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RESEARCH
PAPER

Global patterns in the vulnerability of
ecosystems to vegetation shifts due to
climate changegeb_558 755..768

Patrick Gonzalez1*, Ronald P. Neilson2, James M. Lenihan2 and

Raymond J. Drapek2

1Center for Forestry, University of California,

Berkeley, CA 94720-3114, USA, 2Pacific

Northwest Research Station, USDA Forest

Service, Corvallis, OR 97331, USA

ABSTRACT

Aim Climate change threatens to shift vegetation, disrupting ecosystems and dam-
aging human well-being. Field observations in boreal, temperate and tropical eco-
systems have detected biome changes in the 20th century, yet a lack of spatial data
on vulnerability hinders organizations that manage natural resources from identi-
fying priority areas for adaptation measures. We explore potential methods to
identify areas vulnerable to vegetation shifts and potential refugia.

Location Global vegetation biomes.

Methods We examined nine combinations of three sets of potential indicators of
the vulnerability of ecosystems to biome change: (1) observed changes of 20th-
century climate, (2) projected 21st-century vegetation changes using the MC1
dynamic global vegetation model under three Intergovernmental Panel on Climate
Change (IPCC) emissions scenarios, and (3) overlap of results from (1) and (2).
Estimating probability density functions for climate observations and confidence
levels for vegetation projections, we classified areas into vulnerability classes based
on IPCC treatment of uncertainty.

Results One-tenth to one-half of global land may be highly (confidence 0.80–
0.95) to very highly (confidence � 0.95) vulnerable. Temperate mixed forest, boreal
conifer and tundra and alpine biomes show the highest vulnerability, often due to
potential changes in wildfire. Tropical evergreen broadleaf forest and desert biomes
show the lowest vulnerability.

Main conclusions Spatial analyses of observed climate and projected vegetation
indicate widespread vulnerability of ecosystems to biome change. A mismatch
between vulnerability patterns and the geographic priorities of natural resource
organizations suggests the need to adapt management plans. Approximately a
billion people live in the areas classified as vulnerable.

Keywords
Adaptation, biome change, climate change, dynamic global vegetation model,
natural resource management, vegetation shifts, vulnerability.
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INTRODUCTION

Climate change is shifting vegetation latitudinally and eleva-

tionally at sites in boreal, temperate and tropical ecosystems

(IPCC, 2007a,b; Rosenzweig et al. 2008). Changes in climate

alter plant mortality and recruitment by exceeding physiologi-

cal thresholds and changing wildfire and other disturbances.

The resulting replacement of dominant plant species can

entirely change the biome of an area and shift the global

location of biomes. Such fundamental changes can alter

ecosystem structure and the provision of ecosystem services to

people. A lack of spatial data on vulnerability has, in part,

hindered organizations that manage natural resources from

identifying priority areas for adaptation measures (Hannah

et al., 2002; Brooks et al., 2006). Analyses of novel future

climates (Williams et al., 2007) and simulations using dynamic

global vegetation models (DGVMs; Scholze et al., 2006; Alo &

Wang, 2008; Sitch et al., 2008; Jones et al., 2009) have projected
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future shifts in climate and vegetation due to climate

change.

Here, we explore the application of spatial analyses of climate

observations and DGVM projections to the identification of

areas vulnerable to vegetation shifts and potential refugia. We

examine three sets of potential indicators of the vulnerability of

ecosystems to biome change: (1) observed changes of 20th-

century climate, (2) projected 21st-century vegetation changes

using a DGVM under three IPCC emissions scenarios, and (3)

overlap of results from (1) and (2). We use IPCC uncertainty

criteria to develop a vulnerability classification framework that

natural resource managers could use to identify priority areas

for adaptation measures.

Climatic and ecological evidence supports the use of observed

climate change as a potential indicator of vulnerability of eco-

systems to biome change:

1. Climate exerts dominant control on the global distribution

of biomes, a fundamental basis of plant biogeography (Wood-

ward et al., 2004). Changes in temperature and precipitation

shifted global biomes latitudinally across continents in the late

Quaternary (Jackson & Overpeck, 2000; Davis & Shaw, 2001),

demonstrating the fundamental influence of climate on biomes.

2. Comprehensive meta-analyses (Parmesan & Yohe, 2003;

Rosenzweig et al., 2007, 2008) of published ecological research

demonstrate that climate change in the 20th century has shifted

plant ranges (37 species) and phenology (1161 species) in eco-

systems around the world. More than 90% of time series of

ecological data exhibited changes in the direction expected with

warming temperatures. Many of the range shifts also changed

the biomes of the ecosystems studied. The meta-analyses exam-

ined all time series, including those showing no change or

change opposite to the direction expected with warming, and

accounted for publication bias that might favour positive results.

