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ABSTRACT OF THE DISSERTATION

Anomalous radial transport in tokamak edge plasma

by

Vasudeva Raghavendra Kowsik Bodi

Doctor of Philosophy in Engineering Sciences (Aerospace Engineering)

University of California San Diego, 2010

Professor Sergei Krasheninnikov, Chair

Energy from nuclear fusion of Hydrogen isotopes is a possible alternative to fos-

sil fuels. For this to be of practical utility, confinement of Hydrogen in a plasma

state for a minimum duration is necessary. Since confinement is strongly affected

by radial transport processes, understanding the observed modes of radial trans-

port in confined plasma is of vital importance for progress towards fusion energy.

The present dissertation is aimed at studying radial(cross-field) transport in the

tokamak edge plasma.

The present thesis is divided into three parts:

• In the first part, we present a model of generation of intermittent convective

meso-scale structures (blobs) based on the synergy of the interchange drive

and nonlinear effects associated with drift–wave turbulence.

• In the second part, we attempt to explain the preferential propagation of

blobs radially outward as a consequence of the radially decreasing density of

a confined plasma.

• In the third part, we present a model for simulating anomalous radial trans-

port in kinetic codes for tokamak edge plasma.

xiii



Chapter 1

Introduction

1.1 Background

Energy from nuclear fusion of Hydrogen isotopes is a possible alternative

to fossil fuels. The abundance of Hydrogen in nature (in the form of water) and

the large amount of energy released in a fusion reaction per unit fuel mass make

this an attractive alternative in comparison with other sources of energy.

For a nuclear fusion based power plant to be of practical utility, one should

achieve a steady–state energy output from a spatially confined fuel. A quantitative

criterion, called Lawson’s criterion, to verify the practicability of the concept can

be defined as the condition that the energy output from the fusion reactor exceeds

the energy required to make it operational. In terms of plasma density, n, and the

duration of confinement, τE, Lawson’s criterion can be written as,

nτE ≥ 2 · 1020m−3s

A significant hurdle towards arriving at the working design of any powerplant has

been the availability of suitable materials that can withstand the material stresses

involved in the operation of the powerplant. In order to achieve optimum power

output, the temperature of fusion–plasmas should be of the order of 2 · 108 K.

Plasma at such a high temperature can corrode any material that it comes into

contact with, and hence an alternative confinement mechanism is required.

1
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The present work concerns the spatial confinement of high temperature plas-

mas by the application of magnetic fields. In particular we are interested in plasma

confined using a combination of toroidal and poloidal magnetic fields. Such a con-

finement device, resulting in a plasma confined in the shape of a torus, is known

as a tokamak. A detailed introduction to tokamak plasma can be found in the

books by Kadomtsev [1] and Wesson [2]. In the present work we are interested in

the effect of anomalous transport processes on the confinement of tokamak plasma.

Since confinement is strongly affected by transport processes in the plasma, under-

standing the observed modes of transport in confined plasma is of vital importance

for progress towards fusion energy.

1.2 Transport in tokamak plasma

Classical transport in tokamak plasma is determined by Coulomb collisions,

and hence can be expressed as diffusive transport, with the transport coefficient

D ∼ ∆2ν

where ν is the collision frequency and ∆ is the collisional step–size. In a uniform

magnetic field the charged particle gyro–radius is the collisional step–size. In a

tokamak, since the magnetic field is non–uniform, charged particle drifts result in

the motion of particles across the flux–surfaces. The width of the particle drift–

orbits across the flux–surfaces forms the collisional step–size [3]. This description is

known as neoclassical theory, in contrast to the classical theory that describes col-

lisional transport in uniform magnetic field. A review of classical and neoclassical

transport theory for tokamak plasma can be found in Ref. [4].

Unfortunately transport predicted by the classical and neoclassical theories

can not fully explain that observed in experiment. The difference between the ob-

served transport, and that predicted by collisional theories, is known as anomalous

transport and is believed to be primarily due to turbulent plasma processes. Un-

like classical transport which is purely diffusive, anomalous transport is believed

to be contain a convective component [5]. Based on experimental observations
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of tokamak edge plasma, it is now believed that anomalous radial transport con-

sists of intermittent convecting structures, that are elongated along the fieldlines,

whose extent in the perpendicular plane (to the fieldlines) is larger than the gyro-

radii (microscales) but smaller than the confinement dimensions (macroscales) and

thus, referred to as belonging to the mesoscales. These structures are referred to

as blobs, since their density differs from that of the surrounding plasma. The

mechanism of propogation of blobs in tokamak edge was first explained in [6].

Curvature and ∇B drifts on the outer side of the torus act as effective gravity,

+

B

−E

v

Figure 1.1: Illustration of the mechanism of blob propogation on the outer side of
tokamak.

and result in plasma polarization. The resulting vertical electric field causes an

E × B drift which is radially outward towards the chamber walls. This process is

illustrated in Fig. 1.1. The mechanism of propogation of such coherent structures

in the scrape-off layer has been the studied by analytical and numerical methods

([7] for example), a review of the current understanding of blobby transport can

be found in [8].

In chapters 2 & 3 we concentrate on the mechanism of generation of blobs

in tokamak edge plasma using analytical and numerical methods. In chapter 4 we

study the effect of the edge plasma density gradients on the propogation of blobs

using numerical simulations. In chapter 5 we introduce the kinetic code TEM-

PEST [9] for simulating edge plasma transport, and present a particle and energy

conserving Krook model for computing the effect of collisions. In chapter 6 we

present a model for anomalous radial transport computations in kinetic transport

codes for tokamak edge plasma.
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1.3 Numerical simulations of tokamak plasma

In the absence of sufficient information for analytical models, numerical

simulations are an alternative approach for verifying our understanding, and ap-

plying the derived insights towards estimating effects of any proposed modifications

before their implementation. Numerical simulations are also needed to extrapo-

late the understanding derived from the existing devices towards the design and

operation of larger devices (like ITER).

Efforts are in progress at many groups towards developing computation

tools that can help understand the experimental observations [10]. A necessary

prerequisite for any such tool is that it must first demonstrate the physical phe-

nomena that have already been satisfactorily explained by analytical theories. The

computational tools can then be tested by progressively tackling increasingly com-

plex phenomena observed in plasma confinement devices. Complex phenomena

that are yet to be fully understood can then be tackled using such computational

tools.

In chapters 3 & 4 we use numerical simulations to verify the analytical un-

derstanding of the mechanism of generation and propagation of blobs. In these

chapters we are interested in the closed field–line region of the tokamak edge

plasma. We describe the plasma in this region using fluid equations. We further

reduce the computational expense by considering a small section of the poloidal

plane. This allows us the efficiency of computation required for simulating plasma

turbulence.

While the fluid description is reasonable in the closed field–line region, its

applicability in the open field–line region in the edge scrape-off layer (SOL) is

debatable. This uncertainty in its applicability is primarily due to the fact that

the field–line connection length is comparable to the particle mean free path in

the hotter parts of the scrape–off layer. An additional source of complexity in this

region is that, since the gradients are sharp in this region in H–mode plasma, the

gradient length–scales in the parallel direction can be comparable to the particle

mean free paths. Hence, numerical simulations for tokamak edge plasma must

solve the kinetic equations. Chapter 5 contains a brief description of the kinetic
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code TEMPEST, and the formulation & implementation of a particle and energy

conserving Krook collision model to include the effects of thermal relaxation in the

code. Chapter 6 concerns the formulation of a model for anomalous transport, and

its implementation in the kinetic code TEMPEST.

1.4 Dissertation outline

The present thesis is divided into three parts:

1.4.1 Chapters 2 & 3: Generation mechanisms of blobs in

tokamak edge plasmas

Radial transport at the edge of magnetic confinement devices (such as a

tokamak) has been found to be often dominated by intermittent convective-like

transport in the form of meso-scale coherent structures that are extended along

the magnetic field lines. Such filament-like structures can propagate in a ballistic

way toward the wall, for the distance of ten centimeters or more, and can strongly

enhance both plasma energy and particle transport and plasma-wall interactions.

The apparent examples of such meso-scale structures in the edge and the SOL

plasmas are ELMs and blobs, and pellet clouds in the core of fusion devices.

In this work we show that the interplay of the interchange drive and nonlin-

ear effects associated with drift wave turbulence (which is rather strong at the edge

in L-mode) can lead to the blob formation. In particular, we discuss the possible

mechanism of blob generation due to synergetic effects of a) the interchange drive,

b) turbulent Reynolds stress, and c) local plasma perturbations associated with

inverse cascade of the drift-wave turbulence. We note that recent experimental ob-

servations qualitatively agree with a physical picture of blob generation outlined

in this paper.

This work has been published as
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• K. Bodi, S. I. Krasheninnikov, and A. I. Smolyakov, On the mechanisms

of generation of meso-scale convective structures in tokamak edge plasma,

Contributions to Plasma Physics, 48(1-3):6367, 2008. Proceedings of the

11th International Workshop on Plasma Edge Theory in Fusion Devices.

• K. Bodi, A.I. Smolyakov, and S.I. Krasheninnikov, On blob generation mech-

anisms in tokamak edge plasma, Journal of Nuclear Materials, 390-391:359

363, 2009. Proceedings of the 18th International Conference on Plasma-

Surface Interactions in Controlled Fusion Device.

1.4.2 Chapter 4: Blob propagation in non-homogeneous

plasma

In this work we look at the convective blob propagation in the Scrape-Off-

Layer and/or limiter shadow region with emphasis on the effect of a gradient in the

equilibrium plasma density. We consider the effect of the gradient of equilibrium

plasma density beyond the Boussinesq approximation. We show that the vorticity

modification due to the plasma density gradient leads to the acceleration for the

blobs propagating into the region of lower density and deceleration for the blobs

propagating toward the regions of higher density. Analytical estimates are corrob-

orated by direct numerical simulations.

This work has been published as:

• K. Bodi, S. I. Krasheninnikov, and A. I. Smolyakov. Blob dynamics in an

inhomogeneous plasma. Physics of Plasmas, 15(10):102304, 2008.

1.4.3 Chapters 5 & 6: Modeling & simulation of anomalous

radial transport in kinetic codes for edge plasma

Modeling of anomalous (turbulence-driven) radial transport in controlled

fusion plasmas is necessary for long-time transport simulations. Here the focus is
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continuum kinetic edge codes such as the (2-D, 2-V) transport version of TEM-

PEST, NEO, and the code being developed by the Edge Simulation Laboratory,

but the model also has wider application. We present an anomalous diagonal

transport matrix model with velocity-dependent convection and diffusion coeffi-

cients that allows contact with typical fluid transport models (e.g., UEDGE). We

also present a particle and energy conserving Krook collision model that can be

used to compute collisional transport due to ion drift orbits.



Chapter 2

Mechanism of blob generation in

tokamak edge

2.1 Introduction

Cross-field plasma transport in both L- and H-mode plasmas is character-

ized by intermittent radial convection of filamentary structures elongated along

the magnetic field ([11–17]). Such coherent meso-scale structures have been called

blobs and ELM filaments in L- and H-mode regimes respectively. While peeling-

ballooning instabilities and their subsequent nonlinear saturation have been cited

as the mechanism of ELM generation [18–20], plasma polarization (due to mag-

netic field curvature) has been suggested ([6, 8]) to be an underlying mechanism

for the formation and convection of blobs. It has also been recently proposed that

nonlinear plasma polarization due to Reynolds stresses associated with small-scale

drift-wave turbulence can be an important factor in the formation of electromag-

netic meso-scale structures i.e., blobs [21].

Generically, the process of formation of meso-scale structures as a result of

modulational instability of drift waves has been a subject of intensive studies for a

long time [22–26]. It is widely recognized now that such structures, in particular

zonal flows, play a critical role in regulation and saturation of drift wave turbulence

and transport ([27–33]). Our analysis of turbulent blob generation in [21] was based

8
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on the application of the wave kinetic equation approach. Here we consider the

same process of blob generation by using the four-wave interaction approach. We

also discuss the effects of equilibrium plasma density variation on the propagation

of seeded blobs. In Section 2.2 we present the system of equations and review

the results of [21]. In Section 2.3 we consider the generation of blobs through the

modulational instability of drift waves based on the four-wave interactions.

