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Performance »f a Dataflow Comnnter

by

“im P. Sostelow,
University of California, Irvine

and

Rohbert E. Thomas,
University of California, Irvine

Abstract

Our goal is to devise a computer comprising large numbers of
cooperating processors (LSI). In doing so we reject the
sequential and memory cell semantics of the wvon Neumann model,
and instead ado»t the asynchronous and functional semantics of
dataflow. We describe a dataflow bhase machine lanqguage and
unfolding interpreter that generates large numbers of
asynchronous tasits for execution. Also presented is the
high-level dataflow programming language 1d, as well as an
initial design for a dataflow machine and the results of
detailed, determin;stic simulation experiments on a part of that
machine. For example, we show that a dataflow machine can
automatically unfold the nested loons_of n-by-n matrix multiply
to reduce its time complexity from O(n’) to  0O(n) so long as
sufficient processors and communication capacity is available.
Similarly, guicksort executes with average 0O(n) time demanding
O(n) processors. Also discussed are the use of processor and
communication time complexity analysis, and "flow analysis", as
aids in understanding the behavior of the machine.

Index terms: dataflow, multiprocessor architecture, large-scale
integration, asynchtrunous execution, parallel computer,
distributed computer, concurrency, functionality, locality
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goal is to devise a computer cemnrising large numbers of
cooperating processors  {LSI). In “oina so we reject the
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to reject the von Nesumann comnater as a2 mndel  of  comnutation, and
instead, tc adopt a model tased on data‘law.  This haz necescsitated
the develospment of a new lataflow “az:  imachine) iarri3Te and
iigh=-lewvsl oTrogramoing ¢, &% well 30 trs macning ZeZinrn ltself
1.1 sackcrcund

Severzl computarz have reon devisel I fitempts to S,thesize  a
single larze machine freom = collectics o7 3-aller protess-rs, e.o.,
Illiac IV 10, Cm* (171, andt C.mop T3INT. So far, nowever,
multiprocessor machines have not achievas? tne ease of nronram~ing and
level of performanc2 expectei. “Zoncerning ezse of proararming, for

example, the projrzmner shon:’ 7 not he coan~erne” with how a Dronram is
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coordinats; nor should the projramner b

physical arrangement of the processors

Instead, 3 program should automatically b
that are executed asynchroroucly, with nin
another. Several researchers f£4,2,15,19°
be achieve? only with si~nificant chann=czc
Neumann mnoiel ™.

For t=e machine we have i mind, -—w
attributes 2f the von Neunsnn nodel are

Z. (centralized. sejuential con
. menory cells

Seguential, one-instruction-3t-a-time cont
it proniitits tne asynchroncas bhehavior
consider esszentizl. 1I¢ also burdens the p
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tasks recuire cooradination through a corTo
complex s.onchronizatlion <Coantrols to erzu
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distribute: machinz2, ma. Lz costly in exs
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thorny prociexs {or wrogran verificztion
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sirplie mathe—scical Sharocteor TAYY LG Ao,

The  semantic: 0 TR SN overs reyvammiing lannuane so o far
devised1 is closely relatsd to the von N2umann model. In contrast,
our approach te multiprocessor machine design 1s  to adopt a
progrananing languaje semantics more aprropriate to  the hardware
technology now available. Thus we view the fundamental problem of
designing 2z general-purposse, asynchronnsis, multiprocessor not as
simply the cesign of an appropriate bus and machine interconnection
scheme, nr>r the design of a machine which can efficiently manipulate
arrays or interchanje numbers. Tne probler iz instead one of avoiding
complicaticznzs due to the fuandamental nrin~iples of the von Neumann
model.

1.2 The T=matlow Model

Trne version of dataflcw sed heras | = v =0T mare  asvnchronsus
version c¢f 3 semantic molel wuich has bosn Lo evistence for sore tire
fe,15,20,20,271,  Tne distinctions betwesn "tzts flow"  semantics  and
von Neunme~~'zs principle of "cormtrol flow” arz two: First, detaflow
operations are executed asynchronously. 3Second, only wvalues (not &
memory Cei. that holds a valuz) are the rescits of computations, that
is, all ccropotations are functions. A dataflow projram is & directed
graph where the ncles are operators anc the CZirected edges cenote the
path of ar owperand Zrom the output of one node to the input of another

Some excer-isans ar= VAL [11, 148 [A), Luy~1~ 71, FFP [R], Lz} 113},
ISWIM {247, =2-7 oar: LISP 27,
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precedenice om0l Ojpiratola, dneratisnag
1. A& cataflow operation zxecutes when
reguired overands become availabhloe |
2. A dataflow operation is purely fuanzt
> cide-effects (functinnality).
By adopting these princinles, it is nr=s
asynchroncas execution of r1rograms withon
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mrocramminy constructs (e.q., narheain-parend, fork-join) or
Tro2rar anilvsis of Aoy o ing,
rodataflow machines i ave been prorns=i [14,15,22,2%,327, an<
2avis rmacthine, hac been constructe? though on a very small
Ul work differs from 2ach of the &wove machines in  at  least
tvo important resuects. First, tne underlying interpretive
.S I&r more asynThrincds;  scconi, dur  high-level dataflow
1 lanzaa e, Ic ({or Irvine witzilow) 15,5}, is a comclete
812 may be usel tc write operatin: sverers ant Alistributes
3YStems as we.. &% the smaller kinis of problems we are abls
Tz heore.  Tinally, there are imporeaznt differences in goals.
1s not Jjust tc devise a machine that can execute programs
ve are also interestad in how 4ata‘low can help in solvina
svstem problems. For example, wusz2r protectisrn [12] an”
Nandling facilities are also h»eint intejrate? into the
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soperetor s oevecate Ly oarcoriilng thoso oo ar 1npst,  co-natina 8

result, =2and =Zroducina one or more outnat toxens that carry the result

values. Note that an cwerator follow: no particuler "law of
conservatio»n of tokens". Exactly onr  token 1is removed from each

enabling ianut and nne recsult token 13 nprofuced for each active

outnut. Tigure 2.3b shows that a token encountering a for< in a line
is replicazed so a value may follow all outhranches of a 1line. In

this way & single result may be input asynchronously to many different

operators.

The rzader mav cerry ocut the evaluation of the program of Figure
2.2 by gplacina o1e token on each of the input lines a and b, anc
followina tne dataflcw execution rules illustrated by Figures 2.3a and
2.3b . N-te that the order of evaluation of enabled operators is
unimportant since there are no races, i.e., computatign is determinate

{3,26). T.iis latte:r characteristic is in part guaranteed bv a rule of

Re)

dataflow rroaram fermation called the 3inale-assignment rule which
makes the connection showr in Figure 7./ 1llezal. It 1s not nossible
for two to-+=sn3 Lo errive on the sare inmut Line intenden for the  sams
instance »f =2xecution c¢f thes same oovsratsr. I essence, onc2 & value

is cdefined it can naver be changed.

( x & a+> ;
y €& a-t ; ** 1lleacal **
X €& a

illegal, since x is defined twice.

