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Abstract of the Thesis

Adaptive Control of an Aircraft in Icing Using a Batch Least-Squares Identifier

by

Samer Shaghoury

Master of Science in Engineering Science (Aerospace Engineering)
University of California San Diego, 2020

Professor Miroslav Krsti¢, Chair

Extensive effort in controller design of aircraft systems is invested in robustness
to ensure safe, stable behavior. Particular attention is placed on anomalous flight-
conditions harbored by the atmosphere, especially icing. The thesis presents a
regulation trigger-based adaptive controller to cope mathematically with the impact of
ice on the aircraft equations of motion and control the aircraft pitch to the commanded

angle. Upon an introduction to the problem, a pitch model of an aircraft system is

Xii



derived, where the impact of icing is modeled. The design of a stabilizing certainty-
equivalence controller utilizing backstepping follows, and is succeeded by the
introduction of the Batch Least-Squares Identifier (BaLSl). Finally, simulation results
of an aircraft experiencing icing demonstrates the effectiveness of the identifier, with
the trajectory of the iced system utilizing the proposed identifier closely following that

of the nominal system.
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Chapter 1

Introduction

1.1 Background

Aircraft generally avoid flying in known icing conditions at all costs, but
inadvertent icing events frequently occur. Although many aircraft utilize ice detectors,
few employ ice-shedding mechanisms. Upon detection of icing conditions, pilots must
maneuver out of the conditions, during which, ice may continuously encroach upon the
aircraft. Icing causes a variety of issues, including degraded engine and aerodynamic

performance, the latter of which is the focus of the thesis.

Ice accretion can be pernicious in nature and, therefore, difficult to estimate the
severity of by a pilot. Although impacts to lift and drag may be discerned, stability,
especially in unmanned systems, may be lost suddenly. Significant attention in test and
research have focused on controlling ice-related risk by improving methods in ice

forecasting and detection, ice sublimation, and flight controls.

1.2 History of Aircraft Icing

Motivation for mitigating icing risks in aircraft has existed for a majority of

aircraft history. Over time, demand for all-weather capability (especially in military



aircraft) and ice-related mishaps, among other reasons, have contributed to an increase
in resources devoted to solving the icing dilemma. In the name of mishap prevention,
the Federal Aviation Administration (FAA) began requiring certifications for flight in

icing, further increasing the demand.

Substantial effort in the development of detection and sublimation technologies,
along with methodologies for modeling ice accretion and evaluating performance,
stability, and control degradation, was made under the auspices of the National
Aeronautics and Space Administration (NASA). [1] details NASA’s history of
contributions up to 1989. In 1991, the FAA’s attention on the matter culminated into
the publishing of [2], a three-volume handbook dedicated solely to in-flight icing. The
FAA maintains guides and references for flight in adverse weather and icing in [3] and
[4]. [5] details industry’s progress in icing-related work in 2000, presenting the physics

behind ice accretion and the latest methods in ice modeling and simulation.

Even with the progress in the 20" century, application of the technologies and
methodologies developed were limited as detailed in [6], which also presents a simpler
modeling approach. With late-century advancements to computing accelerating
improvements to ice-accretion modeling and simulation, advancements in the
understanding of ice’s impacts to aircraft, which seldom went beyond two-dimensions,
remained unripe for use in control-law development. Research typically followed suit
of [7] to increase understanding of ice’s impacts on aircraft performance, stability, and
control by use of aircraft models in wind tunnels; however, the results remained limited

to specific aircraft configurations and ice formations.



Attempts to remedy the specific nature of results plaguing ice-impact studies
gained traction with the exploitation of system identification and adaptive control. [8]
incorporated system identification in flight-envelope estimation, which was
successfully applied to an icing scenario. [9] utilized system identification for
evaluation of an icing-severity factor. £, adaptive control is among adaptive-control
methods to have entered flight-control applications, presented in [10] in 2010 and again
in [11] in 2012. In 2014, [12] employed adaptive control for the task of output tracking,

applying the methodology to an aircraft with failed actuators.

Only recently have adaptive control methods been applied to aircraft in icing in
research. In 2014, [13] utilized an adaptive output tracking scheme to attempt to control
a linearized, iced aircraft model. The proposed scheme, however, was unable to ensure
full control of all aircraft axes and guarantee convergence of parameter estimates (used
to model ice’s impacts). In 2015, [14] utilized predictive control in conjunction with an
extended Kalman filter to successfully control a simulated Airbus aircraft; however, the

scheme requires system excitation and did not produce estimates of icing impacts.

1.3 Batch Least-Squares ldentifier

The thesis will apply the Batch Least-Squares Identifier (BaLSI) [15]—an
event-triggered, parameter update law to estimate unknown icing parameters in an
aircraft model via least-squares methodology. The proposed adaptive-control scheme
will utilize a Certainty-Equivalence Controller (CEC) in conjunction with the BaLSlI to

stabilize an aircraft model. The BaLSI’s approach presents multiple advantages, namely



the guarantees of convergence of parameter estimations and asymptotic stability of the
system (subject to assumptions). The adaptive-control scheme was shown to achieve
asymptotic stability of a wing-rock model in the presence of five (5) uncertainties in

[15] and a two-link robot in the presence of four (4) uncertainties in [16].

1.4 Thesis Qutline

Beyond the introduction, the thesis is organized as follows. In Chapter 2, the
pitch model of an aircraft is derived, followed by the modeling of ice’s impacts and
plant construction. A stabilizing CEC is derived in Chapter 3, and the BaLSI extension
to the controller is presented in Chapter 4. Simulation results of the iced system is
presented in Chapter 5. Conclusions and recommendations are given in Chapter 6,

followed by the bibliography in Chapter 7.



