
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Temperature and cooling management in computing systems

Permalink
https://escholarship.org/uc/item/3zm3j61c

Author
Ayoub, Raid

Publication Date
2011

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3zm3j61c
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Temperature and Cooling Management in Computing Systems

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Computer Engineering

by

Raid Ayoub

Committee in charge:

Professor Tajana Rosing, Chair
Professor Chung-Kuan Cheng
Professor Bill Hodgkiss
Professor Ryan Kastner
Professor Dean Tullsen

2011

Copyright

Raid Ayoub, 2011

All rights reserved.

The dissertation of Raid Ayoub is approved, and it is ac-

ceptable in quality and form for publication on microfilm

and electronically:

Chair

University of California, San Diego

2011

iii

DEDICATION

To my family and memory of my father.

iv

EPIGRAPH

Imagination is more important than knowledge.

For knowledge is limited, whereas imagination embraces the entire world,

stimulating progress, giving birth to evolution.

It is, strictly speaking, a real factor in scientific research.

–Albert Einstein

v

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . ix

List of Tables . xi

Acknowledgements . xii

Vita . xiv

Abstract of the Dissertation . xvi

Chapter 1 Introduction . 1
1.1 Related work on thermal management 3
1.2 Related work on cooling management 5
1.3 Thesis contributions . 6

Chapter 2 Temperature Aware Microarchitectural Design 9
2.1 Design flow . 11
2.2 Forwarding based pipelined processors 11
2.3 Preventing unnecessary writes to register file 12

2.3.1 Register liveness analysis 12
2.4 Register based encoding scheme 15

2.4.1 Full register renaming algorithm 17
2.4.2 Partial register renaming algorithm 17

2.5 Hardware support . 19
2.6 Experimental Evaluation 20

2.6.1 Methodology . 20
2.6.2 Results . 22

2.7 Conclusion . 23

Chapter 3 Proactive Thermal Management for General Purpose Multi-
core Processors . 25
3.1 Overview of proactive thermal management 26

3.1.1 Temperature prediction 27
3.1.2 Proactive Thermal Management 31

vi

3.2 Evaluation . 32
3.2.1 Methodology . 32
3.2.2 Results . 34

3.3 Conclusion . 39
3.3.1 Conclusion . 39

Chapter 4 Thermal and Cooling Management in Multisocket CPU Servers 41
4.1 Multi-tier thermal management overview 42
4.2 Socket level scheduling 44

4.2.1 Thermal and cooling model for CPU socket 45
4.2.2 Sources of cooling savings at the socket level . . . 50
4.2.3 State-space controller and scheduler 51
4.2.4 CPU Socket Scheduling: 55
4.2.5 Estimating cooling savings 56
4.2.6 Power estimation 57

4.3 Evaluation . 60
4.3.1 Methodology . 60
4.3.2 Results . 62

4.4 Conclusion . 68

Chapter 5 Integrated Energy, Temperature and Cooling Management for
CPU and Memory Subsystems in Servers 70
5.1 Combined thermal and cooling model for

CPU and memory subsystems 71
5.1.1 System thermal model 72
5.1.2 Memory thermal and cooling model 75
5.1.3 Sources of energy savings in memory 78

5.2 Combined Energy, Thermal and Cooling
Management . 81
5.2.1 State-space control 82
5.2.2 Actuators . 86

5.3 Evaluation . 91
5.3.1 Methodology . 91
5.3.2 Results . 95

5.4 Conclusion . 105

Chapter 6 Conclusion and Future Work 106
6.1 Thesis summary . 107
6.2 Future research directions 109

6.2.1 Temperature and cooling management in data cen-
ter . 109

6.2.2 Liquid cooling . 109

vii

Bibliography . 111

viii

LIST OF FIGURES

Figure 2.1: Five stage pipeline with forwarding 11
Figure 2.2: Example of segment of instructions 13
Figure 2.3: Three registers are enough to cover all possible assignments with

FD=3 . 15
Figure 2.4: Minimizing the size of preserved registers through renaming for

RLD=3 . 16
Figure 2.5: Hardware support . 18
Figure 2.6: CPU floor plan . 21
Figure 2.7: Temperature distribution of functional units 21
Figure 2.8: Percentage of short live registers: RLD (1-3) 22
Figure 2.9: Percentage of energy savings in register file 23
Figure 2.10: Temperature reduction in register file 23

Figure 3.1: Thermal aware scheduling for the core level 26
Figure 3.2: Position of interlaced sampling points 30
Figure 3.3: Processor floorplan . 35
Figure 3.4: Temperature prediction of crafty 35
Figure 3.5: Temperature prediction of swim 36
Figure 3.6: Lowering average system temperature 37
Figure 3.7: Minimizing core’s highest temperature 38
Figure 3.8: Performance improvement over DLB 39

Figure 4.1: Overview of multi-tier scheduling 42
Figure 4.2: Overview of socket level scheduling 44
Figure 4.3: Single socket thermal model . 45
Figure 4.4: Impact of fan speed on core and case to ambient temperature . 48
Figure 4.5: Tha transient behavior (referenced to idle temperature) 48
Figure 4.6: Tha vs. CPU total power. Tha is referenced to idle temperature 49
Figure 4.7: Cooling aware scheduling at the socket level 51
Figure 4.8: Dynamic power model . 58
Figure 4.9: Leakage power model . 59
Figure 4.10: Cooling and CPU energy savings using core level polices 63
Figure 4.11: Workload spreading . 64
Figure 4.12: Workload consolidation . 64
Figure 4.13: Cooling energy savings using multi-tier thermal management . . 65
Figure 4.14: Reducing thermal emergencies 67

Figure 5.1: Intel dual socket Xeon server 72
Figure 5.2: Combined thermal model . 73
Figure 5.3: Thermal coupling between CPU and memory 74
Figure 5.4: DIMM’s transient temperature 76

ix

Figure 5.5: Memory power. The number in front of the benchmark indicates
the number of instances we run 77

Figure 5.6: Performance reduction with consolidation 79
Figure 5.7: Memory page access pattern . 79
Figure 5.8: Overview of our Integrated Memory-CPU Management 81
Figure 5.9: Power breakdown of memory DIMMs 88
Figure 5.10: Total energy savings (memory+cooling) relative to default dy-

namic load balancing in a system with 8DIMMs 96
Figure 5.11: Temperature sensitivity for energy and fan speed with 8 DIMMs 98
Figure 5.12: Total energy savings (memory+cooling) relative to default dy-

namic load balancing in a system with 16 DIMMs 99
Figure 5.13: Fan speed ratio in a system with 8 DIMMs 101
Figure 5.14: Fan speed response with CETC, 8DIMM and 45oC 102
Figure 5.15: Page migration in a system with 8 DIMMs 103

x

LIST OF TABLES

Table 2.1: Processor parameters . 20
Table 2.2: Technology and packaging . 20

Table 3.1: Processor simulation parameters 32
Table 3.2: Technology and package characteristics 34
Table 3.3: Benchmark combination list . 35

Table 4.1: Temperature profile of a CPU with heat sink 47
Table 4.2: SPEC Benchmarks characteristics 61
Table 4.3: Characteristics of CPU, thermal and cooling 61
Table 4.4: Workload combinations for multi-tier algorithm 65

Table 5.1: Characteristics of CPU, memory, thermal packages and cooling . 93
Table 5.2: SPEC Benchmarks characteristics 95
Table 5.3: Workload combinations for multi-tier algorithm 95
Table 5.4: Performance overhead (%) . 104

xi

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my sincere gratitude to my

advisor, Prof. Tajana Rosing, for her guidance in research, unwavering encourage-

ment and preparing me to carry on my research after school. I thank her for giving

me the opportunity to be her student. I also thank my doctoral committee, Prof.

Dean Tullsen, Prof. Bill Hodgkiss, Prof. Ryan Kastner and Prof. Chung-Kuan

Cheng for their valuable feedback and contributions.

My internships at Intel research and Cisco during my PhD were a great

experience. I sincerely thank Umit Ogras, Michael Kishinevsky, Eugene Gorbatov,

Kam Timothy, Paul Diefenbaugh, and Inder Bhasin for their guidance, ideas and

discussions that helped my research going forward. My research work was made

possible by funding from NSF Project GreenLight Grant 0821155, NSF Grants

0916127 and 1029783, NSF CIAN EEC-0812072, MuSyC, DARPA, UC Micro,

Oracle, Google, UCSD Center for Networked Systems and NSF Variability. I

thank them for their generous support.

I am grateful to all my lab mates and colleagues for their valuable con-

tribution through comments, discussions and guidance. I thank Gaurav Dhiman,

Shervin Sharifi, Rajib Nath, Raju Indukuri, Yanqin Jin, Yen-Kuan Wu, Ayse

Coskun, Giacomo Marchetti, Bryan Kim, Nima Nikzad, Yashar Asgarieh, Arup

De, Priti Aghera, Vasileios Kontorinis and Edoardo Regini for their friendship and

contributions to my research.

I want to express my gratitude to my family for their relentless support

and encouragement. I thank my wife, Bushra Ayoub, for her unwavering support,

love and encouragement, which made the tough times in my Ph.D seem easier. I

am also thankful to my mother for her endless caring and support which made my

path throughout the Ph.D. much smoother. I am grateful to my sisters, Daliah,

Rana and Zena as they always encouraged me and kept me inspired. I feel very

lucky to have such a wonderful family.

Chapters 1 and 2, in part, are a reprint of the material as it appears in

Proceedings of the International Conference on Computer Design, 2007. Ayoub,

xii

R. and Orailoglu, A. The dissertation author was the primary investigator and

author of this paper.

Chapters 1 and 3, in part, are a reprint of the material as it appears in

Proceedings of the International Symposium on Low Power Electronics and De-

sign, 2009. Ayoub, R. and Rosing, T.S. The dissertation author was the primary

investigator and author of this paper.

Chapters 1 and 3, in part, are a reprint of the material as it appears in

IEEE Transactions in Computer Aided Design of Integrated Circuits and Systems,

2011. Ayoub, R.; Indukuri, K. R. and Rosing, T.S. The dissertation author was

the primary investigator and author of this paper.

Chapters 1 and 4, in part, are a reprint of the material as it appears in

IEEE Transactions in Computer Aided Design of Integrated Circuits and Systems,

2011. Ayoub, R.; Indukuri, K. R. and Rosing, T.S. The dissertation author was

the primary investigator and author of this paper.

Chapters 1 and 4, in part, are a reprint of the material as it appears in

Proceedings of the International Symposium on Low Power Electronics and De-

sign, 2009. Ayoub, R. and Rosing, T.S. The dissertation author was the primary

investigator and author of this paper.

Chapters 1 and 5, in part, are a reprint of the material that is in preparation

to be submitted to IEEE Transactions in Computer Aided Design of Integrated

Circuits and Systems. Ayoub, R.; Nath R.; Indukuri, K. R. and Rosing, T.S. The

dissertation author was the primary investigator and author of this paper.

xiii

VITA

B.S. in Electrical Engineering
University of Technology, IRAQ

M.S. in Electrical Engineering
University of Technology, IRAQ

Ph.D. in Computer Engineering
University of California, San Diego, La Jolla, CA

PUBLICATIONS

Ayoub, R.; Indukuri, K. R. and Rosing, T.S., Temperature Aware Dynamic Work-
load Scheduling in Multisocket CPU Servers. IEEE Transactions in Computer
Aided Design of Integrated Circuits and Systems (TCAD), vol. 30, no. 9, 2011.

Ayoub, R.; Ogras, U; Gorbatov, E.; Jin, Y.; Timothy, K; Diefenbaugh, P. and Ros-
ing, T.S., Power Minimization Under Tight Performance Constraints in General
Purpose Systems. In Proceedings of the ACM/IEEE International Symposium on
Low Power Electronics and Design (ISLPED), 2011.

Ayoub, R.; Induk R. and Rosing, T.S., Energy Efficient Proactive Thermal Man-
agement in Memory Subsystem. In Proceedings of the ACM/IEEE International
Symposium on Low Power Electronics and Design (ISLPED), 2010.

Ayoub, R. S.; Sharifi, S.; and Rosing, T.S., GentleCool: Cooling Aware Proactive
Workload Scheduling in Multi-Machine Systems. In Proceedings of the Design,
Automation and Test in Europe (DATE), 2010.

Ayoub, R. and Rosing, T.S., Cool and Save: Cooling Aware Dynamic Workload
Scheduling in Multi-socket CPU Systems. In Proceedings of the Asia and South
Pacific Design Automation Conference (ASP-DAC), 2010.

Ayoub, R. and Orailoglu A., Performance and Energy Efficient Cache Migration
Approach for Thermal Management in Embedded Systems. In Proceedings of the
Great Lakes Symposium on VLSI (GLSVLSI), 2010.

Ayoub, R. and Orailoglu A., Filtering Global History: Power and Performance
Efficient Branch Predict, In the Proceedings of the International Conference on
Application-specific Systems, Architectures and Processors (ASAP), 2010.

Ayoub, R. and Rosing, T.S., Predict and act: dynamic thermal management for
multi-core processors. In Proceedings of the ACM/IEEE International Symposium
on Low Power Electronics and Design (ISLPED), 2009.

xiv

Dhiman G.; Ayoub, R. and Rosing, T.S., PDRAM: A Hybrid PRAM and DRAM
Main Memory System. In Proceedings of the 46th ACM/IEEE Design Automation
Conference (DAC), 2009.

Ayoub, R. and Orailoglu A., Power efficient register file update approach for em-
bedded processors. In Proceedings of the International Conference on Computer
Design (ICCD), 2007.

Ayoub, R. and Orailoglu A., Low Power Branch Predictor for Application Specific
Processors. In Proceedings of the Workshop on Application Specific Processors
(WASP), 2005.

Ayoub, R. and Orailoglu A., A Unified Transformational Approach for Reductions
in Fault Vulnerability, Power, and Crosstalk oise & Delay on Processor Buses. In
Proceedings of the Asia and South Pacific Design Automation Conference (ASP-
DAC), 2005.

Ayoub, R. and Orailoglu A., Instruction Memory Transformations for reductions
in Power and Fault Vulnerability on Embedded Processors. In Proceedings of the
International SoC Conference (SOCC), 2004.

xv

ABSTRACT OF THE DISSERTATION

Temperature and Cooling Management in Computing Systems

by

Raid Ayoub

Doctor of Philosophy in Computer Engineering

University of California, San Diego, 2011

Professor Tajana Rosing, Chair

Temperature and cooling are critical aspects of design in today’s and future

computing systems. High temperature has a significant impact on reliability, per-

formance, leakage power and cooling energy costs. State of the art temperature

management techniques come with performance overhead and do not optimize for

cooling energy costs. Energy management techniques usually focus on optimizing

the computing energy without considering the impact on temperature or cooling

system. In general, managing temperature, cooling and energy separately leads to

suboptimal solutions. In this thesis we introduce a new hierarchical approach that

manages the temperature, cooling and energy problems jointly and with low over-

head. Our approach addresses microarchitecture, core, socket and system levels.

xvi

At the microarchitectural level we achieve temperature and energy opti-

mizations by eliminating the redundant writes to the register file at minimal per-

formance overhead. The experimental results show that our technique is able to

achieve on average 22% energy savings in register file with 4oC reduction in tem-

perature. We next introduce a novel core level proactive thermal management

technique that intelligently allocates jobs across cores of a single CPU socket to

create a better thermal balance across the chip. We introduce a novel temperature

predictor that is based on the band limited property of the temperature frequency

spectrum where the prediction coefficients can be identified accurately at design

time. Our results show that applying our algorithm considerably reduces the aver-

age system temperature, hottest core temperature, and improves performance by

6 oC, 8 oC and 72% respectively. At the CPU socket level, we propose a new al-

gorithm which schedules the workload between sockets to minimize cooling energy

by creating a better balance in temperature between the sockets. The reported

results show that combining the socket level with the core level optimizations can

result in cooling energy savings of 80% on average at performance overhead of less

than 1%. Finally, we describe a combined temperature, cooling and energy man-

agement approach that significantly lowers the cooling energy costs of the system

as well as the operational energy of memory. We introduce a comprehensive ther-

mal and cooling model which is used for online decisions. This technique clusters

the memory accesses to subset of memory modules in tandem with balancing the

temperature between and within the CPU sockets. The experimental results show

that our method delivers an average cooling and memory energy savings of up to

70% compared to the state of the art techniques at performance overhead of less

than 1%.

xvii

Chapter 1

Introduction

Technology scaling coupled with the high demand for computation leads

to increase in integration and performance of the modern computing systems.

This trend, however, is facing serious challenges since it results in a substantial

increase in power/energy consumption. Higher power consumption combined with

high integration elevates the device power density which causes thermal hot spots.

High temperature has a substantial effect on reliability, performance and leakage

power. When temperature reaches thermal emergencies, the computations need

to be throttled to keep the temperature in the safe zone, an issue that degrades

performance. Dissipating the excess heat is a big challenge as it requires a complex

and energy hungry cooling subsystem. This is because the power consumed by fan

subsystem is cubically related to the air flow rate [47]. This indicates that thermal

and cooling are important aspects of design in computing systems.

A common way to mitigate temperature problems in today’s processors

is to throttle computations to reduce power density. The obvious drawback of

this technique is its performance overhead. One alternative approach is to reduce

redundant activities within cores to lower their power density. This approach can

be applied at the microarchitectural level. At the operating system level (OS)

there are potential savings opportunities by optimizing the assignment of jobs to

cores within CPU sockets. One possible approach is to dynamically balance the

jobs across the cores to reduce the overall power density. Dynamic load balancing

is usually implemented in modern operating systems to enhance the utilization of

1

2

the system resources. This policy performs thread migration to lower the difference

in task queue lengths of the individual cores [21]. The operating system initiates

dynamic load balancing every hundred milliseconds. Although this simple solution

has a potential to reduce power density of the chip, it provides suboptimal solutions

thermally. When hardware utilization is below 100%, dynamic load balancing

policy does not exploit the idle cores to create a better thermal distribution in

the chip by migrating the jobs among the cores in a thermally sensitive manner.

The overhead of such migration is usually acceptable since the time constant of

temperature is much higher than thread migration overhead. A challenge is how

to decide on the effective migration during run time. For the case of multiple CPU

sockets, balancing the jobs without accounting for their thermal profile lead to

imbalances in the thermal distribution among the CPU sockets. This is because

the thermal profile of the jobs is not the same due to the differences in the way

the exercise the resources. For example, CPU intensive jobs tend to generate more

heat then memory intensive ones. This thermal imbalance increases the cooling

energy costs due to the nonlinearity between fan speed and its power. The proper

approach is to schedule the workload between CPU sockets in a way that creates

a better temperature balance between them to minimize cooling energy costs.

Management of temperature, cooling and computing energy problems at

the system level is a big challenge since this involves heterogeneity in components

in addition to the workload. One of the key disadvantages of state of the art work

is that cooling, temperature and computing energy are considered separately. For

example, clustering the computations to subset of the resources to save energy

must account of potential temperature rise which may require more cooling energy

that compromise savings. Moreover, thermal dependencies can also occur when

components share the same cooling resources which need to be considered to opti-

mize cooling energy. A holistic approach is required that integrates the workload

assignments with thermal and cooling aspects to ensure efficiency and stability in

order to mitigate the cooling and thermal problems at low overhead.

3

1.1 Related work on thermal management

Thermal management is vibrant area of research as temperature has a sig-

nificant impact on a number of important aspects in computing systems. The

increase in on chip temperature can result in severe reliability degradation since

it causes stress migration, electromigration and dielectric breakdown which can

lead to permanent damage [7, 48]. High temperature also impacts leakage power

due to exponential dependency of leakage power on temperature [47]. The in-

crease in temperature degrades the performance due to its impact on elevating the

interconnect delay [9].

A number of core level thermal management techniques have been suggested

in recent years. They can be broadly classified into two categories: reactive and

proactive management techniques. The research in [55] proposes multiple reactive

DTM techniques at the microarchitectural level. The first technique reduces the

power density in the core by employing instruction fetch toggling to reduce the

execution. The benefit of this technique is that it can manage temperature at fine

grain granularity at the cost of performance. The authors in [55] also show that

register file is the hottest component in the processor due to its high power density.

To overcome the thermal problems in register file the research suggests adding an

extra register file to reduce the power density using activity migration, only one

register is active at any point in time. When one register file become hot, its con-

tents are migrated to the cooler one and so on. The primary overhead in these this

technique is the extra hardware and additional communications latency. A class

of techniques aims at reducing the power density of register file through dynami-

cally reducing the size of the register file through the use of banking [23] and by

reducing the number of register ports [34,46]. However, applying such approaches

come at loss in performance. The research in [21] proposes thread migration at the

operating system level to manage the excess temperature by moving the computa-

tions across duplicated units. However, this technique misses savings opportunities

since it reacts only upon reaching thermal emergencies. Recently, dynamic thermal

management has become an integral part of actual processor designs. For example,

the Xeon processor employs clock gating and dynamic voltage-scaling to manage

4

thermal emergencies.

To overcome the inefficiencies with the reactive techniques, a class of proac-

tive thermal management techniques have been suggested that try to avoid the

thermal emergencies while the processor is still running below the temperature

threshold. The authors in [22] propose use of ARMA model that is based on the

serial autocorrelation in the temperature time series data. The model is updated

dynamically to adapt to possible workload changes. Although the ARMA model

is accurate, it requires a training phase that could impact the performance, and

the predictor could miss some of the prediction opportunities during training. The

authors in [35, 63] suggest proactive thermal management techniques that utilize

regression-based thermal predictors. However, these techniques also require run-

time adaptation. These solutions are limited to a single socket, hence they are not

efficient to minimize cooling energy since some sockets may generate much more

heat than others, which requires a better heat balance between them.

To handle thermal problems in memory subsystem, a few techniques have

been suggested [36,37]. The work in [37] mitigates overheating in memory system

by adjusting memory throughput to stay below the emergency level. Research

in [36] manages memory overheating by grouping threads in the system in such a

way that each group is mapped to certain dual-in-line memory modules (DIMMs)

assuming that all the threads in a group can be active simultaneously. Only one

group of DIMMs is active at any point in time while the rest stay inactive to

cool. The authors assume that the bandwidth of each thread is known in advance

through static profiling which is normally not the case in dynamic systems. Ad-

ditionally, this approach is restricted to the cases when number of threads is a

multiple of the number of cores. Recent research has sought a number of tech-

niques to handle the energy consumption in memory subsystems. The work in [25]

lowers DRAM power by changing memory mode to low power state when there

are no accesses to the memory. This approach is beneficial only when there are

frequent idle periods. Research in [28] manages memory power by clustering heav-

ily accessed pages to a subset of the memory modules, in particular DIMMs, and

putting the rest of the DIMMs in a self-refresh mode. However, such consolidation

5

is likely to generate thermal problems due to clustering. None of techniques on

CPU or memory consider cooling costs.

1.2 Related work on cooling management

Cooling in high-end servers usually relies on the forced convection phenom-

ena to enhance the heat transfer between the heat sink and the ambient. As the

CPU power density escalates, the air flow rate must enlarge at a similar rate.

Unfortunately, the fan power increases substantially due to the cubic relationship

between fan speed and its power [47]. The fan system power in high-end servers is

as much as 80 Watts in 1U rack servers [47] and 240 Watts in 2U rack servers or

more [1]. In addition to the increase in fan power, high fan speed introduces large

noise levels. It is shown that the acoustic noise level increases by 10 dB as air flow

rate increases by 50% [38]. This indicates that minimizing air flow to just what is

needed for cooling is an essential metric to deliver appreciable energy efficiency at

lower acoustic noise levels.

Recently, a few fan control algorithms have been suggested which operate

based on closed loop control schemes to optimize the fan controller [20,62]. The re-

search in [62] suggests an optimal fan speed mechanism for the blade servers where

the optimal speed is determined through convex optimizations. The work in [54]

suggests a fan control mechanism that also considers the leakage power. However,

these techniques provide suboptimal solutions since they are not integrated with

workload scheduling. A class of techniques have been suggested to improve cooling

efficiency at the cluster and data center levels [31, 52, 59]. The authors in [52, 59]

suggest the use of workload scheduling to mitigate the air circulation problem in

data centers. The research in [31] implements a thermal-aware load balancer which

models the temperature within the servers using workload utilization. However,

these techniques are not so effective for minimizing the temperature and cooling

costs within the servers. In [2, 47] methodologies are proposed for modeling the

convective thermal resistance between the heat sink and ambient temperature as

a function of the air flow rate, which we use in this thesis.