To further illustrate the functionzl nature of dataflow, the only

operatcrs defined on structured values are sclec

and append. In the

e




Lo a4

following 2xa~mple, let the va gjes carriel b0 th. tokens on lines x anc
y be the structures X and v, respectively, shown in Figure 2.la .
Also, let lines i, j, and 2z cerry the respective values ¢, 4, and z.
Then seleczt(x,i), written x[1] in 14, outputs the value X, if it
exists, otnerwise an error valile is produrei. Somewhat more complex
is appencd(x,j,z), which creates a new structure value identical to »
except that selector ¢ is made to refer to value I. We emphasize that
the creation of this new structure does not modify the value on line

X; rather, a new (logical) copy »' of x is first made, and then the

7 <

n

value - is associate”d with selector 1 in 2t Thus

append (acvpand{A,1,»),2,y) procaces the structured wvalue Y shown in

The above is an introduction to simple dataflow expressions.
More complex operators needed for procedure application, conditional
expressions, and 1lo0ops are briefly described below. Before continuing

however, we will review how the principles of cdataflow are reflectecd
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shown in  Flgure 2.2). Seconi, dataflow is fuanctional. There are no

+

side-effects such as updatinz a 7slchzl variable. Tnis allows
computaticr to proceed without concern for coordination with other

asynchronouasly oderating tasks.

3 . .

Updating a <database and other "hi
handled by dataflow resource manane
managers are not discussed here.

storv-sensitive" functions are
r cribed in [5,A1. Resource



2.2.2 The Tonditinnal Schen: -

corresponds to the 1I4

(Ual
-

The conditional schems (Figure 2.

expression

(if p then f else 9)

where p, f, and g stand for arnitrary I8 exvpressions dependent upon
some input x (p must ©produce a boolean result). Whenever a token
arrives on line x tie predicatz p is evaluated. The SWITCH executes

after the tokens on both lines x and b have arrived, and if the

te 13 true taien the toxen from x 1s sent by SWITCH to the

o]
"~
(]
Q,
-
0
o

schema £, otnzrwise to g. Tne resalt from £ or g then goes to the &

operator wilich simply passes wiat it receives on either input directly
to 1ts cutpat, It is important to recognize that each execution of

SWITCH causes only one token to reach 5;, gither from the T or F

side, maxing the entire conditional schema an expression (function).

(o9

schenata, even though some

.
N

Functional o2zhavior is basi:z to 1
g - —~ ~ - . o & [ o .
operatcrs (suac! as & ani SWITCH) 4o nos individually exhibit such

behavicr.

2.2.3 The Procedure Application Schema -

A valae of type procedure is an encoding of a2 dataflow procedure
(subroutine;. Since a procedure is a value, it may be carried by a
token and input to an application schema. In Id we write f{x) to mean
that the (procedure valued) token arriving on line f is to be applied
to the argument token appearing on  incut line x. An application
scnema comprises the two operators ATTIVATE (denoted by A) and

ATE (Genoted by A™') that worx tonsctier as shown in Fijure 2.6 .

A

TERMI



,
Tne A crvrator Crestes’ an instance o° 4. procecure accordinz to the

description B carricd by the procedure tnken, an? sends a single token
carrying the argument value x (which may actually be a structure value
holding several arguments) to the procedure. Every procedure
comprises a BFEGIN operator that is initiater upon receipt of the input
argument. BEGIN then passes its input throuah to its output line
which may then fork to the inputs of the expression(s) comprising the
body of the procedure. The result procuced from the procedure body
(which may also be a structurecd value holdina several results) is sent

to an LKD operator thet serncs the result on 2 sinale toren hback to the

A" operator at the voint of applicatiorn. The A operetor simply
distribtutes the result to those operatcrs expecting  the value Bix).
The procecdure instance created by A is Cestrcyec after its result has
-1
been -sert to A .
2.2.4 The Loor Schermz -
—— —
The locp schemz shown in  Figure .7 corresponts  to the If
exXgression
( Initial x &« a
while p do
new x &« f
return x )
D — +
wnere p and f stand for arbitrary Id exorescsions dependent upon x (¢

o+

rnust  produce a boolean result). Note tha a loop is simply ar
expression that produces a value. On initiation of a loop, a token is

4 : . . .
Creation ¢of a procedure instance will ‘“ecu-¢ clear when activity
naves are ciscussed in Section 2.3 .
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placed on line x from line a, and then, on each successive 1iteration
line x receives tskens that cycle through the loop with values f (x),
f(Ef(x)), ..., until p(x) becom2s false. A loop expression closely
resembles 3 mathemaz-ical recurrence relation(s) but with the inclusion
of a stopping condition and a specification of the particular values
to be retuarned. (The D, D—l, L, and Lt operators in Figure 2.7 will

be explain=sd below. 1In any case these four operators always execute

the identity function with respect to their input values.)

The above four types of expressions and schemata can be more
complex tnan so far indicated. For example, a loop may actually
comprise any number of lines (recurrence variables) that circulate
values, asynchronously produce successor values, and return more than
one Aresult. A statement wutilizing a 1loop with two recurrence
variables 1is | | V

m,n & ( iﬂiiiil i &« 0 ; sum « ¢
-while 1i<18 do
new i « i+1 ;

new sum € sum+iT (i+1)
return sum,i )

This more complex Id statement produces the base lanquage program

shown in Figure 2.8 .

2.3 The Unfolding Interpreter

Section 2.2 discussed several operators as well as the four basic
expression schema classes of the base language (function and
predicate, conditional, procedure application, and 1loop). Also

presented was a rather straightforward interpretive mechanism for
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asynchronouasly execating a dataflow prooram by moving tokens along
lines and executinng operators. The asynchrony allowed by
straightforward interpretation of a dataflow program graph (such as

between * and 1 1in Fiqure 2.2) is called static parallelism. The

following describes an unfolding interpreter that allows dynamic

parallelism, which produces far more asynchrony than that achieved

from static parallelism alone.

Consider operator s in Figure 2.8 (the T function) as successive
values are fed to its inputs. Since the rate at which those inputs
are generated may be greater than the rate at which s executes, we can
look at s at a time when, say, two complete sets of input values are
present. Such a situation is shown in Figure 2.9a where the (logical
or positional) order of arrival is denocted hy a superscript. By the
first principle of dataflow, asynchrony, the first execution of s can
take place since both ar and b1 are present (Fiqure 2.9b), For the
same reason the second execution can take place immediately (Figure
2.9¢). However, the second principle of dataflow, functionality,
would also allow the second execution to precede the first, since
functionality means that any result is dependent only on the function
and its arjuments. Let each cistinct execution of an operator be
termed an activity. If sufficient free processors are available, and
if each 'activity is associated with one processor, then both
activities shown in Figure 2.9 could be carried out asynchronously
(concurrencly). For example, the computations in Figure 2.8 that
produce the argumants to operator s may be very fast relative to the
speed of s itself. This means that many executions of s may go on

simultaneously with the results being summed by the rest of the loop
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as they buc-ome available. The effect is to "unfold" [4,21] the loop

into many instances of each opz2rator.

