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STORM: A Framework for Integrated
Routing, Scheduling, and Traffic

Management in Ad Hoc Networks
J.J. Garcia-Luna-Aceves, Fellow, IEEE, and Rolando Menchaca-Mendez

Abstract—A cross-layer framework is introduced for the effective dissemination of real-time and elastic traffic in multihop wireless

networks called Scheduling and Traffic Management in Ordered Routing Meshes (STORM). Unicast and multicast routes are

established in coordination with the scheduling of transmissions and bandwidth reservations in a way that bandwidth and delay

guarantees can be enforced on a per-hop and end-to-end basis. The routes established in STORM are shown to be loop-free and real-

time packets forwarded along these routes are shown to have bounded end-to-end delays. Results from detailed simulation

experiments show that, compared to a protocol stack consisting of 802.11 DCF for channel access, AODV or OLSR for unicast routing,

and ODMRP for multicast routing, STORM attains similar or better performance for elastic traffic, and up to two orders of magnitude

improvement in end-to-end delays, with twice the amount of data delivery for real-time traffic while inducing considerably less

communication overhead.

Index Terms—Cross-layer design, integrated routing, channel access, traffic management.

Ç

1 INTRODUCTION

THE price, performance, and form factors of processors,
radios and storage elements are such that wireless ad hoc

networks have become a reality. In theory, they constitute an
ideal vehicle to support disaster-relief and battlefield
operations, emergency search and rescue missions, and
many other distributed applications on the move. However,
in practice, these applications cannot be supported effec-
tively in these networks today. To a large extent, this is due to
the fact that the protocol architectures used in wireless ad
hoc networks, and mobile ad hoc networks (MANET) in
particular, are derivatives of the protocol-stack architectures
developed for wired networks and the Internet. The stark
differences between wireless and wired networks call for a
cross-layer approach to managing network resources in
support of information dissemination. Section 2 provides a
small sample of the considerable prior work focusing on
cross-layer approaches to routing and transmission schedul-
ing. The solutions that have been proposed in the past are
either based on centralized algorithms requiring too much
information at each node, or do not integrate routing and
scheduling with the establishment of bandwidth reserva-
tions and traffic management. Furthermore, prior solutions

do not address the integration of unicast and multicast
routing with transmission scheduling.

The main contribution of this paper is to introduce a new
cross-layer framework for the dissemination of unicast and
multicast flows that may be real time (e.g., voice conversa-
tions) or elastic (e.g., http). Section 3 presents an overview
of Scheduling and Traffic Management in Ordered Routing
Meshes (STORM). Section 4 describes the channel structure
assumed in STORM and the priority-based queuing system
used to handle signaling traffic, elastic data flows and real-
time flows. Sections 5 and 6 describe the neighbor protocol
and distributed transmission scheduling used in STORM.
This scheduling is coupled with a transaction-oriented end-
to-end reservation scheme for time slots, which is driven by
the establishment of routes to provide end-to-end band-
width and delay guarantees. Section 7 presents the interest-
driven approach used in STORM for unicast and multicast
routing. STORM is the first cross-layering scheme that
provides flow-ordered routing meshes consisting of multi-
ple paths from sources to destinations over which relays are
capable of establishing channel reservations that meet the
end-to-end requirements of the flows being routed. In
addition, STORM confines the majority of the signaling
needed to maintain such meshes to those nodes in the mesh
and neighbors of those nodes.

Section 8 shows that STORM establishes and maintains
loop-free routes from sources to destinations and, just as
important, that the reservations established along these
paths provide bounded end-to-end delays. Section 9
describes the results of detailed simulation experiments
used to study the performance of STORM and compare it
with the performance of a traditional MANET protocol
stack, which consists of the IEEE 802.11 DCF [9] for channel
access working independently of the routing protocols used
for unicasting (AODV [18], OLSR [12]) and multicasting
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(ODMRP [13]). We present results for multicast traffic only
and for combined unicast and multicast traffic. The results
show that STORM outperforms the traditional approach for
elastic traffic, and that it attains end-to-end delays that
comply with the ITU recommendations for voice applica-
tions [11], even in the presence of a highly loaded network.
The simulation experiments consider all the control and
data traffic generated by each protocol stack and show that
STORM incurs half the total overhead (control packets and
redundant data packets) while rendering up to two orders
of magnitude improvement in end-to-end delays compared
to traditional routing approaches over 802.11. STORM is
best suited for ad hoc networks subject to a variety of
multicast and unicast traffic, with some being subject to
delay or bandwidth constraints; however, STORM can
provide some performance improvements even in those
cases where the traffic is unicast and elastic (e.g., http),
because it avoids most packet collisions and limits the
signaling overhead needed for routing. The prize that must
be paid for this improved performance is the needed cross
layering of routing with scheduling and queuing, which
calls for a redesign of the protocol stack, and the need to
enforce clock synchronization to establish time-slotted
channel access.

2 RELATED WORK

Due to space limitations we present only a small repre-
sentative sample of prior cross-layering approaches at-
tempting to make routing and channel access more efficient
in ad hoc networks. Chen and Heinzelman [5] provide a
comprehensive survey on routing protocols that provide
some sort of support for QoS in MANETs, and Melodia
et al. [15] present a survey of cross-layer protocols for
wireless sensor networks.

Multiple access collision avoidance with piggyback
reservations (MACA/PR) [14] was one of the first
approaches attempting to integrate channel access, routing,
and traffic management. MACA/PR, which supports only
unicast traffic, extends the IEEE 802.11 DCF to incorporate a
bandwidth reservation mechanism and includes a modified
version of DSDV [17] that keeps track of the bandwidth of
the shortest paths to each destination and the maximum
bandwidth available over all possible paths. The first data
packet of a real-time flow makes reservations along the path
for subsequent packets in the connection. One-hop schedul-
ing information is piggybacked in data packets and ACKs
which reserve time-synchronized windows at specified
time intervals. Reservations are made taking into account
only two-hop neighborhood information and without
coordination with the routing protocol.

DARE [4] is a channel access protocol for MANETs that
provides end-to-end reservations. It is based on request-to-
reserve messages that travel from sources to destinations
through routes established by a traditional on-demand
routing protocol. Destinations reply with clear-to-reserve
messages that travel along reverse paths establishing the
actual reservations. Data packets also contain reservation
information and are used to refresh the reservations tables.
The main limitations of DARE are that reservations are
established at each hop of a path independently of the other

hops in the path, and routing decisions do not consider
information regarding reservations or any other data
collected for channel access. Cai et al. [3] propose an
algorithm for end-to-end bandwidth allocation that focuses
on maximizing the number of flows with bandwidth
restrictions that a MANET can accommodate. The dis-
advantage of this algorithm is that it requires global
resource information along the route and the route itself is
not considered in the optimization algorithm. Setton et al.
[20] propose a cross-layer framework that incorporates
adaptations across all layers of the protocol stack. The
proposed framework, however, is mostly based on centra-
lized algorithms and a link-state approach is needed, which
is not well suited for the highly dynamic MANETs or very
large ad hoc networks.