Chapter 2

Derivation of the Aircraft Model

2.1 Coordinate System

Two coordinate systems are utilized: the Earth Axis System (EAS) and the
Body Axis System (BAS). The model will only concern longitudinal motion, thus

allowing for the following assumption to make defining the EAS more convenient.

Assumption 2.1 The aircraft experiences no lateral-directional movement.

Typically, the EAS x axis is pointing North and y East; however, Assumption 2.1

allows for the following definition:

e xg axis is within the horizontal plane in the direction of the aircraft
heading, positive fore.

ey axis is within the horizontal plane orthogonal to the x axis, positive
to the right.

e 7z axis is orthogonal to the x; and y axes, positive downwards.



The BAS is defined as follows:

e x5 (longitudinal) axis is along the fuselage centerline, positive fore.

e y; (lateral) axis is along the wing span, orthogonal to the xz axis,
positive out the right wing.

e zp (directional) axis is orthogonal to the xz and yz axes, positive

through the bottom of the aircraft.

Pitch refers to movement about the lateral axis and is positive counterclockwise
(nose up). The pitch angle refers to the angle between the x axis and the xz-y; plane.
The Angle of Attack (AOA) is the angle between the xz axis and the relative wind. The
flight-path angle is the angle between the relative wind and the x-y; plane. The

relationship between pitch, AOA, and flight-path angle (8, a, and y, respectively) is
0=a+y (2-1)

The flight-path angle can be calculated as

y = atan (— i—i) (2-2)



2.2 Equations of Motion

2.2.1 Preliminary Assumptions

To derive the model, a standard aircraft configuration is assumed, as described

in Assumption 2.2.

Assumption 2.2 The aircraft is of a standard configuration (i.e., utilizing a non-lifting

fuselage, a wing, and a horizontal tail aft of the wing).

Assumption 2.3 below is used to keep airspeed constant. Enough negative pitch

can result in negative thrust; therefore, the model will be restricted by Assumption 2.4.

Assumption 2.3 Thrust will always be such that airspeed is constant.
Assumption 2.4 The aircraft pitch is greater than or equal to zero.

The assumptions are not too restrictive, as Assumption 2.3 is generally a primary goal
of thrust, and aircraft (especially larger aircraft) frequently climb to exit icing
conditions [3]. A third assumption regarding thrust will be made, setting the thrust-

vector angle, ¢, to 0.

Assumption 2.5 Thrust is only applied in the longitudinal direction.

The next assumption allows easy modeling of aerodynamic lift and drag.

Assumption 2.6 Lift is linearly proportional to the AOA, and drag quadratically

(symmetric with respect to zero AOA).



Assumption 2.6 is generally accurate up to near-stall conditions; therefore, the model
will limit the AOA. To further simplify the model, the following assumption is also

made.

Assumption 2.7 Thrust and drag contributions to pitching moment are negligible.

2.2.2 Aerodynamic Forces and Moments

Lift, L, produced by the wing and Horizontal Tail (HT) are modeled as
Lw = §(SCw = qSw (CLOW +Chg,, (@t Afaf)) (2-3)

Ly = A(SC1 = Tk (Cug, + Cry (@ + 4.8, (2-4)

q is the dynamic pressure, S is the planform area, C; , is the lift coefficient (C,) at a =
0, Cy, is the C;-a slope, and A is the a-6 slope (deflections, &, positive trailing-edge
down). Flap deflection is taken as constant. Wing downwash is modeled by applying
constants to the dynamic pressure and AOA seen by the HT (r, and 7, respectively).

(2-4) is rewritten as

LH = nqC_ISH (CLOH + CLaHna(a + Aede)) (2'5)
The total aircraft lift is

L=Ly+Ly=qg(Lo+Leax +Ls,5) (2-6)



where

LO = LOW + LOH
Ly = LaW + LaH Ls, = nqnaSHCLaHAe
LOW = SW (CLOW + CLaWAf(Sf) LOH = T]qSHCLOH

LaW = SWCLaW LaH = nqnaSHCLaH

The drag produced by the wing, HT, and aircraft are
— — 2
Dy = q(SCp)w = qSw (CDOW + ky (a + Af6f) )

Dy = G(SCo)i = a5k (Coo,, + kmd(a + 8.6,))

Dy = ‘?SWCDA

(2-7)

(2-8)

(2-9)

(2-10)

Cp,, Is the drag coefficient (Cp) at C, = 0, and k is the drag-due-to-lift factor. The

aircraft drag coefficient, Cp ,, is taken to be constant. The total aircraft drag is

D =Dy + Dy + Dy =G (Do + ks (& + 8;67)” + ky(a + A.6,)?)

where

DO :D0A+DOW+D0H
ki = Swkw ky, = T/qncztSHkH

Dy, = SwCp, Dy, = SWCDOW Dy, = UqSHCDOH

(2-11)

(2-12)



Pitching-moments about the Aerodynamic Center (AC) are separated into three

components: wing, HT, and all other contributions. The latter is modeled as

My = GCrny (SOw = GSwTw (Cimg,, + Cmy @) (2-13)

C is the mean chord, C,,, is the pitching moment (C;,) at @ = 0 and G, , is the Cy,-a

slope. The wing and HT contributions are
My, = Ly cosa (xWAC - xCG) = Ly Xy cosa (2-14)

My = Ly cosa (xy . — Xcg) = LyXy cosa (2-15)

2.2.3 Force Model

Force models are derived using Newton’s 2" law, applied in the EAS:

mig = (Z Fx>E = —Lsiny —Dcosy + T cos(0 + ¢) (2-16)

mizp = (Z FZ)E =mg — Lcosy + Dsiny — Tsin(6 + ¢) (2-17)

