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Abstract

As early intervention is highly effective for young children with autism spectrum disorder (ASD), 

it is imperative to make accurate diagnosis as early as possible. ASD has often been associated 

with atypical visual attention and eye gaze data can be collected at a very early age. An automatic 

screening tool based on eye gaze data that could identify ASD risk offers the opportunity for 

intervention before the full set of symptoms is present. In this paper, we propose two machine 

learning methods, synthetic saccade approach and image based approach, to automatically classify 

ASD given children’s eye gaze data collected from free-viewing tasks of natural images. The first 

approach uses a generative model of synthetic saccade patterns to represent the baseline scan-path 

from a typical non-ASD individual and combines it with the real scan-path as well as other 

auxiliary data as inputs to a deep learning classifier. The second approach adopts a more holistic 

image-based approach by feeding the input image and a sequence of fixation maps into a 

convolutional or recurrent neural network. Using a publicly-accessible collection of children’s 

gaze data, our experiments indicate that the ASD prediction accuracy reaches 67.23% accuracy on 

the validation dataset and 62.13% accuracy on the test dataset.
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1. Introduction

Autism spectrum disorder (ASD) is defined by the deficits in social and communication 

development and the presence of stereotypical behaviors. The natural course of ASD 

involves symptom onset in the first three years of life. Multiple studies have demonstrated 

that differences between children who will later receive an ASD diagnosis and those who 

develop typically often emerge well before the second birthday [1, 2]. These differences, 

which include limited eye contact, shared affect, and joint attention, have been demonstrated 

using multiple methodologies. Despite this promise for early identification, the mean age of 

ASD diagnoses in the United States is still over 4 years [3], with less than 25% made before 

age 3 [4], squandering years of potential intervention when the brain is most plastic. As 

such, there is an urgent need in developing robust and easy-to-use ASD screening tools for 

infants and toddlers.

ASD has often been associated with atypical visual attention, sometimes emerged even 

before the onset of the disorder [5]. One promising direction for early detection is to 

consider ASD prediction as a classification problem and use machine learning (ML) 

techniques to differentiate visual gaze patterns between individuals with and without ASD. 

As part of the IEEE International Conference on Multimedia and Expo (ICME) 2019, the 

organizers of the “Saliency4ASD” grand challenge have released a dataset of images and the 

associated gaze scan-paths of children subjects with and without ASD. A sample image 

along with both types of heat maps of gaze fixations are shown in Figure 1. A complete 

overview of the Grand Challenge workflow and results can be seen in [6]. One of the goals 

of the challenge is to propose ML models to classify ASD and typically developed (TD) 

viewers using the released gaze data.

We proposed two deep-learning based approaches in the ICME 2019 grand challenge [7]. 

The first one uses a recently proposed generative model of synthetic saccade patterns called 

STAR-FC [8] to represent the baseline TD scan-path of a given image and combines it with 

the input scan-path as well as other auxiliary data as inputs to a deep learning classifier. As 

scan-paths are of much lower dimensions than the original image or the associated saliency 

map, the resulting classifier will be of much lower training and testing complexity. This 

could potentially facilitate broader deployment especially with mobile devices.

The second approach adopts a more holistic image based approach by feeding the input 

image and a sequence of fixation maps into a state-of-the-art convolutional neural network. 

It is well-established that social saliency within the image content can lead to different eye-

gaze responses between TD and ASD individuals. While classical low-level image features 

cannot reveal social saliency, deep neural networks have shown a remarkable capability in 

capturing high-level semantics rival that of human. Rather than relying on hand-drafted 

models like STAR-FC, the image-based approach is designed to discover discrminiative 

features best for ASD prediction.

In this paper, we extend our earlier work from [7] by introducing new architectures and data 

representations, as well as conducting a thorough ablation study. The new proposed 

approaches are able to produce much-improved results that are exceeding or comparable to 
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those from other state-of-the-art techniques. The rest of the paper is organized as follows: 

Section 2 covers related works on using ML for ASD diagnosis. The details of the two 

proposed approaches are provided in Sections 3. In Section 4, we conduct detailed ablation 

studies to identify the best configurations in both approaches and compare them with other 

state-of-the-art techniques. Conclusion and future work directions are suggested in Section 

5.

2. Related Work

Rosehall, Johansson, and Christopher are among the firsts to study eye movements in 

children and adolescents with ASD [9]. They found unusual saccadic movement and 

reported on their difficulties in following a moving target with their gaze. There have been 

more such research investigating unusual gaze behavior in ASD since but it was not until 

[10] where Van der Geest began to use precise eye tracking devices to quantitatively analyze 

eye movements of children with ASD and their IQ-matched normal peers. In their studies, 

they used static stimuli in the form of cartoon-like images, and reported that the fixation 

behaviors were similar in both groups. Their work attracted many similar studies and laid the 

foundation for using eye tracking research in child and adolescent psychiatry, especially 

towards better understanding of eye movements and visual attention among ASD. As a 

result, many atypical visual attentions associated with ASD have been identified. Delayed 

disengaging attention from a previous attended location in infants has been shown to 

correlate with ASD diagnosis in toddlerhood [11]. Other impairments such as the inability to 

spread attentional resources in visual field [12] and directing attention towards less socially 

salient stimuli [13] have also been observed in gaze-tracking studies.