2.2 Governing equations

We use a system of reduced fluid equations (the notation is standard) that

can be obtained from standard fluid equations by expansion in 1/B parameter [34].

In the low frequency, ω < ωci , and long wavelength, k2⊥ρ
2
i < 1, approximations,

for low plasma pressure ~∇× ~B − 0, the electron continuity equation reduces to a

simple form:
(
∂

∂t
+ ~VE · ~∇

)
n− 2n

(
~VE + ~Vpe

)
· ~∇ lnB − 1

e
∇||J = 0 (2.1)

where ~VE =
(
êz × ~∇φ

)
/B, ~Vpe = −

(
êz × ~∇pe

)
/ (enB), and êz = ~b is the direc-

tion of the local magnetic field. The nonlinear parallel gradient operator (∇||) is

defined as

∇|| (. . . ) =

(
∂

∂z
+

1

B
~B · ~∇

)
(. . . ) =

∂

∂z
(. . . )− 1

B0

êz ·
[
~∇A× ~∇ (. . . )

]
(2.2)

Here A is the parallel component of the vector potential that describes magnetic

perturbations ~B = −êz × ~∇A. The parallel component of the electric current is

J = − (1/µ0)∇2
⊥A. In the regime of ω < k||vTe , which is assumed in our work,

Ohm’s law is

1

c

∂A

∂t
+∇||

(
φ− Te

e
lnn

)
= 0 (2.3)

For finite Ti plasma, inertial polarization drift and the ion drift due to gyroviscosity

contribute to the Reynolds stress, which is responsible for generation of large–scale

structures; hence these terms are retained in the present analysis. Taking into
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account the gyroviscous cancellation (e.g. see [34] and [35–37]), ion continuity

equation is

(
∂

∂t
+ ~VE · ~∇

)
n− 2n

(
~VE + ~Vpe

)
· ~∇ lnB − n0ρ

2
i
~∇⊥ ·

[
d0

dt

(
e~∇⊥φ

Ti
+
~∇⊥pi
pi

)]
= 0

(2.4)

where, ~Vpi =
(
êz × ~∇pi

)
/ (enB),

d0

dt
(. . . ) =

(
∂

∂t
+

[
c

B0

b̂× ~∇φ
]
· ~∇
)
(. . . ) =

∂

∂t
(. . . ) +

c

B0

b̂ ·
[
~∇φ× ~∇ (. . . )

]

Quasineutrality equation is,

−∇||J +
2

B

[
êz × ~∇ (pe + pi)

]
· ~∇ lnB + en0ρ

2
i
~∇⊥ ·

[
d0

dt

(
e~∇⊥φ

Ti
+
~∇⊥pi
pi

)]
= 0

(2.5)

2.2.1 Separation of Scales

In the following analysis, all perturbed quantities are represented as a sum

of large-scale and small-scale components, X = Xk + Xq, q < k, where k and q

are the small and large-scale wave-numbers respectively. An analogous separation

of scales is assumed in the time domain, Ωq < ωk: ωk are the eigen-frequencies

of small-scale fluctuations, Xk ∼ exp (−iωkt) and Ωq are the large-scale mode

frequencies, Xq ∼ exp (−iΩqt). The latter are affected by nonlinear effects and can

deviate significantly from the linear eigenvalues.

2.2.2 Inverse cascade and ballooning instability of meso-

scale structures

In [21], blob generation was explained as a synergy of the interchange drive

and nonlinear effects associated with drift wave turbulence. The Reynolds stress

was obtained using the wave kinetic equations. Based on the resulting dispersion

relation, an instability criterion was derived for the ensemble averaged magnitude
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(〈φ〉) and length-scales (〈kx〉) of the fluctuations for the destabilizing turbulent

stresses to overcome the Alfven stabilization (for β = c2s/v
2
A)

ρs〈kx〉
e〈φ〉
T

>
1

qsRqy
√
β

(2.6)

where qs is the safety factor. For the large-scale modes, an instability criterion

was derived to explain the length-scales, ∆, of the meso-scale structures. A sim-

ple, order of magnitude estimate was obtained for large plasma fluctuations by

taking qy∆ ∼ 1, and neglecting the destabilizing effect of turbulent stresses in the

instability criterion
c2s
R∆

− c2sρ
2
s

∆4
>

V 2
A

q2sR
2

(2.7)

The competition of the first and second terms defines the characteristic size of

meso-scale structure for which the left hand side is maximal:

∆m ≈
(
ρ2sR

)1/3
(2.8)

(we assume that ∆m < Ln, where Ln is the density scale length). Then the

instability within this flux tube occurs for relatively high beta at the edge of

plasma

β > q−2 (ρs/R)
2/3 (2.9)

2.3 Blob generation via modulational instability

of drift waves

In this section, we follow the approach of four-wave modulational interac-

tion to study blob generation. We proceed from the above-described separation of

scales, and for the primary fluctuations, we consider simple drift-wave type fluc-

tuations assuming that primary modes are electrostatic and that the condition

ω ≤ k||vTe is satisfied. In this case, the electron density response is,

nk =
eφk
Te

n0

The ion response takes into account the equilibrium gradients of density and ion

temperature (which are assumed to be small enough to avoid ITG instability). In
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the lowest order, neglecting the effects of dispersion and the gradient of the equilib-

rium magnetic field, we obtain the simple electron drift-wave primary fluctuations

ω = ω∗k = −ky
cTe
eB0

1

n0

dn0

dx
≡ kyv∗

where, v∗ = − (cTe/eB0)n
′
0/n0. Nonlinear interaction of these primary fluctua-

tions with large-scale components leads to the excitation of the sidebands of the

perturbed quantities, which can be obtained from the respective governing equa-

tions. We assume that the ion temperature sidebands follow the simple relation

T±k+q
T0i

=

(
∂ lnT0i
∂ lnn0

)
eφ±k+q

Te
≡ ηi

eφ±k+q

Te

where, we have defined ηi as: ηi = ∂ lnT0i/∂ lnn0. This neglects the nonlinear gen-

eration of temperature sideband via convection. Since the small-scale fluctuations

are electrostatic (Ak = 0), Ohms law can be written as

−i1
c
(Ω− qv∗)Ak+q + i

Te
e
(qz + kz)

(
eφk+q
Te

− nk+q
n0

)
= 0 (2.10)

Corrections due to Ak+q, are small (of the dispersive order, e.g. k2⊥ρ
2
i ), and are

neglected here. As a result, we have no direct generation of sidebands of the

vector potential in the Ohms law and the sidebands of primary fluctuations remain

electrostatic

eφk+q
Te

=
nk+q
n0

Neglecting the dispersive corrections, thus leading to A±k+q = 0, the large-scale

component of the parallel momentum balance remains linear

1

c

∂Aq
∂t

+
∂

∂z

(
φq −

Te
e

ñq
n0

)
+

1

c

cTe
eB0

1

n0

êz ·
(
~∇Aq × ~∇n0

)
= 0 (2.11)

For Ω < qzvTe , electron and ion temperature fluctuations are determined by

∇||Te = 0

∂Tiq
∂t

+ ~vEq
· ~∇T0i = 0 (2.12)

Neglecting the magnetic gradient drift and parallel current terms (of the dispersive

order) in the electron continuity equation, we have

nq
n0

=
qv∗
Ω

eφq
Te

(2.13)
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Denoting the contribution of Reynolds stress as R1, the quasineutrality equation

is

ΩDi

(
nq
n0

+
Tiq
T0i

)
− ΩDe

(
nq
n0

+
Teq
T0e

)

− Ωq2⊥ρ
2
i

(
nq
n0

+
Tiq
T0i

+
ρ2s
ρ2i

eφq
Te

)
+

c

4πen0

qzq
2
⊥Aq + iρ2iR1 = 0

(2.14)

where ΩDi,e
= qyvDi,e

, vDi,e
= ±cTi,e/eB0∂ lnB/∂x, τ = T0i/T0e , ρ

2
s = Te/miω

2
ci
,

ρ2i = τρ2s. Linearizing Eq. 2.12 for the electron and ion temperature fluctuations,

and Eq. 2.13 for density fluctuations, neglecting dispersion in the large-scale com-

ponents, we obtain the lowest order expressions for the Reynolds stress, leading to

the final dispersion relation

Ω2 + ΩΩ∗τ (1 + ηi)−
ΩDi

Ω∗

q2⊥ρ
2
s

[
1 + ηi + τ−1 (1 + ηe)

]
− q2zv

2
A

= −2

(
c

B0

)2 ∣∣∣êz ·
(
~k × ~q

)∣∣∣
2

|φk|2
(
1 + τ−1 + ηi

)
(2.15)

Here, the second term describes the drift stabilization due to finite ion temperature,

the third term is the interchange drive, and the fourth term describes the Alfven

stabilization. The term on the right-hand side is the Reynolds stress drive that

takes into account the diamagnetic contributions due to finite ion temperature. Eq.

2.15 is consistent with results of the previous analysis following the wave kinetic

approach [21]. Note that the growth rate of this electromagnetic instability is a

factor qρs larger than for electrostatic modes with a finite qy.

2.4 Summary

We can see, from equations 2.7 – 2.9, that there is a length–scale limit for

the stability of a meso–scale structure. Structures having a perpendicular length–

scale larger than ∆m are thus propelled away from the remaining confined plasma,

and appear to us as “blob”s. In the following chapter, we describe numerical

investigations to verify the explanation for blob generation that has been described

in the present section.
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Chapter 2 is, in its entirety, a reprint of the material published in “On

blob generation mechanisms in tokamak edge plasma”, K. Bodi, A.I. Smolyakov,

and S.I. Krasheninnikov, Journal of Nuclear Materials, 390-391:359 (2009). The

dissertation author was the primary author of this publication.



Chapter 3

Numerical simulations

In the present chapter, we present the computational investigation of the

generation of blobs as a result of the interplay between drift-wave turbulence,

interchange drive and field-line stabilization. In Sec. 3.1 we present the governing

equations for edge plasma that describe the physical processes that are of interest.

In Sec. 3.2, we describe the computational method used in the simulations. The

initial equilibrium state and the results of the simulations are presented in sections

3.3 and 3.4 respectively.

3.1 Governing equations

We consider a tokamak of major radius R0 and minor radius a, and intro-

duce local coordiantes, x, y and z along the radial, poloidal and toroidal directions,

as shown in Fig. 3.1. We start with the equations derived in the standard aspect

ratio expansion, ε = a/R ≪ 1, [38]. We consider the edge region of plasma on the

outerside of the tokamak where the magnetic field can be expressed by a vector

potential using

~B = Bb̂ = Bz êz + ~B⊥ = Bz êz − êz × ~∇Az (3.1)

where Bz = B0 (1− x/R) is the component of the static magnetic field along the

toroidal direction, and B⊥ is generated by the plasma current jz:

jz = − c

4π
∇2

⊥Az (3.2)

15
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Figure 3.1: Schematic of the local coordinates.

The vorticity equation

cMn0

B2

(
∂

∂t
+ ~V · ~∇

)
∇2φ+

Te
BR

∂n

∂y
=

1

c

(
b̂ · ~∇

)
jz (3.3)

is derived using the Boussinesque approximation. Here M is the mass of the ions,

c is the velocity of light, φ is the electrostatic potential, n0(x, y) ≡ n0(x) ≡ n0 is

the plasma density at the separatrix, and ~V is the perpendicular velocity due to

the local ~E × ~B drift

~V =
c

B
êz × ~∇φ (3.4)

The continuity equation, for plasma density n, is
(
∂

∂t
+ ~V · ~∇

)
n =

1

e

(
b̂ · ~∇

)
jz (3.5)

and the parallel component of the electron equation of motion (Ohm’s law) leads

to an equation for the vector potential, Az,

∂Az
∂t

+ c
(
b̂ · ~∇

)
φ =

cTe
en

(
b̂ · ~∇

)
n (3.6)

We consider the case of a strong toroidal magnetic field, Bz ≫ B⊥, and

approximate the parallel gradients as b̂ · ~∇ ≡ ∇|| ≈ ∇z. This linearization of

the parallel derivates means that we will not be able to capture the non-linear
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interactions of Alfven waves, which are not of interest in the present study. We

further make the assume that the parallel gradients have a length scale qR (and

hence k|| = (qR)−1), where q is the safefty-factor, so that the original 3-D system

of equations is now reduced to 2-D. The reduced set of equations, derived from

Eq.s 3.2–3.6 are

∂

∂t

[
n

(
∂

∂t
+ ~V · ~∇

)
∇2

⊥

eφ

Te

]
+
ωci
R

∂

∂t

[
∂n

∂y

]
= n0

V 2
A

q2R2
∇2

⊥

(
log n− eφ

Te

)
(3.7)

∂

∂t

[(
∂

∂t
+ ~V · ~∇

)
n

]
= ρ2sn0

V 2
A

q2R2
∇2

⊥

(
log n− eφ

Te

)
(3.8)

where ωci = eB/Mc is the ion cyclotron frequency, and V 2
A = B2/4πMn0 is the

Alfven velocity.