10



Note that per Assumption 2.5, ¢ = 0. Substituting in (2-6) and (2-11):

mip = —q [(LO +L,a+ LgeSE) siny
(2-18)
2
+ (DO +ky(a + 0p6F) + ky(a + Ae6e)2) cos y] + T cos 6

mzg =mg +q [—(LO + Lya+ L(geSe) cosy
(2-19)
+ (DO + ky(a + Af6f)2 + ky(a + AQSQ)Z) sin y] —Tsin6

Per Assumption 2.3, the airspeed will be kept constant, meaning acceleration

must equal zero. The expression for acceleration is derived:

XgXp + ZgZg

NS

U -2 -2

T = Xgcosy — Zgsiny (2-20)
To keep v = 0, the thrust at any point in time must be

T =seca [c‘; (DO + kl(a + Afdf)z + ky(a + AeSe)z) + mg sin y] (2-21)

Given (2-21) and noting

cos 6 ) sinfsiny cosfcosy
CoSy — =sinytana 1- =
cosa cosa cosa (2-22)
_ sin 6
siny — P = —cosytana

11



(2-18) and (2-19) can be written as

cos 9)

mjéE - {mg (COS a

=G |(Lo + Lot + Ls,8.) (2-23)

+ (DO + iy (o + Afo)Z + ky(a + AESB)Z) tan a]}siny

cos 9)

sz - {mg (COS (04

=7 |(Lo + Lot + Ls,8.) (2-24)
2
+ (DO +ky(a + 0p8F) + ky(a + ABSB)Z) tan a]} cosy

2.2.4 Moment Model

The moment model will be based off

Iyyé = z MCG = MA + (LW")?W + LH:)?H) cosa (2'25)
Substituting the moment and lift equations into (2-25) yields

0 = c‘I{MO + (MC(,W + McOH) cosa + [Ma + (M + MCO,H) cos a]a

caw

(2-26)
+ Mg, cosa 69}

12



where

MO = I;J}SWCTWCTHOA M(X == I;;SWEWCmaA
MCOW = I;)}LOWJZW MCOH = I;}}LOH)?H (2_27)
My, = I;)}Lawfw Meg,, = I;;LaHfH

— 7-1 =
M‘Se - Iyy LSexH

2.3 Modeling Impacts of Icing

Effects of icing on the equations presented thus far will now be assessed. The
effects, which are of unknown magnitudes, will become the unknown parameters to be
estimated by the BaL Sl scheme. Icing generally first occurs on aerodynamic surfaces,
resulting in decreased lift and increased drag; thus, impacts of icing will be modeled by
multiplying the aerodynamic forces by icing factors per Assumption 2.8. Furthermore,

the icing factors will be assumed constant per Assumption 2.9.

Assumption 2.8 Accumulated ice only impacts aerodynamics of the wing and HT.
Assumption 2.9 Icing factors are constant.

The decrease in lift and increase in drag will be modeled via the icing factors

0 <o <1landA > 1,respectively. The icing factors will be applied to the wing and

13



HT aerodynamic forces. The impacts of the icing factors to the lift and moment

constants defined in (2-7) and (2-12) are highlighted below:

(Low),., = TowSw (CLOW + CLaWAfaf) (Loy),., = GogMaSuCiy,,
(LaW)ice - GaWSWCLaW (LaH)ice = O-aannaSHCLOIH (2_28)
(L6e)ice = G5an77aSHCLaHAe

(DOW)ice = AOWSWCDOW (DOH)ice = AOanSHCDOH

) (2-29)
(kD ice = AkWSWkW (k2)ice = AanqnaSHkH

Note the constant D, ,, representing the drag generated by the aircraft body, is not

impacted by ice per Assumption 2.8. Furthermore, the moment constants defined in

(2-27) are also impacted due to dependencies on the lift constants in (2-28).

The equations of motion in (2-23), (2-24), and (2-26) are now adapted for ice.

cos 9)
cosa

e =

—-q [(O‘OWLOW + 09, Loy, + (aaWLaW + aaHLaH)a
+05,,Ls,0) (2-30)

2
+ (Do, + 2oy, Doy, + Aoy Doy + Ay ks (a + Ar6y)

+ Ay ko (o + Aede)z) tan a]} siny

14



cos 0)
cosa

mzp = {mg(
- C_I I:(O-OWLOW + O—OHLOH + (O—aWLaW + O-aHLaH)a

+ 05,,Ls,0) (2-31)

2
+ (DOA + Aoy Doy, + A0y Doy + iyl (@ + Ar67)

+ Ay ko (o + Ae6e)2) tan a]} cosy

é = Q{MO + (O-OWMCOW + O-OHMCOH) cosa

+ [My + (0ayyMeay + OayMea,,) cos ala (2-32)

+ 05,Ms, cOsa 63}

2.4 Plant Construction

Selection of the plant states will primarily be drawn from the desired variable to
be controlled (pitch). An additional state, either y or a, will be added so the system is

not underdetermined. The state vector is defined as

X171 [6—8 [0°—6,180° — 4]
x = [le =[ 0 ] XEX = [0_,6,] cR* n=3 (2-33)
X3 a [as—' as+]

where the commanded pitch angle, 8 € [0°,180°], is constant. 6_ and 6, are the pitch-
rate limits, and a,_ and a,, are the angles near stall at which lift can no longer be taken

as linearly proportional AOA (per Assumption 2.6).

15



The input variable is defined as
u=_4, u€U=1[6,_,00.] cR™ m=1 (2-34)
6._ and 6, are the elevator-deflection limits.
The time derivative of a will be obtained by taking the time derivative of (2-1):
a=0-y (2-35)

To obtain y, the time derivative of (2-2) is taken to obtain

o d Zg 1 . o
V=g [atan (— —)] =-7 (Zg cosy + &g siny) (2-36)

XE

Note xz; = vcosy and Zz; = —v siny. Inserting the expressions for Z and X yields

7= ——| (Lo + Lo + Ly, 8.)