Figures 2.8 and 2.9 illustrate the basic 1idea behind the
unfolding interpreter. However, the presence of loop and procedure
application expressions adds yet another dimension to the unfolding
that can be achieved. For example, let operator s in Figure 2.8 be
the procedure application f(i) rather than the primitive function T .
Each execution of s would then give rise to all the activities within
procedure f. Furthermore, concurrent executions of operator s imply
that concurrent invocations of f may also take place. Identical
remarks would hold true were 1 a loop expression instead; that is,
concurrent execution of distinct invocations of the same loop is also
possible. This increased asynchrony is achieved by the appropriate
interpretation of the repetitive -execution (specified either by
iteration or by recursion) of a dataflow operator or schema. When the
number of repetitions is determined at execution time, any resulting
concurrency is considered dynamic parallelism. Dynamic parallelism is
especially important since it may affect the time complexity of an
algorithm, or in other words, the potential speedup is a function of
the problem size. (A brief introduction to complexity theory can be

found in [111.)

A loop and a procedure are very similar in that both give rise to
many internal activities. For this reason we say that the set of
activities generated by a procedure or loop invocation not belonging

to any inner procedure or loop invocation, is a logical domain. 1If a

given logical domain contains an operator that 1invokes an inner
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procedure or loop, then that inner invocation itself comnrises a new

logical dnmain. An activity helongs to exactly one logical domain.

The purpose of the unfolding interpreter 1is to generate large
numbers of activities for execution by waiting processors. The more
asynchronous the interpretation of a projgram, the greater the number
of activities that might be generated and become ready for execution
at any given time [3]. To keep track of the activities, each is given

an activity name unique throughout the system. All tokens input to

the same activity carry (along with a wvalue) the same destination
activity name which is used to group together the operands of a single
activity for execution. The unfolding interpreter is the set of rules
that, in conjunction with the particular program schema being
executed, govern how activity names are generated. An activity name

has the form u.l.a.s where5

1. each operator in a dataflow procedure is given a unique
label s ;

2. each procedure a is encoded as a structure «, such that
the wvalue als] is the encoding of the cperator labeled
s 7

3. i.a.s identifies the it? eyecution of operator s in

procedure « ;

u is the unique name or context of the logical domain;

all activities 1in logical domain u have the same domain
L
context u .

NaN
o

We now give informal activity name manipulation rules for

5The notation for activity names used here is slightly different from
the notation in {[6].
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function, wvrocedur> application, and loop schemata. Additional
details can be £found in [5]). In the following, s' denotes any
successor o>perator of operator s (i.e., an output of s is connected to
an input of s') and we regquire each operator to perform the work done
by a fork Dy replicating and distributing output to each successor

operator. Also, we assume that tokens are given port destination

numbers so that the order of operands to each function is determined.

Functions and predicates: dperator s (Fiqure 2.8) executing the

function T as activity u.i.a.s typically demonstrates operators
of this class. The determination of destination activity names
is straightforward for functions and predicates since u, i, and «
are unchanged. For each successor s' of s, only the 1label s'
(and destination port number) need be copied from the program
code to yield the destination activity name u.i.a.s' for the

tokens output from s .

Procedure application: The elements of procedure application f(x)

were demonstrated 1in Figure 2.6 . The A operator creates a new
logical domain and passes the argument value to that domain. Let
the activity name of an instance of A be u.i.a.s . The context

u' of the new logical domain 1is generated by "stacking” the
activity name of the 27! nate operator of A so that u'=u.i.a.s' .
Thus the destination activity name for initiation of the
procedure is u'.l.B8.b where the i field is initialized to the
(arhitrary) value 1, and B is the procedure value (actually a

pointer to memory holding the procedure code) which arrived on

line €, and b is the standard name of the BEGIN operator in every
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procedure. The BEGIN operator is an identity function and so was
described above. The END operator reverses the effect of A and
returns the result back to the <calling 1logical domain by
"unstacking" its activity name to reveal the 1logical return
address u.i.a.s' . Finally, ATl (in the calling domain) receives
the result value and acts as an identity function with respect to

that result.

we note that the "stacking" of context within individual
activity names implies an activity name of unbounded length.
However, the implementation length of ar activity name can be
limited to reasonable size by use of a unique number generator

(which can be distributed) as discussed in [19].

initiation and execution: Loop initiation and termination

(Figure 2.7) 1s similar to procedure apnlication, where the L and
L™~ onerators change the «context Jjust as do the A and A“1
operators, respectively. Changing context <creates a logical
domain and allows independent executions of the same loop to go
on concurrently. This commonly occurs with nested loops (i.e.,
the outer loop creates n initiations of the inner loop) and is a
major source of parallelism 1in our machine. Every activity
executed in a loop logicel domain has u' in the context field of
its activity name. Mor=2over, for each initiated loop, a unique
activity name must be created for each repeated execution of the
same operator. This 1is done by the D box which simply increments
the i (or iteration count) field of the activity name (set to 1

by the L Dbox at 100w initiation). Finally, at loop exit the
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matrices a and b, of dimension {-by-m and m-by-n,

procedures are not the simplest way to write matrix

+
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method was chosen t»o

but this

to reduce s3imulation costs.
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recreating
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A Progjramn and Analysis of its Time Con
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do
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d « apvend(d,j,(

innerprod
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,

for kx from 1 to m do

retirn transi ;
procedure amt {a, bt, L, n,
(inicial c « A
for i Zrom 1 to ¢ do
rowa ¢« ali) ;
new C <—append({c,i,
initial da <« A
for 3 from 1 to
colb « btl
new
initial
new
return

return a))
return c);

Matrix multiply is

innerprod
innerprod))

<

-
9
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Thomas

y sets  the iteration count
ne the LT hox "destroys" the
t32 orijyinal context.
nplexity
riv matrix multiply on two
respectively. These
multiply in 1Id,

nlexity arguments as well as

1,11)

0

innerprod 4 rowalkl*colblk]

invoked by the call mmt(a,transpose(b,m,n),£,m,n).

The following analysis concerns the procedure mmt that multiplies
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matrix & and the -ranspose ol matrix b. The purpose of the analysis
is to describe how the unfclding interpreter is able to <cause large
numbers of activizies to be created with corresponding reduction in
time complexity. For the moment we assume unbounded resources, we
also ignorz communi-cation and memory conflicts as these are considered
in Sections 3 and 4 . Finally, select and apnvend are assumed to

require constant time (Section 3.2.4).

The i-loop of procedure mat (the outermost loop) produces all
values for i in time linearly proportional to ¢, i.e., O({) time (see
Figure 2.lCa). However, once all values of 1 from 1 through £ have
been computed (or even before then), instances of the j-loop (there
are £ of them) can begin execution, each of which requires 0(n) time
(Figure 2.18b). The result of each j-loop having produced all values
of j from 1 through n is that n instances of the k-loop will have been
created by each j-loop; that is, a total of {n k-loop instances will
have been created. Each k-loop instance computes an inner product in
O (m) time. When a k-loop has completed, it returns its value (an
inner product) to the Jj-loon that <created 1it. Thus each J-loop

instance receives one inner product from each of n comnleted kK-loops.

