number of

sequences

EC <0.5 IC false negative 2,970

EC R0.5 EC true positive 30,112

EC R0.95 EC (ECX) true positive

(extreme)

8,944

IC R0.5 EC false positive 20,192

IC <0.5 IC true negative 122,685

IC %0.05 IC (ICX) true negative

(extreme)

82,157
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Figure 4B, we have included examples of small RNAs, in this case

tRNA fragments, that are boundbyeachRBP, asevidencedby the

exoCLIP signal and the presence of crosslinking-induced dele-

tions. Since we had selected HNRNPA2B1 and RBM24 based

on our analysis of high-confidence predictions for EC and IC

RNAs from ExoGRU, we expected these predictions to match

the exoCLIP results as well. To assess this possibility, we

measured the enrichment of bound small RNAs fromeach dataset

among the ExoGRU-predicted EC vs. IC small RNAs. As shown in

Figure 4C, we observed a significant over-representation of EC

small RNAs that are directly bound by HNRNPA2B1 and RBM24.
DISCUSSION

It is hypothesized that ECsmall RNAsplay a key role in intercellular

communications and regulation of various biological pro-

cesses.3,5,6,31,32 Identifying these specific RNAmolecules and un-

derstanding theirmechanisms of action has led to the discovery of

different disease-associated biomarkers and therapeutic tar-

gets.7–9,31,33–35 However, our understanding of how these RNA

moleculesaresortedanddelivered into theECspace isstill limited.

Multiple studies have identified different RBPs responsible for

RNA secretion into the EC space.26,27 However, the full mecha-

nisms underlying small RNA delivery are still largely unknown. A

recent study comparing IC vs. EC miRNA profiles found multiple

‘‘EXOmotifs’’ and ‘‘CELLmotifs’’ on miRNA responsible for their

secretion from or retention in the cells, suggesting that there

are various different motifs and RBPs involved in this process.10

While the studyprovided valuable informationonmiRNAdistribu-

tion in metabolically important cells, we aimed to further explore

the mechanisms behind small RNA sorting in cancer cells using

machine learning tools and novel molecular biology approaches.

To further decipher the principles of small RNA delivery to the

EC space, we asked three specific questions: (1) which RNA se-

quences are selected and secreted, (2) can we develop a compu-

tational model that learns the sequence grammar that underlies

RNA secretion, and (3) using this model, can we learn the molec-

ular mechanisms that drive this selection? To tackle these ques-

tions, wedeveloped ExoGRU, a deep recurrent neural network, to

predict the secretion probability for any small RNA given the pri-

mary sequence. We rigorously verified our model’s ability to cap-

ture the small RNA secretory grammar by testing the impact of

ExoGRU-guided targeted mutations on the secretion of endoge-

nous small RNAs.We found the RNA primary sequence to be suf-

ficient to discriminate between the IC and EC small RNAs.
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Additionally,weusedExoGRU to reveal the regulatory grammar

captured by themodel. Usingmotif discoverymethods andCLIP-

seq data combined with high-confidence ExoGRU predictions,

we identified several RBPs that preferentially bind to secreted

RNAs and are associated with the RNA-sorting process. In addi-

tion to recapitulating the known involvement of YBX1, we also

demonstrated the role of RBM24 and HNRNPA2B1 in RNA secre-

tion through CRISPR interference and CLIP-seq. We described

exoCLIP, a novel approach to capture direct RBP-RNA interac-

tions in cell-free media. Using this method, we successfully char-

acterized RBM24, HNRNPA2, and HNRNPB1 RNA targets in the

EC space. Our exoCLIP-seq data also aligned with ExoGRU pre-

dictions, as we saw enrichment of EC-associated sequences in

these data. Overall, our results demonstrate the performance

andutility ofExoGRUasapredictivemodel that captures the small

RNA secretory grammar and provides insights into the role of

RBPs in small RNA sorting and secretion.

Last but not least, we showed that ExoGRU’s prediction ability

is generalizable to synthetic sequences. This was demonstrated

through sequencing and qPCR analysis of randomly generated

but ExoGRU-scored libraries of EC and IC sequences (REX/

RIX). The validation process further confirmed the accuracy of

the predictions made by the ExoGRU model. Using this feature

of ExoGRU, we will be able to design fully engineered and effi-

ciently secreted sequences that can be used as biomarkers as

well as having further applications in synthetic biology.

Limitations of the study
One of the challenges in the biological validation of ExoGRU’s

findings stems from the expression of small RNA through an

exogenous construct. This approach may yield RNA species

that (1) experiencemis-localization and subsequent rapid degra-

dation and (2) lack the crucial endogenous molecular context

required for successful secretion. Consequently, not all se-

quences confidently identified by ExoGRU will be expressed

correctly and captured in the EC domain. Moreover, the experi-

mental isolation process and sequencing threshold may not effi-

ciently capture lowly abundant secreted RNA, leading to mis-la-

beling these RNA species as IC.