In the context of multicast communication, most of the
work has focused on static networks (i.e., [21], [22]). In these
works, the authors formulate the joint multicast routing and
power control problem [22] or the network planning
problem [21] as a cross-layer optimization problem. How-
ever, no proposals have been made on the integration of
scheduling and routing for many-to-many communication
using distributed algorithms based on local information.

3 STORM

STORM assumes that nodes share a single wireless channel
organized into time frames consisting of a fixed number of
time slots. The objective in STORM is to orchestrate the
scheduling, routing, and traffic management functions of a
multihop wireless network in a way that sources and
destinations of flows perceive the network as a virtual link
dedicated to the dissemination of those flows.

Accessing the time slots of each frame is based on a
combination of distributed elections of available time slots
and reservations of time slots. For those time slots that have
not been reserved, nodes use a distributed election
algorithm based on hashing functions of node identifiers.
A virtual link is created to support an individual real-time
data flow and is implemented by a set of nodes located at
directed meshes connecting sources to destinations. These
meshes are computed by means of an interest-driven [16]
routing algorithm that establishes an ordering over the
nodes based on their distances to the destination and the
bandwidth available to them. To provide the abstraction of
a virtual link, the routing algorithm also computes an end-
to-end channel access schedule for each data flow. The
schedules generated by STORM are such that delay
guarantees can be enforced on a per-hop and end-to-end
basis. The end-to-end schedules are instantiated by the
reservation protocol when the first data packet traverses the
flow’s routing mesh.

The routing meshes established by STORM provide a
fast and efficient way of repairing routes, because they
contain extra paths that can be used in case of link breaks.
This reduces the impact of node mobility on the quality of
service perceived by real-time flows. In addition, the
routing algorithm establishes enclaves, which restrict the
dissemination of control information to those nodes that
are likely to participate as forwarders of a given data flow,
rather than the entire network.
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STORM uses reservations and a priority-based queuing
system to implement and preserve the per-flow channel
access schedules. Nodes reserve time slots on behalf of real-
time data flows according to their end-to-end schedules and
use a priority-based queuing system to select the packets that
are transmitted on each slot. The queuing system is
composed of queues for signaling traffic, elastic (non real-
time) traffic and real-time traffic. A real-time queue is created
for every new real-time flow traversing a node, and it is
associated with the time slots reserved for the flow. During
the time slot reserved for a given flow, its associated queue is
given a higher priority than those assigned to other data
queues. This way, STORM establishes a dedicated queuing
network for each real-time flow to avoid interference among
multiple real-time flows traversing the same nodes.

4 CHANNEL STRUCTURE AND TRAFFIC

MANAGEMENT

Nodes share the same frequency band, and we assume that
clock synchronization among the nodes in the network is
achieved through a multihop time synchronization scheme
such as the one implemented in Soft-TDMAC [6] which is a
TDMA-based MAC protocol that runs over commodity
802.11 hardware. Nodes access the common channel
assuming that it is organized using a time-division multiple
access structure, which we call STORM frame and is
illustrated in Fig. 1. Each STORM frame is composed of
N time slots (from slot 0 to slot N � 1) and we use the
position of a slot within the STORM frame as the identifier
of the slot. A STORM frame does not have any particular
structure and any time slot can be used to transmit a
sequence of packets (signaling or data). There is only one
special purpose time slot used to admit new nodes to the
network. These admission time slots occur every A time
slots, with A� N , and are used by nodes to transmit their
first hello packets on a contention basis.

When a node is allowed to transmit over a time slot, it
fits as many packets as possible in it. Packets are selected
from the local transmission queues, which are FIFO and are
served using a priority-based algorithm.

Reservation packets have the highest priority (pRsv),
because quick consensus is needed on which nodes should
have access to which time slots. The next priority is given to
network-layer signaling packets (pctr), and data packets
waiting in data queues have the lowest priority. Data
queues can be either elastic or real-time, and real-time
queues are assigned higher priority (pRT ) than the priority
given to elastic queues (pelastic), given that jitter and

latencies are not as important for the latter. The priority of
a real-time queue created for flow f is increased from pRT to
pRTþ if the current time slot t was reserved on behalf of
flow f . Hello packets are transmitted with the lowest
priority (pHello� < pelastic) if more than hello period=2 sec-
onds but fewer than hello period seconds have elapsed since
the last time a hello packet was transmitted, because there is
no need for the information yet. However, if more than
hello period seconds have elapsed, then the neighborhood
information must be refreshed and hence the priority of the
hello packet is set to pHelloþ > pctr.

To summarize, during a time slot allocated to a node, the
relationships among traffic priorities are: pHello� < pelastic <

pRT < pRTþ < pctr < pHelloþ < pRsv.

5 NEIGHBOR PROTOCOL

Routing, reservations, and transmission scheduling in
STORM use distributed algorithms that require each node
to know the nodes within its two-hop neighborhood. The
neighborhood of a node consists of those nodes whose
transmissions the node can decode, which we call one-hop
neighbors, and the one-hop neighbors of those nodes are
called two-hop neighbors. More formally, let G ¼ ðV ;EÞ be
an undirected graph with a set of vertices V representing
the set of nodes present in a wireless ad hoc network and a
set of edges E. Any two nodes u and v share an edge ðu; vÞ 2
E if they are one-hop neighbors (i.e., within radio
transmission range) of each other. For any node u 2 V , we
denote INðuÞ ¼ fv : ðu; vÞ 2 Eg as the one-hop neighbor-
hood of u and INðINðuÞÞ as the two-hop neighborhood of u.

To gather two-hop neighborhood information, each node
transmits hello messages periodically every hello period

seconds, and each such message contains a list of tuples
for the node itself and for each of its one-hop neighbors.
Each tuple is composed of a node identifier, a list of the
identifiers of the time slots reserved by the node, and the
length of the list of reserved slots.

Each node stores the last hello message received from
each one-hop neighbor (or simply neighbor) in its neighbor
list. A neighbor is deleted from the neighbor list if no hello
message is received from that neighbor in three consecutive
hello periods.

It is worth noting that the neighbor protocol in STORM
is very similar to approaches used in traditional routing
protocols that also require neighborhood information (e.g.,
OLSR) in that hello messages are transmitted unreliably
but persistently, and convey information about local
neighborhoods.

The neighbor protocol is also used to detect when two
nodes in a two-hop neighborhood have reserved the same
slot. To resolve a conflicting reservation, the node with the
larger identifier keeps its reservation over the particular slot,
whereas the node with the lower identifier has to give up its
current reservation and start a new reservation transaction
over a different slot. The main source of these conflicting
reservations is node mobility, which changes the neighbor-
hood of nodes. The neighborhood information contained
in hello messages allows nodes to detect these collisions
before the conflicting nodes become one-hop neighbors.

