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ABSTRACT OF THE DISSERTATION

On a Notion of Cohen-Macaulay and the Non-vanishing of C̆ech Cohomology Modules

by

Andrew James Walker

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, June 2017

Professor David Rush, Chairperson

In this paper, we study the Cohen-Macaulay property of a general commutative ring

with unity defined by Hamilton and Marley. We give sufficient conditions on pullback

constructions, fixed rings, and normal monoid rings to all be Cohen-Macaulay in this sense.

We also exhibit a class of quasi-local rings where the top C̆ech cohomology module with

respect to a sequence generating the maximal ideal up to radical is non-vanishing.
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Introduction

The theory of Cohen-Macaulay (CM) rings has developed into a central topic of com-

mutative algebra. While there are many characterizations of Noetherian CM rings, one of

the simplest ways to introduce such rings is where grade and height coincide for any ideal

in the ring (see [36, Chapter 3] for details). The study of such rings has needed the Noethe-

rian assumption for much of the theory of CM rings to work nicely. Replacing grade with

polynomial grade, a generalized notion of grade that works well outside of a Noetherian

context, Sarah Glaz studied [21] non-Noetherian rings where ht(P ) = p.grade(PRP ) for

each P ∈ Spec(R). However, there are examples of coherent regular rings which fail to enjoy

this property. This would be undesirable in any definition for a non-Noetherian ring to be

Cohen-Macaulay, since in the Noetherian case, regular rings are CM. It is also a classical

result of Hochster and Eagon [14, Proposition 12] that for any G, a group of automorphisms

of a Noetherian CM ring R, the fixed ring RG is CM provided RG is a module retract of R,

and R is a finitely generated RG-module. With these facts in mind, Sarah Glaz proposed [19]

the existence of a definition for a non-Noetherian CM ring that agrees with the original defi-

nition for Noetherian rings, and any fixed subring RG of a coherent regular ring R satisfying

the conditions in Hochster’s theorem above should also be CM. As a consequence of such a
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definition, any coherent regular ring must be CM with this definition that Glaz expected to

exist. Tom Marley and Tracy Hamilton [26] in 2006 produced a notion of Cohen-Macaulay

that successfully answers most of Glaz’s question. Namely, they showed that with their

definition of CM, every coherent ring would be CM, and that up to dimension 2, any fixed

subring RG of a coherent regular ring R satisfying the conditions in Hochster’s theorem

above would also be CM.

While their definition answered most of Glaz’s question, this class of rings that is CM in

the sense of Hamilton and Marley is still mysterious. For instance, Hamilton proposed [24]

that based off analogous results for Noetherian CM rings, it should be reasonable to expect

in any definition for a (non-Noetherian) Cohen-Macaulay ring that R is CM precisely when

RP is CM for all P ∈ Spec(R), and that R is CM precisely when R[x] is CM, where x is an

indeterminate over R. However, even this is still fully unresolved.

The key insight with Hamilton and Marley’s definition of a CM ring is their recognition

of the fact that height can behave unexpectedly in the non-Noetherian context, for example

Krull’s Hauptidealsatz need not hold. To get around this, Hamilton and Marley’s definition

replaced a condition on height with a condition on C̆ech cohomology. Their reasons for using

C̆ech cohomology were motivated for at least two key reasons. The first is that when the

base ring R is Noetherian, C̆ech cohomology agrees with local cohomology, a tool introduced

by Alexander Grothendieck in the 1960s to resolve a conjecture of Pierre Samuel (See [22],

[23]) that has more modernly become an area of active research. Using the work of Peter

Schenzel [45] that describes when C̆ech cohomology and Local cohomology agree for non-

Noetherian rings, Hamilton and Marley are able to make dual use of these cohomology
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theories for their definition of a non-Noetherian CM ring. A second key insight of theirs

is that for Noetherian local rings (R,m), the condition of being Cohen-Macaulay has a

simple characterization in terms of local cohomology. Specifically, R is Cohen-Macaulay

precisely when there is a unique non-vanishing local cohomology term H
dim(R)
m (R). This

characterization of Noetherian local Cohen-Macaulay rings rests heavily on Grothendieck’s

non-vanishing theorem (GNVT) [22, Proposition 6.4] that says for a Noetherian local ring

(R,m), Hdim(R)
m is always non-vanishing.

In this thesis, we set out to accomplish two main objectives. Chapter 2 covers our first

goal: To provide examples of Cohen-Macaulay rings in the sense of Hamilton and Marley. We

achieve this by using many popular constructions that appear in Non-Noetherian ring theory.

Namely, we show that certain rings coming from the pullback construction of Gilmer, direct

limits of fixed rings, and non-finitely generated monoid rings can all be Cohen-Macaulay

under certain conditions. Our second goal is to find a sufficient condition on a ring that can

generalize GNVT to a non-Noetherian setting. Rather than work with local cohomology

though, we instead work with C̆ech cohomology which still works nicely in a general setting.

We investigate this in Chapter 3, and find a certain class of rings (containing Noetherian

ones) where GNVT holds for C̆ech cohomology using a proof by I. G. MacDonald and R. Y.

Sharp [39, Theorem 2.2] of the classical GNVT and the machinery of weakly coassociated

primes introduced by S. Yassemi [46]. We also give a few examples of non-Noetherian rings

that satisfy our non-vanishing result.
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Chapter 1

Preliminaries

1.1 Notation

All rings will be assumed to be commutative with unity and all R-modules are unitary. We

will using the following notation throughout this paper:

• N = {1, 2, . . .}.

• N0 = {0, 1, 2, . . .}.

• Spec(R): The set of prime ideals of a ring R.

• V (I) = {p ∈ Spec(R) : I ⊆ p} : The set of prime ideals of a ring R that contain the

ideal I of R.

• Min(I): The set of prime ideals of R that are minimal over I.

•
√
I = {x ∈ R : xn ∈ I for some n ∈ N}. This is called the radical of I.

4



• ara(I): The arithmetic rank of an ideal I. That is,

ara(I) = inf{i ∈ N0 : ∃x1, . . . , xi ∈ R with
√

(x1, . . . , xi)R =
√
I}.

• Supp(M) = {p ∈ Spec(R) : Mp 6= 0}: The set of prime ideals of a ring R whose

localizations at an R-module are nonzero.

• κ(p) = Rp/pRp: The residue field at p.

• (A :C B) = {c ∈ C | cB ⊆ A}.

• AssR(M): The set of associated prime ideals of an R-module M . Recall that p is an

associated prime ideal of M ⇔ for some m ∈M , p = (0 :R m).

• A ring R is called quasi-local if it has a unique maximal ideal, but is not necessarily

Noetherian. If R is Noetherian and quasi-local, we shall say R is local. In either case,

we will often denote the ring by (R,m) to refer to R and its unique maximal ideal.

1.2 Classical and polynomial grade

Let M be an R-module and x ∈ R. Then we say x is M -regular to mean that x is

a non-zero divisor on M . In other words, x is M -regular if and only if the natural map

M → M given by multiplication by x is injective. More generally, if x = x1, . . . , x` ∈ R,

we say that x is a weak M -sequence if xi is M/(x1, . . . , xi)M -regular for each i = 1, . . . , `.

If, in addition (x)M 6= M , then we say that x is an M -sequence or that x form a regular

sequence on M .
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Example 1. Let R = k[x1, . . . , xn], where k is a field and x1, . . . , xn are indeterminates

over k. Then x1, . . . , xn form a regular sequence on R.

For an ideal I of a ring R and M an R-module, the classical grade of I on M is the

least upper bound on all lengths of weak M -sequences contained in I, and is denoted by

grade(I,M). When R is Noetherian, M is finitely generated and IM 6= M , all maximal

M -sequences contained in I have common length equal to grade(I,M), which is also equal

to inf{i | ExtiR(R/I,M) 6= 0}. A frequently enjoyed property of classical grade in the

Noetherian context is that if M is finitely generated, then grade(I,M) > 0 exactly when

(0 :M I) = 0.

In the non-Noetherian case, this need no longer hold. The example below shows such an

instance of this, and uses the technique of idealization of a module [1]. Indeed, if S is a ring

and N is an S-module, let R = S × N . Then R becomes a commutative ring with unity,

where the addition is inherited from the direct product, and the multiplication is defined

by (s, n) · (s′, n′) = (ss′, sn′ + s′n) for s, s′ ∈ S and n, n′ ∈ N . We denote this ring by

R = S oN . For I an ideal of S, we write I oM for the ideal of S generated by the images

of I and M in S.

Example 2. ([43, Example p. 116]) Let S = k[x, y], the polynomial in two variables x, y

over a field k. Set

N =
⊕

p∈Spec(R),
ht(p)=1

κ(p),

where κ(p) denotes the residue field of p ∈ Spec(R). Let R be the idealization of the S-

module N . Set I = (X,Y )R, where X = (x, 0) and Y = (y, 0). Then I is a finitely generated

ideal of R with (0 :R I) = 0, yet I consists entirely of zero-divisors on R.
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Northcott notes in [43, p. 131-132] that Hochster first observed that adjoining inde-

terminates to a ring can create the existence of non-zerodivisors, "almost as if by magic."

With this in mind, the issue discussed above and many other problems that appear in the

non-Noetherian setting can be resolved using a different notion of grade, which Northcott

called true grade (we will use the more common notation of [13]): Let R be a ring, I an

ideal of R and M an R-module. Then the polynomial grade of I on M is

p.grade(I,M) = lim
m→∞

grade
(
IR[X1, . . . , Xm], R[X1, . . . , Xm]⊗RM

)
.

Theorem 1.2.1. ([43, Chapter 5]). Let R be a ring, I an ideal, and M an R-module.

(i) If I is finitely generated, then p.grade(I,M) > 0 ⇔ (0 :M I) = 0. The latter happens

exactly when f = a0 + a1X + . . .+ amX
m is a non-zerodivisor on M ⊗R R[X], where

a0, . . . , am is a set of generators for I.

(ii) If I is finitely generated and IM 6= M then p.grade(I,M) ≤ µ(I).

(iii) If J ⊆ I, then p.grade(J,M) ≤ p.grade(I,M).

(iv) p.grade(I,M) = supJ{p.grade(J,M)} where J ranges over all finitely generated ideals

contained in I.

(v) If x = x1, . . . , x` is an M -sequence contained in I, then

p.grade(I,M) = p.grade(I,M/(x)M) + `.

(vi) If I is proper, there is some P ∈ V (I) such that p.grade(I,M) = p.grade(P,M).
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(vii) Let ϕ : R→ S be a ring homomorphism. If I is any ideal of R and N is an S-module,

then

p.gradeR(I,N) = p.gradeS(IS,N).

Other theories of grade are discussed in [6].

1.3 Local cohomology

Local cohomology was introduced as a tool by Alexander Grothendieck in the 1960s to

resolve a conjecture of Samuel, and has since been studied for its own sake. Let I be an

ideal of a ring R and M an R-module. The I-torsion submodule of M , denoted by ΓI(M),

is the set of all m ∈M such that Inm = 0 for some n ∈ N. That is,

ΓI(M) = {m ∈M | Inm = 0 for some n ∈ N}.

If f : M → N is a morphism of R-modules, then since f(ΓI(M)) ⊆ ΓI(N), f restricted to

ΓI(M) defines a morphism R-modules ΓI(f) : ΓI(M)→ ΓI(N) so that ΓI(−) is functorial.

The ith local cohomology functor with support in I is defined as the ith right-derived functor

of ΓI(−), and is denoted by H i
I(−). Since ΓI(−) is left-exact, we have that H0

I (−) ∼= ΓI(−).

For i > 0, to compute H i
I(M), where M is an R-module, first recall that an injective

resolution E• of M is a sequence of injective R-modules

E• : 0→ E0 → E1 → E2 → · · ·

that is exact at each i 6= 0 with H0(E•) = M . After applying the I-torsion functor to E•,

we get another complex ΓI(E
•). Then H i

I(M) ∼= H i(ΓI(E
•)).
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Example 1.3.1. Let R be a PID and a ∈ R. Then if K is the quotient field of R, the

natural sequence 0 → K → K/R → 0 is an injective resolution of R where K is in degree

0 and K/R is in degree 1. Applying the functor ΓaR(−) to this sequence yields another

sequence

0→ ΓaR(K)→ ΓaR(K/R)→ 0.

Then ΓaR(K) = 0, and ΓaR(K/R) = Ra/R. Thus H i
aR(R) = 0 for all i 6= 1, and H1

aR(R) ∼=

Ra/R.

For M an R-module and I an ideal of R, the cohomological dimension of M with respect

to I, denoted by cd(I,M), is the maximal integer i for which H i
I(M) 6= 0.

Theorem 1.3.2. [Grothendieck’s Vanishing Theorem] Let (R,m) be a Noetherian local ring

of dimension d. Then H i
m(R) = 0 for all i > d.

Theorem 1.3.3. [Grothendieck’s Non-Vanishing Theorem] Let (R,m) be a Noetherian local

ring of dimension d. Then Hd
m(R) 6= 0.

In other words, these two theorems simply say that cd(m, R) = dim(R) when (R,m) is

a Noetherian local ring. Local cohomology also has an alternative formulation in terms of

direct limits. We first set up the following notation: By a directed set Λ, we mean a set Λ

equipped with a partial order < with the following property: whenever α, β ∈ Λ, there is

some γ ∈ Λ such that γ ≥ α and γ ≥ β. Let C be any category and Λ a directed set. A

direct system over Λ is the following data:
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(1) For each λ ∈ Λ, there is an object Aλ ∈ Ob(C).

(2) For each λ, µ ∈ Λ with µ ≥ λ, we have morphisms ϕµλ : Aλ → Aµ that obey the

following rules:

(a) ϕλλ = idAλ for each λ ∈ Λ.

(b) ϕγλ = ϕγµ ◦ ϕµλ whenever γ ≥ µ ≥ λ ∈ Λ.

We will use the notation {Aλ;ϕµλ} to denote a direct system over Λ. In certain categories,

such as C = CommRing or Grp, we can form an object called the direct limit of {Aλ;ϕµλ}

that has a certain universal property described below (see also, for instance, [42, Appendix

A]). Indeed, suppose for a given direct system {Aλ;ϕµλ}, we have some L ∈ Ob(C) together

with a collection of morphisms fλ : Aλ → L such that whenever µ ≥ λ in Λ, we have

fµ ◦ ϕµλ = fλ. In other words, the following diagram commutes:

Aλ

fλ
!!

ϕµλ
// Aµ

fµ
��

L

Suppose further that this pair {L; fλ} is universal with respect to this property, meaning that

for any other collection {X, gλ} satisfying gµ ◦ ϕµλ = gλ, there is a unique map h : L → X

such that h ◦ fλ = gλ for all λ ∈ Λ. That is, the following diagram commutes:

Aλ
fλ

  

gλ

��

ϕµλ
// Aµ

fµ

~~

gµ

��

L

h
��

X

10



In this case, L, together with the maps fλ, is called the direct limit of the direct system

{Aλ;ϕµλ}, and is denoted by lim−→Aλ. For a ∈ Aλ, we will let [a] denote the image of a in

lim−→Aλ via the morphism Aλ → lim−→Aλ. Every element in lim−→Aλ can be written as [a] for

some a ∈ Aλ. Moreover, [b] = [a] for some b ∈ Aµ if and only if there is some γ ∈ Λ with

γ ≥ µ, λ such that ϕγµ(b) = ϕγλ.