The small RNA composition is significantly variable across

diverse cell types. Our model was trained on small RNA derived

from breast cancer or normal breast tissue, with validation
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exclusively performed on the MDA-MB-231 cell line. While

certain discovered sequences may find expression and valida-

tion in other cell types, it is crucial to acknowledge the potential

limitations. The model’s ability to reproduce similar results may

be compromised, emphasizing the need for retraining on new

datasets that align more closely with the specific context.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

anti-HNRNPA2B1 antibody for HITS CLIP Thermo Fisher Cat# PA5-34939; RPID: AB_2552288

CD81 (B-11) Santa Cruz Biotechnology Cat# sc-166029; RPID: AB_2275892

IRDye� 800CW Goat anti-Mouse

IgG Secondary Antibody

Licor Cat# 926–32210; RPID: AB_621842

Bacterial and virus strains

MegaX electrocompetent cells Thermo Fisher C640003

NEB Stable Competent E.coli New England Biolabs C3040H

Chemicals, peptides, and recombinant proteins

exosome depleted FBS Thermo Fisher A2720801

TransIT-Lenti Transfection Reagent Mirus bio 6604

Polyethylene Glycol 10000 (PEG) Hampton Research HR2-607

SMARTer smRNA-Seq Kit for Illumina Takara 635029

Centricon� Plus Centrifugal Filter Millipore sigma UFC701008

Quick-cfRNA Serum & Plasma Kit Zymo Research R1059

Quick-RNA Microprep Kit (cat#) Zymo Research R1051

anti-flag magnetic beads Thermo Fisher A36797

IGEPAL CA-630 Sigma Aldrich I8896-50ML

Deposited data

Random smRNA library GEO NCBI GEO: GSE230012

Endogenous smRNA library GEO NCBI GEO: GSE230012

ExoCLIP GEO NCBI GEO: GSE230012

RBP_KD smRNA libraries GEO NCBI GEO: GSE230012

Experimental models: Cell lines

MDA-MB-231 ATCC HTB-26

HEK293T ATCC CRL-3216

Oligonucleotides

Oligo lists This paper, Tables S1, S3, S5, S6, and S7 N/A

gBlocks This paper, Tables S2 and S4 N/A

Indices This paper, Tables S8 and S9 N/A

Recombinant DNA

pHR-UCOE-EF1a-dCas9-HAxNLS-

XTEN80-KRAB-p2a-mCherry

This paper, Backbone: PHR; Addgene N/A

pLX302-EF1a-RBM24-flag This paper, backbone pLX302, Addgene N/A

pLX302-EF1a-HNRNPA2-flag This paper, backbone pLX302, Addgene N/A

pLX302-EF1a-HNRNPB1-flag This paper, backbone pLX302, Addgene N/A

pLKO.1 puro Addgene 8453

BdLV_Puro_mCherry This paper N/A

BdLV_Puro_mCherry_RGR_REX/RIX This paper N/A

Software and algorithms

All codes developed https://doi.org/10.5281/zenodo.10553402 N/A

MEME Bailey et al.19 N/A

Homer Heinz et al.20 N/A

Fire Elemento et al.21 N/A

CTK Shah et al.30 N/A
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RESOURCE AVAILABILITY

Lead contact
Requests for further information and resources should be directed to and will be fulfilled by the lead contact, Hani Goodarzi (hani.

goodarzi@ucsf.edu).

Materials availability
This study did not generate any new unique reagents or materials to report.

Data and code availability
The small RNA sequencing data and exoCLIP are available in the Gene Expression Omnibus database (NCBI GEO: GSE230012). The

code used in this study is available at https://doi.org/10.5281/zenodo.10553402. The code was developed using the Python and R

programming language. The code was designed to reproduce the analyses presented in this manuscript and may be useful for re-

searchers wishing to extend or replicate our findings. The repository includes documentation and instructions on how to use

the code.

METHOD DETAILS

Cell culture
All cells were cultured in a 37�C 5% CO2 humidified incubator. The MDA-MB-231 (ATCC HTB-26) breast cancer cell line, and 293T

cells (ATCC CRL-3216) were cultured in DMEM high-glucose medium supplemented with 10% FBS, penicillin, streptomycin, and

amphotericin B.

All the lentiviral constructs were co-transfected with pCMV-dR8.91 and pMD2.G plasmids using TransIT-Lenti (Mirus) into 293T

cells, following manufacturer’s protocol. Virus was harvested 48 h post-transfection and passed through a 0.45 mm filter, and added

to target cells 24 h after they were seeded.

MDA-MB-231 cells with RBP knockdowns
Gene knockdowns were performed by first transducing MDA-MB-231 with dCas9-KRAB construct via lentiviral delivery of: pHR-U-

COE-EF1a-dCas9-HAxNLS-XTEN80-KRAB-p2a-mCherry. MDA-dCas9-KRAB expressing cells were then sorted by FACS isolation

of mCherry-positive cells. Guide RNA sequences for CRISPRi-mediated gene knockdown were cloned into pCRISPRia-v2 (Addgene

#84832)36 via BstXI-BlpI sites (see Table S1 for sgRNA sequences). After transduction with sgRNA lentivirus, MDA-MB-231 cells

were selected with 2 mg/mL puromycin (Gibco). Knockdown of target genes was assessed by reverse transcription of total RNA

to cDNA (Maxima H Minus RT, Thermo), then using sequence specific primers along with PerfeCTa SYBR Green SuperMix

(QuantaBio) per the manufacturer’s instruction. HPRT was used as an endogenous control (see Table S1 for primer sequences).

MDA-MB-231 cells overexpressing flag-tagged RBPs
For generation of flag tagged RBP cell lines, we cloned gblocks containing RBM24, HNRNPA2 or HNRNPB1 and the flag sequences

into pLX302-EF1a plasmid via PacI-NheI sites (Table S2 shows the gblock sequences). Plasmids were delivered to MDA-MB-231 by

lentiviral transduction as described above. Expression of RBP-FLAG was assessed using western blot.

MDA-MB-231 cells expressing ECX or MUT sequences under pol III promoter
For expressing ECX/MUT sequences under U6 promoter we cloned�400 ECX/ECX_MUT sequence pairs into pLKO.1 plasmid using

AgeI and EcoRI sites, and transduced the MDA-MB-231 by lentiviral transduction as described above.