3. We conducted a comprehensive search of the published lit-

erature (see Appendix S1 in Supporting Information) for cases

of field research that examined long-term trends of biomes in

areas where climate (not land-use change or other factors) pre-

dominantly influenced vegetation and found 15 cases docu-

menting biome shifts in boreal, temperate and tropical

ecosystems in the 20th century and four cases that found no

biome shift (Appendix S1). The number of biome changes

observed in the field and attributed to climate change indicates

that 20th-century changes in temperature and precipitation are

altering many ecosystems. Among the cases of observed biome

change, observed temperature or precipitation shifted as much

as one-half to two standard deviations from 20th-century mean

values (Gonzalez, 2001; Peñuelas & Boada, 2003; Beckage et al.,

2008; Kullman & Öberg, 2009).

4. Because vegetation often responds slowly to changes in envi-

ronmental conditions, a time lag between a change in climate

and a shift in vegetation can commit an ecosystem to biome

change long before any response manifests itself (Rosenzweig

et al., 2007; Jones et al., 2009). Slow rates of seed dispersal and

tree growth and long periods for physiological changes in plants

contribute to time lags. Therefore, future vulnerability is par-

tially a function of past climate change.

Observed changes in temperature and precipitation provide

indicators of the potential change of the biome of an ecosystem.

Using observed climate data accounts for the impact of climate

change that has already occurred. This can provide a more com-

plete assessment of vulnerability than future projections alone.

We look at the three methods – observations alone, projections

alone and the overlap of observations and projections – in par-

allel, not as mutually exclusive replacements for each other, to

reveal areas where the ensemble of methods consistently iden-

tifies vulnerable areas or potential refugia.

METHODS

Definitions and general approach

In quantifying potential indicators of vulnerability, we followed

IPCC definitions of likelihood, confidence and vulnerability.

Likelihood is the probability of an outcome having occurred or

occurring in the future (Schneider et al., 2007). We estimated

likelihoods of observed changes of 20th-century climate from

probability density functions of 102 years of observation data.

Confidence is the subjective assessment that any statement

about an outcome will prove correct (Schneider et al., 2007). We

estimated confidence levels of DGVM projections from the

output of a set of different general circulation models (GCMs).

Vulnerability to climate change is the degree to which a

system is susceptible to, and unable to cope with, adverse effects

(IPCC, 2007b). Here, vulnerability is the susceptibility of an

ecosystem to a change in its biome, where biomes are major

vegetation types that are characterized by the same life-form

(Woodward et al., 2004). Vulnerability is a function of three

components: exposure, sensitivity and adaptive capacity. In our

analysis, observed and projected climate changes indicated

degree of exposure. Deviation of climate from long-term mean

values (in the absence of complete spatial data on early 20th-

century global vegetation) and modelled changes of future

vegetation provide indicators of ecosystem response, which

combines sensitivity and adaptive capacity. An ecosystem with

low sensitivity and/or high adaptive capacity would respond

with modest changes, indicating lower vulnerability.

In the IPCC (2007a) treatment of uncertainty, confidence

spans five levels: very high (at least a 9 out of 10 chance of an

outcome proving correct), high (about an 8 out of 10 chance),

medium (about a 5 out of 10 chance), low (about a 2 out of 10

chance) and very low (less than 1 out of 10 chance). We used

these levels to divide results into vulnerability classes.

Equal-area projection of spatial data

All original sets of global climate, vegetation, fire and population

data were unprojected rasters in the geographic reference

system, where the surface area of pixels varied with latitude. To

accurately calculate land areas, we divided all global files into six

continental files and projected each continent to Lambert azi-

muthal equal-area projection at a spatial resolution of 50 km,

using the parameters of the International Geosphere–Biosphere

P. Gonzalez et al.
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Programme Global Land Cover Characteristics database (http://

edc2.usgs.gov/glcc). The data cover the terrestrial area of the

world, except Antarctica.

Observed climate and fire

We calculated observed climate trends in the University of East

Anglia Climate Research Unit TS 2.1 data set (Mitchell & Jones,

2005) by linear least squares regression of mean annual tem-

perature and annual precipitation versus time for the period

1901–2002. For the correlation coefficients, we also calculated

the statistical significance (Pr).

Although the biological importance of a change in climate

will tend to increase as Pr increases, Pr does not give a direct

measure of the magnitude of the change. In contrast, the histo-

gram of 102 annual temperature or precipitation values forms a

probability density function and deviation of the value of the

change in temperature or precipitation in a century (given by

the slope of the regression) from the 102-year mean indicates

the statistical significance of the rate of change.

For each of 58,267 land pixels, we calculated

C mtemperature temperature

 years

century
= ⎛

⎝⎜
⎞
⎠⎟

100
(1)

where Ctemperature is the rate of observed temperature change (°C

century-1) and mtemperature is the slope of the regression (°C year-1)

and

C
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where Cprecipitation is the fractional rate of observed precipitation

change (century-1), mprecipitation is the slope of the regression (mm

year-2), and mprecipitation is mean 1901–2002 precipitation (mm

year-1).

We calculated the probabilities of the observed climate

changes:

P
C

climate
climate

climate

erf
 century

=
( )

⎛
⎝⎜

⎞
⎠⎟σ 1 2

(3)

where the subscript ‘climate’ denotes temperature or precipita-

tion, Pclimate is the probability that Ctemperature or Cprecipitation falls

within a calculated number of standard deviations of the mean,

erf(x) is the error function, and s is the 1901–2002 standard

deviation, such that Pclimate = 0.68 at 1s, 0.95 at 2s and 0.99 at

3s.