Example 1.3.4. When C = CommRing, for a given direct system {Rλ; ρµλ} over a directed

set Λ, we can always form its direct limit. Indeed, set lim−→Rλ :=
⊔
Rλ/ ∼, where rλ ∼ rµ if

and only if there is some γ such that γ ≥ µ, λ with ργµ(rµ) = ργλ(rλ). We have canonical

maps Rλ → lim−→Rλ that send r 7→ [r]. Furthermore, this construction yields direct limits in

other categories, such as C = Grp.

For I an ideal of a ring R, local cohomology can be thought of as a direct limit of Ext

functors:

Theorem 1.3.5. ([9, Theorem 1.38]) Let R be a ring and I an ideal of R. Then for any

i ∈ Z, H i
I(−) ∼= lim−→n

ExtiR(R/In,−).

1.4 C̆ech cohomology

Let R be a ring and M an R-module. By Ma, we mean the localization of M at the

multiplicative set {an}n∈N0 . So Ma = { man | m ∈M and n ∈ N0}. For any a, b ∈ R, we have

a natural map

Ma →Mab, where
m

an
7→ mbn

(ab)n
.
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Let x = x1, . . . , x` denote a sequence of elements of R and M an R-module. Define a

complex

C̆•x(M) : 0
d−1

→ M
d0→
⊕
i

Mxi
d1→
⊕
i<j

Mxixj
d2→ . . .

d`−1

→ Mx1···x`
d`→ 0

where the maps di are induced from the natural maps defined above, along with a sign

convention [See Example 1.4.1]. Indeed, di+1di = 0 for each i ∈ Z, so that C̆•x(M) indeed

forms a complex, called the C̆ech complex with respect to M and the sequence x. For each

i ∈ Z, the ith C̆ech cohomology module with respect to M and the sequence x is the ith

cohomology module of C̆•x(M). That is,

H i
x(M) = H i(C̆•x(M)) =

ker(di)
im(di−1)

.

Example 1.4.1. Let R be a ring and x1, x2 ∈ R. If M is an R-module, then the maps in

C̆•x1,x2(M) are determined by the sign convention on the following natural maps below:

Mx1

−

##

0 //M

+
==

+
!!

Mx1x2
// 0

Mx2

+

;;

So explicitly,

d0(m) =
(m

1
,
m

1

)
.

d1
(m1

xn1
,
m2

xn2

)
=

m2x
n
1

(x1x2)n
− m1x

n
2

(x1x2)n
.

If f : M → N is a morphism of R-modules M and N , then for any a ∈ R, there is an

induced morphism of R-modules

fa : Ma → Na given by
m

an
7→ f(m)

an
.
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Thus, for any finite sequence x of elements of R, f induces a morphism of R-complexes

C̆•x(f) : C̆•x(M)→ C̆•x(N) so that C̆•x(−), and thus H•x(−) are both functorial. Below we list

some useful properties of C̆ech cohomology:

Theorem 1.4.2. [26, Propositions 2.1, 2.4] Let R be a ring, x = x1, . . . , x` a finite sequence

of elements of R and M an R-module.

(i) H i
x(M) = 0 for all i > `.

(ii) If 0 → A → B → C → 0 is a short exact sequence of R-modules, there is a natural

long exact sequence in C̆ech cohomology:

. . .→ H i
x(A)→ H i

x(B)→ H i
x(C)→ H i+1

x (A)→ . . .

(iii) If x = x1, . . . , x`, then there is a long exact sequence

· · · → H i
x(M)→ H i

x′(M)
±x`→ H i

x′(M)x` → H i+1
x (M)→ · · · ,

where x′ = x1, . . . , x`−1.

(iv) Let I = (x)R. Then for any a ∈ H i
x(M), Ina = 0 for n >> 0.

(v) If y is a finite sequence of elements with
√

(y)R =
√

(x)R, then H i
x(M) ∼= H i

y(M) for

all i.

(vi) (Change of Rings) Let N be an S-module and f : R→ S a ring homomorphism. Then

for all i, H i
x(N) ∼= H i

f(x)(N).

(vii) (Flat Base Change) Let f : R→ S be a flat ring homomorphism and M an R-module.

Then for any i, H i
x(M)⊗R S ∼= H i

f(x)(M ⊗R S).

13



(viii) H`(x)
x (M) ∼= H

`(x)
x (R)⊗RM and Supp

(
H
`(x)
(x) (M)

)
⊆ Supp

(
M/xM

)
.

(ix) If dim(R) = d <∞, then H i
x(M) = 0 for all i > d.

Let I = (x)R = (x1, . . . , x`)R be a finitely generated ideal of a ring R and M an R-

module. Then we make the following observation:

H0
x(M) = ker(M → ⊕`i=1Mxi)

= {m ∈M : m/1 = 0 in Mxi for each i = 1, . . . , `}

= {m ∈M : xvim = 0 for each i = 1, . . . , ` and some v ∈ N}

= {m ∈M : Ium = 0 for some u ∈ N}

= H0
I (M).

In general, for i > 0, local cohomology and C̆ech cohomology need not coincide. For

any i ∈ Z, when the base ring R is Noetherian though, we have that for any R-module M ,

H i
x(M) ∼= H i

I(M) (see [10, Theorem 3.5.6] for a proof). In [45], P. Schenzel characterized

the sequences x where C̆ech cohomology and local cohomology coincide in terms of Koszul

homology: For x ∈ R, let K•(x) denote the complex

K•(x) : 0→ R
x→ R→ 0,

where the R on the left appears in degree zero. More generally, for x = x1, . . . , x` ∈ R, we

set K•(x) := K•(x1)⊗K•(x2)⊗· · ·⊗K•(x`). Then K•(x) is called the Koszul complex with

respect to x. Now, given x ∈ R and n,m ∈ N with n ≥ m, we have a natural morphism

of complexes K•(xn) → K•(x
m) induced from multiplication by xn−m on R. Indeed, the
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following diagram commutes:

K•(x
n) : 0 // R

xn−m

��

xn
// R

1

��

// 0

K•(x
m) : 0 // R

xm
// R // 0

If x = x1, . . . , x` ∈ R, then whenever n,m ∈ N with n ≥ m, the above morphism on

K•(x
n
i ) → K•(x

m
i ) for each i = 1, . . . , ` induces a morphism on K•(xn) → K•(x

m), where

xj := xj1, . . . , x
j
` (j ∈ N). This in turn yields morphisms for each i ∈ Z:

Hi(K•(x
n))→ Hi(K•(x

m))

If, for each m ∈ N there is an n ≥ m so that the above morphisms are zero for all i ≥ 1, then

Schenzel calls such a sequence weakly proregular. These sequences completely characterize

when local cohomology and C̆ech cohomology agree.

Theorem 1.4.3. ([45, Theorem 3.2]) Let R be a ring, x = x1, . . . , x` a sequence of elements

of R and I = (x)R. Then the following are equivalent:

(i) x is weakly proregular.

(ii) H i
x(E) = 0 for each i 6= 0 and each injective R-module E.

(iii) There are natural isomorphisms H i
x(M) ∼= H i

I(M) for each i ∈ Z.

We conclude this section with a remark on how polynomial grade relates to the C̆ech complex.

For x = x1, . . . , x` ∈ R and I = (x)R and M an R-module, let

C̆.grade(I,M) = inf{i | H i
x(M) 6= 0}.

It was shown in [26, Proposition 2.7] that p.grade(I,M) = C̆.grade(I,M), and that this

number is finite iff IM 6= M .

15



1.5 Classical Cohen-Macaulay Rings

Let R be a Noetherian ring. If whenever each sequence x = x1, . . . , x` ∈ R with

ht((x1, . . . , xi)R) = i for each i = 1, . . . , ` is a regular sequence on R, we say that the

ring R is Cohen-Macaulay. Hochster and Huneke write that for many theorems [29]:

"The Cohen-Macaulay condition (possibly on the local rings of a variety) is just what is

needed to make the theory work."

Historically, the study of Cohen-Macaulay rings goes back to a little over a century ago.

In 1916, Macaulay published a book The algebraic theory of modular systems. A modular

system is just an ideal in the polynomial ring R = C[X1, . . . , Xn]. He was concerned with

the properties of the solution to

f1 = f2 = . . . = fk = 0,

where fk are homogeneous polynomials (that is, polynomials where all terms have the same

degree), i.e., what we now call varieties in PnC. Most of his book deals with how the so-

lution set of these equations behaves with respect to the ideal generated by this family of

polynomials. In his work, he proved what is now known as an unmixedness theorem:

Theorem 1.5.1. Let R = C[X1, . . . , Xn] and I = (f1, . . . , fk) an ideal of R with ht(I) = k.

Then for any p ∈ Ass(R/I), we have ht(p) = k.

Later on in 1946, I.S. Cohen showed in his book, On the Structure and Ideal Theory of

Complete Local Rings, that this same unmixedness theorem holds for any ideal in a power

series ring over an arbitrary field k (he actually did so in a slightly more general case - a
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class of rings called regular local rings). The results of Cohen and Macaulay launched an

investigation into a class of rings where an unmixedness theorem holds. It turns out these

are precisely the Cohen-Macaulay rings defined at the beginning of this section.

Cohen-Macaulay rings have ties to all sorts of branches of mathematics, such as alge-

braic topology, combinatorics, and algebraic geometry. For instance, Cohen-Macaulay rings

appear naturally in invariant theory (see [34, Section 10.3]). Namely, let G be a group that

acts on a polynomial ring R = k[x1, . . . , xn] by degree-preserving k-algebra automorphisms,

where k is any field. We write RG to denote the fixed ring or ring of invariants, which is

the subring

RG := {r ∈ R | g(r) = r for all r ∈ R}.

To describe RG, one would like to find generators as a k-algebra for RG. This corresponds

to providing a surjection S → RG, where S is another polynomial ring over k, assuming RG

is a finitely generated k-algebra. To describe RG more completely as an S-module though,

one would like to find a free resolution of RG:

· · · → Sn2 → Sn1 → S → RG → 0.

The minimal length of a free resolution of RG as an S-module is called the projective di-

mension of RG, and is denoted pdS(RG). It turns out that when RG is a finitely generated

k-algebra, there is a simple formula for pdS(RG) that holds precisely when RG is Cohen-

Macaulay:

pdS(RG) = dim(S)− dim(RG).
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1.6 A question of Glaz

Sarah Glaz proposed in [19] the existence of a definition for a non-Noetherian Cohen-

Macaulay ring that meets these three conditions:

(G1): When R is Noetherian, the new definition of a Cohen-Macaulay ring coincides

with the original definition.

(G2): All coherent regular rings will be Cohen-Macaulay, where a ring R is coherent

if every finitely generated ideal is of finite presentation, and is regular if every finitely

generated ideal of R has finite projective dimension.

(G3): If R is coherent regular and G a group of ring automorphisms of R, then RG

will be Cohen-Macaulay as long as RG is a direct summand of R as an RG-module

and R is a finitely generated RG-module.

Glaz [21] studied rings where for each prime ideal p ∈ Spec(R), ht(p) = p.grade(pRp, Rp)

and while this appears suitable as a definition of Cohen-Macaulay, found examples showing

condition (G2) fails. Later on, Tracy Hamilton in [24] studied Glaz’s question and proposed

two other properties that would be desirable in a definition of a non-Noetherian Cohen-

Macaulay ring:

(H1): R is Cohen-Macaulay⇔ R[X] is Cohen-Macaulay, where X is an indeterminate

over R.

(H2): R is Cohen-Macaulay ⇔ Rp is Cohen-Macaulay for all p ∈ Spec(R).

Hamilton approached Glaz’s conjecture from the perspective that Macaulay initially had

about these rings: ones that satisfy some type of unmixedness theorem. That is, a Noethe-
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rian ring satisfies the unmixedness theorem if for any ideal I generated by ht(I) elements,

Ass(R/I) = Min(I). Unfortunately, simple examples show that in the non-Noetherian case,

the theory of associated primes can behave poorly. For example, if R is an arbitrary non-zero

ring, it’s possible that Ass(R) = ∅, while over a non-Noetherian ring, this never happens.

Example 1.6.1. Let R = k[x1, x2, x3, . . .] where k is a field and the xi are countably many

indeterminates over k. Set I = (x21, x
2
2, x

2
3, . . .) and consider the ring S = R/I. Then S is

non-Noetherian, and Ass(S) = ∅.

This problem, and many others, can be often be remedied by dealing instead with the

weakly associated primes: Let R be a ring and M an R-module. Then we say that p ∈

Spec(R) is a weak-Bourbaki or weakly associated prime of M if p is minimal over (0 :R m)

for some m ∈M . The set of weak-Bourbaki associated primes ofM is denoted by wAss(M).

It can be shown that when R is Noetherian and M an R-module, the weakly associated

primes and the associated primes of M coincide. With this in mind, Hamilton proposed

studying a class of rings that satisfy a variation of the unmixedness theorem, instead using

the weakly associated primes: A ring R will be called weak-Bourbaki unmixed (or wB-

unmixed) if for any finitely generated ideal I that may be generated by ht(I) elements or

less, Min(I) = wAss(R/I).

In [24], Hamilton determined that this wB-unmixed rings satisfy condition (G1) and

the ’⇐’ implication in conditions (H1) and (H2). It’s unknown currently if the reverse

implications hold or if (G2) and (G3) are true. We record a few other notions of Cohen-

Macaulayness that other authors have produced:
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• M. Sakaguchi [44] in 1980 came up with a definition that relates polynomial grade and

valuative dimension, in place of Krull dimension. His notion of Cohen-Macaulay (at

least) satisfies conditions (G1) and (H2), and fails condition (G2) in general. Including

him here is a little anachronistic, as he studied these rings before Glaz even proposed

her conjecture in 1994.

• T. Marley and T. Hamilton [26] in 2006 used C̆ech cohomology to produce a notion

of Cohen-Macaulay that satisfies conditions (G1), (G2), at least part of (G3), and the

’⇐’ implication of conditions (H1) and (H2). It’s currently unknown if the reverse

implications are true and what more can be said about (G3).

• M. Asgharzadeh and M. Tousi [6] in 2009 modified many of the various definitions

of a non-Noetherian Cohen-Macaulay ring discussed thus far (aside from Sakaguchi’s)

and performed an analysis of the relationships amongst all of these notions of Cohen-

Macaulayness. In particular, they produced a notion of Cohen-Macaulay, which they

call weakly Cohen-Macaulay, and showed that it satisfies conditions (G1), (G2), almost

all of (G3) and the ’⇐’ implication of (H2).