MDA-MB-231 cells expressing REX or RIX sequences under pol III promoter
For expressing REX1-8/RIX1-3 sequences under U6 promoter we cloned oligos in Table S3 into pLKO.1 plasmid using AgeI and

EcoRI sites, and transduced the MDA-MB-231 by lentiviral transduction as described above.

MDA-MB-231 cells expressing REX or RIX sequences under pol II promoter
For cloning REX1, REX5 and RIX1 sequences under the CMV promoter, we first cloned the ribozyme-small RNA-ribozyme (HH/HDV)

cassette18 into BdLV_Puro_mCherry using PacI andMlul site.We then digested the vector using AsiSI and cloned gblocks containing

the sequence of interest (Table S4) using Gibson assembly. Plasmids were delivered to MDA-MB-231 by lentiviral transduction as

previously described.

RT-qPCR for REX/RIX expression
3.5 ml of isolated RNA was polyA tailed by adding 0.5ul 10X polyA polymerase buffer, 0.5ul 10mM ATP, 0.25ul polyA polymerase

(NEB),0.25 ml H2O and incubating at 37�C for 10 min. 2.5 ml polyA tailed RNA was then reverse transcribed by adding 0.25ul

10mM dNTPs, 0.1ul 100uM dT T7 primer, 5X RT buffer, 0.15 ml RNAseOUT, 0.25 ml Maxima HMinus RT and 0.75 H2O by incubating
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at 50C for 15 min followed by 85C for 5 min. QPCR was done using PerfeCTa SYBR Green SuperMix, T7 primer, and miRNA specific

primer as listed on Table S5.Mir16 primer was used as an endogenous control. To select for EC enrichedREX smRNAs, we used both

the abundance and enrichment of small RNAs in the EV and CM fractions as a selection criteria. The criteria for Ct and log-fold EV and

CM enrichment values were set to be one standard deviation below and above the respective averages of these values for the RIX

sequences.

Generation of smRNA libraries
ECX/MUT and REX/RIX oligo pools were ordered from Twist Biosciences. Both oligo pools were separately cloned into pLKO.1-puro

plasmid using AgeI and EcorI sites and were transformed into MegaX electrocompetent cells with about 1000X coverage. The

smRNA libraries were then transfected to MDA-MB-231 cells using lentivirus as described previously. We maintained a 1000x

coverage through the transduction process.

RNA isolation from conditioned media (CM) and extracellular vesicles (EV)
MDAcells were seeded in 10 cmor 15 cmplates. The next day themediawas removed, and cellswerewashedwith 1XPBS.Cells were

then incubated in media prepared with exosome depleted FBS (cat# A2720801) in standard cell culture conditions for 48 h. After 48 h,

mediawas collected and spundownat 500g andpassed through 0.4 mm to remove any cells. For RNA isolation fromconditionedmedia

(CM),we took 1mLof cell freemedia and performedRNA isolation using zymo researchQuick-cfRNASerum&PlasmaKit (cat#R1059).

The rest of the media was used for exosome isolation. We took advantage of an EV enrichment method using polyethylene glycol

(PEG) as outlined in patent# EP2839278B1.37 by adding Polyethylene Glycol 10000 (PEG, HR2-607) to 10% final and overnight in-

cubation at 4C. The next day PEG/media mixture was spun down at 3000 g at 4C for 1 h. We then removed the supernatant and

proceeded to Zymo Research Quick-RNA Microprep Kit (cat#R1051) for RNA isolation from the EV pellets observed at the bottom

of the tube. To confirm the efficacy of our EV isolation through the PEG precipitation method, we present a western blot image of

CD81, a well-established exosomal marker, detected in EVs isolated from MDA-MB-231 conditioned media (Figure S5). The blot

was stained with 1:2000 anti CD81 and 1:10000 IRDye 800CW Goat anti-Mouse IgG Secondary Antibody and visualized using Licor

Odyssey XF.

To delve further into whether the RNA captured in the CM fraction is actively secreted through mechanisms involving lipoprotein

complexes, rather than being a result of passive mechanisms like cell death, we conducted a repeated experiment as shown in

Figure 2A. This time, we divided the media into two conditions: one with RNAse treatment and one without RNAse treatment. We

then extracted RNA from the conditioned media and performed small RNA sequencing. Our analysis revealed that there were no

significant differences in RNA sequences (correlation coefficient, R = 0.81) between the two treatment conditions. This observation

suggests that the RNA sequences in our ECX sequences aremostly secreted through EVs and are thus protected by the RNAse treat-

ment, as they remain relatively unaffected by the enzymatic degradation.

RNA isolation from cells
Total RNA for RNA-seq and RT-qPCR was isolated using the Zymo Research Quick-RNA Microprep Kit (cat#R1051) with in-column

DNase treatment per the manufacturer’s protocol.

ExoCLIP
ExoCLIP of flag tagged RBM24, HNRNPA2, HNRNPB1MDA-MB-231 cells was done by seeding 12M cells divided in four 15 cm cell

culture plates for each cell line in DMEMmedia as described above. After 24 h, the media was changed to DMEMwith exosome free

FBS. 48 h after themedia change, the conditioned media was collected and transferred to 50mL falcon tubes and spun once at 500g

and once at 2000g for 10 min at 4C to clarify the media from any cells. Clarified media was then transferred to 15 cm plates for cross-

linking at 200 mJ/cm2 254 nm UV. After the first UV exposure we swirled the media and repeated the crosslinking step for a second

time. Crosslinked clarified media was transferred to the centricon plus-70 filter 10K MWCO (millipore sigma UFC701008) and

concentrated according to the manufacturer’s protocol.