GARCIA-LUNA-ACEVES AND MENCHACA-MENDEZ: STORM: A FRAMEWORK FOR INTEGRATED ROUTING, SCHEDULING, AND TRAFFIC... 1347

Fig. 1. Channel structure in STORM.



6 TRANSMISSION SCHEDULING

The channel access algorithm used in STORM (see Algo-
rithm 1) consists of three simple ways to determine which
node should transmit in a time slot. On every slot t with
identifier ðt mod NÞ, node u with identifier idu first checks if
it is the owner of the slot (i.e., if ðtþ iduÞ mod N ¼ 0) and if
so, u can access the channel. If node u does not own the slot, it
checks if the owner is present in its two-hop neighborhood
(i.e., if there is v 2 INðINðuÞÞ such that ðtþ idvÞ mod N ¼ 0).
If this is the case, then node u listens to the channel.

If there is a collision of the mod operation, the time slot
is not considered as owned by any of the contending nodes
and a hash-based election is held among the nodes
participating in the collision. If the owner of the time slot
is not present in the two-hop neighborhood, node u checks
if it has a reservation on the slot (t mod N), in which case it
can access the channel. Otherwise, node u checks if there is
v 2 INðINðuÞÞ such that v has reserved the slot (t mod N). If
that node exists, node u listens to the channel.

If none of the two previous conditions are met, node u
employs a hash-based election scheme [1] to select the node
that can access the network. Node u computes the priority
of each node v in its two-hop neighborhood as ptv ¼
Hashðidv � tÞ � idv where � is the concatenation operator
and Hash is any hash function with good uniformity
properties. Node u can access the channel if ptu > ptv for any
node v in its two-hop neighborhood. Otherwise, node u
listens to the channel.

The rationale for this approach is twofold. First it attains
the simplicity and efficiency of prior schemes based on
hash-based elections (e.g., NAMA [1] and ROMA [2]),
which have been shown via analysis, simulations, and real
deployments to establish dynamic transmission schedules
in real dynamic networks, some with vehicular speeds, and
to provide higher throughput than 802.11 DCF. Second, it

alleviates the “coupon collector’s” problem [7] that arises in
probabilistic hash-based elections, which is important to
establish and modify schedules quickly for real-time traffic.
Fig. 2 illustrates some of the benefits of our scheme by
showing the results of a simulation experiment that
compares the average number of slots needed in NAMA
and STORM (even without reservations) for all the nodes in
a two-hop neighborhood to access the channel. In the
experiment, the size of the two-hop neighborhood was
varied from 30 to 80 nodes with steps of five nodes. Each
point in the graphs represents the average over 100,000
independent runs. The results indicate that the use of a
simple slot assignation technique such as slot ownership
reduces the mean and standard deviation of the channel
access delay per node. Further work is also needed to solve
the coupon collector’s problem more effectively.

6.1 Channel Reservations

When a node becomes part of a persistent real-time data
flow, i.e., when it starts transmitting real-time data packets
for a source-destination pair, it uses the reservation protocol
to reserve future slots to be used on behalf of that particular
real-time flow. Unlike many prior channel access schemes,
the selection of a particular slot r 2 ½0; N � 1� in the STORM
frame is controlled by the routing layer, so that the channel
access schedules of the relays of the flow are flow ordered.
The relays of a flow are flow ordered if every single one of
them can access the channel in a time-ordered sequence of
slots. To achieve this behavior, a node x that is relaying data
packets toward destination D employs (1) to compute the
interval of flow-ordered slot identifiers corresponding to its
current distance to D (dxD). In (1), slotD is a reference
selected at random by D from the interval ½0; N � 1� and
� 2 f1;�1g indicates the direction with which data packets
are flowing at node x. For the case of unicast flows � always
takes the value of 1, whereas for multicast flows it takes the
value of 1 if the data packets are traveling from the source
toward the core of the group, and �1 if the data packets are
traveling from the core to the receivers. The objective of � in
(1) is to establish two consecutive schedules, one from the
source to the core using � ¼ 1 and the other from the core to
the receivers using � ¼ �1 (see Fig. 3)

½ðslotD � �dxD�Þ mod N; ððslotD � �dxD�Þ
mod N þ�Þ mod NÞ:

ð1Þ
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By reserving slots from these intervals, any two con-
secutive nodes ni and niþ1 (with distances to destination D:
dniD þ 1 ¼ dniþ1

D ) that lay in a successor path p ¼ fs; n1;
n2; . . . ; Dg established by the routing algorithm will have
the right to access the channel within a maximum time of
2�� seconds, where � is the size in number of slots of the
interval defined by (1) and � is the length in seconds of each
time slot. Values of � close to the length of the STORM frame
(N) have the effect of imposing no ordering when establish-
ing the reservations, while values of � close to one impose
very strong restrictions when looking for a suitable free time
slot. Fig. 3 shows an example where a data flow between
source S and destination D composed of nodes D1, D2, and
D3 is supported by nodes n1 and n2. In the figure, nodes n1,
n2, D1, D2, and S use (1), a reference slot slotD disseminated
by the core D1 of the destination and their distances to D1 to
compute their corresponding intervals of flow ordered slot
identifiers. The interval computed by n1 equals ½slotD �
2�; slotD ��Þ because it is located two hops away from D1

and data packets are flowing from the source to the core
(� ¼ 1), whereas the interval computed byD2 equals ½slotD þ
�; slotD þ 2�Þ because it has a one distance to the core and
data packets are flowing from the core to a receiver (� ¼ �1).
The figure also illustrates how the mod operations used in
(1) are needed to “wrap around” the STORM frame, such as
in the case of node S.

In addition to the reservation of slots, a node that
becomes part of a real-time flow has to create a new real-
time queue associated with the flow and with the set of slots
reserved on behalf of that flow. As we mentioned in
Section 4, during a reserved time slot, the priority of this
particular queue is raised to pRTþ, which is higher than the
priority of the remaining data queues (real-time or elastic).
Hence, no packet from a different flow is transmitted
during these slots unless the queue under consideration is
empty. This way, STORM guarantees that the bandwidth
reserved on behalf of a real-time flow is actually used by
that data flow, and that different flows that traverse the
same node do not interfere with each other breaking the
per-flow ordering of the end-to-end reservations.

As it is described in Section 7, the successor paths
employed to transport real-time flows are established using
nodes that have reported to have available slots in their
intervals of flow ordered slot identifiers. This way, STORM
increments the probability that these nodes successfully
reserve the adequate slots in the STORM frame.

6.1.1 Reservations: Control Signaling

The process of reserving a time slot begins by finding a free
slot in the interval defined by (1). A free slot for node x is a

slot not currently owned or reserved by any node in its two-
hop neighborhood, including x itself, and that is not in the
process of being reserved. The information needed to verify
these conditions is stored in three data structures, namely,
the Neighbor Lists, the Ongoing Reservation Lists, and the
Reserved Slot List. The Neighbor Lists stores information
regarding the identity of nodes and reserved slots within the
two-hop neighborhood and is maintained by the Neighbor
Protocol. The Ongoing Reservation Lists stores information
regarding ongoing reservations and is maintained by the
Reservation Protocol. The Reserved Slot List keeps track of
the slots that are currently reserved by the local node x. For
each reserved slot, this list also stores the identifier of the
queue that is associated with the slot. This queue’s identifier
is further used to update the priority of that particular queue
(from pRT to pRTþ) during the reserved slot.