6

1.3 Thesis contributions

Temperature, cooling and computational energy optimizations need to be

performed in an integrated fashion to maximize efficiency due to the dependencies

between them. To address these challenges we developed a hierarchical manage-

ment approach that allows the optimizations to span multiple components in the

system simultaneously while keeping the complexity at manageable level. In the

following we provide the summary of our primary contributions:

• We introduce thermal and power management approach at the microarchi-

tectural level. We target application specific processors where the tasks are

known in advance. The temperature and power optimizations are achieved

by eliminating the redundant writes to the register file at virtually no perfor-

mance overhead. The redundant write information is encoded in the registers

name space using post compiler register renaming algorithms. We developed

a cost efficient hardware support to capture these redundant writes. The

experimental results show that this technique is able to achieve on average

22.3% energy savings in register file and 4oC reduction in temperature.

• We introduce a novel proactive thermal management technique that sched-

ules the workload intelligently between the cores to reduce temperature and

cooling energy. Our proactive thermal management algorithm is able to

prevent thermal emergencies in many instances, thus avoiding performance

overhead. In order to predict temperature accurately at low cost, we present

a novel temperature predictor that is based on the band limited property of

the temperature frequency spectrum. The important feature of our predic-

tor is that the prediction coefficients can be computed at the design stage

which makes it workload independent. Our results show that applying our

algorithm considerably reduces the average system temperature, hottest core

temperature, and improves performance by 6 oC, 8 oC and 72% respectively.

• We introduce a novel multi-tier algorithm that schedules the workload at

the core as well as the socket levels to minimize for cooling energy and the

7

occurrence of thermal emergencies. We schedule the workload between CPU

sockets in a way that mitigates hot spots across them and reduces cooling

energy. We developed a control theoretic framework for the socket level

scheduling that guarantees the desired objectives, in terms of energy sav-

ings and stability, are met. For the core level we use our proactive thermal

management technique to reduce the hot spots across the cores and improve

cooling savings within a given socket. The reported results show that our

multi-tier scheme is able to deliver cooling energy savings of 80% on average

while keeping performance overhead below 1%.

• We propose a combined energy, thermal and cooling management technique

that significantly lowers the energy consumption and cooling costs of CPU

sockets and memory. Our analysis shows that decoupling these optimizations

leads to suboptimal solutions due to thermal dependencies between CPU and

memory, and non-linearity in cooling energy costs. We propose a compre-

hensive thermal and cooling model which is used for online decisions. This

technique reduces the operational energy of the memory by clustering pages

to a subset of memory modules while accounting for thermal and cooling as-

pects. At the same time this technique tries to remove hot spots between and

within the sockets, and reduces the effects of thermal coupling with memory

to save cooling costs. We designed our technique using formal control to

ensure stability. The experimental results show that our technique delivers

total cooling and memory energy savings of up to 70% on average compared

to the state of the art techniques at performance overhead less than 1%.

Chapters 1 in part, is a reprint of the material as it appears in Proceedings of

the International Conference on Computer Design, 2007. Ayoub, R. and Orailoglu,

A. The dissertation author was the primary investigator and author of this paper.

Chapters 1 in part, is a reprint of the material as it appears in Proceedings of

the International Symposium on Low Power Electronics and Design, 2009. Ayoub,

R. and Rosing, T.S. The dissertation author was the primary investigator and

author of this paper.

8

Chapters 1 in part, is a reprint of the material as it appears in IEEE Trans-

actions in Computer Aided Design of Integrated Circuits and Systems, 2011. Ay-

oub, R.; Indukuri, K. R. and Rosing, T.S. The dissertation author was the primary

investigator and author of this paper.

Chapters 1 in part, is a reprint of the material that is under preparation

to be submitted to IEEE Transactions in Computer Aided Design of Integrated

Circuits and Systems. Ayoub, R.; Nath R. ;Indukuri, K. R. and Rosing, T.S. The

dissertation author was the primary investigator and author of this paper.

Chapter 2

Temperature Aware

Microarchitectural Design

Functional units of the processor vary in terms of their thermal profiles.

Register file is known to be the hottest component in the core due to its high

power density [55]. High power dissipation come from the frequent accesses to the

register file coupled with the use of multiple ports [11,27,34]. In Motorola M.CORE

architecture, the register file contributes 16% of the total processor power and 42%

of the data path power. Consequently, handling the high power dissipation in a

register file not only leads to a cheaper and smaller packaging but also lower energy

costs, an issue that improves the usability and quality of the product.

In pipelined processors, data forwarding is one of the standard hardware

approaches for enhancing performance [32]. In a processor that supports data

forwarding, the outcome of the instruction can be forwarded to its dependent

instructions before it commits. Forwarding the data improves performance by

eliminating unnecessary stalls in the pipeline since the dependent instruction does

not need to wait for the source instruction to write its results in the register

file for it to start the operation. For a class of in-order processors, unnecessary

writes to the register file occur when the instruction passes its results to all of its

dependent instructions before it commits. The reported results in [46, 51] show

that a significant portion of the writes are redundant due to forwarding. In the

light of this fact, elimination of unnecessary writes can reduce the temperature

9

10

while deliver energy savings.

Utilizing application-specific knowledge can be the keystone to a set of tech-

niques aimed at improved power savings and performance in application specific

processors [12,49,50]. Application specific processors are attractive since they can

be optimized to perform certain tasks efficiently and they can be part of high

end or mobile chips. We introduce an application specific scheme to mitigate the

temperature and high power dissipation in register files for the class of in-order

processors. The straightforward approach for precluding the unnecessary accesses

to the register file is through marking each instruction that needs to write to the

register file [51]. However, the power savings in such a paradigm are limited due

to the need to store nontrivial amounts of information, an issue that diminishes

the power savings due to the associated power expenditure in storing such infor-

mation. Furthermore, some of this information is redundant since a portion of the

ISA instructions do not even write to the register file in the first place, an issue

that further lowers the applicability of such a design paradigm.

Instead of encoding the write permission information per instruction, we

propose using the register name space for encoding by marking a small subset of the

registers to preclude the writing to the register file. Only a few bits are required in

such encoding. In the approach we introduce, static liveness analysis is performed

to determine the liveness distance of the registers. Based on this analysis we decide

whether the register needs to be written to the register file. In order to increase

the skew in the set of preserved registers, a static register renaming approach

is suggested in this work. The information regarding the preserved registers is

extracted at the granularity of the application major loops. This information is

preloaded into the processor to be utilized during program execution. Our solution

also handles the unpredictable dynamic events, e.g. instruction cache misses and

exceptions. The microarchitectural support is not only highly cost efficient but

is also dynamically programmable, thus preserving the generality of the processor

while applying the encoding methodology that we propose. The experimental

results show that the proposed technique is able to achieve on average 22.26%

energy savings in register file and 4oC reduction in its temperature.

11

WBMEMEXEIDIF

IF/ID ID/EXE EXE/MEM MEM/WB

EXE/EXE

MEM/ID

MEM/EXE

Figure 2.1: Five stage pipeline with forwarding

2.1 Design flow

Our approach utilizes application-specific knowledge and specialized hard-

ware support to eliminate the redundant writes in the register file. It encodes the

redundant write information in the application code which can be decoded easily

by the hardware. This solution is restricted to application specific processors since

it handles the cases when the tasks are known a priori.

Our design flow starts with generation of the application assembly code by

the compiler followed by the identification of the optimal application-specific low

power code. Subsequent to the identification of the efficient encoding for the regis-

ters, the encoding is attained by renaming the original register assignment. Then

the modified assembly code is assembled and linked by the compiler to generate

the binary code. The resultant binary code is loaded to the instruction memory.

A specialized low-cost hardware unit on the processor side captures the registers

that do not need to be written to the register file to attain the power savings.

2.2 Forwarding based pipelined processors

In this section we review the basics of forwarding across the pipeline stages.

Figure 2.1 show an illustrative example of a basic five stage pipeline processor.

The five stages are: (1) IF: fetch the instruction from the memory system, (2)

ID: instruction decode and operand read from the register file, (3) EXE: execute

stage, ALU, (4) MEM: memory access stage, (5) WB: write back the results to the

12

register file. The forwarding network is composed of three forwarding paths. In

the following we give a brief discussion for this forwarding network:

• EXE/EXE: This path allows forwarding the operand of instruction Ik from

its predecessor instruction Ik−1.

• MEM/EXE: This path allows forwarding the operand of the instruction at

the EXE stage, Ik, from an older instruction at the MEM stage, Ij , where

the forwarding distance FD = k − j is limited to at most 2.

• MEM/ID: This path allows the forwarding distance to be at most 3.

From this illustration we can conclude that when the distance between

instructions is within the forwarding span, then there is no need for the dependents

of the producer instruction to wait until the producer commits. As the forwarding

network is capable of passing the source operand across the pipeline stages then

there is no need for the instruction to write to the register file if its outcome can

be forwarded to all its dependents. Eliminating unnecessary writes contributes to

lowering the power dissipation in the register file.

2.3 Preventing unnecessary writes to register file

In order to preclude the unnecessary writes to the register file, information

regarding whether a particular register should write to the register file needs to

be identified a priori. As we are exploiting the forwarding hardware to prevent

the unnecessary accesses to the register file, information regarding the liveness

of the register is necessary to determine whether the destination register should

be written to the register file. In the following sections we discuss issues related

to register liveness and then we lay out our approach to handle the unnecessary

accesses to the register file.

2.3.1 Register liveness analysis

This section outlines the register liveness analysis to be used in evaluating

the necessity for the instruction to write its destination register to the register file.

13

I2: load r6, 0 (r10)
I1: add r4, r1, r5

I5: sub r6, r7, r9

I0: add r1, r2, r3

I4: add r1, r6, r4

I3: add r9, r6, r8

Figure 2.2: Example of segment of instructions

As forwarding is limited by the forwarding span, we use register liveness as a metric

in ascertaining the necessity for writes to the register file. We denote this metric

as register liveness distance, RLD. This metric represents the distance between the

definition of the register and its last use in terms of number of instructions and

stalls that can be precisely determined at compilation time. We use an example

to clarify the register liveness distance concept. Figure 1 shows a fragment of code

for 6 instructions. We assume that this code would be executed on the 5 stage

pipeline (assuming that all the ALU instructions can be executed in one cycle

and that accessing the data cache takes one cycle as well). In this example the

destination of instruction I0, r1, has anRLD of 1 since I1 is the last instruction that

uses its value before its new assignment in I4. Regarding the destination register

of I2 which is r6, it has an RLD equal to 3 since the load instruction induces one

stall. In both of these cases the forwarding network is capable of bypassing the

results of I0 and I6 to all their dependent instructions. Consequently, no need

for these instructions to write to the register file in the WB stage exists. The

observation that can be made here is that unnecessary writes take place in the

cases when RLD fails to exceed the forwarding distance, FD. However, this rule

could be violated due to possible cache misses, exception events or the presence of

conditional branches in the path between the instruction and its dependents. In

the following discussion, we illustrate the impact of these issues:

• Instruction and data cache misses: The occurrence of such events could

induce stalls that could increase the RLD beyond the value of FD, an issue

that leads to possible correctness problems if the register file is not updated.

14

An illustrative example can be found in the I-cache miss at I3 in the code in

Figure 2.2. The occurrence of such an event causes the RLD of r6 in I2 to

increase to 4. In this case prohibiting I2 from writing its results in the register

file leads to an erroneous execution since I4 would read the wrong value of

r6. The simple solution to this problem is to ignore the write prohibition in

such a class of cache misses. This solution is effective in light of the fact that

cache misses are typically low.

• Exception events: Similar to the case of cache misses, the occurrence of

exception events increases the RLD value of the register. Since the occur-

rence of the exception is a rare event, the simple solution is to ignore the

write prohibition in the cases of exception.

• Conditional branches: The presence of conditional branches between the

instruction and its dependents impacts the register liveness in two ways.

The first impact is that the RLD for the case of the branch being taken

could be quite different from the case when it is not taken which could lead

to a nondeterministic situation. Another problem that is associated with

branches is the use of branch prediction to improve performance. In cases

of branch misprediction, the pipeline needs to be flushed and filled with the

correct path. This issue impacts the RLD of the registers that belongs to the

instructions that precede the branch. As the complexity that is associated

with handling register writes across basic blocks is nontrivial, handling such

cases is likely to result in diminishing returns. Considering that, we intend

to focus on the cases when the liveness of the register is within the basic

blocks only.

Overall, utilizing register liveness analysis is an efficient way to identify

unnecessary writes. The dynamic behavior in terms of cache misses and exceptions

needs to be considered to ensure the correctness of the execution.

15

Last use of r1

Assignment of r1
r1 r2 r3

Interval length = 3

.

Figure 2.3: Three registers are enough to cover all possible assignments with
FD=3

2.4 Register based encoding scheme

The analysis that we have provided in the previous section indicates that

unnecessary writes could be eliminated in the cases when RLD ≤ FD. We denote

these cases as short interval cases. Instead of assigning a write permission bit to

each instruction, we propose preserving a subset of registers to cover all short live

variables in the code. We denote such a class of registers as short interval registers.

In the following we show that the set of short interval registers is typically quite

small. It can be inferred then that the overhead of applying such a scheme in terms

of power and complexity is negligible.

In order to determine the upper bound for the number of registers that need

to be preserved for forwarding, we use static liveness analysis for this purpose. We

denote the set of short interval registers as SSIR. From the inequality RLD ≤ FD

that we provided earlier, we can see that the upper bound for the RLD is equal

to FD. Considering that, one can conclude that |SSIR| ≤ FD. In the following

we outline the rationale for this inequality through an illustrative example. The

example in Figure 2.3 shows the assignment of registers that leads to the worst

case in terms of the number of registers that need to be preserved for a case when

16

r1 r2 r3 r4

3

2
6

1

3

3

2 6

3
3

3

1

r5 r1 r2 r3

10 8 10 8

r4 r5

Figure 2.4: Minimizing the size of preserved registers through renaming for
RLD=3

FD = 3. The vertical axis corresponds to a sequence of instructions in a basic block

(we assume all the stalls that can be precisely determined at compilation time are

changed into NOOP instructions). Each vertical line in the figure represents the

live interval for a certain register. In order to represent the worst-case scenario, we

need to have an interleaved interval each with length equal to FD. As can be seen

in the figure, the worst-case scenario necessitates 3 registers since each register can

be reused after its prior interval expires. As the value of FD is small in practice,

one can expect that all unnecessary writes could be eliminated.

In a typical case, the compiler assigns the registers to the variables from

the pool of free registers. Consequently, arbitrary intervals could be assigned to

each register. In order to apply this approach efficiently we need to compact the

short live registers into a small subset of size FD at most. Interestingly, such a

compaction can be attained efficiently at the compiler level through the use of a

renaming scheme approach. To clarify the idea of renaming, we use an illustrative

example. Let’s assume the live interval distribution for a certain code shown in

the left of Figure 3. Also let’s assume that r1 and r2 belong to SSIR. Considering

that, one can observe that the short intervals in r3, r4, and r5 can not be exploited

for low power despite the fact that they satisfy the inequality RLD ≤ FD. In the

right part of Figure 2.4, we use a renaming to move these intervals into r1 and r2.

Interestingly, performing renaming at the compiler level comes at no overhead in

terms of power, performance and hardware, an issue that enhances the relevance

of this approach.

In order to perform renaming, two cases need to be considered. The first

17

one handle the cases when there is sufficient number of registers to cover all short

intervals assignments while the other manage the cases when there is insufficient

number of registers for all short intervals assignments. In the following, we outline

the details of the renaming algorithms for these two cases.

2.4.1 Full register renaming algorithm

In this section we solve the renaming problem when there are enough reg-

isters that can be dedicated for the SSIR to cover all short intervals in the given

code. In order to attain such a renaming we suggest the use of the Left-Edge algo-

rithm, LEA, that has been proposed in [30]. Although this algorithm has originally

been proposed for channel routing, it fundamentally solve an analogous problem

where the channels correspond to the short interval registers and the trunks of

the net correspond to the live interval of registers. Following the basic ideas in

LEA we sort the given short term intervals in ascending order relative to the y

coordinate at the top point of the intervals. Subsequently, the algorithm allocates

a short term register to each of the intervals, one at a time, based on the sorted

order. In allocating an interval to a register, the algorithm follows the concept of

first fit. This algorithm exhibits a linear time complexity.

2.4.2 Partial register renaming algorithm

The aim in this section is to handle the cases when there is an insufficient

number of registers in covering all possible short time intervals in the given code.

Considering the constraints in the problem, one needs to optimize the use of the

available registers. In order to attain the renaming under such constraints we

propose extending LEA to handle the possible conflicts in the assignments. In

the new algorithm, we assign a weight to each interval that reflects the power

savings. The difference between the new algorithm and LEA is in handling the

cases when the algorithm determines that there is no room for a certain interval.

In such cases we compare the weight that is associated to the unallocated interval

to the weights that are associated with the intervals that are creating the conflict.

18

PC1

PC2

PC3 Major loop3

Major loop1

Major loop2

OR
Register destination

 field
Write:Yes/No

MLET

V1

V2

V3

DSIR

Figure 2.5: Hardware support

The interval with the least amount of weight would be evicted and returned to its

original allocation. The complexity of the new algorithm is also linear. The weight

function is shown in the following:

wi = WiPi/(Di + 1) (2.1)

where wi corresponds to the assigned weight for interval i, Wi, corresponds to the

power dissipation for writes to the register file, Pi represents the probability of no

occurrence of cache misses or exceptions that lead to the assertion of the writes

for short interval registers, and Di corresponds to the distance from the conflict

point to the end of the interval. The numerator in the weight function represents

the amount of power savings when the write is prohibited. As the allocation of

long intervals leads to lower utilization of the registers, we divide the amount of

power savings by the length of intervals to optimize the allocation that is generated

through LEA.

In order to improve power savings in the cases when there are not enough

registers for SSIR, one can utilize the fact that a typical application consists of

relatively few major loops [12, 49, 50] and apply the renaming algorithms at the

granularity of these loops. Thus the loops that are not the bottleneck can allocate

more registers in SSIR which leads to improved power savings.

19

2.5 Hardware support

The hardware architecture of the proposed implementation is presented in

Figure 2.5. The major loop encoding table (MLET) stores the PC’s for the entries

of the major loops and the vector, V, that has the write permission information for

the set of short interval registers. As the maximum size of the short live register

span is known a priori, this set of registers can also be determined in advance.

In this case, each bit in the vector V corresponds to a prespecified register. The

size of each vector is FD which is typically quite small, e.g. 4 bits for a 5 stage

pipeline. The elements of the vector V can be stored in a latch circuit to avoid

the associative access to MLET. In cases where all the major loops exhibit enough

registers to be dedicated for the set SSIR, it suffices to access MLET only once

at the beginning of the application. Otherwise, MLET could be accessed only

at the beginning of the major loops. The access to MLET could be signaled

through executing a certain sequence of instructions. In order to capture whether

the incoming destination register belongs to the set SSIR, we use a decoder to

capture the elements of SSIR. We denote this decoder as the Decoder of the

Short Interval Registers, DSIR. The size of this decoder is small since it has only

FD outputs. In this decoder the elements of the vector V are AND’ed with the

decoder primary outputs to embed the write permission information. The set of

FD outputs of the decoder are OR’ed to determine whether the incoming register

should write to the register file. In this case, if the output of the OR gate is True,

then the write would be prohibited. In the case of cache misses or exceptions, the

register should write to the register file. In the next sections we show that the

power overhead that is associated with this scheme is insignificant, an issue that

improves the applicability of our work.

20

Table 2.1: Processor parameters

Execution model inorder

Issue width 1

Register file 32 registers

Branch predictor 2048 entries, gshare

BTB 256 entries, 1 way

L1 I-cache 8KB, 2 way

L1 D-cache 8KB, 2 way

L2 unified cache 128KB, 4 way

Table 2.2: Technology and packaging
Processor clock 1.5GHz

Technology 130nm

Processor die size 4.4mm × 2.5mm

Die thickness 0.2mm

Heat spreader 5mm × 5mm × 1mm

Heat sink 3cm × 3cm × 0.5cm

Local ambient temperature 45 oC

2.6 Experimental Evaluation

2.6.1 Methodology

In this section we present a set of experimental results to assess the effec-

tiveness of using the proposed scheme in delivering power savings and reducing

temperature of the register file. We use an illustrative example of a 5 stage sin-

gle issue MIPS like processor. The register file is composed of 32 registers of 32

bits each. It has three ports, two for read and one for write. The details of the

processor configuration is given in Table 2.1. We utilized three simulators, Sim-

pleScalar [10], Wattch [18], and HotSpot-4.0 [57]. SimpleScalar simulator is used

to obtain the architectural level performance simulation. SimpleScalar results are

fed into Wattch to obtain the power values of the processor functional units. The

power values are then used to estimate the energy consumption in register file as

well as the temperature through the HotSpot simulator. Figure 2.6 shows the floor

plan of the processor we study. The details of the processor size and packaging are

given in Table 2.2.

21

L2 Cache

FP Int

I−cache D−cache

Bpred DTBITB

Figure 2.6: CPU floor plan

L2-cache
I-cache

D-cache
Br pred I-TLB

D-TLB
Flp Exe

Int Exe

Int Reg File
60

65

70

75

80

85

90

Te
m

pe
ra

tu
re

 (d
eg

re
e

C)

Figure 2.7: Temperature distribution of functional units

The workload that we use includes a set of five benchmarks from various

DSP and numerical applications, ones typically used in application specific proces-

sors. The benchmarks used are: fast discrete cosine transform (fdct) DSP kernel;

matrix multiplication (mmul) on a matrix of size 50x50; successive over-relaxation

(sor); a tridiagonal linear system solver (tri) on a matrix of size 128x128; and

extrapolated Jacobi-iterative method (ej) on a 128x128 grid.

22

fdct sor tri mmul ej AVG0

10

20

30

40

50

60

70

Re
du

nd
an

t w
rit

es
 (%

)

Figure 2.8: Percentage of short live registers: RLD (1-3)

2.6.2 Results

Figure 2.7 shows the temperature distribution of the functional units. Tem-

peratures value are collected by averaging the resultant temperatures from running

the set of benchmarks one at a time. The results clearly show that the register file

is the hottest component in the processor. Figure 2.8 depicts the percentage of the

registers that have a liveness distance in the range of 1-3. The results show that

50% of the register assignments on average have liveness distance ≤ 3. These re-

sults indicates that a significant percentage of writes can be eliminated by utilizing

our approach. The power overhead of the supported hardware is negligible, less

than 1.0%, as the decoder DSIR can be built using only few gates. Additionally,

the latch circuit that stores the vector V, also consumes negligible power since its

state rarely changes. The resultant net energy savings in register file are shown in

Figure 2.9. These results depict appreciable savings could be attained by applying

the proposed technique which reaches 22.3% on average. The savings in the case of

fdct is the highest since this workload has the largest amount of redundant writes.

Figure 2.10 shows the temperature of the register file with and without

our technique. The results show that preventing redundant writes can reduce

the temperature of register file by 4oC on average and reduces the occurrence of

hot spots by 60% with thermal threshold of 85oC. The maximum reduction in

temperature of 6oC occurs in the case of fdct since it has the highest number of

23

fdct sor tri mmul ej AVG0

5

10

15

20

25

30

35

En
er

gy
 s

av
in

gs
 (%

)

Figure 2.9: Percentage of energy savings in register file

fdct sor tri mmul ej AVG75

80

85

90

95

Te
m

pe
ra

tu
re

 (d
eg

re
e

C)

Default
Our technique

Figure 2.10: Temperature reduction in register file

redundant writes. On the other hand, the temperature reduction of in the case of

mmul is lowest since it has fewest redundant writes. These results indicate that

we can reduce the temperature appreciably at almost no performance overhead.