Each j-locn collects these n inner products in 2(n) time to form one

(-]

ts row to

(=D

row, 4, of the result matrix. Finally, each j-loop returns
the i-loop which collects the rows together in O(f) time to form the
result matrix c¢. Adding up time in the order described, the overall
processing time complexity of procedure mmt is
0(£)+0(n)+0(m)+0(n)+0(L) = O(L+m+n), assuming that ~at least O(Ln)
processors are available. The corresponding time complexity for a

sequential machine is O(tfun). This significant difference in time



complexity demonstrates the ef “ect of dynamic parallelism, whereby the
unfolding interpra2ter can Jenerate large numbers of <concurrent

activities and thus demand processors in place of time.

3.6 THQ ARCHITECTURE
3.1 Princ.ples

Three basic principles have guided the design presented below.
First is concurrency achieved through distribution. This is the most
basic behavior we are trying to> achieve in activity execution, token
transmission, and structure access. In nractice this means that
although it is desirabhle to achieve, for examnle, a short access time
for structures, it is more important to Aesign for large numbers of
slow bhut concurrent accesses than to design for a few accesses that
are fast but sequential. UTistribution, however, must he tempered by a

second principle, locality, meaning that activities logically close

together should b= executec physically close together. We have
selected the logical domain (Section 2.3) to be the unit of
localization. That is, each logical domain is confined to some small

sub-sectioa of the nachine since the activities within a logical
domain aras more likely to communicate with one another than with

activities outside that domain. A third principle, redundancy, can

affect both concurrency and locality. For exanple, the memory system
may keep multiple copies of the same structure value in disjoint areas
of the machine to allow <concurrent access to local copies of

information.
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We wish to empnhasize that the design discussed here 1s intended
to help discover how dataflow programs behave, and to test some ideas
for exploiting that behavior. It 1is not intended to be a final
design. With that in mind, we mention two important design goals that
we feel are more easily met in dataflow than with a von Neumann system

but which we have not as yet attacked. These include:

- modularity: The machine should be constructed from only a

few different component types, bhut internally these
components will probably be quite complex (e.qg., a

processor).

- reliability and fault-tolerance: Components should he
pooled, so removal of a failed component may lower speed and
capacity but not the ability to complete a computation. New
opportunity in this area 1is evidenced by the wuse of
redundant values in the memory system which may prove useful
in case a copy of data is lost throuqgh component failure.

3.2 Description of the Machine

3.2.1 Units of Measure --

We have experimented with wvarious machine configurations and

- . . . . 5
component speeds by detailed, deterministic simulation. The
following paragraphs describe the machine in dAetail according to a

standard configuration. Unless otherwise stated for any particular

experiment, all parameters assume their standard wvalue. Time is

-

referenced in terms of time units.’ Physical capacities, such as

6The simulator itself comprises a 450¢ line program written in SIMULA
and runs on a PDP-143,

7 . S .
When necessary, for example, to determine the feasibility of a device
operating in x time units, we eguate one time unit with 10@
nanoseconds.
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storage words or jueue lenaoths, have no physical 1limit in the
simulation. although finite working storage at various points in an
actual machine can lead to deadlock if exceeded, we feel that work on
detailed deadlock avoidance schemes at the architecture level is pre-

mature. (Deadlock at the Id program level is impossible.)

3.2.2 A Physical Domain -

A physical domain (Figure 3.1) comaprises an interconnection of
) ¢

processing elements (PE), memory contrcllers (MC), and memory boxes

(M). All PEs within a physical domain are connected to a pair of

shift-register token buses. The buses are connected at their ends

(points A and A' in Figure 3.1) to form a pair of <counter-rotating
rings. Each ring is partitioned into a numher of token slots and each
slot is either empty or holds one fixed-length token. There 1is one
token slot per ring per PE. Physically, each token carries its
<value, destination activity name> pair, as well as a physical PE
destination address (explained later). We assume this plus other
control information totals to 108 bits per token. The rings shift
together, so each shift brings two new token slots to the front of
each PE. If the PE's address matches the physical PE destination
address on a token facing it, the PE removes the token from the ring
(this also produces an empty slot). A PZ may fill any empty ring slot
facing it with an output token. For the standard configuration we
have assumed a toxen bus shift of 4.0 time units, or equivalently a
maximum of one token in and one token out of each PE every 2.0 time

units.

The basic unit of computation is the activity. When a result
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token 1s produced by a Pz, the PE evaluatas an assignment function

that maps the tokan's ogjical destination activity name onto a
physical ?PE address. Any two PEs intending to send a token to the
same activity must use the same assignment function. Given a fixed

number of PEs and an unbounded number of activities, more than one
activity may be assigned to the same PE for execution. Thus each PE
must accept all tokens that are sent to it and sort those tokens into
groups by activity name. When all input tokens for an activity have
arrived, the PE may execute that activitv. At the end of execution,

the PE queles the activitv's ~atnut tokons -5 ayait  emnty  tsken bus

9

slots.

5

Structure values are not explicitly carried by tokens but rather
are Kkept in a memory, SO a token necd only carry a pointer to the
structure that it lojically transmits. (Since a given activity may
manlpulate only a small part of a structure, a great deal of

communication load can thus be avoided, though we emphasize ajgain that

<

(o8

this memory system is not seen by the I

P

programmer.) In the standard

configuration, four PEs are connected together and to a memory

controller by a single-message-at-a-time local bus. fach memory
controller 1s a fairly sophisticated machine that controls the
random-access memory hox (assumed to bz interleaved arrays of 32-bit
words) asso>ciated with it. 211 memory <cnn“rollers in a vphysical
domain are themselves interconnected hy a single-message-at-a-time

global bus so that 2very PE has (indirect) access to any structure

value held in th2 machine. although

ot

he memory of the dataflow
machine is distributed over tho memory boxo:, it is organized into one

unified address space to facilitate sharin;. For example, say a PE is
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to execute a select on structure a, M T then  asks  the memory
system to do the ooneratiorn hy sending a request over the 1ocal bus to

the memory controll . r to whizh that P8 15 a'tached, called the local

memory con:roller. If a is availahle in the 1ncal controller's memory

box, the controller can carry out the reguest on « and then return a
z i

response to the requestiny PE. If a 13 not local, then the local
memory <coircroller mist forward the regqusst to  the proper distant

memory controller for acticon. The distant controller then returns its

response to the local <controller. Both the request and response
messages traveling between memory controllers move on the global bus.
Finally, waether a was local or distant, when the local memory

controller has the result it is returned to the PE that initiated the

original reguest.

Figure 3.2 shows details of a P organized as a pinelined

Q
processor. mach box in the figure i3 a unit that performs work on
one ltem at & time drawn frem FIFO innut gquese{s). Loaically, tokens

+
Al

enter the PE from rinjgs at the top of the Tijure while new tokens are
cutput to the rings at the bottom. e -connection to the 1o2al bus is

shown at the left.