Once a free slot slotc is identified, a node with identifier
idx transmits a Reservation Request RsRx ¼ ðidx; slotcÞ
packet to its neighbors and waits for N� seconds to collect
the replies from them. If all the nodes v 2 INðxÞ reply with
Reservation Granted RsG ¼ ðidx; slotc; idvÞ packets grant-
ing the reservation, and neither RsRy ¼ ðidy; slotcÞ such
that idy > idx, nor RsG ¼ ðidy; slotc; idwÞ such that idy > idx

are received; then node x considers the slot slotc as
reserved by itself and moves that slot from its list of
ongoing reservations to its list of reserved slots. Otherwise,
node x selects the next free slot in the interval and
transmits a new reservation request. This procedure is
repeated until a time slot is successfully reserved or all the
free slots in the interval defined by (1) have been tested. In
the latter case, nodes wait for a mesh announcement (MA)
period (e.g., 3 seconds) and retry the reservation process.

Upon reception of an RsRx ¼ ðidx; slotcÞ, a node with
identifier idu replies with an RsG ¼ ðidx; slotc; iduÞ granting
the reservation if none of the following conditions are true:
the owner of slot slotc is present in the one-hop neighbor-
hood of node u ( 6 9v 2 INðuÞ : ðslotc þ iduÞ mod N ¼ 0), a
node in u’s one-hop neighborhood holds a reservation over
slotc, or there is a concurrent request owned by a node with
identifier idy such that idy > idx. Otherwise, node u replies
with a Reservation Denied RsD ¼ ðidx; slotc; iduÞ packet.

Nodes refresh their reservations by means of hello
messages for as long as they are part of the corresponding
flows. When a node receives a hello message from the
owner of a given reservation that no longer contains that
reservation, it considers that reservation as terminated.

6.1.2 Maintenance of End-to-End Reservations

During the lifespan of a real-time flow, nodes must ensure
that the end-to-end sequence of reservations is maintained,
even in the presence of topological changes. If node x is
actively relaying real-time data packets toward a given
destination and detects that its distance to that destination
has changed from dxD to d0xD, then x cancels all its current
reservations related to that destination and requests a new
set of reservations on the appropriate slots, i.e., slots in

½ðslotD � �d0xD�Þ mod N; ððslotD � �d0xD�Þ
mod N þ�Þ mod NÞ:

Similarly, if the value of � of a given flow changes from � to
�0, then x cancels all its current reservations related to that
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flow and requests a new set of reservations on the
appropriate slots, i.e., slots in ½ðslotD � �0dxD�Þ mod N;
ððslotD � �0dxD�Þ mod N þ�Þ mod NÞ. In our implementa-
tion, nodes do not immediately react to a change in their
value of � or their distances to the destination; instead, they
enter a hysteresis period to verify that the change is stable
and not a transient event.

7 LOOP-FREE INTEREST-DRIVEN ROUTING AND

END-TO-END SCHEDULING

7.1 Meshes and Enclaves

Routing in STORM is based on destination meshes, routing
meshes, and enclaves. To integrate unicast and multicast
routing, a destination D is treated as a connected destination
mesh containing one or more nodes. In the case of a unicast
data flow, D is a singleton that contains a node with
identifier D, whereas in the case of a multicast data flow, D
contains the members of a multicast group, as well as a set
of nodes needed to keep D connected. We refer to this set of
nodes used to maintain D connected as the multicast mesh
of D (MMD).

STORM adopts the interest-driven approach introduced
in [16]. However, unlike our prior work, the routing
meshes used in STORM have the restriction that each node
in those paths is flow ordered. As discussed in Section 6.1, a
node is flow ordered for a given real-time flow if and only
if the node can reserve a time slot (or set of time slots) at
the appropriate position in the STORM frame as required
by the end-to-end schedule of the flow. In the example of
Fig. 3, a flow-ordered routing mesh consisting of a single
path from S to D is shown. Elastic flows are routed using
simple loop-free paths from sources to destinations, and
they have no end-to-end restrictions, given that they do
not have to be flow ordered. In the rest of this paper,
unless otherwise stated, we refer to routing meshes for
elastic or real-time flows simply as routing meshes.

Enclaves are used to confine the dissemination of
signaling packets into connected regions of the network
that contain those nodes with interest in a given data flow.
The enclave of a destination D (ED) is the union of the
destination D, the set of active sources S, the routing
meshes used to connect the elements of S with D, as well as
nodes located one hop away from them. Once an enclave is
established, it is used to restrict the dissemination of control
information to those nodes that are part of the enclave.

Meshes and enclaves are activated and deactivated by the
presence or absence of data packets and are initiated and
maintained by the unicast destination or by a dynamically
elected representative of the multicast destination.

The first source that becomes active for a given
destination sends its first data packet piggybacked in a
Mesh Request (MR) packet that is flooded up to a horizon
threshold. If the interest expressed by the source spans
more than the single data packet, the intended receivers of
an MR start the process of establishing and maintaining its
routing mesh and enclave. A mesh request (MRS

D)
generated by source S for destination D and transmitted
by node B is a six-tuple of the form: ðhorizon, persistent,
idS , dBS , idD, snBS Þ, where horizon is an application-defined

horizon threshold used to limit the dissemination of the
MR, persistent 2 ftrue; falseg is a flag that indicates the
persistence of the interest, idS is the sender’s identifier, dBS is
the distance from the sender, idD is the destination’s
identifier (unicast destination or multicast group), and snBS
is an identifier for the message.

7.2 Information Stored and Exchanged

STORM uses mesh announcements to establish and main-
tain routing and destination meshes, to publish the avail-
ability of time slots in their corresponding flow ordered
intervals, to coordinate end-to-end schedules for real-time
flows and, in the case of a multicast group, to elect the core of
the group. As long as there are active sources, the elected
core or unicast destination periodically floods the enclave of
the destination with MAs that contain monotonically
increasing sequence numbers.

A mesh announcement (MA�BD ) transmitted by node B for
destination D is a eight-tuple of the form: ðid�B; core�BD ; sn�BD ;
d�BD ; mm�BD ; next�BD ; slot�BD ; ordered�BD Þ, where id�B is the
identifier of B, core�BD is either the identifier of the core of
the multicast group D known by B, or the identifier of the
unicast destination, sn�BD is the largest sequence number
known by B of destination D, d�BD is the distance of B to the
core of D (the destination itself in the case of a unicast
destination). The flag mm�BD is multicast-specific and
indicates whether B is a mesh member (MM), a multicast
group member, both, or a regular node (REG). The
identifier next�BD denotes the preferred next hop of
node B toward the core of D. The time slot identifier
slotD is randomly selected and is used in (1) as a reference
to pick out the slots that will be reserved by the relays of a
data flow. Lastly, ordered�BD is a flag that indicates whether
B has free slots in the interval defined by (1), i.e., if B is
flow-ordered for destination D.