2.7 Conclusion

In this chapter we have presented an approach for reducing the tempera-

ture of register file while delivering energy savings. We achieve this by minimizing

unnecessary writes to the register file. This work shows that a significant portion

of the writes are redundant due to forwarding network. We embed the redundant

writes information in the application code which can be decoded easily by the

24

hardware. The encoding scheme skews the redundant writes information into a

small set of registers that are prespecified a priori at the hardware through the

use of renaming at the compiler level. We show that a small number of registers

suffice to eliminate all redundant writes. Efficient algorithms are provided for the

purpose of renaming. The size of the prespecified registers can be adjusted dynam-

ically through the use of programmable hardware to handle any register pressure,

thus preserving the generality of the of processors while applying the encoding

methodology that we propose. The reported experimental results show that the

proposed technique is able to reduce the occurrence of hot spots by 60% while

achieving energy savings of 22.3% on average at almost no performance overhead.

Chapter 2, in part, is a reprint of the material as it appears in Proceedings of

the International Conference on Computer Design, 2007. Ayoub, R. and Orailoglu,

A. The dissertation author was the primary investigator and author of this paper.

Chapter 3

Proactive Thermal Management

for General Purpose Multicore

Processors

In the previous chapter we showed that the microarchitectural level provides

opportunities for reducing temperature by eliminating redundant activities in the

register file. However, microarchitectural solutions have limitations as they are

restricted to local optimizations and they are not suitable for implementing soft-

ware like algorithms that are required for thermal management. This motivates us

to introduce a software solution at the operating system layer that manages the

temperature of the entire cores within a CPU socket.

To manage the high temperature within a single CPU socket, a number

of reactive dynamic thermal management, DTM, techniques have been proposed.

These techniques resolve the temperature problems upon reaching undesirable lev-

els. However, this approach is not efficient in creating a better thermal balance

in the chip and reducing leakage power. In contrast, when thermal management

can predict temperature then it can act before reaching thermal emergencies to

prevent them when possible. The proactive approach has the potential to improve

the temperature distribution and at the same time reduce the leakage power.

In this chapter we introduce an novel proactive thermal management scheme

to reduce the thermal hot spots between cores. In order to predict temperature

25

26

 predictor Performance counters

Temperature

Current workload
characterization workload

Incomming

Thermal aware allocation

Thermal sensors

Scheduler

Το + ∆Τ

Figure 3.1: Thermal aware scheduling for the core level

accurately at negligible cost we present a new temperature predictor, called Band-

Limited Predictor (BLP) that is based on the band limited property of the temper-

ature frequency spectrum [39,41,42]. The important feature of our predictor is that

the prediction coefficients can be identified accurately at the design stage which

makes it workload independent. Our results show that applying our algorithm

considerably reduces the average system temperature, hottest core temperature,

and improves performance by 6 oC, 8 oC and 72% respectively.

3.1 Overview of proactive thermal management

Forecasting thermal problems and managing them ahead of time can dra-

matically reduce performance overhead and temperature. In this chapter we target

an SMT multicore processor. Figure 3.1 depicts the operational framework of the

proposed approach. The OS scheduler employs proactive thermal management to

minimize the impact of temperature. To predict the core temperature efficiently we

propose a fundamentally new temperature predictor that is based on the concept

of predicting band-limited signals which requires no training phase. The predictor

coefficients are estimated at the design time based on the temperature spectral

limited bandwidth. Moving history of the temperature is fed to the suggested pre-

dictor to estimate the future temperature, T0+∆T where T0 represents the current

27

temperature. Temperatures of the cores are collected using thermal sensors that

are commonly available in the state-of-the-art processors and can be accessed eas-

ily by the operating system. Workload characterization is done to estimate the

contribution of the individual threads to the core heating. To extract the activity

of the individual threads we use performance counters that are typically available

in current processors. The last input to the OS scheduler are queues that contain

the tasks that are waiting to be executed (incoming workload). The OS scheduler

calculates the predicted temperature of the individual cores at each scheduling

period. If predicted temperature of one of the cores surpasses a given temperature

threshold, the scheduler migrates a portion or all of the workload of the hot core

to the core that is predicted to be the coolest. The migration overhead is only a

few microseconds which is much lower than the cost of putting the processor in a

low power mode [40]. Migration cost comes primarily from warming up the caches

and OS overhead [40]. Workload characterization is used to improve the efficiency

of migrations in the cases when only portion of the running threads are allowed to

be migrated. In handling the incoming threads, the scheduler assigns them to the

core that is predicted to be the coolest. In the subsequent sections we elaborate

on the design of our suggested approach.

3.1.1 Temperature prediction

Our new temperature predictor is used as an input to the core level scheduler

as depicted in Figure 3.1. The basic idea of the temperature predictor is that the

band-limited signals can be predicted from the previous samples using prediction

coefficients that are independent of the particular signal or autocorrelation function

[39,41,42]. Prediction coefficients are function of the signal bandwidth only. Before

going into the details of our band-limited predictor, we show that the temperature

frequency spectrum is band-limited in nature.

The thermal model that present show that the temperatures of the indi-

vidual die components (e.g. cores, L2 cache) is a simple low pass RC filter with

horizontal thermal resistances connecting the adjacent units. The bandwidth of

temperature frequency spectrum can be computed using standard RC network

28

analysis or using CAD tools, e.g. HSPICE. For high end CPUs, we can neglect the

effect of the horizontal thermal resistances to simplify the bandwidth computations

since their values are much higher than the vertical ones [33]. This indicates that

the temperature signal has a limited frequency bandwidth, the frequency spectrum

of the individual components can be modeled as follows:

T (w)

T (0)
=

1
√

1 + (wτc)2
(3.1)

where T (w) represents the temperature value as a function of the angular frequency

w, and τc is the core temperature time constant that equals RC. Given that the

temperature is a low pass filter, it satisfies the band-limited condition. The author

in [39] shows that band limited signals can be predicted using the following linear

formula:

x(t) =
N
∑

n=1

anx(tn) (3.2)

where an are the prediction coefficients, tn represents the nth time sample and N is

the total number of samples. For the case of uniform sampling, the value of tn can

be written as tn = t− nds where ds is the sampling period. For this predictor to

be applicable, the error needs to be bounded and sufficiently small. The absolute

error is expressed as ǫ = |x(t)−
∑N

n=1 anx(tn)|. Using Paley-Wiener theorem and

Schwarz formula, a bound on the error ǫ2 can be found as follows [39]:

ǫ2 ≤ {

∫ W

−W

|X(f)|2df}{

∫ W

−W

|ds(f)|2df} (3.3)

where ds(f) = ei2πft −
∑N

n=1 ane
i2πftn , f is the frequency and W is the frequency

bandwidth in Hertz. The first part of this equation represents the signal energy

while the second part is the amount of prediction error. The equation (3.3) can be

rewritten as:

ǫ2 ≤ ‖x‖2 · ǫI (3.4)

where ǫI is the error component while ‖x‖ is the signal energy. The error integral

represents an N-dimensional function E(a1, a2, ..., aN) of prediction coefficients.

29

The BLP coefficients can be obtained by minimizing ǫI . To obtain the optimal

coefficients we use the method of eigenvector optimization [39]. The work in [43]

shows that the error integral part ǫI can be rewritten as:

ǫI = vTΩv (3.5)

where v is a vector that have N + 1 elements. To satisfy this equation, it is

imperative for the vector v to have its first entry equals to 1 (v1 = 1). The matrix

Ω is expressed as:

Ω =

(

1 bT

b D

)

where b is a vector of N components and D is a matrix of N×N . The vector b and

the matrix D can be constructed from the results of applying the standard method

of minimization for E(a1, a2, ..., aN), [42], to the error that gives the following

system of equations:

N
∑

n=1

ansinc(2W (tj − tn)) = sinc(2W (t0 − tj)) (3.6)

where j = 1,...,N and sinc(t) = sin(πt)/(πt). The matrix D equals the system

matrix in (3.6) and the vector b equals the vector that is in the right hand side of

(3.6). As a result, the matrix Ω can be expressed as:

Ω =





















s(t0 − t0) s(t1 − t0) s(t2 − t0) ... s(tN − t0)

s(t0 − t1) s(t1 − t1) s(t2 − t1) ... s(tN − t1)

s(t0 − t2) s(t1 − t2) s(t2 − t2) ... s(tN − t2)

...

s(t0 − tN) s(t1 − tN) s(t2 − tN) ... s(tN − tN)





















where s(t) = sinc(2Wt). The matrix Ω is symmetric since sinc(t) is an even func-

tion. In addition, this matrix is positive definite which makes all the eigenvalues

positive. The optimal prediction coefficients that minimize the prediction error

30

t1t2t3

2α

t4t5t6 t0

Predicted
 pointds

Figure 3.2: Position of interlaced sampling points

ǫI can be obtained by minimizing the value of vTΩv across all the possible vec-

tors with v1 = 1. For the set of the normalized eigenvectors with length 1, the

minimum value of vTΩv is determined by the smallest eigenvalue of matrix Ω. In

other words, we need to find the eigenvector that is associated with the smallest

eigenvalue, λmin, then normalize this eigenvector to make the first entry equals

to 1. Lets assumes that V is the eigenvector that is associated with the smallest

eigenvalue with ‖V ‖ = 1. For this selected eigenvector, the value of V TΩV is equal

to λmin. The normalized eigenvector, Vnorm, can be obtained simply by dividing

the eigenvector by the vector’s first element, Vnorm = V
V1
. The important result is

that we can extract the set of prediction coefficients, {a1, a2, ..., aN}, directly from

Vnorm as [39]:

ai = Vnormi+1
(3.7)

The significance of equation (3.7) is that the optimal prediction coefficients

depend only on the signal bandwidth, W . For the case of uniform sampling, the

upper bound for prediction distance, dp, can be obtained using Nyquist condition,

2dpW < 1. The temperature spectral bandwidth depends on the value of τc as

shown in (3.1). Extracting τc can be simply accomplished at the design time using

die layout and thermal package parameters [56].

The temperature typically changes slowly as a function of its thermal time

constant. As a result, extending the prediction window allows for better thermal

management as more thermal emergencies could be captured and prevented ahead

of time. The prediction window can be extended by employing nonuniform sam-

pling. The theoretical work in [45] shows that if a signal is sampled at 1/m times

the Nyquist rate, but in each sampling interval not one but m samples are used,

31

the signal can be reconstructed completely. In [39], the author show that this con-

cept can be extended to increase the prediction window. To apply this concept,

the samples need to be placed in interlaced pattern. For m = 2, the placement of

samples should follow a pattern of two close samples that is followed by a uniform

delay, then two more close samples are taken and so on. Figure 3.2, shows the

locations of interlaced sampling points. The theoretical proof is given in [39]. The

prediction distance is computed as dp = ds−2α(m−1) where α is the half distance

between the two close samplings.

In summary, to predict the temperature, we first compute the coefficient

factors at the design time using (3.7). At run time, we collect the temperature

samples and apply the simple polynomial given in (3.2) to predict the tempera-

ture. The overhead of our prediction is negligible since computing the prediction

polynomial can be achieved in a few CPU cycles.

3.1.2 Proactive Thermal Management

In this work we are targeting a multicore platform where each core can

execute multiple threads e.g. SMT core that we show in Figure 3.1. Our proactive

policy performs thermal aware scheduling through either migrating the hot threads

across the system cores or scheduling the incoming jobs in a thermally aware

manner. To initiate the migration process, the predicted temperatures of the hot

cores must surpass the temperature threshold and there has to be a sufficient

difference in the predicted temperature between the hot and coolest cores. We use

the temperature time constant to calculate the temperature rise that corresponds

to one scheduling period. The temperature gap should be greater than or equal

to this temperature rise value. When the coolest core is idle, we migrate the most

active thread from the hot core to the colder one. If the coolest core is executing,

we select the thread with modest activity from the hot core and migrate it to

balance the temperature. We determine the activity of the individual threads (e.g.

hot or cold) running in the same core by using fetch rate as a run time workload

characterization mechanism. The fetch rate can be measured directly through the

use of processor performance counters (e.g. Model Specific Registers MSR). The

32

Table 3.1: Processor simulation parameters

Parameter Value

Issue width 4

Number of threads 2

ROB 128

Functional units 4 IntALU, 1 IntMult/Div

1 FPALU, 1 FPMult/Div

Branch predictor Tournament 2048 local predictor

8192 global predictor

BTB 2K entries, 1 way

LSQ 32

L1 I-cache 32KB, 4 ways, 32B blocks, 1 cycle

L1 D-cache 32KB, 4 ways, 32B blocks, 1 cycle

L2 4MB, 8 ways, 64B blocks, 12 cycles

Memory latency 200 cycles

fetch rate statistics are collected for the duration of one sampling period. When

assigning the incoming jobs, we use the result of prediction to find the coolest cores

with available resources.

3.2 Evaluation

3.2.1 Methodology

For the experimental evaluation we assume a platform that consists of 6

cores, where each core is a 4-issue SMT ALPHA like processor that can run at

most 2 threads. Table 3.1 gives the simulation parameters that we have used in

our simulations. We utilized three simulators, M5 [44], Wattch [18], and HotSpot-

4.0 [57]. The M5 simulator is used to obtain the architectural level performance

simulation. The M5 results are fed into Wattch to obtain the power values of

the processor functional units. The power values are then used to estimate the

temperature through the HotSpot simulator. Figure 3.3 shows the floorplan of our

processor.

To account for CPU cores leakage power temperature dependency, we used

33

the second-order polynomial model that is proposed in [29]. We extracted the

model coefficients empirically based on the given normalized leakage values. To

estimate the leakage values for 65nm technology we incorporate the reported value

of leakage power density (0.5W/mm2 at 383K [17]) in the second-order polynomial

model. In our results we also account for the temperature warm up, as the heat

sink has a longer time constant than the die.

We use benchmarks from the SPEC2000 suite for our workload. We selected

a set of benchmarks that exhibit various levels of thermal stress to represent real life

applications. We ran each benchmark for a representative interval of 4 seconds.

Such time is sufficient to evaluate our policies since it is orders of magnitude

larger than the die thermal time constant. As we are assuming an SMT multicore

platform we constructed a representative set of benchmarks that are shown in Table

3.3. The selected benchmark combinations varies in terms of CPU utilization and

thermal stress, to better evaluate our policies under various workload conditions.

Our Proactive Thermal Management that uses Band Limited Predictor PTM-

BLP, reduces the occurrence of hot spots between cores. The thread migration in

this policy is allowed to be initiated only when the temperature difference between

the hot core and colder core is 5 oC to avoid ping-pong scenarios. For the predictor

parameters we use α = 0.135, m = 3 and N=3 based on the analysis in section

3.1.1. We compare PTM-BLP algorithm against the following set of state of the

art policies:

Dynamic Load Balancing, DLB: It is usually implemented in modern op-

erating systems to enhance the utilization of the system resources. The DLB

performs thread migration to minimize the difference in task queue lengths of the

individual cores [21]. The operating system initiates dynamic load balancing every

hundred milliseconds. The balancing threshold is set to one to keep the difference

between queues equal to zero as possible. In this work we implement the DLB as

our default policy for the purposes of comparison.

Reactive Thermal Management, RTM: This policy migrates the threads

from the cores that reach the temperature threshold to colder ones when possi-

ble. The temperature threshold for activating migration is set to slightly below

34

Table 3.2: Technology and package characteristics

Technology 65nm

Processor clock 2.0 GHz

Local ambient temperature 45 oC

Core area 3.3 × 3.3 mm

CPU thermal threshold 85 oC

Convective resistance O.1 K/W,

Die thickness 0.2 mm

Heat spreader thickness 1.0 mm

the thermal emergency threshold (2 oC) to give this policy some time to react be-

fore reaching thermal emergencies. Same threshold is used for other policies that

perform migration. Upon reaching the temperature threshold, the RTM selects

randomly one of the threads and migrates it away.

Proactive Thermal Management using ARMA, PTM-ARMA: We also im-

plement another proactive policy that utilizes the ARMA based temperature pre-

dictor proposed in [22] for the comparison purpose. Our implementation, PTM-

ARMA, uses ARMA to predict the future temperature. If the predicted tempera-

ture is higher than the temperature threshold, the scheduler selects randomly one

of the threads from the hot core and migrates it to the core that is predicted to

be the coolest and has available resources. For forming the ARMA(p,q) model,

we used the iterative approach as described in [22] and set the maximum order

for p and q to 5 (p and q represent the order of the autoregressive and moving

average part of the model respectively). At run time, we check if the prediction

error exceeds 5 oC, and if it does we initiate adaptation phase and form a new

model. To avoid noncritical adaptations, the error is calculated by averaging the

prediction errors in a window of 20 samples.

3.2.2 Results

The reported results show that our policy outperforms the other policies

in minimizing the system average temperature as well as the temperature of the

hot cores while minimizing performance overhead. In the following we discuss the

35

Core 1 Core 2 Core 3

BusL2 L2

Core 4 Core 5 Core 6

Figure 3.3: Processor floorplan

Table 3.3: Benchmark combination list

Test group Benchmarks

1 4× bzip2

2 5× bzip2

3 3× bzip2 + 3×gzip

4 3× crafty + 3× swim

5 3× bzip2 + 3× gzip + 1× gcc

6 3× crafty + 3× swim + 1× gcc

7 3× bzip2 + 3× gzip + 2× gcc

8 3× bzip2 + 3× gzip + 3× gcc

Figure 3.4: Temperature prediction of crafty

36

Figure 3.5: Temperature prediction of swim

details of the results.

We start with evaluating our band-limited predictor. We fit coefficients of

our predictor based on the design parameters and don’t change the predictor for

the following experiments. In order for the predictor to be feasible, we need to show

that the prediction window is in the range of operating system scheduling period.

In Figures 3.4, 3.5 we show an illustrative examples of predicting the temperature

using our predictor with executing crafty and swim benchmarks respectively. In

these experiments we run one instance of the benchmark in each core and set the

prediction distance to 10ms. It is clear from the results that our predictor is fairly

accurate in predicting most parts of the signals despite their variations; the average

of errors are 0.33 o C and 0.35 o C for crafty and swim respectively.

Figure 3.6 shows the die average temperature when using the DLB, RTM,

PTM-ARMA, and PTM-BLP policies for all the workloads given in Table 3.3. It

is evident from the results that using PTM-BLP results in a considerable improve-

ment over the DLB, RTM and PTM-ARMA; the enhancement is as high as 8.8 oC,

8.4 oC, and 8.16 oC respectively. It provides appreciable savings over the DLB since

it is able to prevent the overheating at lower temperatures and distribute the heat

37

Figure 3.6: Lowering average system temperature

more evenly across the cores. The additional source of savings comes from lower-

ing the impact of exponential dependency of leakage power on temperature since

preventing the overheating at earlier point reduces the effect of the dependency

positive loop. As can be seen from the results, the savings in the case of 4bzip2 and

5bzip2 are higher than {3bzip2 + 3gzip+2gcc} since there are more opportunities

for migrating the threads across the system in the prior cases. Interestingly, our

scheme is capable of providing savings even when the number of threads exceeds

the number of cores, (e.g. {3bzip2 + 3gzip + 1gcc}). The PTM-ARMA outper-

forms the reactive policy (RTM) since the RTM acts only when the temperature

becomes close to the overheating point. More interestingly, our scheme shows con-

siderable improvement even over the proactive policy, PTM-ARMA. This could

be attributed to the impact of prediction inaccuracy during training phases as the

PTM-ARMA defaults to its current model until the training phase is complete

during such events. It should be noted that training phase may be a frequent

event. In addition, the ARMA training phase can take up to several hundred mil-

liseconds [22], which is expected to increase the overall power consumption and

the temperature in turn. Beside that, periods with frequent thread migrations can

cause the temperature dynamics to vary and reduce the prediction accuracy. The

other factor that contributes to the reduction in the average temperature is the

use of runtime workload characterization that identifies activity of the individual

38

Figure 3.7: Minimizing core’s highest temperature

threads and allocates them in a thermally sensitive manner.

Figure 3.7 shows the benefit of applying our scheme to minimizing the

temperature level of the hottest cores in the system. It can be seen from the

results that using PTM-BLP results in a strong improvement over the DLB, RTM

and PTM-ARMA; the improvement can reach as high as 13.3 oC, 7.8 oC, and

6.37 oC respectively. The strong reduction in the hottest core temperature reflects

a great temperature prediction accuracy of our method. The maximum benefit

occurs in the case of 4bzip2 since it has the highest opportunity of finding available

hardware threads. For the case when the number of running threads is similar,

the improvement of using our scheme over the RTM and PTM-ARMA is shown

to be higher in the case of {3bzip2 + 3gzip}. This can be related to the higher

temperature average of {3crafty + 3swim} which lowers the chance of passing

the temperature difference threshold that is required to avoid the ping-pong effect.

Our scheme outperforms the PTM-ARMA by 2.9 oC degrees on average.

Figure 3.8 illustrates the percentage of performance improvement over the

DLB when using the DTM policies that are discussed earlier. Our policy signifi-

cantly outperforms DLB, RTM and PTM-ARMA; the enhancement is as high as

84%, 72% and 74% respectively. The DLB delivers the worst performance as it

suffers the most from powering down overhead due to the frequent overheating.

PTM-BLP surpasses RTM appreciably since the RTM could lead to more frequent

39

Figure 3.8: Performance improvement over DLB

power down events since the average temperature in the case of the RTM is higher

than PTM-BLP (see Figure 3.6). The other reason is due to many migrations

that are not helpful since RTM makes thermal management decisions based only

on the current temperature. The results show that applying PTM-ARMA could

result in high performance overhead that exceeds the level of the RTM. Example

of that can be seen in the case of the workload {3bzip2 + 3gzip + 3gcc}. This is

due to the training overhead and resulting inaccuracy due to frequent migrations.

Including workload characterization in the scheduler as the PTM-BLP does, as-

sists in improving the performance due to the enhancement in migration efficiency.

Interestingly, our scheme outperforms the other techniques even in the case of high

utilization. These results indicate that PTM-BLP is highly effective in handling

thermal hot spots at various levels of system utilization.

3.3 Conclusion

3.3.1 Conclusion

In this chapter, we have introduced a new proactive dynamic thermal man-

agement technique for multicore system. Our algorithm incorporates continu-

ous temperature prediction information and runtime workload characterization

to guide the OS scheduler in allocating the workload in a thermally sensitive man-

40

ner. We also introduced a new temperature predictor that not only requires no

runtime adaptation, but is also highly cost efficient. We provide detailed analysis

on how to calculate the prediction coefficients at design time. We implemented

our scheme and compared it against other state-of-the-art polices. The reported

results show that our predictor is accurate where the average temperature error is

below 0.5 oC despite the large variations in the temperature signal. Our results

show that applying our algorithm considerably reduces the average system tem-

perature, hottest core temperature, and improves performance by 6 oC, 8 oC and

72% respectively.

The limitation of our PTM-BLP is that it can not deliver savings in the

cases when all cores are experiencing high thermal stress. The primary reason for

this limitation is that the scope of managing the temperature is limited to a single

CPU socket and does not take the opportunities of managing the temperature be-

tween multiple sockets. In the next chapter we study hierarchal approach where we

perform core level as well as socket level thermal management to improve savings.

Chapters 3, in part, is a reprint of the material as it appears in Proceed-

ings of the International Symposium on Low Power Electronics and Design, 2009.

Ayoub, R. and Rosing, T.S. The dissertation author was the primary investigator

and author of this paper.

Chapters 3, in part, is a reprint of the material as it appears in IEEE

Transactions in Computer Aided Design of Integrated Circuits and Systems, 2011.

Ayoub, R.; Indukuri, K. R. and Rosing, T.S. The dissertation author was the

primary investigator and author of this paper.

Chapter 4

Thermal and Cooling

Management in Multisocket CPU

Servers

At any given speed setting the fan can dissipate only a limited amount of

heat from a CPU. Increasing the speed requires exponential increase in fan power.

This indicates that temperature solutions that act only within a socket are not

sufficient to minimize cooling energy since some sockets may generate much more

heat than others, resulting in dramatically higher cooling costs.