+ (DO +ky(a + Afdf)z + ky(a+ AeSe)Z) tan a] (2-37)
g (cos 6)
v (cos a

Drag is at generally a magnitude less than lift in most aircraft designs. Since the

drag term is further reduced by tan « in (2-37)—note the limits to a given in (2-33)—

the following assumption is made to simplify the model.

Assumption 2.10 The drag term in (2-37) is insignificant relative to the lift term.

16



The drag term is dropped to yield

1 cos @
y ~ — |g(L L L — 2-38
Vo [q( ot La@+ 6966) mg (cos a)] (2-38)

Incorporating the icing factors results in

: 17_
g [q [9oyLow + ToyLoy + (CayLlay + TayLlay)a + 0s,Ls,8e]

(cos 9)]
mg cosa

With ¢ the vector of unknown parameters, the plant will be written in the form

(2-39)

x=fl,u)+glx,u)e (2-40)

Using the shorthand notation c,, for cos x3, f(x,u), g(x,u), and ¢ are

X2
q(M, + Max3)_
flouw) = g <cos(x1 + 9)) (2-41)
Xy +————
1% COS X3
0 0 0 0 0
M. C M_,y,,C M., C.x3 M., C.X3 Msc,u
g(x, u) _ C_I COZV X3 COZI X3 COZW x373 CCZH X33 62 X3 (2_42)
ow Oy aw ay Se
- -— — X3 ——X3 — u
mv mv mv mv mv
O—OW (Oll]
O-OH (0,1]
¢ = |%ay ¢ e d=]|(01] (2-43)
Oay (0,1]
I5n (0,1]

17



Chapter 3

Design of a CEC

3.1 Overview

The CEC is obtained utilizing a recursive design procedure, known as
backstepping, to derive a Lyapunov-based, feedback controller. The x;-x, subsystem is
stabilized via backstepping, with x, acting as the virtual control for x;. A positive-
definite Lyapunov-function with a negative-definite time-derivative will be used to
show the stability of the closed-loop x;-x, subsystem. The third state’s differential
equation will be considered a zero-dynamics subsystem, and will be shown to be stable
with x; = x, = 0. Design of the controller will follow the process outlined in [17] for

nonlinear block backstepping. All results presented hold for all ¢ € .

The plant (2-40) is rewritten in the following form, with x = x; and & =

[x2 x3]7.

x = f(x)+ g0y

£ = m(x,&) + BCx Ou (3-1)

18



where y = h(§) = x, acts as a virtual output for the & system. Associating (2-41),

(2-42), and (2-43) with (3-1) yields

fG)=f(x) =0 (3-2)
g(x) =g(x) =1 (3-3)
— T -
( I[ ];COW I O-OW \
_ cOy Ooy
q| Mo+ Myx; + |Mcan3| Oy COS X3
MC(X X3 O-aH
m(x,§) = m(xy, x5, x3) = 8 L T (3-4)
~ Ow Ooyy
. +g cos(x; + 6) _i Lo, 0oy
27 v\ cosxs mv|Lqy,Xx3| [Faw
Lgpx3 Oay
qMs, cos x3 05,
ﬁ(x, f) = ﬁ(xl: X2, x3) = C_ILSe (3-5)
" %

To apply nonlinear block backstepping, the following two conditions be met.

e The & subsystem must have a constant, globally-defined, relative degree
of one uniformly in x.
e The zero dynamics subsystem of & must be Input-to-State Stable (ISS)

with respect to x = x; and y = x, as inputs.

The conditions will be verified in Section 3.2 and Section 3.3.

19



3.2 Control Design for the Pitch Subsystem

The virtual control, x,, will be such that the x; subsystem is stabilized when x,
equals a desired a(x;), with V: R™ — R a smooth, positive definite, radially unbounded

function such that
) av
V(x)) = 6_961(xl)[f(x1) +g(x)alx)] < —W(x) <0V x,\{0} (3-6)

where W: R™ — R is positive definite.

To satisfy the first condition, 3—? (&)B(x,&) # 0 forall x € X and for all t:

qMs, cos x3 05,

d
Z@OF0O =M1 0| als,  |=aMs, cosx;os, (37
o¢ g5,

mv

Noting that g # 0, M5, # 0, and g5, # 0, (3-7) is only zero when x; = 90° or x5 =
—90°. The bounds on x5, given in (2-33), are a,_ and a,.., which are near the stall
angle of attack. For a majority of aircraft, the limits on AOA (i.e., x3) are within £20°,
and, given limits in aerodynamics, are never near 90°; therefore, cos x3 # 0 for all x5.

With (3-7) non-zero for all x € X and for all ¢t,, the relative degree is globally defined
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and one uniformly in x. The nonlinearities in the input-output relationship (i.e., in x)

can be therefore cancelled with the input

doh Jda
u = (—61 [y —a(x)] - £ Em(x, &) + Ix f (x) + gyl

-1
1% oh
~ (x)g(x)> (% (&)B(x, f)) ,

which can also be written as

[ [ MCOW ]T O-OW
|-l — atl g Mo + Mg + [0 | |2

u=|—cq|lx; —alx q 0 aX3 [mex3J Ty COS X3
l \ Mme_q, O-aH

da av _ -1
+ F (x)x, — ™ (%) (qM5e COS X3 0'51_1)

where c; is a positive controller gain.