3.1.1 Normalization scales

In order to perform computations of equations 3.7 and 3.8, we select normal-

ization length and time scales such that all the physical process are of comparable

time–scales. For normalization length, and time–scales of δ and τ respectively, this

is equivalent to the constraint that all terms in equations 3.7 and 3.8 must be of

comparable order of magnitude. Estimating the orders of the various terms in the

two equations, we have

∂

∂t

[
n
∂

∂t
∇2

⊥

eφ

Te

]

︸ ︷︷ ︸
+
∂

∂t

[
n~V · ~∇∇2

⊥

eφ

Te

]

︸ ︷︷ ︸
+
ωci
R

∂

∂t

[
∂n

∂y

]

︸ ︷︷ ︸
= n0

V 2
A

q2R2
∇2

⊥

(
log n− eφ

Te

)

︸ ︷︷ ︸
n

τ 2δ2
eφ

Te

cTe
eB

1

δ2
n

τδ2

(
eφ

Te

)2
ωci
R

n

τδ

V 2
A

q2R2

n

δ2
eφ

Te

∂

∂t

[
∂n

∂t

]

︸ ︷︷ ︸
+
∂

∂t

[
~V · ~∇n

]

︸ ︷︷ ︸
= ρ2sn0

V 2
A

q2R2
∇2

⊥

(
log n− eφ

Te

)

︸ ︷︷ ︸
n

τ 2
cTe
eB

1

δ2
n

τ

eφ

Te
ρ2s

V 2
A

q2R2

n

δ2
eφ

Te

Normalizing the electrostatic potential (φ) using the electron temperature

(Te), φ̃ = eφ/Te, and normalizing density using the separatrix density, n0, we have
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the constraints

1

τ 2δ2
∼ ρscs

τδ4
∼ ωci

R

1

τδ
∼ V 2

A

q2R2

1

δ2

1

τ 2
∼ ρscs

τδ2
∼ V 2

A

q2R2

ρ2s
δ2

From the first set, we have,

1

τ 2δ2
∼ ρscs

τδ4
∼ ωci

R

1

τδ︸ ︷︷ ︸
∼ V 2

A

q2R2

1

δ2

δ3 ∼ ρ2sR︸ ︷︷ ︸

τ ∼ δ2

ρscs

Thus, we arrive at the normalization length and time-scales of δ = (ρ2sR)
1/3

and

τ = ω−1
ci

(R/ρs)
2/3 respectively. Our normalized governing equations are

∂

∂t

[
n

(
∂

∂t
+ ~V · ~∇

)
∇2φ

]
+
∂

∂t

[
∂n

∂y

]
= n0Ω

2
A∇2 (log n− φ) (3.9)

∂

∂t

[(
∂

∂t
+ ~V · ~∇

)
n

]
=
(ρs
R

)2/3
n0Ω

2
A∇2 (log n− φ) (3.10)

where we have omitted the (̃) signs as all variables are normalized. Here ~V =

êz ×∇φ is the normalized velocity, and Ω2
A = (τVA/qR)

2.

The aim of our normalization is to obtain a set of equation where inter-

change, drift and Alfven modes are of comparable time-scales. As we can notice

in equations 3.9 and 3.10, the only free parameter in this system is the coefficient

Ω2
A which depends on the tokamak operating parameters.

In table 3.1 we compute the value of Ω2
A for different tokamaks. We can

see from the data that Ω2
A ∼ 1 for the existing tokamaks. We can see that all

terms are of equal time–scales in the vorticity equations (Eq. 3.9). From the

last row in table 3.1, we can see that the coefficient of the parallel term in the

continuity equation(Eq. 3.10) is negligible. Hence, in the present work, we rewrite

the continuity equation by neglecting the parallel contribution.

∂

∂t

[(
∂

∂t
+ ~V · ~∇

)
n

]
= 0 (3.11)
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Table 3.1: Scales for different Tokamak parameters

DIII-D C-Mod NSTX ITER

R (cm) 175 70 85 620
q 3 3 3 3
n (cc−1) 2 · 1013 7 · 1013 5 · 1012 1 · 1014
cs (cm/s) 7 · 106 6 · 106 5 · 106 1.2 · 107
ρs (cm) 6.6 · 10−2 2.6 · 10−2 3.4 · 10−1 4.7 · 10−2

δ(cm) 0.91 0.36 2.14 1.11
τ(s) 1.8 · 10−6 8.4 · 10−6 2.7 · 10−6 2.2 · 10−6

Ω2
A 3.33 6.07 2.42 0.45

Ω2
A (ρs/R)

(2/3) 1.7 · 10−2 3.1 · 10−2 6.1 · 10−2 8.1 · 10−4

3.1.2 Linear stability

We now consider the linear stabilty of our governing equations (Eq.s 3.9 &

3.11) for plasma whose equilibrium state is that of radially non–uniform density,

n(x, y) = n0(x), and a uniform electrostatic potential, φ(x, y) = 0. We assume

that the perturbations (ñ(x, y) and φ̃(x, y)) can be described as a combination of

travelling waves that can be described by their frequency (ω) and wave–number

(~k), (̃. . . ) ∼ exp
(
−iωt+ i~k · ~r

)
, and that the plasma gradient–scales are much

larger than the perturbation length–scales.

Figure 3.2: Schematic of the radial density profile

From the vorticity equation (Eq. 3.9) and continuity equaion (Eq. 3.11),
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we obtain the following relations for the perturbed quantities

ω2k2n0φ̃+ ωkyñ = −n0Ω
2
Ak

2

(
ñ

n0

− φ̃

)

−ω2ñ− ωky
dn0

dx
φ̃ = 0

leading to the dispersion relation,

ω

(
ω2 +

k2y
k2
L−1
n − Ω2

A

)
+ Ω2

AkyL
−1
n = 0 (3.12)

where L−1
n = n−1

0 dn0/dx is the density gradient length–scale. In the above disper-

sion relation (Eq. 3.12), the second term (k2yL
−1
n /k2) on the left hand side is the

interchange drive which has a destabilizing effect over the equilibrium profile that

corresponds to the outer side of the tokamak. The third term (Ω2
A) corresponds

to the field–line stabilization which is of the form of Alfven waves. Electron drift–

waves are described by the third and fourth terms (Ω2
AL

−1
n ky) in the dispersion

relation. From the second and third terms, we can see that the interchange drive

is stabilized by the field–line tension for

L−1
n < Ω2

A (3.13)

In the present work, we consider plasma that is in a linearly stable equilib-

rium (Eq. 3.13). In the following sections we present the results of computational

investigation of the role of drift–wave turbulence, as described by equations 3.9

and 3.11, in the generation of blobs.

3.2 Numerical scheme

Our governing equations (3.9 and 3.11) are II–order in time. For conve-

nience in computations, we split each of the two governing equations into two

I–order equations (in time). For numerical stability during the computations, to

counter the dispersive truncation error in the numerical differencing scheme, we

add artificial diffusion terms (D∇2Ω̇, ν∇2ṅ) to the time evolution equations that

require computation of gradients. Defining vorticity as Ω = ∇2φ, the rewritten
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governing equations are

∂Ω̇

∂t
= −~V · ~∇Ω̇− ~̇V · ~∇Ω− ṅ

n

(
Ω̇ + ~V · ~∇Ω

)
− 1

n

∂ṅ

∂y

+ Ω2
A∇2

(
n

neq
− φ

)
+D∇2Ω̇

∂ṅ

∂t
= −~V · ~∇ṅ− ~̇V · ~∇n+ ν∇2ṅ

∂Ω

∂t
= Ω̇

∂n

∂t
= ṅ (3.14)

where ~V = êz × ~∇φ and ~̇V = êz × ~∇φ̇. To obtain φ, φ̇ from Ω, Ω̇ respectively, we

need to solve the Poisson equations

∇2φ = Ω

∇2φ̇ = Ω̇ (3.15)

The addition of artificial viscosity and diffusivity modify the linear disper-

sion relation of the governing equations. The dispersion relation of the equations

3.14 and 3.15 is

ω

(
ω2 +

k2y
k2
L−1
n − Ω2

A − k4νD

)
+ Ω2

A

(
kyL

−1
n − ik2ν

)
= 0 (3.16)

We can see from this dispersion relation that the artificial viscosity (ν) and diffu-

sivity (D) have a stabilization effect in the competition between the interchange

drive and field–line tension (k4νD). Drift–waves are unstable in the present con-

figuration, which is necessary for the growth of drift–wave turbulence.

Equations 3.14 are evolution equations in time. We use the numerical

scheme described in section 3.2.2 to evolve these equations in time. We solve

the equations 3.15 using a Poisson solver described in section 3.2.3.

3.2.1 Boundary Conditions

In order to solve the equations 3.14 and 3.15, we need information about the

domain of interest, and the boundary conditions. The schematic of our computa-

tional domain with the boundary conditions is shown in Fig. 3.3. The Y –direction
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Figure 3.3: Boundary Conditions.

corresponds to the poloidal direction in a tokamak edge. Since the poloidal direc-

tion is a direction of periodicity, we treat the domain to be periodic in Y –direction.

So all variables, and their first derivatives along Y are the same at the two Y –

boundaries. For a variable denoted by f ,

f |upper bd. = f |lower bd.

∂f

∂y

∣∣∣∣
upper bd.

=
∂f

∂y

∣∣∣∣
lower bd.

The X–direction corresponds to the radial direction in a tokamak edge. This is

the direction of non–uniformity in the equilibrium plasma that forms the initial

state for our computation. We apply a convective–boundary condition at the X–

boundaries.

∂f

∂x

∣∣∣∣
left bd.

= 0

∂f

∂x

∣∣∣∣
right bd.

= 0

Since diffusive flux is proportional to the gradient, the physical significance of our

boundary condition is that fluxes at the boundary are convective.

3.2.2 Advancing in time: RKW3 scheme

In our computations, we use the Runge Kutta-Wray (RKW3) method ([39])

for the time evolution of equations 3.14. The standard Runge Kutta methods
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require temporary variables for intermediate stages in the time–evolution at each

time–step. The RKW3 method is an elegant III–order method of the Runge

Kutta family of methods that has low memory storage requirements, and hence is

computationally efficient. In this method, we march the equation

dy

dt
= f(y, t)

from the nth to (n+ 1)th time–step (of magnitude h) as

k1 = f(yn, tn)

k2 = f(yn + β1hk1, tn + α1h)

k3 = f(yn + β2hk1 + β3hk2, tn + α2h)

yn+1 = yn + γ1hk1 + γ2hk2 + γ3hk3 (3.17)

where the coefficients are

β1 = 8/15, β2 = 1/4, β3 = 5/12,

α1 = 8/15, α2 = 2/3,

γ1 = 1/4, γ2 = 0, γ3 = 3/4

We can see, from Eq. 3.17 that there are three temporary variables per time–step.

The advantage with RKW3 method is that, in practice the time–stepping will

require only one temporary variable per equation, thereby reducing the memory

requirement for the time–stepping by a third. In practice the time–stepping(Eq.