In this chapter we introduce a multi-tier algorithm that schedules the work-

load at the core and socket levels to minimize cooling energy and the occurrence

of thermal emergencies. We schedule the workload between CPU sockets in a way

that mitigates hot spots across them and reduces cooling energy. We developed

a control theoretic framework for the socket level scheduling that guarantees the

desired objectives, in terms of temperature, cooling energy savings and stability,

are met. We add core level workload management that we discussed in chapter 3 to

reduce the hot spots across the cores and improve cooling savings within a given

socket. The reported results show that our multi-tier scheme is able to achieve

cooling energy savings of 80% on average. The reported results also show that our

formal technique maintains stability while heuristic solutions fail in this aspect.

In this study we address the limitations of the previously suggested thermal

41

42

.

Scheduler

Core1Core2

Scheduler

Core1 CoreN. . . .Core2

characterization
Scheduler

Power and thermal

Core level scheduling

socket M

Thermal
sensors

CoreN
Thermal

socket 1

Socket level scheduling

Temperature
prediction

Temperature
prediction

sensors

Performance counters
thermal sensors

Fan speed

Figure 4.1: Overview of multi-tier scheduling

management techniques in single machines. Firstly, the scope of the prior tech-

niques is limited to single sockets, hence they can not minimize hot-spots between

sockets. Second, the temperature management within the single socket come with

drawbacks that require improvements. The other important limitation is the lack

of a realistic model of the cooling subsystem. Our work focus on mitigating the lim-

itation in the prior work to reduce operational costs and to enhance performance.

The main contributions of our work are summarized below:

• We design a new cooling aware multi-tier dynamic workload scheduling tech-

nique within a control theoretic framework to deliver high energy savings

and ensure stability.

• We present a thorough evaluation and discussion of the proposed techniques

that results in a substantial cooling costs savings of 80%.

4.1 Multi-tier thermal management overview

In general, the heat removed from the CPU by the fan is proportional to the

fan speed. However, removing more heat requires exponential increase in cooling

power. This means it is better to have the heat dissipation balanced between the

CPUs to have a more uniform fan speed distribution and thus reduce the cooling

energy. The other possible way to reduce cooling energy is to lower the average

43

combined fan speeds. This can be achieved by eliminating some of the hot spots

and maximizing the use of fan capacity. Implementing these optimizations require

intelligent job allocation between sockets. We can also reduce temperature by

decreasing the power density on the die through migrating the workload from hot

cores to cooler cores. This class of optimizations requires core level scheduling.

This indicates that utilizing both core level and socket levels is necessary in order

to maximize cooling savings.

These concepts motivate us to develop a multi-level thermal management

(MTTM) technique where temperature is managed at socket as well as at core

level. Figure 5.8 depicts the operational framework of our proposed approach.

Socket level: The scheduler at the socket level manages the jobs between

sockets. It takes temperature, performance and fan speed information as an in-

put. They are collected every during scheduling period. Cooling savings can be

achieved by balancing fan speed or lowering the average combined fan speed. The

techniques that achieve these two objectives are: (1) Spreading : This method fo-

cus one the cases when power is significantly unbalanced between sockets. It tries

to balance the thermal hot spots across the sockets to generate a more uniform

distribution in fan speed. (2) Consolidation: This technique is complementary to

spreading where it optimize the situations where the sockets have balanced power

distributions. It schedules the workload in a way that eliminates subset of the hot

spots, an issue that reduce the average of combined fan speeds and deliver cooling

savings. We design our scheduler within a control theoretic framework to ensure

stability and to avoid exhaustive tunning as in the case of heuristic solutions. The

scheduling period is on the order of seconds which incurs negligible overhead to

the performance.

Core level: Core level is complementary to the socket scheduling where it

reduces the temperature within each individual socket. The core level scheduler

employs proactive thermal management that we discussed in chapter 3 to mini-

mize the temperature. The scheduler calculates the predicted temperature of the

individual cores and migrates the jobs from the hot cores to those that are pre-

dicted to be the coldest. This strategy helps reduce the occurrence of hot spots by

44

Controller

 Temperature
 sensors

Temperature sensores
&

Performance counters

estimation
Cooling savings

Socket scheduler

Fan speed

Figure 4.2: Overview of socket level scheduling

providing a better thermal balance between cores. The core level algorithm is in-

voked during the OS scheduling periods which is in the order of milliseconds. This

core level scheduler should not impact the stability of the system since it reaches

steady-state within a small fraction (several 10s of milliseconds) of the high level

scheduler interval (several seconds). We show that the overhead of our technique is

trivial due to the low time overhead of both predictions and migrations compared

to the time scale of temperature changes. In the subsequent Sections we discuss

both core and socket level algorithms in more details.

4.2 Socket level scheduling

We introduce our socket level scheduling to provide a better thermal distri-

bution across different CPU packages. This provides additional savings on top of

those obtained via core level scheduling. Figure 4.2 shows the overview schedul-

ing at this level. It is composed of two primary stages: controller and scheduler.

The controller determines how much power needs to be moved to/from sockets

to minimize the cooling energy. The scheduler takes the inputs from the con-

troller, thermal sensors and performance counters and tries to assign the workload

based on the controller decisions. The scheduler communicates with a cooling sav-

ings estimator to quantify the savings of each decision and thus avoid ineffective

scheduling events. To better understand this design we start with description of

thermal and cooling models we used.

45

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

P R
C

T

. . . .

T

C

R

T

temperature
Local ambient

R
T

R

R

conv

ha

hs
ca

ca

Cs
s

sa

v
j

l

j

ja

Heat sink

CPU chip with spreader

Figure 4.3: Single socket thermal model

4.2.1 Thermal and cooling model for CPU socket

Thermal modeling of the individual sockets can be done using an RC

network similar to what is used in HotSpot [57]. Figure 4.3 shows the thermal

model of the CPU chip with a thermal package. The thermal model of the CPU

chip includes the die and the heat spreader. Rv is the die component’s vertical

thermal resistance including the thermal interface resistance. The lateral heat

flow between the die components is modeled using a lateral thermal resistance

Rl. However, the impact of the lateral heat flow can be ignored due to the high

ratio of core area to die thickness in high performance processors [33]. Cj is the

thermal capacitance of the components in the die and Pj corresponds to the power

dissipated by the individual components. For the spreader, Rs and Cs refer to the

thermal resistance and capacitance of the spreader respectively. The heat spreader

is simplified to a single node because it behaves as an isothermal layer due to its

high thermal conductivity. The time constant of the core is about 60 times smaller

than that of the heat spreader [19].

In state of the art servers, CPU sockets are equipped with fans for cooling.

For example, the Intel s5400sf server has two sockets where each socket has two

sets of fans [3] that blow air toward its heat sink. The heat flow between the CPU

case to ambient can be modeled by a combination of conduction and convection

46

heat transfers, [57]. The heat sink is assumed to be an isothermal layer due to its

high thermal conductance [57]. Rhs represents the thermal conductive resistance

of the heat sink. The convective part is modeled by a convective resistance, Rconv,

connected in series with Rhs where their sum represents the case to ambient resis-

tance, Rca. Rca is connected in parallel with the thermal capacitance of the heat

sink, Chs, to form a simple RC circuit that has a time constant that is in the orders

of magnitude larger than the time constant of the heat spreader [19]. The reference

temperature, local ambient temperature, measured inside of the server enclosure is

normally higher than the room’s ambient temperature by 20oC typically [58]. We

call the temperature between the CPU case to the local ambient as Tca.

In [2,47], it is shown that the value of Rconv changes with the air flow rate.

Unfortunately, HotSpot uses a fixed Rconv since it assumes a fixed fan speed, which

does not represent real systems. Using the results in [2,47], the value of Rconv can

be computed as :

Rconv ∝
1

AV α
(4.1)

where A is the heat sink effective area, V is the air flow rate and α is a factor with

a range of (0.9 - 1.0) for heat sinks in high end servers. To estimate the cooling

costs we use the results from [47] to relate the fan speed, F , with the air flow rate

as: V ∝ F . The cooling costs for changing the air flow rate from V1 to V2 can be

computed as [47, 54]:

PV 2

PV 1
= (

V2

V1
)3 (4.2)

where PV 1 and PV 2 represent the fan’s power dissipation at V1 and V2 respectively.

Next we calculate the amount of fan power that is required to reduce Tca from Tca1

to Tca2 . For a given CPU power, and using (4.1), we can write V2

V1
= (

Tca1

Tca2

)
1
α . Using

this result and (4.2) we get,

PV 2

PV 1
= (

Tca1

Tca2

)
3
α (4.3)

This shows that optimizing the fan speed is crucial for power savings since

reducing Tca requires an increase in the fan power on the order of 3
α
.

47

Table 4.1: Temperature profile of a CPU with heat sink

Workload Tmax
ja Tsa Tca Tha

{9W, 9W, 9W, 9W} 71.6 oC 54.0 - 54.8 oC 52.6 - 53.3 oC 50.1 - 50.8 oC

{13W, 9W, 7W, 7W} 79.3 oC 53.9 - 54.8 oC 52.5 - 53.2 oC 50.2 - 50.9 oC

Verification of thermal and cooling models: We start with showing that

the value of Tca is a function of the total power dissipated in the CPU socket

rather than specific temperature distribution of the cores. We illustrate our ideas

using HotSpot simulator which we extend to include the dependency of Rconv

on the air flow rate. We assume a 4 core CPU socket with a floor plan and

thermal package similar to a quad core Intel Xeon [2], an air flow of 20 CFM and

local ambient temperature inside server enclosure of 42 oC. We run two cases as

shown in Table 4.1. In the first case we simulate execute four threads where each

thread dissipates 9W of total power. For the second case, we run four threads

that accumulate similar total power to the first case but with large variation in

the power distribution {13W, 9W, 7W, 7W}. The results show that Tca of the

two cases stay almost the same despite the large difference between their peak

temperatures, Tmax
ja . The results also show similar behavior for the heat spreader

temperature, Tsa, and temperature between heat sink surface to local ambient,

Tha.

The other important feature that we explore is the correlation between Tmax
ja

and Tca. Figure 4.4 shows how Tmax
ja and Tca changes with fan speed and executing

various workloads that have different dynamic power distribution. Leakage power

is calculated using a model that accounts for temperature effect on leakage that we

give later in Figure 4.9. It can be noticed that Tmax
ja changes at a rate similar to Tca.

This is because Tca is connected in series with the junction to case temperature.

The value of Tmax
ja in the case of {12W, 9W, 9W, 9W} is higher than the one in

{12W, 12W, 9W} despite the fact that the later has two hot threads at 12W while

the former has only one. The reason is that the later workload has lower total

power which is manifested by its lower Tca. Increasing the fan speed reduces the

48

10 15 20 25 30 35 40 45 50
Fan speed (CFM)

45

50

55

60

65

70

75

80

85

90

 T
em

pe
ra

tu
re

 (d
eg

re
e

C)

Tj:12W 9W 9W 9W
Tca:12W 9W 9W 9W
Tj:12W 12W 9W
Tca:12W 12W 9W
Tj:12W 9W 9W
Tca:12W 9W 9W
Tj:9W 9W 9W
Tca:9W 9W 9W

Figure 4.4: Impact of fan speed on core and case to ambient temperature

0 200 400 600 800 1000 1200 1400
Time in sec

0

1

2

3

4

5

6

7

8

Te
m

pe
ra

tu
re

 in
cr

ea
se

 (d
eg

re
e

C)

Real data
RC model

Figure 4.5: Tha transient behavior (referenced to idle temperature)

value of Tca due to the reduction in Rconv. These results indicate that Tmax can be

used to control Tmax
ja and the cooling rate.

We extend the evaluation of the cooling model by running experiments on

a real 45nm Intel Quad Core dual socket Xeon E5440 machine. The aim of the

first experiment is to show that modeling the heat transfer of the heat sink as

an RC circuit that is comprised of Rca and Cca is accurate enough. To perform

this experiment we inserted external thermal sensor at the middle of the heat sink

surface which measures, Tha (temperature across the convective resistance, refer to

Figure 4.3). We run workload in a way that can capture the transient behavior of

the package by starting at the idle state then at time 0 we execute 2 threads of perl

49

20 25 30 35 40 45 50
CPU total power

3

4

5

6

7

8

9

10

11

 T
em

pe
ra

tu
re

 in
cr

ea
se

 (d
eg

re
e

C)

perl:1 to 3
gcc:1 to 3

Figure 4.6: Tha vs. CPU total power. Tha is referenced to idle temperature

(refer to Table 4.2) for 600 seconds followed by another 600 seconds of idleness.

To get representative measurements, the fans are kept at a default speed, which

is about 25% of the max speed in our server. We set the local ambient to 24oC

to keep the machine cool enough so the fan speed stays fixed at the default value.

Figure 4.5 show the measured and the modeled values of Tha (referenced to its

value when idle). The results clearly show a strong match between the real data

and our RC circuit model. The transient behavior of Tca is similar to Tha except

it has a higher amplitude due to the extra temperature across Rhs (refer to Figure

4.3).

In the next experiment we validate our assumptions and simulations that

show the temperature of the heat sink is a function of the total power consumed

in the CPU. We measure steady state temperature of Tha (referenced to its value

when idle) using the external thermal sensor as before. We execute 1 to 3 threads

of two benchmarks, perl and gcc where perl have higher core power than gcc (refer

to Table 4.2). We use the same fan speed setup as in the previous experiment.

The results in Figure Figure 4.6 clearly show that Tha changes linearly with the

total power despite us running two different workloads and varying the number of

threads.

50

4.2.2 Sources of cooling savings at the socket level

Energy of cooling subsystems could be reduced by intelligently distributing

the workload across the CPU sockets. To illustrate this, we use dual 4 core Intel

Xeon sockets where each is associated with a fan. Two types of threads are exe-

cuted, one highly active that consumes 14W total power, and the other moderately

active with 9.5W. Temperature threshold is 85oC, and local ambient temperature

inside server is set to 42oC. We use HotSpot for thermal simulation. Figure 4.7

shows the impact of workload assignment on cooling cost savings at the socket

level. The left part of the figure shows the thread assignments by state of the art

schedulers while the right part shows their assignments by our scheduling model.

As shown in this figure, when there is a high imbalance in the total power between

the sockets, we can intelligently balance power across the sockets and save on the

cooling costs. The savings are 60%. We call this class of assignment spreading.

In the second scenario the air flow rate of socket 1 in the original assignment

is about twice of that of socket 2. To minimize the cooling costs we can swap the

hot thread from socket 2 with two moderate threads from socket 1. Moving the

hot thread to socket 1 does not increase the peak temperature since its power

is similar to the power of hottest thread that is already there. In fact, the new

assignment lowers the maximum temperature in socket 1 due to the reduction in

total power by 5 Watts. The savings are 68%. We denote this class of assignments

as consolidation.

However, a number of challenges need to be addressed to adopt a combi-

nation of spreading and consolidation. Workload migration across sockets comes

with performance overhead of about 50-100us. We need to show that the time scale

for cooling aware scheduling is orders of magnitude higher than the migration la-

tency to ensure negligible performance overhead. The other challenge is to ensure

a stable solution since the fan is a mechanical device and large variations in the

fan speed impact its lifetime. Stable solution also helps to minimize the number of

migration events between sockets. To solve this problem we use a control theoretic

approach since ad-hoc solutions do not provide stability guarantees.

51

Highly active thread

Moderatly active thread

28 CFM48 CFM 28 CFM

Spreadng: Cooling savings 60%

Socket 1 Socket 2 Socket 1 Socket 2

28 CFM 15 CFM 20 CFM

6 CFM

6 CFM
Consolidation: Cooling savings 68%

Figure 4.7: Cooling aware scheduling at the socket level

4.2.3 State-space controller and scheduler

The first stage of our socket level management is the controller. It deter-

mines the amount of power that needs to be added/removed from the sockets to

reduce cooling energy by balancing the fan speed when there is a large difference

in the total power dissipation between CPU sockets. Such imbalance in fan speed

is the source of energy inefficiency due to the cubic relation between fan power

and its speed. The extra cooling cost consumed by a given socket, Ccosti , can be

computed as:

Ccosti ∼ (F 3
i − F 3

avg) (4.4)

where Fi and Favg are the fan speed of the given CPU socket and target speed

respectively.

To design this controller we use state-space control since it is robust and

scalable. We first extract the sate-space thermal model for the case to ambient

temperature. The instantaneous value of case to ambient temperature for a given

CPU, i, Tcai(t), can be written as,

dTcai(t)

dt
= −

Tcai(t)

τcai
+

Pcpui
(t)

Ccai

(4.5)

where, τcai is the heat sink time constant, τcai = Rcai ∗Ccai . The Pcpui
(t) represents

the instantaneous power dissipated in the CPU socket. For the case of n number

of CPUs, the vector of case to ambient temperatures can be written as Tca =

[Tca1(t), Tca2(t), . . . , Tcan(t)]
T and the vector of CPUs power can be expressed as

Pcpu = [Pcpu1
(t), Pcpu2

(t), . . . , Pcpun
(t)]T . For the case of n CPUs, the equation (4.5)

can be written as:

52

dTca(t)

dt
= Y Tca(t) + ZPcpu(t) (4.6)

where Y and Z are diagonal matrices that can be written as:

Y =









− 1
τca1

0

. . .

0 − 1
τcan









Z =









1
Cca1

0

. . .

0 1
Ccan









The continuous system given in (4.6) can be discretized using the transfor-

mations given in [26] as:

Tca(k + 1) = ΦTca(k) + ΓPcpu(k) (4.7)

where Φ = eY∆t and Γ = Z
∫ ∆t

0
eY u du. The value of ∆t is the sampling time.

Since Y and Z are both diagonal matrices, Φ and Γ can be computed fairly easily

as follows:

Φ =









e
− ∆t

τca1 0
. . .

0 e
− ∆t

τcan









Γ =









1
Cca1

(
∫ ∆t

0
e
− u

τca1 du) 0

. . .

0 1
Ccan

(
∫ ∆t

0
e
− u

τcan du)









where the integrals in Γ have a simple analytical solutions as, 1
Ccai

(
∫ ∆t

0
e
− u

τcai du) =

Rcai(1− e
−

∆t
τcai).

To design the controller we use standard control law that is based on the

feedback of the system states [26]. Applying the control law to the state-space

model given in (4.7), yields:

Pcpu(k) = −GTca(k) +GoTref(k) (4.8)

where G and Go are diagonal matrices of state feedback gain and input gain re-

spectively. Tref corresponds to the vector of target temperatures. Using (4.7) and

(4.8), the closed loop heat sink temperature can be written as:

53

Tca(k + 1) = (Φ− ΓG)Tca(k) + ΓGoTref(k) (4.9)

This system is stable when the eigenvalues of (Φ − ΓG) are within a unit

circle. We can find G by setting the eigenvalues to the desired values where the

criteria for their selection are discussed shortly in this Section. To compute the

elements of Go, we use steady-state analysis which requires the value of Goii to be

equal to (R−1
cai

+Gii), so the closed-loop system can settle at Trefi.

The Trefi can be computed based on the difference between the current

fan speed and the target speed as described earlier. We need to translate the

speed difference into change in case to ambient temperature, ∆Tcai(k), so as

Trefi(k) = Tcai(k) +∆Tcai(k). The value of Tcai can be estimated through thermal

sensors attached to the heat sink. To estimate ∆Tcai(k), we calculate the change

in the CPU case to ambient resistance, ∆Rcai(k) that corresponds to the differ-

ence between the current fan speed and the target speed. The ∆Tcai(k) can be

estimated easily based on Ohm’s as ∆Tcai(k) = ∆Rcai(k)
Tcai

(k)

Rcai
(k)

. The final value of

Trefi can be calculated as:

Trefi(k) = Tcai(k) + ∆Rcai(k)
Tcai(k)

Rcai(k)
(4.10)

We compute the transient response time of the controller by converting

(4.9) to z-domain as: zTcai(z) =
zγiTrefi

(z)

z−(1−γi)
, where γi = 1 − Φii − ΓiiGii. The value

of zTcai is equivalent to Tcai(k + 1). Based on this equation we obtain the time

constant of the state-space controller for each CPU as:

τssci = −
−∆t

ln(1 − γi)
= −

−∆t

ln(λi)
(4.11)

This equation shows that the transient time is a function of the sampling

time and the controller eigenvalue, λi. Using this equation, we can set ∆t to a few

seconds while keeping τssci in the range of seconds which is sufficient in our case

since the temperature of the heat sink changes very slowly. It is not a good idea

to make τssci too short since it can cause undesirable overshoot in the system.

54

Algorithm 1 Socket level scheduling
1: Calculate ∆Pcpu and the set of Pthr for each CPU. Set Q as an empty queue

2: *** Spreading ***

3: for i in set of unmarked CPUs do

4: for j in unmarked threads in CPU i do

5: dest ⇐ CPU index with max(∆Pcpu)

6: if (Pthrj
< −∆Pcpui

and Pthrj
< ∆Pcpudest

) then

7: if CPU dest has idle core and no core level migrations in CPU dest then

8: Calculate cooling savings of migrating thread j to CPU dest

9: else

10: Calculate cooling savings of swapping thread j with the coolest unmarked thread from CPU

dest

11: end if

12: if cooling savings > Smin then

13: Enqueue this migration event Q and mark migrated threads

14: Update ∆Pcpu and threads assignment

15: Mark CPU i and dest

16: end if

17: end if

18: end for

19: end for

20:

21: *** Consolidation ***

22: while (unmarked CPUs > 1) do

23: H ⇐ index of unmarked CPU with max fan speed

24: if (fans have different speed) then

25: L ⇐ index of unmarked CPU with min fan speed

26: else

27: L ⇐ index of any unmarked CPU that is different from H

28: end if

29: Find the hottest thread in CPU L (hL)

30: Starting from the coolest thread in H, find the smallest set of threads (Scool) with total power ≥ Pthr
hL

(Pthr of each thread in H is < Pthr
hL

), then mark CPU H

31: if (Scool is not empty) then

32: Calculate cooling savings of swapping the threads in Scool with hL

33: if cooling savings > Smin then

34: Enqueue this migration event in Q, update threads assignment and then mark CPU L

35: end if

36: end if

37: end while

38: Execute all migration events in Q

55

4.2.4 CPU Socket Scheduling:

The details of the socket scheduling are given in Algorithm 2. The ∆Pcpu in

this algorithm refers to the vector of the differences between the requested power

by the controller and current power of the CPUs while Pthri corresponds to the

power of the ith thread in a given CPU. Individual scheduling events are allowed

only when the predicted cooling savings are higher than a given threshold, Smin.

The concepts of this algorithm are discussed below.

Spreading step (steps 3-19): Intuitively, since the fan power increases ex-

ponentially with cooling capacity it is important to balance the heat generation

between the sockets in order to lower their fan speed and obtain cooling savings.

Spreading is effective as long as there is sufficient imbalance in power consumption

between CPU sockets such that the additional spreading migrations can lead to a

better balance in socket power and fan speed. When this difference become suffi-

ciently small, then the fans of the respective CPUs have reached their minimum

speed from the spreading point of view. The controller decides on the amount of

power that needs to be added to/removed from the sockets at each scheduling tick.

We spread the workload starting with cooler threads to have finer grain control

of the total power on each socket. Before each migration we evaluate the cooling

savings as described in Section V.E to prevent ineffective scheduling decisions.

Consolidation step (steps 21-37): On the other hand, consolidation focuses

on the cases when the total power consumption between sockets is comparable.

Intuitively, since there are only relatively few fan speed settings, it is possible that

at a particular speed the fan is actually capable of cooling a bit higher on die

power density than is currently present on the socket. In a situation where there

is a slight power density imbalance between the two sockets, it is possible that by

switching cool and hot threads the increase in power density on one socket is not

too high, thus keeping the fan speed constant, but the decrease on the other socket

is just big enough enabling it to lower its fan speed, and as a result saving energy.

Thus our strategy is to identify a set of cool threads on one socket whose power

density is similar to a hot thread running on another socket, and then to swap

them if our estimates (see Section 4.2.5) show that we will be able to save cooling

56

energy.

