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Alexandre Fournier, Gauthier Hulot

Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot,
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Abstract

Low-dimensional models for Earth’s magnetic dipole may be a powerful tool
for studying large-scale dipole dynamics over geological time scales, where
direct numerical simulation remains challenging. We investigate the utility
of several low-dimensional models by calibrating them against the signed
relative paleointensity over the past 2 million years. Model calibrations are
done by “data assimilation” which allows us to incorporate nonlinearity and
uncertainty into the computations. We find that the data assimilation is
successful, in the sense that a relative error is below 8% for all models and
data sets we consider. The successful assimilation of paleomagnetic data
into low-dimensional models suggests that, on millennium time scales, the
occurrence of dipole reversals mainly depends on the large-scale behavior of
the dipole field, and is rather independent of the detailed morphology of the
field. This, in turn, suggests that large-scale dynamics of the dipole may
be predictable for much longer periods than the detailed morphology of the
field, which is predictable for about one century. We explore these ideas and
introduce a concept of “coarse predictions”, along with a sound numerical
framework for computing them, and a series of tests that can be applied to as-
sess their quality. Our predictions make use of low-dimensional models and
assimilation of paleomagnetic data and, therefore, rely on the assumption
that currently available paleomagnetic data are sufficiently accurate, in par-
ticular with respect to the timing of reversals, to allow for coarse predictions
of reversals. Under this assumption, we conclude that coarse predictions of

Preprint submitted to Physics of the Earth and Planetary Interiors August 20, 2019



dipole reversals are within reach. Specifically, using low-dimensional models
and data assimilation enables us to reliably predict a time-window of 4 kyr
during which a reversal will occur, without being precise about the timing
of the reversal. Indeed, our results lead us to forecast that no reversal of the
Earth’s magnetic field is to be expected within the next few millennia. More-
over, we confirm that the precise timing of reversals is difficult to predict,
and that reversal predictions based on intensity thresholds are unreliable,
which highlights the value of our model based coarse predictions.

Keywords: Dipole reversal prediction, low-dimensional modeling, data
assimilation, geomagnetic field variations

1. Introduction1

Earth possesses a time-varying magnetic field which is generated and sus-2

tained against Ohmic decay by a fluid dynamo driven by convection in its3

interior. The geomagnetic field changes over a wide range of time scales,4

from years to millions of years, and its strongest component, the dipole, has5

the dramatic feature that it occasionally switches polarity, i.e. the geomag-6

netic North becomes South, and vice-versa (see, e.g., Hulot et al. (2010a)).7

Such reversals happened throughout the geological history of our planet and8

their occurrence is well documented over the past 150 million years (Cande9

and Kent, 1995; Lowrie and Kent, 2004). However, little is known about10

the mechanisms that lead to a reversal. For example, detailed changes in11

the geometry of the geomagnetic field during a reversal are still poorly doc-12

umented, and the conditions under which the reversal is initiated in Earth’s13

core remain essentially unknown (see, e.g., Amit et al., 2010; Glatzmaier and14

Coe, 2015; Valet and Fournier, 2016, for recent reviews).15

A direct approach to modeling the geomagnetic field is numerical simula-16

tion of rapidly rotating spherical fluid shells, such as Earth’s fluid outer core,17

where the dynamo is operating. The computational cost of this approach is18

large, in particular if one wants to study the dipole over geological time scales19

of millions of years, so that only investigations with relatively limited dynamo20

simulations could be used so far (see, e.g., Lhuillier et al., 2013; Olson et al.,21

2013; Wicht and Meduri, subm). An alternative to direct numerical modeling22

is low-dimensional modeling. The idea is to derive a simplified representa-23

tion of the large scale dynamics of a complex system while neglecting smaller24

scales. Several low-dimensional models have already been proposed for cloud25
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modeling (Koren and Feingold, 2011; Feingold and Koren, 2013) and for mod-26

eling of Earth’s dipole (Rikitake, 1958; Nozières, 1978; Hoyng et al., 2001;27

Brendel et al., 2007; Pétrélis and Fauve, 2008; Pétrélis et al., 2009; Kuipers28

et al., 2009; Gissinger et al., 2010; Gissinger, 2012; Buffett et al., 2013, 2014;29

Buffett and Matsui, 2015; Buffett, 2015; Meduri and Wicht, 2016). In the30

context of Earth’s magnetic field, a low-dimensional model represents the31

effects of complex interaction of the magnetic field and fluid flow, however32

the details of these interactions are not resolved. The heuristic arguments33

for the validity of these models are that the magnetic diffusivity is larger34

than the kinematic viscosity, which implies that the small scale magnetic35

field, induced by small scale velocity modes, is strongly damped, and, thus,36

the dynamics are dominated by a few magnetic modes (Gissinger, 2012).37

However, work that investigates the “usefulness” of low-dimensional models38

quantitatively is still missing. Here,“useful” is to be understood in the sense39

that low-dimensional models can reproduce paleomagnetic data, and that40

the models produce reliable predictions of large scale dynamics. Indeed, one41

of the main goals of this paper is to establish a suitable set of tests that can42

be used to quantify the utility of low-dimensional models for the geodynamo.43

We present a data-driven, Bayesian approach and we calibrate the models44

against paleomagnetic data by “data assimilation”, i.e., we estimate model45

states from data by Bayesian statistics (see, e.g., Chorin and Hald (2013)).46

The data are the signed relative paleointensities which provide estimates47

of the strength of the axial dipole and its polarity over the past 2 Myr.48

The relative paleointensity is provided by Sint-2000 (Valet et al., 2005) and49

PADM2M (Ziegler et al., 2011) data sets, the polarity can be derived from the50

geomagnetic polarity time scale (Cande and Kent, 1995; Lowrie and Kent,51

2004). We consider four low-dimensional models:52

(i) the deterministic three-variable model presented in Gissinger (2012),53

which we call G12;54

(ii) the stochastic model presented in Buffett et al. (2013), which we refer55

to as B13;56

(iii) the stochastic model derived in Pétrélis et al. (2009), which we abbre-57

viate by P09;58

(iv) a new scalar stochastic model that combines the numerical techniques59

used in Buffett et al. (2013) with the G12 model; we call this model the60

G12 based SDE.61

Our data assimilation results (section 3) indeed establish compatibility of62

models and data in the sense that an average error after assimilation is no63

larger than 8% for all models and data sets we tried, provided that suitable64
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numerical techniques are used. This result is robust to variations in how the65

data are assimilated or how the data were obtained, since we obtain quanti-66

tatively similar results with several numerical data assimilation methods (see67

appendix Appendix B) and with both data sets.68

The compatibility of low-dimensional models and paloemagnetic data69

suggests that general conditions for reversals to occur mainly result from70

the large-scale behavior of the dipole field, with the detailed morphology of71

the field playing a role only once such general conditions are met. If this72

were indeed the case, one could predict the large-scale dipole field over long73

time-scales, perhaps several thousand years. We investigate this possibil-74

ity in section 4 where we introduce the concept of “coarse predictions” for75

dipole reversals. Specifically, we determine if we can identify time-windows76

of a few millennia during which reversals are likely to occur, without being77

precise about the timing of reversals within the time-windows. The temporal78

horizon of our predictions is comparable to the time needed for a reversal to79

occur, but shorter than the typical time elapsed between reversals. Coarse80

predictions could thus provide an “early warning system”, indicating that a81

reversal might occur within the next few millennia.82

We present a series of tests to investigate if our proposed framework,83

which relies on low-dimensional models and data assimilation, produces more84

reliable predictions than several purely data-based prediction strategies. Pre-85

dictions obtained in this way rely on the assumption that the paleogmagnetic86

data, as documented by Sint-2000 and PADM2M, (one data point every 1,00087

years) are sufficiently accurate for this purpose. Conditional on the latter88

assumption, we conclude that coarse predictions are indeed within reach,89

even with simple low-dimensional models. This highlights the value of low-90

dimensional models and data assimilation as an effective tool for addressing91

questions that are difficult to answer by other techniques, in particular di-92

rect numerical modeling. Perhaps more importantly, the coarse predictions93

we present, and the series of tests we suggest, may be useful to assess the util-94

ity of a future generations of improved low- or “intermediate”-dimensional95

models.96

2. Paleomagnetic data and low-dimensional models97

2.1. Paleomagnetic data98

The data we use are the signed relative paleointensity of the past 2 Myr.99

These intensities describe estimates of the strength of the axial dipole, and100

4



are available in the Sint-2000 (Valet et al., 2005) and PADM2M (Ziegler101

et al., 2011) data sets with a 1 kyr time step. The polarity is encoded by102

the sign of the dipole, which is taken from the geomagnetic polarity time103

scale (Cande and Kent, 1995; Lowrie and Kent, 2004). To find the exact104

timing of the polarity changes we proceed in slightly different ways for Sint-105

2000 and PADM2M. In the case of Sint-2000, we assume that reversals occur106

at time of polarity changes as confirmed from inspection of the original direc-107

tional information of Valet et al. (2005) (J.P. Valet, personal communication).108

In the case of PADM2M, however, we do not have access to analogous di-109

rectional information. We therefore a priori assumed the same timing as for110

Sint-2000, and checked that reversals did correspond to a minimum in the111

intensity record provided by PADM2M to within 1kyr. This turned out to be112

the case for most reversals, except for the Bruhnes Matuyama reversal and113

the two reversals bounding the Cobb mountain subchron. For these three114

reversals, a slight time shift was introduced to reconcile their timing with115

that of intensity lows in PADM2M, resulting in slight shifts in the timing of116

the sign changes in the PADM2M signed relative paleointensity with respect117

to that of Sint-2000.118

For each data set, a unit relative paleointensity corresponds to a virtual119

axial dipole moment of 7.46 1022 Am2, as in Valet et al. (2005). Both data120

sets contain the relative paleointensity along with a Gaussian error model,121

i.e., every 1 kyr a datum of the paleointensity is available along with an es-122

timated standard deviation. However, the standard deviations of PADM2M123

are significantly smaller than those of Sint-2000. While the small errors of124

PADM2M may be accurate representations of the “pure” data error, they125

seem unreasonably small in the context of data assimilation. The reason is126

that these errors must describe a combination of “measurement errors”, i.e.,127

the uncertainty of the data, and “model errors”, i.e., how good the (low-128

dimensional) model is. We thus adjust the errors in PADM2M to account129

for model error. In the data assimilation (see section 3) we use the Sint-2000130

standard deviations for the PADM2M data. In particular, we find that the131

data assimilation is more stable with the larger standard deviations of Sint-132

2000. Figure 1 shows the mean and 95% confidence interval of the Sint-2000133

data as well as the mean of PADM2M.134
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Figure 1: Signed relative paleointensity. The blue line represents the signed Sint-2000 data
(Valet et al., 2005) and the light blue cloud represents a 95% confidence interval. The red
line represents mean of the PADM2M data (Ziegler et al., 2011).