3.17) is re-written in a low memory–storage form having a temporary variable k,

k = f(y, tn)

y = y + β1hk

k = y + ζ2hk

y = f(y, tn + α1h)

k = k + β3hy

y = k + ζ3hy

k = f(k, tn + α2h)

y = y + γ3hk (3.18)
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where ζ2 = −17/60 and ζ3 = −5/12. Clearly, the above numerical scheme has

only one temporary variable, k, unlike the original form (Eq. 3.17) which has three

temporary variables, k1, k2 and k3. For a computational domain with 128 × 128

grid points, this reduction of storage requirement by a factor of 3 reduces the

computation cost significantly.

3.2.3 Poisson equation

Our time–evolution equations are for vorticity (Ω = ∇2φ) and density (n).

However, to obtain the velocity of plasma (~V = êz × ~∇φ), we need to obtain the

electrostatic potential (φ) from the voriticty (Ω). This involves the solution of the

Poisson equations (Eq. 3.15) which are of the form

∇2u = v (3.19)

Since our domain is periodic along the Y –direction, u(x, y) and v(x, y) can be

treated as periodic over the domain along Y

u =

Ny/2−1∑

m=0

ûm(x)e
im2πy/Ly

v =

Ny/2−1∑

m=0

v̂m(x)e
im2πy/Ly

where ûm and v̂m are complex quantities (with both real and imaginary compo-

nents), which can be obtained by taking the Fourier transforms of u and v. Our

Poisson equation (Eq. 3.19) is now of the form

Ny/2−1∑

m=0

∂2ûm(x)

∂x2
eim2πy/Ly −

Ny/2−1∑

m=0

m2π2

L2
y

ûm(x)e
im2πy/Ly =

Ny/2−1∑

m=0

v̂m(x)e
im2πy/Ly

which is a set of Ny decoupled 1–D equations in x

∂2ûm(x)

∂x2
− m2π2

L2
y

ûm(x) = v̂m(x) (3.20)

for m = 0 to Ny/2− 1.

Equations 3.20 are II–order equations in 1–dimension, and their numerical

solution is straight–forward. Taking the inverse Fourier transform of the ûm’s

obtained by solving Eq. 3.20 gives us the solution for the Poisson equation 3.19.
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3.3 Initial condition

We consider an equilibrium plasma that is uniform in the poloidal direction

and is non–uniform radially, n(x, y) = n0(x). This density profile, shown in Fig.

3.4, is characterized by its peak radial gradient: L−1
n = 1/n0dn0/dx. We choose

x

y

 Density at t = 0 

 

 

20
0

20

1

1.2

1.4

1.6

1.8

(a) 2-D plot of density (b) Poloidally averaged density

Figure 3.4: Illustration of the initial condition.

our initial condition such that the interchange drive is stabilized by the field–line

tension, following the linear dispersion relation (Eq. 3.12),

ω

(
ω2 +

k2y
k2
L−1
n − Ω2

A

)
+ Ω2

AkyL
−1
n = 0

We see from the above dispersion relation that both field–line stabilization and

drift–wave terms are dependent on Ω2
A, which is the only parameter in our govern-

ing equations that is determined by details of the existing magnetic confinement

devices. Based on the comparison done in table 3.1, we see that 0.3 < Ω2
A < 10. In

the following section, we present the results of computations performed for different

values of Ω2
A that fall in this range.

Our goal is to verify whether the non–linear interaction of drift–waves in

such a configuration leads to the generation of blobs. We perform this by seeding a

density perturbation that sets-off drift–waves in the plasma that is initially quies-

cent. We ensure that the density perturbation is sufficiently large for the ensuing

drift–waves to be of non–negligible magnitude at the beginning of the simulation.

The perturbation is of the form of a Guassian that is localized in both x and y
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directions. We evolve the perturbed plasma long enough for the interaction of

drift–waves to be nonlinear inorder to verify whether the nonlinear interactions

lead to a spilling–off of blobs.

3.4 Results & Discussion
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Figure 3.5: Simulation results for Ω2
A = 1.0, L−1

n = 0.7

We first consider a configuration represented by the parameter Ω2
A = 1.0.

In Fig. 3.5, we show the evolution of a perturbed plasma whose density variation

scale is L−1
n = 0.7. This initial condition is linearly stable according to Eq. 3.12.

In Fig. 3.5 we show contour plots of density at different stages of time evolutions.

We can see that the perturbation sets–off drift–waves that propagate poloidally.

Drift–waves are unstable in the configuration, and hence they grow by deriving

energy from the plasma density gradient. We observe that the small–wavenumber

motions gain energy over time resulting in the formation of a meso–scale structure.

We also consider a configuration represented by Ω2
A = 3.0, corresponding to

a DIII-D plasma. We begin with a radial density profile whose density variation

scale is given by L−1
n = 1.2, which is linearly stable due to the effect of the field–line
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Figure 3.6: Simulation results for Ω2
A = 3.0, L−1

n = 1.2

tension according to Eq. 3.12. As seen in Fig. 3.6, the qualitative evolution in

this case is similar to that observed in Fig. 3.5.

In the previous two cases, we observe that energy is gained the most by the

lowest wave–number motions in the turbulent fluctuations. It should be noted that

our assumptions regarding the variation of magnetic field imposes an upper limit on

the poloidal extent of our domain, and hence the size of the meso–scale structure.

Since we are simulating turbulent fluctuations, in order to verify the adequate

resolution of the small scale motions, we performed additional computations using

a refined mesh (256× 256) over a smaller domain (10× 10). The results, as shown

in Fig. 3.7, confirm that the simulations shown in figures 3.5 and 3.6 adequately

resolve the drift–wave turbulence of interest.

3.5 Conclusions

In this chapter we have demonstrated, using numerical simulations, that

even in a configuration where the interchange drive in the bad curvature region

is stabilized by the field–line tension due to the connection with the region of
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Figure 3.7: Simulation results for Ω2
A = 1.0, L−1

n = 0.65

good–curvature, the Reynolds stresses due to drift–wave turbulence lead to the

generation of blobs. Fig. 3.8 illustrates the mechanism of generation of blobs. The

green curve represents the equilibrium plasma whose gradients are not steep enough

to overcome the stabilization due to connection with the region of good curvature.

The red curve represents the large–scale structures, arising out of the drift–wave

turbulence due to the inverse cascade, that are unstable under the interchange

drive.

The results presented in chapter 3 have been published in “On the mecha-

nisms of generation of meso-scale convective structures in tokamak edge plasma”,

K. Bodi, S. I. Krasheninnikov, and A. I. Smolyakov, Contributions to Plasma

Physics, 48(1-3):6367 (2008) and “On blob generation mechanisms in tokamak edge

plasma”, K. Bodi, A.I. Smolyakov, and S.I. Krasheninnikov, Journal of Nuclear

Materials, 390-391:359 (2009). The dissertation author was the primary author of

these publications.
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Figure 3.8: Cartoon illustration of the mechanism of blob generation



Chapter 4

Blob dynamics in inhomgeneous

plasma

4.1 Introduction

Cross-field transport of magnetically confined plasmas in so-called Scrape

off Layer (SOL) (e.g. in tokamaks and helical devices) and “shadow”(e.g. in linear

devices) regions is characterized by intermittent radial convection of filamentary

meso-scale plasma structures elongated along the magnetic field lines and often

called “blobs” (e.g., see [11–17, 40–44]).

It is widely accepted that in tokamaks and helical devices an effective grav-

ity, caused by inhomogeneous magnetic field, is the reason for the convective motion

of such meso-scale structures ( [6, 8]). In linear devices, an effective gravity can

be associated with so-called ”neutral wind” effects [45].

However, in [46] it was shown that nonlinear cross-field advection of plasma

structures can be associated with the effects related to instabilities driven by ∇Te
and parallel shear of ~E× ~B drift velocity. Although such structures exhibit wedge-

like cross-field shape it is conceivable that isolated blobs can detach from the tip

of the wedge due to some other effects (e.g. sheared plasma flow) and after that

propagate further just by inertia. Other driving forces can, probably, also result in

some nonlinear effects, which finally cause “spilling” of blobs into SOL/“shadow”

30
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region where they can propagate further by inertia even in the absence of effective

gravity. Such physical picture would explain, for example, the observation of blob

motion in linear devices without involving the “neutral wind” effects.

Such inertial motion of a blob in homogenous magnetic field, ~B = êzB

( B = const. and êz is the unit vector), can be described by the following two

dimensional (2 − D) vorticity equation of incompressible cross-field plasma flow

(e.g. see Ref. 14 and the references therein)

~∇×
(
ρ
d~V

dt

)
= µ∇2

(
~∇× ~V

)
+

1

cLb

∫ (
~B · ~∇

)
~jdz (4.1)

where: (d/dt) (. . . ) =
(
∂/∂t+ ~V · ~∇

)
(. . . ), ~V = (c/B) êz × ~∇φ, ρ , and µ are

the plasma cross-field velocity, mass density and viscosity respectively (we assume

here that ); φ is the electrostatic potential; ~j is the vector of electric current, Lb is

the blob length along the magnetic field, and c is the speed of light.

The terms on the right side of Eq. 4.1 cause the dissipation of plasma

vorticity and slow down the blob motion. As a result, blob can penetrate into

SOL/“shadow” region only on some distance Lpen, which is determined by the

initial blob speed and viscosity dissipation rate. For example, for the case where

dissipation is caused by parallel current flowing through the sheath, the distance

Lpen can be estimated as follows [8]:

Lpen ∼ Lb
eφ0

T

nb
nsh

(
ρs
ab

)3

(4.2)

where φ0 is the initial magnitude of electrostatic potential variation in the blob,

T is the plasma temperature, nb and nsh are the plasma density in the blob and

in the sheath, ρs is the effective ion Larmor radius, and ab is the cross-field size of

the blob. For typical conditions of [44] Lb ∼ 500cm, ρs/ab ∼ 0.2, assuming that

eφ0/T ∼ 1 and nb/nsh ∼ 3, from Eq. 4.2 we find Lpen ∼ 10cm.

As we see, just by inertia blob can penetrate into SOL/“shadow” region

on a distance, which can significantly exceed the characteristic scale length of

background plasma mass density decay Lρ = |∇ log (ρbg)|−1. However, motion of

the blob involves the motion of surrounding plasma as well. If we ignore dissipative

effects, total energy of plasma flow including inside and outside blob should be
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conserved. Then, the variation of the background plasma density in the vicinity of

the blob will alter the energy of the outside flow and, therefore, should affect blob

dynamics. Such effect was largely ignored in previous studies of blob physics, in

particular, for the reason of the usage of the Boussinesq approximation in vorticity

equation Eq. 4.1, where derivative of mass plasma density in the left hand side of

Eq. 4.1 was often omitted, but which breaks the conservation of energy. We notice

that the Boussinesq approximation is often used in numerical modeling of edge

plasma turbulence. In what follows we will consider the effects of the variation of

background plasma density on blob dynamics using exact vorticity equation.

4.2 Effect of background density on blob propa-

gation

In the simplest case, where the main vorticity dissipation is due to viscous

effects, Eq. 4.1 combined with the continuity equation

dρ

dt
= D∇2ρ (4.3)

where D is the diffusion coefficient, describes 2D motion of an incompressible fluid.

If both D and µ are rather small, we can neglect dissipation effects. As a result

the problem of blob motion in inhomogeneous magnetized plasma becomes identi-

cal to the inviscid motion of fluid dipolar vortex structure through a background

fluid with varying mass density. The stream function of such fluid flow is shown

schematically in Fig. 4.1 in a moving frame. For simplicity we assume here that

the dipolar vortex has cylindrical shape and the separatrix of radius separates

internal and external flows.

The problem of inviscid flow of fluid with a weak mass density gradient

(which in our case it corresponds to the inequality ε ≡ ab |∇ log (ρbg)|−1 ≡ ab/Lρ ≪
1) around bodies was considered recently in [47]. Analyzing both continuity and

momentum balance equations for ε ≪ 1 it was shown, in particular, that for the

case where body moves in parallel direction to the gradient of background density,
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Figure 4.1: Schematic view of plasma flow stream function in a blob (moving
frame)

there is a force, ~F , acting on the body:

~F = −CW
(
~U · ~∇ρbg

)
~U (4.4)

whereW and ~U are the volume and the velocity of the body, and C is the coefficient

which depends on the shape and the orientation of the body. For example, for the

cylinder moving perpendicular to its axis C = 0.5. For the cylinder moving with the

constant speed Uc the expression (4.4) can be easily recovered just from the energy

balance equation. Indeed, to describe fluid flow around the cylinder with radius

ac moving perpendicular to its axis in zero order approximation over parameter

ε≪ 1, we can use the flux function, Ψ(x, y), corresponding to homogeneous fluid,

which in the moving frame is (e.g. see [48])

Ψ = −U
(
r − a2c

r

)
sin θ (4.5)

where we use polar coordinates assuming that the cylinder moves along x-coordinate.