The notion of Cohen-Macaulay introduced by Hamilton and Marley mentioned above

was the first significant step towards resolving Glaz’s question, and is currently an active

area of study (see for example, [3, 4, 5, 6, 32, 40]). Recognizing that the height of an ideal

may behave strangely over non-Noetherian rings (for instance, Krull’s PIT may fail), they

replace height with a condition on C̆ech cohomology. Since in the Noetherian case it is often

desirable to have the flexibility to work with local cohomology or C̆ech cohomology, they

also propose to make use of the notion of weakly proregular sequences. With this in mind,
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we have their definitions: Let x = x1, . . . , x` ∈ R be a sequence of elements of a ring R. We

shall say that x is a parameter sequence on R if the following hold:

(i) (x)R 6= R.

(ii) x is weakly proregular.

(iii) H`
x(R)p 6= 0 for each p ∈ V ((x)R).

Moreover, if for each i = 1, . . . , `, x1, . . . , xi is a parameter sequence on R, we shall that x is

a strong parameter sequence on R. The ring R is said to be Cohen-Macaulay if every strong

parameter sequence is a regular sequence on R. It is shown in [26, Remark 3.2] that when R

is a Noetherian ring, x1, . . . , x` is a parameter sequence if and only if ht((x1, . . . , x`)R) = `.

Example 1.6.2. The following are several examples of Cohen-Macaulay rings:

(i) ([26, Proposition 4.4(a)]) Any zero-dimensional ring is Cohen-Macaulay.

(ii) ([26, Proposition 4.4(b)]) A one-dimensional integral domain is Cohen-Macaulay.

(iii) ([26, Example 4.9]) Let x, y be indeterminates over C. Then R = C + xCJx, yK is

Cohen-Macaulay.

(iv) ([26, Theorem 4.11]) Let R be an excellent Noetherian domain of characteristic p > 0.

Then R+, the absolute integral closure of R, is Cohen-Macaulay.

(v) ([5, Corollary 3.6]) Let k be a field and R a pure k-subalgebra of k[x1, x2, x3, . . .],

where the xi are indeterminates over k. Then R is Cohen-Macaulay.

(vi) ([4, Theorem 4.10]) Let R = k+xk[x, y], where k is a field and x, y are indeterminates

over R. Then R is Cohen-Macaulay.
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Chapter 2

Examples of Cohen-Macaulay Rings

2.1 Pullback construction

We will fix some notation for this section: Suppose that V is a valuation domain (an

integral domain where the set of ideals is totally ordered) with unique maximal idealM and

V can be written in the form V = k + M for some field k. For D a subring of k, consider

the following diagram:

V

��

D // k

The pullback of this diagram is the ring R = D+M . Gilmer [17] first organized many of the

facts about rings of this type, which are now typically called pullback rings. In this section,

we will look at which of these rings have the Cohen-Macaulay property defined by Hamilton

and Marley. First, we need some results from Gilmer and Bastida:
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Theorem 2.1.1. ([7, Theorem 2.1]) Let V be a nontrivial valuation domain, and assume

V is of the form k + M , where k is a field and M is the maximal ideal of V . Let D be a

domain with identity that is a proper subring of k, and let R = D +M . Then the following

hold:

(i) dim(R) = dim(D) + dim(V ).

(ii) Every ideal of R compares with M under inclusion.

(iii) The set of ideals of R containing M is {Aα +M}, where Aα an ideal of D. Moreover,

R/(Aα +M) ∼= D/Aα,

so that Aα + M is maximal, prime or (Pα + M)-primary in R precisely when Aα is

maximal, prime or Pα-primary respectively in D.

(iv) If A is an ideal of R contained in M , then either A is an ideal of V , or AV is a

principal ideal of V . In this case, if AV = aV for some a ∈ A, then A = Wa + Ma,

where W is a D-submodule of K such that D ⊆W ⊂ K.

(v) The finitely generated ideals of R properly containing M are those of the form Aα+M ,

where Aα is a finitely generated ideal of R. On the other hand, the finitely generated

ideals of R contained in M are of the form I = Wx + Mx, where W is a finitely

generated D-submodule of K containing D and x is a nonzero element of M .
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Before we proceed further we shall need some simple results about C̆ech cohomology:

Lemma 2.1.2. Let I be an ideal of a ring R and M an R-module. If IM = 0 and x is any

finite sequence contained in I, then H i
x(M) = 0 for all i > 0.

Proof. The C̆ech complex C̆•x(M) vanishes in all terms bigger than degree 0, since Ma = 0

for all a ∈M .

Lemma 2.1.3. Let R ↪→ S be an inclusion of rings and suppose x is a finite sequence of

elements contained in R. If x ∈ (R :R S), then for all i ≥ 2, H i
x(R) = H i

x(S).

Proof. We have a short-exact sequence of R-modules 0 → R → S → S/R → 0, and since

x(S/R) = 0, we have that H i
x(S/R) = 0 for any i > 0 by the above lemma. Therefore by

the long exact sequence in C̆ech cohomology, we have that H i
x(R) ∼= H i

x(S) for all i > 1.

Theorem 2.1.4. Let V be a valuation domain of the form V = k + M and D a one-

dimensional subring of k, where k is a field. Suppose that every finite sequence of elements

in D is weakly proregular in D. Then for R = D +M , we have that R is Cohen-Macaulay.

Proof. Let x = x1, . . . , x` be a strong parameter sequence of R and set I = (x)R. Then

by Theorem 2.1.1, either I ⊆ M or I ) M . Suppose first that I ⊆ M . Then we have an

inclusion of rings R → V and x ∈ (R :R V ), since x ∈ M , so that (x)V ⊆ MV = M ⊂ R.

Thus by the above lemma, H i
x(R) ∼= H i

x(V ) = 0 for all i > 1. Now since (x)V is a principal

ideal of V , we must have that H i
x(V ) = 0 for all i > 1. So in this case, the only possibility

is that ` = 1, and since R is a domain, we have x = x1 is a regular element.

On the other hand, suppose now that I )M . Then I = J+M , where J = Dy1+. . .+Dyk

for some y1, . . . , yk ∈ D by Theorem 2.1.1. We claim that y = y1, . . . , yk is also a strong

24



parameter sequence in R. Indeed, this is immediate from [26, Proposition 3.3(b)] once we

show (y)R = I = (x)R. The inclusion (y)R ⊆ I is immediate. For the other inclusion, just

note that since I properly contains M , we can assume each of the yi /∈M . Then yi is a unit

in V, so that M = Myi ⊆ Ryi ⊆ (y)R, and hence I = J +M ⊆ (y)R. So I = (y)R, and it

thus remains to show that p.grade(I) = k.

We have an inclusion of rings D → R, and (y)D is a proper ideal of D since I is a proper

ideal of R. Moreover, say p ∈ V (yD). Then (D − p) ∩ (y) = ∅ ⇒ (D − p) ∩ I = ∅, since

I ⊆ p+M . Thus we have (y)Rp 6= Rp, so that we conclude y is a strong parameter sequence in

D by [26, Proposition 3.3(d)]. SinceD is one-dimensional, the maximal length of a parameter

sequence is 1. Thus k = 1, and since we’re in a domain, it follows p.grade(I) = k = 1.

Corollary 2.1.5. Let D be a 1-dimensional Noetherian domain and K its quotient field.

Then R = D +XK[[X]] is a 2-dimensional Cohen-Macaulay ring.

Proof. The ring K[[X]] is a DVR, and since D is Noetherian, any finite sequence of elements

in D is weakly proregular. Thus the claim follows by the above theorem.

In the previous section it was mentioned that Hamilton and Marley’s definition of a

Cohen-Macaulay ring is unknown to satisfy the ’⇒’ implication of condition (H1). That

is, it is unresolved if R Cohen-Macaulay implies R[X] is Cohen-Macaulay, where X is an

indeterminate over R. We show this holds in low dimension in certain cases. First we need

a couple preparatory lemmas (see [36, Theorems 150,151] for proofs with similar ideas).
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Lemma 2.1.6. Let R be a ring. Suppose that X = X1, . . . , Xn and t are indeterminates

over R. If J is any ideal of R[X] and Q is a maximal ideal of R[t], then

(
JR[t] :R[X,t] QR[X]

)
= JR[t].

Proof. We’ll set

I =
(
JR[t] :R[X,t] QR[X]

)
.

The one inclusion is clear. For the other inclusion, we consider two cases. First, assume

that t ∈ Q. If this is the case, then for any f ∈ I, we have that tf ∈ JR[t]. Now write

f =
n∑
i=0

ait
i, ai ∈ R[X].

Then if

tf =
n∑
i=0

ait
i+1 ∈ JR[t],

we must have that ai ∈ J for each i, so that f ∈ JR[t]. This handles the first case. For the

second case, where t /∈ Q, we note that since Q is a maximal ideal of R[t], there is some g ∈ Q

and h ∈ R[t] so that 1 = g+ th. Now again, if f ∈ I, then fg = f(1− th) = f −fth ∈ JR[t].

We write

f =

n∑
i=0

ait
i, ai ∈ R[X] and h =

m∑
j=0

bjt
j , bj ∈ R.

Thus we have that

f − fth =
( n∑
i=0

ait
i
)
−
( n∑
i=0

ait
i+1
)( m∑

j=0

bjt
j
)
∈ JR[t].

Now viewed as a polynomial in (R[X])[t], the constant term of f − fth is just a0, hence is

in J . In general the degree k > 0 coefficient of f + fth is just

ak −
( ∑
i+j=k−1

aibj

)
∈ J.

26



Now the sum
∑

i+j=k−1 aibj ∈ J since each ai ∈ J for i < k by induction, so that ak ∈ J .

In any case, all of the coefficients of f are in J , so that f ∈ JR[t].

Lemma 2.1.7. Let R be a ring and t an indeterminate over R. Then for any maximal ideal

Q of R[t], let q = Q ∩R. If p.grade(q, R) <∞, then

p.grade(q, R) < p.grade(Q,R[t]).

Proof. Say that p.grade(q, R) = k. Then after possibly adjoining a finite number of in-

determinates X to R, we have that q[X] contains a R[X]-sequence of length k, call it

f = f1, . . . , fk. Let J = (f)R[X] ⊆ q[X]. Evidently, after adjoining t, f remains a R[X, t]-

sequence of length k that lives in q[X, t] ⊆ Q[X]. Then

p.grade(Q,R[t]) = p.grade(Q[X], R[X, t]) = k + p.grade
(
Q[X],

R[X, t]

JR[t]

)
.

Thus it remains to show that p.grade
(
Q[X],

R[X, t]

JR[t]

)
> 0. But this happens precisely when

(
JR[t] :R[X,t] QR[X]

)
= JR[t].

Theorem 2.1.8. Let R be a 0-dimensional ring. Then R[X] is Cohen-Macaulay, where X

is an indeterminate.

Proof. We have that R[X] is a 1-dimensional ring, so the length of a strong parameter

sequence can only be one. So suppose that f is a strong parameter on R[X]. Write f =∑n
i=0 aiX

i, and let I = (a0, . . . , an)R. We must show that f is a R[X]-regular element. By

Theorem 1.2.1, this happens precisely when (0 :R I) = 0.
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So suppose otherwise. Then there is some c 6= 0 with cI = 0. That is, I ⊆ (0 :R c).

Since c is nonzero, (0 :R c) is a proper ideal of R. Thus there is some p ∈ Spec(R) with

(0 :R c) ⊆ p. But then f ∈ IR[X] ⊆ (0 :R[X] c) ⊆ pR[X]. But since ht(p) = 0, we have

ht(pR[X]) = 0 as well. This is a contradiction though, since f is a strong parameter means

that ht(fR[X]) ≥ 1.

While we are unable to resolve (H1) in general when dim(R) > 0, we show that under the

restriction that dim(R) = 1 and R is a Jaffard domain, condition (H1) holds. Recall that

an integral domain is Jaffard if dim(R[X1, . . . , Xn]) = dim(R) + n, whenever X1, . . . , Xn

are indeterminates over R.

Lemma 2.1.9. Let R be a Jaffard domain with dim(R) = 1. Then if R is Cohen-Macaulay,

R[X] is also Cohen-Macaulay.

Proof. Since R is a Jaffard domain, dim(R[X]) = 2. So the maximal length of a parameter

sequence in R[X] is 2. It’s clear that since R[X] is a domain, every parameter f in R[X]

is a regular element. Thus let f, g be a strong parameter sequence in R[X]. We must show

that f, g is a regular sequence, or equivalently, if J = (f, g)R[X], then p.grade(J,R[X]) = 2.

Thus by [26, Proposition 3.6], ht(J) = 2. Choose Q ∈ V (J) so that p.grade(Q,R[X]) =

p.grade(J,R[X]). This prime ideal Q must actually be maximal in R[X]. Now set q = Q∩R.

Since p.grade(q, R) ≤ p.grade(Q,R[X]) ≤ 2, we must actually have that by Lemma 2.1.7,

p.grade(q, R) < p.grade(Q,R[X]).

Now q 6= 0 by [36, Theorem 37], so that p.grade(q, R) ≥ 1, hence p.grade(Q,R[X]) = 2, and

we’re done.
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While the above lemma shows that a 1-dimensional Jaffard domain satisfies (H1), we

use the pullback construction to give an example of a 1-dimensional domain R that is not

Jaffard, yet satisfies (H1).

Theorem 2.1.10. Let V = C(t)JXK, where t is an indeterminate over C and X an inde-

terminate over C(t) and R = C+XC(t)JXK. Then R and R[Y ] are Cohen-Macaulay, where

Y is an indeterminate over R.

Proof. We have that dim(R) = 1 by the above theorem, and since any 1-dimensional

domain is Cohen-Macaulay, R is Cohen-Macaulay. Even more, Spec(R) = {0, p}, where

p = XC(t)JXK by [17, Theorem A(c)]. On the other hand, if Y is an indeterminate over R,

then dim(R[Y ]) = 3 by [11, Proposition 2.1], and thus ht(pR[Y ]) = 2. We claim next that

R[Y ] is Cohen-Macaulay. We achieve this by showing that for each Q ∈ Spec(R[Y ]), R[Y ]Q

is Cohen-Macaulay. Set T = R[Y ]Q. Since dim(R[Y ]) = 3, this leaves us with 3 possibilities

(the case when Q = 0 is simple, since then R[Y ]Q is a field):

(1) ht(Q) = 1. Then T is a 1-dimensional integral domain, which is always Cohen-

Macaulay.

(2) ht(Q) = 2. In fact, we must have that Q = pR[Y ]. Indeed, this follows since no three

prime ideals of R[Y ] can contract to the same prime ideal of R. Since R has only two

prime ideals, 0 and p, we must have Q∩R = p. But then pR[Y ] has height 2 in R[Y ] by

our previous remarks, and since pR[Y ] ⊆ Q, we must have thatQ = pR[Y ]. So we must

show that T is Cohen-Macaulay. Since dim(T ) = 2, a (strong) parameter sequence

can be at most length 2. So suppose f is a parameter in T . Since T is a domain and

f is non-zero, we must have f is a regular element. So suppose now f, g is a strong
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parameter sequence in T and let J = (f, g)T . Then ht(J) ≥ 2, and in fact we must

have that ht(J) = 2, and so
√
J = pT . On the other hand, we observe that

√
XR = p,

so that
√
XR[Y ] = pR[Y ], and thus

√
XT = pT . But since C̆ech cohomology is

computed up to radical, we have that H2
f,g(T ) ∼= H2

X(T ) = 0, contradicting that f, g

is a strong parameter sequence. Thus this situation is impossible. So we conclude T

is Cohen-Macaulay.