4.2.5 Estimating cooling savings

We can estimate cooling savings for a particular scheduling decision by

predicting the resultant fans speeds. Let’s assume we need to migrate a thread

that consumes power, Pthr, from CPU i to CPU j. To approximate the resultant

fan speed of the source CPU we apply Ohms’s law to estimate the new Rcai which

can be translated into fan speed. Let’s assume that the increase in Rcai due to the

migration equals ∆Rcai . The value of ∆Rcai can be estimated as follows assuming

the migrated thread is not the hottest in CPU i:

∆Rcai =
PthrRsai

Pcpui
− Pthr

(4.12)

where Rsai = Rcai + Rsi. If the migrated thread is the hottest in CPU i, then

∆Rcai =
PthrRsai

+Rcorei
δpthri

Pcpui
−Pthr

. where δpthri represents the core power difference be-

tween the hottest thread that we migrate and the second hottest thread in the

CPU i. For the socket that is receiving the extra thread, there are few cases that

need to be considered.

Case A: The first case is when the migrated thread dissipates less core power than

the hottest thread in the destination socket and the destination’s fan is not idle.

Using Ohm’s law, the value of its ∆Rcaj can be computed simply as:

∆Rcaj = −
PthrRsaj

Pcpuj
+ Pthr

(4.13)

Case B: This case addresses the scenarios when the newly migrated thread dissi-

pates more core power than the hottest thread in the destination socket and the

destination’s fan is not idle. When adding a thread that consumes more power

than the current hottest thread, we expect maximum temperature increases not

only in the heat sink and heat spread but also in the core. The value of ∆Rcaj is

as follows,

∆Rcaj = −
PthrRsaj +Rcore(P

core
thr − Pmax

thrj
)

Pcpuj
+ Pthr

(4.14)

57

where Pmax
thrj

corresponds to the core power of the hottest thread in the destination

CPU j. P core
thr refers to the core power component of the migrated thread.

Case C: The next case we need to consider is when the destination fan is idle.

If the thread to be migrated has lower core power than the hottest thread Tmaxj
,

then adding the extra thread will increase the temperature of already existing

hottest thread by PthrRsaj . If the predicted core temperature after migration,

T new
maxj

= Tmaxj
+ PthrRsaj , is found to exceed the fan trigger temperature, T fan

c ,

then we can estimate ∆Rcaj as follows:

∆Rcaj = −
T new
maxj

− T fan
c

Pmigr + Pcpuj

(4.15)

Case D: The last case is when the power of the thread to be migrated exceeds

the power of the hottest thread in the destination socket that has its fans idle. In

this case the maximum temperature in the destination CPU would be higher due

to the increase in Tcaj as well as the core and heat spreader temperatures. We can

calculate the resultant ∆Rcaj based on Ohm’s law as before. We next present how

we estimate the induced power by the active threads at low cost.

4.2.6 Power estimation

The CPU power can be divided into two basic components: dynamic power

and leakage power [48]. The dynamic power is a function of the induced activity

by the application on the components. On the other hand, the leakage power is

function of components area and the current temperature. In the following we

describe how we estimate these values at small overhead. We need power traces

for each core in our system in order to evaluate temperature and cooling savings.

To model the dynamic power for the CPU cores we need a metric that

is directly correlated with the level of activity in the core. For this, we use the

number of retired instructions per cycle or IPC which is shown to have a good

correlation with the CPU power [24]. Executing instructions cover almost all of the

dynamic activities in the core. Additionally, the rate of the instruction execution is

expected to have a sufficient correlation with the induced activity since the faster

the execution the more activity there is.

58

0.0 0.5 1.0 1.5 2.0 2.5
IPC

4

6

8

10

12

14

Co
re

 p
ow

er
 (W

)

Actual data
Curve fitting

Figure 4.8: Dynamic power model

Before we generate the model we collect real time power and IPC measure-

ments data on state of the art quad core dual socket Xeon E5440 server. The IPC

traces are collected using processor performance counters (Model Specific Regis-

ters, or MSR). We generate the power traces as follows. We run the benchmarks

in one of the cores and keep the rest in idle mode to get an accurate power trace

per benchmark. We measure the power of the CPU package by inserting current

sensors in the power connector of the CPU socket and collect power traces using

data acquisition system. This power is composed of three main components: CPU

baseline power, core power and L2 cache power. To exclude the CPU baseline

power we measure the CPU power when it is idle and then subtract this baseline

power from the CPU socket power trace. We deactivate the CPU C-states during

the baseline power measurements as otherwise the CPU socket would go to a deep

C-state when it is not executing. The power of the idle cores is already accounted

for in the baseline power measurement. The resultant trace represents the core

and L2 cache power components, which we call core+L2 trace. Subsequently, we

estimate the L2 power based on its access rate since it is a regular structure. We

convert the L2 access rate to power using Cacti tool that is widely used for esti-

mating the power of the cache subsystem [60, 61]. The trace of L2 access rate is

extracted during execution using CPU performance counters. We isolate the core

59

50 55 60 65 70 75 80 85 90 95
Temperature degree C

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Co
re

 le
ak

ag
e

po
w

er
 (W

at
t)

Figure 4.9: Leakage power model

power trace by subtracting the L2 power from core+L2 trace.

To generate the dynamic power model we ran five SPEC2000 benchmarks

that span from memory intensive to cpu intensive applications. For each bench-

mark we collected 10 power and IPC samples that are sufficient since the bench-

marks behavior is reasonably stable. To generate the model we use regression to

find the best fit for the samples using polyfit function in python programming lan-

guage. Figure 4.8 shows the dynamic power model for the cores where polynomial

of order 2 is used. The results show that using IPC metric exhibit a good corre-

lation with the dynamic power. The average error is less than 1 Watt which is

sufficient for our thermal modeling needs.

The leakage model is a function of the components area and the current

temperature. To generate the leakage model for Xeon E5440 we run experiments

by blocking the air flow to increase the CPU temperature and collecting the power

measurements concurrently. Figure 4.9 shows how the core leakage power changes

with temperature and the model that we generated based on these measurements.

We developed the leakage model using the regression method where the model

can be represented by a simple 2nd order polynomial. The results show a good

agreement between the modeling and the experimental outcomes.

60

4.3 Evaluation

4.3.1 Methodology

We evaluate our approach using 45nm Intel Quad Core dual socket Xeon

E5440 server. CPU sockets share 32GB main memory. The system runs the

latest Linux kernel (2.6.33.2) that manages all system resources. We extract the

core power dissipation traces of different benchmarks using measurements on our

machine. We run the benchmarks in one of the cores and keep the rest in idle mode

to get an accurate core and L2 power traces per benchmark using the method that

is described in Section 4.2.6. The core and L2 power traces are used to estimate

the core and L2 temperatures respectively using HotSpot simulator [57] and the

Xeon processor layout from [4]. We also extract the baseline power of the CPU

using the method in Section 4.2.6. We include the baseline power of the CPU

in the temperature simulations since its impacts the heat spreader and heat sink

temperature.

We use simulation instead of running our algorithms in real system due to

a number of issues. The built-in fan control algorithm runs all the CPU fans at

a single speed that is related to cooling needs of the hottest socket, which lead

to over provisioning. The algorithm is implemented in a separate controller that

we don’t have access to. Consequently, not all the benefits of our algorithms

can be manifested with using the built-in fan control algorithm. HotSpot is also

necessary to conduct experiments that require setting different fan speeds per

socket because the hardware does not currently support such fine grained control.

HotSpot enables us to profile and study the temperature breakdown in the CPU

and thermal package as a function of fan speed

Quad Core Xeon E5440 package characteristics that have been used in ther-

mal simulation are listed in Table 5.1. For the baseline fan control algorithm we

assumed a closed loop controller similar to that used in modern systems. The fan

algorithm adjusts the fan speed in proportion to the heat level of their respective

CPUs. When the temperature is below a given threshold the fan is set to idle

speed. We set the fan to trigger 3 degrees below the CPU threshold temperature

61

Table 4.2: SPEC Benchmarks characteristics

Benchmark Dynamic core power (W)

perl 12.7

bzip2 11.6

eon 11.2

twolf 11.1

gzip 10.4

gcc 10.2

mcf 5.47

Table 4.3: Characteristics of CPU, thermal and cooling

CPU XeonE5440

TDP 80W

CPU frequency 2.8GHz

Heat spreader thickness 1.5mm

Case to ambient thermal Rca = 0.141 + 1.23
V 0.923 ,

resistance, Rca K/W V : air flow in CFM, [2]

CPU thermal threshold 85 oC

Max air flow rate per socket 53.4 CFM [5]

Fan power per socket 29.4 W [5]

Fan steps 32

Idle fan speed 10% of max speed

to allow for enough time to react to thermal emergencies. In cases when the tem-

perature exceeds the CPU critical temperature we use throttling mechanism as

back up. We assume there is a support for accurate temperature sensors reading

in the system. Recent work [53, 64] has proposed efficient techniques to estimate

accurate temperature in presence of noisy sensors. The local ambient temperature

inside the server box is set to 42 oC

Benchmarks from the SPEC2000 suite have been used as workloads (see

Table 4.2). A set of benchmarks are selected that exhibit various levels of CPU

intensity to emulate real life applications. We run each benchmark in the work

62

set till its completion and repeat it until the end of simulation time. We also use

synthetic benchmarks to test the transient behavior of our socket level scheduler.

We evaluate our core level and multi-tier algorithms. Our Core level Proac-

tive Thermal Management, CPTM, reduces the cooling costs by minimizing the

hot spots between cores, please refer to chapter 3. Multi-Tier Thermal Manage-

ment, MTTM, performs core level and socket level thermal management to reduce

the hot spots within and between sockets. We compare these algorithms against

the following set of state of the art policies:

Dynamic Load Balancing, DLB: It is usually implemented in modern op-

erating systems to enhance the utilization of the system resources. The DLB

performs thread migration to minimize the difference in task queue lengths of the

individual cores [21]. The operating system initiates dynamic load balancing every

hundred milliseconds. The balancing threshold is set to one to keep the difference

between queues equal to zero as possible. In this work we implement the DLB as

our default policy for the purposes of comparison.

Core level Reactive Thermal Management, CRTM: This policy is similar

to our CPTM except that the thermal scheduling decisions are reactive, they are

based on the current temperature rather than predicted one.

Basic Socket level Thermal Management, BSTM: When there is imbalance

in the fan speed, the policy migrates the hottest thread from the socket that is

associated with the highest fan speed to the socket with the lowest fan speed.

We set the scheduling period to be similar to that of our algorithm, MTTM,

to eliminate fan instability that can result from poor selection of the scheduling

period.

4.3.2 Results

To quantify and understand clearly the benefits of our algorithms in reduc-

ing the cooling energy, first we evaluate our core level algorithm. Then we study

our multi-level technique. At the end we discuss the overhead associated with

our algorithms. The results show that our technique gives average cooling energy

savings of 80%.

63

2bzip2
eon+mcf+twolf 2eon+mcf 2eon+2perl 3bzip2+gcc

2bzip2+2gcc AVG0

20

40

60

80

100

Fa
n/

CP
U

en
er

gy
 s

av
in

gs
 (%

)

CRTM:fan savings
CPTM:fan savings
CRTM:CPU savings
CPTM:CPU savings

Figure 4.10: Cooling and CPU energy savings using core level polices

To evaluate the benefit of our core level approach for cooling energy sav-

ings, we run various combination of workloads in a single socket. We set the local

ambient temperature to 42oC. The results in Figure 4.10 show the energy savings

of CRTM and CPTM compared to the default policy, DLB. The results show that

using CPTM provides significant cooling savings over the other techniques; the

average improvement over the DLB policy is 56%. As it can be seen from the re-

sults, the cooling savings are higher at lower utilization or with more heterogeneity

in the workload. Execution at lower utilization gives more room for distributing

the heat between cores, thus reducing thermal emergencies. For the case of 50%

utilization, 2bzip2, the cooling savings reach 95%. The other case of 2eon +mcf

is an example of heterogeneous workload that is composed of cpu intensive, eon,

and memory intensive mcf jobs and has a higher utilization factor of 75%. The

reported results show that CPTM is able to deliver 93.3% cooling savings. It is

able to provides nice cooling savings with heterogeneous workload even when the

processor is executing four threads as shown in the case of 2bzip2 + 2gcc. The

limitation of CPTM is shown in the case when the socket is running four threads

that are all CPU intensive, 2perl+2eon. The cooling savings in this case are small

since there is a little room for better thermal balancing as all cores are heavily

used. We will show shortly that such cases can be mitigated by using our socket

level scheduling approach because it expands the scope of thermal management

and provides more opportunities for better thermal distribution. On the other

hand, the CPU socket energy savings due to lowering the leakage power are low;

64

0 10 20 30 40 50 60
Time (sec)

0

10

20

30

40

50

Fa
n

sp
ee

d
(c

fm
)

Initial jobs A:{12W, 11W, 11W, 11W}, B{5W, 5W, 5W, 5W}

CSTM: Socket A
CSTM: Socket B
BSTM: Socket A
BSTM: Socket B

Figure 4.11: Workload spreading

0 10 20 30 40 50 60
Time (sec)

0

10

20

30

40

50

Fa
n

sp
ee

d
(c

fm
)

Initial jobs A:{13W, 8W, 8W, x}, B{13W, 7W, 7W, x}

CSTM: Socket A
CSTM: Socket B
BSTM: Socket A
BSTM: Socket B

Figure 4.12: Workload consolidation

the average improvement using CPTM over the DLB policy is about 1.0% which

is slightly higher than the case of CRTM. The reason for the low savings is related

to the fan contribution of keeping the temperature around the target threshold for

both DLB and core level policies, which minimizes the difference in leakage power

between these polices.

Next we address the stability of our socket scheduling. In this study we

compare our control-theoretic socket level thermal management, CSTM, against

the basic socket level thermal management, BSTM. We study two situations, one

where spreading strategy gives a good solution and the other where consolidation

is more applicable. Figure 4.11 shows the spreading case with the following initial

job assignment, socket A:{12W +11W +11W +11W} and socket B:{5W +5W +

5W + 5W} and local ambient temperature of 41oC. The efficient solution for this

case is to have the two sockets run a better balanced workload as A:{12W +5W +

11W + 5W} and B:{11W + 5W + 11W + 5W}. The CSTM controller converges

to the target solution in two scheduling ticks only. In contrast, BSTM policy fails

65

Table 4.4: Workload combinations for multi-tier algorithm

Workload Socket A Socket B Local ambient oC

W1 3eon eon + mcf + gcc 42

W2 2eon + mcf eon + bzip2 + mcf 42

W3 2bzip2 + 2mcf 2bzip2 + 2mcf 42

W4 2perl + 2eon 2gcc + 2mcf 42

W5 2perl + 2bzip2 2gcc + 2mcf 39

W6 2perl + 2bzip2 2gcc + 2mcf 36

W7 2perl + bzip2 gcc+2mcf 42

W8 perl + 3gcc perl + 2gcc 42

W9 perl + 3gcc perl + 2gcc 40

W10 perl + 3gcc perl + 2gcc 38

W11 perl + 3gzip perl + gcc + gzip 42

W12 3eon 3eon 42

W13 2eon+mcf 2eon+mcf 42

W14 2bzip2 2bzip2 42

W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 AVG0

20

40

60

80

100

Fa
n

en
er

gy
 s

av
in

gs
 (%

)

CRTM
CPTM
MTTM

Figure 4.13: Cooling energy savings using multi-tier thermal management

to converge. The transient behavior of a consolidation case is shown in Figure

4.12. The initial workload assignment for sockets A and B is: {13W +8W + 8W}

and {13W + 7W + 7W} respectively. Our controller swaps the 13W thread from

socket B with two threads of 8W from socket A and converges to the solution in

one scheduling tick. In this case, the fan of socket A slightly reduces while the fan

of socket B drops to idle speed. On the other hand, the BSTM fails to reach a

stable solution. The results indicate that our controller is able to converge to the

target solution while BSTM heuristic solution fails in this aspect.

To evaluate our multi-tier thermal management, MTTM, we use a combina-

tion of workloads with various thermal stress levels and utilization values. The list

66

of the workload combinations that we use is given in Table 4.4. Figure 4.13 shows

the cooling energy savings of core level reactive thermal management (CRTM),

core level proactive thermal management (CPTM) and MTTM compared to the

default dynamic load balancing (DLB) policy. The results show that using MTTM

provides substantial savings over the other techniques. The average improvement

over the default policy, CRTM and CPTM are 80.4%, 33.8% and 19.4% respec-

tively. The DLB performed the worse as expected since it does not optimize the

thermal distribution within the socket. CPTM performed better than DLB and

CRTM since it provide better thermal distribution in the chip which leads to a

lower cooling. The extra savings over CPTM come from the socket level schedul-

ing. The savings in the example of workload W5 are due to workload spreading.

In this case, socket A has high thermal stress while socket B remains under low

to medium stress. Under such scenario core level management becomes ineffec-

tive since all threads in socket A have high power density, so there is not enough

room to spread the heat. However, workload spreading at the socket level is highly

effective because it can balance the temperature between the two sockets. The

savings in this case are 58.3%. Workloads W8 and W11 get savings primarily from

consolidation. More specifically, in case of W8 the scheduler swaps perl with two

instances of gcc. CPTM plays a big role when socket level scheduling becomes

ineffective. This is apparent in the case of workload W13 where the savings come

from CPTM since the workload between the two sockets is initially balanced.

We also study the impact of changing local ambient temperature inside the

server on relative savings over the default policy. In the first case we reduce the lo-

cal ambient temperature from 39 oC (W5) to 36 oC (W6) where the actual workload

stays the same. The results show that MTTM savings over the default policy is

improved at 36 oC due to the extra savings from the CPTM policy. Similar behav-

ior can be seen in the cases {W8, W9 and W10} where the ambient changes from

42 oC to 38 oC. Our multi-tier thermal management effectively mitigates thermal

problems when executing workloads with highly diverse thermal characteristics.

Figure 4.14 shows the maximum performance loss per core due to thermal

emergencies when the fan cooling is insufficient or when the fan response is slow.

67

W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 AVG0

1

2

3

4

5

M
ax

 th
ro

tt
lin

g
pe

r c
or

e
(%

) DLB
CRTM
MTTM

Figure 4.14: Reducing thermal emergencies

The results show that employing MTTM keeps the percentage of thermal emer-

gencies below 1%, while for the other policies DLB, CRTM, and CPTM can reach

4.5%, 2.5% and 2.5% respectively. This advantage of MTTM come from managing

the temperature at multiple-levels.

Overhead

The performance overhead of our multi-tier thermal management can bro-

ken down into the overhead of the core and the socket levels. The migration

overhead between cores is in the range of few microseconds, e.g. 5us [40], which

is much smaller compared to the time between OS scheduling ticks. The primary

cause of this overhead is the warm up of the private cache of the cores. The com-

putational overhead is negligible because new temperature prediction takes only

few CPU cycles. The socket level migration overhead includes both thread migra-

tion and scheduler computational costs. When a thread migrates from a socket to

another it needs to warm up the cache subsystem of the destination CPU socket.

The memory subsystem is shared among the CPU sockets in our server which im-

plements a single coherent memory system, where memory coherency is enforced

by the hardware. Warming up the cache subsystem is the primary source of the mi-

gration overhead. This warm up time includes updating both L2 cache of the CPU

and the private cache of the destination core as well. The overall warm up time

increases by 10-20X compared to core level migration warm up. This is because

the L2 needs to bring the data of the newly migrated thread from the memory

this costs around 100-200 cycles (e.g. 150 cycles [40]). The overall migration time

68

is on the order of 50-100us which is included in our results. Despite this extra

overhead, it is still orders of magnitude smaller than the period between the two

scheduling ticks, which is on the order of seconds. The socket scheduler executes

ordinary computations which require no more than several milliseconds. This anal-

ysis shows that our multi-tier thermal management is a light weight technique that

makes it applicable to real systems.

4.4 Conclusion

With the ever increasing computational demand, the high end servers un-

dergo tremendous thermal stress that has detrimental effect on the system char-

acteristics. Many of the proposed dynamic thermal management techniques do

not model system cooling dynamics and are limited to single socket CPU systems.

Consequently, these techniques compromise system performance and provide sub-

standard system power optimization.

In this work we propose a new multi-tier workload scheduling technique

that minimizes the cooling energy costs of fan subsystem in a multi-socket CPU

platform. At the core level, our band limited predictor is employed for proactive

thermal management that minimizes the cooling costs and reduces the frequency

of thermal emergencies. The top level scheduler leverages freedom in workload as-

signment at socket level and helps achieve better thermal distribution via spreading

and consolidation. It employs our provably stable control theoretic framework for

scheduling the workload with negligible performance overhead. The reported re-

sults show that our approach delivers 80% average cooling energy savings compared

to the state of the art policies.

Chapter 4, in part, is a reprint of the material as it appears in Proceedings of

the International Symposium on Low Power Electronics and Design, 2009. Ayoub,

R. and Rosing, T.S. The dissertation author was the primary investigator and

author of this paper.

Chapter 4, in part, is a reprint of the material as it appears in IEEE Transac-

69

tions in Computer Aided Design of Integrated Circuits and Systems, 2011. Ayoub,

R.; Indukuri, K. R. and Rosing, T.S. The dissertation author was the primary

investigator and author of this paper.

Chapter 5

Integrated Energy, Temperature

and Cooling Management for

CPU and Memory Subsystems in

Servers

Traditionally the CPU is known to be a primary source of system power

consumption. Over the years the designers have developed techniques to improve

the energy efficiency of the CPU subsystem which accounts for approximately 50%

of the total energy budget. Less attention is given to energy optimization in rest

of the system components which leads to poor energy proportionality of the entire

system [15]. Memory subsystem is the other major power hungry component in

the server systems as it consumes up to 35% of total system energy and has poor

energy proportionality [14, 15]. Capacity and bandwidth of the memory subsys-

tem are typically designed to handle the worst case scenarios. Applications vary

significantly in terms of their access rates to memory. Only a fraction of the pages

are active while the rest are dormant. One solution is to activate a subset of the

memory modules that can serve the applications needs to save energy [28]. Such

clustering increases the power density of the active memory modules which can

cause thermal problems in the memory. As CPU and memory consume the ma-

70

71

jority of the overall server power, they represent the key components for thermal

and cooling management.

Modern servers incorporate a fan subsystem to reduce the temperature

within servers. Due to cost and area constraints, a common set of fans is normally

used to cool both the CPUs and memory [3]. For such scenarios, the inlet temper-

ature of the downstream components that are at the end of air flow path becomes

a function of the upstream component power density in addition to the primary

inlet temperature of a server. In general, energy management techniques must

consider temperature constraints and cooling energy costs for making intelligent

decisions.

In this chapter we present CETC, a combined energy, thermal and cooling

management algorithm for servers. Providing an integrated solution is necessary

due to the thermal dependencies between the CPU and memory when both share

same cooling resources. CETC maximizes the energy efficiency of the machine

by controlling the number of active memory modules to just what is needed to

provide sufficient storage capacity and bandwidth while minimizing the cooling

costs. CETC also schedules the workload between the CPU sockets to create

a more balanced thermal distribution between them not only to minimize the

thermal coupling effect but also to mitigate their thermal hot spots as well. We

developed a control theoretic framework that controls memory page assignment,

socket level scheduling and fan speed to guarantee convergence to the desired

objectives. Finally, we show that using CETC results in 70% average energy

reduction of memory and cooling subsystem.

5.1 Combined thermal and cooling model for

CPU and memory subsystems

In modern systems both CPU and memory components require cooling.

Due to cost and area constraints, both components are normally cooled using a

shared fan subsystem. Figure 5.1(a) depicts the photo of our 45nm Intel Quad

Core dual socket Xeon E5440 server where the CPU is placed close to the fan

72

(a) Server machine

Memory DIMMs

A2
A3
A4

B1

C1

B2
B3
B4

C2
C3

D1

A1

C4

D2
D3
D4

Memory
controller

Memory
controller

CPU

CPU

(b) System organization and cooling

Figure 5.1: Intel dual socket Xeon server

while the memory is downstream [3]. Having a shared cooling resource creates

thermal dependencies between the upstream and downstream components, so ther-

mal modeling becomes more challenging. The memory subsystem in our server is

shared among the CPU sockets where memory coherency is enforced by hardware.