Functional Operation of a PE

lre functlion of the sorter is to group tokens by activity name.

8 . . . . . . . .
The PE architecture described here was pipelined to simplify coding
the sinulator. The degree of concurrency appropriate within a PE has
not yet been determined.
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The sorter requires 4.0 time units to process cach token with the aid

of an associative table keyed on activity names. When an activity

name 1is presented, the table returns a pol: t:r to the list of tokens

gathered for that activity (kept in a fas' !»ocal scratch pad memory).
The token is then added to that list. Zacl token carries a number
specifying the total number of input to¥2ns required to complete an
activity. If the newly arrived token i3 the last token, an activity

item pointing to the list of input tokens is created and sent to the

code fetch box.9 Each successive bhox then adds more 1information to

the activity 1item as it passes through the PE until processing is

completed.

Upon receipt of an activity item with name wu.i.a.s, the code
fetch box 1is responsible for retrieving the operation code a[s]. To
speed operation, the code fetch box employs a 1local cache to hold
previously fetched dataflow code. If the needed code 1is already
present in the cache, the code is immediately added to the activity
item which then mova2s to the next stage in the PE. 1If the code is not
present in the cache, a code structure select request is placed in the
local bus input gqueue and the activity iten is held in the code fetch
box until the selected item is returned. {this does not bprevent the
code fetch box from initiating work on th%e next activity item in its
input gueu=.) Responses from the memory system to the PE are returned

over the local bus. These responses are quecued and then serviced in

FIFO order by the aonpropriate nox within the PE, For the case at
1S J . . .

This description of code fetch corrervonds to the simulator
implementation. Alternatively, code fetct could be initiated as soon

as the first token for an activity arrives, or in fact as soon as the
assignment function for a given logical dorain is known.
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hand, a response to a code fa2tch request contains the activity's
operation <code and the information necessary for the PE to construct
the output tokens' destination activity names. The code fetched |is
also entered 1into the PR5 cache with keys a and s . No delay is
charged in the simulator for code fetch if the code is found in
the cache; otherwise the time charged to the activity item is the
memory resdonse tim2 for the associated request. Note that the order
in which activity items leave the code fetch box is not necessarily

the order in which they entered.

After code fetch, the activity item moves to one of two boxes.

The data fetch box issues memory requests and receives memory

responses for structure operations (select and append) ; the
aritbmetic/logical unit, or ALU, carries out all dataflow operations
not requiring the memory system (such as SWITCH, +, etc.). The data
fetch box operates just as code fetch, sending requests and receiving
responses from the memory, except that there is no cache. Thus all
select and append operations are actually carried out by the memory
system.lﬂ The time an activity item remains in the data fetch bhox is

determined solely by the response time of the memory to each reguest.

On the other hand, each ALU operation is fixed at 18 units of time.

After proceeding through either the data fetch or ALU, the
activity item (with the result of the particular operation attached to
it) moves to the output box. Tokens are manufactured by the output

box at a rate sufficient to match the token bus, which in the standard

10, .
wWe expect that a data cache would have little effect on performance
unless blocks of data were fetched instead of single values.
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confiquration is a maximum »f two tokens every 4 units of time.
During this time, the box must copy the result, assign a destination
activity name (Section 2.3)11, and map the activity name to a physical
PE address by evaluating the assignment function. The output box then
selects the token ring that jives the shortest distance path from the
present PE and plac=s the token in the appropriate output queue. From
here tokens move in FIFO order into empty token slots as they appear

on the ring in front of the PE.

The Assignment Function

The assignment of activities to nhysical PEs is very important.
A good assignment function promotes concurrency and locality, while a
poor one can destroy machine performance (in Section 4 we demonstrate

some results on different assijnment functions).

Concurrency 1s achieved by distributing the activity workload
over the PEs of th: physical lJomain. Locality is promoted by mapping
all activities within a single logical domain onto the same (physical)

sub-domain, defined to be the set of PEs attached to the same memory

controller. A physical domain with 32 PEs and four PEs per memory
controller has eight sub-domains. Wheﬁ the number of logical domains
created exceeds the numbér of sub-domains, several logical domains
will be assigned to the same physical sub-domain and compete for PE
resources. (The <competition 1s actually at the 1level of the

activities within each logical domain.)

11, . . .
This is true excent when the context u is stacked or unstacked. In

such cases, we hava assigned this work to the ALU and charge 19 units
of time.
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The following is a simple assignment function which promotes both

locality and concurrency. The jth logical domain to be created, in

7
L“, i¢ assigned to sub-domain (j mod q) where gq 1is the

time order
number of sub-domains in tha physical domain. Within a sub~-domain,
activity u.il.a.s is mapped onto PE number (s mod 4) since there are
four PEs (numbered @ through 3) per sub-donain. Figure 3.3 shows the
effect of this assignment function on program execution where tokens
in adjacent sub-domains do not intermingle, save for the passing of
arguments and returning of results. This promotes concurrency in

execution and in token transmission since the sub-domains may be

active at the same time.

12This implies the

resource to keep tr
for ease of simu
distributed method

existence of a centralized memory cell or other
K of the latest value of j. We chose this method
ator programming though we envision using a
ith similiar effect) in an actual machine.
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3.2.4 Inside a Memory Controller -

To discuss the operation of a memory controller, we must first
discuss data reprasentation. Program <code 1s a special case of
structures so the following covers both data and program

representation.

Representation of Structures in Memory

Each level of a structured value v may be represented in the
system in either of two13 distinct ways, where each représentation
implies dicferent time complexity for select and append operations,
and different space requirements. Table T gives these requirements
for a structure with n selectors at a given level. The contiguous
vector (or dope-vector) representation allows for quick access and is
essentially the technique wused in FORTRAN, ALGOL, and other von
Neumann languages. An examnle of a structured value v in vector
representation is shown in Figure 3.4a . Select 1is straightforward
and requires only constant time. However, since dataflow values are
never modified, appand requires that the vector first be copied
(although sub-structures, 1if any, need not be physically copied as
shown in [16,19]) and the new value inserted at the correct position
to create the result. An important exception occurs when there is
only one token referencing v (which <c¢an be determined wusing a
reference count scheme). Here the input value v will no longer be

used after the append anyway, so v can be updated in place to give the

13

Another representation ve have investinarted is termed selector
vector [19]. This representation 13 nus»>f31  for structures which
contain string or svarse inteqer selectors. Since the test programs
studied here do not maninulate such  structures, we have omitted

discussion of the selector vector renresontaion.
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result dir=ctly. In this case append requires only constant time
(assuming sufficient contiguous space is available for the new value

if a new selector i3 being appended).

The alternative representation is a 2-3 tree [2] shown in Figure
3.4b . Briefly, a 2-3 tree is a "halanced" tree (the length of any
path from the root to any leaf is the same) where each interior node
in the tree has either 2 or 3 out-branches. A selecévoperation may be
done by a recursive search that follows a path through the tree to the
leaf that contains the selected value. Each interior node holds
information about the selectors below it, so a path, if it exists, can
always be found. Append involves copying a path and allows sharing of
common sub-trees. An algorithm for select appears in [2] while append
is discussed in [30]. Both append and select have 0O(log n) time

complexity.