(3-8)

(3-9)

The virtual control, a(x;), must be obtained such that x, is stabilized if x, =

a(x,). The following virtual control and Lyapunov function are chosen:
1 2
V(xy) = §x1

a(x;) = —x;
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The resulting V (x;) is negative definite:

V(x)) = x1x, = —x2 < 0V x,\{0} (3-12)

Note (3-6) is now satisfied with W (x) = kx#, where 0 < k < 1. Controller (3-9) is
now rewritten as

[ / MCOW T O-OW \
_ Moy, Ooy
u=-—\|q| My + Myxz + Megy,xs| |aw COS X3
| Megpx3] L%n

(3-13)

_ 1
+ (1 + Dy + x2) | (qMs, cos x3 05,,)

Given the bounds on x4, x,, and x5 given in (2-33)—particularly the bound on x5 that

ensures cos x; # 0 V x3—the input in (3-13) is bounded.

Substituting (3-13) in for the input in the system dynamics shown in (2-7) gives

the following state differential-equations for x; and x,:

[i;] - [—(cl + 1)§Z(x1 + xz)] (3-14)

Stability of (3-14) is shown via the positive definiteness of the Lyapunov function

Vi(x1,x3) = %[xf + (1 + x2)?] (3-15)
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and the negative definiteness of the time derivative
Vi(x1,%5) = =[x + c1(xF + 2x12, + x3)] (3-16)

With V; (x4, x,) positive definite and V; (x,, x,) negative definite, the control u

stabilizes the x;-x, subsystem.

3.3 AOA Subsystem and Analysis of the Zero

Dynamics

Stability of the AOA—x;—subsystem is now assessed as a zero-dynamics

subsystem. To obtain the internal dynamics, the state, n = y(x) is introduced such that

Lep(x) =0 (3-17)
(3-17) is satisfied with
aq a,
mv (3-18)

n=9ykx) =

Xy + sinxz = a;x, + a, sinx;
Ms, 05, Ls, 08,

where a; < 0, a, > 0, and, given the bounds on x, and x5 in (2-33),

n€H=[a,0, +a,sina,_,a,6_+ a;sinag, | c R (3-19)
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The internal dynamics, using the shorthand notation c,, for cos xs, is

MCOW ! O-OW
1 |/180\ g M, G
1= Lo,(x) = ( ) My + Myxs + " Hle
n mlnb( ) O_6H T M8e 0 a*3 McanS O-aW X3
Mg x3] L%n

- (120) g(cos(xl + 9_))

v Cry

+
s
.

which is rewritten as

N = by + by cos(x; + ) + (b, + b3x,) cos x5 + (by + bs cos x3)x3

where

180\ qgqM, 180\ mg
()l u-()
Vs MSeO-SH T L(geO'(gH
180\ § [ 1 [Meo,1" 1 Loyl
O G Pl Vo L1301 R vl A
z T /0sy M5e MCOH Lge LOH O—OH
b = muv _(180) qM,
37 LSeO-SH N Vs M5eO-5H

) _(180) g (1 M, 1 [LaWT [an]
>\ 1w Jos, \Ms, L Mcay, Ls,Lay Oay
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With the controller bringing the states x; and x, to zero, the resulting zero dynamics is

o = by + by cos B + b, cosx3 + (by + bs cos x3)x5 (3-23)

or, in terms of n,,

o = by + by cos B + b, cos [sin_1 (%)]
2

o e () () 2

Assessment of the stability of the zero dynamics necessitates an understanding

(3-24)

of the magnitudes and signs of the b constants in (3-23) and (3-24). Keeping in mind

Assumption 2.2:

b, is positive if the fuselage contributes a positive moment at a zero AOA,
negative if the moment is negative, or zero otherwise. Given Assumption 2.2, b,
is small in magnitude.

b, cos(x; + 0) is large and positive for pitches near 0°. Note x; + 6 equals 6,
the pitch angle. cos 6 can significantly reduce b; or change its sign. b, is

proportional to the aircraft weight.

L T
b, is large and driven by the _1/L5 [LOW term, which is negative and
e Oy

resembles the zero-AOA lift, which is generally close to the aircraft weight.
b5 is large and positive. b5 is proportional to the aircraft’s momentum.
b, is positive if the fuselage contributes a stabilizing moment force (i.e., M,, is

negative), negative if the fuselage contributes a destabilizing moment force (i.e.,
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M, is positive), and zero otherwise. Without a lifting fuselage (per Assumption
2.2), by, as with by, is significantly smaller than b; and b, in magnitude.

e b is smaller than b, and b,, but larger than b, and b,. bs is driven by the
_1/L [L W term, which is negative and resembles the change in lift per

change in AOA. bs is, at most, a magnitude less than b, and b,.

(3-23) equals zero at x3, the point of equilibrium for 74, on which bounds can now be

obtained. The bounds are

by — by + b, cos a,
b, + bs cos a,

bO + by + b, cos a,
b, + bs cos ag

< x *

x; < (3-25)

The value of x; is mainly impacted by &, which impacts the magnitude and sign of b,
in the numerator. The resulting point of equilibrium in the zero dynamics is
No = a, sin x3 (3-26)

The zero dynamics (3-24) is now linearized at the equilibrium point

*

[x; x5 mng]". Noting the derivatives

o(sin (22)) (180) 1 (3-27)
Ny A\ m
0 (cos [sin‘1 (Z—g)]) o (180) Mo (3-28)
ono Bl T azm
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and

cos [sin_1 (@>] = M (3-29)

a, a,

the partial derivative of (3-24) with respect to [X1 X2 1o]” (evaluated at

[xi x5 ml")is

n 180\, . . (M
(180) /b4 - a_g [bz + (T) bs sin™! (a_(;)] s bs\

n == — a (3-30)
az — Mo
Where the linearized zero dynamics is
Mo = Ay (Mo — Mo) (3-31)

Local stability of the zero dynamics can now be assessed by evaluating the sign
of A,—if A, < 0 at the equilibrium ng, the zero dynamics is locally exponentially
stable. Although the case for most aircraft, there is no absolute guarantee that n;

satisfies the condition 4,, < 0, thus warranting the following assumption.