2.2. Scalar stochastic differential equation models: P09 and B13135

The P09 (Pétrélis et al., 2009) and B13 (Buffett et al., 2013) models are136

stochastic differential equations (SDE) of the form137

dx = f(x)dt+ g(x)dW, (1)

where the state, x, is either directly or indirectly related to the geomagnetic138

dipole, f(x) and g(x) are scalar functions, W is a Brownian motion, and t139

is time. A Brownian motion has the characteristics that it is almost surely140

continuous everywhere, that increments are independent Gaussian random141

variables W (t) −W (s) ∼ N (0, s − t), and that W (0) = 0. Here and below,142

N (µ, σ2) is our notation for a Gaussian random variable with mean µ and143

variance σ2. The two models differ in their functions f(x) and g(x) and in144

the way x is related to the geomagnetic dipole.145

The B13 model (Buffett et al., 2013) postulates that the dipole dynam-146

ics are governed by an SDE of the form (1), for which the state x is the147

geomagnetic dipole, and where the Brownian motion describes the effects of148

turbulent fluctuations of a velocity field. The drift and diffusion coefficients,149

f(x) and g(x), are estimated from paleomagnetic data. Specifically, the drift150

is derived from a double-well potential, i.e., Earth’s dipole is modeled by a151

particle in a double-well, where each well represents a polarity. The particle,152

located in one of the wells, gets pushed around by noise, and the effects of the153
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noise may push the particle to overcome the potential barrier, thus complet-154

ing a reversal of the dipole. In Buffett et al. (2013), the drift and diffusion155

coefficients are estimated from Sint-2000 and PADM2M. Below we use the156

one resulting from PADM2M, and refer to Buffett et al. (2013) for the details157

of the numerics and their tuning. Since the drift and diffusion parameters158

are estimated from paleomagnetic data, the variable t of the resulting SDE159

model is “automatically” scaled as time. A typical simulation with B13 is160

shown in the upper-left panel of figure 2.161

The B13 model has been used in other contexts as well. In Buffett et al.162

(2014), the same stochastic modeling approach was applied to data from nu-163

merical dynamo models, and in Buffett and Matsui (2015), the stochastic164

term of the B13 model was modified to account for correlations in time. Buf-165

fett (2015) used yet another variant of this model to study reversal duration166

and the intensity of fluctuations during a reversal. A model similar to the167

B13 model has also been discussed by Hoyng et al. (2001), and later by Bren-168

del et al. (2007) and Kuipers et al. (2009), who relied on a different numerical169

method to estimate the drift and diffusion coefficients. However, the details170

of how the drift and diffusion coefficients are computed are not important171

for our purposes. Finally, we note that the B13 model was recently revisited172

by Meduri and Wicht (2016), who relied on numerical dynamo simulations173

and paleomagnetic data to build SDE models of the form (1).174

The P09 model (Pétrélis et al., 2009) is based on the assumption that a175

general mechanism for field reversals exists, and that this process is largely in-176

dependent of the details of the velocity field. Specifically, the model describes177

the interaction of two modes of comparable thresholds, i.e., the magnetic field178

is B(r, t) = a(t)B1(r) + b(t)B2(r). By imposing the symmetry of the equa-179

tions of magnetohydrodynamics B → −B in the amplitude equation, and by180

assuming that the amplitude has a shorter time scale than the phase, one181

obtains an SDE for the phase of the form (1) with182

f(x) = α0 + α1 sin(2x), g(x) = 0.2
√
|α1|. (2)

The dipole can be calculated from this phase by D = R cos(x + x0). We183

use the same parameters as in Pétrélis et al. (2009), α1 = −185 Myr−1,184

α0/α1 = −0.9, x0 = 0.3. This choice of parameters also defines a time-scale185

for the variable t. Regarding the amplitude of the dipole, we set R = 1.3 to186

scale the P09 model output to have the same average relative paleointensity187

as the unsigned Sint-2000 data. With these parameters, the model exhibits188
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Figure 2: Dipole simulations with low-dimensional models. Top row: B13 (left) and P09
(right). Bottom row: G12 (left) and G12 based SDE (right). “Time” in the bottom row
is dimensionless.

abrupt reversals and large fluctuations, as shown in the upper-right panel of189

figure 2, where a typical simulation result of P09 is shown.190

The mechanism for reversals in the P09 model is as follows. The model191

has four fixed points, two are stable, and two are unstable. The two stable192

fixed points represent the two dipole polarities (North-South/South-North).193

The system hovers around one of the stable fixed points and gets pushed194

around by the noise (the Brownian motion), which represents the effects195

of turbulent fluctuations. When the deviation from the stable fixed point196

becomes large, the state can move beyond the neighboring unstable fixed197

point and then is attracted by the opposite stable fixed point, and a reversal198

of the dipole is completed. A more detailed discussion of the rich dynamics199

of this system is given in Pétrélis et al. (2009).200
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2.3. The deterministic G12 model and the G12 based SDE model201

The G12 model consists of three deterministic ordinary differential equa-202

tions (ODE),203

dQ

dt
= µQ− V D, dD

dt
= −νD + V Q,

dV

dt
= Γ− V +QD, (3)

where t ≥ 0 is to be identified as time, and where µ, ν and Γ are scalar pa-204

rameters, see Gissinger (2012) . In this model Q represents the quadrupole,205

which may play an important role during reversals (McFadden et al., 1991;206

Glatzmaier and Roberts, 1995), D is the dipole and V represents the flow.207

The rich dynamics of these equations are studied by Gissinger (2012). In208

particular, it is shown that reversals are generated by crisis-induced inter-209

mittency when µ = 0.119, ν = 0.1, and Γ = 0.9 and that the model then210

shares a number of characteristics with the paleomagnetic data.211

2.3.1. Scaling of G12212

The G12 model is not equipped with a natural scaling of the amplitude213

of the dipole variable D to the geomagnetic dipole amplitude, or with a214

scaling of G12 model time, t, to geophysical time. To find the amplitude215

scaling of G12 we compute, as before, the average relative paleointensity216

of the unsigned Sint-2000 and PADM2M data sets and also compute the217

average of the absolute value of dipole variable of ten G12 model runs for218

250 dimensionless time units. By setting219

G12 amplitude scaling: D =
√

2× relative paleointensity (signed),

the average of the G12 dipole variable is approximately equal to the average220

relative paleointensity. Moreover, this scaling leads to good agreement of the221

histograms of the dipole variable D and of the signed relative paleointensity222

of Sint-2000 and PADM2M (left panel of figure 3). A typical simulation with223

G12 is shown in the lower left panel of figure 2.224

To find the scaling of G12 model time, we may use the fact that the225

distribution of chron duration, i.e., the distribution of the time periods during226

which the geomagnetic dipole is in a stable polarity, is well approximated by227

a gamma distribution for both the paleomagnetic data (Lowrie and Kent,228

2004; Cande and Kent, 1995) and the G12 model, as shown by Gissinger229

(2012). By matching the shape parameters of a gamma distribution from230
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G12 simulation data with the shape parameters of a gamma distribution of231

the paleomagnetic chron durations, we derive the232

G12 geological time scale: 1 unit of G12 dimensionless model time = 1 kyr.

The shape parameters are computed by maximum likelihood estimation. For233

the paleomagnetic chron durations, these parameters are estimated from the234

CK95(1) data set of Cande and Kent (1995) as defined in Lowrie and Kent235

(2004), which contains the sign of the dipole over the past 30 Myr. For236

the G12 model, the parameters are estimated from ten simulation for 104
237

dimensionless time units. The right panel of figure 3 shows histograms and238

corresponding gamma distributions for CK95(1) and G12 when using this239

geological time scale.240

It is instructive to assess this scaling by comparing the power spectral241

densities of G12 simulation data and Sint-2000/PADM2M data. We compute242

these spectra by the multi-taper spectral estimation technique described in243

Constable and Johnson (2005). The spectra are shown in the left panel244

of figure 4. Note that the first corner frequencies of the G12 model and245

of the Sint-2000 and PADM2M data match, but that the G12 model has246

a larger high-frequency content than PADM2M or Sint-2000 (by roughly247
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one order of magnitude for frequencies of 2 Myr−1 and above). We can248

attribute the low-frequencies to the occurrence of reversals, and the high249

frequencies to millennium scale dipole variations during chrons. This suggests250

that, when scaled using the above geological time scale, the dynamics of251

G12 essentially match the reversal statistics of the geomagnetic dipole, but252

fail to match its millennium behavior. We note that the high frequency253

content of Sint-2000 and PADM2M could be underestimated because the data254

are obtained by averaging over stacks, which possibly smoothes the signal.255

Indeed, Constable and Johnson (2005) constructed a spectral model whose256

high-frequency content is also larger than that of PADM2M or Sint-2000.257

However, we also note that the above geological time scale was computed258

using reversal statistics over the past 30 Myr, a period during which the259

reversal rate has increased by a factor of about 2 (see, e.g., Gallet and Hulot260

(1997)). A geological time scale estimated from more recent epochs would261

have been larger.262

The mismatch of model and data for high-frequencies suggests that the263

geological time scale may not be optimal for scaling the G12 model, in par-264

ticular because the G12 model cannot be scaled to simultaneously match the265

geological and millennium dynamics of the Earth’s dipole field. This can be266

further illustrated by comparing spectra of unsigned data, shown in the right267

panel of figure 4. The low frequencies of the spectra of unsigned data are268

no longer dominated by reversal frequencies, with reversals occurring over269

millions of years, but are rather representative of field variations over mil-270

lennia. By comparing spectra of unsigned data, we find that matching the271

millennium scale of Earth’s dynamics to the “millennium” variation of the272

G12 model requires a time-scale four times larger than when matching model273

time to geological time scale. We thus define the274

G12 millenium time scale: 1 unit of G12 dimensionless model time = 4 kyr.