The standard configuration uses vector representation for program
code. Vector representation 1is also used for each input data
structure until the first append when it is automatically converted to
a 2-3 tree. The structure then remains 1in 2-3 tree form 1in
anticipation of further appends. However, 1in many algorithms the
automatic conversion on append is best overridden to reduce the time
complexity of subsequent structure accesses. For example, in
procedure mmt of Section 2.4 only one pointer to a given row of the
result matrix exists at any given time during its formation. Thus |if

. . 14 .
enough contiguous space 1is allocated”™’ when computation of a row

14, . . . ) , .
'his is analogous to dynamic allocation of wvectors in ALGOL and
could be specified by the programmer or perhians by compiler analysis.
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begins, t!en each append can te done in constant time resulting in a
matrix 1i:.: vector format. Hence, ignoring conflicts, memory access

need not i1crease the time complexity of matrix multiply.

The Memor, Cache System

To increase concurrency and locality, we have devised a cache
system (independent of the PE cache) wherein each memory controller
acts as a cache to the rest of the memory system. To show how this
operates, assume that a memory controller receives a select(a,i)
request from a PE and that a is not local. The local controller then
requests the distant controller to send a copy of the entire top level
of the structure a to the local controller, rather than have the
distant controller do the select. When the copy is received by the
local. controller, it makes an entry wiﬁh key a in an associative table
which points to where the copy di of «a is 1locally held. Any
subsequent operations on « can then be carried out on «' independent
of those carried out on «. Recall that this can happen only because
dataflow structures are never modified. Also, the internal

representations of the structure at o« and at a' need not be the same.
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Functional Operation of a Memory Controller

Figure 3.5 shows a detailed view of a memory controller and
associated memory box. The transmission of an entire level of a
structure resulting from a copy reguest can require significant global
bus time. For this reason, and to maks scnder-receiver coordination
easier, there is a separate copy processor and memory port provided
for copy data transmissions. Thus when a distant memory controller's
request processor services a copy request, it gives the request to the
copy processor which then transmits the structure over the global bus
to the copy processor at the 1local <controller. In the standard
configuration, the sending copy processor transmits only the leaves of
2-3 trees which are then converted back to 2-3 format by the receiving

copy processor. Structures in vector format are transmitted and

Stored directly.

Concerning rates and capacities, the time <charged to a memory
controller to process a reguest depends upon several factors including

data representation, memory spzed, and menory controller speed. In

general, the simulator charjes 6§ units of overhead for each regquest

message, plus the time to do the actual operation. Select and append

fde

require the number of operations specified in Table T multiplied by
1.5 time units per word. Each select ans anpend reguest messagje is
four words and requires 2.4 units of transmission time per word.

Structure copy bus transmission time 1is as specified in Table I

multiplied by #.4 time units par word.
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4.7 MACHINE PERFORAANCE

We envision a full scale mnachine to he an n-dimensional
interconnection of some large number of physical domains (Section 3)
although w2 have limnited this initial study to a single physical
domain. Our intent was to answer some simple questions: Does the
unfolding 1interpreter actually provide for more asynchronous
computation? If so, does it allow for increased speed of execution as
more processors are added to the pool? And finally, to what extent do
our working hypotheses -- the anticipated relationships between

locality, distribution, concurrency, and redundancy -- actually

operate? /

The experiments involved rsnning dataflow programs on a simulated
machine which monitored the programs' executions. All programs15 were
written in id and then macéine compiled and lonaded into the simulator
for execution. Many experiments were repeated on more than one type
of dataflow program, though due to cost not all experiments could be
repeated on all programs. Also, only the mmt procedure part of matrix
multiply, Section 2.4, was used in the matrix multiply experiments
presented here. (The ©presence of procedure transpose in matrix
multiply has no effect on the overall time complexity since transpose
requires only O(m+n) time. This prediction was confirmed by test

cases as was the distribution of results from transpose to ensure

satisfaction of procedure mmt's input assumptions.) Finally, we have

15 X L . .
The programs used were matrix multiply (procedure mmt), optimal

binary search tre2 generation, Gauss-5eidel linear equation solver,
Gaussian elimination, recursive quicksort, and fast Fourier transform
(both an iterative and a recursive version).
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multiply has no effect on the overall time complexity since transpose
requires only O(m+n) time. This prediction was confirmed by test

cases as was tihe distribution of results from transpose to ensure

satisfaction of procedure mmt's input assumptions.) Finally, we have

15, . . .
The programs used were matrix multiply (procedure mnmt), optimal

binary search tre2 generatisn, Gauss-3eidel linear equation solver,
Gaussian elimination, recursive guicksort, and f.st Fourier transform
(both an iterative and a recursive version).
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efficlency = ———m— s * 100
cummulative potential busy time of all ALUs

i.e., efficiency is directly related to the mean ALU duty cycle. Note
that execution time was reduced by up to a factor of 13.7 for
procedure mmt (43453 time units for a system with 1 PE, 3123 units for

603 PEs).

The second point shows that computation speed increases (up to a
limit) as available processor resources increase. In the Introduction
we noted suach behavior would e desirable because it demonstrates
independence of physical processor configuration (both size and shape)
from the programs executed. We expect this to be important in easing
problems in programming, scheduling, and reliability (fail-soft).
Moreover, the existence of performance fall-off can be blamed on an
unsophisticated assignment function that forces computations to be
distributed over the physical domain even when such distribution is
inappropriate. The résult is under-utilized PEs and 1increased
communication delays since there is an increase in mean token distance
and a decrease in the probahility that any given structure is local to

the PE needing it.

The other curvas in Figure 4.1 show Fimilar, if not as dramatic,
results for other programs except for the iterative fast Fourier
transform (FFT) wnich did not do well at all. Although the behavior
of iterative FFT is not «completely understood, it appears to be a
combination of several factors. These factors include scheduling

anomalies and anwanted synchronization imposed by the append

operation in constracting structured values. In some programs, this
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synchronization can be removed by usinn a new pipelined (or streamlg)

append operation resulting in dramatically improved performance.
However, we have so far been unable to devise an iterative FFT (with
or without streams) that performs as well as recursive FFT. Recursive
FFT performs well because it uses a "divide-and-conquer" method, and
because the size of the data structures manipulated progressively
decreases at each recursive call. Jnder dataflow, pairs of
divide-and-conguer recursive calls are done asynchronously and
therefore in parallel. This means that recursion is often faster than

looping.

4.2 Complexity Experiments

Recall from the analysis of matrix multiply in Section 2.4 that
the processor time complexity (ignoring comnmunication complexity) was
O(r) for procedure mmt on two r-by-r matrices. To determine the
actual execution time cémplexity, we performed the speedup experiment

~

for all problem sizes from r=2 through r=2 . The bottom <curve in

£

ots tae minimum time for each speedup experiment against

(o)

Figure 4.2 p
r and shows that th=2 unfolcding interpreter was indeed operating with
O(r) exezution time complexity. In addition, when processor
efficiency (ALU duty cycle) is accounted for, processor utilization is
O(r2) as predicted by the analysis. To explain the other curves in

Figure 4.2, we must first discuss time complexity a bit more.