We classified pixels into five vulnerability classes (IPCC,

2007a): very high (Pclimate � 0.95), high (0.95 > Pclimate � 0.8),

medium (0.8 > Pclimate � 0.2), low (0.2 > Pclimate � 0.05) and very

low (Pclimate <0.05). We used the value of P that was greater

between temperature and precipitation because a significant

change in either parameter could cause a change in biome

(Woodward et al., 2004). Although the absolute magnitude of or

variation in Ctemperature or Cprecipitation that may cause a biome

change will differ by ecosystem, the likelihood of change will

increase with the deviation of climate from the conditions under

which the vegetation of a location developed.

To explore potential impacts of fire, we also calculated trends

in the global fire database of Mouillot & Field (2005) by linear

least squares regression of fire frequency for the period 1900–

2000 versus time.

Projected climate

We used an ensemble of three GCMs to represent lower (CSIRO

Mk3; Gordon et al. 2002), medium (HadCM3; Johns et al.,

2003) and higher (MIROC 3.2 medres; Hasumi & Emori, 2004)

temperature sensitivity for the period 2000–2100. GCM runs for

the three emissions scenarios used in the IPCC Fourth Assess-

ment Report (AR4; IPCC, 2007a,b) represent lower (B1),

medium (A1B) and higher (A2) greenhouse gas emissions. The

nine GCM–emission scenario combinations bracket a substan-

tial part of the range of temperature projections of the 59 AR4

combinations. Constraints of funding and the unavailability of

vapour pressure output (required for the MC1 DGVM) from

some GCMs prevented analysis of all 59 combinations, necessi-

tating the use of a bracketing approach.

GCM output came from the World Climate Research Pro-

gramme Coupled Model Intercomparison Project Phase 3

multi-model dataset (https://esg.llnl.gov:8443/index.jsp). We

statistically downscaled GCM output from 2.5° latitude by 3.75°

longitude spatial resolution to 0.5° spatial resolution in three

steps: (1) calculation of the difference (temperature) or ratio

(precipitation, vapour pressure) of a GCM-projected future

value with the GCM-modelled 1961–90 mean, (2) bilinear inter-

polation of the differences or ratios at a spatial resolution of 0.5°

with a 2 ¥ 2 kernel, and (3) addition of the temperature differ-

ence to or multiplication of the precipitation and vapour pres-

sure ratios by the 0.5° spatial resolution 1961–90 observed mean

values (Mitchell & Jones, 2005).

Projected vegetation and fire

To model potential vegetation and wildfire, we ran the MC1

dynamic global vegetation model (Daly et al., 2000; Lenihan

et al., 2008) on the nine GCM–emissions scenario combina-

tions. MC1 uses five climate variables (monthly mean,

maximum and minimum temperature; precipitation; vapour

pressure) and five soil variables (soil depth; bulk density; clay,

sand and rock fractions) to run interacting modules of bioge-

ography, biogeochemistry and wildfire. The climate variables

required by MC1 limited the GCMs that we could use to those

with available output. The biogeography module identifies the

potential vegetation type of a pixel by modelling plant life-form

as distinguished by leaf characteristics. The relative proportion

of different woody life-forms is determined at each annual time

step by position along gradients of minimum temperature and

growing season precipitation. The minimum temperature gra-

dient runs from evergreen needleleaf dominance (-15 °C)

through deciduous broadleaf dominance to broadleaf evergreen

dominance (18 °C). The relative proportion of C3 and C4

Global vulnerability to climate change
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grasses is determined by estimating potential productivity as a

function of soil temperature during the three warmest consecu-

tive months. The biogeochemistry module calculates the

biomass of trees and grasses for each pixel by modelling net

primary productivity (NPP), organic matter decomposition and

carbon, nitrogen and water cycling. MC1 simulates changes to

plant physiology, nutrient cycling, water use and biomass due to

changes in atmospheric CO2. We modelled NPP trends using the

23% increase to a doubling of pre-industrial atmospheric CO2

(logarithmic biotic growth factor b = 0.60) observed at a broad

range of sites (Norby et al., 2005). The wildfire module simulates

wildfire occurrence and behaviour based on fuel loadings and

fuel and soil moisture and calculates resulting changes in plant

life-form mixtures and biomass. We modelled potential fire with

no human suppression. The modelled plant life-form mixture

from the biogeography module together with woody plant and

grass biomass from the biogeochemistry module determine the

vegetation type that occurs at each pixel each year. We combined

the 34 MC1 potential vegetation types (Kuchler, 1964; VEMAP

Members, 1995) into 13 biomes (FAO, 2001; Woodward et al.,

2004) and used the biome that MC1 modelled for each pixel for

the majority of years during each of two periods (1961–90,

2071–2100) to represent the average vegetation for each period.