To the concentrated media we added protease inhibitor, SuperaseIN, EDTA, 1M Tris-HCl pH 7.5, and anti-flag magnetic beads

(CAT# A36797) and incubated with rotation for 20 h at 4�C. Beads were magnetized and washed sequentially with cold low salt

wash buffer, high salt wash buffer and PNK buffer two times each. This was followed by a PNK mediated dephosphorylation step

(2.5ul 10X PNK buffer, 2ul 10X T4 PNK (10unit/ul), 0.5ul SuperaseIN, 20ul H2O) for 20 min at 37C and sequential washes with

PNK buffer and high salt wash buffer.

The de phosphorylated RNA-protein complexes were then poly A tailed using yeast PAP, PAP buffer, ATP and SuperaseIn (Jena

600U/ul) at 22 for 5 min. The poly A tailed RNA-Protein complex was then labeled by N3-dUTP, and yeast PAP, PAP buffer and

SuperaseIn at 37C for 20 min. Beads were then washed by high salt wash buffer and PBS. The N3-labeled smRNA was stained

with 1mM800cwDBCO at 22C for 30min. Beadsweremagnetized andwashedwith high salt HITS-CLIPWB and PNK buffer respec-

tively, and then resuspended in 20ul of 1XNuPAGE loading buffer +50mMDTT final concentration diluted in PNK buffer and heated at

75C for 10 min. Beads were placed on the magnet for elution. The eluted RNA protein complexes were then frozen in �80 and later

used for WB analysis as described below.
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Low salt wash buffer
1X PBS (TC grade, no Mg++, no Ca++)

1% IGEPAL CA-630.

High Salt Wash Buffer:

5X PBS (TC grade, no Mg++, no Ca++)

1% IGEPAL CA-630.

1X PNK Buffer:

50mM Tris-Cl pH 7.4.

10mM MgCl2.

1% IGEPAL CA-630.

Western Blotting
Eluted RNA-protein complexes from above were run on SDS-PAGE using 4–12% Bis-Tris NuPAGE gels and transferred to protran

BA-85 nitrocellulose membrane. The membrane was briefly rinsed in PBS and placed in a sheet protector and imaged with a Licor

Odessey instrument.

Protein K digest and RNA capture
The RNA-protein complexes imaged as described above appeared as a diffused signal with a modal size of�15-20kDa above the ex-

pectedMWof the protein of interest. AverageMWof 21 nt longRNA is�7kDa. Poly(A) tail�20nt (�6.5kDa), therefore the position of the

protein-RNA complex that will generate CLIP tags longer than 20nt is�14kDa above the expectedMWof the protein. HNRNPA2-Flag

and HNRNPB1-Flag run at 38 and 39 kDa respectively and RBM24-Flag runs at �28. Therefore, we cut between 55 and 85 kDa for

HNRNPA2 and HNRNPB1 lanes and 39–70 kDa for RBM24 lane. The MDA only (no flag) lane was cut from 39 to 85 kDa.

The cut membranes were each transferred to a 1.5 mL Eppendorf tube and treated with 12.5 ml Proteinase K in 200 ml Proteinase K

digestion buffer at 55C for 45min. The samples were then quickly spun down and the 200 ml of supernatant was transferred to a clean

Eppendorf tube. Samples were then adjusted for salt by adding 19 ml 5M NaCl and 11 ml H2O per 200 ml sample.

To capture the RNA, we used 30 ml Oligo d(T)25 dynabeads (Invitrogen cat#61002) per IP. Beadswerewashed 2Xwith Proteinase K

buffer before use. We transferred �200ul salt-adjusted samples to the beads and incubated at 25C at 300 RPM for 20 min with oc-

casional shaking of 1350 RPM.We then washed the samples/beads 2X with cold high salt wash buffer and 2X with PBS, magnetized

and removed the supernatant. RNA was eluted by incubating the beads in 8 ml TE elution buffer at 50C for 5 min. Beads were magne-

tized and 7.5 ml of eluted RNA was transferred to clean PCR tubes.

Small RNA library preparation
Small RNA library preparation for samples taken from exoCLIP was done using Takara Bio SMARTer smRNA-Seq Kit (cat# 635029)

with a few modifications. Since our RNA was already poly-A tailed, we skipped this step in the protocol and moved to the cDNA syn-

thesis. We also wanted to incorporate UMI in our cDNA, so we added 2.5ul smRNA mix 1 and 1ul of 10uM dT-UMI RT primer to our

7.5 ml poly A-tailed smRNA and incubated at 75C for 3 min and then placed on ice for 5 min. We then performed reverse transcription

as described in the kit’s protocol. In the PCR stepwe also added a 2 ml, 10 mMUniversal reverse primer (P7) to the PCRmix and added

the 78 ml mix to each cDNA sample. We then added the 2 ml index forward primer to each sample and incubated as described in the

protocol. We purified the PCR product using Zymo Research select-a-size MagBead (cat#D4084-50). ExoCLIP sequencing primers

and barcodes are listed under Table S6.

Library preparation for RNA isolated from ECX/MUT or REX/RIX transduced MDA-MB-231 cells and small RNA library from

HNRNPA2B1 KD and RBM24 KD MDA-MB-231 cells were prepared using an in-house small RNA library preparation. 7.5 ml RNA

was polyadenylated using 1ul NEB 10X polyA pol buffer, 1 ml 10 mM ATP, 0.25 ml RiboLock (40 u/ul), 0.25 ml E. coli PolyA pol.