15 . - . .
Id provides for stream variahles (5] in which a segquence of values
may be pinelined through a program. However, the simulator system is
not yet cansable of "“andling streams.
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Processors are just one c¢f the resources being demanded by a

program. 'We must also consider other resources -- memory controllers,
the global memory bus, the tokan bus -- and their «ffect on actual
execution time complexity. Exactly one copy of each row of the

input matrices is assumed to exist initially and these rows are
initially distributed over the available memory boxes. The analysis
in Section 3 assumed that the number of PEs available, and thus memory
controllers, is O0(r®) while the number of input rows is 0(r). Thus
there are plenty of controllers and memory boxes. However, procedure
mmt requires access to all elements of each row r times since each row
participates in r inner products. So each of as many as 2r memory
controllers (the number of rows) sees O(rz) accesses. Thus the memory
controller time complexity is O(r2). (Note that it is 1irrelevant to
the memory controller complexity analysis whether a row is copied from

a distant to a local memory controller or not.)

The global memory bus experiences an even heavier demand than the
2
memory controllers. There are O(r“) accesses to each of the possible

2r memory controllers which must send these elements over a single

fixed  bus. Thus the global memory bus time complexity is O(r3

) .

(This might not be the case if more than one physical domain were

present.)

FFinally we consider the bi-directional shift register token bus
with its 1intensive intra-logical domain communication. To determine

the token bus time complexity, note that both the number of logical
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domains and the nphysical sub-domains to which they are assigned is
0(r®) sinca2 for these experiments O(rz) PEs are available. Since the
intra-logical domain communication on the bus is concurrent (Figure
3.3), then these domains are non-interfering and have essentially
constant token communication time within each domain. (This agrees
with experimental results where the overall mean token communication
distance was always between one and two shifts when the standard
assignment function was used.) However, all r2 inner product domains
were originally produced from a single initial domain (the outer
i-loop). This means a chain of tokens must have passed from this
initial domain to each of the r? inner product logical domains
distributed along the bus. But the length of the bus 1is directly
proportional to the number of processors -- O(rz). Thus the length of
the longest token path from the initial logical domain to the last of

S, . . . 2 .
the r” 1aner product logical domains is O(r”) -- the token bus time

complexity.

By the above analysis the global memory bus 1is the 1limiting
resource and constrains performance to 0O(r~). Nevertheless, the
bottom line in Figure 4.2 is (almost) linear because the constants in
the global memory bus time complexity term do not allow it to become
dominant when r<8 . For r>8 the above analysis predicts that the
apparently straight 1line will eventually become a cubic. Due to
constraints in the simulator oa the PDP-19 we were not able to go
beyond r=3 ; but to wverify the expected behavior, we 1instead
unbalanced the machine and lowered the memory system speed by the

factors indicated 1in the other two plots in Fiqure 4.7 . Lowering

memory system speed increases the constants in the qlohal bus and
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memcry controller time complexity, causing the machine to reach more

quickly the predicted execution time complexity of O(r3).

Another example of a time complexity experiment 1is Figure 4.3a
which shows measured execution time for the two versions of FFT,
recursive and 1iterative, ©previously discussed. Processing time
complexity analyses for these two nrojgrams are 0O(n) and O(n log n)
respectively, as borne out by the slight curve 1in iterative FFT.
These times are both O(n log n) on a sequential machine. Fiqure 4.3b
shows time complexity graphs for a Gaussian elimination algorithm to
solve simultaneous linear equations. The time complexity for a single
processor is O(n3) while the processing time complexity for our

dataflow system is O(n2

) as demonstrated by-the experimental results.
Similarly, recursive quicksort has an average time complexity of 0¢(n)
on the dataflow machine as sﬁown in Figure 4.3c ; on a sequential

machine quicksort has 0O(n log n) average time complexity.

We have found time EOmplexity analysis to be a wuseful tool 1in
understanding dataflow machine behavior, as well as aiding in
selection among design alternatives. We note that the overall time
complexity has been shown to include token bus, memory bus, and memory
controller time complexities wnich together represent a "communication
time complexity" factor not explicitly present in algorithmic analysis
on standard von Neumann systems. It is clear that communication time
complexity is important, and w2 expect it may become the dominant term
in future systems and algorithmic design. This conclusion 1is very
similar to that reached by Sutherland & Mead in their speculative

article [29].
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4.3 Flow Analysis

A major difficulty in evaluating a system 1is devising adequate
measures. Section 4.2 showed that time complexity can be a useful
tool for understanding system behavior. The usual measures such as
queue lengths, time to execute a program, and the duty cycle of

various units are also helpful. However, flow analysis17 was most

useful in determining resource balance and the location of bottlenecks

(imbalances).

Both activity flow analysis and memory request flow analysis are
used. Let the term item refer to a token or to an activity item, and
let the block diagram of a PE (Figure 3.2) represent a sequence of
stations through which items must pass (ecach queue is also interpreted
as a-station distinct from the station it serves). Activity flow
analysis <consists of measuring the mean time spent by alf items at
each station, and interpreting this time as the time spent at a
station by some hypothetical "mean" item. For instance, Table II
shows an activity flow analysis for two runs of procedure mmt at r=7
where <column (a) 1is the result for the standard configuration. The
mean token time in the sorter Jqueue over all PEs was measured as .81
units. Thus we say that the hypothetical token spent 6.8l time units
waiting in the sorter queue. Similarly for the other measures, though
of <course no one real activity item passed through both a data fetch
box and an ALU box. 1In these cases we say the hypothetical mean item

spent (d/n)*t. of its time in a data fetch box (where d of the n total

d

l7E‘low analysis 1s related to "longest nath" analysis discussed in
(317.
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activities passed through a data fetch box with measured mean time

td), and ((n=-d)/n)*t of its time in an ALU box. For example, in

ALU
the case of Table IIa 15.6% of the activity items passed through data
fetch boxes with mean service time of 21.79 units to yield a data

fetch time of 3.4 . The sum of the times for all boxes and queues

listed 1is the cycle time of a hypothetical activity. Table IIb shows

a flow analysis for the same program but on a machine differing from
the standard configuration only in the speeds of the local and global
buses. These analyses pinpoint the system imbalances. In fact, our
dataflow machine was 1initially set with local and global bus speeds
corresponding to Table IIb . They were then changed to what is now

the standard configuration to better balance the system.

Memory request flow analysis creates a hypothetical mean memory
requést and measures its time in the system from creation until its
originating PE receives and processes the corresponding hypothetical
response (see Figure 3.2 and 3.5). The fact that not all messages
require the global bus or a distant memory controller is accounted for
by proportioning the measured times by the fraction of requests that
did access the global bus and some distant memory controller. Table
III presents the memory reguest flow analyses for the same runs that
produced the respective activity flow analyses of Table II. Again the

imbalances in resources are immediately evident.