To assess the accuracy of MC1, we validated MC1 output

against observed global vegetation and fire data. We compared

the areas of forest and non-forest modelled by MC1 for 1961–90

climate with areas of forest and non-forest in remote sensing-

derived Global Land Cover 2000 data (Bartholomé & Belward,

2005), excluding agricultural and urban areas. We also com-

pared areas of fire rotation period � 35 years for 1951–2000

modelled by MC1 and derived from field observations and

remote sensing (Mouillot & Field, 2005). We calculated areas of

agreement and the kappa statistic (Cohen, 1960; Monserud &

Leemans, 1992).

For each of 54,433 land pixels, we estimated the level of con-

fidence in projections that the biome of an area may change

(cprojection) as the fraction of the nine GCM–emission scenario

combinations that project the same type of biome change for a

pixel. The converse of the confidence in projections of biome

change (1 – cprojection) is the confidence in a projection of no bio-

me change. We classified pixels into five classes of vulnerability

(IPCC, 2007a): very high (cprojection � 0.95), high (0.95 > cprojection

� 0.8), medium (0.8 > cprojection � 0.2), low (0.2 > cprojection �

0.05) and very low (cprojection < 0.05). We also estimated the level

of confidence and vulnerability classes for each emissions

scenario.

Overlap of observed and projected vulnerability

For all nine GCM–emission scenario combinations and for each

emissions scenario, we determined the overlap of the vulnerabil-

ity classes that were separately derived from observed climate

and projected vegetation by classifying pixels where both Pclimate

and cprojection fell within the same range into five vulnerability

classes. To avoid under- or overestimation of the vulnerability of

certain areas of very high or very low Pclimate or cprojection, we

included two exceptional combinations of medium vulnerabil-

ity (very high Pclimate and medium cprojection, very high cprojection and

medium Pclimate) in the high class and two (very low Pclimate and

medium cprojection, very low cprojection and medium Pclimate) in the

low class (Appendix S2).

Population

To estimate the human population living in each vulnerability

class, we used ad 2000 population from the Center for Interna-

tional Earth Science Information Network Gridded Population

of the World dataset, Version 3 (http://sedac.ciesin.columbia.

edu/gpw). We masked the population data by the area of each

vulnerability class to calculate the total number of people living

in each area.

Limitations of the methods

For the analyses of observed climate data, equation 3 assumes a

roughly normal distribution of annual climate values. The use

of mean annual temperature and total annual precipitation

is a simplification that assumes approximate correlation to

minimum temperature and other climate parameters that affect

the distribution of biomes. It also assumes that average climate

conditions over long periods more strongly affect biomes than

short-term climate extremes and variability, which can be

important for individual species. Although the values of Pclimate

are not calibrated to precise magnitudes and timings of biome

change, which may differ by vegetation type, observed tempera-

ture or precipitation shifts of one-half to two standard devia-

tions from 20th-century mean values over the course of

50–100 years have caused changes in a diverse set of biomes

(Gonzalez, 2001; Peñuelas & Boada, 2003; Beckage et al., 2008;

Kullman & Öberg, 2009).

For future emissions scenarios, IPCC has not estimated prob-

abilities of occurrence, so we assumed equal probabilities of the

three scenarios that IPCC selected for AR4 (IPCC, 2007a,b). The

scenarios do not include the hottest defined scenario, A1FI. If

actual global emissions exceed emissions under A1FI (Raupach

et al., 2007), then our analysis may provide a lower estimate of

vulnerability than might occur if the world continues unmiti-

gated emissions of greenhouse gases, although it would be pos-

sible to use the A2 results. Precipitation patterns vary across the

three GCMs more than temperature patterns.

For future projections, the analysis assumes reasonable accu-

racy of GCMs and MC1. IPCC (2007a) has validated GCM skill.

We validated MC1 output against observed global vegetation

(Bartholomé & Belward, 2005) and fire (Mouillot & Field,

2005). Data from only one DGVM were available for this

research, but future analyses would benefit from output from

several DGVMs The analysis compares conditions under stan-

dard 30-year climatology periods, but does not examine the

timing or seasonality of changes.

For the overlap of observed and projected vulnerability

classes, equal weighting of past observations and future projec-

tions is a normative decision, though it reflects the importance

P. Gonzalez et al.
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of both realized and potential impacts of climate change and the

use of one century of data from the past and one century of data

for the future.

RESULTS

Observed changes in climate and fire

Temperature increased on 96% of global land (Fig. 1a) in the

20th century with significant (Pr � 0.05) increases on 76% of

global land. Average temperature increased on every continent

(Table 1). The greatest warming has occurred in boreal regions.

Precipitation increased on 80% of global land in the 20th

century (Fig. 1b, Table 1), with significant increases on 28% of

global land and significant decreases on 2%. Global average

precipitation increased at a fractional rate (� SD) of

0.08 � 0.14 century-1. The West African Sahel, the upper Nile

region, and coastal Peru have experienced the greatest decreases

in precipitation.