5 u/mL (NEB), and incubated at 16C for 5 min, and then put on ice for maximum 5min before proceeding to cDNA synthesis. We added

1 ml of RT primer, incubated at 72C for 3 min before putting on ice. We then prepared RT mix on ice using 2 ml 5X RT buffer with DTT

(Thermo), 1 ml 10mMdNTP, 4 ml 5MBetaine, 1 ml MaximaH-RT 200 u/mL (Thermo), 0.25 ml RiboLock 40 u/mL (Thermo), 1 ml 10 mMTSO-

UMI primer. We incubated the RT mix at 42C for 30 min and then at 85C for 5 min. The cDNA amplification was carried by using 19 ml

cDNA fromprevious step, 20 ml 5X PhusionHF buffer (Thermo), 2 ml 10mMdNTP, 2 ml 12 mMTakara Fwd PCRprimer, 2 ml 12 mM12 mM

Takara Rev PCR primer, 1 ml Phusion HS II pol. 2 u/mL (Thermo), and 48 ml H2O. We then ran a PCR reaction for cDNA amplification as

follows: 30 s@ 98C - [10 s@98C - 10 s@ 65C - 5 s@72C]xN cycles (N determinedbyperforming a qPCR). RT, TSOand Takara primers

are listed under Table S7. Sample barcodes and indices are listed under Tables S8 and S9.

PCR reaction was purified through an MN NucleoSpin Gel & PCR Cleanup column (cat#740609) and eluted in 30 mL of water. We

ran samples on a 8% TBE gel for 35 min at 180V and stained the gel with 1X GelGreen in 1X TBE for 2 min then imaged under Blue

light.We cut the fragment of interest (150–200 bp) and placed the gel slices in a 0.5mL tubewith a hole pierced by a 18Gneedle. Spun

the tube in a 1.5mL tube until the gel was passed through the hole.We then added 400 mL of the DNA gel extraction buffer (10mMTris

pH 8, 300mMNaCl, 1mMEDTA) to the gel, vortexed and froze on dry ice for 30min, and then thawed overnight on a rotator. Next day

we transferred the gel slurry to a Costar filter spin-column and spun at maximum speed until all liquid has passed through. We added
e4 Cell Genomics 4, 100522, April 10, 2024
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1.5 mL of GlycoBlue and 500 mL of isopropanol to the DNA solution, and put in �80C for 1 h, then spun at 4C for 30 min, air dried for

10 min, and resuspended and incubated in 10 mL of 10 mM Tris pH 8 for 10 min.

Sequencing and analysis
Libraries were quantified using Qubit HS dsDNA kit, and also ran on an Agilent bioanalyzer HS DNA Chip or HSD1000 tapestation. All

libraries were sequenced as SE65 runs on Illumina Hiseq 4000 at UCSF Center for Advanced Technologies. Reference sequences

were collated as fasta files (for ECX and MUT sequences, and RIX and REX sequences separately).

UMI-tools38 (v1.0) and cutadapt39 (v3.5) were used to extract UMIs and remove linker sequences. BWA40 (v0.7.17) was used to

align reads and then duplicates were removed using the extracted UMIs. Reads mapping to each sequence in the bam file was

then counted and DESeq2 (v1.24) was then used to normalize and compare the extracellular fractions to the intracellular fraction

and log2 fold-change were reported for each group of sequences.

For the analysis of ECX/MUT experiment in Figure 2A, we included 55 ECXRNAs and 55matchedMUTRNAs. For this analysis, we

required the RNA to be present in a third of samples in both EV and CM fractions so that the logFC values were meaningful.

HITS-CLIP
HITS-CLIP for endogenous HNRNPA2B1 was done as described by (Licatalosi et al., 2008)41 with the modifications previously used

for YBX1 small RNACLIP (Goodarzi et al., 2015).24 MDA-MB-231 cells were UV-crosslinked at 400mJ/cm2 before cell lysis. Samples

with and without RNase treatment were immunoprecipitated with an anti-HNRNPA2B1 antibody (Thermo, PA5-34939) for protein-

RNA complexes. RNase treatment was as follows: RNase A (Affymetrix 70194Z, 9,063 units/mg, 4.89 mg/mL); low RNase was

1:2500 and high RNase was 1:50 dilutions, the no RNase was 0 RNase.

Polyphosphatase (Lucigen) was incubated with smRNA samples before ligation and PCR amplification with primers described by

(Goodarzi et al., 2015).24 Constructed libraries were sequenced on the Illumina HiSeq2000 at the Rockefeller University Genomics

Center. The resulting library was then analyzed using the CLIP toolkit (CTK).30

Data Acquisition
To train our predictive models, we sourced small-RNA sequences data for intracellular and exosome-specific predictions from three

reliable sources: Goodarzi et al. (GSE114366),7 Extracellular RNA Communication Consortium Atlas (exRNA Atlas), and The Cancer

Genome Atlas (TCGA). We first used the GSE114366 data, which was generated to investigate the roles of intracellular and extracel-

lular small-RNAs in breast cancer. We extracted small-RNA-seq data of intracellular small-RNAs (IC) and small-RNAs present in

extracellular vesicles (EV) from 8 different breast cancer cell lines. Although the small-RNA selection and secretion machinery

may differ among different cell types and states, we assumed that there are some general and common mechanisms that exist in

cells. Therefore, we merged all of the IC data, regardless of the cell line, and imported 30,093,690 IC-resided small-RNA sequences

to our IC dataset. We also integrated all the EV data and collected 6,127,883 EV-resided small-RNA sequences to our EV dataset.

Second, we imported 67,511,039 EV-resided small-RNA sequences from the exRNAAtlas, whichwere extracted from the serumpart

of blood cells of 12 samples. Third, we collected 1,8488,703 IC-resided miRNA sequences from the TCGA dataset which were ex-

tracted from normal cells of different tissues across the body.We selectedmiRNA-seq data and not RNA-seq data because our main

focus in this research is to investigate the selection and secretion processes of small-RNAs inside a cell. Notably, to avoid data

leakage due to sequence similarity, we filtered out redundant (i.e., highly similar) sequences from the aggregated dataset. The table

below presents information regarding the total number of samples utilized from each dataset, as well as the percentage of samples

held out from each dataset.