We notice that this flow corresponds to the external flow of blob (see Fig. 4.1).

Then we find that in the laboratory frame the kinetic energy of the fluid flow

around the cylinder per unit length, Eext, is

Eext(xc) =
π

2
ρbg(xc)U

2
c a

2
c (4.6)

where xc(t) is the x-coordinate of the center of the cylinder. Because total energy

of the cylinder and surrounding fluid should be conserved, we come the following
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energy balance equation:

∫ xc(t)

xc(t0)

Fdx = Eext(xc(t0))− Eext(xc(t)) (4.7)

where t0 is just some reference time. Taking into account 4.6, and differentiating

4.7 over time, while assuming U = const., we come to the expression

F (x) = −π
2

dρbg
dx

U2
c a

2
c (4.8)

which is identical to Eq. 4.4 for the cylinder.

In order to get an insight on the impact of the variation of background

plasma density on blob dynamics we will follow [47] and assume that the ratio

ab/Lρ is small, even though in practice it may not be applicable.

We assume that the dipolar structure of the blob has cylindrical form of

radius ab. In contrast to the motion of solid cylinder, blob’s plasma has both

external and internal flows, which can be charaterized by the energies Eext and

Eint (in moving frame) respectively. In addition ot that we should account for the

energy associated with ballistic motion of internal region of the blob with speed

Ub: EU = π
2
ρbU

2
b (x)a

2
b (ρb is the plasma mass density inside the separatrix). Then,

neglecting dissipative effects we arrive to the following expression for the balance

of energy per parallel length of the blob

Eext + Eint + EU = const. (4.9)

where Eext and Eint are the energy of external and internal blob plasma flows

(see Fig. 4.1) and EU is the energy associated with ballistic motion of the blob

(ρb is the plasma mass density inside the separatrix). From Eq. 4.6 we find

Eext =
π
2
ρbg(x)U

2
b (x)a

2
b . In the absence of dissipation both ρb and Eint remain to

be constant ρb = ρb(x0) and Eint = C0ρb(x0)U
2
b (x0)a

2
b , where x0 is the coordinate

where blob was generated and C0 is the coefficient taking into account the details

of internal plasma flow.

Then, from Eq. 4.9 we find

Ub(x) = Ub(x0)

(
ρbg(x0) + ρb
ρbg(x) + ρb

)1/2

(4.10)
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As we see from Eq. 4.10, a blob propagating into SOL/“shadow” region with low

plasma density accelerates, while blob moving in opposite direction slows down.

To estimate maximum gain of blob speed we assume in Eq. 4.10 that ρb(x0) ≈
ρbg(x0) ≫ ρbg(x), which gives max (Ub(x)/Ub(x)) =

√
2.

So far we neglect dissipative processes. However, both blob motion in inho-

mogeneous background plasma and the variation of blob speed, will cause strong

gradients at the interface between inner dipolar structure and outside flow, which

can enhance dissipation and make our estimations of blob dynamics inapplicable.

In order to estimate the effects of dissipation, let us assume that the dis-

sipation is due to viscosity and diffusion and D<̃ν ≡ µ/ρ . First we notice that

blob remains coherent structure and is not dissipated while moving over distance

of interest, Lρ ∼ |∇ log ρbg|−1, if

Re′ =
ab
Lρ

Re ≡ ab
Lρ

Ubab
ν

≫ 1 (4.11)

Next, the characteristic width of a strong velocity gradient, δ, can be estimated as

follows δ ∼
√
νLρ/Ub. As a result, we find the energy per parallel length dissipated

while blob moved at the distance ∼ Lρ:

Evisc ∼ νρb

(
Ub
δ

)2

δab
Lb
Ub

(4.12)

Comparing this energy loss with total energy of the blob Eb ∼ ρbU
2
b a

2
b we find

Evisc
Eb

∼ 1√
Re′

(4.13)

Thus we conclude that for large values of Re′ we can ignore dissipation and use the

kinetic energy conservation. However, we should notice that at very large Reynolds

numbers (Re larger than few thousand) the Kelvin-Helmholtz instability should

be taken into account, which will significantly alter the dynamics of blobs.

4.3 Numerical Simulations

Computations were carried out to demonstrate the above conclusions. We

solve 2D vorticity and continuity equations of incompressible plasma flow in (x, y)



36

x

y

 Density at t = 0 

 

 

16
0

16

0 4 8 12 16
0

2

4

Radial density profile

de
ns

ity

x

1

2

3

Figure 4.2: Initial plasma density profile.

plane, which in dimensionless units have the form

∂Ω

∂t
+ ~V · ~∇Ω + êz ·

(
~∇Ẽ × ~∇n

)
= ν̃∇2Ω (4.14)

∂n

∂t
+ ~V · ~∇n = D̃∇2n (4.15)

where n and ~V = êz × ~∇φ are the dimensionless plasma density and velocity, φ is

the electrostatic potential,

Ω = ~∇ ·
(
n~∇φ

)
(4.16)

is the generalized vorticity, and Ẽ = |∇φ|2 /2; ν̃ and D̃ are the dimensionless

kinematic viscosity and diffusion coefficients.

We solve Eq. 4.15 by using third order Runge-Kutta scheme ( RKW3

Scheme is described in section 3.2.2). We obtain the electrostatic potential φ by

iteratively solving the nonlinear Poisson equation (Eq. 4.16) using a Successive-

OverRelaxation (SOR) method,

φ(n+1) = (1− ω)φ(n) + ω∆−1

(
Ω

n
− 1

n
~∇n · ~∇φ(n)

)
(4.17)

with ω = 1.2, and inversion of the Laplacian, ∆−1, was done using a Fourier

method ( Poisson Solution is described in section 3.2.3).

We seed blobs as the perturbations of φ (max (|φ|) = 1.0) by specifying

a vorticity dipole with dimensionless radius 0.5 and use non-uniform background

density (see Fig. 4.3, top) with characteristic dimensionless Lρ ∼ 3. A schematic
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of the initial density profile is shown in Fig. 4.2. We take ν̃ = D̃ = 10−3, so that

Re′ ∼ 102 ≫ 1. Such a vortex dipole moves along the x-coordinate.

In Fig. 4.3 (bottom) we show the coordinates of “center of mass” of the

blobs as a function of time for a blob initially moving towards increasing density

(curve 1), a blob moving towards decreasing density (curve 2), and the dotted lines

correspond to inward and outward moving blobs in unifrom density plasma. The
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Figure 4.3: Effect of density gradient on blob propagation. Top: Equilibrium
density profile. Bottom: Coordinates of “center of mass” of the blobs as a funciton
of time.

contour plots of the magnitude of the potential φ are shown in Fig. 4.4 for: a blob

moving along increasing density (a), a blob moving through uniform density (b),

and a blob moving along decreasing density (c).

The density evolution is shown in Fig. 4.5 for: a blob moving along increas-

ing density (top) and a blob moving along decreasing density (bottom).

4.4 Conclusions and discussions

We have shown that the impact of equilibrium plasma density variation

on the propagation of seeded blobs (no interchange drive) is in the form of a clear
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Figure 4.4: Contours of electrostatic potential φ for blobs moving along x-direction:
a) a blob moving through uniform density, b) a blob moving through decreasing
density, and c) a blob moving through increasing density.

preference for blobs propagating into low plasma density, suggesting the convective

nature of non-uniform plasma transport. This is the result of the equilibrium

plasma density gradient affecting the vorticity balance. A sink/source term due to

the equilibrium plasma density gradient in the vorticity balance equation affects

the energy balance via the redistribution of the energy between the inner and our

part of the blob. Note that the total energy conservation includes the energy of

the plasma motion outside the blob. This “wake” region ([47]) (the size of this

region is of the order of the blob radius) is crucial for the mechanism of the blob

acceleration/de-acceleration in inhomogenous plasma ([47]).

It is interesting to note that effects of the equilibrium plasma gradient

beyond Boussinesque approximation are naturally responsible for the asymmetry

of the propagation of drift waves with respect to the density gradient direction. One

can expect that such effects will lead to the asymmetry of the drift-wave spectra

in fully developed turbulent state in a tokamak and, correspondingly, to the net
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Figure 4.5: Density evolution for a blob moving along x-direction: along increasing
density (top), and for a blob moving along decreasing density (bottom).

radial propagation of fluctuations ([49, 50]). Radial drift wave propagation toward

the plasma edge was earlier proposed as a source of plasma edge turbulence in [51]

where the effects of decreasing plasma density toward the edge were responsible for

the enhance turbulence level at the edge. In general blobs have to considered as a

nonlinear self-consistent state including both plasma and wave motion, or in other

words, blobs correspond to the strongly nonlinear state of drift wave turbulence

with substantial amount of plasma trapped inside the vorticies. Therefore, the blob

acceleration studied in the paper is an effect complementary to that considered

in [51].

Chapter 4, in full, is a reprint of the material as it appears in “Blob dynamics

in an inhomogeneous plasma”, K. Bodi, S. I. Krasheninnikov, and A. I. Smolyakov,

published in Physics of Plasmas, 15(10):102304 (2008). The dissertation author

was the primary author of this publication.



Chapter 5

Kinetic code for edge plasma

transport simulation

The edge region of tokamak plasma is the region of transition between the

hot core and the external vacuum, and hence it is the region of gradients of plasma

properties (density, temperature etc). As the collision mean free path depends

quadratically on the local temperature, we expect the plasma to be increasingly

collisional from core radially outward across the edge. For plasma configurations

with sharp gradients at the edge (like in H–mode) there is no significant scale–

separation between the particle drift orbits and gradient lengthscales. Though the

gradients are less steep in the L–mode plasmas, the edge region in such configura-

tions consists of large magnitude turbulent fluctuations(e〈φ〉rms/T ∼ 1, see [52]).

An additional feature of edge plasma, in contrast to the core, is the presence of in-

termittent structures like blobs (observed in L–mode) and ELMS (H–mode) whose

magnitude is comparable to (or larger than) that of the edge plasma [8]. The edge

region, therefore, consists of large variations leading to local distribution functions

that may deviate significantly from a Maxwellian state.

In a tokamak plasma, the particle time–scales range from that of the par-

ticle cyclotron rotation time–scales (shortest) to that of the plasma confinement

time–scales (longest). Most often, we are interested in the transport processes that

determine the plasma profiles and confinement durations. To numerically simulate

a process, the magnitude of time–step in the numerical evolution must be smaller

40
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than the time–scale of the process. Hence, if we aim to resolve all the processes

involved, computing time evolution using the kinetic equation is not practicable

even with most powerful supercomputers. For computational convenience, we av-

erage out the fastest processes (particle cyclotron motions), and thereby reduce the

range of time–scales that need to be resolved by our computations. The resulting

governing equations are called the gyrokinetic equations [53].

5.1 TEMPEST

The kinetic simulations reported in the present chapter, and chapter 6, were

performed using the gyrokinetic code TEMPEST. TEMPEST is a gyrokinetic code

for edge plasma simulations. It is a five dimensional (ψ, θ, ζ, E0, µ) continuum

code that represents the velocity space as a grid in equilibrium energy (E0) and

magentic moment (µ) variables, and the configuration space as a grid in magnetic

flux–surface (ψ), poloidal angle (θ), and toroidal angle (ζ). In addition to being

able to perform computations on annulus-like edge geometries (closed fieldlines),

TEMPEST is capable of handling the geometry of a diverted tokamak (closed and

open fieldlines). A description of the governing equations and numerical schemes

in TEMPEST can be found in [9]. In its full 5–D form, TEMPEST can perform

turbulence calculations for edge plasma. Alternately TEMPEST can be run as a

4–D (ψ, θ, E0, µ) transport code that can simulate neoclassical transport due to

particle drifts in edge plasma.