For a given destination D, a node maintains a neighbor-
hood list LD that stores an ordered set composed of the
MAs that the node has recently received from its neighbors
regarding that destination. In our notation, and to differ-
entiate from an announcement that has just been received,
an announcement received from neighbor B that is already
stored in LD is denoted as MAB

D (with the � dropped).
The announcements stored in LD are also augmented

with a time stamp (ts) obtained from the local clock and are
ordered using a strict total order relation � which is
defined as follows:

MAB
D �MAA

D ,
�
snBD < snAD

�
_
�
snBD ¼ snAD ^ dBD > dAD

�
_
�
snBD ¼ snAD ^ dBD ¼ dAD ^ idB < idA

�
:
ð2Þ

A node x also keeps track of the core of the destination
(corexD) which is dynamic in the case of a multicast
destination, the largest sequence number known for the
destination (snxD), its current distance to the core (dxD), its
feasible distance to the core (fdxD), its preferred next hop
toward the core (nextxD), the reference slot identifier (slotxD),
its mesh membership status flag mmx

D that in the case of a
unicast destination has no meaning, and a set of (source’s
address, �)-pairs. Each pair indicates the direction in which x
is forwarding the data packets of a given source-destination
flow. In the case of a unicast destination � always equals 1
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and in the case of a multicast destination � can take values in
f1;�1g depending on x’s position in the routing meshes. The
initial value of the routing state is as follows:

LD  ;; corexD  nextxD  nil; snxD  0; dxD  fdxD
 1; slotxD  INVALID SLOT;mmx

D  REG

(regular node), and � 1.

7.3 Processing Mesh Announcements

Node x accepts a MA if it contains a sequence number equal
to or larger than the current largest sequence number stored
at node x, or if it is the first time that a MA is received from
B (3). The MA is dropped otherwise

LD  
LD [

�
MA�BD

�
if MAB

D 62 LD
LD �

�
MAB

D

�
[
�
MA�BD

�
if snxD � sn�BD

LD if snxD > sn�BD :

8><
>: ð3Þ

x’s feasible distance to the core of D (fdxD) is a nonincreasing
function over time that can only be reset by a change of core
or by a new sequence number (4). Feasible distances are
used to select a feasible set of next hops toward the core. The
elements of a feasible set are not necessarily flow ordered

fdxD  
d�BD if sn�BD > snxD
min

�
fdAD; d

�B
D

�
if sn�BD ¼ snxD

fdxD otherwise:

8<
: ð4Þ

The sequence number stored at node x for the core of
destination D (snxD) is a strictly increasing function over
time that can only be reset by a change of core

snxD  max
�
snxD; sn

�B
D

�
: ð5Þ

The distance to the core of destination D of node x (dxD) is
computed using (6) and the relation � defined in (2). By
definition, the core of the group has a 0 distance to itself and
its feasible distance is always 0. In this paper, distances are
measured in number of hops, and hence the cost (lc) of an
existing link is 1. The core of a unicast destination is always
the destination itself

dxD  
diD þ lcxi : max

i2LD:sni
D
¼snx

D

fig if such i exists

1 otherwise:

(
ð6Þ

The address of the next hop to the core of D (nextxD) is also
computed using the relation � defined in (2), the current
values of the feasible distance and sequence number, and
the flow-ordered flag

nextxD  
idi : max

i2CFx
D

fig if such i exists

nil otherwise;

(
ð7Þ

where

CFx
D¼fi : i2LD ^ fdxD¼diD ^ sniD¼snxD ^ orderediD¼ trueg

is the set flow-ordered feasible neighbors of node x for
destination D. When routing elastic data packets, CFx

D is
relaxed to Fx

D ¼ fi : i 2 LD ^ fdxD ¼ diD ^ sniD ¼ snxDg, which
is the set of x’s feasible neighbors for D. By selecting next
hops according to (7), STORM establishes loop-free directed

meshes composed by nodes that have reported to have
available time slots at the adequate positions in the STORM
frame, and hence, that are capable of instantiating the flow’s
end-to-end schedule.

Lastly, if a node x receives a MA advertising a core with
a larger identifier then LD is set to fMA�BD g; corexD is set to
core�BD , and the other parameters are set as follows: fdxD to
d�BD ; dxD to d�BD þ lcxB; snxD to sn�BD , and nextxD to idB and slotxD
to slot�BD . Otherwise, if core�BD < corexD, then the MA is
simply discarded.

The mesh membership flag mmx
D 2 fRM;MM;RCV ;

REG;NILg indicates whether x is a regular node, a group
receiver (RCV), a mesh member or both group receiver and
mesh member (RM). As we have already mentioned, mmx

D

equals nil in the case of a unicast destination. A node x is a
mesh member if and only if

9y 2 LD : mmy
D 6¼ REG ^mm

y
D 6¼ NIL ^ d

y
D > dxD

^ nextyD � idx ^ ts
y
D þMA period 	 ct;

ð8Þ

where tsyD is the time stamp added to y when it was stored
in LD, ct is the current value of x’s clock, and MA period is
the value of the MA-period.

The routing algorithm computes the end-to-end channel
schedule of a data flow (it determines who and when data
packets are forwarded), and the reservation protocol is only
in charge of generating an instantiation of this schedule.

7.4 Transmission of Mesh Announcements

A node transmits MAs to inform other nodes about updates
in its routing state. These updates can be originated by such
internal events as a change in the group membership status
(a node joining or leaving a multicast group) that modify
the value of mmx

D, or the generation of a new sequence
number in the case of the core; or by an external event such
as the reception of an MA�BD from neighbor B. Therefore,
whenever the core of a destination generates a new MA
with a larger sequence number, the latter is disseminated
along the enclave advertising the new sequence number (5)
and establishing next hop pointers toward the core (7). The
mesh composed of these next hop pointers from a source to
the core is called the routing mesh of that source.

In the case of a multicast destination, a MA transmitted
by a multicast group member R, forces R’s next hop (n) to
update its mesh membership status according to (8). If this
changes the value of mmn

D, then n must transmit a new MA
to advertise its new state. This way, nodes that lay in paths
p ¼ R; n; n1; . . . ; nk; coreD with nextRD ¼ n; nextnD ¼ n1; . . . ;
nextnkD ¼ coreD are forced to become multicast mesh
members, creating a connected component that contains
all the receivers of a multicast group and that we have
denominated as the multicast destination. The set of nodes
MD ¼ fy : mmy

D ¼MR _mmy
D ¼MMg form the multicast

mesh of the multicast destination D.