Assumption 3.1 The equilibrium g of the zero dynamics (3-24) satisfies

*

180 .
by = 225, + () bssin (12)] 4,
+=><0 (3-32)

, a
2 *2 2
a; — Mo

For aircraft abiding by Assumption 2.2, (3-32) is negative in between the two roots—

the values of ny where (3-32) equals zero.
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Given Assumption 3.1, 4,, is negative at the equilibrium point ng, and the

system, therefore, is locally exponentially stable and ISS, thus satisfying the second
condition for nonlinear block backstepping given in Section 3.1. With both conditions

met, the input (3-13) will make the system asymptotically stable.
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Chapter 4

Implementation of the BaL Sl

The BaLSI considers systems of the form (with k: ® X X — U)

x=flx,u)+glx,u)e

4-1
XEXCR* u=k(p,x) EUCR™ ¢pedcR (4-1)

The aircraft plant was organized as such in Section 2.4, with, respectively, f(x,u),
g(x,u), and ¢ given in (2-41), (2-42), and (2-43), X, U, and @ given in (2-33), (2-34),

and (2-43),andn =3, m=1,and [ = 5.

Implementation of the BaL Sl is preceded by the following two assumptions,
with p > 0 and V (¢, x) a family of continuously-differentiable, positive-definite,

radially-unbounded functions.
Assumption 4.1 The inequality

YV (b, 0)[f (x, k (¢, x)) + g(x, k(¢, x))p] < =2pV (¢, ) (4-2)
with p > 0 holds for the closed-loop system (4-1) for all ¢ € ® and x € X.

Assumption 4.2 For every ® € ®, for every M > 0, there exists R > 0 such that,

givenV(¢,x) < M, |x| < R forall ¢ € ®.
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The BaLSI methodology employs an event-triggered approach to update the
parameter estimate, ¢, as opposed to a continuous update. In between event triggers,

the parameter estimate is held constant, as described below:

u(®) = k ($(z), x(0))

- - t € [ty Tiy1) (4-3)
¢(t) = ¢(1)

where i € Zs,, and t; is the time of the ith event-trigger:

7, =20 To =0

Tiy1 = min{z; + T, 7} (4-4)

T is the maximum allotted time before a parameter update is forced, and r; > ; is the

time of the trigger, where r; is the lowest t > t; at which

V(6G),x(©) =V ($@,x(x)) + a(x(x)) + e (4-5)

where a: R™ — R, is a continuous, positive-definite function and € > 0 is constant.

With the trigger mechanism derived, the BaLSI will now be derived.

Given (4-1), with t, s > t,, variation of constants gives

x(t) —x(s) = f f(x(r),u(r))dr + (f g(x(r),u(r))dr) ¢ (4-6)

30



The function h;: Rt —» R, for every i € Z.,, is defined as

)= [ [ i) - g oas d @)

given
p(t,5) = x(t) — x(s) — f et u()dr (4-8)
a(t,s) = f 9, u(r)dr (4-9)

h; () has a global minimum at ¢ = ¢, where h;(¢) = 0. Noting q7 (¢, s)p(t,s) =

qT (t,s)q(t, s)¢, the following holds:

Z(Ti41) = G(T41)¢ (4-10)
where
Z(ty) =f Hlf quT(t,s)p(t,s)ds dt (4-11)
to to
G(t)) = f " f inT(t,s)q(t,s)ds dt (4-12)
to to
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G (t;) is positive semidefinite, and, therefore, if the determinant of G(z;) is

nonzero, the vector of unknown parameters can be calculated as
-1
¢ = (G(Ti+1)) Z(Ti+1) (4-13)
which is a least-squares estimate of ¢. The convex optimization problem

gleiglqo - d)|

(4-14)
sit. Z(Tip1) = G(Tiy1)@
results in the parameter update law
~ . ~ 2
$(ti41) = argmin{lo — ¢ 9 € &, 2(1111) = G(111)0) (4-15)

The parameter update law (4-15) is the BaLSlI, which is to be utilized at the event

triggers as described in (4-4).

G(t;), however, is not necessarily invertible due to possible measurement and
modeling errors in the plant. Although (4-10) holds when no errors are present, there is
no guarantee that the set of ¢ € @, such that (4-10) holds, is nonempty. Therefore, the

minimization problem is relaxed to yield

(ti41) = argmin{|o — ¢ + BIZ(1111) — (i)l g € D) (4-16)

where 8 > 0 is a large constant, and

$rin) = (B +62(i)) (B0 + 6 (i) Z(Tirn)) (4-17)
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With (4-16), in the case where ® = R!, with G2(z;,,) positive semidefinite and S~11
positive definite, the resulting 81 + G?(z;,,) is positive definite and, therefore,

invertible.

The BaLSI can be implemented by the following set of Ordinary Differential

Equations (ODES)

zER/ z=Cx (4-18)
BeER™  B=t(Cgxw) (4-19)
weR W= (Cglxw) (z+y)+BCf(xw (4-20)
YER/  y=tCf(x,u) (4-21)
Y eR! Y =2(BCx —w) (4-22)
QeR™  §=2(BCg(x,w) +2BCg(x,u) (4-23)

with the initial conditions
z(0)=y(0)=0 Q(0)=0Q(0)=0 (4-24)

B(0) =0 Y(0)=w(0) =0

and the parameter update law

$(risr) = argmin{|o — F@)|* + BIY iar) — Qrdpl2p € @) (4-25)
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where C is a selection matrix utilized when the parameter ¢ appears in j < n equations
of the x equations. If ¢ appears in %, e X where ky, -+, k; € {1,--,n}, then C €
R/*™ is such that Ciky, = Cop = " = Gk = 1 (¢, s = 0 otherwise)—note that if j =
n, then € € R™" would be an identity matrix. With the impact of the unknown

parameter vector, ¢, limited to x, and x5, as seen in (2-42), the resulting C for the

aircraft plant is

0 1 0

C‘=[0 0 1 (4-26)

In summary, there are four tunable parameters for the BaLSlI:

e T > 0, aconstant, is the maximum time allowed without a parameter
update.

e a(x), acontinuous, positive-definite function, is used for the event
trigger.

e ¢ > 0, aconstant, is utilized for practical implementation of the trigger
to avoid a constant trigger at x(z;) = 0.

e [ > 0, alarge constant, is utilized to aid in the solving of the

optimization problem presented in (4-14).