An important area of research is to study visual attention of ASD individuals on different 

social and non-social stimuli. A number of studies have suggested that ASD individuals are 

hesitant to pay attention to social stimuli though they do not completely neglect them [14, 

15, 16]. Their findings indicate that the visual attention may be dependent on the context and 

contain atypical temporal features when compared to typically developing controls.

In [17], the authors incorporated the notion of sequence to study the unfolding of the 

viewing pattern in time and reported a reduced visual exploratory behavior among 

individuals with ASD. Specifically, their experiments consisted of free viewing of images 

depicting everyday scenes of two types: with one prominent face (centrally positioned) and 

with non-prominent faces (crowds, people in the background). Based on a subject group of 

16 high-functioning ASD and 23 typically developed adolescents, the collected scan-path 

data suggested that typically developing subjects explored more freely of the visual scenes 

when compared to ASD subjects, most of whom exhibited slower and less exploration.

All these studies raise the possibility of using atypical visual attention patterns as a 

screening tool for ASD. While researchers are beginning to understand how these different 

impairments interact [18], a holistic automated diagnosis tool remain elusive. More recently, 

Wan et al. in [19] used machine learning (ML), specifically Support Vector Machine, to 

investigate the fixation times of 37 ASD and 37 typically developing children, ages 4–6, 

watching a 10-second video of a female speaker. Their study found that ASD children 

Liaqat et al. Page 3

Signal Process Image Commun. Author manuscript; available in PMC 2022 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



showed significant reductions in fixation time at six different areas of interest. Furthermore, 

discriminant analysis revealed that fixation times at the mouth and body could serve as 

useful markers in separating ASD from TD.

Among the myriad of ML techniques, deep learning has emerged as one of the most 

successful technologies in recent history. It has led to many break-throughs in image 

processing and understanding, such as achieving close-to-human performance in image 

classification [20, 21, 22, 23]. In [24], the authors studied the use of deep neural networks to 

identify adults with ASD using their eye-tracking data in free image viewing. Discriminative 

image features were learned end-to-end to predict fixation maps from which features are 

extracted to train a SVM for ASD classification. They have reported an impressive result of 

92% accuracy on 20 high-functioning ASD and 19 typically-developed adults. However, as 

there are significant differences between children’s and adults’ gaze patterns [25], the 

success may not directly translate to ASD diagnosis among children.

Saliency4ASD [6], one of the grand challenges held at IEEE International Conference on 

Multimedia and Expo 2019, was established to drive efforts of visual attention modeling 

community towards using visual saliency and gaze data from [26] in a ML framework for 

ASD prediction in children. Many submissions at the challenge have capitalized on the 

unique response of ASD individuals towards social and non-social stimuli [7, 27, 28, 29].

In [27], Startsev and Dorr used eye movement statistics of fixation points and saccade 

amplitudes, visual saliency, as well as face-based features, and combined them in a random 

forest classifier to achieve the best overall results. For saliency based features, they used 

SAM-ResNet [30] to predict a high level saliency map for the input image. They achieved an 

AUC score of 0.644 and identified the total duration of fixation as the most discriminating 

feature.

In [28], Arru, Mazumdar, and Battisti used image-content based features to model (a) 

tendency of ASD subjects on ignoring areas with no social prominent objects, (b) stronger 

central bias of ASD individuals irrespective of the visual scene, and (c) traditional visual 

saliency map based on [31]. All these features were combined in a decision-tree based 

algorithm and the scheme achieved an AUC score of 0.595.

SP-ASDNet proposed in [29] used a deep learning approach but followed a similar approach 

in generating a reference saliency map for a given image. Here, SalGAN [32] was used to 

generate the saliency map and a sequence of image patches of the predicted saliency map are 

extracted using the fixation points from the given scan-path in the dataset. Unlike [27, 28], 

this approach modeled the temporal sequence of fixation points with a recurrent neural 

network, specifically a Long Short-Term Memory network to achieve best AUC score of 

0.579.

Our current work is an extension of our submission [7] to the challenge. Grounded on deep 

learning methods, the two unique features of [7] were the use of synthetic saccade patterns 

based on the STAR-FC model [8] and the combined representation of both the input image 

and the fixation patterns. The reported AUC scores were 0.63 – 0.69 on the validation 

dataset and 0.545 – 0.553 on the test dataset.
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3. Methods

We approach the problem of identifying autistic gaze patterns in a free-viewing paradigm 

from two distinctly different directions. The first approach uses a synthetic saccade 

generated based on an input image as a representation of neurotypical viewing patterns. The 

synthetic scan-path and/or its derived features are then combined with the real scan-path in a 

deep neural network to make a diagnostic prediction. The second approach first transforms a 

real scan-path and its image stimuli into a unifying image-based representation, and then 

feeds them into a deep neural network for prediction. Both methods are discussed in detail in 

this section.