Data preprocessing
After integrating data from three distinct sources, we performed several preprocessing steps to clean and organize the data. We first

removed sequences that were present in both the IC and EV datasets, assuming that they belonged to the EV, as exported small-RNA

sequences can also exist intracellularly. We then eliminated sequences that were less than 18 nts or more than 50 nts, as our focus

was on small-RNAs. We also removed any sequences that contained "N" in their primary sequence in order to decrease ambiguity in

our dataset. We eliminated duplicated sequences and sequences that were a substring of a bigger one. For example, if we had both

ACGU andUACGU sequences in our dataset, we removed the former one. To further clean the data, we used theMEME-Suite’s dust

tool to mask and delete sequences that carried low-complex regions. The dust tool helps to identify and remove any non-informative

regions in the sequences such as repetitive regions. After all of these preprocessing steps, we had 33,083 unique EV small-RNAs and

1,318,795 unique IC small-RNAs that were ready to be used for predictive model training.

Feature generation
Wederivedmultiple features from IC and EV small-RNA primary sequences to train the classifiers, utilizing the ViennaRNA package to

predict RNA secondary structures and free energies for each RNA within our dataset. Two distinct secondary structure representa-

tions were generated using ViennaRNA. The first format, created using the RNAfold module, employed a dot-bracket notation. In this

notation, nucleotides were represented as either single-stranded, indicated by a dot (.), or double-stranded, denoted by open and

closed brackets (e.g., "(" or ")").
Cell Genomics 4, 100522, April 10, 2024 e5
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The second representation format, referred to as the bulge-graph notation, was created using the forgi module. This representation

categorized RNA secondary structures into five distinct types: five-prime (f), three-prime (t), stem (s), interior loop (i), multiloop

segment (m), and hairpin loop (h).

To expand the representation of these sequences, we developed an 8-term notation that encapsulated information from both

the primary sequence and secondary structures. In this notation, each sequence was represented using the characters {A, C, T,

G, a, c, t, g}, where uppercase characters indicated double-stranded nucleotides characterized by bracket secondary structures,

and lowercase characters represented single-stranded nucleotides indicating dot secondary structures.

In summary, for each small RNA in our IC and EV dataset, we had four distinct sequence representations: the primary sequence,

the dot-bracket secondary sequence, the bulge-graph secondary sequence, and the nucleotide-based secondary sequence.

Additionally, we obtained the predicted free energy for each RNA.

These sequences were further analyzed by extracting K-mers (K = 1–4, 5, 7) from both the primary and secondary sequences

mentioned above. K-mers, or k-grams, represent substrings of length k within any given sequence. For example, for 3-mers, com-

binations such as " . ", ".(", ".(.", "(.", "(.)", ".)", ".).", and "())" were generated for the dot-bracket representation.

To ensure uniformity in our dataset, we normalized the features, including K-mer frequencies and free energy, based on the length

of each sequence. Additionally, we included the length of the sequence as a feature.

Given that the majority of our sequences had lengths less than 50 base pairs (bp), sequences exceeding 50 bp in length were trun-

cated, and smaller sequences were padded to achieve a fixed length. This preprocessing step ensured that our data was consistent

and ready for input into our model.

Predictive models
The predictivemodels examined in this research are divided into two categories: classical machine learningmethods and deep learning

methods. Classical methods trained/tested in this research include support vector machines (SVMs) and random forests (RFs). On the

other hand, deep learning methods include models which are inspired by convolutional neural networks (CNNs) and recurrent neural

networks (RNNs). It should be noted that due to the limitations ofmachine learningmodels (SVMs andRFs) in handling sequence-based

data, all sequence-typed features were removed from the final design matrix for the machine learning experiments.

Support Vector Machines
Support Vector Machines (SVMs) are a family of supervised machine learning algorithms that are commonly used for linear and non-

linear classification tasks, as well as for regression tasks. In this study, we conducted an ablation study to evaluate the effectiveness

of different input feature spaces and kernel types for SVMs. Specifically, we defined six different training scenarios, which varied in

terms of the input feature space and kernel type used.

To evaluate the effectiveness of non-Kmer features, we used two different feature sets: one that included all extracted features, and

another that included only the K-mers extracted from the primary sequences. Additionally, we tested both linear andRadial Basis Func-

tion (RBF) kernels for the SVMs. Furthermore, due to the inherent class imbalance issue existing in the preprocessed dataset, we tried

to mitigate this issue by using weighted SVM by weighting the class parameters inversely proportional to their sample frequencies.

Random Forest
In this study, we employed Random Forest, a powerful tree-based machine learning algorithm, to train on the preprocessed dataset.

This choice was made due to the algorithm’s ability to handle large feature sets and its robustness to overfitting compared to other

existing machine learning models. Similar to the experiments conducted with Support Vector Machines (SVMs), we evaluated the

effectiveness of both weighted and unweighted Random Forest models. Additionally, we investigated the impact of different tree

population sizes on the performance of the algorithm. Specifically, we tested tree population sizes of 50 and 200 while keeping

the tree-depth fixed at 20.

ExoGRU
ExoGRU, as the name suggests, consists of multiple GRU units stacked on top of each other. GRUs introduced a simpler alternative

compared to LSTMs. They are able to capture relatively long-term dependencies by utilizing gates in order to control the informa-

tion flow.