[15] gives encouraging results on the stability of the BaLSlI, given compliance to the

assumptions presented. For the aircraft system, the assumptions only hold for the x;-x,
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subsystem and not the zero dynamics (i.e., the x5 subsystem). Given V; in (3-15) and V,

in (3-16) (recall ¢, is a positive constant), (4-2) can be rewritten for the system as
xi + ¢y (xg + %)% 2 plaf + (xg + x2)?] (4-27)

Inequality (4-3), and, therefore, Assumption 4.1, can be satisfied for the x;-x,

subsystem for any positive p if
p < min{1, ¢, } (4-28)

Young’s Inequality is applied to (3-15) to obtain
1o, 21 =32 2
Vi(xy, x2) = 2 [xf + (1 +x2)°] < E(x1 + x5) (4-29)

Assumption 4.2, therefore, is satisfied for the x,-x, subsystem with

R= |=M (4-30)

With the exclusion of the zero dynamics subsystem, guarantees made by [15] on the

solution will be restricted.

For the purpose of spelling out clearly the guarantees provided by the design
developed in this work, the following theorem is provided, as a direct extension from
Theorem 4.1 in [15], and applied to the aircraft plant derived in Section 2.4, the
controller derived in Chapter 3, and the BaLSI scheme given by (4-3), (4-4), (4-5),

(4-16), and (4-18) through (4-24). The aircraft plant is given in (2-40), with,
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respectively, f(x,u), g(x,u), and ¢ given in (2-41), (2-42), and (2-43) and the states
and input defined in (2-33) and (2-34), respectively. The shorthand notation x () refers

to the ith state.

Theorem 4-1 Consider the aircraft plant given in (2-40) with the input (3-13), the
parameter update law (4-25), and initial conditions x(t,) = x, € X and ¢(t,) = P, €
®. Let the x;-x, subsystem be subject to Assumption 4.1 and Assumption 4.2, and the
zero-dynamics subsystem be subject to Assumption 3.1. Let T > 0 be a constant and let
a: R™ - R, be a continuous, positive-definite function. Then, there exists a family of
class 3L mappings w,, 5, parametrized by ¢, @ € @, such that for every ¢ € @, x, €
X, and ¢, € ®, the solution of the closed-loop system is unique, is defined for all t >

to, and satisfies
lx(t —to)| < w¢@o(|xo|, t — to) (4-31)

Moreover, there exists a T = 0 and ¢, € @ (both depending on ¢, t,, and the initial
conditions) such that ¢(t) = ¢ forall t =ty + 7 and g(t, x(¢), u(t))(¢p — ¢s) = 0

for all t > t,. Furthermore, the estimate ¢; at ; > (i — )T holds for all i > .

Theorem 4-1 guarantees—without requirement for persistency of excitation—
convergence of the parameter estimate and the existence of a finite settling time for the
estimate; however, there is no upper bound on the settling time. [15] further guarantees,

in Theorem 4.2, local and global exponential stabilization of the closed-loop system
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with BaLSI implementation as long as the nominal feedback law achieves such. Proofs

are provided for both theorems in [15].
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Chapter 5

Simulation of an Aircraft in Icing

The control scheme presented is now applied to a Lockheed Martin C-5 Galaxy,
a large military transport aircraft utilized by the United States Air Force (USAF). The
C-5 Galaxy has been examined in various disciplines for performance optimization,
such as formation-flight optimization utilizing extremum-seeking feedback control
[18]. The model derived in Chapter 2 requires knowledge of various aircraft
parameters. Mass, inertial, and a portion of the aerodynamic parameters are provided in
[19], with remaining aerodynamic information estimated utilizing three-view drawings
of the aircraft and approximated airfoil data. Using methods presented in [20] and [21],
the acquired data is then utilized to estimate the various parameters required for the

model.

For the model, the mass, m, employed is that of the aircraft with about half of

the maximum fuel capacity—1.76(10)* slugs. The air density and gravity (g) used—

32.1 ft/s2 and 1.07(10)73 slugs ftg—are the values at 25,000 ft above sea level.
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The airspeed, v, is set to 700 ft/s. The lift, drag, and moment parameters in (2-7),

(2-12), and (2-27) are evaluated for the aircraft in the following equations:

Loy, = 2.19(10)3 ft? Lo, = —75.8 ft?
ft? ft? ft2
Loy =477 Loy =530 Ls, =15975

Do, = 43.6 ft* Dy, =480 ft> Dy, = 147 ft?

ky = 1.14(10)"2 ft2  k, = 1.11(10)73 ft?