7.5 Multicast Destinations and Core Elections

Upon reception of a MR, a multicast group member first
determines whether it has received a MA from the core of
that group within the last two MA-periods. If that is the
case, no further action is needed; otherwise, the receiver
considers itself the core of the group and starts transmitting
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MAs to its neighbors, stating itself as the core of the group.
Nodes propagate MAs based on the best MA they receive
from their neighbors. An MA with a higher core id is
considered better than one with a lower core id. Therefore,
if a node receives a MA advertising a core with a larger id
than the current core, then the new core is adopted and a
new MA advertising the new core is transmitted. Even-
tually, each connected component has only one core.

7.6 Packet Forwarding

When a source has data to send, it checks whether it has
received an MA advertising the intended destination
within the last three MA periods. If that is the case, the
sender simply broadcasts the data packet; otherwise, it
broadcasts an MR.

Upon reception of a data packet, a node checks for a hit
in its data-packet cache. If the (sender’s address, sequence
number) pair is already in the cache, the packet is silently
dropped. Otherwise, the receiving node inserts the pair in
its cache and determines whether it has to relay the data
packet or not. If the node is part of the destination, it also
passes the data packet to upper layers.

Equation (9) is used by node x to decide if it has to
forward a data packet with destination D received from
neighbor y.

mmx
D ¼ RM _mmx

D ¼MM _ 9y 2 LD :

dyD > dxD ^ next
y
D � idx:

ð9Þ

Equation (9) states that node x forwards a data packet
received from node y if x is part of the multicast mesh or if x
was selected by the previous relay (y) as one of its next hops
to the core. This way, data packets travel along directed
routing meshes until they reach either the first mesh
member or the destination itself and then, in the case of a
multicast destination, they are flooded along the multicast
mesh. As we mentioned in Section 7.4, elastic data packets
follow directed meshes composed of a single path and real-
time data packets are routed using directed meshes
composed of multiple flow-ordered paths. In the case of a
unicast destination, the first two terms of (9) are always
false; hence, nodes only forward data packets if they are
part of a selected source-destination shortest path.

Lastly, if a node x receives a multicast data packet
generated by a source s from a neighbor y 2 LD it updates
the value of � in the (ids; �)-pair according to

� 
1 if dyD > dxD ^ next

y
D � idx

�1 if dyD � dxD ^mm
y
D ¼ RM _mm

y
D ¼MM ^

mmx
D ¼ RM _mmx

D ¼MM:

8<
: ð10Þ

This way, nodes adapt their end-to-end schedules
according to their positions with respect to the core of the
multicast group and the multicast sources.

8 CORRECTNESS IN STORM

We show that no directed loops can be formed in the nodal
routing tables, and that the end-to-end reservations estab-
lished along routing meshes attain bounded end-to-end
delays for real-time traffic. In our proofs, we assume that the
network is connected, and that distances are measured in

number of hops and hence a link cost (lc) is either 1 or
infinity. Let the current routing state stored at node ni
regarding destination D be sniD ¼ ðidni ; core

ni
D ; sn

ni
D ; d

ni
D ;

fdniD ;mm
ni
D ; next

ni
D Þ, and let �s be a total order relation

defined in the same way as the relation of (2) but over the
routing state of nodes. In the case of a unicast destination,
coreniD stores the address of the destination itself.

Theorem 1. Any successor path p ¼ fn0; n1; . . . ; nkg with
nextn0

D ¼ n1; next
n1

D ¼ n2; . . . ; nextnk�1

D ¼ nk established
using the data structures and procedures described in
Section 7.2 is loop-free.

Proof. From (2) to (7) we have that nextniD ¼ nj ¼) sniD �s
s
nj
D and hence, for any path p ¼ fn0; n1; . . . ; nkg we also

have sn0

D �s s
n1

D �s 
 
 
 �s s
nk�1

D �s snkD . Now, let us pro-
ceed by contradiction and assume that a loop is formed
in p when a node ni selects nx as its next hop. Then, we
would have s

nx
D �s s

ni�j
D �s 
 
 
 �s sniD �s s

nx
D , which is a

contradiction. tu

The proof of Theorem 1 makes the implicit assumption
that the distances from nodes to the destination cannot be
increased for a given sequence number. Theorem 2 relaxes
this assumption by allowing nodes to remove neighbors
from their LD and then update dxD according to (6).

Theorem 2. Considering the case of Theorem 1, let p ¼
fn0; n1; . . . ; nkg be a successor path with nextn0

D ¼ n1;
nextn1

D ¼ n2; . . . ; nextnk�1

D ¼ nk, then any change of successor
along that path does not create loops.

Proof. The proof is by contradiction. Assume that a cycle is
formed when node ni selects nx (after removing ny from
its neighborhood list LD or after receiving an update that
disqualifies ny as a feasible successor) as its next hop. It
follows from (7) that, for nx to be selected by ni as its next
hop, nx has to be an element of the feasible set of next
hops of ni for destination D, i.e., an element of
Fni
D ¼ fn : fdniD ¼ dnD ^ snnD ¼ sn

ni
Dg. Now, if nx 2 Fni

D and
given that lcninx > 0, we have dnxD ¼ fd

ni
D < dniD . Therefore,

either sniD �s s
nx
D or nextniD ¼ nx ¼ nil. In the first case, the

same contradiction of Theorem 1 is reached, i.e., that
s
nx
D �s 
 
 
 �s s

ni
D �s s

nx
D . In the second case, it follows that

a cycle with a nil element must exist, which is also a
contradiction. Therefore, the theorem is true. tu

Now, let p ¼ fn1; n2; . . . ; nDg be a flow-ordered successor
path of length l with nextn1

D ¼ n2; next
n2

D ¼ n3; . . . ; nextnl�1

D ¼
nD as computed by STORM following (7), and let nD be the
destination of a packet transmitted by n1. If all nodes in p
reserve a slot in the interval ½ðslotD � �dniD�Þ mod N;
ððslotD � �dniD�Þ mod N þ�Þ mod NÞ where slotD is any
slot identifier, dniD is the distance in hops from a node ni
to nD as computed by (6) and � < N , then the following
theorems can also be proved:

Theorem 3. The maximum end-to-end delay experienced by a
real-time data packet that fits in a time slot and is transmitted
either from n1 to nD or from nD to n1 is ��l.

Proof. It follows from (4), (6) and (7) that a node ni can select
niþ1 as its next hop to nD if and only if dnnD þ 1 ¼ dnnþ1

D .
Hence, if nextniD ¼ niþ1, then ni must select a slot in the

1352 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 11, NO. 8, AUGUST 2012



range ½ðslotD � ð�dniþ1

D þ 1Þ�Þ mod N; ððslotD � ð�dniþ1

D þ
1Þ�Þ mod N þ�Þ mod NÞ when establishing a reserva-
tion, while niþ1 must select a slot in the range

½ðslotD � �dniþ1

D �Þ mod N; ððslotD � �dniþ1

D �Þ
mod N þ�Þ mod NÞ:

If the data packet is transmitted from n1 to nD the value
of � for both nodes ni and niþ1 equals 1 (10) and if the
data packet is transmitted from nD to n1 the value of � for
both nodes ni and niþ1 equals �1 (10). In both cases, the
maximum distance between any two slots selected from
these intervals is 2�. Following this reasoning, the end-
to-end delay is increased by a maximum of � slots by
adding an extra next hop to the path. From Theorem 2
we know that any successor path p established by
STORM is loop-free; hence, a packet that follows p will
take at most ��l seconds to reach its destination.