(3) ht(Q) = 3. We note that as before, we must have Q ∩ R = p, so that we have

pR[Y ] ⊂ Q. Now the length of a parameter sequence can be at most length 3. If f

is a parameter, then as before, f must be regular. Now suppose that f, g is a strong

parameter sequence in T . Set J = (f, g)T . Then there are two subcases to consider:

(a) ht(J) = 2. In this case, we must have that
√
J = pT , and as before H2

f,g(T ) ∼=

H2
X(T ) = 0, contradicting that f, g is a strong parameter sequence. So this

situation can’t happen.

(b) ht(J) = 3. In this case, we must have that
√
J = QT , and so p.grade(J, T ) =

p.grade(QT, T ) ≤ 2. Now p.grade(Q,R[Y ]) ≤ p.grade(QT, T ), and so by Lemma

2.1.7, we have that 1 = p.grade(p, R) < p.grade(Q,R[Y ]), hence p.grade(J, T ) =

2.

Thus we have any strong parameter sequence f, g is a regular sequence on T . Lastly,

say f, g, h is a strong parameter sequence on R[Y ] and set I = (f, g, h)T . Then

ht((f, g, h)T ) = 3, and so we have
√

(f, g, h)T = QT . Now f, g, h is a strong param-

eter sequence means that f, g is also a strong parameter sequence. By our previous
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comments, this can only happen if
√

(f, g)T = QT . But then since C̆ech cohomology

is computed up to radical, we must have H3
f,g,h(T ) ∼= H3

f,g(T ) = 0, contradicting that

f, g, h is a strong parameter sequence. So there are no strong parameter sequences of

length 3. So R[Y ]Q is Cohen-Macaulay.

Hamilton and Marley suggest in [26] there might be some additional assumptions on a

ring needed to fully resolve conditions (H1) and (H2). With this in mind, they propose

studying FGFC rings (see [41] for more details): A ring R is said to be FGFC if every

finitely generated R-ideal has finitely many minimal primes. We have a nice property of

FGFC rings (this was proved only for pure subrings of k[x1, x2,...] where k is a field and the

xi are indeterminates in [5, Lemma 2.4], but the statement and the proof extend easily to

any FGFC ring):

Lemma 2.1.11. ([5, Lemma 2.4]) Let R be a FGFC ring and I an ideal with ht(I) ≥ k.

Then there are {xi}ki=1 in I such that ht((x1, . . . , xi)R) ≥ i for each i = 1, . . . , k.

Theorem 2.1.12. Suppose that R is a FGFG wB-unmixed ring one-dimensional ring. Then

Rp is Cohen-Macaulay for all p ∈ Spec(R).

Proof. Let x be a strong parameter sequence in Rp. Since Rp is at most one dimensional, x

can only have length 1. So write x = x ∈ Rp. We must show now that

p.grade(xRp, Rp) = 1.

There is some Q ∈ V (xRp) by Theorem 1.2.1 such that

p.grade(Q,Rp) = p.grade(xRp, Rp).
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Write Q = qRp, so that p ∈ V (q). Since x is a parameter, we must have that ht(xRp) = 1

by [26, Proposition 3.6], so Q = pRp and q = p. Thus ht(p) = ht(pRp) = ht(xRp) = 1.

Then by the above lemma, there is some y ∈ p such that ht(yR) ≥ 1. If we can show that

y is regular, this completes the proof, since then

1 ≤ p.grade(p, R) ≤ p.grade(pRp, Rp) = p.grade(xRp, Rp) ≤ 1,

so that we must have equality. Now ht(yR) ≥ 1, so that y /∈ r for any r ∈ Min(R) = wAss(R).

Thus y1 /∈
⋃
{r | r ∈ wAss(R)}, where equality holds since R is wB-unmixed, which by [33,

Theorem 6.2(i)] is equal to Z(R). Thus y is regular.

2.2 Direct Limits of Fixed Rings

Fix a directed set Λ and let {Rλ; ρµλ} denote a direct system of rings. Suppose further

that we have a direct system of groups {Gλ; fµλ} over Λ so that the following two conditions

hold:

(i) For each λ ∈ Λ, Gλ is a group of ring automorphisms of Rλ.

(ii) For any λ, µ ∈ Λ with µ ≥ λ, if g ∈ Gλ, then fµλ(g) ◦ ρµλ = ρµλ ◦ g. In other words,

the following diagram commutes:

Rλ

g

��

ρµλ
// Rµ

fµλ(g)

��

Rλ
ρµλ
// Rµ

In this case, we will say that the two systems are compatible.
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Lemma 2.2.1. Let {Rλ; ρµλ} and {Gλ; fµλ} be compatible direct systems of rings and groups

respectively over a directed set Λ. Whenever γ ≥ µ ≥ λ in Λ, for any g ∈ Gλ we have the

following square commutes:

Rµ

fµλ(g)

��

ργµ
// Rγ

fγλ(g)

��

Rµ
ργµ
// Rγ

Proof. We have that if g′ = fµλ(g), then since fγµ(g′) = fγλ(g), the claim follows by

compatibility.

Theorem 2.2.2. Let {Rλ; ρµλ} and {Gλ; fµλ} be compatible direct systems of rings and

groups respectively over a directed set Λ. Then G = lim−→λ
Gλ is a group of ring automorphisms

of R = lim−→λ
Rλ.

Proof. Suppose that [g] ∈ G, where g ∈ Gλ for some λ ∈ Λ. We’ll define a map [g] : R→ R

as follows: For [r] ∈ R, where r ∈ Rα, let [g]([r]) = [fµλ(g)(ρµα(r))], where µ is any µ ∈ Λ

with µ ≥ α, λ. To check that [g] is well-defined, we must check that this map doesn’t depend

on the choice of g, r or µ:

(i) Independence of µ: Suppose that µ′ is another element of Λ with µ′ ≥ α, λ. We

want to show that [fµλ(g)(ρµα(r))] = [fµ′λ(g)(ρµ′α(r))]. Now choose γ ∈ Λ with γ ≥

µ, µ′. Since the systems are compatible, by the above lemma, the following diagram

commutes:

Rµ

fµλ(g)

��

ργµ
// Rγ

fγλ(g)

��

Rµ′
ργµ′
oo

fµ′λ(g)

��

Rµ ργµ
// Rγ Rµ′ργµ′
oo
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Thus, we have that

ργµ

(
fµλ(g)(ρµα(r))

)
= fγλ(g)

(
ργµ(ρµα(r))

)
= fγλ(g)(ργα(r))

= fγλ(g)
(
ργµ′(ρµ′α(r))

)
= ργµ′

(
fµ′λ(g)(ρµ′α(r))

)
,

so that the claim follows.

(ii) Independence of r: Say [r] = [r′] for some r′ ∈ Rα′ . Choose β ≥ α, α′ with ρβα(r) =

ρβα′(r
′). By the independence of µ, we can assume without loss of generality that

µ ≥ β, λ, so that ρµα(r) = ρµα′(r
′). Thus it’s easy to see [g]([r]) = [g]([r′]).

(iii) Independence of g: Say [g] = [g′] for some g′ ∈ Gλ′ . Then there is some γ ≥ λ, λ′

with fγλ(g) = fγλ′(g
′). By the independence of µ, choose µ with µ ≥ γ, α. Then

fµλ(g) = fµλ′(g
′), from which it follows that [g]([r]) = [g′]([r]).

Thus [g] is a well-defined map on R. In fact, by the independence above, when evaluating

[g]([r]), where [r] ∈ R, we may assume that g ∈ Gλ and r ∈ Rλ for the same λ ∈ Λ. Thus

[g]([r]) = [g(r)], from which it’s clear that [g] defines a ring homomorphism on R. Lastly, we

will show that [g] is an automorphism of R. So suppose that [g]([r]) = [g(r)] = 0 for some

[r] ∈ R. Then there is some µ ≥ λ with ρµλ(g(r)) = fµλ(g)(ρµλ(r)) = 0 by compatibility of

the systems. Now fµλ(g) is an automorphism of Rµ, so that we must have ρµλ(r) = 0, and

thus [r] = 0, so that [g] is monic. It is clear that [g] is epic from the fact that [g]([r]) = [g(r)]

and g is a ring automorphism of Rλ.
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From the above theorem, it then makes sense to consider the fixed ring RG of R, where

G = lim−→λ
Gλ and R = lim−→λ

Rλ. The question of what conditions on R and G are necessary

in order for the fixed ring to be Cohen-Macaulay have been well-studied in the (classical)

Noetherian case (e.g., see [31]), particularly when R = k[X1, . . . , Xn] is a polynomial ring

over a field and G is a linear algebraic group. Recently in [5], the Cohen-Macaulayness of

RG has been studied for when R = k[X1, X2, . . .] is a polynomial ring in infinitely many

variables over a field. The rest of our work in this section builds up to a set of sufficient

conditions (Theorem 2.2.9) on the direct systems {Rλ; ρµλ} and {Gλ; fµλ} that give the

Cohen-Macaulayness of
(

lim−→Rλ

)lim−→Gλ
.

Lemma 2.2.3. Let {Rλ; ρµλ} and {Gλ; fµλ} be compatible direct systems of rings and groups

respectively over a directed set Λ, and suppose the transition maps fµλ are surjective whenever

µ ≥ λ in Λ. Then {RGλλ ;ψµλ} is a direct system of rings, where ψµλ : RGλλ → R
Gµ
µ is the

natural map induced by restriction of ρµλ : Rλ → Rλ.

Proof. Since ψµλ = ρµλ

∣∣∣
R
Gλ
λ

, we need only check that the image of ψµλ is contained in RGµµ .

Indeed, suppose that g ∈ Gµ and r ∈ RGλλ . Since fµλ is epic, there is some h ∈ Gλ with

g = fµλ(h). Thus, by compatibility, we have that g(ρµλ(r)) = fµλ(h)(ρµλ(r)) = ρµλ(h(r)) =

ρµλ(r), so that ρµλ(r) ∈ RGµµ , completing our claim.

Lemma 2.2.4. Let {Rλ; ρµλ} and {Gλ; fµλ} be compatible direct systems of rings and groups

respectively over a directed set Λ, and suppose the transition maps fµλ are surjective and ρµλ

are injective whenever µ ≥ λ in Λ. Set G = lim−→λ
Gλ and R = lim−→λ

Rλ. Then the natural

map T : lim−→RGλλ → RG, where [r] 7→ [r] with r ∈ RGλλ , is an isomorphism of rings.
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Proof. First, we remark that T is well-defined. This holds, provided that whenever r ∈ RGλλ ,

we have [r] ∈ RG. But if [g] ∈ G, say g ∈ Gλ without loss of generality. Then [g]([r]) =

[g(r)] = [r], so that indeed, [r] ∈ RG and thus T is well-defined. We define an inverse map

S : RG → lim−→RGλλ as follows: For [r] ∈ RG, say r ∈ Rλ. Then let S([r]) = [r]. We need

to check that this map is well-defined; that is, that r ∈ RGλλ . So suppose g ∈ Gλ. Now in

RG, [(g(r))] = [g]([r]) = [r]. Thus there is some µ ≥ λ with ρµλ(g(r)) = ρµλ(r), so that by

injectivity, g(r) = r. Since S is then well-defined, it’s easy to see that S and T are inverses

of each other.

An extension of rings R → S is said to have the lying over property, if whenever p ∈

Spec(R), there is a q ∈ Spec(S) with q ∩R = p.

Lemma 2.2.5. Suppose that

R

α
��

f
// S

β
��

T
g
// U

is a commuting square of rings and ring homomorphisms. If g and α have the lying over

property, then so does f .

Proof. Let p ∈ Spec(R). Then there is some t ∈ Spec(T ) so that t ∩ R = p, and likewise

there is some u ∈ Spec(U) so that u ∩ T = t. Thus p = u ∩ T ∩ R = u ∩ S ∩ R, and so if

q = u ∩ S ∈ Spec(S), then q ∩R = p.

An inclusion of rings R ⊆ S is said to be pure if for any R-module M , the sequence

0→M ⊗R R→M ⊗R S is exact. If R is a direct summand of S, then it is easy to see that

the extension is pure. We record the following simple fact for referral later.
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Lemma 2.2.6. Every pure inclusion of rings R ⊆ S satisfies the lying over property.

Proof. Let p ∈ Spec(R). Then pS ∩R = p since our extension is pure by [31, Corollary 6.3].

Thus pS ∈ Spec(S) and contracts to p, so that the claim follows.

We shall need two key results, the first due to Asgharzadeh, Dorreh, and Tousi [4], and

the second due to Hochster and Roberts [31].

Theorem 2.2.7. ([4, Proposition 4.2]) Suppose that {Rλ; ρµλ} is a direct system of Noethe-

rian Cohen-Macaulay rings with transition maps satisfying lying over (e.g., pure or integral

extensions). Then R = lim−→Rλ is Cohen-Macaulay.

Theorem 2.2.8. ([31, Section 7]) If S is a regular Noetherian ring of characteristic p > 0,

and R→ S is a pure extension of rings, then R is Noetherian Cohen-Macaulay.

Recall that if R ⊆ S is an inclusion of rings, we say R is a module retract of S if there is

an R-linear map σ : S → R so that σ(r) = r for all r ∈ R. In this case we call the map σ

above a module retraction. It is easy to see that if R is a module retract of S, R is a direct

summand of S. Indeed, the module retraction σ gives a splitting of the natural short exact

sequence 0→ R→ S → S/R→ 0. For a group G acting on a ring R by ring automorphisms,

Bergman [8, Proposition 1.1] gives two instances when RG is a module retract of R:

(i) If G is finite and the order of G is a unit in R, we have a module retraction called

the Reynolds operator σ : R→ RG, (see [?, Propositions 9-12]), where for each x ∈ R,

σ(x) is defined by

σ(x) =
1

|G|
∑
g∈G

g(x).
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(ii) If G is locally finite, i.e. if for each x ∈ R, the orbits Ox = {gx | g ∈ G} are finite, and

|Ox| is a unit in R for each x ∈ R, then a module retraction ρ : R→ RG is defined for

each x ∈ R by

ρ(x) =
1

|Ox|
∑
r∈Ox

r.

.

Theorem 2.2.9. Suppose that {Rλ; ρµλ} and {Gλ; fµλ} are compatible direct systems of

rings and groups respectively over a directed set Λ. Let R = lim−→Rλ and G = lim−→Gλ.

Suppose further that for some prime p > 0, and for any µ, λ ∈ Λ with µ ≥ λ the following

hold:

(i) Rλ is a Noetherian regular ring of characteristic p.

(ii) RGλλ is a module retraction of Rλ.

(iii) The transitions maps ρµλ are injective and satisfy lying over, and the fµλ are surjective.

Then RG is Cohen-Macaulay.