Fire frequency in the 20th century decreased on two-fifths of

global land, slightly greater than the area of increase (Fig. 1c,

Table 1). Global average fire frequency (� SD) was 0.04 � 0.06

year-1, corresponding to a rotation period (� SD) of

27 � 17 years. Global average fire frequency increased at a frac-

tional rate (� SD) of 0.004 � 0.04 century-1. Decreased fire

across Australia, North America and Russia reveals extensive

suppression, while increased fire across the tropics shows

increased burning to clear agricultural fields (Mouillot & Field,

2005). Due to these human influences, we used observed tem-

perature and precipitation, but not fire, as potential indicators of

vulnerability.

Projected changes in climate

GCMs project widespread temperature increases and precipita-

tion changes by 2100 (Fig. 2a,b, Table 1), including global

average temperature increases of 2.4–4 °C century-1 and global

Figure 1 Observed climate and fire
trends. Rates of change derive from
linear least squares regression of (a)
temperature 1901–2002 (Mitchell &
Jones, 2005), (b) precipitation 1901–2002
(Mitchell & Jones, 2005), and (c) fire
frequency 1900–2000 (Mouillot & Field,
2005) versus time. The figure shows
precipitation and fire trends as fractional
change per century. (All global maps are
in the Robinson projection.)

Global vulnerability to climate change

Global Ecology and Biogeography, 19, 755–768, © 2010 Blackwell Publishing Ltd 759



Ta
b

le
1

O
bs

er
ve

d
an

d
pr

oj
ec

te
d

ra
te

s
of

te
m

pe
ra

tu
re

ch
an

ge
(�

st
an

da
rd

de
vi

at
io

n
)

an
d

fr
ac

ti
on

s
of

co
n

ti
n

en
ta

lo
r

gl
ob

al
la

n
d

ar
ea

s
su

bj
ec

t
to

pr
ec

ip
it

at
io

n
an

d
w

ild
fi

re
ch

an
ge

s.

C
on

ti
n

en
t

20
th

-c
en

tu
ry

ob
se

rv
at

io
n

s
21

st
-c

en
tu

ry
pr

oj
ec

ti
on

s

Te
m

pe
ra

tu
re

in
cr

ea
se

P
re

ci
pi

ta
ti

on

in
cr

ea
se

P
re

ci
pi

ta
ti

on

de
cr

ea
se

Fi
re

in
cr

ea
se

Fi
re

de
cr

ea
se

Te
m

pe
ra

tu
re

in
cr

ea
se

P
re

ci
pi

ta
ti

on

in
cr

ea
se

P
re

ci
pi

ta
ti

on

de
cr

ea
se

W
ild

fi
re

in
cr

ea
se

W
ild

fi
re

de
cr

ea
se

(°
C

ce
n

tu
ry

-1
)

(f
ra

ct
io

n
(%

)
of

co
n

ti
n

en
ta

lo
r

gl
ob

al
ar

ea
)

(°
C

ce
n

tu
ry

-1
)

(f
ra

ct
io

n
(%

)
of

co
n

ti
n

en
ta

lo
r

gl
ob

al
ar

ea
)

A
fr

ic
a

0.
55

�
0.

36
59

41
49

18
3.

5
�

0.
5

49
48

33
14

3.
0

�
0.

4
48

49
33

13

2.
1

�
0.

3
48

48
34

13

A
si

a
0.

94
�

0.
54

84
16

34
40

4.
3

�
0.

9
77

23
39

24

3.
7

�
0.

8
78

22
38

24

2.
6

�
0.

5
79

21
37

25

A
u

st
ra

lia
0.

41
�

0.
31

91
9

25
68

2.
9

�
0.

4
49

50
41

9

2.
4

�
0.

3
50

50
37

14

1.
8

�
0.

3
32

68
32

17

E
u

ro
pe

0.
85

�
0.

33
83

17
28

52
4.

6
�

1.
2

67
33

30
28

4.
0

�
1.

2
70

30
29

28

2.
8

�
0.

8
73

26
28

28

N
or

th
A

m
er

ic
a

0.
83

�
0.

50
90

10
9

56
4.

4
�

0.
8

70
30

24
23

3.
9

�
0.

7
74

26
23

24

2.
7

�
0.

5
73

27
24

23

So
u

th
A

m
er

ic
a

0.
62

�
0.

49
82

18
43

28
3.

7
�

0.
9

28
71

29
11

3.
2

�
0.

7
30

70
29

11

2.
2

�
0.

5
36

63
28

11

W
or

ld
0.

74
�

0.
45

80
20

33
40

4.
0

�
0.

8
60

39
33

19

3.
4

�
0.

7
61

38
32

19

2.
4

�
0.

5
61

38
32

20

W
e

ca
lc

u
la

te
d

ob
se

rv
ed

cl
im

at
e

ch
an

ge
s

fr
om

19
01

–2
00

2
C

R
U

T
S

2.
1

da
ta

(M
it

ch
el

l
&

Jo
n

es
,2

00
5)

an
d

ob
se

rv
ed

fi
re

ch
an

ge
s

fr
om

19
00

–2
00

0
da

ta
(M

ou
ill

ot
&

Fi
el

d,
20

05
).