We have to show that another real-time flow, say fx,
that intersects flow f1D at one or more nodes cannot affect
the end-to-end delay of a packet of f1D. We proceed by
contradiction. Assume that, at node ni 2 p, a packet of
flow fx is transmitted instead of a packet of f1D during a
slot that was reserved on behalf of flow f1D (increasing the
delay experienced by the packet of flow f1D). From
Section 4 we know that the priority of f1D’s queue at this
particular slot is higher than the priority of any other data
queue. Therefore, no data packet could have been
extracted from a queue different to f1D’s queue. tu

Theorem 3 holds even in the case of a multicast flow
following a path p that traverses its multicast mesh to reach
the core of the group. This is true because all the nodes in p
use (10) to set their values of � to 1. Lastly, Theorem 4
characterizes the delay experienced by a real-time multicast
data packet.

Theorem 4. The maximum end-to-end delay experienced by a
multicast real-time data packet that fits in a time slot and is
transmitted from n1 to the multicast group D is ��ðlþmÞ
seconds, where l is the length of a successor path connecting
the source n1 with the core c of D and, m is the length of the
longest successor path consisting of mesh members connecting
any multicast receiver to c.

Proof. We have two cases. In the first case, the successor
paths that connect n1 to the destination reach the core
without touching any other mesh member. From
Theorem 3 we know that the longest it can take a data
packet to reach c is ��l seconds. Let r be the receiver
connected to c by the longest successor path pl ¼
fr; n2; . . . ; cg. From (9) we know that nodes in pl must
forward the packet transmitted by n1, and from (10) we
know that the value of � for source n1 in all these nodes
equals �1. Hence, the longest it can take a data packet to
travel from c to r is ��m seconds (Theorem 3). Therefore,
the maximum end-to-end experienced by a data packet is
��lþ��m. In the second case, the successor paths that
connect n1 to the destination reach a set of mesh
members before reaching the core c. From (10) we know
that the value of � equals 1 in all the nodes that lay in
successor paths from n1 to c; therefore, the delay

experienced by the data packets to reach the core c is at
most ��l. Lets consider an arbitrary successor path p ¼
fr;m1; . . . ; cg composed of mesh members that connect a
receiver r to the core c and let mi be the first node in p
that receives the data packet from a node mj closer to the
core (i.e., a data packet flowing away from the core and
toward a receiver). If no such node exists, then r received
the packet when the latter was traveling toward the core
and hence, its delay is less than ��l (Theorem 3). Given
that mj is either the core or is relaying the packet toward
the core, it follows from Theorem 3 that it relays the data
packet at most ��ðlþ 1Þ seconds after it was originated
by n1. Moreover, because � equals �1 in mi (10), the
interval computed by node mi using (1) starts at least
��dmi

D seconds after the beginning of the interval of the
core. Therefore, mi already has the packet generated by
the source at the beginning of its own flow-ordered
interval, which starts ��ðlþ 1þ dmi

D Þ seconds after the
data packet was generated by the source. Lastly, we can
use Theorem 3 to argue that the packet will take at most
��ðm� dmi

D � 1Þ more seconds to reach r. tu

9 PERFORMANCE RESULTS

We present simulation results comparing STORM with
ODMRP for the case of multicast traffic, as well as AODV
and OLSR for the case of unicast traffic. In our experiments,
ODMRP, AODV, and OLSR run on top of IEEE 802.11 DCF
and all the protocols use a 802.11b physical layer. We selected
these protocols because they have become de facto baselines
for performance comparisons of multicast, unicast, and
channel access protocols. Even though they were not
designed for real-time traffic, they are a good reference that
allows us to highlight the performance gains of our
approach. We use packet delivery ratio, generalized group
delivery ratio, end-to-end delay, and total overhead as our
performance metrics. To measure total overhead, we count
all the packets generated by each protocol stack, which for
the case of STORM includes data packets, MRs, MAs, hellos,
and reservation packets. The generalized group delivery
ratio is a multicast-specific metric in which a data packet is
considered as delivered, if and only if it is received by at least
a given proportion of the multicast group members. This
metric emphasizes the importance of group delivery by not
considering packets that are received by a small subset of the
group members. For this paper we set a threshold of
80 percent. The total overhead is computed as the average
total number of packets transmitted by each node.

We employ random waypoint (RW) and a combination of
random waypoint and group mobility [8] models as our
mobility models. In our combined scenarios, the members of
a given multicast group move following the group mobility
model, whereas nodes that do not belong to a multicast
group move according to the RW mobility model. This
combined mobility model depicts more accurately common
situations where the members of the same rescue team or
military patrol tend to move close by. The node speeds used
in the simulation experiments vary from 1 to 20 m/s (or 3.6 to
72 Km/h) to cover pedestrian and vehicular speeds. This
range of speeds is the same that has been used in the past by
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prior work for the analysis of routing and dynamic
transmission scheduling in dynamic ad hoc networks.

We used the discrete event simulator Qualnet [19]
version 3.9, that provides a realistic simulation of the
physical layer, and well tuned versions of ODMRP, AODV,
OLSR, and IEEE 802.11 DCF, which we call “WiFi” for
simplicity. Each simulation was run for 20 different seed
values. All the multicast protocols use the same period of
3 seconds to refresh their routing structures (join query
period for ODMRP and announcement periods for
STORM). STORM’s frame size is set to 200 slots and each
slot has a duration of 0.5 ms. The value of � introduced in
Section 6.1 is set to 20, and was manually set following
the rationale described in Section 6.1. For ODMRP, the
forwarding group time-out was set to three times the value
of the join query period, as advised by its designers. Table 1
lists the details of the simulation environment.

Because of space limitations, we do not show results for
networks subject only to unicast traffic, and discuss only
simulation results for multicast and combined traffic.
However, the results observed in simulations for unicast

traffic follow the same pattern we discuss for the case of
networks subject to unicast and multicast traffic.

9.1 Multicast Traffic

In these experiments, each MCBR source transmits
10 packets of 200 bytes (which is the output size of the
G.711 VoIP coder [10]) per second and the multicast group
is composed of 20 nodes. In the first set of experiments
nodes move around inside of a mobile square region of
900� 900 m2 and the remaining 80 nodes move following
the random waypoint mobility model. In the second set of
experiments, the totality of the nodes move following the
random waypoint mobility model. Sources are not group
members. For STORM simulations, one out of three sources
is defined as real time. For instance, in a scenario with six
MCBR sources, two of them are defined as real time and the
other four are defined as elastic. The selection of the real-
time sources is random.