Proof. We first claim that for each λ ∈ Λ, the extension RGλλ → Rλ is pure. This follows

immediately from the fact that RGλλ is a module retract of Rλ, hence a direct summand of

Rλ, so that the extension RGλλ → Rλ is pure. Next, by Lemma 2.2.3, {RGλλ ;ψµλ} form a

direct system of rings, where ψµλ := ρµλ

∣∣∣
R
Gλ
λ

: RGλλ → R
Gµ
µ . We claim that for any µ ≥ λ in

Λ, the maps ψµλ satisfy lying over. Indeed, we have a commuting square

RGλλ

��

ψµλ
// R

Gµ
µ

��

Rµ ρµλ
// Rγ
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where ρµλ has lying over by assumption, and the inclusion RGλλ → Rλ is a pure extension

as shown above, so that RGλλ → Rλ also has the lying over property by Lemma 2.2.6. From

Lemma 2.2.5, we see then that the extension RGλλ
ψµλ→ R

Gµ
µ satisfies lying over. Lastly,

from Theorem 2.2.8, each RGλλ is Noetherian Cohen-Macaulay. Thus, we conclude that by

Theorem 2.2.7, lim−→RGλλ
∼= RG is Cohen-Macaulay, where the isomorphism holds by Lemma

2.2.4.

In [5, Example 4.3], it is shown that for a field k, the Veronese subring S = k[{xixj}i,j≥1]

of R = k[x1, x2, . . .] is Cohen-Macaulay, where the x1, x2, . . . are countably many indetermi-

nates over k. We obtain a similar result, except in positive characteristic 6= 2 and for power

series.

Example 2.2.10. Let k be a field and p > 0 a prime with char(k) = p 6= 2. For each n ∈ N,

suppose that x1, x2, . . . are indeterminates over k and let

Rn = kJx1, . . . , xnK,

Gn = Z/2Z = {1,−1}.

Then we have a natural automorphism

−1: Rn → Rn, where

xi 7−→ −xi for each i = 1, . . . , n,

so that each 〈−1〉 = Z/2Z = Gn defines a group of ring automorphisms of Rn. Moreover, for

any n ≥ m, we have a natural inclusion ρn,m : Rm → Rn and identity map fn,m : Gm → Gn

that form direct systems {Rn; ρn,m} and {Gn; fn,m} of rings and groups respectively.
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The limit of these direct systems is thus

R := lim−→
n

Rn = kJx1, x2, . . .K and G = lim−→
n

Gn = Z2.

It’s clear these two direct systems are compatible, since for any n ≥ m ∈ N and any g ∈ Z2,

we have the following square commutes:

Rm

g

��

� � // Rn

g

��

Rm��
� � // Rn

Moreover, for any n ≥ m ∈ N, ρn,m : Rm → Rn has the lying over property. Indeed, it’s

enough to show this for when m ∈ N and n = m+ 1. In this case,

Rm+1 = kJx1, . . . , xm, xm+1K = RmJxm+1K ∼=
∞∏
i=0

Rm,

where the isomorphism holds as Rm-modules. Since Rm is a Noetherian ring, an arbitrary

product of flat Rm-modules is flat ([12, Theorem 2.1]), so that the extension Rm → Rm+1 is

flat. Even better, for each m ∈ Max(Rm), we can see from the natural surjection Rm+1 →

Rm that sends xm+1 7→ 0 that mRm+1 6= Rm+1, so that the extension Rm → Rm+1 is

faithfully flat by [42, Theorem 7.2], hence has the lying over property. Thus we satisfy the

conditions of Theorem 2.2.9, so that we see the ring

RG = kJ{xixj}i,j≥1K is Cohen-Macaulay.

2.3 Monoid Rings

Let Nn0 denote the n-fold product of N0, where n ≥ 1. We equip Nn0 with component-wise

addition, so that it becomes a semigroup (monoid even).
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For A,B ⊆ Nn0 , their Minkowski sum is the set A + B = {a + b | a ∈ A, b ∈ B}. By

a Nn0 -ideal, we mean a set S ⊆ Nn0 that is a subsemigroup of Nn0 such that S + Nn0 ⊆ S.

Furthermore, we say that S is a prime Nn0 -ideal when in addition Nn0\S is also a subsemigroup

of Nn0 . Let I ⊆ {1, . . . , n}, and set PI := {(α1, . . . , αn) ∈ Nn0 | αi > 0 for some i ∈ I}. Then

PI is a prime Nn0 -ideal, and in fact these are the only prime ideals of Nn0 [28, Lemma 2.4].

By a square-free Nn0 -ideal, we mean an ideal H of Nn0 of the form H = PI1 ∩ PI2 ∩ · · · ∩ PIk

for subsets I1, . . . , Ik of {1, . . . , n}. We can assume without loss of generality that the Ij are

incomparable.

Write k[Nn0 ] = k[x1, . . . , xn], where k is a field and x1, . . . , xn are indeterminates over k.

So for H ↪→ Nn0 a square-free ideal, we may view the ring k[H ∪{0}] = k+k[H] as a subring

of k[x1, . . . , xn].

Example 2.3.1. Let H be the ideal of N3
0 generated by (1, 1, 0), (0, 1, 1), (1, 0, 1). Then

H = P1,2 ∩ P2,3 ∩ P1,3, and if k is any field, then

k + k[H] = k + (x1x2, x2x3, x1x3)k[x1, x2, x3] ↪→ k[x1, x2, x3] = k[N3
0].

In [3], Asgharzadeh and Dorreh proved that all rings R of the form R = k+ k[H], where

H is a square-free ideal of N2
0, are Cohen-Macaulay. Indeed, they showed that the rings

(i) k + xk[x, y]

(ii) k + xyk[x, y]

are both Cohen-Macaulay in the sense of Hamilton-Marley when k is a field and x, y are

indeterminates over k.
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Lemma 2.3.2. Let k be a field and H ⊆ Nn0 . Then k[H] is a square-free monomial ideal

of k[Nn0 ] = k[x1, . . . , xn], where the xi are indeterminates over k, if and only if H is a

square-free ideal of Nn0 .

Proof. We have H =
⋂k
i=1 PIi if and only if k[H] =

⋂k
i=1 k[PIi ]. The square-free monomial

ideals of k[x1, . . . , xn] are precisely the ideals that are the intersection of the Nn0 -graded

prime ideals, i.e., ideals of the form k[PI ] for some I ⊆ {1, . . . , n}.

Lemma 2.3.3. Let S = k[Nn0 ] = k[x1, . . . , xn], where k is a field and x1, . . . , xn are inde-

terminates over k. For H ↪→ Nn0 a square-free ideal, say k[H] = (m1, . . . ,md)S for some

m1, . . . ,md ∈ S. Then the following hold in the ring R = k + k[H]:

(i) k[H] is a maximal ideal of R.

(ii) VR({m1, . . . ,md}) = {k[H]}.

(iii) Rmi is a regular n-dimensional Noetherian ring for any i ∈ {1, . . . , d}.

(iv) Rp is Noetherian regular for all p ∈ Spec(R) with p 6= k[H].

(v) dim(R) = n.

(vi) Hn
m(R) = 0 unless m = x1, . . . , xn.

Proof. (i) Since R/k[H] = k, this claim is clear. (ii) Let p ∈ Spec(R) with m1, . . . ,md ∈ p.

Now k[H] is a homogeneous ideal of S, and thus is generated as a k-vector space by elements

of the form mmi, where i ∈ {1, . . . , d} and m ∈ S is an arbitrary monomial. It thus suffices

to show that any element of the form mmi above lies in p since then k[H] ⊆ p, so that by

maximality of k[H] we would have p = k[H]. Now (mmi)
2 = (m2mi)mi ∈ Rmi ⊆ p, so that
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mmi ∈ p. (iii) Let j ∈ {1, . . . , d}. For any i ∈ {1, . . . , n}, we have ximj
mj

= xi ∈ Rmi . Now

if mi = xi11 · · ·xinn , then assume without loss of generality that there is some m ∈ N so that

ij > 0 for all 1 ≤ j ≤ m and ij = 0 for all j > m. Then for each j ∈ {1, . . . ,m}, we have

xi11 · · ·x
ij−1

j−1 x
ij−1
j x

ij+1

j+1 · · ·ximm
mi

=
1

xj
∈ Rmi ,

so that we must have Rmi ∼= k[x±11 , . . . , x±1m , xm+1, . . . , xn], and thus is a regular Noetherian

ring of dimension n. (iv) If p ∈ Spec(R) and p 6= k[H], then by (ii), we must have mi /∈ k[H]

for some i = 1, . . . , d. Thus Rp = (Rmi)p is a localization of a Noetherian regular ring, hence

is also Noetherian regular.

(v) We have dim(R) = rankZ(H ∪ {0}). Since Z(H ∪ {0}) = Zn, we see dim(R) = n

[18, Theorem 21.4]. (vi) We will let I denote the ideal of S generated by m (we use this

notation to distinguish which ring we will work in, even though set-theoretically, I = k[H]).

When n = 1, the only square-free monomial ideal of S is just I = (x)S, and in that case

R = S, where the claim is trivially true. So suppose n ≥ 2. There is a short exact sequence

of R-modules

0→ R→ S → S/R→ 0,

where I(S/R) = 0. Thus H i
m(S/R) = 0 for i ≥ 1. From the long exact sequence in C̆ech

cohomology, we have an exact sequence of the form

0 = Hn−1
m (S/R)→ Hn

m(R)→ Hn
m(S)→ Hn

m(S/R) = 0.

So Hn
m(R) ∼= Hn

m(S) ∼= Hn
I (S) since S is a Noetherian ring and all sequences are weakly

proregular. From [38], we have that

pdS(S/I) = cd(S, I) = max{i | H i
I(S) 6= 0}.
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Since H i
I(S) = 0 for any i > dim(S) = n by Grothendieck’s Vanishing Theorem [9],

pdS(S/I) = n if and only if Hn
I (S) ∼= Hn

m(R) 6= 0. Now let m = (x1, . . . , xn)S and

suppose pdS(S/I) = n. Then localizing at m, by [10, Proposition 15.15(e)], we have

pdS(S/I) = pdSm
(Sm/ISm) = n. From the Auslander-Buchsbaum formula, we have

pdSm
(Sm/ISm) + depth(Sm/ISm) = depth(Sm) = n,

so that depth(Sm/ISm) = 0. This implies m ∈ AssS(S/I). But since I =
√
I, a primary

decomposition of I is just an intersection of its minimal primes. Thus, m is minimal over I,

so that I is m-primary and thus I = m.

Lemma 2.3.4. Let H ⊆ Nn0 be a square-free ideal and R = k + k[H]. Then every strong

parameter sequence on Rk[H] has length less than n.

Proof. Let f = f1, . . . , f` be a strong parameter sequence on Rk[H]. Then since dim(Rk[H]) ≤

dim(R) = n by Lemma 2.3.3(v), we must have ` ≤ n. If ` = n, then since heightRk[H]
((f)Rk[H]) =

n, we must have
√

(f)Rk[H] = k[H]Rk[H]. Write k[H] = (m)k[Nn0 ] for some square-free

monomials m = m1, . . . ,md ∈ k[Nn0 ]. Then

Hn
f (Rk[H]) ∼= Hn

m(Rk[H]) ∼= Hn
m(R)k[H] = 0

by Lemma 2.3.3(vi). So ` < n.

As a consequence of this lemma, we obtain a different proof than the one in [3] of the fact

that the rings R = k + k[H] are Cohen-Macaulay when dim(R) = 2 and H is a square-free

ideal of N2
0.
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Corollary 2.3.5. Let H ⊆ N2
0 be a square-free ideal and R = k + k[H]. Then R is Cohen-

Macaulay.

Proof. We instead will show that R is locally Cohen-Macaulay, i.e., Rp is Cohen-Macaulay

for all p ∈ Spec(R). This implies R is Cohen-Macaulay by [26, Proposition 4.7]. First,

write k[H] = (m1, . . . ,md)k[N2
0] for square-free monomials m1, . . . ,md ∈ k[H]. Suppose

p ∈ Spec(R). If mi /∈ p for some i = 1, . . . , d, then by Lemma 2.3.3(iv), Rp is Noetherian

regular, and thus is Cohen-Macaulay.

On the other hand, if mi ∈ p for all i = 1, . . . , d, then by Lemma 2.3.3(ii) we must have

p = k[H]. Now in the ring Rk[H], the maximal length of a strong parameter sequence is

one by the above lemma. Thus this must be a regular element since Rk[H] is a domain. So

Rk[H] is Cohen-Macaulay, and thus R is Cohen-Macaulay since Rp is Cohen-Macaulay for

all p ∈ Spec(R).
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Chapter 3

Non-vanishing of C̆ech Cohomology

We will attempt to give a generalization of Grothendieck’s non-vanishing theorem using

C̆ech cohomology instead of local cohomology.

3.1 C̆ech stability

Hamilton and Marley showed that any coherent regular ring is Cohen-Macaulay with

their definition. Any valuation domain is coherent regular (see [20]), so that any valuation

domain will be Cohen-Macaulay. We will give a simple proof of this fact though that is

independent of knowing all valuation domains are coherent regular:

Lemma 3.1.1. If V is a valuation domain, then H i
x(R) = 0 for all i > 1 and any finite

sequence x in V . Moreover, V is Cohen-Macaulay.

Proof. Let x = x1, . . . , x` be a finite sequence in V . Then (x)V = (xi)V for some i ∈

{1, . . . , `}, so that H i
x(V ) ∼= H i

xi(V ) = 0 for all i > 1. Thus, if x is a strong parameter

sequence in V , we must have ` = 1, from which it is clear V is Cohen-Macaulay.
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Recall that a Prüfer domain is an integral domain R such that for all p ∈ Spec(R), Rp

is a valuation domain.

Corollary 3.1.2. Any Prüfer domain R is Cohen-Macaulay.

Proof. For any p ∈ Spec(R), Rp is a valuation domain, which is Cohen-Macaulay. Since Rp

is Cohen-Macaulay for all p ∈ Spec(R), R is Cohen-Macaulay by [26, Proposition 4.7].

Lemma 3.1.3. For any nonzero, proper ideal I in a Prüfer domain R, p.grade(I) = 1.

Proof. Since R is a domain, p.grade(I) ≥ 1. Moreover, p.grade(I) is the supremum over

all p.grade(J) such that J is a finitely generated ideal contained in I. Thus to prove the

lemma it will suffice to show that if I is finitely generated, then p.grade(I) ≤ 1. Now if

p.grade(I) ≥ 2, then in some polynomial ring extension R[X], we have that I[X] contains a

R[X]-regular sequence f, g. It follows by [36, Exercise 3.1.2] that (IR[X])−1 = R[X], from

which we see I−1 = R. But since R is Prüfer, we have R = II−1 = I.

The above lemma presents an issue in establishing a connection between grade and height

in a Prüfer domain, despite the fact that these rings are all Cohen-Macaulay in the sense

of Hamilton and Marley. Indeed, there are Prüfer domains with prime ideals of arbitrarily

large height (e.g., for any n ∈ N, there are valuation domains of dimension n), yet ideals can

only have polynomial grade equal to 1. However, in the Noetherian case, the notion of grade

and height are supposed to coincide in a Cohen-Macaulay ring. The underlying issue is that

when R is any Noetherian ring, local cohomology (or equivalently, C̆ech cohomology) has a

clear connection to height that disappears in the general, non-Noetherian case. We record

this well-known relationship between height and local cohomology in the following lemma.
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Lemma 3.1.4. Let R be a Noetherian ring and I a proper ideal of R. Then

ht(I) = inf
p∈V (I)

{
cd(I,Rp)

}
= inf

p∈V (I)

{
sup{k ∈ Z | Hk

I (R)p 6= 0}
}
.