A GRU unit computes the hidden state at time step t as follows:

zt = sigmoidðWz xt + Uz ht� 1 + bzÞ
rt = sigmoidðWr xt + Ur ht� 1 + brÞ
h0
t = tanhðWh xt + Uhðrt � ht� 1Þ + bhÞ
e6 Cell Genomics 4, 100522, April 10, 2024



Article
ll

OPEN ACCESS
ht = ð1 � ztÞht� 1 + zth
0
t

Where x_t is the input at time step t, h_{t-1} is the previous hidden state,W_z, U_z,W_r, U_r,W_h, U_h are theweight matrices, b_z,

b_r, b_h are the bias terms and sigmoid and tanh are non-linear activation functions. The update gate z_t and reset gate r_t are used

to control the flow of information into the hidden state h_t, allowing the network to better handle long-term dependencies.

ExoLSTM
ExoLSTM is also another network we employed in this study. The architecture consists of multiple LSTM units stacked on top of each

other. Long Short-Term Memory (LSTM) units are a type of recurrent neural network (RNN) that uses a memory cell to store informa-

tion over a longer period of time. The memory cell is controlled by gates that determine when to store, update, or discard information

in the cell.

An LSTM unit computes the hidden state at time step t as follows:

it = sigmoidðWi xt + Ui ht� 1 + biÞ
ft = sigmoidðWf xt + Uf ht� 1 + bfÞ
ot = sigmoidðWo xt + Uo ht� 1 + boÞ
ct = ft � ct� 1 + it � tanhðWc xt + Uc ht� 1 + bcÞ
ht = ot � tanhðctÞ
Where x_t is the input at time step t, h_{t-1} is the previous hidden state, c_{t-1} is the previousmemory cell state,W_i, U_i,W_f, U_f,

W_o, U_o, W_c, U_c are the weight matrices, b_i, b_f, b_o, b_c are the bias terms, and sigmoid and tanh are non-linear activation

functions. The input gate i_t, forget gate f_t, output gate o_t and cell state c_t are used to control the flow of information into the hid-

den state h_t, allowing the network to better handle long-term dependencies.

ExoCNN
ExoCNN is a variant of convolutional neural networks (CNNs) designed to generate predictions from sequences. The architecture of

ExoCNN is composed of several layers, including convolution, pooling and fully connected layers, each of which contains tunable

weights and biases. One key aspect of the ExoCNN architecture is the use of "conv blocks" as firstly defined in VGG42 which are

composed of multiple consecutive convolution layers followed by a max-pooling operation. In the max-pooling operation, the

maximum value is computed for each window of size 2 in the "conv block"’s output matrix, this helps to summarize spatial informa-

tion into the output while retaining the spatial information. Following the "conv blocks" and max-pooling operations, the output of

the last max-pooling operation is flattened and fed to a classifier head with 2-layer fully connected neural network. Similar to the

convolution layers, rectified linear activation functions are used in the head. The number of neurons in the hidden layers of

ExoCNN’s classification head are 1024 and 128 respectively. Finally, the output of the last layer is passed through a sigmoid function

which generates a (secretion) probability for the input sequence.

Model training
As shown in Table 1, the sample frequency of the IC class is significantly higher than the EV class, which results in a common problem

in machine learning known as class imbalance. To address this issue, we downsampled the IC dataset to balance the class fre-

quencies. Additionally, we employed the weighted cross-entropy (WCCE) loss function for training our ExoCNN model in which

each class weight is inversely proportional to its sample frequency. The original EV dataset and the downsampled IC dataset

were used to train our predictive models. To assess the performance of deep learning models, we performed stratified train/valida-

tion/test split with proportions of 0.8, 0.1, and 0.1 on our preprocessed dataset.

We used the Adam optimizer with a learning rate of 0.001 for 100 epochs for all DLmodels. We employed a batch size of 128 during

training. To prevent overfitting, we employed early stopping and learning rate decay techniques during the training process. To

initialize the weights of each layer in the network, we used the Xavier initializer. Additionally, we used L1 and L2 regularization tech-

niques with a lambda value of 1e�6 to further prevent overfitting.
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Motif discovery and enrichment
ExoGRU works within a binary classification framework, each sequence receiving a secretion probability computed from the sig-

moid-transformed output of the network’s predictions. As demonstrated in Niculescu-Mizil and Caruana et al.,43 neural networks

trained for binary classification tasks typically yield well-calibrated probabilities, implying that the probabilities generated by

ExoGRU serve as reliable estimations of the confidence we place in the model’s predictions. Therefore, after training the network

with small-RNA sequences, two sets of sequences were identified that the model was highly confident about being secreted or

not. Sequences of extracellular vesicles (ECs) are assigned as ECX if the calculated probability exceeds 0.95. Similarly, intracellular

(IC) sequences are designated as ICX if the associated probability falls below 0.05 (Table 2).

In order to find motifs more accurately, we removed highly similar sequences from the ECX and ICX sets using the MEME-

Suite’s purge tool. To find the optimal similarity score threshold, we experimented with different thresholds and checked the

number of sequences and removed ones for each threshold. Finally, we used a similarity score threshold of 50. The extreme se-

quences (ECX and ICX) were clustered based on edit distance and cosine distance. We found motifs based on both unclustered

and clustered ECX and ICX, but the results were the same, so we eliminated the clustering step from the analysis pipeline. To

perform an exhaustive motif search, we used several motif finders and tested various configurations of the tools. Three motif

finding tools were able to discover motifs in the small-RNA sequences: MEME, Homer, and FIRE. We used these tools with three

different input sets: ECX only, ECX vs. ICX, and ECX vs. randomly generated sequences that preserved di-nucleotide frequency.

Using these three motif finding tools, three different configurations, and several parameter tuning, we found 10 motifs that were

enriched in the ECX sequences. These motifs were related to previously known RNA-binding proteins that are involved in the

secretion machinery, and were presented in Figure 4.