The magnetic field configuration in a tokamak is aimed at nullifying trans-

port across flux–surfaces. While radial flux due to particle drifts normal to the

flux–surfaces is finite locally, the net flux normal to given flux–surface (obtained

as an average of the flux at all poloidal locations over the flux–surface) vanishes

due to the magnetic geometry. Satisfying this constraint is necessary for magnetic

confinement of plasma. While this constraint is satisfied exactly in the idealization

of a collisionless plasma, there exists a finite flux normal to the flux–surfaces in

the presence of collisions. In contrast to the classical transport, arising out of the

collisions between the random (Brownian) motion of particles in plasma, transport
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arising out of collisions between particles undergoing charged-particle drifts (due

to the tokamak electric- & magnetic–fields) is known as neo–classical transport [3].

Thus, to compute transport due to particle drifts, an effective collision model is

needed along with particle drift computations in the kinetic code. As a first step

in this direction, we have implemented a Krook collision model.

5.2 Krook collision model for TEMPEST

Krook collision model [54] is of the form

∂f

∂t

∣∣∣∣
c

= −νk (f − fM) (5.1)

where fM is a Maxwellian distribution with the same values of density (n) and

temperature (T ) as that of the distribution function, f . Thus, for a particle density

conserving Krook collision model, the zeroeth moment of fM should match that of

f . For a particle and energy conserving model, the zeroeth and second moments

of fM must match that of f . The coefficient νk contains the collisional time–scale

at which the distribution function relaxes to a Maxwellian state.

5.3 Implementation

To compute the Krook collision term that satisfies particle density and

energy conservation, we need to define a Maxwellian distribution function corre-

sponding to the density and energy of the species as computed from the species

distribution function. In practice, since the moments are computed using numeri-

cal integration of the particle distribution functions, care should be taken to avoid

loss of conservation properties due to the errors in the numerical quadrature.

The nature of this error can be illustrated by considering the case of a species of

particle and energy densities of n0 and n0T0 respectively. We define the species

distribution function (f0) as a Maxwellian distribution of these particle and energy

densities. To compute the collision term in the kinetic equation, which should

vanish for a Maxwellian, we first compute the particle and energy densities of the
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distribution function. Due to the errors in the quadrature scheme, the computed

particle and energy densities are n1 and n1T1. Denoting the reference Maxwellian

for the collision term with fM0
, we have,

∂f0
∂t

∣∣∣∣
c

= −νk (f0 − fM0
) (5.2)

Taking moments of the above equation, we obtain the following equations for

particle and energy desnsity conservation,

∂n

∂t

∣∣∣∣
c

= −νk (n1 − n2)

∂nT

∂t

∣∣∣∣
c

= −νk (n1T1 − n2T2) (5.3)

where n2 and n2T2 are the moments of the reference Maxwellian (fM0
) computed

using the numerical quadrature scheme. Thus, for a case where the collision should

identically vanish, we observe a violation of the particle and energy density con-

servation properties.

The above problem can be avoided with the help of an iterative process to define a

Maxwellian (fM) whose computed moments, n2, T2 do not deviate the computed

moments of the distribution function n1, T1 beyond a given tolerance limit (say,

ǫ≪ 1)

max

(∣∣∣∣
n2 − n1

n1

∣∣∣∣ ,
∣∣∣∣
T2 − T1
T1

∣∣∣∣
)

≤ ǫ

Due to the iterative nature of this procedure, and hence the multiple quadrature

computations of the distribution functions, it is very expensive in practice.

5.3.1 Defining the reference Maxweliian

In the present work, we avoid the loss of conservation properties using a

computationally less expensive alternative. We define the reference Maxwellian as

a linear of combination of two Maxwellian distribution functions whose moments

n2a, b
, T2a, b

are such that

min(T2a , T2b) ≤ T1 ≤ max(T2a , T2b) (5.4)
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∣∣∣∣
T2b − T2a

T1

∣∣∣∣ ≤ ε≪ 1 (5.5)

In a velocity grid of finite extent and fixed resolution, the numerical error in quadra-

ture is influenced by the variance of the distribution function. Since temperature

is the variance of the distribution function of a gas, the constraint is in terms of

the temperatures of the Maxwellians.

The reference Maxwellian is of the form,

fM(v) = αafMa
(v) + αbfMb

(v) (5.6)

where, denoting the weight of the ions by mi,

n2a =

∫
d~vfMa

(v) & n2aT2a =

∫
d~v

1

3
miv

2fMa
(v)

n2b =

∫
d~vfMb

(v) & n2bT2b =

∫
d~v

1

3
miv

2fMb
(v) (5.7)

For conservation of particle and energy density in the collision term, the moments

of the reference Maxwellian must match that of the species distribution function

n1 = αan2a + αbn2b

n1T1 = αan2aT2a + αbn2bT2b

Solving for αa & αb in the above set of constraint, we obtain the final expression for

the reference Maxwellian distribution function that conserves particle and energy

densities,

fM(v) =
n1

n2a

(
T2b − T1
T2b − T2a

)
fMa

(v) +
n1

n2b

(
T1 − T2a
T2b − T2a

)
fMb

(v) (5.8)

The reference Maxwellian can be rewritten as,

fM(v) =
n1

n2a

(
T2b − T1
T2b − T2a

)[
fMa

(v) +
n2a

n2b

(
T1 − T2a
T2b − T1

)
fMb

(v)

]
(5.9)

In addition to satisfying the earlier constraint given by Eq. 5.4, we choose to define

our fMa
& fMb

such that

ε
M
=

(
T1 − T2a
T1 − T2b

)
≪ 1
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For an adequately refined velocity grid, the numerical error is never comparable

to the magnitudes of particle and energy densities. Hence, we always have,
∣∣∣∣
n2b − n2a

n2b

∣∣∣∣≪ 1

The reference Maxwellian expression is now in a form that deviates very little from

that of of Gaussian distribution,

fM(v) =
n1

n2a

(1− ε
M
)

(
fMa

(v) + ε
M

n2a

n2b

fMb
(v)

)
(5.10)

Satisfying Eq. 5.4 ensures that the collision term always relaxes the distribution

function to an approximately Maxwellian form. Defining reference Maxwellians,

and their moments, is now done after regular time intervals to save on computation

expense. In the following section, we test this collision model and present the

results.

5.4 Numerical simulations

To test the performance of the Krook collision model (Eq.s 5.1 & 5.9),

we consider plasma composed of ionized Hydrogen. We begin with an initial state

that is described by Maxwellian distribution functions. We perturb the distribution

function from this Maxwellian state and, after a finite duration of perturbation,

then introduce the collisional relaxation, as computed by the Krook model. The

simulation method can be described as,

∂f

∂t
= νp

E
E

m

(
1− E

E
m

)
f for 0 ≤ t ≤ τp

∂f

∂t
= −νk (f − fM) for t ≥ τp (5.11)

where Em is the maximum energy in the (E , µ) velocity grid. The perturbation is

maximum at a particle energy corresponding to the center of the velocity domain,

and vanishes at the maximum (E = Em) and minumum (E = 0) energies. The

perturbed plasma is described by a non–Maxwellian distribution function whose

moments differ from the initial state. After a time τp the perturbation is switched

off, and then the Krook collision operator is used to relax the distribution to a
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Maxwellian state. For a particle and energy density conserving collision model,

the zeroeth and second moments of the plasma distribution functin must remain

constant during the collisional relaxation, and the distribution must relax to a

Maxwellian.

0 8 16

−16

−8

0

v2/v
th
2

ln(f(v) v
th
3 /n)

 

 

initial state
perturbed
collisions

Figure 5.1: Collisional relaxation of a perturbed distribution function as computed
using the Krook model (Eq.s 5.1 & 5.9).

In Fig. 5.1 we compare the perturbed distribution function with that of

the initial and collisionally relaxed states. For a Maxwellian plasma distribution

funtion, the logarithm of the distribution function, appropriately normalized by

the local plasma density and thermal velocity (v3thf(v)/n), must vary linearly with

energy normalized by temperature (E/T ). We see that the distribution function

is initially at a Maxwellian state, and the collisionally relaxed final state is of a

Maxwellian form.

In Fig. 5.2 we compare the particle and energy densities of the perturbed

plasma with the initial and collisionally relaxed states. As the perturbation is not of

a form that conserves particle or energy densities, the perturbed plasma’s particle

and energy densities differ from the initial state. We see that the collisionally

relaxed final state has the same particle and energy densities as the perturbed

state while relaxing the distribution function to a Maxwellian form.
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Figure 5.2: Evolution of particle and energy densities.

5.5 Summary

We have introduced the kinetic code TEMPEST for the simulation of toka-

mak edge plasmas. As a first step towards simulations to compute the transport

due to particle drifts, and plasma turbulence, we have presented the details of the

implementation of a particle and energy conserving Krook collision model. We

have tested the collision model by perturbing the distribution function and verify-

ing that the collision model relaxes the distribution function to a Maxwellian form

while conserving particle and energy density.

Chapter 5 contains material in preparation to be published as “Anomalous

radial transport model for kinetic codes”, K. Bodi, R. H. Cohen, S. I. Krashenin-

nikov, T. D. Rognlien and X. Q. Xu. The dissertation author is the primary author

of this publication.



Chapter 6

Anomalous radial transport

model for edge plasma

Anomalous transport, due to turbulent processes, is often the dominant part

of the radial transport in edge plasma of magnetic confinement devices. Conse-

quently any predictive simulation of edge plasma conditions requires the inclusion

of anomalous radial transport. Since resolving the turbulence fully would require

unreasonably long computation times, introducing a model for anomalous radial

transport is a practicable approach. The coefficients/parameters of such a model

can be defined using the knowledge gained from experiments and simulations that

fully resolve turbuelnt motions. Towards this end, in this chapter we present a

model for simulating anomalous radial transport in edge plasma for kinetic codes.

We implement the model in the 4-D kinetic transport code TEMPEST, and present

the results of the verification of the performance of the model.

6.1 Anomalous transport

In the kinetic description of plasmas, we consider the plasma to be the

combination of its component species: electrons, various ions and various neutrals

(if they exist). The evolution of each of the component species is described the

48
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kinetic equation for its distribution function

∂f

∂t
+ v||∇||f + ~vd⊥ · ~∇⊥f + E||

∂f

∂v||
= S (6.1)

where s is the coordinate along the field–line, vd is the particle drift velocity, v||

is the parallel velocity, and S is the source term that can also be modified to

include the effects of collisions. As turbulent plasma is unsteady, rather than the

instantaneous magnitudes, we are interested in the long–timescale averages of the

various components of the kinetic equation. We can describe the the quantities

(eg., f) as a combination of long–timescale averages (or mean quantities, 〈f〉) and
fluctuations (f̃). Taking the long–timescale average of the kinetic equation (Eq.

6.1):
∂〈f〉
∂t

+ 〈v||∇||f〉+ 〈~vd⊥ · ~∇⊥f〉+ 〈E||
∂f

∂v||
〉 = 〈S〉 (6.2)

The nonlinear terms in the above equation have contributions from mean–quatities

and fluctuations. For example, the advective term depending on the particle drift

velocity becomes

〈~vd⊥ · ~∇⊥f〉 = 〈~vd⊥〉 · ~∇⊥〈f〉+ 〈~̃vd⊥ · ~∇⊥f̃〉

For a transport code that intends to model the effect of terms like 〈~̃vd⊥ · ~∇⊥f̃〉
without having to fully resolve the turbulence, the effect of such terms needs to

be modelled. Modelling in such cases is effectively an expression relating the

effect of unresolved terms (〈~̃vd⊥ · ~∇⊥f̃〉) in terms of the resolved quantities (like

vd, 〈f〉). The most common form of modelling turbulent transport is that of

expressing it as a combination of advective transport that depends on the mean

quantity, and a diffusive term that depends on the gradient of the mean quantity.

Most predictive fluid transport codes, including those for edge transport, include

such models for turbulent transport. In this chapter, we present such a model for

kinetic codes. It should be noted that the assumption that the anomalous transport

can be described accurately as a combination of advection and diffusion need not

always be true for edge plasma where the correlation lengthscales of turbulence are

comparable to the mean gradient lengthscales. However, in the absence of alternate

models, it is the most economic model for anomalous transport calculations. In
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this work, we only consider the radial component of anomalous transport since it

directly affects the confinement of plasma.