In our attempts to assimilate data in the G12 model (see section 3), we275

observe that results improve dramatically when this millennium time scale is276

used, rather than the geological time scale, independently of the numerical277

data assimilation technique we use. This is an important observation. The278

reason is that reversals are rare, there are only 7 reversals within the 2000279

data points we consider. This implies that an accurately represented mil-280

lennium variation is more important for successful data assimilation than an281

accurate representation of the average time elapsed between reversals, i.e.,282
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that same reversal (after figure 14 of Gissinger (2012)). The amplitude of the G12 model
state variables D, Q, and V has been scaled by the factor 1/

√
2.

the geological time scale. Indeed, with our millennium time scale, the G12283

model encouragingly captures much of the behavior of the dipole before and284

during a reversal (left panel of figure 5). For the rest of this paper, we thus285

only use the millennium time scale.286

Figure 5 illustrates the typical reversing behavior of the G12 model. We287

observe that the dipole slowly decreases and then quickly reverses, as is288

also observed in all reversals of the Sint-2000 data. The dipole reversal is289

followed by an overshoot, and such overshoots, perhaps less pronounced, are290

also observed in the data Valet et al. (2005). The right panel of figure 5291

further illustrates the behavior of the flow and quadrupole variables during292

a dipole reversal. Specifically, when the dipole decreases, the quadrupole293

variable increases, and then reverses with the dipole. A strong peak can be294

observed in the velocity during a reversal.295

Another dynamic time scale worth looking into is the e-folding time of296

the G12 model. This e-folding time is defined as the time it takes for the297

“distance” between two G12-trajectories to be multiplied by a factor e, and298

is an indicator of the intrinsic predictability of the G12 model. Its average299

value is estimated to be around 40 kyr (see Appendix Appendix A). This300

is much larger than the 30 year e-folding time found in three-dimensional301
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simulations, which must also account for the complex and fast-evolving non-302

dipole field (Hulot et al., 2010b; Lhuillier et al., 2011a). Provided that the303

G12 model can provide a useful coarse representation of the Earth’s dipole304

field with only three variables, this thus suggests that the G12 model could305

indeed be used to predict the average dipole field evolution over time-scales306

of several kyr. Such “coarse” predictions are precisely what we aim at. We307

investigate these ideas in more detail in section 4.308

2.3.2. G12 based SDE309

We further use the G12 model to propose an additional scalar SDE model,310

similar to the B13 model. We mimic the construction of the B13 model, but311

substitute the paleomagnetic data (Sint-2000 or PADM2M) with synthetic312

data from G12 scaled to the millennium scale as described above. In con-313

structing a G12 based SDE model, we postulate an SDE (1) for the dipole of314

the G12 model and use the numerical techniques of Buffett et al. (2013) to315

estimate the drift and diffusion coefficients from G12 simulation data (rather316

than from paleomagnetic data). Specifically, we fit a cubic function to the317

drift and a quadratic function to the square root of the diffusion coefficient.318

We refer to this model as the “G12 based SDE”. A typical simulation with319

the G12 based SDE is shown in the lower right panel of figure 2.320

3. Data assimilation results321

We perform data assimilation using the various numerical methods de-322

scribed in appendix Appendix B and the two data sets Sint-2000 and PADM2M.323

For each model, data set and data assimilation technique, we compute the324

relative error of the assimilation over the 2 Myr period defined by325

e =

∑2000
n=1

(
zn − Ê [xn|z1:n]

)2
∑2000

n=1 (zn)2
, (4)

where zn are the data at time n kyr and Ê [xn|z1:n] is the approximation of326

the conditional mean of the dipole given the data up to time n kyr. The327

conditional mean is the minimum mean square error estimate of the state,328

see, e.g., Chorin and Hald (2013). Each method resorts to a finite number329

of model samples, also called particles, whose distribution aims at providing330

a faithful description of the model uncertainties. For each method, we vary331

the number of samples from 50 to 400, compute the above error, and check332
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B13 G12 based SDE P09 G12
Method: S-EnKF SIR S-IMP S-EnKF SIR S-IMP SIR D-EnKF D-IMP

Data/sweep: 1 1 1 1 1 1 1 1 1 5 10 15
# samples

S
in

t-
2
00

0 50 5.61 6.72 5.91 2.57 2.94 2.64 7.91 30.5 5.70 3.74 4.28 10.90

100 5.46 6.37 5.76 2.31 2.64 2.53 7.29 30.7 5.43 3.80 4.20 10.93

200 5.53 6.25 5.65 2.37 2.57 2.48 7.83 30.0 5.38 3.61 6.19 10.91

400 5.46 6.10 5.63 2.32 2.51 2.51 7.35 29.5 5.39 3.51 6.18 10.88

P
A

D
M

2M

50 5.37 8.03 5.39 2.15 2.47 2.22 9.06 27.1 6.63 5.09 5.98 10.7

100 5.23 8.27 5.28 1.93 2.18 2.07 8.84 27.9 6.27 4.92 5.93 10.5

200 5.23 7.51 5.27 1.72 2.08 1.91 8.94 26.5 5.99 4.99 5.93 10.9

400 5.22 7.42 5.20 1.68 2.05 1.82 8.46 26.8 5.83 4.92 5.83 10.7

Table 1: Relative error (in %) of paleomagnetic data assimilation. We assimilate Sint-
2000 and PADM2M into B13, G12 based SDE and P09 by S-EnKF, SIR and S-IMP, and
into G12 by D-EnKF and D-IMP (see appendix Appendix B.2). We vary the number of
samples to check that sampling error is not the dominating error and vary the number of
data points used per assimilation sweep for G12 in D-IMP.

that sampling error is not the dominating error. In all cases, we observe333

that the error decreases when we increase the number of samples, but not by334

much, which indicates that 200-400 samples are sufficient to compute reliable335

estimates by Monte Carlo.336

3.1. Data assimilation with scalar SDE models337

We first consider the three scalar SDE models B13, G12 based SDE, and338

P09. We apply the ensemble Kalman filter for stochastic models (S-EnKF),339

sequential data assimilation with implicit sampling (S-IMP) and sequential340

importance sampling with resampling (SIR) to these models (see section Ap-341

pendix B.2 in appendix Appendix B for a brief description of each method).342

For the P09 model we only used the SIR method. The reason is that the P09343

model is “more nonlinear” than the B13 or G12 based SDE models, which344

makes the implementation of the other techniques more difficult. However,345

EnKF and S-IMP are techniques to keep the computational requirements of346

data assimilation reasonable and, since computation is not an issue here, us-347

ing SIR is feasible. In each method, we use one observation per assimilation348

sweep. The results are listed in table 1. A typical result of data assimilation349

by the G12 based SDE and P09 model are shown in the left and right panels350

of figure 6. A typical result obtained by B13 is qualitatively similar.351
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P09 model
Sint-2000 data assimilation by SIR with 400 particles

G12 based SDE
Sint-2000 data assimilation by S-IMP with 400 particles

Figure 6: Assimilation of Sint-2000 data into G12 based SDE by the S-IMP method with
400 samples (left) and assimilation of Sint-2000 data into P09 model by the SIR method
with 400 samples (right). Blue: Sint-2000 data. Light blue cloud: Sint-2000 data 95%
confidence interval. Red: conditional mean obtained through the assimilation process.

For the B13 and G12 based SDE models, and using suitable numerical352

data assimilation, both data sets lead to errors no larger than 6%. Errors are353

only slightly larger in the case of the P09 model. Such small errors suggest354

that the “free dynamics” of the scalar models are, in principle, compatible355

with that of the geomagnetic dipole, in the sense that data assimilation can356

keep the model trajectories close to the data.357

This positive result is perhaps not surprising for B13 and P09, because358

the parameters of these models are adjusted to match paleomagnetic data.359

Specifically, drift and diffusion coefficients of the B13 model are estimated360

from the PADM2M data we assimilate, and the model parameters of the P09361

model are chosen to “fit paleomagnetic data” (Pétrélis et al., 2009). However,362

the parameters that define the G12 based SDE are not estimated from these363

data. Rather, the drift and diffusion coefficients that define the G12 based364

SDE model are estimated from “synthetic data” of the G12 model (with365

model-time appropriately scaled, see above). The small errors we obtain366

with the G12 based SDE thus imply that G12 itself may be compatible with367

the paleomagnetic data. We study this in more detail below.368
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3.2. Data assimilation with G12369

We now consider the deterministic G12 model and use the EnKF for de-370

terministic models (D-EnKF) and sequential data assimilation with implicit371

sampling for deterministic models (D-IMP) to assimilate the PADM2M and372

Sint-2000 data. The D-EnKF and D-IMP techniques are described in detail373

in section Appendix B.1 of appendix Appendix B. When considering sequen-374

tial data assimilation with implicit sampling, we can vary the number of data375

points we assimilate per sweep (see appendix Appendix B.1.2). Specifically,376

one can attempt to assimilate the 2 Myr of data in one sweep, i.e., one can377

try to find initial conditions for G12 that lead to a trajectory of the dipole378

variable that is compatible with the paleomagnetic data. However, this ap-379

proach did not prove successful because the optimization required for implicit380

sampling failed to converge. The reasons for this failure are that (i) the G12381

model cannot account simultaneously for the millennium and geological time382

scales of dipole fluctuations, whereas an assimilation over 2 Myr of data in383

one sweep assumes that both time scales are correctly represented (see sec-384

tion 2.3.1); and (ii) the e-folding time of the G12 model of about 40 kyr385

makes it numerically difficult to propagate information from data backwards386

over several million years. To address these difficulties, we apply data assim-387

ilation sequentially as described in appendix Appendix B.1.2. Specifically,388

we assimilate 1-15 kyr of data per sweep. The results are shown in table 1.389

A typical result of data assimilation with G12 is shown in the top-left panel390

of figure 7. We observe that we obtain similar errors when assimilating 1 or 5391

data points per sweep, however the assimilation result is a lot smoother when392

we use 5 data points per sweep. We further observe that the error increases393

steeply if more than 5 kyr of data are assimilated per sweep. Further, we394

observe that EnKF yields a larger error than implicit sampling. The reason395

may be that G12 is more nonlinear than the B13 model or the G12 based396

SDE model, in particular due to the Q and V variables. This makes the397

use of a nonlinear data assimilation method more important, because the398

Gaussian approximation of EnKF may not be valid.399

It is evident from figure 7, that significant discontinuities occur at each400

time we assimilate data, i.e., every 5 kyr. These discontinuities indicate that401

assimilating the next 5 kyr of data has a large effect on the state estimate.402

This could be due to either an intrinsic incompatibility of the G12 model with403

the data, or large errors in the unobserved quadrupole and flow variables. We404

investigate this issue by using synthetic data shown in figure 8, generated as405

follows. We simulate the G12 model starting from initial conditions that406
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G12 model
Sint-2000 data assimilation by D-IMP with 400 particles

G12 model
Synt data assimilation by D-IMP with 400 particles

Figure 7: Result of data assimilation (red) and data (blue, often hidden), along with
assumed errors in the data (light blue cloud). Left: Sint-2000 data. Right: synthetic data
(Synt, see text and figure 8). Data assimilation is done by D-IMP with 400 samples, and
5 data points per sweep. Left: result of sequential data assimilation with D-IMP for G12
and using Sint-2000 data. Right: Same but when assimilating synthetic data (Synt, see
text and figure 8).

lead to a dipole sequence similar to that of the paleomagnetic data. We407

record the state every 1 kyr over a 2 Myr period, and add random errors408

that are distributed similarly to those of Sint-2000. Specifically, the errors409

are Gaussian and the standard deviation is chosen such that the mean of the410

relative paleointensity divided by the standard deviation of the errors is the411

same for Sint-2000 and the synthetic data. For the rest of this paper, we will412

refer to this synthetic data set as the “Synt” data set.413

We observe discontinuities when assimilating this synthetic data, as illus-414

trated in the top-right panel of figure 7. This is an important observation,415

since, by construction, the Synt data are intrinsically compatible with the416

G12 model. Our numerical experiment thus indicates that the discontinu-417

ities observed when assimilating the paleomagnetic data are more likely to418

be caused by the assimilation method, and in particular by the fact that419

only dipole data are assimilated. Specifically, we find that the errors after420

assimilation in the unobserved Q and V variables are larger than the errors421

in the observed dipole variable, namely 20% error in Q, 51% error in V .422

In summary, we obtain small errors of about 3-8% in the dipole variables423

of all models, provided an appropriate data assimilation technique and a424
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Figure 8: “Synt” synthetic data computed from the G12 model. The blue line represents
the mean and the light blue cloud represents the 95% confidence interval.