With the discovery of the ECX and ICX sequences and the corresponding motifs, we continued our research by identifying

secretion-related RNA-binding proteins in two distinct ways. First, we compared the discovered motifs with already known

ones in the literature and databases. This allowed us to identify any previously known motifs that were enriched in the ECX se-

quences and related to known RNA-binding proteins involved in the secretion machinery. Second, we analyzed the eCLIP-seq

data of the ENCODE project to identify binding sites of human’s RNA-binding proteins. This allowed us to identify any potential

RNA-binding proteins that may be involved in the secretion of small-RNAs based on their binding sites in the ECX and ICX

sequences.

Motif comparison
We compared the 10 discovered motifs with knownmotifs of RNA-binding proteins to detect the proteins that are highly likely to bind

to each motif and participate in the secretion machinery. To do this, we used three databases of Ray2013, RBPDB, and ATtRACT,

and theMEME-Suite’s Tomtom tool to find RNA-binding proteins (RBPs) that significantly bind to our discovered EV-enrichedmotifs.

Thismotif comparison process gave us 7 proteins that are highly likely to bind to our secretion-relatedmotifs, as shown in Figure 4. As

previously mentioned, two of these proteins have already been verified to be involved in the secretion machinery. This comparison

process helps us to identify potential players in the secretion process and further investigate them.

RBP binding sites analysis
We aimed to identify RNA binding proteins (RBPs) in the ENCODE database that may have greater interactions with extreme EV se-

quences, as opposed to IC sequences. Our hypothesis is that these proteins may play a role in the secretion machinery. We filtered

out proteins that did not have signals (bigWig file) or peaks (BED file) as their output type and that were not based on the GRCh38

reference genome. This resulted in a final selection of approximately 150 proteins.

To begin, we determined the maximum signal value at each nucleotide position for a specific protein if we have multiple experi-

ments (bigWig files). Next, we extracted signal values for nucleotide positions that overlapped with peak regions, separately for

IC and extreme EV sequences. We then used theMann-Whitney statistical test to compare these two sets of signal values and calcu-

late a p value to determine if the EV signals were significantly greater than the IC ones.

To obtain comparable signal intensity values and gain a deeper understanding of the interactions between EV extreme sequences

and RBPs, we evaluated various scoring methods. In our initial analysis, we obtained signal values (scores) for EV sequences and

assigned zero values to regions that did not overlap with peak regions for a specific protein. We also applied this method to IC se-

quences. This resulted in many zero values in our scores, and the Mann-Whitney test showed a significant sensitivity to the mean in

these scenarios.

To address this issue, wemodified our approach. Instead of using all peak regions, we applied it to the union of IC and extreme EV

regions. This eliminated many zero values from the scores and allowed us to better understand the natural behavior of RBPs. We

found that they tend to bind to EV extreme sequences with high signal values and to IC extreme sequences with moderate signal

values on average. We then used the Benjamini-Hochberg (BH) method to adjust our p values and identified proteins with adjusted

p values less than 0.05 as being involved in the EV secretion machinery.

After analyzing the interactions between different proteins and RNA sequences, we also took an intra-protein approach to the

problem. To obtain information within each sample (IC vs. EV), we used extreme sequences of both IC and EV groups with a secretion

probability greater than 0.9 that overlapped with peaked regions. We extracted several features including: the number of EV and IC

extreme sequences overlappingwith the peaked regions, the total length of each overlapping extremeswith peaked regions, the total
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sum of the signal values for each overlapping extremes, and the mean value of signals for each of the extremes. With this data, we

could assess the robustness and reliability of our results as a sanity check and also identify any potential outliers related to the secre-

tion machinery. To do this, we used median absolute deviation (MAD), Z-test, and Percentile rank.

Model Interpretability
A number of strategies have been developed in recent years to help interpret neural network models. For simpler models, such as

DeepBind, the convolutional kernels themselves were used to represent features captured by the model.15 However, for the more

complex architectures, including deeper CNNs or RNNs, that are trained on heterogeneous data, customized feature importance

analyses are employed. Most famously, DeepLIFT uses a variation of integrated gradient to select those partial sequences across

inputs that are most important for the model’s prediction and then performs a motif discovery in them, using TF-MoDIsco.29 In other

words, DeepLIFT massively reduces the space in which motif discovery is performed by removing the sequences and parts of se-

quences that are not informative for the model. Motif discovery can then be effectively performed to identify the features that the

model is learning in these sequences. In our case, however, since the sequences are already short for small RNAs, the DeepLIFT

scoring is not needed, and we can directly perform motif discovery. However, motif discovery is only performed on sequences

that the model is confidently classifying (i.e., ECX). In other words, for these sequences, the model has learned strong features

that enable it to make a correct and confident prediction. This approach is very different from performing motif discovery on the initial

labels, both in theory and practice. By focusing on the ECX sequences, we are strongly enriching the signal from these sequence

features. This is crucial because RNA secretion is a complex process with multiple pathways and many players involved.

To investigate ExoGRU in amore fine-grained way, we extracted approximately 5,000 IC and EC sequences that contain a specific

motif associated with RBM24, namely GAGUC. These selected sequences were collectively labeled as "gaguc-intact" and served as

the focus of our investigation. We employed DeepLIFT tool to assess the significance of different sequence regions in influencing the

model’s predictions.

Furthermore, we conducted a masking and ablation procedure on the gaguc-intact sequences, called them gaguc-masked and

gaguc-removed sequences to show that the model relies on this motif for its prediction. These sets of modified sequences were then

used as input to themodel, enabling us to examine any changes in themodel’s predictions. Similarly, We applied the same procedure

on the other two motifs (CCUGGC, and [ACU]AG[GU][GU]) as well.
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