Proof. First we notice that if q ∈ V (I), then p ⊆ q for some p ∈ Min(I) and so Hk
I (R)p 6=

0⇒ Hk
I (R)q 6= 0. Thus it’s enough to show that

ht(I) = inf
p∈Min(I)

{
sup{k ∈ Z | Hk

I (R)p 6= 0}
}
.

So suppose p ∈ Min(I), then
√
IRp = pRp. By standard facts about local cohomology (for

instance, in [9]), we have for any k ∈ Z,

Hk
I (R)p ∼= Hk

IRp
(Rp) ∼= Hk√

IRp
(Rp) = Hk

pRp
(Rp).

Moreover, we have that by Grothendieck’s theorems on the vanishing of local cohomology

modules over a local ring with support in the maximal ideal (see Theorems 1.3.2, 1.3.3),

ht(p) = dim(Rp) = cd(pRp, Rp) = sup{k | Hk
pRp

(Rp) 6= 0},

and thus the claim follows.

Since local cohomology and C̆ech cohomology coincide in a Noetherian ring, the above

claim would hold just as well if local cohomology was replaced with C̆ech cohomology. C̆ech

cohomology has many formal properties though that hold even over non-Noetherian rings,

for instance, see Theorem 1.4.2. With this in mind, we will instead focus our attention for

most of this section on the relationship between height and C̆ech cohomology (rather than

local cohomology) in the general case. The following example illustrates that the Noetherian

condition was crucial in proving Lemma 3.1.4:
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Example 3.1.5. Let V be a valuation domain with dim(V ) = k, so that Spec(V ) =

{0, p1, p2, . . . , pk−1, pk}, where pi ( pi+1 for each i. Now suppose I is a proper (non-zero)

ideal of V . Then
√
I = pi for some i, and in fact ht(I) = i. Choose x ∈ pi − pi−1, so

that
√
xV =

√
I. Now V is a domain, so that x is weakly proregular, and thus Hk

I (V ) ∼=

Hk
xV (V ) ∼= Hk

x(V ) = 0 for any k > 1. Thus, in this case, the height of an ideal I plays no

role in the non-vanishing of C̆ech cohomology.

In the Noetherian case, the key fact that makes the above situation impossible is the

non-vanishing theorem of Grothendieck (Theorem 1.3.3). There’s no reason to expect this

theorem to be true in general, and all known proofs of this result use structure theorems

that depend heavily on the Noetherian assumption - for example, Cohen’s structure theorem

or the theory of attached primes (see [9]). With this in mind, since results like Lemma 3.1.4

that link height and C̆ech cohomology may fail over non-Noetherian rings, we will investigate

a modified definition of height defined in terms of C̆ech cohomology.

Let R be a ring and I a finitely generated ideal of R. Then we may write I = (x)R,

where x = x1, . . . , x` ∈ R. ForM an R-module, we define the C̆ech cohomological dimension

of M with respect to I to be

C̆.cd(I,M) := sup{k ∈ Z | Hk
x(M) 6= 0}.

Since C̆ech cohomology is independent of the generating set for I, this notation is justified.

Moreover for finitely generated I, we define the Cech height of I to be

C̆.ht(I) := inf
p∈V (I)

{
C̆.cd(I,Rp)

}
.

By convention, sup{∅} = −∞ and inf{∅} =∞.
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Lemma 3.1.6. Let R be a ring and I a finitely generated ideal of R. Then C̆.ht(I) ≥ 0.

Proof. If I = R, this is certainly true. So assume I is proper. It’s enough to show that

for every prime ideal p ∈ V (I), C̆.cd(I,Rp) ≥ 0. If not, then the only other possibility is

C̆.cd(I,Rp) = −∞, i.e. for all k ∈ Z, Hk
x(R)p = 0, where x is a finite generating set for I.

But then this says p.grade(I,Rp) = p.grade(IRp, Rp) = ∞, so that by [43, Chapter 5], we

must have IRp = Rp, i.e., I 6⊆ p, a contradiction.

Lemma 3.1.7. Let R be a ring and I a finitely generated ideal of R. If p ⊆ q in V (I),

C̆.cd(I,Rp) ≤ C̆.cd(I,Rq). Moreover,

C̆.ht(I) = inf
p∈Min(I)

{
C̆.cd(I,Rp)

}
.

Proof. Let x be a finite generating set for I. Now if Hk
x(R)p 6= 0 for some k ∈ Z, then

Hk
x(R)p = Hk

x(R)q ⊗R Rp, so that Hk
x(R)q 6= 0. This completes the proof of the first

statement. The second statement follows from the first.

Lemma 3.1.8. Let R be a ring, I a finitely generated ideal of R, and p ∈ V (I). Then

C̆.cd(I,Rp) = C̆.cd(IRp, Rp). Thus C̆.ht(I) ≤ C̆.ht(IRp), and in particular

C̆.ht(I) = inf
q∈V (I)

C̆.ht(IRq).

Proof. Suppose I has a finite generating set x. We have a flat map f : R → Rp, and

Hk
x(R)p ∼= Hk

f(x)(Rp), where the latter module is isomorphic to Hk
f(x)(Rp)pRp 6= 0. Since

f(x) is a generating set for IRp, this shows C̆.cd(I,Rp) ≤ C̆.cd(IRp, Rp). Conversely we can

take the generating set for IRp to be in the image of f , so the reverse inequality holds for

the same reasoning. This completes the first statement. The second statement follows from

the first.
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We have an easy version of Krull’s Principal Ideal Theorem for C̆ech height:

Lemma 3.1.9. Suppose I is a finitely generated R-ideal. Then for each p ∈ V (I), we have

C̆.cd(I,Rp) ≤ µ(I). In particular, C̆.ht(I) ≤ µ(I).

Proof. Let x = x1, . . . , x` be a generating set for I. Then Hk
x(R)p = 0 for any k > `, since

the C̆ech complex vanishes in all degrees larger than `.

Lemma 3.1.10. Let R be a ring and I a finitely generated R-ideal. Then for any p ∈ V (I),

we have C̆.cd(I,R[X]pR[X]) = C̆.cd(I,Rp), where X is an indeterminate over R. Moreover,

C̆.ht(IR[X]) = C̆.ht(I).

Proof. Let x be a finite set of generators for I and say that Hk
x(R[X])pR[X] 6= 0 for some

k ∈ Z. Now x is also a generating set for IR[X] in R[X]. Then we have

Hk
x(R[X])pR[X] = Hk

x

(
R[X]pR[X]

)
= Hk

x

(
Rp[X]pR[X]

)
= Hk

x(Rp[X])pR[X]

=
(
Hk
x(Rp)⊗Rp Rp[X]

)
pR[X]

,

so that Hk
x(Rp) ∼= Hk

x(R)p 6= 0. Conversely, suppose that Hk
x(R)p 6= 0. Then since R →

R[X] is faithfully flat, we have that R[X]pR[X]
∼= Rp[X]pR[X] is faithfully flat over Rp. Thus

0 6= Hk
x(Rp)⊗Rp Rp[X]pR[X] =

(
Hk
x(Rp)⊗Rp Rp[X]

)
⊗Rp[X] Rp[X]pR[X] = Hk

x(R[X])pR[X]

as in the lines above. This completes the proof of the first statement. For the second

statement, just note that Q ∈ Min(IR[X])⇔ Q = pR[X] for some p ∈ Min(I).

51



Lemma 3.1.11. Let I be a finitely generated R-ideal. Then C̆.cd(I,Rp) ≤ ht(p) for any

p ∈ V (I). In particular, C̆.ht(I) ≤ ht(I).

Proof. For each p ∈ V (I), we have that C̆.cd(I,Rp) ≤ ht(p) since H i
x(R)p = 0 for all i >

dim(Rp) = ht(p), regardless of the sequence x. The second statement follows immediately.

Lemma 3.1.12. Say R is a ring and I a finitely generated R-ideal. Then p.grade(I,R) =

C̆.grade(I,R) ≤ C̆.ht(I).

Proof. Write I = (x)R for some finite sequence x in R without loss of generality. Next, we

assume that (R,m) is quasi-local with mminimal over I. In this case, we have that C̆.ht(I) =

C̆.cd(I,R) = sup{k | Hk
x(R) 6= 0} ≥ inf{k | Hk

x(R) 6= 0} = C̆.grade(I,R) = p.grade(I,R).

The general case follows from the fact that for any p ∈ Min(I), by the above argument,

p.grade(I,R) ≤ p.grade(IRp, Rp) ≤ C̆.ht(IRp). Taking the inf over all p ∈ Min(I) then

yields the claim.

Lemma 3.1.13. Let R be a ring and I a proper finitely generated R-ideal. If I = (x)R,

where x = x1, . . . , x` ∈ R, then Supp(H`
x(R)) = V (I)⇔ C̆.ht(I) = `.

Proof. ⇒: We have that by Lemma 3.1.9, C̆.ht(I) ≤ ` always holds. Thus it remains

to show C̆.ht(I) ≥ `; that is, C̆.cd(I,Rp) ≥ ` for each p ∈ V (I). But by assumption

p ∈ Supp(H`
x(R)), so that this follows immediately. ⇐: Since Supp(H`

x(R)) ⊆ V (I) always

holds, it remains to show the other inclusion. So suppose p ∈ V (I). Then ` = C̆.ht(I) ≤

C̆.cd(I,Rp) ≤ `, so that in fact, C̆.cd(I,Rp) = `, and thus H`
x(R)p 6= 0.
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This allows us to reformulate Hamilton and Marley’s notion of Cohen-Macaulay in terms

of C̆ech height:

Corollary 3.1.14. Let R be a ring. Then R is Cohen-Macaulay ⇔ every weakly proregular

sequence x1, . . . , x` with C̆.ht((x1, . . . , xi)R) = i for all i ∈ {1, . . . , `} is a regular sequence.

Let R be a ring and I a finitely generated ideal of R. In general, we have the following:

p.grade(I,R) = C̆.grade(I,R) ≤ C̆.ht(I) ≤ ht(I).

When R is Noetherian, as a result of Grothendieck’s non-vanishing theorem, we have that

ht(I) = C̆.ht(I). With this in mind, we shall say that a finitely generated ideal I of a ring

R is C̆ech stable if C̆.ht(I) = ht(I).

Lemma 3.1.15. Let R be a ring and suppose that every finitely generated ideal of Rp is

C̆ech stable whenever p ∈ Spec(R). Then every finitely generated ideal of R is C̆ech stable.

Proof. Let I be a finitely generated R-ideal. Then for any p ∈ Min(I), we have that

C̆.cd(I,Rp) = C̆.cd(IRp, Rp) = C̆.ht(IRp) since Min(IRp) = {pRp}. Thus, since IRp is

C̆ech stable in Rp, we have that C̆.ht(IRp) = ht(IRp) = ht(pRp) = ht(p). So,

C̆.ht(I) = inf
p∈Min(I)

{
C̆.cd(I,Rp)

}
= inf

p∈Min(I)

{
ht(p)

}
= ht(I).

Lemma 3.1.16. Suppose S is a Noetherian ring, and let R = S[X1, X2, . . .], where the Xi

are indeterminates over S. Then every finitely generated ideal of R is C̆ech stable.

Proof. Let I be a finitely generated ideal of R and write I = (f)R, where f1, . . . , fm ∈ R.

We must show that t := ht(I) is equal to C̆.ht(I). Since t ≥ C̆.ht(I) always holds, it remains
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to show t ≤ C̆.ht(I). To achieve this, by Lemma 3.1.7 it is enough to show that for each

P ∈ MinR(I) there is some j ≥ t so that Hj
f (R)P 6= 0.

So suppose P ∈ MinR(I). Then there is N sufficiently large so that fi ∈ S[X1, . . . , XN ]

for each i ∈ {1, . . . ,m}. Consider the natural inclusion S[X1, . . . , XN ] → R and let J =

I ∩ S[X1, . . . , XN ], so that we have p := P ∩ S[X1, . . . , XN ] is minimal over J = (f)R.

Moreover, pR is a prime ideal of R such that I ⊆ pR ⊆ P . Thus we must have P =

pR, and by [25, Lemma 4.1], we also have ht(p) = ht(P ) ≥ t. Let j = ht(p). Then

since S[X1, . . . , XN ]→ R is faithfully flat, we have S[X1, . . . , XN ]p → RP is also faithfully

flat. Then Hj
f (R)P ∼= Hj

f (S[X1, . . . , Xn])p ⊗S[X1,...,Xn]p RP 6= 0 since Hj
f (S[X1, . . . , Xn])p =

Hj
p (S[X1, . . . , Xn]p) 6= 0.

In Fall 2016, Yves André [2] proved a famous conjecture of Hochster’s called the Direct

Summand Conjecture [30]: If R is a Noetherian regular ring and R ↪→ S a module-finite

extension of R, then R is a direct summand of S. Hochster showed the Direct Summand

Conjecture is equivalent to another conjecture of his, called the Monomial Conjecture: If

(R,m) is a n-dimensional Noetherian local ring and x1, . . . , xn a sequence of elements of

R with
√

(x1, . . . , xn)R = m, then for all k ∈ N0, (x1 · · ·xn)k /∈ (xk+1
1 , . . . , xk+1

n )R which

he was able to use in characteristic p using the Frobenius map. We show below (Theorem

3.1.17), that as a consequence of having C̆ech stability, the Monomial Conjecture holds in

non-Noetherian quasi-local rings in characteristic p. First, we make a remark about the top

C̆ech cohomology module H`
x(R) with respect to a sequence x = x1, . . . , x` ∈ R, where R is

any ring. Observe that

H`
x(R) = coker

(⊕̀
i=1

Rx1···x̂i···x` → Rx1···x`

)
.
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We’ll use [ ] to denote the natural image of an element of Rx1···x` in H
`
x(R). Every element

in H`
x(R) can thus be written in the form [a/(x1 · · ·x`)i] for some a ∈ R and i ∈ N0.

Theorem 3.1.17. Suppose that (R,m) is a quasi-local ring of dimension n with char(R) = p

and m =
√
I, where I is a finitely generated C̆ech stable ideal. Then if I = (x1, . . . , xn)R,

for all k ∈ N0, (x1 · · ·xn)k /∈ (xk+1
1 , . . . , xk+1

n )R.

Proof. Since I is C̆ech stable and Min(I) = {m}, we have that n = ht(I) = C̆.ht(I) =

C̆.cd(I,R), and so Hn
x (R) 6= 0. Suppose by way of contradiction, that for some k ∈ N0

we have (x1 · · ·xn)k ∈ (xk+1
1 , . . . , xk+1

n )R. Then for some r1, . . . , rn ∈ R, (x1 · · ·xn)k =∑n
i=1 rix

k+1
i . Consider now the element η := [1/x1 · · ·xn] ∈ Hn

x (R). Then

η =
[ 1

x1 · · ·xn

]
=
[ (x1 · · ·xn)k

(x1 · · ·xn)k+1

]
=
[r1xk+1

1 + . . .+ rnx
k+1
n

(x1 · · ·x`)k+1

]
= 0.