P
ro

je
ct

ed
cl

im
at

e
ch

an
ge

s
fo

r
19

90
–2

10
0

co
m

e
fr

om
IP

C
C

(2
00

7a
)

da
ta

fo
r

em
is

si
on

s
sc

en
ar

io
s

A
2

(t
op

),
A

1B
(m

id
dl

e)
an

d
B

1
(b

ot
to

m
).

P
ro

je
ct

ed
w

ild
fi

re
ch

an
ge

s
fo

r
20

00
–2

10
0

co
m

e
fr

om
M

C
1

re
su

lt
s.

P. Gonzalez et al.

Global Ecology and Biogeography, 19, 755–768, © 2010 Blackwell Publishing Ltd760



average precipitation increases at fractional rates of 0.03–0.04

century-1. MC1 projects that a third of global land may experi-

ence an increase in wildfire frequency (Fig. 2c, Table 1), with

global average increases at fractional rates of 0.21–0.29

century-1.

Projected vegetation shifts

MC1-modelled 1961–90 vegetation (Fig. 3a) generally follows

observed patterns of global biomes (FAO, 2001; Bartholomé &

Belward, 2005), with modelled forest and non-forest areas cor-

responding broadly (agreement 77%, kappa = 0.53) to remote

sensing-derived land cover (Bartholomé & Belward, 2005),

excluding agricultural and urban areas. This kappa value is in

the range considered ‘fair’ (Monserud & Leemans, 1992). MC1-

modelled areas of wildfire rotation period �35 years for 1951–

2000 correspond less closely (agreement 66%, kappa = 0.34) to

wildfire observations (Mouillot & Field, 2005).

MC1 projects potentially extensive biome changes under the

2071–2100 scenarios (Fig. 3b). Areas where all combinations

project the same biome change (cproj ~ 1) cover 8% of global land

(Fig. 3c). Temperate mixed forest shows the highest fractional

areas of projected change, while desert shows the lowest

(Appendix S3). Projected changes in wildfire frequency (Fig. 2c)

drive many of the projected biome changes. Differences among

GCMs caused more variation in biome projections than differ-

ences among emissions scenarios. The B1, A1B and A2

ensembles disagree on 25, 32 and 30% of global land, respec-

tively, while the CSIRO, HadCM3 and MIROC emissions sce-

nario sets for each GCM disagree on 17, 17 and 18% of global

land, respectively.

Vulnerability

Observed climate and vegetation projections indicate that one-

tenth to one-half of global land may be highly to very highly

Figure 2 Projected climate and fire
trends. Rates of change are shown for the
three general circulation model ensemble
for IPCC (2007a) emissions scenario
A1B for (a) temperature between the
periods 1961–90 and 2071–2100, (b)
precipitation for the same periods, and
(c) wildfire frequency between the
periods 1951–2000 and 2051–2100.
Spatial patterns for IPCC emissions
scenarios B1 and A2 are similar to
patterns for A1B, but differ in
magnitude.
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vulnerable to biome changes (Table 2). Vegetation projections

indicate low to very low vulnerability of ecosystems to biome

change on up to two-thirds of global land. Patterns of vulner-

ability derived from observed climate alone (Fig. 4a) differ from

the patterns derived from all nine vegetation projections com-

bined (Fig. 4b). The overlap of observed climate and the nine

vegetation projections (Fig. 4c) identifies areas that both indi-

cators identify as highly to very highly vulnerable: the Andes, the

Baltic coast, boreal Canada and Russia, the Himalayas, the

Iberian Peninsula, the Laurentian Great Lakes, northern Brazil

and southern Africa.

Vegetation projections for individual emissions scenarios

show areas of vulnerability under A1B and A2 that are, respec-

tively, one-third and one-half greater than under B1 (Table 2,

Appendix S4). The overlap of observed climate and vegetation

projections for individual emissions scenarios show areas of

vulnerability under A1B and A2 that are, respectively, one-

quarter and one-half greater than under B1 (Table 2, Appen-

dix S5). Among the emissions scenarios, the general patterns of

vulnerability remain consistent – it is the size of highly vulner-

able patches that expands with increasing emissions.

Temperate mixed and boreal conifer forests show the highest

vulnerability as a fraction of biome area, while tundra and

alpine and boreal conifer forest biomes are most vulnerable in

total land area (Fig. 5, Table 2). Deserts show the lowest vulner-

ability as a fraction of biome area for most cases, while all cases

show tropical evergreen broadleaf forest as least vulnerable in

total land area.

Approximately 3 billion people, or half of the world’s popu-

lation, live in areas of high to very high vulnerability under

observed climate only (Table 2). Approximately 800 million to

1.3 billion people, or one-eighth to one-fifth of the world’s

population, live in areas of high to very high vulnerability under

the other cases.