modest number of data points per sweep are used. The small errors suggest425

that G12 is indeed compatible with the paleomagnetic data. As before,426

compatible means that the data assimilation can keep the G12 dipole variable427

close to the data. This result is conditional on that no more than 5 kyr of428

data are assimilated, so that the limitations of G12, discussed in section 2.3.1,429

do not come into play.430

4. Coarse predictions of dipole reversals431

In the above section we showed that four low-dimensional models could be432

calibrated to paleomagnetic data as documented by Sint-2000 and PADM2M,433

in the sense that the average error in (4) is below 8%. This suggests that434

using these models and data assimilation may lead to simplified yet useful435

representations of the Earth’s dipole, and that successful dipole reversal pre-436

dictions may be based on calibrated model states. We investigate these issues437

carefully.438

We wish to find out if low-dimensional models can reliably predict a439

time-window during which a reversal is likely to happen, without being pre-440

cise about the timing of the reversal. The idea of such coarse prediction441

strategies is as follows. Given the model and data, a Monte Carlo based data442

assimilation computes a collection of model states that are compatible with443

the paleomagnetic data, in the sense that these states are samples from an444

appropriate posterior distribution. Each model state can be used to make a445

prediction by using it as an initial condition for a simulation over a specified446

time-window, called the “horizon”. This leads to a cloud of trajectories that447
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extend into the future, and these trajectories can be used to approximate448

the probability of a reversal within the horizon by computing the ratio of the449

number of trajectories that reverse to the total number of trajectories. For450

short horizons, the strategy “predict that no reversal will occur within the451

horizon” can be expected to be successful, and for extremely long horizons, a452

reversal becomes likely. We consider 4 kyr and 8 kyr horizons, because they453

are relevant, since the horizon is comparable to the time the system needs to454

reverse, but shorter than a typical chron.455

4.1. Hindcasting paleomagnetic data456

We assess the success of coarse predictions by “hindcasting”, i.e., by pre-457

dicting the past. This technique is routinely used in numerical weather pre-458

diction and goes as follows. One assimilates data up to a specified time in459

the past and computes model states that are compatible with the data up to460

that time. One then evolves each state by the model, without assimilating461

more data. The trajectories one obtains in this way “predict” what happened462

in the past. Thus, hindcasting assesses how successful a prediction strategy463

is for predicting the future, by testing how successful it performs for past464

events.465

For the hindcasts illustrated in figures 9, 10, 11, and 12, we assimilate466

Sint-2000 data, however similar results are obtained when PADM2M is used467

for assimilation. The assimilation is done by D-IMP and 200 samples, 5 data468

points per sweep for the G12 model, by S-EnKF with 400 samples for the469

G12 based SDE model, by S-IMP with 400 samples for B13, and by SIR with470

400 samples for P09, for the reasons outlined in section 3.471

We start by considering scalar SDE models, a typical example of which is472

the P09 model. In figure 9 we show P09 based hindcasts for a 4kyr horizon473

for the Brunhes-Matuyama (BM) reversal, which occurred between 777 and474

776 kyr ago. Before the BM reversal, at t = −781 kyr, the system appears to475

be close to a branching point as a significant number of samples tend towards476

a reversal, while the majority of the samples indicate that the dipole variable477

will increase (top-left panel). Only a few of the 400 samples exhibit a reversal478

within the horizon, so that the predicted probability of a reversal is small479

(7%). At t = −777 kyr, as the system gets closer to the BM reversal, the480

majority of samples aligns and exhibits a decrease in the dipole amplitude481

(top-right panel), with 40% of the samples exhibiting a reversal within 4 kyr.482

Note that the geomagnetic dipole indeed reverses during this time window,483

i.e., the BM reversal is correctly predicted by 40% of the P09 trajectories.484
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P09 4 kyr forecast, Sint-2000

t = -773 kyr
Prob. of Reversal: 0%

t = -777 kyr
Prob. of Reversal: 40%

t = -781 kyr
Prob. of Reversal: 7%

t = -769 kyr
Prob. of Reversal: 0%

Figure 9: Hindcasting the Brunhes-Matuyama reversal by P09. Blue: Sint-2000 data.
Light blue cloud: 95% confidence interval. Red: data assimilation (Sint-2000 data, SIR,
400 samples). Purple: predictions over 4 kyr. Orange: average of predictions over 4 kyr.
Top left to bottom right: hindcasting starts at t = −781 kyr, t = −777 kyr, t = −773 kyr,
t = −769 kyr.
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t = -773 kyr
Prob. of Reversal: 0%

t = -777 kyr
Prob. of Reversal: 94%

t = -781 kyr
Prob. of Reversal: 0%

t = -769 kyr
Prob. of Reversal: 0%

G12 4 kyr forecast, Sint-2000

Figure 10: Hindcasting the Brunhes-Matuyama reversal by G12. Blue: Sint-2000 data.
Light blue cloud: 95% confidence interval. Red: data assimilation (Sint-2000 data, D-IMP,
200 samples, 5 observations per sweep). Purple: predictions over 4 kyr. Orange: average
of predictions over 4 kyr. Top left to bottom right: hindcasting starts at t = −781 kyr,
t = −777 kyr, t = −773 kyr, t = −769 kyr.

At t = −773 kyr, all trajectories exhibit a quick decrease of the dipole,485

however the decrease is quicker than the data (bottom-left panel). At t =486

−769 kyr, all P09 trajectories exhibit an overshoot (bottom-right panel). An487

overshoot is also observed in the data, however the overshoot happens later488

than predicted by P09.489

We now turn to the case of the deterministic G12 model, and show,490

for comparison, G12 based hindcasts of the BM reversal (Figure 10). We491

observe qualitatively similar results as when hindcasting by P09 (top row).492

However, the reversal is more accurately predicted by G12, since the majority493

of samples correctly predict that the dipole will decrease during the 4 kyr494

following t = −781 kyr. In fact, 94% of the trajectories reverse within 4495
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P09

t = -39 kyr t = -35 kyr

t = -47 kyr t = -43 kyr

Figure 11: Hindcasting the Laschamp event by P09. Blue: Sint-2000 data. Light blue
cloud: 95% confidence interval. Red: data assimilation (Sint-2000 data, SIR, 400 samples).
Purple: predictions. Orange: average of predictions. Top left to bottom right: hindcasting
starts at t = −47 kyr, t = −43 kyr, t = −39 kyr, t = −35 kyr.

kyr of t = −777 kyr, which is the time window during which the reversal496

indeed occurred. The G12 hindcasts right after the reversal on the other hand497

appear unphysical, and increase after a brief decrease of the dipole (bottom498

row). We observe this unphysical behavior when hindcasting all reversals of499

the past 2 Myr.500

Also of great interest are hindcasts based on the low-dimensional models501

for the Laschamp low-intensity event, which occurred approximately 40 kyr502

ago and did not lead to a reversal. In figure 11 we show P09 based hindcasts503

during this event. We observe that none of the samples reverse within 4 kyr,504

which shows that the model correctly predicts that no reversal should have505
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occurred. However, the system seems to be in a state of branching, because506

a large number of the samples predict that the signed relative paleointensity507

should keep increasing for the next 4 kyr, while at the same time, a large508

number of samples also predict that the signed relative paleointensity should509

decrease.510

In figure 12 we show G12 based hindcasts of the same Laschamp event.511

The results we obtain are qualitatively similar, however immediately after512

the dipole field reaches its maximum value (at t = −39 kyr and t = −35513

kyr), the G12 trajectories spread out more quickly than the samples of P09.514

Indeed, we can perform hindcasts every 1000 years for all four models515

we consider, and compute the probability of a reversal to occur within a516

given horizon as a function of time. The results for all four low-dimensional517

models for a 4 kyr horizon when assimilating Sint-2000 data are shown in518

figure 13. We note that the probability graphs of all four models “peak”519

when the dipole indeed reverses. However, the B13 model assigns a low520

probability to the event “a reversal occurs within 4 kyr” at all times, even521

when a reversal is about to happen, with the maximum probability being522

about 30%. The graphs of the other three models, P09, G12 and G12 based523

SDE, look qualitatively similar to each other, and are somewhat noisier than524

the graph obtained with B13. We obtain qualitatively and quantitatively525

similar results when PADM2M data are assimilated.526

4.2. Inverse relative Brier score527

The key question is: which model leads to the most valuable predictions?528

To answer this question, we need a quantitative assessment of the validity529

of predictions. A convenient tool for providing such an assessment is the530

Brier score, which uses hindcasts to measure the mean square error between531

computed probabilities and the actual outcome (Brier, 1950). This Brier532

score is defined by533

b =
1

N

N∑
j=1

(pj − oj)2 , (5)

where N is the number of hindcasts one makes, pj is the predicted probability534

of an event, and oj is a variable that is one if the event happens, and zero if535

it does not happen. For our purposes, the event is “a reversal occurs within536

the horizon”, and N = 2000, i.e., we make hindcasts at each time we have a537

new datum between 2 Myr and 1 kyr ago.538
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G12

t = -39 kyr t = -35 kyr

t = -47 kyr t = -43 kyr

Figure 12: Hindcasting the Laschamp event by G12. Solid blue: Sint-2000 data. Light
blue cloud: 95% confidence interval. Red: data assimilation (Sint-2000 data, S-IMP, 200
samples). Purple: predictions over 4 kyr. Orange: average of predictions over 4 kyr. Top
left to bottom right: hindcasting starts at t = −47 kyr, t = −43 kyr, t = −39 kyr, t = −35
kyr.