Figs. 4a, 4b, 4c, and 4d present results for a scenario
where the number of MCBR sources is increased from 6 to
24. The curves labeled as “STORM RT” present the average
results taken over the real-time flows only, the graphs
labeled as “STORM elastic” present the average results
taken over the elastic flows only, and the graphs labeled
“STORM elasticþRT” present the average results taken
over the totality of the flows. The curves labeled with
“RWP” show results obtained for a scenario in which all the
nodes move according to the RW mobility model.

It is clear from Fig. 4a that STORM RT outperforms
ODMRPþWiFi for all the values of the number of MCBR
sources in terms of delivery ratio. In particular, STORM RT
delivers 25 percent more packets than ODMRP for 18 sources
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or more. On the other hand, for up to nine sources ODMRP
delivers more packets than STORM elasticþRT. However, as
the number of sources increases, the delivery ratio of
ODMRP drops faster and ends up delivering 15 percent
fewer packets than STORM elasticþRT and 5 percent fewer
packets than STORM elastic. Fig. 4b depicts a similar
behavior for the case of group delivery ratio. For 24 sources,
STORM RT delivers 30 percent more packets to at least the
80 percent of the receivers than ODMRP and for more than
15 sources STORM elasticþRT and STORM elastic perform
similar or better than ODMRP.

Fig. 4c shows the end-to-end delay attained by the
protocols using a logarithmic scale. STORM RT attains delays
that are an order of magnitude lower than in ODMRPþWiFi
for the case of nine or more sources. Moreover, the delays
attained by STORM RT comply with the International
Telecommunication Union (ITU) Recommendation G.114
[11], which considers end-to-end delays between 0-150 msec
as acceptable for most user voice applications. In contrast, the
traditional MANET protocol stack incurs delays in the order
of seconds, which are unacceptable for voice.

Fig. 4d presents the total overhead induced by the
protocols. From the figure, we observe that STORM is much
more efficient than the traditional protocol stack with
ODMRP. It consistently generates less than one third of
the packets generated by the traditional protocol stack with
ODMRP.

Figs. 4a, 4b, 4c, and 4d show that “RWP: STORM RT”
attains very good performance even in the scenario where
the multicast receivers can be spread across the whole
simulation area, nodes can move independently of
one another, and the routing structures that connect sources
to receivers tend to be much larger and dynamic than those
that appear in the case of the group mobility model.

The superior performance of STORM compared to the
traditional MANET protocol stack based on WiFi in these
experiments can be explained by its use of an efficient
distributed transmission scheduling scheme and resilient
meshes over which traffic flows free of collisions from
sources to destinations even when the network topology
changes. The data-flow-driven reservation scheme in
STORM allocates more bandwidth to those nodes that in a
given point in time are relaying more data packets for one or
more data flows. This bandwidth allocation strategy helps
reduce the number of packets dropped in the node queues
and the queuing waiting time, which is critical for end-to-end
delays. In contrast, with the traditional MANET protocol
stack, the probability of control packets colliding with other
packets increases with traffic load and topology changes,
repeated collisions force real time and elastic traffic to back
off, and relay nodes with long queues compete on an equal
basis with nodes having much less traffic to relay. In
addition, collisions result in the loss of signaling packets,
which is interpreted by the routing protocols as the loss of
routes and triggers more signaling overhead. All of this is
detrimental to real-time flows, and the performance of the
routing protocols operating independently of a contention-
based channel access scheme. As traffic increases with the
number of sources, more links are perceived as failing and
the routing protocols need to find new routes, which induces

even more traffic load due to the extra signaling overhead
generated by the routing protocols.

9.2 Combined Traffic

This scenario focuses on combined multicast and unicast
traffic. The number of multicast groups is increased from
one to six with three concurrent active sources per multicast
group. As in the previous experiment, one of these sources
is defined as real time and the remaining two are elastic,
and the selection of the real-time source is random. In these
experiments, sources are also group members, which favors
ODMRP. In addition to the multicast flows, we have five
concurrent CBR flows among nodes that are randomly
selected from nodes that are not part of any multicast
group. Multicast sources and CBR sources send a total of
1,000 data packets of 200 bytes at a rate of 10 packets per
second. For STORM, the five unicast flows are defined as
real time. As in the previous experiment, group members
follow the group mobility model with group regions of
900� 900 m2, whereas the remaining nodes move according
to the random waypoint model.

Fig. 5a shows the packet delivery ratio attained by
STORM and by OLSR and AODV when they are running
in parallel with ODMRP. The results show that STORM
multicast outperforms ODMRP even for the case of the
elastic flows, and that STORM RT scales quite well as the
number of multicast groups increases. Regarding unicast
routing, we observe that AODV performs similar to
STORM when the network has up to four multicast
groups. However, as the number of multicast groups
increases and the network is more heavily loaded, STORM
unicast clearly outperforms both OLSR and AODV by
delivering more than twice as many packets as OLSR does,
and up to 30 percent more packets than AODV does.
Fig. 5a shows that running unicast protocols in parallel
with an independent multicast routing protocol induces
considerable overhead, and that the integrated signaling in
STORM is very effective.

As Fig. 5b shows, STORM performs better than
ODMRP in terms of the group delivery ratio even for
elastic traffic, and that the group delivery ratio attained by
STORM is up to 20 percent higher than that of ODMRP
for real-time traffic. Fig. 5c shows the end-to-end delay
attained by the different protocols. As the number of
sources increases, the average delay of STORM unicast is
an order of magnitude smaller than that of AODV, which
in turn is an order of magnitude smaller than the one
attained by OLSR. The delays attained by STORM unicast
comply with the G.114 recommendation of the ITU-T. For
the case of multicast traffic, the end-to-end delay attained
by STORM RT is also an order of magnitude smaller than
that of ODMRP and also comply with the G.114
recommendation. Lastly, Fig. 5d presents the total over-
head induced by the different protocols. With STORM,
nodes transmit as few as half of the packets transmitted
by the nodes running a traditional protocol stack.

10 CONCLUSIONS

We introduced STORM, a cross-layer protocol framework
for wireless ad hoc networks that integrates interest-driven
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routing with priority-based queuing for traffic manage-

ment, end-to-end bandwidth reservations controlled by the

routing, and distributed transmission scheduling. All these

components work together to provide end-to-end delay and

bandwidth guarantees to real-time unicast and multicast

data flows in multihop wireless networks even when nodes

move. We proved that the routing meshes established with

STORM are loop-free at any time and that the end-to-end

reservations established along routing meshes provide

bounded delays to real-time data packets. Our simulation

results confirm our correctness results showing that

STORM is very scalable and robust for both unicast and

multicast traffic. The results also show that STORM scales

better than the traditional protocol stack, which consists of

the IEEE 802.11 DCF working independently of the routing

protocols (AODV, OLSR, and ODMRP), and that the end-to-

end delays attained with STORM comply with the ITU-T

recommendation G.114 that describes the delay character-

istics needed to support voice applications. Arguably,

STORM’s main limitation is the need for time-slotted

channel access requiring clock synchronization; however,

viable approaches exist to attain this.
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