6.2 Anomalous transport model

We model the anomalous radial flux (〈ṽdf̃〉) as a combination of advective

and diffusive components. The advection and diffusion coefficient values are func-

tions of velocity and spatial coordinates. The choice of the velocity dependence of

the coefficients determines the form of the anomalous transport matrix in the fluid

description. Considering only long–timescale averages (omitting the 〈〉 signs), we
introduce a model for the radial component of the nonlinear term (〈~̃vd⊥ · ~∇⊥f̃〉)

∂f

∂t
+ v||∇||f + ~vd⊥ · ~∇⊥f + E||

∂f

∂v||
+ ~∇ψ · [Γaêψ]θ,~v = S (6.3)

where êψ is the unit vector normal to the flux–surface, and the anomalous radial

flux (Γa) is defined as

Γa = Ua(ψ, v̂)f −Da(ψ, v̂) ∇ψf |θ,~v (6.4)

Here, v̂ = v/vth is the velocity normalized by the local ion thermal velocity

(vth =
√
2T/m). For non–uniform temperature, v̂ is spatially non–uniform. The

velocity space in most kinetic codes are defined to take advantage of conserved

quantities like E , and adiabatic invariant, µ. Typically velocity grids are expressed

as a (E , µ) grid, or a (E , v||/v) grid, where E = mv2/2 + qΦ is the energy of the

charged particles, µ = mv2⊥/2B is the magnetic moment, and v||/v represents the

pitch–angle. Thus the 3–D velocity space is approximated by a 2–D grid. In such

descriptions, since the velocity grid is affected by spatially varying fields (the elec-

trostatic potential Φ and magnetic field B), care should be taken that derivatives

are taken along contours of fixed velocity vectors. Equations 6.3 & 6.4 reflect this

constraint. For an (E , µ) velocity grid, like that used in TEMPEST, the gradients

along contours of constant ~v is computed as

∇ψf |~v =
∂f

∂ψ
+ q

∂Φ

∂ψ

∂f

∂E − µ

B

∂B

∂ψ

∂f

∂µ
(6.5)
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The above directional derivative can also be computed as a finite difference of

distribution function whose values along the constant velocity (E−qΦ(ψ) = const.,

µB(ψ) = const.) contour can be computed using an interpolation scheme. In the

present work, we consider plasma in closed field–line region with slowly varying

magnetic fields and with no electrostatic fields (|∇Φ| = 0) and hence, we evaluate

the directional derivatives using Eq. 6.5 in the simulations shown here.

Transport Coefficients

In Eq. 6.4, we had approximated the anomalous flux in the form of convec-

tive and diffusive components that depend on the coefficients Ua(ψ, v̂) andDa(ψ, v̂)

respectively. The form of these coefficients determines the fluid transport matrix.

For example, for Maxwellian distribution functions, Ua = 0 & Da = D0 describe a

diagonal fluid transport matrix with equal diffusivities for fluid density and tem-

perature. We can obtain indpendent control over the global transport matrix by

appropriately choosing the velocity dependence of the coefficients, Ua &Da. In this

process, considerations of numerical stability requre that the diffusion coefficient,

Da(ψ, v̂), be non–negative.

For numerical stability, the diffusion coefficient is required to be positive.

This constraint arises from the nature of the diffusion operator. A positive diffusion

coefficient is one that flattens fluctuations. It follows that the effect of a negative

diffusion coefficient is the sharpening of fluctuations. In a computation involving

dispersion errors due to the differencing scheme, a negative diffusion coefficient will

lead to growth in fluctuations due to errors and hence, numerical instability. For

this reason, our diffusion coefficient needs to be positive at all velocity and spatial

coordinates.

Determining the coefficient values

To compare the transport matrix due to our anomalous transport model

with equivalent models for fluid codes, we need to consider the moments of the

anomalous flux (Eq. 6.4). We make the comparison for the case of a plasma
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described by a Maxwellian distribution function, which is the case for a fluid in

thermodynamic equilibrium. The particle and heat fluxes due to the anomalous

flux are of the form,

Γn =

∫
d~v Γa =

∫
d~v
[
Ua(ψ, v̂)f −Da(ψ, v̂) ∇ψf |θ,~v

]

Q =

∫
d~v

1

2
mv2Γa =

∫
d~v

1

2
mv2

[
Ua(ψ, v̂)f −Da(ψ, v̂) ∇ψf |θ,~v

]
(6.6)

A velocity dependent convective coefficient would lead to a polynomial in terms

of density, n, and temperature, T . For a simple, velocity–independent, convective

coefficient the general form of the fluxes would then be,

Γn = U1(ψ)n−D11∇ψn−D12n
1

T
∇ψT

Q = U2(ψ)nT −D21T∇ψn−D22n∇ψT (6.7)

where U1 & U2 are the convective coefficients, and D11, D12, D21 & D22 are the

coefficients for gradient driven transport.

Typically, long–time average transport due to turbulence is modelled as dependent

on gradients of long–time averages of density and temperature of the fluid. Anoma-

lous flux, in such models, is of a purely diffusive nature. Here, we demonstrate

how the tranpsort model in equations 6.3 & 6.4 can include such models.

The transport matrix, for anomalous particle and heat fluxes that dependent only

on the gradients of density and temperature, is of the form

−Γn = D11∇ψn+D12n
1

T
∇ψT

−Q = D21T∇ψn+D22n∇ψT (6.8)

For an anomalous flux of the form of Eq. 6.4, a velocity dependence for the diffusive

coefficient (Da(ψ, v̂)) of form of a polynomial in v̂ = v/vth results in terms that

are proportional to gradients in density and temperature. For the contribution

from the convective term to be of a similar form, the convective coefficient must

be dependent on the gradient length–scales of density and temperature,

Ua(ψ, v̂) ≡ Ua(ψ) = Dα(ψ)
1

n
∇ψn+Dβ(ψ)

1

T
∇ψT (6.9)
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where the coefficients Dα & Dβ have the same units as the diffusion coefficient Da.

Our anomalous flux is of the form,

Γa =

[
Dα

1

n
∇ψn+Dβ

1

T
∇ψT

]
f −Da(ψ, v̂) ∇ψf |θ,~v (6.10)

In this work we consider the case of Da being a polynomial in v̂. Since our reference

case is that corresponding to a Maxwellian, for convenience in moment computa-

tion, we express the polynomial form as a combination of Hermite polynomials of

successive orders,

Da(ψ, v̂) = D0(ψ) +D2(ψ)

(
v2

v2th
− 1

2

)
+D4(ψ)

(
v4

v4th
− 3

v2

v2th
+

3

4

)
(6.11)

It should be noted that, beyond the explicit spatial dependence of the coefficients,

D0, D2 & D4, there is also an implicit spatial dependence in the v̂ terms, through

the dependence of v̂ on temperature and electrostatic potential,

v̂ =
v

vth
=

√
E − qΦ(ψ)

T (ψ)

For computing the transport matrix, we consider the distribution function

to be a Maxwellian,

fM(~v) =
n

(
√
πvth)

3 exp

(
− v2

v2th

)

To compute the moments of the anomalous, we take advantage of the following

relation for the moments of a Maxwellian,

∫
d~v

(
1

2
mv2

)r
fM(~v) =




r∏

s = 0

(
2s+ 1

2

)
 2nTr (6.12)

While computing the moments (Eq. 6.6), one should note that the thermal velocity

need not be spatially uniform. Thus, contributions from the diffusive component
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of the flux are of the form,
∫

d~v

(
v2

v2th

)r
∇ψf(~v)|θ,~v =

∫
d~v

1

Tr

(
1

2
mv2

)r
∇ψf(~v)|θ,~v

=

∫
d~v

1

Tr
∇ψ

[(
1

2
mv2

)r
f(~v)

]

θ,~v

=
1

Tr
∇ψ

[∫
d~v

(
1

2
mv2

)r
f(~v)

]

θ

(6.13)

For a Maxwellian distribution function, we thus have,

∫
d~v

(
v2

v2th

)r
∇ψfM(~v)|θ,~v =

1

Tr
∇ψ






r∏

s = 0

(
2s+ 1

2

)
 2nTr



θ

= 2




r∏

s = 0

(
2s+ 1

2

)

[
∇ψn+ r

1

T
∇ψT

]
(6.14)

The anomalous transport matrix (Eq. 6.6), for the above form of Ua (Eq. 6.9) and

Da (Eq. 6.11), using Eq. 6.14, is

−Γn = [D0 +D2 −Dα]∇ψn+
3

2

[
D2 + 2D4 −

2

3
Dβ

]
n
1

T
∇ψT

−Q =
3

2
[D0 + 2D2 + 2D4 −Dα]T∇ψn+

3

2

[
D0 +

9

2
D2 + 12D4 −Dβ

]
n∇ψT

(6.15)

Matching it with a desired transport matrix, Eq. 6.8, requires the meeting of the

constraints,




−1 0 1 1 0

0 −2
3

0 1 2

−1 0 1 2 2

0 −1 1 9
2

12



·





Dα

Dβ

D0

D2

D4





=





D11

2
3
D12

2
3
D21

2
3
D22





(6.16)

We have to meet four constraints involving five parameters. This gives us the

additional flexibility that is required in order to meet to the additional constraint

of positivity of the diffusion coefficient over the entire domain,

Da = D0(ψ) +D2(ψ)

(
v2

v2th
− 1

2

)
+D4(ψ)

(
v4

v4th
− 3

v2

v2th
+

3

4

)
≥ 0 (6.17)
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6.2.1 Illustration: Diagonal Transport Matrix

To illustrate the ability of the anomalous transport matrix to match a de-

sired fluid transport matrix, we consider the case of a diagonal transport matrix

similar to that of transport in a typical conducting fluid. Such a fluid is typically

defined by its Diffusivity (Dn) that determines the particle diffusion rate, Conduc-

tivity (χ) that determines the heat conduction rate, and Specific Heat (Cp) that

determines the convective heat transfer. The transport matrix for such a fluid is,

−Γn = Dn∇ψn

−Q =
5

2
TDn∇ψn+ χn∇ψT (6.18)

We can see that the particle flux is driven solely by the density gradient in this

case. A comparison with the transport matrix described by our model leads to the

following constraints

Dn = D0 +D2 −Dα (6.19a)

0 = D2 + 2D4 −
2

3
Dβ (6.19b)

5

3
Dn = D0 + 2D2 + 2D4 −Dα (6.19c)

2

3
χ = D0 +

9

2
D2 + 12D4 −Dβ (6.19d)

Equations 6.19a–6.19c lead to the condition

Dβ = Dn (6.20)

Eq.s 6.19a, 6.19b, 6.19d & 6.20 lead to

D4 =
1

5

[
2

3

(
χ− 7

2
Dn

)
−Dα

]
(6.21)

and hence,

D2 =
2

3
Dn − 2D4

D0 = Dn −D2 +Dα (6.22)
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Thus, our choice of Dα determines the form of the convective (Ua) and diffusive

(Da) coefficients. For a simple quadratic dependence of the diffusive coefficient

over the velocity, we set

Dα =
2

3

(
χ− 7

2
Dn

)
(6.23)

leading to

D4 = 0

D2 =
2

3
Dn

D0 =
1

3
Dn +Dα (6.24)

The convective and diffusive coefficients are of the form

Ua =
2

3

(
χ− 7

2
Dn

)
1

n
∇ψn+Dn

1

T
∇ψT (6.25a)

Da =
2

3

(
χ− 7

2
Dn

)
+

2

3
Dnv̂

2 (6.25b)

These coefficients in the anomalous flux (Eq. 6.4) result in the fluid transport

matrix given by Eq. 6.18 for species obeying a Maxwellian distribution function.