My =0 S{Ttg M, = —5.85(10)7° slu]Z-1°
Mg, = —1.03(10)~* S{Ttg Mo, = 3.52(10)~* S{Ttg
Mg, = —2.11(10)7° slu]:-1° Mgy = —2.46(10)7 Slu];_lo
Ms, = —7.39(10)75 szu}Z—1°

The icing factors selected are

¢ = [Fow Ooy Oay Oay Osy]”

=[0.850 0.985 0.820 0.982 0.979]"

Attention is now given to the assumption levied in the derivation of the

controller. Assumption 3.1 assumed the equilibrium point of the zero dynamics in

(5-1)

(5-2)

(5-3)

(5-4)

(3-24) is such that (3-32) is satisfied in order to ensure local stability. With equilibrium

atng = 1.25(10)*, (3-32)—and Assumption 3.1—is satisfied with 4, = —22.0 < 0.
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Bounds on the states and input, given in (2-33) and (2-34), are evaluated for the

aircraft to be

[0 — §°,180° — 0]
x€X =|[-10°/s,10°/s] u €U = [-30°,30°]
[—10°,10°]

(5-5)

Using the shorthand notation c,., for cos x5, the plant presented in (2-40), (2-41), and

(2-42) is evaluated for the aircraft as follows:

x=flx,u)+glx,u)e

X2
flouw) = cos(x; + 0)
Xy + 2.63| ——
COS X3
0 0 0 0 0
g(x,u) = —[1.55¢,, —5.26¢,, 0.316C,, x5 3.68cy,x3 1.11lcyu

266 —0.0918 0.542x3;  0.0642x3 0.0193u
The feedback input (3-13), with the gain ¢; = 1, is evaluated to be

u = [-0.875x3 — (1.556y,, — 5.268,, + 0.316x36,,, + 3.68x368,,)Cx,

+2(x; + xz)](1.11Cx36'5H)_1
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where & is an estimate of o. The BaLSI scheme utilized the following parameters:

1
T=1 V(p,x) ==(x?+x% + x2 a(x) = x? + x% + x2
(d) ) 2(1 2 3) () 1 2 3 (5_10)

e=0 g =10°
The simulation marched the states through time utilizing the differential
equations given in (5-6). However, the effects of Assumption 2.10, which simplified
the equation for x5, were removed to provide a realistic simulation environment. The
aircraft was commanded to a five-degree pitch (i.e., & = 5°), with a pitch, pitch rate,

and AOA of zero for the initial conditions.

Figure 5-1 and Figure 5-2 plot the states (pitch, pitch rate, and AOA) and

parameter estimates, respectively, versus time.

@ °r 10
5
+—
<
o4r Pitch Angle| 7-5 —~
'%)o Pitch Rate =
3 AOA 2,
= 2n Input 1-10 RS
=
o0
=
< 0 — T T _15

0 5 10 15 20

Time (s)

Figure 5-1 State History
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Figure 5-2 Parameter Estimates

Figure 5-1 showcases the effectiveness of the controller, with the commanded pitch

reached with a steady-state error on the magnitude of 1076, Figure 5-2 shows the

effectiveness of the BaLSI, with the parameter estimates converging to or near the

actual values. The simulation was run without the simplification of Assumption 2.10.

Thus, small errors in the parameter estimates, as in g, and o, are expected due to

Assumption 2.10 levied in the derivation of the plant.

A phase portrait for x;-x5 of the system response with the parameters known

(the nominal case), the parameters unknown, and the parameters estimated with the

BaLSlI is given in Figure 5-3.
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Figure 5-3 Phase Portrait

The nominal behavior seen in Figure 5-3 is closely followed by the system behavior
with BaLSI implemented. With the parameters unknown, the system response deviates
from nominal as expected, resulting in a noticeable steady-state error in pitch. With the

BaLSI, the parameter-estimate convergence prevented any significant deviation from

nominal behavior.
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Chapter 6

Conclusions and Recommendations

6.1 Conclusions

An aircraft model was derived, with the impacts due to icing—specifically the
decrease to lift and increase to drag—also modeled. A plant was constructed with the
icing factors extracted into a single parameter vector, and a CEC derived via
backstepping to stabilize the nominal system. The BaLSI was incorporated into the

control scheme to estimate the five icing factors.

The control scheme was applied to the model of a Northrop Grumman C-5
Galaxy. The aircraft was simulated in icing with the parameters known, unknown, and
estimated via the BaLSI. The BaLSlI efficiently estimated the unknown parameters, as
seen in Figure 5-2, allowing the system to closely follow the nominal behavior, as seen

in Figure 5-3.

6.2 Recommendations

Although the accuracy of the BaLSl is sufficient for aircraft applications,
subject to the assumptions presented, difficulties arise in the practical implementation

of the scheme. According to [15], the BaLSI requires 46 first-order ODEs to be solved;
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thus, the computational and memory requirements may exceed the capabilities of
inexpensive flight computers. Furthermore, discrete-time application of the BaLSI
requires a small timesteps in order to produce accurate estimations. Errors induced by
the implementation in a discrete-time system can be expected to propagate over long
periods of time. Since switching of the parameter-estimate values only need to occur [
times, error propagation can be minimized by ensuring the trigger events cease before

errors manifest.

Without any guarantee of an upper bound on the settling time of the parameter
estimate, safe operation of the BaLSI would necessitate further work to ensure an
acceptable settling time for application in aircraft. However, the short settling-time in
the simulation is promising. Performance can be improved by tailoring the BaLSI
parameters detailed in Chapter 4, particularly T. Reduction in T would reduce the
settling time; however, T must maintain a safe distance from the timestep at which the

aircraft’s discrete-time system operates at.

Performance of the BaLSI is hampered by the presence of errors in
measurements and modeling of the icing factors. Regarding the latter, icing is time
varying, contrary to Assumption 2.9. Research into the time-varying behavior of icing,
along with the BaLSI’s handling of such behavior, would significantly improve the

effectiveness of the identifier.

Lastly, accurate measurements of all states may not be available. AOA sensors

can be inaccurate, especially for use in controllers, and, therefore, are typically
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estimated utilizing a combination of inertial sensors and aerodynamic properties. While
AOA readings are difficult to attain, pitch and pitch rate can be obtained utilizing an
inertial navigation system, which may be influenced by noise. The performance of the
BaLSlI in the presence of noise must be assessed to ensure the BaLSI maintains

effectiveness.
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