We have a natural homomorphism of abelian groups F : Hn
x (R)→ Hn

x (R) where

[ s

(x1 · · ·xn)j

]
7→
[ sp

(x1 · · ·xn)jp

]
.

Now, let [r/(x1 · · ·xn)i] ∈ Hn
x (R) be arbitrary. Choose t sufficiently large so that pt ≥ i.

Then

[ r

(x1 · · ·xn)i

]
=
[r(x1 · · ·xn)p

t−i

(x1 · · ·xn)pt

]
= r(x1 · · ·xn)p

t−i
[ 1

(x1 · · ·xn)pt

]
= r(x1 · · ·xn)p

t−iF t(η) = 0.

This contradicts our assumption that Hn
x (R) 6= 0.
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Lemma 3.1.18. Let (R,m) be a quasi-local FGFC ring with dim(R) <∞. Then

(i) ara(m) <∞.

(ii) If m =
√
I with I finitely generated C̆ech stable, then dim(R) = ara(m).

Proof. (i) Since R is FGFC, if ht(m) = n, we know that there are x1, . . . , xn ∈ m with

ht((x1, . . . , xn)R) = n. Thus we must have that Min((x1, . . . , xn)R) = {m}, so that√
(x1, . . . , xn)R = m, and hence ara(m) < ∞. For (ii), the above work shows dim(R) =

ht(m) ≥ ara(m). The other inequality follows by Lemma 3.1.9.

So if (R,m) is quasi-local FGFC and m is generated up to radical by a finitely generated

C̆ech stable ideal, then R has a system of parameters, that is, a sequence x1, . . . , xn such that√
(x1, . . . , xn)R = m where n = dim(R) is the smallest integer for which this happens. The

C̆ech stability condition is actually needed, since any valuation domain (V,m) of dimension

larger than 1 will be FGFC, yet ara(m) = 1. It’s easy to produce rings non-Noetherian that

have systems of parameters.

Example 3.1.19. Let R = kJx, yK, where k is a field and x, y are indeterminates over

k. Then R is local with unique maximal ideal m = (x, y)R. Suppose that M is any R-

module and let S = RoM be the idealization of M . Then S is a 2-dimensional quasi-local

ring with maximal ideal m o M . Moreover,
√
moM =

√
(X,Y )S, where X = (x, 0)

and Y = (y, 0). We claim X,Y is a system of parameters for S that generates a C̆ech

stable ideal in S. To show that (X,Y )S is C̆ech stable, we must show that H2
x,y(S) 6= 0.

As R-modules, we have that H2
X,Y (S) = H2

x,y(S) = H2
x,y(R ⊕M) = H2

x,y(R) ⊕ H2
x,y(M),

which is non-zero since H2
x,y(R) 6= 0 by Theorem 1.3.2. So we conclude that (X,Y )S
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is C̆ech stable. Moreover, S is FGFC. Indeed, suppose J is a finitely generated ideal of S.

Then
√
J =

√
π(J)oM , where π : S → R is the natural projection (a ring homomorphism).

Since R is Noetherian, π(J) has only finitely many minimal primes P1, . . . , Pk. Thus J has

minimal primes P1 oM, . . . , Pk oM . So we see that by Lemma 3.1.18, X,Y is a system of

parameters for S. Moreover,if M is not a finitely generated R-module, then S will not be a

Noetherian ring.

Lemma 3.1.20. Say (R,m) is a quasi-local ring and I = (y, x1, . . . , x`)R is an ideal of R

with
√
I = m. Then C̆.ht(I) ≥ C̆.ht(I/yR) ≥ C̆.ht(I)− 2 if y is regular.

Proof. Set x = x1, . . . , x`. Let t = C̆.ht(I/yR) = sup{i | H i
y,x(R/yR) 6= 0}. We have

a short exact sequence 0 → R
y→ R → R/yR → 0 that yields a long exact sequence in

C̆ech cohomology:

· · · → H i
y,x(R/yR)→ H i+1

y,x (R)
y→ H i+1

y,x (R)→ H i+1
y,x (R/yR)→ · · ·

Now for i > t, we must have H i
y,x(R/yR) = 0, so that multiplication by y on H i+1

y,x (R) is

injective. But H i+1
y,x (R) is I-torsion, so that for any m ∈ H i+1

y,x (R), yNm = 0 for N � 0,

and so H i+1
y,x (R) = 0. Thus C̆.ht(I) ≤ t + 2. For the other inequality, observe that for

any j > C̆.ht(I) = sup{i | H i
y,x(R) 6= 0}, by the above long exact sequence it follows that

Hj
y,x(R/yR) =, so that t ≤ C̆.ht(I).

The following is a technical lemma we shall need later.

Lemma 3.1.21. Suppose (R,m) is FGFC quasi-local with dim(R) = ara(m) = n < ∞. If

x ∈ m is a regular element and m/xR is generated up to radical by a C̆ech stable ideal of

R/xR, then dim(R/xR) = n− 1.
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Proof. Since x is regular, we have that dim(R/xR) < dim(R) = n. Now suppose ara(R/xR) =

k. By Lemma 3.1.18, we have that dim(R/xR) = k. Then there are x1, . . . , xk ∈ R/xR with√
(x1, . . . , xk)R/xR = m/xR. Thus m =

√
(x1, . . . , xk, x)R, so that ara(m) = n ≤ k + 1,

i.e., dim(R/xR) ≥ n− 1.

3.2 Weakly coassociated primes

For a maximal ideal m of a ring R, let Dm(−) := HomR(−, ER(R/m)), where ER(R/m)

is the R-injective hull of R/m. Note that Dm(−) is an exact, contravariant functor of R-

modules. For an R-module M , we shall say p ∈ Spec(R) is a weakly coassociated prime of

M if there is a submodule N ⊆ M so that M/N ⊆ Dm(R) for some m ∈ Max(R) and p is

minimal over (N : M). We shall need the following facts about weakly coassociated primes:

Theorem 3.2.1. ([46, Theorems 2.9,2.11,2.15]) Let (R,m) be a quasi-local ring and M an

R-module. Then the following hold:

(i) M = 0⇔ Dm(M) = 0.

(ii) p is a weakly coassociated prime of M ⇔ p ∈ wAss(Dm(M)).

(iii)
⋃

p∈wAss(Dm(M)) p = {x ∈ R : M
x→M is not onto}.

Before we proceed, we need a few more technical lemmas.

Lemma 3.2.2. ([9, Lemma 10.1.16]) Let R be any ring, and say M is an R-module and I

an ideal of R with IM = 0. Then we have an isomorphism of R/I-modules (0 :ER(M) I) ∼=

ER/I(M).
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Lemma 3.2.3. Let (R,m) be a quasi-local ring and M be an R-module. If wAss(Dm(M))

is finite, then m /∈ wAss(Dm(M))⇔M
b→M is onto for some b ∈ m.

Proof. Follows immediately from prime avoidance.

Lemma 3.2.4. Let (R,m) be a quasi-local ring and x a finite sequence of elements of R.

If a is a regular element of R and n ∈ N, suppose that Hn
x (R) = 0 and Hn−1

x (R/aR) 6= 0.

Then for some p ∈ wAss
(
Dm(Hn−1

x (R))
)
, a ∈ p. In particular, Hn−1

x (R) 6= 0.

Proof. From the short exact sequence 0→ R
a→ R → R/aR → 0, we have an induced long

exact sequence in C̆ech cohomology:

Hn−1
x (R)

a→ Hn−1
x (R)→ Hn−1

x (R/aR)→ Hn
x (R) = 0,

from which we see

Hn−1
x (R/aR) ∼=

Hn−1
x (R)

aHn−1
x (R)

6= 0.

Thus the map Hn−1
x (R)

a→ Hn−1
x (R) is not surjective, and so Hn−1

x (R) 6= 0. Now by Lemma

3.2.1(iii), there is some p ∈ wAss
(
Dm(Hn−1

x (R))
)
with x ∈ p.

3.3 A sufficient condition for C̆ech stability

We would like to develop a sufficient condition on a quasi-local ring (R,m) of finite Krull

dimension that guarantees m is generated up to radical by a C̆ech stable ideal. In other

words, we want to find a condition on R so that if m =
√

(x)R with x = x1, . . . , x` ∈ R,

then Hdim(R)
x (R) 6= 0. With this in mind, we introduce a class of quasi-local rings that will

be sufficient for C̆ech stability.
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Definition 3.3.1. Let (R,m) be a quasi-local ring. We will say that R is in the class Cs.o.p.,

if for each ideal I of R, the following conditions hold on the ring S = R/I and its maximal

ideal n = m/I:

(i) n =
√

(x)S for some x = x1, . . . , x` ∈ S, i.e. ara(n) <∞.

(ii) ara(n) = dim(S).

(iii) |wAssS(S)| <∞.

(iv)
∣∣∣wAssS(Dn(H

k
x(S))

)∣∣∣ <∞ for any k ∈ N.

(v) If dim(S) > 0, there is an ideal J of S such that dim( S
ann J ) < dim(S) and via the

natural morphism Spec(S/J)→ Spec(S), we have

wAss(S/J) = {p ∈ Spec(S) : dim(S/p) = dim(S)}.

The proof of our result below is the same in spirit as the proof of Grothendeick’s non-

vanishing theorem by I.G. MacDonald and R.Y. Sharp in [39, Theorem 2.2]. However, this

proof relied on the fact that the modules H i
m(R) are Artinian for any i ∈ Z and any Noethe-

rian local ring (R,m). Since this need not be true in general, we replace the Noetherian

assumption with the condition on the weakly associated (and coassociated) primes of the

ring (and C̆ech cohomology modules, respectively) and arithmetic rank in the definition

above.

Theorem 3.3.2. Suppose (R,m) is a quasi-local ring in Cs.o.p.. If m =
√

(x)R for some

finite sequence x = x1, . . . , x` ∈ R, then (x)R is C̆ech stable. Moreover,

wAss
(
Dm(Hdim(R)

x (R))
)
⊆ {p ∈ Spec(R) : dim(R/p) = dim(R)}.
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Proof. Let I = (x)R. We’ll prove our claim by induction on n := dim(R). When n = 0,

we have that m consists of nilpotent elements, so that since I is finitely generated, It = 0

for t � 0, and thus H0
x(R) = R 6= 0. Since Spec(R) = {m}, we have that necessarily

wAss
(
Dm(Hn

x (R))
)

= {m} = {p ∈ wAss(R) : dim(R/p) = 0}. Thus the claim is complete

when n = 0.

Suppose now n = dim(R) > 0. Then by condition (v) above, there is an ideal J of R

with dim( R
ann J ) < n and wAss(R/J) = {p ∈ Spec(R) : dim(R/p) = dim(R)}. From the

short exact sequence 0 → J → R → R/J → 0, we get an induced long exact sequence in

C̆ech cohomology:

Hn
x (J)→ Hn

x (R)→ Hn
x (R/J)→ Hn+1

x (J).

For any i, we may regard H i
x(J) as a module over R

ann J , and thus by Theorem 1.4.2(ix),

Hn
x (J) = Hn+1

x (J) = 0 (or if J = 0, this follows trivially), so that Hn
x (R) ∼= Hn

x (R/J). Thus

by replacing R with R/J , which has the same dimension as R, we may assume wAss(R) =

{p ∈ Spec(R) : dim(R/p) = n}.

Now say by way of contradiction that Hn
x (R) = 0. By our assumptions on R. We

claim next that m ∈ wAss
(
Dm(Hn−1

x (R))
)
. Since R is in Cs.o.p., |wAss(R)| < ∞ and∣∣∣wAssR(Dm(Hk

x(R))
)∣∣∣ <∞, so that if m /∈ wAss

(
Dm(Hn−1

x (R))
)
, then by prime avoidance,

along with Lemma 3.2.1(iii) and the fact that Z(R) =
⋃

p∈wAss(R) p ([33, Theorem 6.2]), we

must have that

m 6⊆ Z(R) ∪ {x ∈ R : Hn−1
x (R)

x→ Hn−1
x (R) not onto}.

Thus m contains a non-zerodivisor a on R such that Dm(Hn−1
x (R)) = aDm(Hn−1

x (R)). It

follows dim(R/aR) ≤ n − 1, so that our induction hypothesis applies, and since m/xR =
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√
(x)R/aR, we have (x)R/aR is C̆ech stable. Since |wAss(R/B)| < ∞ for each finitely

generated ideal B of R, in particular Min(B) is finite, so that R is FGFC. By Lemma

3.1.21 then, dim(R/aR) = n− 1 and hence Hn−1
x (R/aR) 6= 0. Then Lemma 3.2.4 says that

a ∈ p for some p ∈ wAss
(
Dm(Hn−1

x (R))
)
. This means Hn−1

x (R)
a→ Hn−1

x (R) is not onto,

and since a ∈ p ⊆ m, we get a contradiction. Thus m ∈ wAss
(
Dm(Hn−1

x (R))
)
and so we

write wAss
(
Dm(Hn−1

x (R))
)

= {m, p1, . . . , pk} and wAss(R) = {q1, . . . , q`}. Then by prime

avoidance, m 6⊆
(⋃k

i=1 pi

)
∪
(⋃`

j=1 qj

)
. Thus we may choose some d ∈ m\

⋃k
i=1 pi that is

a non-zerodivisor on R. From the short exact sequence 0→ R
d→ R→ R/dR→ 0, the long

exact sequence in C̆ech cohomology gives us the following exact sequence:

Hn−1
x (R)

d→ Hn−1
x (R)→ Hn−1

x (R/dR)→ Hn
x (R) = 0,

from which we conclude

Hn−1
x (R/dR) ∼=

Hn−1
x (R)

dHn−1
x (R)

6= 0.

Now from the short exact sequence

0→ dHn−1
x (R)→ Hn−1

x (R)→ Hn−1
x (R/dR)→ 0,

after applying the exact functor Dm(−), we get another exact sequence

0→ Dm(Hn−1
x (R/dR))→ Dm(Hn−1

x (R))→ Dm(dHn−1
x (R))→ 0,

from which we see wAss
(
Dm(Hn−1

x (R/dR))
)
⊆ wAss

(
Dm(Hn−1

x (R))
)

= {m, p1, . . . , pk}.

Now if q ∈ wAss
(
Dm(Hn−1

x (R/dR))
)
, then there is some R-linear map f : Hn−1

x (R/dR)→

E(R/m) for which q is minimal over annR(f). Since dHn−1
x (R/dR) = 0, we have

d ∈ annR(Hn−1
x (R/dR)) ⊆ annR(f) ⊆ q.
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But by our choice of d, the only member of {m, p1, . . . , pk} for which this is possible is

m. Thus wAss
(
Dm(Hn−1

x (R/dR))
)

= {m}, which is a contradiction unless n = 1 since by

induction hypothesis wAss
(
Dm(Hn−1

x (R/dR))
)
⊆ {p ∈ Spec(R/dR) : dim(R/p) = n − 1}.