This server supports two off-chip memory controllers where each is connected to

memory by two memory channels, each channel is connected to a 4 DIMMs slots

as shown in Figure 5.1(b), each 4GB DDR2. We estimate the power of individual

DIMMs by adding extenders that come with current sensors in the supply lines

of each DIMM and aggregated the data using data acquisition system. The specs

of the CPU, memory and cooling subsystems are given in Table 5.1. Benchmarks

from the SPEC2000 suite have been used as workloads.

We next describe and verify our models. In this section we focus on devel-

oping an integrated thermal and cooling model for both CPU and memory which

accounts for thermal dependency between them. We then investigate the oppor-

tunities of energy savings in memory and the associated thermal challenges.

5.1.1 System thermal model

Cooling systems use fans to generate air flow to reduce the temperature of

hot components. In our dual socket system, the fan generates air flow that passes

through the heat sink of the CPU and eventually reaches the memory DIMMs. This

means that the memory and CPU are thermally connected as the CPU heats up the

common air flow before it reaches the memory subsystem. The inlet temperature

73

�
�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

P
D

r1
R

T

. . . .

R

R

Cs
s

v

l
ja

Cca

Pj

C C

C

C

C
C

C caTC

Cca
D

Tj
D

N
Rchip

D

Tj
D

N
Rchip

D

1 2

haT
C

RD
ca

q ~
D

Cj

C

Local ambient temperature

Thermal
coupling

DIMM heat spreader

CPU Heat sink

P
D

r2

Memory DIMM

Rank 1 Rank 2

NCchip
D

CPU socket

R
D

ca
R

C

ca

Figure 5.2: Combined thermal model

of the memory is a function of primary inlet air temperature and the heat sink

temperatures of the CPUs. In a multisocket system, each CPU socket can heat air

going to the memory subsystem to a different temperature depending upon power

consumption of the socket. As a result, the temperature of the memory is a strong

function of the hottest CPU.

Figure 5.2 show the unified thermal/cooling model of both CPU and mem-

ory. We combine CPU and memory thermal model using dependent thermal cou-

pling heat sources to model the extra heat that is generated by the hottest upstream

CPU. Definitions of CPU and memory thermal models are discussed in sections

4.2.1 & 5.1.2 respectively. The dependent coupling heat source of the memory,

qD, is proportional to the heat sink temperature of the CPU, TC
ha, and inversely

proportional to the case to ambient thermal resistance of the memory DIMMs,

RD
ca, as follows:

qD ∝
TC
ha

RD
ca

(5.1)

When the temperature of the CPU’s heat sink rises, we expect the temper-

ature of the memory to increase gradually due to the thermal capacitance effect of

its heat spreader. Increasing the fan speed reduces the CPU temperature directly

by lowering it’s convective resistance. Unlike the case of CPU cooling, increasing

the fan speed reduces the memory temperature in two ways. First, it reduces the

temperature of the DIMM by reducing it’s convective thermal resistance. It also

74

0 500 1000 1500 2000 2500 3000 3500
Time (sec)

0

1

2

3

4

5

6

7

8

No
rm

al
iz

ed
 te

m
pe

ra
tu

re
 (d

eg
re

e
C)

CPU heat sink temperature
Dimm junction temperature

Figure 5.3: Thermal coupling between CPU and memory

lowers the CPU temperature which reduces the effect of the heat coupling, which

further reduces the memory temperature.

Experimental verification of thermal coupling: We measure the temper-

ature of the CPU heat sink which is located on the upstream of air flow using

a thermal sensor. At the same time we measure the maximum junction temper-

ature of the memory using Intelligent Platform Management Interface, IPMI, to

observe the correlation between heat sink temperature and that of memory. We

also measure the power of the DIMMs to account for temperature changes due

to power variations. For this experiments we use 4 DIMMs, each connected to a

single channel, where every two DIMMs are located after one CPU socket. We run

a single threaded memory intensive workload from SPEC2006 suite, swim, on a

single socket followed by progressively adding a CPU intensive workload, perl, to

the same socket. The rationale behind running swim is to keep the memory power

at the same level during the experiment. We run swim alone for 1100 seconds and

execute a cpu intensive workload right after this period and we add additional CPU

intensive workload at time 20000 seconds. During this experiment, we restart any

finished jobs. Figure 5.3 shows the temperatures of memory and the CPU heat

sink that are referenced to their values at the end of the warm up period that

last for 300 seconds. We also plot the power consumption per DIMM. The results

clearly show that a rise in the heat sink temperature causes a rise in the memory

temperature due to the extra heat that is transfered to memory. We have observed

75

that the DIMMs that are located after the active CPU experience extra heat which

creates a thermal imbalance among them.

5.1.2 Memory thermal and cooling model

Typical DRAM subsystem is organized as an array of multiple DIMMs (see

Figure 5.1(b)), where each DIMM is composed of ranks, usually 2, and each rank

contains multiple memory chips (e.g. 8 chips per rank). Each DRAM chip in a

rank stores data that belongs to a predetermined segment of bits in the data word

(e.g. the first 8 bits of a 64 bit data word goes to the first chip). As a result,

the rank power is distributed almost equally across the DRAM chips inside the

rank. To enhance the heat transfer between the DRAM chips and local ambient

(ambient temperature is measured inside the server enclosure) the DIMMs have a

heat spreader.

Figure 5.2 shows the thermal model of a DIMM that uses a heat spreader.

We use superposition theory to simplify the RC network of the DRAM chips of each

rank to a single RC node. In this Figure, the heat source PD
chip equals to the power

dissipated in each DRAM chip, RD
chip is the vertical thermal resistance of each chip,

CD
chip is the thermal capacitance of each chip and TD

j is the junction temperature

of a DRAM chip. The number of DRAM chips in each rank is assumed to be N .

The heat transfer between the heat spreader and local ambient is modeled

as an RC node as shown in Figure 5.2. This is because the heat spreader can be

assumed to be a single node due its small horizontal thermal resistance relative

to the convective resistance [6, 36, 37]. The thermal capacitance between heat

spreader and ambient is represented by CD
ca. The component RD

s represents thermal

resistance of the heat spreader. The heat transfer between the heat spreader and

the interior ambient of the machine is modeled by a convective resistor, RD
conv.

The junction transient temperature is a function of the temperature across

the DRAM chips and the temperature from the heat spreader to ambient. How-

ever, the time constant (the time required for the temperature to rise from reference

ambient temperature to 63.2% of the maximum value) of heat spreader is in the

range of tens of seconds [37] while the time constant for the DRAM chip die is in

76

0 500 1000 1500 2000
Time (sec)

0

5

10

15

20

Te
m

pe
ra

tu
re

 ri
se

 (d
eg

re
e

C)

2swim: 4 DIMM
2swim: 8 DIMM
2mcf: 4 DIMM
2mcf: 8 DIMM
RC model

Figure 5.4: DIMM’s transient temperature

the order of tens of milliseconds [57]. This means that the transient behavior of

the junction temperature is dominated by the heat spreader temperature dynamics

over the long run as the DRAM chip temperature reaches steady-state quickly. We

exploit the big differences in time constants to reduce the thermal model complex-

ity. We can simplify the model further by assuming that the power across ranks

is similar since the memory controller uses interleaving to uniformly distribute the

activities across the DIMMs as well as their ranks, nr. The junction temperature

of a given rank can be modeled as:

dTD
j (t)

dt
= −

TD
j (t)

τDca
+

γ

CD
ca

(PD +
qD

γ
) (5.2)

where γ = (1 +
RD

j

RD
ca
), RD

j =
RD

chip

Nnr
, PD represent the total operational power dissi-

pated in the DIMM, τDca is the time constant of the heat spreader component which

equals to CD
caR

D
ca, where R

D
ca is the case to ambient thermal resistance which is the

sum of RD
s and RD

conv.

Experimental verification of DIMM thermal model We run memory in-

tensive benchmarks, swim and mcf from SPEC2K, and collected the DIMMs junc-

tion temperature traces using IPMI. Figure 5.4 shows the temperature traces of 4

DIMMs and 8 DIMMs configurations to show that our model is not limited to a

77

1-gcc
2-gcc

4-gcc
1-bzip

2
2-bzip

2
4-bzip

2
1-perl

2-perl
4-perl

1-gzip
2-gzip

4-gzip 1-eon
2-eon

4-eon
1-sw

im
2-sw

im
4-sw

im

1-equake

2-equake

4-equake
1-m

cf
2-m

cf
4-m

cf
0

10

20

30

40

50

To
ta

l m
em

or
y

po
w

er
 (W

at
t) 4 DIMM

8 DIMM

(a) Total power of memory DIMMs

1-gcc
2-gcc

4-gcc
1-bzip

2
2-bzip

2
4-bzip

2
1-perl

2-perl
4-perl

1-gzip
2-gzip

4-gzip 1-eon
2-eon

4-eon
1-sw

im
2-sw

im
4-sw

im

1-equake

2-equake

4-equake
1-m

cf
2-m

cf
4-m

cf
0

1

2

3

4

5

6

7

8

9

M
em

or
y

po
w

er
 p

er
 D

IM
M

 (W
at

t)

4 DIMM
8 DIMM

(b) Per DIMM power

Figure 5.5: Memory power. The number in front of the benchmark indicates the
number of instances we run

specific setup. The 4 DIMMs and 8 DIMMs are placed in the memory slots follow-

ing the order, (A1, B1, C1, D1) and (A1, A2, B1, B2, C1, C2, D1, D2) respectively as

shown in Figure 5.1(b). The fan speed is set to maximum using boost mode option

to keep the time constant of the heat spreader of the memory modules constant.

The figure shows clearly that the DIMM temperature dynamics is dominated by

the heat spreader temperature since it changes slowly, with a time constant of 70

seconds. We plotted the transient temperature of the RC model and compared it

with the actual temperature readings to show that the case to ambient tempera-

ture changes can be modeled using a single RC node as shown in Figure 5.4. The

results show a strong match between the actual and ideal model with average error

of 0.27oC relative to the real measurements.

78

5.1.3 Sources of energy savings in memory

The DRAM energy consumed to do the actual job of reading or writing data

is only a fraction of the total DRAM energy. This is because DIMMs consume

energy, baseline energy, to keep state of the stored information and to provide

sufficient responsiveness to the incoming requests (e.g. refresh, PLL, etc ...) [28].

We can save energy by consolidating the active memory pages of the workload into

a smaller set of DIMMs and place the rest in a self-refresh mode, which consumes

around 1% of active mode [28]. However, this needs to be done by taking the

thermal issues into account.

Figure 5.5(a) shows the total memory power for two memory configura-

tions. In this experiment, we distribute workload across the dual sockets in a load

balanced way. In the first configuration, we use 4 DIMMs where each is connected

to a separate memory channel to maximize bandwidth. For the second case, we

use 8 DIMMs with 2 DIMMs per channel. The results show that savings of up to

16W can be achieved with consolidation, with higher savings are when the system

has more DIMMs. The increase in total power in the case of 8 DIMMs indicate

that a fraction of the memory power is used to keep the DIMMs functional, which

we call baseline power. The savings are higher for memory intensive workloads

(swim, equake, mcf) compared to CPU intensive ones (eon, gzip, perl, bzip2, gcc)

as expected. Figure 5.5(b) shows the impact of consolidation on power per DIMM.

The power density of DIMMs increases by up to 33% which can lead to poten-

tial temperature problems and higher cooling costs. It should be noted that the

memory controller employs interleaving policy to maximize the use of all channels

bandwidth by evenly distributing memory accesses and memory pages across the

channels.

Next we address the impact of consolidation on performance. We performed

experiments on our machine using different DIMMs organizations as follows: (a)

single DIMM, (b) two DIMMs where each DIMM is connected to a memory channel

that belongs to a separate memory controller, (c) four DIMMs where each DIMM is

connected to a separate memory channel, (d) eight DIMMs where every 2 DIMMs

are connected to a separate memory channel. Figure 5.6 shows the effect of DIMM

79

1_swim1_bzip2 1_gzip 1_eon
1_equake1_mcf 1_perl 3_swim3_bzip2 3_gzip 3_eon3_equake3_mcf 3_perl AVG

0

5

10

15

20

25

30

35

40

45

Pe
rf

or
m

an
ce

 re
du

ct
io

n
(%

) 1 DIMM
2 DIMMs: 1 DIMM per channel, 2 mem controllers
4 DIMM: 1 DIMM per channel, 2 mem controllers

Figure 5.6: Performance reduction with consolidation

(a) mcf (memory bound) (b) equake (memory bound)

(c) bzip2 (CPU bound)

Figure 5.7: Memory page access pattern

80

consolidation on performance compared to a system with 8 active DIMMs. For the

case of using 1 and 2 DIMMs the performance degradation is noticeable since only

a fraction of the bandwidth is utilized. However, when we fully utilize the memory

bandwidth (as in the case of 4 DIMMs) the resultant performance is close to the

baseline case. This slight improvement in the case of 8 DIMMs compared to 4

DIMMs is related to the reduction in banks conflicts as we are adding more banks.

Nevertheless, this improvement is small since the number of pages (usually order

of thousands or more) is much larger than the number of banks (order of tens).

Hence, little improvement in temporal locality can be attained. This indicates that

the performance overhead due to consolidation is in the acceptable range assuming

that we are using the entire memory bandwidth and the memory pages can fit in

the consolidated DIMMs.

To ensure the page migration policy is beneficial, we need to have fast and

energy efficient migrations. Figures 5.7(a), 5.7(b), 5.7(c) show the page access pat-

terns of memory and CPU intensive applications. We use M5 a micro-architectural

simulator [44], to generate these statistics. We simulate for a representative pe-

riod of 15 billion instructions of each benchmark. Each graph shows the access

distribution for half and full of the simulated interval to examine the changes in

the access pattern. These statistics are obtained based on the number of accesses

to the physical addresses of the memory pages . From these results, it can be seen

that the number of active pages (hot pages) is a small fraction of the total number

of pages of the application. The hot pages are distributed uniformly across the

active memory modules due to the interleaving policy of the memory controller.

The average time between accessing different hot pages is usually in the order

of microseconds which is thousands times smaller than the temperature transient

time of memory. This indicates that we can capture sufficient number of hot pages

to migrate during execution quickly enough to resolve thermal emergencies.

The energy savings from consolidation are expected to scales as DRAM

technologies advance. The savings mainly depend on the parameters that affect

the baseline power: operating frequency, supply voltage and memory density. The

baseline power is expected to increase linearly with frequency and device density

81

Memory subsystem

DIMM

Core1Core2 Core1 CoreN. . . .Core2
Thermal
sensors

CoreN
Thermal

Temperature
prediction

Temperature
prediction

sensors

Scheduler
Core

 . . .

Scheduler
Core

CPU socket 1 CPU socket M

MIMO
controller

Memory page
scheduling

Power and thermal

scheduling
CPU sokcet

Fan speed

Fan subsystem

 sensors

Figure 5.8: Overview of our Integrated Memory-CPU Management

& quadratically with the operating voltage. The current trend in increasing the

frequency and memory density can offset the reduction in operating voltage that

keeps the consolidation concept effective as DRAM technologies advance. The up-

coming DDR4 memory is expected to support DVFS to optimize power by lowering

the frequency when there are infrequent accesses. As the modern memory subsys-

tem is interleaved, the chances are dramatically reduced for memory to benefit

from DVFS as it reduces the intervals between two consecutive memory accesses.

In contrast, clustering the hot pages to a subset of the DIMMs allows for more

savings opportunities in the DIMMs the hold dormant pages. The exploitation of

this DVFS technology is part of our future work.

5.2 Combined Energy, Thermal and Cooling

Management

In this section we introduce our joint energy, thermal and cooling manage-

ment for Memory-CPU subsystems, CETC. Figure 5.8 illustrates our framework

which consists of formal multi-input multi-output (MIMO) controller, actuators

(memory page scheduler, CPU socket scheduler, fan speed actuator) and sensors

82

(temperature and power). Actuators translate the MIMO controller’s decisions

into proper actions on memory, CPU sockets and fan. The controller take feedback

signals using thermal and power sensors from the CPU and memory subsystems.

We designed our scheme in a unified fashion since the temperature of memory is

dependent upon the temperature of CPU. Two independent thermal management

units for CPU and memory lead to inefficiencies. Formal control is used to guaran-

tee stability. The MIMO controller is implemented in the operating system layer.

This approach can also be extended to virtualized environments. In this case, the

MIMO controller needs to be implemented inside the virtual machine manager,

hypervisor, which manages the allocation of the physical resources in the system.

We design the MIMO controller using state-space control mechanism because it is

robust and scalable [26].

5.2.1 State-space control

We formulate a unified state-space model for memory and CPU subsys-

tems. The vector of junction temperature in memory, [TD
j1
(t), TD

j2
(t), . . . , TD

jnD
(t)]T ,

is defined as TD
j . Here nD is the number of DIMMs. The vector of heat sources

in DIMMs, [PD
1 (t) +

qD1 (t)

γ1
, PD

2 (t) +
qD2 (t)

γ2
, . . . , PD

nD
(t) +

qDnD
(t)

γnD

]T , is defined as UD.

Here PD
i (t) and qDi (t) correspond to the sources of DIMM power and heat coupling

respectively. The value of γi is defined in equation (5.2) as 1 +
RD

ji

RD
cai

. In case of no

thermal coupling we can set qDi (t) to zero, for 1 ≤ i ≤ nD.

Using equation (5.2) we can express the thermal model for memory subsys-

tem as:

dTD
j (t)

dt
= YDTD

j (t) + ZDUD(t) (5.3)

where temperature coefficient YD and power coefficient ZD are defined as:

Y
D =











−1

τD
ca1

0

. . .

0 −1

τD
canD











Z
D =











γ1

Cca1

0

. . .

0
γnD

CcanD











Similarly, we can develop the thermal model for a set of CPU sockets. The

socket to ambient temperature vector, [TC
ca1

(t), TC
ca2

(t), . . . , TC
canc

(t)]T , is defined as

83

TC
ca. Here nC is the number of CPU sockets. The vector for instantaneous power

dissipated in CPU sockets, [PC
1 (t), PC

2 (t), . . . , PC
nC
(t)]T , is defined as PC . Using

(4.5), the CPU thermal model becomes:

dTC
ca(t)

dt
= YCTC

ca(t) + ZCPC(t) (5.4)

where temperature coefficient YC and power coefficient ZC are diagonal matrices.

Y C
ii = −1

τCcai
and Y C

ii = 1
CC

cai

, for 1 ≤ i ≤ nC . The continuous systems given in (5.3)

and (5.4) can be discretized using the transformations given in [26] as follows:

TD
j (k + 1) = ΦDTD

j (k) + ΓDUD(k) (5.5)

TC
ca(k + 1) = ΦCTC

ca(k) + ΓCPC(k) (5.6)

where the temperature and power coefficients for these discretized systems are

defined as follows:

Φ
D = eY

D
∆t (5.7)

Φ
C = eY

C
∆t (5.8)

Γ
D = Z

D

∫ ∆t

0

eY
Du du (5.9)

Γ
C = Z

C

∫ ∆t

0

eY
Cu du (5.10)

The coefficient in this discretized system are diagonal because they are

function of diagonal coefficients in the continuous system. Substituting YD and

ZD in (5.7) and (5.9), we get:

Φ
D =













e
−

∆t

τD
ca1 0

. . .

0 e
−

∆t

τD
canD













Γ
D =













γ1

Cca1

(
∫ ∆t

0
e
−

u

τD
ca1 du) 0

. . .

0
γnD

CcanD

(
∫∆t

0
e
−

u

τD
canD du)













84

The integrals of ΓD have a simple analytical solutions as, ΓD
ii = (RD

cai
+

RD
ji
)(1− e

− ∆t

τDcai) for 1 ≤ i ≤ nC . Γ
C and ΦC can be computed similar way.

After considering thermal dependency between CPU and memory, we for-

mulate the unified state-space model using (5.5) and (5.6), which yields:

[

T
C
ca(k + 1)

T
D
j (k + 1)

]

=

[

Φ
C

0

Φ
CD

Φ
D

][

T
C
ca(k)

T
D
j (k)

]

+

[

Γ
C

0

0 Γ
D

][

P
C(k)

P
D(k)

]

(5.11)

where PD(k) corresponds to the vector of DIMM’s power consumption. The terms,

ΦCD, represents the thermal coupling coefficient from CPU sockets to memory.

ΦCD
ij =

λijΓ
D
ii

RD
cai

+RD
ji

RC
convj

RC
caj

, for 1 ≤ i ≤ nC and 1 ≤ j ≤ nD, where λij represents the

thermal coupling factor between the DIMM i and the CPU socket j.

MIMO controller We use a MIMO controller as the primary management unit

which is implemented in the operating system layer. With a final target of mini-

mizing the cost of cooling and operational energy, the MIMO controller takes all

the important decisions, e.g. (a) memory module activation or deactivation, (b)

workload assignment or scheduling between or within sockets, and (c) fan speed

adjustment, while ensuring convergence to the target temperatures of both CPU

and memory subsystems with minimal performance overhead. To make these de-

cisions intelligently, the controller takes input from thermal & power sensors in

CPU & memory and readings of fan speed. These sensors are commonly present

in the state of the art servers. As output it provides a vector of desired power

distributions in CPU & memory, along with a temperature vector that is used to

determines fan speed. There are three actuators: CPU, memory and fan. Actu-

ators ensure that fan speed, power of CPU and memory are set according to the

controller’s output.

The controller is designed based on the linear feedback control law as this is

a liner system [26], using G and G0, gain matrices with dimensions n = nC + nD.

Gain matrices are computed to ensure stability as discussed in the subsequent

paragraphs. The control law is applied to the combined state-space model (5.11)

which yields,

85

P(k) = −GT(k) +G0Tr(k) (5.12)

P(k) is the output of the controller and represents the power consumption vector

of CPU sockets and memory modules that needs to be maintained by the actuators

in the period between (k and k+1). Fan speed is set by the fan actuator based on

the desired temperature distribution specified by the controller. The controller’s

temperature vector can be calculated by substituting (5.12) in (5.11), as:

T(k + 1) = (Φ− ΓG)T(k) + ΓG0Tr(k) (5.13)

Vector T(k) = [TC(k),TD(k)]T , represents the thermal states of the system

consisting of CPU, TC(k), and memory temperatures, TD(k). The target temper-

ature vector Tr(k) = [TC
r (k),T

D
r]

T consists of target CPU, TC
r (k), and memory

temperatures, TD
r . The elements of TD

r are the thermal emergency thresholds of

the memory modules. The components of TC
ri
(k) are calculated as follows:

TC
ri
(k) = TC

cai
(k) + ∆Tcai(k)− δTthi

(k) (5.14)

where ∆Tcai(k) = ∆Rcai(k)
TC
cai

(k)

RC
cai

(k)
. ∆Rcai(k) is the change in the CPU case to

ambient resistance which relates to the difference between the current fan speed

and the target speed. The difference between the junction temperature to the

threshold is represented by δTthi
(k).

In general, the controller guarantees convergence to the desired target val-

ues, Tr(k), if the eigenvalues of the controlled feedback system are within the unit

circle [26]. One way to determine the feedback gain matrix, G, is to use the de-

sired eigenvalues as an input and calculate G accordingly. To obtain the optimal

gain matrix we can use the linear quadratic regulator (LQR) optimization [26].

This method calculates the gain matrix in a way that minimizes the following cost

function:

J =
∞
∑

k=0

[TT (k)QT(k) + uT (k)Ru(k)] (5.15)

where u = −GT(k). Q andR are symmetric weight matrices of size n×n and they

are specified by the designer. They are selected based on the importance of the

86

states and the energy of the control outputs respectively. The LQR computations

are done off-line. It takes around one second to compute a gain matrix for different

fan speeds. The gain matrix is stored in an array and accessed at run time. The

input gain matrix G0, it calculated using the standard reference input method

that is described in [26]. The controller interval is on the order of several seconds

since the thermal time constant of the DIMMs and the CPUS is on the order of

tens of seconds.