We consider the weighted means given by flow analysis to be more
indicative of overall performance for an asynchronous (dataflow)

machine than the corresponding raw means. In addition, flow analysis

factors ou:z "waiting time" such as the time between the arrival of the



K.P. Gostelow and R,FE. Thomas Page 41

first token of an activity and the last token. Although waiting time
is important in considering buffer requirements, it appears otherwise

to have little effect on average machine performance.

4.4 Locality, Concurrency, Distribution

A primary effect we wish to achieve is concurrency of execution,
induced by distributing (more or less) independent activities over
many processors. But activities should not be distributed
indiscriminantly -- program locality should be considered. Locality
is evidenced in token and memory commnunication distances and is

determined largely by the assignment function used.

Figure 4.4 shows a speedup curve for procedure mmt with r=7 for
four ‘different assignment functions called A, B, C, and D. Following
the princfple illustrated by Figure 3.3, assignment functions A, B,

-th

and C map the j logical domain that 1is created onto physical

sub-domain d by the formula
d = J mod q

where g is the number of physical sub-domains in the machine. Again,
this confines all activities in 1loaical domain u to physical
sub-domain 1, regardless of how large that logical domain miqght be.
Assignment function A (described wopreviously) then maps activity

u.l.a.s ontd> PE p within physical sub-domain d by the formula

Consicder what happnens when recursive procedures or nested loops are



J
[§
!
“
-
et
C)
o
oY
ae)]
V]
d
]
g

present in a program. In assignment function A, distinct initiations
of the same procedure or loop are assijned identically within the
boundaries of a ohysical sub-domain. The same PE then executes the
same operators within those 1logical domains resulting 1in very

effective use of the PE's code fetch cache.

Assigament funz>tion B is used for the standard configuration

and is similar to A except that distinct 1initiations of the same
procedure or 1loop assiqgned to the same phyvsical sub-domain do not
(necessarily) have their activities assiqgned identically within that
physical sub-domain. The result is a "wider" distribution of
act;vities, and a la2ssening 1in <cache effectiveness, 1i.e., reduced
locality. As evid=nce of locality reduction, the mean code fetch hit
ratio in tne PE cacne was reduced frow 7.93 for assignment function A

to ©.82 ifor assigament-function B, in the case of procedure mmt with

A third assignnent function C distributes activities within a
sub-domain to a gJreater extent than either functions A or B by

including the term i in mapping u.i.c.s to PE p within sub-domain 4 :
D = (s+j+i) mod 4

The fourth assignment function D is nresent only to compare the
three above assignment functions with one which distributes activites

without regard to sub-domain. Function D is

P = (s+3) mod ({3%4)



where (g*4) is the nunber of TEs in & nhysical Adomain.

Another wview of the comparisor. amona the four assignment
functions is offered by the activity flow analvses in Table IV for the
pcint at A& PEs from each of curves A-D (Fiqure 4.4), respectively.
Note the effect of locality on code fetch, output, and token bus
times. Performance differences for the locality-exploiting assignment
functions A-C are slight compared to the clear performance loss of
assignment function D. Although reasons for performance differences
among A-C are interesting to hypothesize, we have not yet conducted

sufficient experiments to explain these cdifferences in more detail.

5.0 CONCLUSIONS

Our eventual goal is ton cdesiqgn a system that exploits the full
potential of LSI technclogv. To achieve this goal, we have adopted

<

the semantics of dataflow as the hasis for 3 vroaramming lanouage and

8

machine since it allcws us to avoid meny of the problems that confront

current multiprocessor systems.,

This paper has outlined a base dataflow language and the
unfolding interpreter that generates the asynchronous activities
executed by the processors in our machine. Also shown was the
high-level language Id and a detailed description of a part of an

architecture for implementing the unfolding interpreter.

Our purpose in experimenting on this machine was not to show that
it was fast in any absclute sense, hut rather to answer some basic

-

guestions about dataflow and its feasibility as the bhasis of a



machine. In particular, we demonstrated that the unfolding
interpreter can gen:rate lérge numbers of activities, and that the
independenze of these activities allowed for increased execution speed
(up to a point) with the acdition of more processors to the system.
We verified several expectations concerning locality, cdistribution,
and redundancy, and their effects on the concurrency achieved in the
machine. We alsc confirmed our analyses of program time complexity
and concluded that communication time complexity 1is at 1least as
important 3s processor time complexity. 1In general we feel complexity
analysis is a useful tool for designers of such systems as 1is flow

analysis for uncovering bottlenecks and resource imbalances.

Of course, much work remains to be done. In particular, we plan
to revise several aspects of our initial design (e.g., the busing
systems) and to extend the machine from one to many physical domains.
Also plannad is further research into the acsignment and scheduling of
activities and determination of the ©proper size or ‘“"grain" of an
activity, aspects which are <certain to have significant impact on
machine performance. Other areas scheduled for investigation are the
determination of the benefits of data redundancy and the incorporation
of streams to avoid the unnecessary synchronization of dataflow

structures.

In summary, the results appear encouraging. The highly
asynchronous behavior we hoped to observe was indeed found in many
places to a degree suggesting that dataflow may be one way to wutilize

the power avparent in LSI technology, while also giving the programmer

a clean and useful semantic basis [5,12].
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(1)

(¢ roomory buses

stand.ara .27 speed of
station configurction standard configuration

sorter gucue .81 .53
sorter 4.00 4.00
ALU gueue 3.34 2.20
ALU 8.44 B.44
code fetch* 3.15 16.67
data fetch* 3.40 25.72
outnut* 3.80 3.35
toren bus 5.58 5.56
mean activity

cycle time 32.51 66.47

*
includes box and acsociated gueues

TABLE 11

Activity flow analyses for
7>7 matrix multiply using 60 PEs

(a) (b)
standard memory buses
station configuration @0.27 speed
Tocal bus gueue* .58 55.77
lccal bus* 3.20 12.00
lccal recucst
processor gueue 4.88 2.62
lccal reguest
processor 6.83 6.61
a obal time** 2.14 8.00
m2mory response
queue (in PE) 1.82 1.98
rsan memory reguest
cvcle time 19.49 86.97
*x
sum of rejuest (from PE) and response (from memory
controller) time
**pMean cycle time of all inter-memory controller
messages proportioned by fraction of such messages
out of all memory messages 4
TABLE III

Memory request flow analyses
for 7x7 matrix multiply using 60 PEs




standard

configuration
A B C D

sSOrter gueue .90 .B1 .68 .22
scrter 4.00 4.00 4.00 4.00
ALU gueue 5.75 3.34 3.53 .88
ALU 8.44 8.44 8.44 8.44
code fetch?* 1.23 3.15 5.36 2.54
date fetch? 2.86 3.40 3.51 2.45
outrut?* 3.85 3.80 5.86 23.94
token bus 5.16 5.58 6.54 19.11
mear. activity

cycle time 32.20 32.51 37.93 61.57

*
Includes box and asscciated cueu

£Q
Tz

Activity flow analy

re
each of curves A

TABLE IV

cs for run using €0 PEs from

, B, C, D (Figure 4.4)
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