25



-2 -1.5 -1 -0.5 0
Time in Myr

-1.5

-1

-0.5

0

0.5

1

Time in Myr
-2 -1.5 -1 -0.5 0

-1.5

-1

-0.5

0

0.5

1

Time in Myr
-2 -1.5 -1 -0.5 0

-1.5

-1

-0.5

0

0.5

1

Time in Myr
-2 -1.5 -1 -0.5 0

-1.5

-1

-0.5

0

0.5

1

G12 based SDEG12

B13 P09

Figure 13: Hindcasting by low-dimensional models. Shown is the predicted probability of
a reversal to occur within 4 kyr as function of time (red) along with the Sint-2000 data
(blue). Top-left to bottom-right: B13, P09, G12 and G12 based SDE models.
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We define a reference Brier score to assess how good coarse prediction539

strategies perform. This reference Brier score relies only on reversal statistics.540

Specifically, let R be the number of times the event “a reversal happened541

within the horizon” happened, and let N = 2000 be the number of tries. The542

probability that a reversal happens, based solely on the reversal statistics of543

the past 2 Myr, is pstat = R/N . For 4 kyr and 8 kyr horizons, pstat = 1.4%544

and 2.6%, respectively. The reference Brier score can now be computed from545

equation (5) by setting pj = pstat for j = 1, . . . , N , with pstat as above. For546

the paleomagnetic data, the reference Brier scores are bref = 0.013 for a 4 kyr547

horizon, and bref = 0.025 for a 8 kyr horizon. We define the inverse relative548

Brier score (IRBS) as the ratio of the reference Brier score and the Brier549

score of the prediction strategy we wish to asses:550

IRBS = bref/bmodel. (6)

IRBS values larger than 1 thus indicate that the prediction strategy is on551

average more reliable than a coin-toss, where the coin is biased by the prob-552

ability pstat. Note that such a coin does not at all behave like the “usual”553

head-and-tails coin with probability pstat = 50%.554

Below we use IRBS to quantify how reliable a prediction strategy is.555

However, IRBS is far from being a perfect performance measure for dipole556

reversal predictions. The reason is that the event “no reversal occurs within557

the horizon” occurs more frequently than the event “a reversal occurs within558

the horizon”. This means in particular that the strategy “predict that no559

reversal will ever happen” scores an IRBS slightly larger than one (specifi-560

cally, 1.01 for a 4 kyr horizon, 1.02 for a 8 kyr horizon). On the other hand,561

this strategy is clearly not a good prediction strategy, since reversals are the562

relevant events here. One should thus keep in mind that prediction strategies563

that tend to assign a high probability to the event “no reversal occurs within564

the horizon” might be rendered successful by our IRBS measure, despite the565

fact they may grossly underestimate probabilities of reversals within time566

windows when a reversal actually occurred. Inadequacy of IRBS is amplified567

by limited amounts of data and these limitations are discussed further in568

section 4.4 below.569

4.3. IRBS comparison of data assimilation based prediction strategies570

We compute IRBS for all four models, and when assimilating synthetic571

and paleomagnetic data. Experiments with synthetic data are essential here572
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Synthetic data Sint-2000 PADM2M

Horizon 4 kyr 8kyr 4 kyr 8kyr 4 kyr 8kyr

G12 3.49 0.47 1.21 0.35 1.13 0.25
G12 based SDE 1.40 1.43 1.28 1.23 1.19 1.10

P09 1.89 2.05 1.51 1.63 1.50 1.93
B13 1.42 1.41 1.01 1.15 1.06 1.08

Table 2: IRBS for G12, stochastic G12, P09, and B13 models for 4 kyr and 8 kyr horizons
and using synthetic data, Sint-2000, and PADM2M. IRBS values above 1 indicate that
the data assimilation based strategy has more predictive capability than guessing based
on reversal statistics.

because these tests reveal wether or not the models are intrinsically pre-573

dictable by the proposed strategy. Synthetic data are generated by the low-574

dimensional models using the state trajectories already shown in figure 2.575

Each data point has associated Gaussian errors whose variance is such that576

the mean of the relative paleointensity divided by the standard deviation577

of the errors is the same for Sint-2000 and for each of the four synthetic578

data sets. As before, we consider 4 kyr and 8 kyr horizons. Our results are579

summarized in table 2.580

We find that all four models yield IRBS larger than one when synthetic581

data are used and when the horizon is 4 kyr. This suggests that all models582

are intrinsically predictable over a 4 kyr horizon by our proposed strategy.583

We further obtain IRBS values larger than one for the B13, P09 and G12584

based SDE models when considering predictions over a 8 kyr horizon. In585

contrast, the G12 model yields an IRBS less than one, which suggests that586

G12 is not intrinsically predictable over this longer horizon. The reason587

could be large errors in the unobserved variables Q and V , which are proxies588

for un-modeled field and flow components. Large errors in these variables589

are indeed quickly amplified by G12’s dynamics, leading to trajectories that590

spread out too quickly and too widely to be useful for predictions. In prin-591

ciple “more accurate data”, or “more data”, i.e., data of the quadrupole and592

velocity variables, could reduce these errors and make the G12 model pre-593

dictable beyond the 4 kyr horizon, since its e-folding time is 40 kyr. In our594

experiments, however, we have to adjust the synthetic data to have roughly595

the same errors as the paleomagnetic data, and to acknowledge that data596

of other field or flow components are not available at this point. Thus, our597

synthetic data experiments suggest that, with the currently available paleo-598
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magnetic data, G12 can only predict dipole reversals within a 4 kyr horizon,599

and not for longer horizons.600

We observe a significant drop in IRBS for all models and considered hori-601

zons when hindcasting paleomagnetic data. The reason is that model error602

can be expected to be significant, since all models are simplified representa-603

tions of Earth’s dipole dynamics. However, the results we obtain with either604

paleomagnetic data set, Sint-2000 or PADM2M, are very similar and predic-605

tions based on any of the four models still score IRBS larger than 1 for a 4606

kyr horizon. P09, B13, and G12 based SDE also still score higher than 1 for607

the 8 kyr horizon. In contrast, G12 scores below 1 for a 8 kyr horizon, as in608

the above experiments with synthetic data.609

Taken altogether, our assessment by IRBS is encouraging, as it suggests610

that all models have some predictive power even when paleomagnetic data611

are assimilated. In particular, we find that the P09 model scores the highest612

IRBS. However, IRBS can be high for inadequate reasons, and, therefore, can613

not represent sufficient evidence that a given prediction procedure is most614

reliable. We therefore assess the model-based predictions by an additional615

set of more stringent threshold-based prediction tests.616

4.4. Threshold-based predictions617

In threshold-based predictions one attaches a threshold to a parameter618

of a dynamic system and determines the probability of an event to occur by619

checking if the parameter is above or below the threshold. For example, one620

assigns probability one, i.e, predicting with certainty that the event will oc-621

cur, if the parameter is above the threshold, and one assigns probability zero,622

i.e., predicting with certainty that the event will not occur, if the parameters623

is below its threshold. Alternatively, one can assign probability one if the624

parameter is below the threshold, and probability zero otherwise.625

The success of threshold-based strategies depends on how the threshold626

is chosen and below we use an objective way to do this by splitting available627

data into two parts, “training data” and “verification data”. We first “learn”628

the threshold from the training data as follows. We vary the threshold value,629

infer the corresponding (zero or one) threshold-based probabilities at each630

step, compute the corresponding IRBS score over training data, and finally631

find the threshold value that leads to the highest IRBS value. We then test632

the validity of the threshold by computing its IRBS score over the verification633

data.634
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Figure 14: Determining optimal intensity and probability thresholds. Shown is IRBS over
paleomagnetic training data as a function of the intensity (left) and G12-based probability
(right) thresholds.

4.4.1. Intensity threshold-based predictions635

An example of a threshold-based prediction strategy for dipole reversals is636

“a reversal will happen within the horizon if the intensity drops below a given637

threshold”. Note that this strategy relies on the intuitive fact that a reversal638

is more likely to occur in the near future if the paleomagnetic intensity is639

low, and that it does not make use of any dynamical considerations.640

As explained above, we split the paleomagnetic data into two parts,641

“training data” and “verification data”. The training data are the signed642

relative paleointensity from 2 Myr to 1.05 Myr ago, which includes five rever-643

sals, two of which occurred close to each other to define the Cobb mountain644

subchron, about 1.19 Myr ago. The verification data are the signed relative645

paleointensity from 1.05 Myr ago onwards, and include two reversals. We646

apply this strategy to Sint-2000 and PADM2M and consider a 4 kyr horizon.647

We show thresholds and associated IRBS values over the training data in the648

left panel of figure 14. We observe a well-defined extremum with IRBS well649

above one at an intensity threshold of 0.175 for both data sets (IRBS is 2.17650

for Sint-2000 and 1.22 for PADM2M). This graph thus suggests that rely-651

ing on an intensity threshold may indeed be a meaningful way of predicting652

reversals within a 4kyr time-window. However, a posteriori using this op-653

timal intensity threshold of 0.175 fails to predict several reversals, not only654

within the verification data, but also within the training data. Failure to cor-655
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rectly predict several reversals occurs independently of whether we Sint-2000656

or PADM2M (failures occurring when using Sint-2000 are illustrated in the657

bottom right panel of figure 15). The failure of this intensity threshold-based658

prediction strategy is interesting in two respects. Firstly, it shows that no659

intensity threshold-based strategy for either data set could pass our tests,660

which in turn suggests that the Earth’s dynamo may not have an intensity661

threshold that can be used to infer that a reversal will inevitably occur (or662

at least we do not have data to back up such a strategy). Secondly, the663

result illustrates the fact that a prediction strategy scoring IRBS well above664

one over the available training data may still fail to provide relevant reversal665

predictions, even within the training data.666

Testing the same intensity threshold-based prediction strategy when con-667

sidering synthetic data produced by the four low-dimensional models also668

leads to instructive results. The data we use are those shown in figure 2,669

which we again split into training and verification data. In the case of the670

B13 or G12 based SDE models, we find that no threshold yields IRBS larger671

than one, whether considering the training or even the entire data sets. This672

suggests that the intensity of these models can become arbitrarily low without673

necessarily leading to a reversal. In the case of P09, the situation is slightly674

different and a maximum of 1.15 can be found for IRBS when considering a675

threshold 0.051. However, the threshold is rather low and the corresponding676

maximum IRBS value is poorly defined (the graph of IRBS vs. threshold is677

flat and does not exhibit a distinguished global maximum). Indeed, using the678

optimal threshold fails to lead to a successful prediction of all reversals within679

training and verification data which, as before, suggests that the intensity of680

the P09 model can also be very low without necessarily leading to a reversal.681

Experiments with synthetic data of the G12 model however result in success-682

ful predictions of all reversals by this intensity threshold-based prediction683

strategy. We find a clear IRBS maximum of 2.64 at a threshold 0.25 over684

the training data, which indeed is comparable to the threshold we obtained685

from Sint-2000 and PADM2M (see figure 14). In this respect, G12 appears686

to be more Earth-like than the stochastic models. On the other hand, it687

appears to be more predictable by intensity threshold-based strategies than688

the Earth’s dynamo. This point will be further discussed below.689

4.4.2. Probability threshold-based predictions690

We now wish to test if low-dimensional models combined with data as-691

similation can provide a threshold criterium that is more reliable than the692
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data-derived intensity threshold above. We thus modify the above intensity693

threshold-based strategy and predict that a reversal will occur with proba-694

bility one within 4 kyr if the computed probability of an upcoming reversal695

exceeds a threshold, otherwise assign probability zero.696

We first consider probabilities derived from the G12 model. The corre-697

sponding results are shown in the right panel of figure 14, where we show698

IRBS for the training data as a function of the probability threshold. We ob-699

serve that the graph flattens for probability thresholds larger than 70%, and700

drops quickly for high probabilities larger than 98% for both paleomagnetic701

data sets. Specifically, the optimal threshold based on Sint-2000 is 97.5%,702

and for PADM2M threshold values between 90% – 95% are optimal, leading703

to IRBS values of 1.63 for Sint-2000, and 1.31 for PADM2M. When these op-704

timal thresholds are used, we obtain an IRBS of 1.13 for the verification data705