Figure 3 Vegetation projections. (a)
MC1-modelled potential vegetation
under observed 1961–90 climate. (b)
MC1-modelled potential vegetation
under projected 2071–2100 climate
where any of nine general circulation
model–emissions scenario combinations
projects a change. Biomes, in (a) and (b),
from poles to equator: ice (IC), tundra
and alpine (UA), boreal conifer forest
(BC), temperate conifer forest (TC),
temperate broadleaf forest (TB),
temperate mixed forest (TM), temperate
shrubland (TS), temperate grassland
(TG), desert (DE), tropical grassland
(RG), tropical woodland (RW), tropical
deciduous broadleaf forest (RD), tropical
evergreen broadleaf forest (RE). (c)
Confidence of biome projections
calculated from fraction of general
circulation model–emissions scenario
combinations that project the same type
of biome change.
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DISCUSSION

Global vulnerability

All cases of observed climate, projected vegetation and their

overlap show high to very high vulnerability of a substantial

fraction of global land. Even under the lowest emissions sce-

nario, the indicators identify extensive areas of potentially sub-

stantial ecological change.

Observed climate changes signal high vulnerability for almost

half of the global land area. Vegetation projections suggest

potential latitudinal biome shifts of up to 400 km, consistent

with projections of individual species range shifts (Morin &

Thuiller, 2009). Confidence in vegetation projections shows lati-

tudinal gradients along ecotones and fragmented patterns in

core areas, as previously theorized (Neilson, 1993). Confidence

is higher at the trailing edges of latitudinal biomes than at

leading edges, analogous to the upslope leaning of species dis-

tribution curves that shift along an elevation gradient (Kelly &

Goulden, 2008).

Temperate mixed forest shows high vulnerability as a fraction

of biome area due to projected loss of coniferous species and

potential conversion to temperate broadleaf forest. The tundra

and alpine biome shows the greatest total area of high to very

high vulnerability due to elevated rates of both observed and

projected warming. Tropical evergreen broadleaf forest shows

low vulnerability. The resilience of rain forests derives from high

temperature tolerances and mitigation of water stress by

increases in equatorial precipitation (Malhi et al., 2008) as well

as the wide latitudinal extent of woody plant species (Weiser

et al., 2007).

Spatial patterns of change and vulnerability agree substan-

tially with previous analyses at coarser scales. The patterns of

observed climate change agree with analyses (Vose et al., 2005;

Figure 4 Vulnerability to biome change
based on (a) 20th-century observed
climate, (b) 21st-century vegetation
projections under nine general
circulation model–emissions scenario
combinations, and (c) overlap of (a) and
(b). Vulnerability classes use IPCC
(2007a) confidence class names and
levels.
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Dang et al., 2007; Trenberth et al., 2007) of climate data (Jones

et al., 2001; Smith & Reynolds, 2005) at a spatial resolution

coarser than the data here by an order of magnitude. MC1

vegetation projections are consistent with results from the Com-

munity Land Model (Alo & Wang, 2008), the HadCM3LC

coupled GCM–DGVM (Jones et al., 2009), the Lund–Potsdam–

Jena (LPJ) DGVM (Scholze et al., 2006) and four other DGVMs

(Sitch et al., 2008), run at spatial resolutions coarser than the

data here by factors of 3, 5, 5.6 and 7.5, respectively. The DGVMs

project a shift of boreal forest into tundra at high latitudes and

some forest loss in Amazonia. Both MC1 and LPJ project forest

changes in the southeastern USA and East Asia, although they

disagree on changes in India. MC1 results are also consistent

with non-dynamic climate and vegetation modelling (Lee &

Jetz, 2008). MC1 and LPJ produce consistent wildfire results,

projecting increases in the Amazon, Australia, southern Africa

and the western USA. Our vulnerability results agree with a

vulnerability analysis based on potential novel climates (Will-

iams et al., 2007) in the African Sahel, the Andes, the northern

Amazon and other areas, but do not agree in some equatorial

and temperate areas because the novel climate index more

heavily weights areas of low inter-annual variability.

We find that a large part of the world’s population lives in

areas of potential biome changes. This includes up to one-fifth

of the world’s population and up to one-quarter of the popula-

tion in Asia and North and South America. Biome changes may

alter the provision of ecosystem services (Schröter et al., 2005),

possibly affecting the livelihoods of many of these people. For

example, certain biome changes could change the density of tree

species used for firewood or timber or the density of grass

species preferred for grazing, alter the water retention capacity

in watersheds providing drinking water for human use, or

change patterns of fire and other disturbances integral to eco-

system function.

Limitations of interpretation

To produce results at a spatial scale useful for assessing potential

impacts of climate change on vegetation, we applied empirical

statistical downscaling to the coarse GCM output. Our method

adjusts GCM output by observed 50-km climate patterns so that

downscaled data exhibit the climate differences of the GCM

projections while retaining the relative spatial patterns of

observed climate. The continental and global averages of pro-

jected temperature and precipitation changes of the downscaled

results (Table 1) are close to the corresponding averages of the

coarse GCM ensembles (IPCC, 2007a), suggesting that our

downscaled climate projections retain broad agreement with the

GCM output. IPCC has confirmed the validity of empirical

statistical downscaling of climate scenarios for impacts analyses

(Christensen et al., 2007). Drawbacks include an assumption of

relative stability of cross-scale climate relationships and

increased uncertainty in spatial changes finer than the coarse

resolution of the original GCM output. Because the spatial reso-

lution of the original GCM output is approximately 250 km

(north–south) by 375 km (east–west), conclusions about results

at finer scales are still uncertain.