5.2.2 Actuators

At each controlling tick, k, MIMO controller determines the next set of

operating power values for the CPUs, memory modules and fan speed for the next

interval (k and k + 1). The output of the controller is communicated to the ac-

tuators to execute the controller requests. Each actuator operates independently

as the MIMO controller already considers the thermal dependencies between the

components.

Controller convergence in the face of errors: Actuator’s goal is to minimize the

differences between the calculated power values provided by the controller and the

current measured ones. When the action of the actuator has some small errors

within a given threshold then no correction is needed. The cost of this is a slight

decrease in energy savings. The controller can ensure convergence even when some

errors exceed the threshold occasionally. To validate our assumptions we assume a

state space model that is similar to the CPU and memory. We use a CPU model

as an illustrative example:

TC
ca(k + 1) = ΦTC

ca(k) + ΓPC(k) (5.16)

where Φ and Γ are coefficients and PC is the input power of a given CPU. To

control this system we use state space control that we have in (5.12). Lets as-

sume a reference point to be 0 to simplify the analysis. The feedback control in

this case can be computed as: PC(k) = −GTC
ca(k) + e(k). G is the gain and

e(k) is the actuator average error. The accumulated errors in TC
ca(k) at k = n

87

equals to
∑n

i=0 Γe(i)υ
n−i. Where υ is the eigenvalue of the controller. Since the

eigenvalue of the controller is less than 1, the accumulated errors converge to 0

which ensures convergence. The details of the actuators implementation are below.

CPU actuator: Controller’s input to CPU actuator is the vector of the

desired power values for each of the CPUs in the interval between k and k + 1.

This algorithm calculates the vector ∆PC by subtracting the controller requested

CPU power from the CPUs average power measured in the interval between k− 1

and k. The details of the CPU scheduler are given in Algorithm 2. The algorithm

starts by estimating the power consumed by the individual threads in each CPU

by modeling their core and last level cache power similar to what is proposed in

section 4.2.6. The core dynamic power is modeled using a regression model that is

based on instruction per cycle (IPC) metric while leakage power is calculated based

on the temperature. The last level cache is calculated by multiplying the access

rate per second with the power consumed to access a cache block. Subsequently,

our algorithm traverses the workload and spreads the threads from the hot CPU

starting with cooler threads to have finer grain control of the total power on each

socket and to reduce the chance of errors. It moves from a hot CPUi a number of

threads that have total power that that is less than or equal to ∆PC. A cool CPUj

gets threads with total power is less than or equal to ∆PC
j . Before each migration

we evaluate the cooling energy savings to prevent ineffective scheduling decisions

similar to method given in section 4.2.5. The cooling energy savings estimator

calculates the resultant temperature after the migration using our thermal model.

Subsequently, we translate the difference in maximum temperature into change in

fan speed using the equation (5.20) which we use in the fan actuator. Individual

scheduling events are allowed only when the predicted cooling savings are higher

than a given threshold, Smin.

Memory actuator: at the beginning of each interval, controller provides

power vector, PD of power dissipation per each DIMM module. As a result, a

DIMM may need to either increase or decrease its power dissipation. In both cases

migration of pages is used if possible. However, when there are no active DIMMs

88

Algorithm 2 Socket level scheduling
1: Calculate ∆PC and the set of PC

thr
for each CPU. Set Q as an empty queue

2: for i in set of hot CPUs do

3: for j in unmarked threads in CPU i do

4: dest ⇐ index of coolest CPU (min(∆PC))

5: if (PC
thrj

≤ ∆PC
i and PC

thrj
≤ −∆PC

dest
and min(∆PC) < 0) then

6: if CPU dest has idle core then

7: Calculate cooling savings of migrating thread j to CPU dest

8: else

9: Calculate cooling savings of swapping thread j with the coolest thread from CPU dest

10: end if

11: enqueue this migration event Q and threads allocation status

12: Update ∆PC and threads assignment

13: end if

14: end for

15: end for

16: Execute all migration events in Q

1-s
wim

-4D
IM

M

1-s
wim

-8D
IM

M

2-s
wim

-4D
IM

M

2-s
wim

-8D
IM

M

4-s
wim

-4D
IM

M

4-s
wim

-8D
IM

M

1-e
qu

ak
e-4

DIM
M

1-e
qu

ak
e-8

DIM
M

2-e
qu

ak
e-4

DIM
M

2-e
qu

ak
e-8

DIM
M

4-e
qu

ak
e-4

DIM
M

4-e
qu

ak
e-8

DIM
M

1-m
cf-

4D
IM

M

1-m
cf-

8D
IM

M

2-m
cf-

4D
IM

M

2-m
cf-

8D
IM

M

4-m
cf-

4D
IM

M

4-m
cf-

8D
IM

M
0
1
2
3
4
5
6
7
8
9

Pe
r D

IM
M

 p
ow

er
 (W

at
t)

Baseline
Dynamic

Figure 5.9: Power breakdown of memory DIMMs

that can accept additional pages, then we need to choose between activating a new

DIMM or letting the fan spin up to cool the DIMMs. We decide between these

two options based on the temperature reduction each choice can deliver under the

same energy budget. In the following subsections we study these scenarios:

1. Increasing fan speed versus activating a new DIMM : Figure 5.9 shows that

doubling the number of DIMMs does not reduce the power per DIMM to half.

This is due to the baseline power Pbase component that is in the range of 3.5 W

for memory bound applications measured on 4GB DDR2 DIMMs (please refer to

section 5.1.3). This means that increasing the fan speed may be a better option if

it results in a lower temperature at power consumption of Pbase. Increasing the fan

89

speed reduces the memory temperature by lowering the effect of thermal coupling

and self heating of the DIMMs as it reduces the convective resistance of both the

CPU and memory. The temperature reduction for increase in fan power by Pbase

can be computed as:

∆Tfan = ∆F (λPC
act

dRC
conv(F)

dF
+ PD

act

dRD
conv(F)

dF
) (5.17)

where ∆F is the increase in fan speed of the hottest memory zone. PC
act and PD

act

represent the actual CPU and hottest DIMM power that is located in the CPU

zone respectively. When the actuator decides to activate a new DIMM, it migrates

pages from other DIMMs to the newly activated DIMM progressively from the

application starting with the one that has the highest memory access to reduce

power density. Using our thermal model, the temperature reduction, i.e. |∆Tmem|,

for adding one more DIMM can be computed as:

∆Tmem =
(TD

jmax
− PbaseR

D
ca − λTC

ha)

nD

(5.18)

where nD is the number of DIMMs after expansion and λ is the thermal coupling

factor between CPU and memory. The TD
jmax

is the maximum temperature of the

DIMMs that are located in the zone that is associated with a CPU. TD
j is the

junction temperature of the DRAM chip. The controller choses to activate a new

DIMM only if the temperature reduction, |∆Tmem|, is higher than |∆Tfan| when a

new DIMM is activated, as follows:

if(|∆Tfan| < |∆Tmem|) ⇒ activate a new DIMM

else ⇒ increase fan speed
(5.19)

2. Controlling DIMMs power by page migration: Power vector PD specifies power

distribution of each DIMM over the next period. If a memory module, DIMMi,

needs its power to be reduced in the next interval when PD
i (k) < PD

measi
(k − 1)

(PD
measi

(k − 1) measured power in the previous interval) this is then equivalent to

TD
i(k + 1) < TD

i(k). This power reduction in DIMMi is achieved by migrating

portion of its pages to other DIMMs. This migration is performed by using the

90

memory actuator. In contrast, the power dissipation of a memory module, say

DIMMi, may also need to be increased when PD
i(k) > PD

measi
(k − 1) which is

equivalent to TD
i(k + 1) > TD

i(k). Hence it requires migrating more pages to

DIMMi from other memory modules to match DIMMi’s power with the desired

value by the controller. Whenever a page is migrated from DIMMi to DIMMj , the

virtual to physical address mapping for the page is updated in the page table of

the operating system.

When all active memory modules can accept more pages, the controller

starts migrating from the most recently activated module so that it can put it

in low power mode when no active pages are left and save energy. When there

are some hot DIMMs, the controller tries to maximize performance by migrating

pages to a memory module only if it has lower memory access rate/power consump-

tion than the average value. In this way, all the accesses are uniformly distributed

among the active memory modules. To minimize hot spots, the controller balances

the number of active DIMMs per CPU zone (CPU and its associated downstream

DIMMs). For example, the activation order of DIMMs shown in Figure 5.1(b)

should be Ai, Bi, Ci, Di, Ai+1, Bi+1 etc. The page migration continues until the

access rate of the newly activated DIMM becomes equal to that of already active

DIMMs. The overhead of migrating pages is acceptable since the difference be-

tween the temperature time constant and page migration time is over 6 orders of

magnitude.

Fan actuator: Fan speed is updated periodically based on the requested

temperatures from the controller, T(k + 1). Controlling the fan is used as a com-

plementary measure to the CPU and memory optimizations to minimize the re-

maining difference between the current measured temperature and the controller’s

requested temperature vector.

Let’s assume ∆TD > 0 and ∆TC > 0 are vectors of the temperature dif-

ference between the current and target value of the controller for memory modules

and CPUs that belong to the same cooling zone respectively. The actuator esti-

mates the new fan speed Fnew based on the current fan speed, Fcur, and highest

91

requested change in fan speed due to memory, ∆FD, and due to CPU, ∆FC , as

follows:

∆FD = max(
∆TD

i

λPC
j

dRC
convj

(F)

dF
+ PD

i

dRD
convi

(F)

dF

) (5.20)

∆FC =
∆TC

j

PC
j

dRC
convj

(F)

dF

(5.21)

Fnew = Fcur +max(∆FD,∆FC) (5.22)

where i represents the ith DIMM that are in the zone of processor j. The interval

for the fan actuator can be set to be equal to the controller interval or smaller.

Setting the fan actuator interval to a smaller value may help to provide more

detailed control over temperature. The desired temperature at the subintervals is

computed based on the slop of T(k) and T(k + 1).

5.3 Evaluation

5.3.1 Methodology

In this study we run the workload in our Intel server and collected real

power traces from the memory modules. These power traces are used to estimate

temperature of the memory and CPU using our extended version HotSpot simu-

lator [57]. We measure the CPU core, L2 and baseline power using the method

described in 4.2.6. The core and L2 power traces are used to estimate the core and

L2 temperatures respectively using HotSpot simulator and Xeon processor layout.

We include the baseline power of the CPU in the temperature simulations since

it impacts the heat spreader and the heat sink temperature. We also account for

leakage power using the model given in section 4.2.6.

The memory organization is assumed to be similar to our Intel server (see

Figure 5.1(b)). The memory controller put the inactive DIMMs in a self-refresh

mode and the rest in the active mode. Power consumption during self-refresh

92

and transition penalty are given in Table 5.1. We use M5 a micro-architectural

simulator [44], to generate the page access statistics of the applications. M5’s

memory management unit performs the virtual to physical address mapping. This

mapping is usually stored in the page table within the operating system. Whenever

a page is migrated to a different DIMM the virtual to physical address mapping

for the page is updated.

The characteristics of the fan and thermal package of both CPU and mem-

ory DIMMs that we use in thermal simulation are listed in Table 5.1. For the

default fan control algorithm we assume a closed loop PI (Proportional and Inte-

gral) controller that is usually used in modern systems. The fan algorithm adjusts

the fan speed in proportion to the heat level of their respective CPUs and the accu-

mulated temperature errors. When the temperature is below a given threshold the

fan is set to idle. We set the fan to trigger 5 degrees below the thermal threshold

of the chip (please refer to Table 5.1) to allow for enough time to react to thermal

emergencies since it is a mechanical device. We extracted the value of RD
ca (case

to ambient thermal resistance of a DIMM), and time constant using our transient

model and measured temperature & power data and chip thermal resistance [6].

We use the built-in thermal sensors in DIMMs to collect temperature via IPMI.

To model the effect of airflow, we measured the value of RD
ca at different fan speeds

We use simulation instead of running our algorithms in real system due to

a number of issues. The built-in fan control algorithm runs all the CPU fans at

a single speed that is related to cooling needs of the hottest socket, which lead to

over provisioning. The algorithm is implemented in a separate controller that we

don’t have access to. Consequently, not all the benefits of our algorithms can be

manifested with using the built-in fan control algorithm.

We consider the local ambient temperature inside the server to be between

35-45oC. The server inlet temperatures may be much higher than the room ambient

[52]. The new trend in data centers is to increase the ambient temperature to

lower the costs of the air conditioning system [8], which results in even higher inlet

temperatures. Since the local ambient within the server is hotter than the inlet

temperature, it is not uncommon for the local ambient temperature to reach up

93

Table 5.1: Characteristics of CPU, memory, thermal packages and cooling

CPU

CPU Xeon E5440

TDP 80W

CPU frequency 2.8GHz

Heat spreader thickness 1.5mm

Case to ambient thermal RC
ca = 0.141 + 1.23

V 0.923 ,

resistance in K/W V : air flow in CFM, [2]

Heat sink time constant at max air flow 25 seconds

Temperature Threshold 90oC [47]

DIMM

DIMM size 4GB

Max DRAM power/DIMM 10W

Case to ambient thermal RD
ca = 0.75 + 45

V 0.9

resistance in K/W V : air flow in CFM

Per chip thermal resistance in K/W RD
chip = 4.0 [6]

Heat spreader time constant at max air flow 70 seconds

Temperature Threshold 85oC [36, 37]

Self refresh power per DIMM 0.15W

Transition between active and self-refresh modes 11us [28]

Thermal coupling factor with CPU 0.65

Fan

Fan power per socket 29.4 W [5]

Max air flow rate per socket 53.4 CFM [5]

Fan steps 32

Fan sampling interval 1 second

Idle fan speed 10% of max speed

to 45oC [57, 58].

For the memory and socket level thermal managers we set the scheduling

interval to 4 seconds, since the thermal time constant of both CPU and memory

is on the order of 10s of seconds. Our technique is not restricted to this interval

and other intervals around this value can be used. The heat spreader is simplified

to a single node because it behaves as an isothermal layer due to its high thermal

conductivity. The interval of fan control is set to 1 second so as to allow the

fan to for a detailed control over temperature to ensure reliability. We set the

cooling savings threshold to a conservative value of 10%. For core level thermal

management policy, we use our proactive thermal management which performs

scheduling at each OS tick.

A set of benchmarks are selected that exhibits various levels of CPU inten-

sity to emulate real life applications (see Table 5.4). We run each benchmark in

the work set till its completion and repeat it until the end of simulation time. The

evaluation time for our algorithms is set to 10 minutes after the warm-up period.

94

In our experiments we use a set of workloads that have a representative mix of

CPU and memory bound applications. The list of the workload combinations that

we use is given in Table 5.3.

CETC does an integrated energy, thermal and cooling management for CPU

and memory. It uses a MIMO controller to manage CPU socket scheduling, mem-

ory module management and fan speed. It also implements core level management

to reduce the temperature within the sockets. In CETC we set the minimum num-

ber of active DIMMs to 4 during clustering mode to exploit the full bandwidth as

shown in Figure 5.1(b). We evaluate CETC against the following set of policies:

Dynamic Load Balancing, DLB: It is usually implemented in modern op-

erating systems to enhance the utilization of the system resources. DLB policy

performs thread migration to minimize the difference in task queue lengths of the

individual cores [21]. Operating system initiates dynamic load balancing every

hundred milliseconds. The balancing threshold is set to one to make the difference

in task queue length equal to zero as possible. In this work we implement the DLB

as our default policy for the purposes of comparison. DLB uses the default PI fan

controller. It keeps all memory modules active. We choose this policy to show

that balancing the utilization is not sufficient to mitigate the hot spots in the CPU

subsystem. When the temperature of CPU or memory exceeds the threshold, their

activity is throttled progressively depending upon the source of the problem [37].

This throttling is included in all the policies including CETC.

Dynamic Thermal Management of Core and Memory with PI fan control,

DTM-CM+PI: This policy implements both core and memory state of the art ther-

mal management techniques. Core level proactive thermal management optimizes

dynamically the threads assignment within the individual sockets (see chapter 3).

Memory thermal problems are managed separately by halting the accesses when

the temperature exceeds thermal emergency level until it drops to the safe zone [37].

All memory modules stay active in this policy. The fan in this policy is controlled

separately by the default PI fan controller. This policy is chosen to evaluate the

savings using state of the art thermal management techniques.

No Fan-Memory Optimization, NFMO: This policy is like CETC except

95

Table 5.2: SPEC Benchmarks characteristics

Benchmark IPC Power per DIMM (Watt) Characteristics Benchmark IPC Power per DIMM (Watt) Characteristics

swim 0.55 4.65 Memory bound bzip2 1.36 1.18 CPU bound

equake 0.51 4.38 Memory bound gcc 1.23 1.17 CPU bound

mcf 0.18 3.71 Memory bound eon 1.33 0.79 CPU bound

perl 2.18 1.21 CPU bound gzip 1.16 0.92 CPU bound

Table 5.3: Workload combinations for multi-tier algorithm

Workload Socket A Socket B Workload Socket A Socket B

W1 equake + 2gzip 3bzip2 W9 mcf + 2gcc perl + bzip2 + eon

W2 2bzip2 + 2eon mcf + gcc + 2gzip W10 3gzip 2perl + eon

W3 equake + 2bzip2 2gzip + gcc W11 2equake + gcc 2perl + equake

W4 perl + eon + bzip2 2equake + gcc W12 mcf + 2gcc 2gcc + 2perl

W5 2gcc + perl swim + 2gcc W13 gcc + 2perl equake + 2gcc

W6 mcf mcf W14 2mcf + gcc 2perl + mcf

W7 gcc + 2gzip 2bzip2 + perl W15 2swim + gcc 2perl + swim

W8 perl + bzip2 + 2eon 2mcf + 2gcc

that we disable the actuator that performs the trade off between activating a new

memory module and increasing the fan speed. We choose this policy to evaluate

the impact of deactivating this optimization on the overall savings. The minimum

number of active DIMMs is set just as in CETC.

No Memory Management, NMM: This policy is like CETC except all mem-

ory modules remain active the entire time. The purpose of this policy is to evaluate

the savings that we can achieved with managing the thermal hot spots and opti-

mizing the cooling costs in the CPU subsystem only.

No CPU Migration, NCM: This policy disables the CPU management

(socket and core scheduling) from CETC. We study NCM to show the impact

of deactivating CPU policy on the overall cooling energy savings. The minimum

number of active DIMMs is set as in CETC.

5.3.2 Results

We next compare our CETC algorithm to other policies. We evaluate energy

savings, fan balancing, page migration rate, stability and overhead of applying our

96

WL1 WL2 WL3 WL4 WL5 WL6 WL7 WL8 WL9
WL1

0
WL1

1
WL1

2
WL1

3
WL1

4
WL1

5
AVG

0

10

20

30

40

50

60

70

80

En
er

gy
 s

av
in

gs
 (%

)

CETC NFMO NMM NCM DTM-CM+PI

(a) Local ambient temperature is 45oC

WL1 WL2 WL3 WL4 WL5 WL6 WL7 WL8 WL9
WL1

0
WL1

1
WL1

2
WL1

3
WL1

4
WL1

5
AVG

0

5

10

15

20

25

30

35

40

En
er

gy
 s

av
in

gs
 (%

)

CETC NFMO NMM NCM DTM-CM+PI

(b) Local ambient temperature is 35oC

Figure 5.10: Total energy savings (memory+cooling) relative to default dynamic
load balancing in a system with 8DIMMs

policy. We study CETC with representative set of local ambient temperatures and

number of DIMMs to have a thorough evaluation. The results indicate that CETC

policy is able to achieve on average 70.1% combined cooling and memory energy

savings at performance loss of less than 0.2%.

Energy savings The first set of results focuses on the total energy savings of

CETC policy compared to the other policies. Our energy calculations include total

energy of memory subsystem and cooling. Figure (5.10(a) and 5.10(b)) show the

total energy savings in a system that has 8 DIMMs with 45oC and 35oC local server

ambient temperature respectively. CETC achieved savings reaching an average of

97

55.3% and 31.7% relative to DLB for 45oC and 35oC respectively. Figure 5.10(a)

clearly shows that CETC outperforms all other policies. For example, the case of

workload W6 includes two mcf (memory bound) one on each socket, hence they

produce comparable heat in each socket and their thermal coupling effect on the

memory is comparable. The CETC savings in this case come from clustering the

memory accesses to a smaller number of DIMMs since the thermal distribution

across the sockets is balanced and there are no thermal problems in the CPUs.

The policy NCM performs equally well to CETC since it optimizes for memory

and there are no savings opportunities from the CPU side. The policies NMM and

DTM-CM+PI deliver almost no savings since they do not optimize for memory

energy. On the other hand, the savings opportunities in the cases of W7 and W10

are mainly related to imbalance in the thermal distribution between and within the

two sockets which raise cooling energy costs. CETC performs quite well since it has

the capability to balance the temperature between and within the CPU sockets.

The policies NFMO and NMM perform equally well to CETC since they balance

socket and core temperatures. On the other hand, DTM-CM+PI delivers a fraction

of the CETS savings since it performs only local thermal optimizations. The policy

NCM performs poorly in these cases since it targets lowering only memory energy.

The other important scenario is when there are savings opportunities from CPU

temperature imbalance and memory energy. Example of this can be seen in the

cases of W4 and W5. In these cases, CETC is superior to all other policies since

it is the only one that can capture these classes of savings at the same time.

Figure 5.10(b) shows the combined memory and cooling energy savings with

local ambient temperature of 35oC. In general, the savings are lower than the case of

45o ambient temperature because most come from memory clustering as the system

requires less cooling due to a lower local ambient temperature. The evidence of

this can be seen from the savings of NMM policy which is close to zero while NCM

perform closer to CETC. The CETC policy is able to perform well since it can

capture this class of savings opportunities by clustering the memory access to a

smaller set of DIMMs. These results also illustrate the benefits of the optimization

that trade off between activating a new DIMM and speeding up the fan. The

98

34 36 38 40 42 44 46
Local ambient temperature (degree C)

30

35

40

45

50

55

60

Av
g.

 E
ne

rg
y

Sa
vi

ng
s

(%
)

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Av
er

ag
e

fa
n

sp
ee

d
ra

tio

CETC:energy savings
CETC:fan speed ratio

Figure 5.11: Temperature sensitivity for energy and fan speed with 8 DIMMs

evidence of this benefit can be indicated from the poor savings of NFMO since it

does not perform this optimization. Since most of the savings come from clustering

the memory modules then we expect that the savings would be lower when the

workload exercises memory lightly. The cases of W7 and W10 illustrate this. In

Figure 5.11 we give results that show the average combined memory and cooling

energy savings of CETC as a function of local ambient temperature at a finer scale.

The savings between 35oC and 40oC come primarily from clustering the memory

accesses to a subset of the memory modules. When the local ambient temperature

increases, the savings are higher due to balancing fan speed as both memory and

CPU experience more thermal issues. This indicates that our technique provides

better savings at higher local ambient temperature.

In Figures 5.12(a) and 5.12(b) we study the benefits of increasing the num-

ber of DIMMs to 16. The results show that CETC achieved higher savings reaching

an average of 70.1% and 55.7% relative to DLB for 45oC and 35oC respectively.

The savings of CETC increase when using 16 DIMMs as compared to the case of

8 DIMMs since more DIMMs can transition to low power modes. The results also

show that the relative increase in savings is higher in the case of 35oC compared

to 45oC for CETC. This is because the savings in the case of 35oC are dominated

by memory subsystem while the memory contributes to only a fraction of sav-

ings in the case of 45oC. In summary, the energy savings results clearly show that

99

WL1 WL2 WL3 WL4 WL5 WL6 WL7 WL8 WL9
WL1

0
WL1

1
WL1

2
WL1

3
WL1

4
WL1

5
AVG

0
10
20
30
40
50
60
70
80
90

En
er

gy
 s

av
in

gs
 (%

)

CETC NFMO NMM NCM DTM-CM+PI

(a) Local ambient temperature is 45oC

WL1 WL2 WL3 WL4 WL5 WL6 WL7 WL8 WL9
WL1

0
WL1

1
WL1

2
WL1

3
WL1

4
WL1

5
AVG

0

10

20

30

40

50

60

70

En
er

gy
 s

av
in

gs
 (%

)

CETC NFMO NMM NCM DTM-CM+PI

(b) Local ambient temperature is 35oC

Figure 5.12: Total energy savings (memory+cooling) relative to default dynamic
load balancing in a system with 16 DIMMs

100

performing thermal management in a holistic fashion leads to large energy savings.