of Sint-2000 and between 1.98 and 3.97 for the verification data of PADM2M706

(with optimal thresholds between 90% – 95%). In addition, both reversals707

within the verification data sets, whether Sint-2000 or the PADM2M, are708

correctly predicted (see figure 15).709

While the G12 probability threshold-based strategy is somewhat success-710

ful, it also has weaknesses. For example, it leads to one false alert and fails711

to predict the reversal ending the Cobb mountain subchron (see zoom (c) in712

figure 15), when considering training data of Sint-2000. However, the false713

alert precedes a reversal by only 13 kyr and the reversal is correctly predicted714

by a later alert. In view of the much longer “typical” chron durations, such715

a false alert may be viewed as a “slightly too early” warning. Note that716

assessing the success of predictions by just relying on IRBS ignores the fact717

that predicting a reversal slightly too early is an error that is less severe than718

not predicting it at all.719

Failing to predict the reversal ending the Cobb mountain subchron is720

of greater concern. This reversal occurred, according to the Sint-2000 data721

set, to within 4kyr of the previous one. Failure to predict this reversal thus722

may result from inaccuracies within the Sint-2000 data. However, it may723

also suggest that the G12 model is incapable of producing two successive724

reversals within a few thousand years. Indeed, similar issues arise when using725

the PADM2M data set. In this case, no false alert occurs before the Cobb726

mountain subchron. However, a false alarm does occur shortly after (1kyr727

after the subchron), again indicating some incompatibility of the G12 model728

with this quick sequence of two reversals. The G12 model in combination with729

PADM2M and a probability threshold-based prediction strategy further fails730
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to predict the upper Olduvai reversal (1.77 Myr ago) in the training data set.731

In this case, the alert is triggered only once the reversal actually occurred. We732

did not observe this behavior when using Sint-2000, which suggests that this733

behavior may indicate the limits of probability threshold-based strategies,734

especially in view of uncertainties in Sint-2000 or PADM2M.735

We also apply the probability threshold-based prediction strategy to syn-736

thetic data of the G12 model, which yields positive results. We find an737

optimal probability-threshold of 87.5% and associated IRBS of 7.92 for the738

verification data, as well as fully successful predictions of all reversals. These739

tests indicate that some of the above issues could be caused by intrinsic740

limitations of the G12 model.741

Finally, we also test probability threshold-based strategies for the three742

stochastic low-dimensional models P09, B13 and G12 based SDE. For the B13743

and G12 based SDE models, no probability thresholds leading to IRBS signif-744

icantly larger than can be found, whether considering Sint-2000, PADM2M or745

synthetic data. This is reminiscent of the results we obtained by the intensity746

threshold-based strategy (see above). In other words, neither B13 nor the747

G12 based SDE model seem to provide successful probability threshold-based748

predictions, even when considering synthetic data produced by the models.749

The situation is again different for the P09 model. When using Sint-2000750

data, the optimal threshold is 0.55, and the associated IRBS is 1.4 for the751

training data, and 0.99 for the verification data. Considering PADM2M data752

leads to a different, perhaps more encouraging result. We obtain an optimal753

threshold of 0.275 yielding an IRBS of 1.19 for the training data, and 2.47 for754

the verification data. However, when we consider synthetic data, we obtain755

a lower optimal probability threshold of 0.125, leading to an IRBS of 1.96756

for the training data, and 0.5 for the verification data, failing to success-757

fully predict reversals. The synthetic data experiment thus suggests that the758

probability-threshold based strategy is in fact not more applicable to P09759

than to the other two stochastic models. These results are similar to what760

we found when we considered intensity threshold-based predictions for the761

P09 model (see above).762

5. Summary and discussion763

5.1. Summary of data assimilation764

We considered three existing low-dimensional models, B13, P09 (both765

stochastic, Buffett et al. (2013); Pétrélis et al. (2009)) and G12 (deterministic,766
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Gissinger (2012)), and also proposed a new scalar stochastic model, the G12767

based SDE, to describe the dynamics of the Earth’s magnetic dipole over768

geological time scales (millions of years).769

1. We find that the scaling of G12 model time is limited to match either770

a millennium scale, or a geological time scale. While this may be an771

intrinsic limitation of this model, is does not prevent the G12 model772

from being useful in the context of the present study, provided we use773

the millennium time scale.774

2. We calibrated all four low-dimensional models to paleomagnetic data775

over the past 2 Myr by using “data assimilation”. This was done by sev-776

eral numerical data assimilation techniques and by assimilation of two777

paleomagnetic data sets, Sint-2000 (Valet et al., 2005) and PADM2M778

(Ziegler et al., 2011).779

3. We showed that all four low-dimensional models are compatible with780

both paleomagnetic data sets in the sense that average errors after data781

assimilation are no larger than 8%, provided a suitable numerical data782

assimilation method is used.783

5.2. Summary of coarse reversal predictions784

We further investigated the extent to which dipole reversals can be pre-785

dicted to occur within time windows of 4kyr and 8kyr, without paying at-786

tention to the precise timing of the reversals within the time windows. The787

value of such coarse predictions was assessed by hindcasting experiments,788

i.e., “predicting past events”, as is commonly done in numerical weather789

prediction. This led to the following findings.790

1. Hindcasting experiments with data assimilation of synthetic data, i.e.,791

data produced by the models, suggest that all four models (B13, P09,792

G12, G12 based SDE) are intrinsically predictable for time windows of793

4 kyr, a necessary condition for the models to be useful as a prediction794

tool for Earth’s dipole. The B13, P09 and G12 based SDE models are795

also intrinsically predictable over 8 kyr time windows.796

2. When assimilating paleomagnetic data, as documented by Sint-2000 or797

PADM2M, and considering 4 kyr time windows, all four low-dimensional798

models perform “better”, than making trivial reversal predictions based799

on reversal statistics of the past 2 Myr, as measured by higher inverse800

relative Brier scores (IRBS). Consistent with the results from synthetic801
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data expriments, the P09, B13 and G12 based SDE models also perform802

well for 8 kyr windows. These findings suggests that low-dimensional803

models can indeed provide “useful” information and serve as a tool to804

understand and interpret paleomagnetic data.805

3. Intensity threshold-based predictions are unsuccessful in the sense that806

we can not obtain intensity thresholds from a “training data” set (of807

about 1 Myr, including five reversals), that lead to success when applied808

to a “verification data” set (of about 1 Myr, including two reversals).809

This purely data-based strategy fails to predict several reversals in both810

the training and verification data sets. This was found to be true for811

Sint-2000 and PADM2M data and suggests that, given the available812

data, paleomagnetic intensity can become low without necessarily being813

followed by a reversal within the next 4 kyr.814

4. Similar intensity threshold-based prediction tests applied to synthetic815

data of the three stochastic models (B13, P09, G12 based SDE) suggest816

that the intensity of these models can be low without necessarily being817

followed by a reversal within the next 4kyr. The deterministic G12818

model on the other hand seems to have an intensity threshold, i.e., a819

reversal of the G12 dipole will necessarily occur if its intensity drops820

below a threshold.821

5. Probability threshold-based predictions raise an “alert” for a reversal to822

occur within the next 4 kyr if the probability of a reversal inferred from823

low-dimensional models and data assimilation exceeds a given thresh-824

old. This strategy yields improved coarse predictions provided the G12825

model is used. In contrast, stochastic models (B13, P09 and G12 based826

SDE) give unsatisfactory results. However, even when using the G12827

model, probability threshold-based predictions have weaknesses. These828

are likely due to uncertainties of the Sint-2000 and PADM2M data we829

have not properly accounted for, as well as an inability of G12 to pro-830

duce nearby reversals. The resulting “partial” failures, however, are831

not critical, and we conclude that a probability threshold-based strat-832

egy using the G12 model is more reliable than a purely data-based833

intensity threshold-based strategy.834

6. Similar probability threshold-based prediction tests applied to syn-835

thetic data from the four low-dimensional models (B13, P09, G12 and836

G12 based SDE) further suggest that this strategy indeed fails for all837

stochastic models (B13, P09, or G12 based SDE), but not for the de-838

terministic G12 model. The G12 model is the only model we consider839
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for which a probability threshold can be found beyond which a reversal840

will necessarily occur.841

All these results taken together provide interesting evidence that determin-842

istic low-dimensional models such as G12 in combination with data assimila-843

tion can possibly provide a means for forecasting reversals within 4 kyr time844

windows. It should be stressed, however, that the amount of paleomagnetic845

data we use for these tests is limited (only 2 Myr of data, documenting only846

seven reversals) and that errors affecting these data may not be properly847

accounted for. The above findings should thus be interpreted with caution.848

5.3. Geophysical discussion and future work849

Assessing whether or not reversals of the geomagnetic field can be fore-850

casted is a challenging task which has already been addressed in the past.851

For example, several researchers have studied general characteristics of past852

reversals as well as the behavior of the field shortly before reversals (see, e.g.,853

Valet and Fournier, 2016, for a recent review). Others have investigated the854

cause of the present fast decrease of the dipole field, which may be akin to855

processes that lead to reversals (see, e.g., Hulot et al. (2002); Finlay et al.856