Use of the biome as a unit of analysis may understate vulner-

ability because the broad definition of a biome allows for

changes in species composition without conversion to a differ-

ent biome. Although MC1 DGVM projections of potential veg-

etation change will increase at more detailed levels of a

classification hierarchy (Neilson, 1993), the 77% agreement of

modelled with observed forest cover suggests the use of a level

no lower than the biome for this analysis. Biome change pro-

vides a useful indicator of vulnerability because climate changes

severe enough to convert the biome of an area are likely to signal

more serious impacts at lower levels. The analyses do not explic-

itly examine reductions of tree density that may occur in epi-

sodes of forest dieback without changing the biome of an area

(Scholze et al., 2006; Jones et al., 2009). This may further under-

state vulnerability.

The kappa value for MC1 is in the range considered ‘fair’

(Monserud & Leemans, 1992), suggesting caution in the use of

DGVM output. For this reason, we have examined one case

(labelled PV9 in Table 2) that uses a stringent and restrictive

criterion of unanimous agreement for the very high vulnerabil-

ity class. In addition, we examine four cases (OC-PV9,

Figure 5 Fraction of biome area in areas of high to very high
vulnerability under observed climate (OC, black), vegetation
projections under nine general circulation model–emissions
scenario combinations (PV9, white), overlap of observed climate
and vegetation projections under nine general circulation
model–emissions scenario combinations (OC-PV9, grey).
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OC-PVA2, OC-PVA1B, OC-PVB1) that overlap vulnerability

results from observed climate and vulnerability results of veg-

etation projections to find where observations and projections

might show similar patterns.

DGVMs delineate potential, not realized, vegetation distribu-

tions. Survival and dispersal capabilities of species, human bar-

riers to dispersal, interspecific competition, evolutionary

adaptation, changing pests and pathogens and other factors will

lead to biome changes occurring at varying rates. In some cases,

rates of climate change may exceed the dispersal abilities of

individual species. Conditions projected for ad 2100 may reflect

committed changes, but long time-scales of atmospheric equi-

librium and ecological processes create a double transient situ-

ation. Global terrestrial vegetation may continue to change long

after climate stabilization (Jones et al., 2009).

Direct human modification of land cover, which this analysis

does not explicitly include, could interact with climate change

(Lee & Jetz, 2008). Even though our analysis identifies tropical

rain forests as less vulnerable to climate change, continued

deforestation for timber harvesting and agricultural expansion

would nullify that advantage.

The population analysis approximates the number of people

living in areas classified as most and least vulnerable to vegeta-

tion shifts. Although more complex analyses could quantify

negative and positive impacts on ecosystem services and account

for differences due to the extent of agricultural and urban areas,

the estimates indicate the orders of magnitude of the human

population of the different vulnerability classes.

Adaptation of natural resource management

Adaptation is an adjustment in natural or human systems in

response to actual or expected climatic stimuli or their effects, to

moderate harm or exploit beneficial opportunities (IPCC,

2007b). Analyses of vulnerability and prioritization of locations,

ecosystems or species can guide the planning of adaptation mea-

sures (Hannah et al., 2002). The mismatch between the patterns

of vulnerability identified here and the geographic priorities of

global organizations (Brooks et al., 2006) suggests the need to

adapt current management plans to climate change. We have

sought to develop a vulnerability analysis framework with

clearly defined classes easily interpreted by natural resource

managers. Furthermore, we have sought to provide data to help

prioritize existing and future national and regional forests,

parks, reserves and other natural areas for adaptation measures.

To identify geographic priorities under climate change, man-

agers can broadly consider three options: areas of high, medium

or low vulnerability of ecosystems to biome change. For the

acquisition of new areas, it may be prudent to prioritize areas of

potentially greater resilience, known as refugia, and to avoid

areas of higher vulnerability, all other factors being equal. Con-

versely, for the management of existing areas, it may be neces-

sary to prioritize places of higher vulnerability for adaptation

measures because those locations may require more intensive

management, such as prescribed burning to avoid catastrophic

wildfire and invasive species removal, because of potentially

greater disturbances and species turnover. Areas of unique eco-

logical or cultural value may continue to merit high priority.

The eventual configuration of new and existing natural resource

areas may also reveal appropriate areas for the establishment of

corridors to facilitate species dispersal and migration. Although

the coarse scale of our results only provides information appro-

priate for global and regional planning, application of our

method to data at finer spatial scales (Ashcroft et al., 2009),

subject to accuracy limits of downscaling, could make climate

change planning possible for local areas. In addition to adapta-

tion measures, substantial reductions in greenhouse gas emis-

sions could enable the world to avoid the most serious

consequences of climate change, which include global vegeta-

tion shifts and potential impacts on human well-being.
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