Fan balancing Next we evaluate the effectiveness of the socket level scheduling

in balancing the fan speed to minimize cooling energy. The optimal ratio of fan

speed in two sockets (we call it fan speed ratio) is 1. Figure 5.13(a) shows fan speed

ratio in a system with 8 DIMMs and 45oC local ambient temperature. The results

show that CETC is able to reduce the standard deviation from the optimal fan

speed ratio by 76% compared to the DLB policy. The reason that DLB has a high

standard deviation from the optimal fan speed is because it does not account for

heterogeneity in the workload in terms of the induced temperature in the CPU.

The policy DTM-CM+PI performs poorly as well since it does not balance the

temperature between CPU sockets. The fan imbalance with this policy can be

even higher than DLB (e.g W8 and W12). This scenario occurs when core level

scheduling is effective in one socket while it is not as effective in the other one (e.g.

running CPU intensive workload). This increases the imbalance as the speed of one

fan can be lowered while the other stays almost the same. The other polices that

implements socket level thermal balancing perform close to CETC. The Figure

5.13(b) shows the fan speed ratio results in a system with 8 DIMMS and 35oC

ambient temperature. The reduction in standard deviation to the optimal target

in this case is 93%. However, the actual benefits in the case of 45oC ambient

temperature are higher because the absolute difference between the speed of two

fans is much higher in default policy. Figure 5.11 shows sensitivity analysis of

average fan speed ratio with small grain changes in local ambient temperature for

CETC. The results clearly show that CETC is able to keep the ratio very close to

1.0 in the entire temperature range between 35oC and 45oC.

In Figures 5.14(a), 5.14(b), 5.14(c) we study the benefits of CETC on bal-

ancing fan speeds for illustrative set of workloads W13, W11 and W15 respectively.

In these experiments we run the workload for 200 seconds with DLB then we ac-

tivate CETC for 600 seconds. We select illustrative workloads which represent a

mix of cpu and memory intensive jobs to evaluate CETC effect on CPU, memory

and the thermal coupling. The results show that using DLB can lead to a big

imbalance in fan speeds (first 200 seconds of execution). It is clear from the results

101

WL1 WL2 WL3 WL4 WL5 WL6 WL7 WL8 WL9
WL1

0
WL1

1
WL1

2
WL1

3
WL1

4
WL1

5
AVG

0

1

2

3

4

5

6

Fa
n

sp
ee

d
ra

tio

CETC NFMO NMM NCM DLB DTM-CM+PI

(a) Local ambient temperature 45oC

WL1 WL2 WL3 WL4 WL5 WL6 WL7 WL8 WL9
WL1

0
WL1

1
WL1

2
WL1

3
WL1

4
WL1

5
AVG

0.0

0.5

1.0

1.5

2.0

Fa
n

sp
ee

d
ra

tio

CETC NFMO NMM NCM DLB DTM-CM+PI

(b) Local ambient temperature is 35oC

Figure 5.13: Fan speed ratio in a system with 8 DIMMs

102

200 300 400 500 600 700 800
time (sec)

0
10
20
30
40
50
60
70

Fa
n

sp
ee

d
(C

FM
) Fan: socket A

Fan: socket B

(a) Workload, W13

200 300 400 500 600 700 800
time (sec)

0
10
20
30
40
50
60
70

Fa
n

sp
ee

d
(C

FM
) Fan: socket A

Fan: socket B

(b) Workload, W11

200 300 400 500 600 700 800
time (sec)

0
10
20
30
40
50
60
70

Fa
n

sp
ee

d
(C

FM
) Fan: socket A

Fan: socket B

(c) Workload, W15

Figure 5.14: Fan speed response with CETC, 8DIMM and 45oC

that CETC is able to converge and balance the fan speed in all cases.

Page migration We computed page migration per second to show the robust-

ness of our solution. Figure 5.15(a) shows the rate of page migration in a system

with 8 DIMMs and 45oC ambient temperature. The results show that CETC aver-

age rate of page migrations below 5 pages per second. This overhead is negligible

in practice since migrating a page takes a few microseconds which makes our solu-

tion highly attractive. Furthermore, having a few migrations is an indication that

our solution is stable. The NFMO has the highest migration rate since it may

103

WL1 WL2 WL3 WL4 WL5 WL6 WL7 WL8 WL9
WL1

0
WL1

1
WL1

2
WL1

3
WL1

4
WL1

5
AVG

0

10

20

30

40

50

60

Pa
ge

 m
ig

ra
tio

n
pe

r s
ec

on
d

CETC NFMO NCM

(a) Local ambient temperature 45oC

WL1 WL2 WL3 WL4 WL5 WL6 WL7 WL8 WL9
WL1

0
WL1

1
WL1

2
WL1

3
WL1

4
WL1

5
AVG

0

10

20

30

40

50

60

70

80

Pa
ge

 m
ig

ra
tio

n
pe

r s
ec

on
d

CETC NFMO NCM

(b) Local ambient temperature is 35oC

Figure 5.15: Page migration in a system with 8 DIMMs

104

Table 5.4: Performance overhead (%)
Local ambient temperature number of DIMMs CETC NFMO NMM NCM DLB DTM-CM+PI

45oC 8 0.175 0.184 0.093 0.102 0.001 0.169

35oC 8 0.115 0.120 0.069 0.100 0.000 0.120

45oC 16 0.175 0.187 0.109 0.102 0.001 0.080

35oC 16 0.115 0.122 0.033 0.100 0.000 0.023

activate more DIMMs as it does not consider the trade off between fan speed and

number of active DIMMs. The case of W15 has the highest migration rate since

the workload mix has 3 instances of swim, swim has a wide set of hot pages. The

page migration rate for the system with 8 DIMMs and 35oC ambient temperature

is shown in Figure5.15(b). In this case, the migration rate for CETC drops below

one page per second which causes almost no overhead.

Overhead Table 5.4 shows the average performance overhead for the entire set

of workloads due to clustering, page and CPU migrations and throttling for 45oC

ambient. The overhead is lower in 35oC ambient. In these results we account for

the migration overhead of the pages between memory models as well as threads

between cores and sockets. We also account for the overhead of throttling when

the temperature exceeds the temperature threshold. The results show that the

overhead is below 0.2% for CETC, which is negligible. This overhead mainly

comes from workload scheduling. The overhead is small due to the big difference

between migrations cost and temperature change. The overhead of CETC is lower

than NFMO since the later cause more page migrations. The policy NCM has

lower overhead then CETC since there are no CPU migrations and the maximum

fan speed in this policy is higher which provides better cooling for memory. The

overhead in DLB is lowest since it rely on the fan subsystem only to prevents the

thermal problems which leads to high cooling energy costs.

105

5.4 Conclusion

Memory and cooling subsystems consume a significant amount of energy

in high end servers. Prior research handled temperature and computing energy

problems separately and also did not consider cooling, resulting in suboptimal so-

lutions. In this thesis, we develop CETC, a unified solution that integrates the

energy, thermal and cooling management to maximize energy savings. As part of

CETC, we have proposed a unified thermal and cooling model for CPU and mem-

ory subsystems that is applicable for online management. Our solution is designed

using formal MIMO control to ensure stability. CETC reduces the operational en-

ergy of the memory by clustering memory accesses to a subset of memory modules

while considering thermal and cooling metrics. It also removes hot spots between

and within the sockets and reduces the effects of thermal coupling to minimize

cooling costs. CETC also controls fan speed to ensure stability in control. The

reported experimental results show that our approach delivers an average cooling

energy savings of 70% compared to the state of the art techniques with negligible

performance overhead of less than 0.2%.

Chapter 5, in part, is a reprint of the material that is under preparation

to be submitted to IEEE Transactions in Computer Aided Design of Integrated

Circuits and Systems. Ayoub, R.; Nath R. ;Indukuri, K. R. and Rosing, T.S. The

dissertation author was the primary investigator and author of this paper.

Chapter 6

Conclusion and Future Work

Temperature and cooling challenges are consistently increasing due to tech-

nology scaling, rising in integration level and performance. High temperature af-

fects reliability, performance, leakage energy, thermal packaging costs and cooling

energy costs. Cooling energy costs contribute to a big portion of the energy costs

in modern servers and data centers. As a result, proper consideration of these

two important metrics is required to ensure quality and usability of the computing

products.

In this thesis we demonstrate that managing the temperature, computa-

tional and cooling energy needs to be in performed in an integrated fashion to

maximize efficiency due to the dependencies between these components. In gen-

eral, the characteristics of the workloads are heterogeneous in nature and require

intelligent resource management techniques to assign the workload to the resources

in a thermally and energy aware manner. In conjunction with proper placement of

the workload on the resources we utilize low power states in the system to put the

unnecessary components in a low power mode to save energy. The management

layers spans from microarchitectural level up to server level with multiple sockets

and memory. The following sections summarize the contributions of this thesis

and outline the future research directions.

106

107

6.1 Thesis summary

Microarchitectural level management (CPU): We demonstrate that the

microarchitectural level provides unique opportunities for optimizations. In this

work we target application specific processors where the tasks are known in ad-

vance. Our analysis show that the register file as a thermal hot spot and en-

ergy hungry component. Temperature and energy optimizations are obtained by

eliminating the redundant writes to the register file at virtually no performance

overhead. We use a combined software-hardware approach to capture these writes

during run time at low cost. These redundant writes are identified at the com-

pilation time and this information is encoded in the registers name space using

post compiler register renaming algorithms. We developed a cost efficient hard-

ware support to capture these redundant writes. The hardware that we propose

is programmable, hence preserving the generality of computing. The experimental

results show that this technique is able to achieve 22.3% energy savings in register

file and 4oC reduction in temperature on average.

Core level management (CPU): In this thesis we introduce a novel core level

proactive thermal management technique that intelligently allocates the jobs across

the cores in a chip multiprocessor environment. This layer of management can op-

erates as a complementary to microarchitectural level to maximize savings. We

adopt a proactive paradigm to be able to act before reaching thermal emergencies

to prevent them when possible. In order to predict temperature accurately at low

cost, we introduce a novel temperature predictor that is based on the band lim-

ited property of the temperature frequency spectrum. The temperature prediction

depends on the previous temperature samples. The prediction coefficients can be

identified accurately at the design stage which makes our predictor workload inde-

pendent and of negligible overhead Our results show that applying our algorithm

considerably reduces the average system temperature, hottest core temperature,

and improves performance by 6 oC, 8 oC and 72% respectively.

108

Multi-tier CPU management: In general, at any given speed setting the fan

can dissipate only a limited amount of heat from a CPU. Increasing the speed

requires exponential increase in fan power. This indicates that the temperature

solutions that act only within a socket are not sufficient to minimize cooling en-

ergy since some sockets may generate much more heat than others, which requires

a better heat balance between them. We propose a new multi-tier algorithm that

schedules the workload at the core as well as the socket levels to minimize cool-

ing energy and the occurrence of thermal emergencies. To ensure stable solutions

we developed a control theoretic framework. For the core level we use our proac-

tive thermal management technique to reduce the hot spots across the cores and

improve cooling savings within a given socket. Reported results show that our

multi-tier scheme is able to increase the cooling energy savings to 80% on average

with performance hit less than 1%.

Combined memory and CPU management: In this thesis we introduce a

holistic energy, temperature and cooling management technique that significantly

lowers the energy consumption and cooling costs of CPU sockets and memory. We

develop a comprehensive thermal and cooling model which is used for online deci-

sions. This technique reduces the operational energy of the memory by clustering

pages to a subset of memory modules while accounting for thermal and cooling

aspects. At the same time it tries to remove hot spots between and within the sock-

ets, and reduces the effects of thermal coupling with memory to save cooling costs.

We designed our technique using formal control method to ensure stability. The

experimental results show that this approach delivers a total cooling and memory

energy savings on average of 70% compared to the state of the art techniques at

performance overhead of less than 1%.

109

6.2 Future research directions

6.2.1 Temperature and cooling management in data center

This thesis focuses on optimizing thermal management and cooling tech-

niques in a single machine environment that result in appreciable savings. How-

ever, in a data center the temperature profile and energy consumptions across

these machines is likely to vary despite using load balancing, an issue that makes

our techniques behave as a local optimizations in data centers. One reason for

thermal and energy variations between machines is related to the heterogeneity in

the workloads since different tasks can exercise the resources differently. The other

reason is related to temperature distribution in data center which can be far from

uniform due to poor cooling distribution (e.g. air circulation).

A natural way to manage multi-machine environment is to add higher layers

of management to control the workload allocation between the machines. In our

recent work [13] we evaluate thermal and cooling aware workload management

technique between machines that focuses on the CPU subsystem. Our workload

manager exploits virtual machine technology with live migration to schedule the

workload between the physical machines at low overhead. However, we use a

simplistic thermal model for the data center and we do not account for energy and

thermal optimizations for the memory subsystem. It is important to develop a

robust thermal model at the data center level that is simple enough so it can be

used for run time decisions. Our prior work does not include memory optimizations

which is more challenging than the case of a single machine. This is because

migrating the workload between machines affects power and temperature profiles

of memory in a complex way. It is also important to investigate distributed control

in a data center environment since centralized solutions may not scale adequately.

6.2.2 Liquid cooling

Technology scaling and increase in integration are escalating the power

density and temperature in chips. Moreover, recent research demonstrates that

3D stacking is a promising integration approach to mitigate power and timing

110

constraints of the interconnects [16]. However, its drawbacks are the high power

density and temperature. The key problems with air cooling is that removing

the heat from the CPU and memory becomes very energy consuming when the

temperature reaches very high levels.

Liquid cooling is emerging as alternative technology for removing the excess

heat since it can lower the convective resistance to a much smaller values compared

to air cooling at the same energy cost. The other advantage of liquid cooling is

the ability to direct the flow of the liquid very precisely to the hot spots which

is hard to do with air cooling. Techniques that are developed for air cooling in

this thesis can be extended to study liquid cooling due to the similarities in their

model. However, liquid cooling also has drawbacks in terms of reliability and cost

which need to be improved.

Bibliography

[1] www.sun.com/servers/x64/x4270/.

[2] Quad-Core Intel Xeon Processor 5300 Series: Thermal/Mechanical Design
Guidelines.

[3] www.intel.com/products/server/motherboards/s5400sf/.

[4] http://www.digitalbattle.com/2007/11/12/intel-launches-45nm-cpus/.

[5] http://www.sunon.com.tw/products/pdf/DCFAN/PMD4056.pdf.

[6] www.micron.com/products/dram/.

[7] Failure mechanisms and models for semiconductor devices, jedec publication
jep122c. http://www.jedec.org.

[8] Reducing data center cost with an air economizer. Intel, 2008.

[9] A. Ajami, K. Banerjee, and M. Pedram. Modeling and analysis of nonuniform
substrate temperature effects on global interconnects. IEEE Trans. on CAD,
pages 849–861, 2005.

[10] T. Austin, E. Larson, and D. Ernst. Simplescalar: An infrastructure for
computer system modeling. IEEE Computer, 35(2):59–67, 2002.

[11] J. Ayala, M. Lopez-Vallejo, A. Veidenbaum, and C. Lopez. Energy aware
register file implementation through instruction precode. ASAP, pages 86 –
96, 2003.

[12] R. Ayoub, P. Petrov, and A. Orailoglu. Application specific instruction mem-
ory transformations for power efficient, fault resilient embedded processors.
SOCC, pages 195 – 198, 2004.

[13] R. Ayoub, S. Sharifi, and T. S. Rosing. Gentlecool: Cooling aware proactive
workload scheduling in multi-machine systems. DATE, pages 295–298, 2010.

[14] L. Barroso and U. Holzle. The case for energy-proportional computing. Com-
puter, 40(12):33–37, 2007.

111

112

[15] L. Barroso and U. Holzle. The datacenter as a computer an introduction to
the design of warehouse-scale machines. 2009.

[16] B. Black, M. Annavaram, N. Brekelbaum, J. Devale, L. Jiang, G. H. Loh,
D. Mccauley, P. Morrow, D. W. Nelson, D. Pantuso, P. Reed, J. Rupley,
S. Shankar, J. Shen, and C. Webb. Die stacking (3d) microarchitecture, 2006.

[17] P. Bose. Power-efcient microarchitectural choices at the early design stage.
Workshop on Power-Aware Computer Systems, 2003.

[18] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework for
architectural-level power analysis and optimizations. ISCA, pages 83–94, 2000.

[19] P. Chaparro, J. Gonzalez, G. Magklis, Q. Cai, and A. Gonzalez. Under-
standing the thermal implications of multicore architectures. IEEE TPDS,
18(8):1055–1065, 2007.

[20] H. Chiueh, L. Luh, J. Draper, and J. Choma. A novel fully integrated fan
controller for advanced computer systems. SSMSD, pages 191–194, 2000.

[21] J. Choi, C. Cher, H. Franke, H. H. A., Weger, and P. Bose. Thermal-aware
task scheduling at the system software level. ISLPED, pages 213–218, 2007.

[22] A. Coskun, T. Rosing, and K. Gross. Proactive temperature management in
mpsocs. ISLPED, 2008.

[23] L. Cruz, A. Gonzalez, M. Valero, and P. Topham. Multiple-banked register
file architecture. ISCA, pages 316 – 325, 2000.

[24] G. Dhiman, K. Mihic, and T. Rosing. A system for online power prediction
in virtualized environments using gaussian mixture models. DAC, pages 807–
812, 2010.

[25] X. Fan, C. Ellis, and A. Lebeck. Memory controller policies for dram power
management. ISLPED, pages 129 – 134, 2001.

[26] G. Franklin, J. Powel, and M. Workman. Digital Control of Dynamic Systems.
Addison-Wesley, 1990.

[27] D. R. Gonzales. Micro-risc architecture for the wireless market. International
Symposium on Microarchitecture, pages 30 – 37, 1999.

[28] H. Hai, S. Kang, L. Charles, and K. Tom. Improving energy efficiency by
making dram less randomly accessed. ISLPED, pages 393–398, 2005.

[29] S. Haihua, L. Frank, D. Anirudh, A. Emrah, and N. Sani. Full chip leakage
estimation considering power supply and temperature variations. pages 78–83,
2003.

113

[30] A. Hashimoto and J. Stevens. Wire routing by optimization channel assign-
ment within large apertures. Design Automation Workshop, pages 155–163,
1971.

[31] T. Heath, A. P. Centeno, P. George, L. Ramos, Y. Jaluria, and R. Bian-
chini. Mercury and freon: temperature emulation and management for server
systems. ASPLOS, pages 106–116, 2006.

[32] J. Hennessy and D. Patterson. Computer Architecture. Morgan Kaufmann,
2003.

[33] S. Heo, K. Barr, and K. Asanovic. Reducing power density through activity
migration. ISLPED, pages 217–222, 2003.

[34] N. Kim and T. Mudge. The microarchitecture of a low power register file.
ISLPED, pages 384–389, 2003.

[35] A. Kumar, L. Shang, L. Peh, and N. Jha. Hybdtm: A coordinated hardware-
software approach for dynamic thermal management. DAC, pages 548–553,
2006.

[36] C.-H. Lin, C.-L. Yang, and K.-J. King. Ppt: Joint perfor-
mance/power/thermal management of dram memory for multi-core systems.
ISLPED, pages 93–98, 2009.

[37] J. Lin, H. Zheng, Z. Zhu, H. David, and Z. Zhang. Thermal modeling and
management of dram memory systems. ISCA, pages 312–322, 2007.

[38] R. Lyon and A. Bergles. Noise and cooling in electronics packages. IEEE
Trans on Components and Packaging Technologies, 29(3):535–542, 2006.

[39] F. Marvasti. Nonuniform Sampling Theory and Practice. Kluwer Ace-
demic/Plenum Publishers, New York, 2001.

[40] G. Mohamed, M. Powell, and T. Vijaykumar. Heat-and-run: leveraging smt
and cmp to manage power density through the operating system. SIGOPS
Oper. Syst. Rev., 38(5):260–270, 2004.

[41] D. Mugler. Computationally efficient linear prediction from past samples of
a band-limited signal and its derivative. IEEE Transactions on Information
theory, 36:589–596, 1990.

[42] D. Mugler. Computational aspects of an optimal linear prediction formula for
band-limited signals. Computational and applied mathematics, pages 351–356,
1992.

114

[43] D. Mugler and Y. Wu. An integrator for time-dependent systems with oscil-
latory behavior. Computer Methods in Applied Mechanics and Engineering,
171:25–41, 1999.

[44] B. Nathan, D. Ronald, H. Lisa, L. Kevin, S. Ali, and R. Steven. The m5
simulator: Modeling networked systems. IEEE Micro, 26(4):52–60, 2006.

[45] A. Papoulis. Signal analysis. McBraw-Hill, London, 1981.

[46] I. Park, D. Powell, and N. Vijaykumar. Reducing register ports for higher
speed and lower energy. MICRO, 2002.

[47] M. Patterson. The effect of data center temperature on energy efficiency. Proc.
ITHERM, pages 1167–1174, 2008.

[48] M. Pedram and S. Nazarian. Thermal modeling, analysis, and management
in vlsi circuits: principles and methods. pages 1487–1501, 2006.

[49] P. Petrov and A. Orailoglu. Performance and power effectiveness in embedded
processors - customizable partitioned caches. IEEE TCAD, 20(11):1309–1318,
2001.

[50] P. Petrov and A. Orailoglu. Tag compression for low power in dynamically
customizable embedded processors. IEEE TCAD, 23(7):1031–1047, 2004.

[51] M. Sami, D. Sciuto, C. Silvano, V. Zaccaria, and R. Zafalon. Low-power data
forwarding for VLIW embedded architectures. IEEE Transactions on VLSI

Systems, 10(5):614–622, 2002.

[52] R. Schmidt, E. Cruz, and K. Iyengar. Challenges of data center thermal
management. IBM Journal of Research and Development, 49(4/5):709–723,
2005.

[53] S. Sharifi and T. Rosing. Accurate direct and indirect on-chip temperature
sensing for efficient dynamic thermal management. IEEE TCAD, 29(10):1586–
1599, 2010.

[54] D. Shin, J. Kim, J. Choi, S. Chung, and E. Chung. Energy-optimal dynamic
thermal management for green computing. ICCAD, 2009.

[55] K. Skadron, M. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, and
D. Tarjan. Temperature-aware microarchitecture. ISCA, pages 2–13, 2003.

[56] K. Skadron, M. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, and
D. Tarjan. Temperature-aware microarchitecture. ISCA, pages 2–13, 2003.

115

[57] K. Skadron, M. Stan, K. Sankaranarayanan, W. Huang, S. Velusamy, and
D. Tarjan. Temperature-aware microarchitecture: Modeling and implementa-
tion. TACO, pages 94–125, 2004.

[58] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, and
D. Tarjan. Temperature-aware computer systems: Opportunities and chal-
lenges. IEEE Micro, 23:52–61, 2003.

[59] Q. Tang, S. Gupta, and G. Varsamopoulos. Thermal-aware task scheduling
for data centers through minimizing heat recirculation. Proc. ICCC, pages
129–138, 2007.

[60] D. Tarjan, S. Thoziyoor, and N. Jouppi. Cacti 4.0. Technical report, HP
Laboratories, pages 1–15, 2006.

[61] S. Thoziyoor, J. H. Ahn, M. Monchiero, J. B. Brockman, and N. P. Jouppi.
A comprehensive memory modeling tool and its application to the design and
analysis of future memory hierarchies. ISCA, pages 51–62, 2008.

[62] Z. Wang, C. Bash, N. Tolia, M. Marwah, X. Zhu, and P. Ranganathan. Opti-
mal fan speed control for thermal management of servers. IPAC, pages 1–10,
2009.

[63] I. Yeo, C. Liu, and E. Kim. Predictive dynamic thermal management for
multicore systems. DAC, pages 734–739, 2008.

[64] Y. Zhang and A. Srivastava. Accurate temperature estimation using noisy
thermal sensors. DAC, pages 472–477, 2009.