(2016)). Precursors of reversals were also identified from three-dimensional857

numerical dynamo simulations (see, e.g., Olson et al., 2009). However, iden-858

tification of precursors within the details of the Earth’s magnetic field before859

it reverses is difficult because of the particularly complex and varied ways860

the field can reverse, as is documented by paleomagnetic records and three-861

dimensional numerical simulations (see, e.g., Hulot et al., 2010a; Glatzmaier862

and Coe, 2015). As a matter of fact, no convincing precursor has yet been863

found in the way the modern field behaved in the recent past (see, e.g.,864

Constable and Korte, 2006; Laj and Kissel, 2015). The search for precur-865

sors is further limited by the fact that details of the geomagnetic field are866

unlikely to be predictable beyond a century, as shown by investigations of867

three-dimensional numerical dynamo simulations (Hulot et al., 2010b; Lhuil-868

lier et al., 2011a). This limit of predictability is comparable to the time scale869

with which the detailed morphology of the geomagnetic field changes (Hulot870

and Le Mouël, 1994; Lhuillier et al., 2011b), but is much shorter than the time871

elapsed between reversals. This implies that the precise timing of a reversal872

(to within, say, a century) is likely to remain unknown until the reversal is873

just about to happen. However, this limit does not preclude that general874

macroscopic conditions for a reversal to occur within a wider time window875
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could be found by examining the long-term dynamic behavior of the dipole876

field itself, which indeed displays a rich low-frequency temporal spectrum877

(Constable and Johnson, 2005). In this context, the horizon of predictability878

of the coarse behavior of the dipole field may be larger than that of the de-879

tailed behavior of the full field of the Earth’s dynamo. This is the possibility880

we investigated here with the help of data of the past behavior of the dipole881

field, as documented by Sint-2000 and PADM2M, tentative low-dimensional882

models of the geodynamo, and data assimilation.883

Two key results of geophysical relevance were obtained. One is that the884

available paleointensity data (Sint-2000 or PADM2M) do not seem to display885

any intensity threshold below which a reversal can be guaranteed to occur886

within the next 4 kyr. The second is that, in contrast, the very same data can887

be assimilated by the deterministic G12 model to make reliable predictions of888

reversals within 4 kyr time windows. It is important to emphasize that these889

results rely on the assumption that the signed relative paleointensity data890

provide a reliable source of information and accurately reflect the millennium891

dynamics of the Earth’s magnetic field. Given our current understanding892

of the way sediments record this signal, these assumptions may not hold893

(see, e.g., Valet and Fournier, 2016, for a discussion). In particular, relative894

timing of reversals with respect to the original paleointensity record is difficult895

to guarantee within a few kyr, and such paleointensity data are known to896

fail to record weak field intensities. In addition, the way sediment data897

average the original field intensity implies that paleointensity data contain898

some information about the near-future field intensity, at least up to 1kyr,899

and possibly slightly beyond.900

Another important limitation of the present study, which we already901

stressed, is the limited amount of reversals documented in the Sint-2000902

and PADM2M data sets. This limitation, combined with the uncertainties903

affecting the data, may well impact IRBS, the exact values of the various904

thresholds we computed and, therefore, the significance of our results. How-905

ever, the consistency of our findings with respect to the data, i.e., whether906

we use the Sint-2000 or PADM2M data sets, is encouraging.907

Our study also revealed a number of interesting properties of the low-908

dimensional models we considered. While all four models succeed at assimi-909

lating the signed paleointensity data with comparable success (average errors910

after data assimilation are no larger than 8%), and appear to be intrinsically911

predictable in the coarse sense we defined, only predictions based on the de-912

terministic G12 model pass the set of tests we devised. However, even the913
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G12 model may not be considered as “satisfactory” for the purpose of coarse914

dipole predictions. For example, it fails to properly handle fast sequences915

of two successive reversals (such as those bounding the Cobb mountain sub-916

chron). It also produces sequences that display an intensity threshold that917

can be used to raise successful reversal alerts for G12, contrary to the paleoin-918

tensity data as documented by Sint-2000 and PADM2M. Moreover, the G12919

model is unable to properly reproduce the observed reversal frequency when920

scaled to the millennium time scale. Nonetheless, the successes of the G12921

model in combination with the probability threshold-based prediction strat-922

egy indicates that these predictions may improve if “better” low-dimensional923

models could be obtained.924

It is interesting in this respect to compare dipole data of the G12 model925

(not using any data assimilation) with the signed paleointensity data of Sint-926

2000 and PADM2M, and to investigate the causes of its success and failures.927

Comparing figures 1 and 2 (see also figure 8) makes it clear that the G12928

dipole data is more regular than the paleomagnetic data. The fact that an929

intensity threshold can be found in the case of G12, and not in the case of930

the paleomagnetic data, can be traced back to this regularity. Local minima931

that do not lead to reversals in the G12 synthetic data are all of comparable932

magnitude. This is not the case in the paleomagnetic data. This is also933

not the case in the synthetic data produced by the three stochastic models934

B13, P09 and G12 based SDE, which were also found to lack reliable in-935

tensity thresholds (with the only possible exception of P09, which however936

displays a very low and poorly defined intensity threshold, as described in937

section 4.4.1). In this respect, the dipole variable of the G12 model may938

be too regular when compared to Sint-2000 or PADM2M. Some regularity,939

however, has been found in the paleointensity data when the field approaches940

a reversal. In particular, it appears that this paleointensity tends to gradu-941

ally decrease over a period of several 10 kyr before the reversal occurs (Valet942

et al., 2005). This medium-term dynamics is also found in dipole data pro-943

duced by G12. Figure 5 compares G12 dipole data with the paleointensity944

data of Sint-2000 during the Brunhes-Matuyama reversal. The figure shows945

that the synthetic data displays a gradual decrease at a rate comparable to946

the average rate seen in the paleointensity data, before dropping and leading947

to the reversal. No similar systematic feature is found in the synthetic data948

produced by the three unsuccessful stochastic models. This leads us to in-949

terpret that the success of G12 at correctly predicting reversals is resulting950

from the data assimilation scheme being capable of correctly picking up this951
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trend in the paleointensity data, and thus setting G12 on its reversal path.952

This interpretation is also consistent with the fact that G12 partly failed at953

raising the proper alerts for the two reversals bounding the Cobb Mountain954

subchron, since the second reversal was not preceded by a medium-term in-955

tensity decrease. It is also consistent with the fact that G12 succeeded at956

forecasting reversals despite its failure to properly account for the frequency957

of reversals. What really matters is the sequence of events preceding the re-958

versal over the millennium timescale, which G12 was scaled to capture, and959

not the time elapsed since the last reversal.960

The success of G12 at predicting past reversals may be a motivation to961

look for even better low-dimensional models, and the tests we derived provide962

means to assess any such model. The above discussion also highlights the963

fact that what matters most for a model to be a successful improvement964

upon G12 is that it better captures the dynamical path to a reversal. This965

was not the case of the three stochastic models we tested.966

Possible routes to improvement of such stochastic models are to derive967

systems of SDEs (rather than scalar SDEs), as well as to include correlated968

noise terms (as in Buffett and Matsui (2015)). Improved deterministic models969

may be found as well. G12, in particular, could be improved by considering970

higher order terms or additional equations, e.g., more flow and field variables,971

while respecting the symmetries imposed by the background rotation. If the972

model dynamics become rich, one may need to account for the smoothing973

effect of sedimentation when considering the paleomagnetic data, but this974

could be handled, e.g., one could consider data assimilation with observation975

operators that model the sedimentation process. Finally, we note that 21
2
-D976

dynamos (e.g., Sarson and Jones, 1999) could also be tested. With modern977

computers, data assimilation for such models is feasible, even over geological978

time scales. Any improvements, however, will depend on the validity of979

our underlying assumption that general conditions for reversals to occur are980

dictated by the average large-scale behavior of the dipole field, and not by981

the detailed morphology of the field, which plays a role only once the reversal982

is just about to happen. Although our study suggests this could be the case,983

this still needs to be confirmed.984

For the time being, and based on what could be achieved using the G12985

model and assimilating Sint-2000 and PADM2M data (up to 1kyr ago), it is986

reassuring to see that no warning of any reversal is currently being raised for987

the next few millennia by our probability threshold-based approach. This988

result is consistent with the fact, already pointed out by several authors989
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(e.g., Constable and Korte, 2006; Hulot et al., 2010a), that the current short-990

term fast decrease of the dipole field cannot alone be taken as evidence for991

an imminent reversal, even though it may possibly lead to temporarily low992

dipole field values (see, e.g., Laj and Kissel, 2015).993
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Appendix A. Average e-folding time of the G12 model1009

The e-folding time describes the time required for errors to grow by a1010

factor e and, thus, provides a measure of how far into the future one can rely1011

on G12 based predictions. For example, once small errors are amplified to be1012

macroscopic, model based predictions are dominated by error. One can thus1013

expect that G12 based predictions can be reliable at most for time-horizons1014

comparable to the model’s e-folding time. Similarly, propagating information1015

from data backwards in time over several e-folding times will be numerically1016

difficult.1017

We estimate the e-folding time of G12 as follows. First we determine1018

an initial condition on the attractor by simulating G12 for 10 Myr from an1019

arbitrary point in state space; the last state of this simulation is likely to be1020

on the attractor, or at least close to it. We pick this state to be the initial1021

condition, and perturb it by a Gaussian with mean zero and covariance 10−10
1022

times the identity matrix I. We generate 100 random perturbations and, for1023
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each of these, compute the error as a function of time for the next 4 Myr.1024

The error is the Euclidean norm of the difference of the reference solution1025

and the perturbation. The average error over the 100 samples can be used1026

to estimate the e-folding time by a log-linear least squares fit.1027

Our estimate of the e-folding time depends on where we start the simu-1028

lations. To account for this variation, we average the e-folding time over the1029

attractor, and repeat the above procedure with the last state of the reference1030

trajectory serving as the initial condition for the next calculation. We do this1031

500 times to obtain 500 samples of the e-folding time at various locations of1032

2000 Myr on the attractor. The results are shown in figure A.16. We then1033

compute the average e-folding time over these 500 samples and this average1034

e-folding time is 40 kyr.1035

Appendix B. Overview of the data assimilation methods we used1036

The goal in data assimilation is to combine a mathematical model with1037

information from sparse and noisy data. This is done via Bayesian statistics1038

and conditional probability. Here we briefly review data assimilation and1039

summarize the numerical techniques we use. More detailed reviews of data1040

assimilation in geophysics can be found in Bocquet et al. (2010); van Leeuwen1041

(2009); Fournier et al. (2010); Blayo et al. (2014). For earlier applications1042

of data assimilation in geomagnetism, see Fournier et al. (2007); Sun et al.1043

(2007); Fournier et al. (2011); Aubert and Fournier (2011); Morzfeld and1044

Chorin (2012).1045

Appendix B.1. Data assimilation with deterministic models1046

Suppose you have a mathematical model in the form of an ordinary dif-1047

ferential equation (ODE) (e.g., the G12 model). After discretization, e.g.,1048

with a Runge-Kutta scheme, the discrete model can be written as1049

xn =Mn(x0),

where xn is an m-dimensional column vector approximating the solution of1050

the underlying ODE at some time tn, and where x0 is the state at time 0,1051

i.e., the initial condition of the ODE. For example, for the G12 model, xn =1052

[D(t = tn), Q(t = tn), V (t = tn)]T , in which superscript T means transpose.1053

Suppose you have collected data at time tn. Then the state at time 0 and1054

the data at time tn are connected by1055

zn = h(Mtn(x0)) + v, (B.1)
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where zn is a k-dimensional vector containing the data, h(x) is a given vector1056

function, and v is a random variable that accounts for the imperfection of1057

the mathematical model and measurement. We will assume throughout that1058

v is Gaussian with mean zero and with a given k× k symmetric and positive1059

definite covariance matrix R. The above equation (B.1) defines the likeli-1060

hood p(zn|x0), which describes the probability of the data given the initial1061

condition x0. Here and below, a vertical bar denotes conditioning of random1062

variables.1063

We assume that the state at time 0 is not completely known, but described1064

by a prior probability density p(x0), which may be a Gaussian with a given1065

mean and variance. The prior is chosen before the data are collected. The1066

prior and the likelihood jointly define a posterior probability1067

p(x0|zn) ∝ p(x0)p(zn|x0), (B.2)

which contains all the information we have given the model and the data. For1068

example, one can use the posterior distribution to compute the conditional1069

mean, which is the minimum mean square error estimate of the state (see,1070

e.g., Chorin and Hald (2013)).1071

In data assimilation we find the posterior distribution by various numer-1072

ical techniques. In the case of variational data assimilation (Bennet et al.,1073