But if n = 1, observe that since d ∈ m, 1 ≤ p.grade(m, R) = p.grade(I,R) = C̆.grade(I,R) ≤

dim(R) = n = 1 by Theorem 1.2.1(vi), so that we actually must have H1
x(R) 6= 0. Thus for

any n ∈ N0, we must have Hn
x (R) 6= 0.

Lastly, we claim wAss
(
Dm(Hn

x (R))
)
⊆ wAss(R) = {p ∈ Spec(R) : dim(R/p) = n},

which will complete the induction. So suppose Q ∈ wAss
(
Dm(Hn

x (R))
)
. Then Q consists

of zerodivisors on R. Indeed, suppose on the other hand that f ∈ Q is a non-zerodivisor on

R. From the short exact sequence 0 → R
f→ R → R/fR → 0 we get the following exact

sequence in C̆ech cohomology:

Hn
x (R)

f→ Hn
x (R)→ Hn

x (R/fR),

where the last term is zero since dim(R/fR) ≤ n − 1 along with Theorem 1.4.2(ix). Then

Hn
x (R)

f→ Hn
x (R) is surjective, meaning that f /∈ Q′ for any Q′ ∈ wAss(Dm(Hn

x (R))), a

contradiction. Thus Q consists of zerodivisors on R, so by prime avoidance, Q ⊆ qi for

some i ∈ {1, . . . , `}. Since the qi are all necessarily minimal primes by our assumption on

wAss(R), we must have that Q = qi, and so our claim is complete.
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3.4 Examples of rings in Cs.o.p.

Example 3.4.1. Let (R,m) be a Noetherian local ring. Then R is in Cs.o.p.. Indeed, since

any quotient of a Noetherian local ring is still Noetherian local, it is enough to show that

R satisfies conditions (i)-(v) of Definition 3.3.1. Every Noetherian local ring has a system

of parameters, so that conditions (i) and (ii) are met. Moreover, since every ideal has a

primary decomposition, |wAss(R)| = |Ass(R)| <∞.

Example 3.4.2. Let (R,m) be a 0-dimensional quasi-local ring. Then R is in Cs.o.p.. Indeed,

since every quotient ofR is still a 0-dimensional quasi-local ring, it’s enough to just check that

R satisfies (i)-(iv) of Definition 3.3.1. We have m =
√

(0)R, so that ara(m) = dim(R) = 0,

and thus (i) and (ii) are satisfied. Since |Spec(R)| = 1, conditions (iii) and (iv) are met.

Example 3.4.3. Let (R,m) be a 1-dimensional quasi-local domain. with |Spec(R)| < ∞.

Then R is in Cs.o.p.. Indeed, let I be an ideal of R. We must check that R/I satisfies

conditions (i)-(v) of Definition 3.3.1. If dim(R/I) = 0, then the above example shows R/I

is in Cs.o.p.. If dim(R/I) = 1, then I = 0, and since |Spec(R)| = 2, it is clear that R satisfies

conditions (i) - (v).

We would like to next show that every 2-dimensional quasi-local Krull domain with

Noetherian spectrum is in Cs.o.p.. Recall that an integral domain R is a Krull domain if the

following conditions on R hold:

(i) For each p ∈ X(1) = {p ∈ Spec(R) | ht(p) = 1}, Rp is a discrete valuation ring.

(ii) R =
⋂

p∈X(1) Rp.

(iii) If x 6= 0, |V (xR) ∩X(1)| <∞.

64



Before we proceed, we shall need some facts about a certain closure operation on the ideals

of an integral domain introduced by W. Fanggui and R.L. McCasland in [16]. Let R be an

integral domain R with quotient field K. An ideal J of R is called a Glaz-Vasconcelos ideal

of R if J is finitely generated and J−1 := (R :K J) = R, which we denote by J ∈ GV (R).

For I an ideal of R, the w-envelope of I, denoted by Iw, is the ideal

Iw =
⋃

J∈GV (R)

(I :R J).

Lemma 3.4.4. Let J be a finitely generated ideal in a domain R. Then J ∈ GV (R) ⇔

p.grade(J,R) ≥ 2.

Proof. If J = R, the claim is trivial, so we can assume throughout that J is proper. So if

J−1 = R, then since J is proper, it’s not principal. Thus we may write J = Rb+ I for some

non-zero b ∈ J , where I 6⊆ Rb and I is finitely generated. So write I = (a0, . . . , an)R, and

let f = a0 + a1X + . . .+ anX
n ∈ R[X]. We claim that b, f is a R[X]-sequence contained in

J [X].

Clearly b is R[X]-regular. Next, we claim that f is a non-zerodivisor on R[X]/bR[X] ∼=

(R/bR)[X]. By Lemma 1.2.1(i), this happens precisely when (0 :R/bR I) = 0. So suppose

r + bR ∈ (0 :R/bR I). Then Ir + bR = bR, so Ir ⊆ bR⇒ I(r/b) ⊆ R. Then r/b ∈ J−1 = R,

or in other words, r ∈ bR. Hence we have (0 :R/bR I) = 0, so that b, f forms a R[X]-sequence

in J [X]. Thus p.grade(J,R) ≥ 2.
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Conversely, suppose p.grade(J,R) ≥ 2, so that for some n ∈ N0,

gradeR[X1,...,Xn](J [X1, . . . , Xn], R[X1, . . . , Xn]) ≥ 2.

Now if (J [X1, . . . , Xn])−1 = R[X1, . . . , Xn], then J−1 = R, so that we might as well assume

grade(J,R) ≥ 2. Then J contains an R-sequence x, y. Now if c ∈ J−1, then cx = r and

cy = s for some s, r ∈ R. Hence we have sx = cyx = ry ⇒ r = tx for some t ∈ R since y is

a non-zerodivisor on R/xR. Thus cx = r = tx⇒ c = t ∈ R.

Lemma 3.4.5. Let I be an ideal of a domain R. Then p.grade(I,R) = 1⇔ p.grade(Iw, R) =

1.

Proof. If p.grade(Iw, R) = 1, then since I ⊆ Iw, we must have p.grade(I,R) ≤ 1. Now

Iw 6= 0 means I 6= 0, therefore I contains a regular element, and so p.grade(I,R) ≥ 1, and

hence we actually get equality. Conversely, suppose that p.grade(I,R) = 1 and suppose

that p.grade(Iw, R) is bigger than 1. Then we may choose a finitely generated ideal J ⊆ Iw

with p.grade(J,R) ≥ 2. Now by the above lemma, J ∈ GV (R), and since Iw contains J ,

we must have R = (Iw)w = Iw. But then there is some J ′ ∈ GV (R) with J ′ ⊆ I, which

by the above lemma and the monotonicity of polynomial grade implies p.grade(I,R) ≥ 2, a

contradiction.

Theorem 3.4.6. Let R be a Krull domain, and I = (a1, . . . , an)w a w-ideal of R. If

p ∈ Spec(R) is minimal over I, then ht(p) ≤ n. In particular, for any x 6= 0 in R, any

prime ideal minimal over x has height one.

Proof. This is just a special case of [15, Corollary 1.12], since every Krull domain is strong

Mori.
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Lemma 3.4.7. Let (R,m) be a quasi-local Krull domain with dim(R) ≥ 2. Then the fol-

lowing hold:

(i) mw = R, and therefore p.grade(m) ≥ 2.

(ii) ara(m) ≥ 2.

(iii) m =
⋃

p∈X(1) p, and so X(1) is infinite.

Proof. (i): We have that since m is maximal, either mw = m or R. In the former situation,

then m is a maximal w-ideal, so that by [15, Theorem 2.8(8)], we must have ht(m) = 1,

a contradiction. Thus mw = R, so there there is some J ∈ GV (R) with J ⊆ m. But

then p.grade(m, R) ≥ 2. (ii): If m =
√
xR, then ht(m) = 1 by Theorem 3.4.6, which

contradicts our assumption that dim(R) ≥ 2. (iii): If m 6=
⋃

p∈X(1) p, then there is some

x ∈ m\
⋃

p∈X(1) p. But then
√
xR = m, contradicting (ii). The fact that X(1) must be

infinite follows immediately by prime avoidance.

Lemma 3.4.8. Suppose that (R,m) is a quasi-local Krull domain with dim(R) = 2. Then

ara(m) = 2. In other words, there are x, y ∈ R with
√

(x, y)R = m. Moreover, any such

pair of elements must be an R-sequence.

Proof. Suppose x 6= 0 is in m. Let V (xR) ∩X(1) = {p1, . . . , pt}. Then m 6=
⋃t
i=1 pi. Thus

there is some y ∈ m\
⋃t
i=1 pi. Then

√
(x, y)R = m as desired. For the moreover part, say√

(c, d)R = m for some c, d ∈ R. We claim this is a regular sequence on R. Indeed, c 6= 0 by

part (ii) of the above lemma. Now if d ∈ Z(R/cR), then d ∈ p for some p ∈ wAssR(R/cR) =

wAssR/cR(R/cR). We can’t have ht(p) = 1, otherwise c, d ∈ p contradicts
√

(c, d)R = m.

Therefore ht(p) = 2, and so p = m. Now if m ∈ wAss(R/cR), then p.grade(m, R/cR) = 0
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by [26, Lemma 2.8]. But p.grade(m, R/cR) = p.grade(m, R) − 1 = 2 − 1 = 1 since c is a

regular element of R, a contradiction. Therefore c, d is a regular sequence of R.

Lemma 3.4.9. Let (R,m) be a quasi-local Krull domain with dim(R) = 2. Then R is

Cohen-Macaulay.

Proof. Let f1, . . . , fm ∈ R be a strong parameter sequence. Now if m = 1, then since f1 6= 0,

we must have that f1 is a regular element of R. If m > 2, then Hm
f1,...,fm

(R) 6= 0, which is

impossible, since the C̆ech cohomology should vanish in degrees larger than 2 = dim(R). So

the only case left to check is when m = 2. In this case, we must have ht((f1, f2)R) = 2, so

that
√

(f1, f2)R = m, and thus f1, f2 form a regular sequence by the previous lemma.

Lemma 3.4.10. Let R be a ring and I a finitely generated ideal of R. If (0 :R I) = 0 and

ht(I) = 1, then I is C̆ech stable. More generally, if I is any ideal with p.grade(I) = ht(I),

then I is C̆ech stable.

Proof. (0 :R I) = 0 says that p.grade(I,R) > 0. The claim then follows immediately from

the inequalities p.grade(I,R) ≤ C̆.ht(I) ≤ ht(I).

Lemma 1. Let (R,m) be a quasi-local Krull domain with dim(R) = 2. Then every finitely

generated ideal of R is C̆ech stable.

Proof. Let I be a finitely generated ideal of R. If ht(I) = 0, I = 0, so there is nothing to

do. If ht(I) = 1, then by the above lemma, since R is a domain, (0 :R I) = 0, and hence I

is C̆ech stable. If ht(I) = 2, then
√
I = m, so that p.grade(m, R) = p.grade(I,R) = 2, and

thus by the above lemma we also conclude I is C̆ech stable.
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Lemma 3.4.11. Let (R,m) be a 2-dimensional quasi-local Krull domain with Noetherian

spectrum and I a height one prime ideal of R. Then there is an ideal J of R with I ⊆ J

where the following hold:

(i) dim
( R

I : J

)
= 0.

(ii) wAss(R/J) = {p ∈ V (I) : dim(R/p) = 1}.

Proof. Let B = (x, y)R be a finitely generated ideal of R with
√
B = m, where x, y is a

regular sequence on R. Since R is Laskerian [27, remarks after Example 4.2], the ascending

chain

(I :R B) ⊆ (I :R B
2) ⊆ (I :R B

3) ⊆ · · ·

must terminate at some n ∈ N ([37, Proposition 3]). Let J = (I :R Bn). We claim that

J satisfies (i) and (ii) above. For (i), let f ∈ m =
√
B =

√
Bn, so that fk ∈ Bn for

k � 0. Now if x ∈ J , then xBn ⊆ I ⇒ xfk ∈ I, and since x was arbitrary, we must have

fkJ ⊆ I ⇒ f ∈
√
I :R J . Thus V (I :R J) ⊆ {m}, so that (i) holds. For (ii), we first note

that m /∈ wAss(R/J). Indeed, suppose by way of contradiction that m ∈ wAss(R/J). Then

√
J :R f = m =

√
Bn for some f /∈ J . Since Bn is finitely generated there is some t > 0

where

Bnt ⊆ (J :R f)

⇒Bntf ⊆ J = (I :R B
n)

⇒Bn(t+1)f ⊆ I

⇒f ∈ (I :R B
n(t+1)) = (I :R B

n) = J.

69



So m /∈ wAss(R/J). We remark that B ∈ GV (R) ⇒ Bn ⊆ GV (R) by [16, Lemma 1.1]. If

p ∈ MinR(I), then p has height one, so that I ⊆ p ⇒ J = (I :R Bn) ⊆ Iw ⊆ pw = p, by

[35, Corollaire 3]. Thus V (I) = V (J). Moreover, {p ∈ V (I) : dim(R/p) = 1} = MinR(I) =

MinR(J) = V (J)\{m} = wAss(R/J), so (ii) holds.

A ring R is said to have Noetherian spectrum if it satisfies ACC on radical ideals, or

equivalently if Spec(R) is a Noetherian topological space with the Zariski topology.

Theorem 3.4.12. Let (R,m) be a 2-dimensional quasi-local Krull domain with Noetherian

spectrum. Then R is in Cs.o.p..

Proof. We must show that R/I satisfies conditions (i)-(v) of Definition 3.3.1 for any ideal

I of R. We proceed into cases. Case I: If dim(R/I) = 2, then I = 0, so we must show R

satisfies (i) - (v). As shown above, ara(m) = 2, so that conditions (i) and (ii) are met above.

Since R is a domain, wAss(R) = {(0)} = {p ∈ Spec(R) : dim(R/p) = 2}, so that (iii) and

(v) hold. Moreover, if x, y ∈ R is such that
√

(x, y)R = m, then x, y is a regular sequence

on R and so for all k 6= 2, Hk
x,y(R) = 0. If c is any nonzero element of R, we also have a

short exact sequence

0→ R
c→ R→ R/cR→ 0

which gives an exact sequence in C̆ech cohomology:

H2
x,y(R)

c→ H2
x,y(R)→ H2

x,y(R/cR) = 0

Thus multiplication by c onH2
x,y(R) is surjective, so that c /∈ p for any p ∈ wAss(Dm(H2

x,y(R))).

Since c was arbitrary, we must have wAss(Dm(H2
x,y(R))) = {(0)}, and thus (iv) holds. Case

II: If dim(R/I) = 1, then Spec(R/I) is finite, so conditions (iii) and (iv) are satisfied.

70



If V (I) = {p1, . . . , pk,m}, then by prime avoidance there is some b ∈ m\
⋃k
i=1 pi. Then√

b(R/I) = m/I, so that dim(R/I) = ara(m/I) = 1 and thus (i) and (ii) are met. Lastly,

(v) holds by Lemma 3.4.11. Case III: If dim(R/I) = 0, then by Example 3.4.2, R/I satisfies

conditions (i)-(v).
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