As to the constraint about the positivity of the diffusive coefficient, we can see,

from Eq. 6.25b, that the condition now is

Dα =
2

3

(
χ− 7

2
Dn

)
≥ 0 (6.26)

6.3 Verification of the transport model

To verify the anomalous transport model, we consider a modified kinetic

equation that does not have the effects of particle drifts and accelerations. This

modified kinetic equation is of the form

∂f

∂t
+ ~∇ψ · [Γaêψ]θ,~v = 0 (6.27)

We consider test–cases corresponding to two different transport matrices. The

domain of interest in these computations is an annulus in a tokamak. Since the

goal of our present investigation is the verification of the ability of our transport
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Figure 6.1: Steady–state solution for anomalous transport model (Eq. 6.28) in
TEMPEST compared with the solution for the equivalent fluid model (Eq. 6.29)

model to match equivalent models in fluid codes, we consider the simple case of

close field–lines. To illustrate the performance of the model, we consider different

forms of the anomalous transport model, and verify that the resulting steady–state

solution from the kinetic simulation matches that of the transport matrix that

they are designed to match. The latter are the solutions of ordinary differential

equations corresponding to the divergence of fluid–fluxes set to zero.

6.3.1 Ua = 0, Da(v̂) = Dn

For a uniform diffusivity for all velocities, in the absence of an advective

component, the anomalous radial flux is of the form,

Γa = −Dn ∇ψf |~v (6.28)

We can see, from Eq. 6.15, that for a purely diffusive anomalous flux with a

constant diffusive coefficient (Da) for all velocities, the fluid transport matrix is of

the form

−Γn = Dn∇ψn

−Q =
3

2
DnT∇ψn+

3

2
Dnn∇ψT (6.29)

For a transport model defined by a single parameter, Dn, clearly, we can only
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Figure 6.2: Evolution of flux–averaged density and temperature for Eq. 6.28 follows
the physical picture for Eq. 6.29 of density remaining uniform. Density deviation
from uniformity can be seen to be much smaller than 1%.

have one independent parameter in such a tranport matrix. The conductivity in

the above matrix is defined as a multiple of diffusivity, χ = 1.5Dn.

For a plasma with uniform density, our problem is that of heat conduction.

So the steady–state solution is that of heat conduction problem in an annulus,

with particle density remaining uniform across the domain. From the results of a

simulation run with these conditions, as shown in Fig. 6.1, we can see that our

transport model matches the result of our physical intuition. Plotted in the figure

are the flux–surface averaged values of ion density and temperature. We expect

the density to remain uniform during the simulation, and we see that in Fig. 6.2

that the ion density remains almost uniform, with the deviation from uniformity

remaining much smaller than 1%.

6.3.2 Ua = Dβ∇ψ lnT , D(v̂) = D2v̂
2

We now choose a model with a diffusive coefficient that is a quadratic

polynomial in v̂. In order to obtain a diagonal transport matrix, we choose a

suitable advective coefficient. Comparing the diffusive coefficient with Eq. 6.24,

we see that Dα = 0 and Dβ = Dn. Thus the anomalous radial flux is of the form,

Γa = Dn
1

T
∇ψTf − 2

3
Dnv̂

2 ∇ψf |~v (6.30)
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Figure 6.3: Steady–state solution for anomalous transport model (Eq. 6.30) in
TEMPEST compared with the solution for the equivalent fluid model (Eq. 6.31)

We can see, from Eq. 6.15, that for the above form of anomalous flux, the fluid

transport matrix is of the form

−Γn = Dn∇ψn

−Q =
5

2
DnT∇ψn+

7

2
Dnn∇ψT (6.31)

The transport matrix is, once again, defined by only one independent parameter.
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Figure 6.4: Evolution of flux–averaged density and temperature for Eq. 6.30 follows
the physical picture for Eq. 6.31 obtained from the magnitudes of coefficients.
Temperature evolution is faster than the density evolution.
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Figure 6.5: Steady–state solution for anomalous transport model (Eq. 6.32) in
TEMPEST compared with the solution for the equivalent fluid model (Eq. 6.33)
for Dn = 10 & χ = 50m2/s

The conductivity is related to the diffusivity as χ = 3.5Dn. The solution of the

density conservation equation in this case is that of the divergence of particle flux

is zero. For a circular annulus, the solution is that of a logarithmic profile. Since

our domain width is only 10% of the radius of the annulus, the profile is very

close to a linear variation. We see that the steady–state density profile in Fig. 6.3

matches this expectation. From the evolution plot in Fig. 6.4, we see that the

temperature evolution is faster than that of the density, as one expects from the

fact that χ = 3.5Dn, and since convective transport is non–negligible, steady–state

for the temperature profile is reached only along with that of particle density.

6.3.3 Ua = Dα∇ψ lnn+Dβ∇ψ lnT , D(v̂) = D0 +D2v̂
2

We now choose a model with a convective coefficient that depends on gra-

dients of energy as well as particle density. Thus the anomalous radial flux is,

Γa =

[
2

3

(
χ− 7

2
Dn

)
1

n
∇ψn+Dn

1

T
∇ψT

]
f

−
[
2

3

(
χ− 7

2
Dn

)
+

2

3
Dnv̂

2

]
∇ψf |~v (6.32)

We can see, from Eq. 6.15, that for the above form of anomalous flux, the fluid
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Figure 6.6: Distribution function deviates from a Maxwellian states under the
influence of the anomalous transport opertor. Introducing the Krook collision
model remedies this effect.

transport matrix is of the form

−Γn = Dn∇ψn

−Q =
5

2
DnT∇ψn+ χn∇ψT (6.33)

To test the performance of our model, we consider a plasma whose conduc-

tivity is χ = 50m2/s, and diffusivity is Dn = 10m2/s. For this test, we consider the

case of a uniform magnetic field. The steady–state solution, as shown in Fig. 6.5,

does not match with the analytical solution that we expect. Since the analytical

solution is for the case of a Maxwellian distribution function, we first verify the

form of the distribution function. Fig. 6.6 shows the distribution function at one

particular radial location. We can see that the distribution function, as evolved by

the anomalous transport model, is not in the form of a Maxwellian. The transport

model, due to its quadratic dependence on velocity, distorts the tail of the dis-

tribution. To retain the Maxwellian nature of the distribution function, we have

added a particle and energy conserving Krook collision model (Sec. 5.2). The

steady–state solution attained by the anomalous transport model, in the presence

of Krook collision model, is shown in Fig. 6.7. From Fig. 6.7, we can clearly see

that the collisional relaxation of the distribution function towards a Maxwellian
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Figure 6.7: Effect of introducing the Krook collision operator on the steady–state
solution for anomalous transport model (Eq. 6.32) in TEMPEST. Comparison is
done, as in Fig. 6.5 with the solution for the equivalent fluid model (Eq. 6.33) for
Dn = 10 & χ = 50m2/s

form results in better agreement of the steady–state reached by the anomalous

transport model in TEMPEST with analytical expectation.

Conducting but non–diffusive plasma

To test the performance of our model, we consider a conducting, but not

diffusive, plasma. This corresponds to Dn = 0 and χ 6= 0.

−Γn = 0

−Q = χn∇ψT (6.34)

For this test, we consider the case of a uniform magnetic field. As can be seen in

Eq. 6.34, the particle flux vanishes for Dn = 0 and, the equation for the evolution

of particle density reduces to the trivial case of density remaining constant. The

energy flux is dependent only on the conductivity, and the solution of the energy

conservation equation in this case is that of the divergence of energy flux is zero.

We compare the steady–state profiles of particle and energy density to the expected

values from the transport matrix in Fig. 6.8, and we show the time evolution in Fig.

6.9. We can see that the density profile remains unchanged while the temperature

profile matches this expectated profile.
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Figure 6.8: Steady–state solution for anomalous transport model (Eq. 6.32) in
TEMPEST compared with the solution for the equivalent fluid model (Eq. 6.34)
for Dn = 0 & χ = 50m2/s

6.4 Summary

In this work we have presented a model to simulate anomalous radial trans-

port in the edge plasma using kinetic codes. In this model we represent the anoma-

lous transport as a combination of convective and diffusive transport whose coeffi-

cients can be obtained from experimental observations, or from simulations of edge

turbulence. We have implemented the model in the 4–D version of the kinetic code

TEMPEST. We have verified the performance of the model by comparing its re-

sults for the case of gradient driven transport to analytical expectations in the

closed field–line region of tokamak edge plasma.

Chapter 6 contains material in preparation to be published as “Anomalous

radial transport model for kinetic codes”, K. Bodi, R. H. Cohen, S. I. Krashenin-

nikov, T. D. Rognlien and X. Q. Xu. The dissertation author is the primary author

of this publication. The text of chapter 6 contains material of the paper “TEM-

PEST simulations of the plasma transport in a single-null tokamak geometry”, X.

Q. Xu, K. Bodi, R. H. Cohen, S. Krasheninnikov and T. D. Rognlien, in communi-

cation to be published in Nuclear Fusion. The dissertation author is a contributing

author of this publication.
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Figure 6.9: Evolution of flux–averaged density and temperature for Eq. 6.32 follows
the physical picture for Eq. 6.34 obtained from the magnitudes of coefficients.



Chapter 7

Summary and Conclusions

In this thesis we have presented the results of our studies on anomalous ra-

dial transport in tokamak edge plasma. Contributions of the present thesis can be

divided into two areas: intermittent convective transport (blobs) in edge plasma,

and anomalous transport model for kinetic codes simulating edge plasma. In chap-

ters 2–4 we present our work on the mechanism of generation and propagation of

blobs in edge plasma. In chapters 5 & 6 we present our work on the simulation of

edge plasma using kinetic codes.

In chapter 2 we have discussed the mechanism of generation of coher-

ent mesoscale structures that constitute the anomalous radial transport in edge

plasma. Using the technique of four–wave interactions we have considered the sta-

bility of mesoscale electromagnetic structures in the presence of interchange drive

and electrostatic drift–wave turbulence, and have shown that smallscale electro-

static (drift–wave) turbulence may generate filamentary (elongated along fieldlines)

mesoscale electromagnetic structures (blobs).

In chapter 3 we have presented numerical simulations that were performed

to verify the formation of mesoscale structures as a result of smallscale electrostatic

drift–wave turbulence. We considered the interaction of drift–wave turbulence,

interchange drive and fieldline–tension in a 2–D domain in the closed fieldline

region of the outer midplane of the tokamak edge. We have shown that, even for

edge plasma gradients where interchange drive is stabilized by fieldline tension,

drift–wave turbulence results in the formation of mesoscale structures like blobs.
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In chapter 4 we have presented our study on the effect of edge plasma

gradients on the propagation of blobs. Based on the conservation of the total

kinetic energy of the convecting blob and the flow–field in the surrounding (that

depends on the plasma density), we first argued that blobs convecting towards

regions of lower density accelerate. Similarly holes (blobs with lower density than

surrounding plasma) convecting towards the core must decelerate. We have pre-

sented numerical simulations whose results confirm the preferential propagation

of blobs into regions of low plasma density. Since the kinetic energy depends on

the local plasma density, this effect is lost in analyses that use the Boussinesque

approximation in the vorticity equation.

In chapter 5 we introduced the 5–D kinetic code TEMPEST for simulating

tokamak edge plasma. In its 4–D form TEMPEST can be run as a kinetic transport

code for the edge. In order to compute neoclassical transport due to particle

drifts TEMPEST needs a collision model. As a first step we have added a Krook

collision model that conserves particle and energy densities. We have presented the

formulation and implementation of the model, and have demonstrated that it can

restore a perturbed distribution function to a Maxwellian form while conserving

the particle and energy densities.

Intermittent coherent structures (blobs) that have been discussed in chap-

ters 2, 3 & 4 are a feature of anomalous transport in edge plasma. In chapter 6

we have presented the formulation of a model for anomalous transport in kinetic

codes. The model is capable of representing convective and diffusive fluxes. We

have presented the details of implementation of the model for TEMPEST. In or-

der to demonstrate the flexibility of our anomalous transport model we have tested

its performance in the closed fieldline region for different transport matrices and

showed that the results match analytical expectations. Since TEMPEST is capable

of handling the scrape–off layer, our anomalous transport model can be extended

to the scrape–off layer. Particle and heat fluxes to the chamber wall are of interest

in relation to the issues of erosion of chamber walls, impurities and even confine-

ment. Computations using the anomalous transport model in the edge scrape–off

layer can help improve our understanding in this area.
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