1993; Talagrand and Courtier, 1987), one finds the most likely state, given the1074

data, by maximizing the posterior probability. Alternatively, Monte Carlo1075

sampling can be used to obtain an empirical estimate of the posterior (Kalos1076

and Whitlock, 1986; Atkins et al., 2013; Chorin and Hald, 2013). This em-1077

pirical estimate consists of a set of weighted samples {wj, X
0
j }, j = 1, . . . ,M ,1078

such that averages over the samples converge to expected values with re-1079

spect to the posterior. The Monte Carlo approach also makes it possible to1080

incorporate errors (in model and data) into our estimation. For example,1081

the accuracy of a state estimate can be known by computing the standard1082

deviations of the samples. In addition, each sample can be used to produce1083

an individual forecast, so that the Monte Carlo approach can lead to reliable1084

forecasting, in which the uncertainty in the estimate is accounted for. In1085

practice, many variants of these methods can be used. Below, we summarize1086

the techniques we relied on.1087

Appendix B.1.1. Implicit sampling1088

Implicit sampling is a technique that combines ideas from variational data1089

assimilation with Monte Carlo sampling. Details and different implementa-1090
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tions of implicit sampling can be found in Chorin and Tu (2009); Chorin1091

et al. (2010); Morzfeld et al. (2012); Atkins et al. (2013); Morzfeld and Chorin1092

(2012). Here, we only briefly describe the principle of the algorithm.1093

The samples are generated by a data-informed probability. To find this1094

probability, define1095

F (x0) = − log p(x0|zn) = − log p(x0)− log p(zn|x0).

Specifically, for a Gaussian prior with mean µ0 and covariance Σ0, and for1096

v ∼ N (0, R), we find that1097

F (x0) =
1

2

(
x0 − µ0

)T
Σ−1

0

(
x0 − µ0

)
+

1

2

(
h(Mtn(x0))− zn

)T
R−1

(
h(Mtn(x0))− zn

)
.

Let1098

µ = arg minF (x0), φ = minF (x0),

be the minimizer and minimum of F , respectively, and let H be the Hessian1099

of F at the minimum (i.e., the m × m symmetric positive definite matrix1100

whose elements are the second derivatives of F ). In implicit sampling, the1101

samples are generated by the Gaussian1102

X0
j ∼ N (µ,H−1),

and the weights are1103

wj ∝ exp
(
F0(X

0
j )− F (X0

j )
)
,

where1104

F0(x
0) = φ+

1

2

(
x0 − µ

)T
H
(
x0 − µ

)
,

is the Taylor approximation of F to second order. In summary, the implicit1105

sampling algorithm is:1106

1. find the minimum of F (similar to variational data assimilation);1107

2. generate samples using the Gaussian N (µ,H−1);1108

3. compute the weights wj = exp(F0(X
0
j )− F (X0

j )) for each sample.1109

The result is a set of weighted samples which approximate the posterior1110

probability (B.2).1111
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Appendix B.1.2. Sequential data assimilation1112

The data assimilation approach can be extended to data assimilation1113

problems with more than one datum. Suppose there are n data points1114

z1, . . . , zi, . . . , zn, collected at times t1, . . . , ti, . . . , tn. Then the posterior1115

probability (B.2) becomes1116

p(x0|z1:n) ∝ p(x0)p(z1|x0) · · · p(zi|x0) · · · p(zn|x0),

where we use the notation z1:n for the set of vectors {z1, . . . , zi, . . . , zn}, and1117

the “likelihood” of each datum, p(zi|x0), is specified by an equation of the1118

form (B.1). For example, if the noise at time ti is Gaussian with mean zero1119

and variance Ri, then p(zi|x0) = N (h(Mti(x
0)), Ri).1120

One can modify this approach to work sequentially as follows. Suppose1121

n data are available at times t1, . . . , tn. We first pick the first ` < n of these1122

data and compute the posterior1123

p`(x
0|z1:`) ∝ p(x0)p(z1|x0) p(z2|x0) · · · p(z`|x0).

This can be done using the same implicit sampling technique as before.1124

We however next remove the weights by a resampling step, during which1125

we delete samples with a small weight, and duplicate samples with a large1126

weight (see, e.g., Doucet et al. (2001) for resampling algorithms). The re-1127

sult is a set of M unweighted samples of this first posterior at time 0. The1128

samples are informed by the first ` data points. We then propagate these1129

samples forward to time t` by the model:1130

X`
j =Mt`(X

0
j ), j = 1, . . . ,M

and compute the mean and variance of these samples to construct a Gaussian1131

p(x`) that describes the state at time t`.1132

This Gaussian p(x`) is next used as a prior for the state at time t`, to1133

proceed with the assimilation of the next ` data points. We simply update1134

this prior to the posterior1135

pl(x
`|z`+1:2`) ∝ p(x`)p(z`+1|x`) p(z`+1|x`) · · · p(z2`|x`)

and use the same implicit sampling and resampling steps as above to draw1136

samples X`
j from this posterior. These unweighted samples then represent1137

the state at time t`, given the data z1:2`. At this point, the information from1138
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the first ` data points was used in the prior p(x`), and the next ` data points1139

were used to update this prior to the posterior. These samples can then again1140

be forwarded, now to time t2`, to produce a Gaussian prior p(x2`) for the1141

state at time t2`, which can again be used to proceed with the assimilation1142

of the next ` data points. This process can be repeated, using ` data per1143

sweep, until all data are assimilated. We will refer to this method as the1144

sequential data assimilation with implicit sampling method for deterministic1145

models (D-IMP, for short).1146

Appendix B.1.3. The ensemble Kalman filter1147

The ensemble Kalman filter (EnKF) is a different numerical data assimi-1148

lation technique, which computes a Gaussian approximation of the posterior1149

probability p(xn|z1:n) at any time tn when data are collected (Evensen, 2006).1150

The EnKF is recursive algorithm and works as follows. First recall that zn is1151

assumed to satisfy (B.1), however we assume for EnKF that the “observation1152

operator” h is linear, i.e., h(x) = Hx, where H is a matrix. Next, suppose1153

you have M samples of the posterior at time n − 1, Xn−1
j ∼ p(xn−1|z1:n−1).1154

Then, for each sample, compute1155

X̂n
j =Mtn(Xn−1

j ),

and let C be the sample covariance matrix. With this covariance, define the1156

Kalman gain1157

K = CHT (HCHT +R)−1,

where R is the covariance matrix of the random variable v. The Kalman gain1158

is used to compute the “analysis ensemble”:1159

Xn
j = X̂n

j +K
(
ẑnj −HX̂n

j

)
,

where ẑnj is a “perturbed observation” obtained from ẑnj = zn + Vj, Vj being1160

a sample of v.1161

The EnKF then provides a state estimate at each time tn when the data1162

are collected. Note that EnKF produces a Gaussian approximation of the1163

posterior. This can lead to large errors in nonlinear problems, where this1164

approximation is not valid. We will refer to this method as the EnKF method1165

for deterministic models (D-EnKF, for short).1166
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Appendix B.2. Data assimilation with stochastic models1167

Data assimilation can also be applied to stochastic models (such as the1168

B13 and P09 models considered in this study). It is typical in data assim-1169

ilation to consider only discrete-time models and we follow suit. A time1170

discretization of an SDE (1) can be written as1171

xn = f̂(xn−1) + ĝ(xn−1)∆W,

where f̂ and ĝ depend on the discretization we use, and where ∆W is a1172

Gaussian with mean zero and whose variance is equal to the time step size δt1173

(see, e.g., Kloeden and Platen (1999)). Data are collected at discrete times:1174

zn = h(xn) + vn,

where vn are independent Gaussian random variables with mean zero and1175

variance Rn.1176

The posterior of interest is p(x0:n|z1:n) and a sequential approach, based1177

on the recursion,1178

p(x0:n|z1:n) ∝ p(x0:n−1|z1:n−1) p(xn|xn−1)p(zn|xn), (B.3)

is often used. Here, we use a sequential Monte Carlo approach (Doucet1179

et al., 2001), and apply Monte Carlo sampling (recall above) at each step1180

of the recursion to the “update” of the posterior, p(xn|xn−1)p(zn|xn). The1181

“prior”,1182

p(xn|xn−1) = N
(
f̂(xn−1), δtĝ(xn−1)ĝ(xn−1)T

)
is then defined by the discretized stochastic model, while the “likelihood”,1183

p(zn|xn) = N (h(xn), Rn) ,

is defined by the data. The product of the prior and likelihood thus defines1184

the posterior update we sample at each step. Again we use implicit sam-1185

pling at each step to sample the posterior update p(xn|xn−1)p(zn|xn) (for1186

the assimilations we perform in the manuscript, implicit sampling is in fact1187

the optimal sampling strategy, see Morzfeld et al. (2012)). Over time, one1188

obtains, recursively, an empirical estimate of the posterior (B.3). We will re-1189

fer to this method as the sequential data assimilation with implicit sampling1190

method for stochastic models (S-IMP, for short).1191
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In addition, we will also use sequential importance sampling with resam-1192

pling (SIR) (Doucet et al., 2001). In this method, one picks the prior as the1193

importance function for the posterior update at each step. The weights are1194

proportional to the likelihood. In short, the algorithm updates the posterior1195

at time n − 1, represented by M samples to time n as follows: (i) for each1196

sample, simulate the model to time n; and (ii) compute the weight from the1197

likelihood p(zn|xn); repeat for all M samples. This method is easy to imple-1198

ment, however becomes inefficient if the dimension of the problem increases.1199

We will refer to this method as the SIR method.1200

Finally, we will also use EnKF for data assimilation with the stochastic1201

models. Indeed, EnKF can readily be extended to stochastic models by1202

generating the “forecast ensemble” (see above) with the stochastic model.1203

The remaining formulas of EnKF for stochastic models are then as defined1204

above. We will refer to this method as the EnKF method for stochastic1205

models (S-EnKF, for short).1206
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Figure 15: Illustration of probability and intensity threshold-based reversal forecasts when
considering Sint-2000 data. Center panel: hindcasting by probability threshold-based
strategy when relying on the G12 model; blue – Sint-2000 data; light-blue cloud – 95%
confidence intervals; red – coarse reversal prediction over 4 kyr horizon (indicator function
is one if a reversal is predicted to happen, zero otherwise). Top row and bottom row,
left two panels: magnified data and predictions. Bottom row, right panel: hindcasting by
intensity-based threshold strategy; blue – Sint-2000 data; light-blue cloud – 95% confidence
intervals; orange – reversal prediction over 4 kyr horizon.
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Figure A.16: Error as a function of time. The thin turquoise lines are 500 samples of the
average error, each corresponding to perturbations of a given initial condition. The thick
blue line is the average over these 500 samples. The red line is a log-linear fit.
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