3.1. Synthetic Saccade approach

Gaze pattern of infants follows a bottom-up tendency in that it tends to focus on low-level 

shape-inducing elements, colors, patterns [25]. At this stage of development, it has been 

reported that no class differences exist between TD and ASD subjects. While TD children 

later develop a more adult-like top-down viewing behavior – looking at the visual scene as a 

whole by fixating at the middle of semantically-meaningful objects, their ASD counterparts 

do not necessarily follow the same developmental trend [17]. For example, it has been 

reported that ASD children have a stronger center bias independent of the image content 

[33]. From the machine learning standpoint, differences in scan-paths between TD and ASD 

subjects could be sufficient to build a classifier. As scan-paths are of much lower dimensions 

than the original image or the associated saliency map, the resulting classifier will be of 

much lower training and testing complexity. This could potentially facilitate broader 

deployment especially with mobile devices. This is the motivation behind the present 

approach where a deep neural network is jointly trained on both real and synthetic scan-

paths, generated by a recently-developed saccade generative model, STAR-FC, which is 

reviewed in the next section.

3.1.1. STAR-FC—Proposed in [8], STAR-FC is a multi-saccade generator that produces 

temporally ordered human-like sequences of fixation locations for a given image. Prior to 

STAR-FC, most commonly-used methods for fixation modeling, such as the Itti-Koch-

Niebur model [34], are bottom-up saliency models and produce non-ordered fixation 

prediction.

In STAR-FC, the input image is first centrally fixated, followed by a retinal transform that 

provides anisotropic blurring centered at the current fixation point. A conspicuity map is 

then calculated by combining a peripheral stream based on low-level image features, and a 

central stream based on high-level deep-learned features. To identify the next fixation point, 

a priority map is first formed by combining the conspicuity map and an inhibition-of-return 

mechanism based on all previous fixations. The next fixation point is then determined by 

maximizing the priority map. The process is similarly repeated for subsequent fixations. For 

a given image stimuli, it has been shown that the synthetic saccade generated by STAR-FC 

can predict scan-paths in similar fidelity than those based on the scan-path of a randomly-

selected human subject. As such, we assume that the synthetic saccade is representative of 
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neurotypical fixation pattern. An example of the synthetic scan-path alongside with scan-

paths from sampled ASD and TD subjects are shown in Fig. 2.

3.1.2. Input Data and Features—Different input data and features derived based on 

synthetic saccades have been explored and they are described in this section. A detailed 

ablation study can be found in Section 4.2.

The scan-path data used in our experiments [26] consist of ordered sequence of points 

corresponding to the location coordinates of regions on the image where the subject gazed 

along with the duration of gaze for each fixation. The fixation point locations are normalized 

to the range [0,1] by scaling with the corresponding image dimension since the source 

images have different resolutions. This is achieved by dividing the x-coordinates of the 

fixations points with the image width and y-coordinates of the fixation points with image 

height. The duration of fixation of each scan-path data point, available in milliseconds, 

ranges from 8 ms to 11483 ms. The duration of each fixation is normalized by dividing each 

fixation duration by 5000.

While the real scan-path is always used as part of the input, we have experimented with 

different methods to incorporate the information from the synthetic scan-path generated by 

the STAR-FC model. In our original submission [7] to the ICME 2019 Grand Challenge [6], 

the fixation scan-paths were individually aligned with the corresponding synthetic scan 

points from STAR-FC using Dynamic Time Warping (DTW) [35] to minimize the overall 

distance between the two paths. After aligning the real scan path with synthetic STAR-FC 

scan-path according to fixation duration through DTW, both the real and synthetic scan-

paths were sampled at uniform intervals.

However, the alignment process completely ignores the duration of each fixation point 

because no duration information is provided by the STAR-FC model. As such, the alignment 

process introduces distortion and omission to the real scan-path. Instead, our current scheme 

uses the original scan-path fixation and duration data. Since the scan-paths are of variable 

lengths, we zero-pad all scan-paths and duration sequence up to the maximum length of 33. 

For the synthetic pattern, we keep the same 10 synthetic fixation points as before. Since the 

synthetic pattern always begins from the center of the image, the first synthetic fixation point 

is not used.

In addition to scan-paths, some other statistics from the real scan-path data were also 

introduced as features [7]. These include total duration of viewing, the total number of 

fixation points, the mean and variance of the duration of the fixation points. The inclusion of 

the duration information is to reflect the possible delay effect in attention shifting. 

Furthermore, three different distance measures namely Dynamic Time Warping (DTW) [35], 

Hausdorff distance and Frechett distance are computed between the normalized real and 

synthetic scan-path pair. These are common trajectory based distance measurements used in 

comparing scan-paths [8]. The effect of these derived features are thoroughly studied in 

Section 4.2.
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3.1.3. Model Architectures and Implementation Details—For the ML 

architectures, we explore both the classical multilayer perceptron (MLP) networks and 

convolutional networks.

In our original submission, MLP was exclusively used. Two networks of 8 and 10 layers 

respectively were used depending on whether the scan-path data was included. The details of 

those networks can be round in [7]. It was later observed that both networks have over-fitting 

problems and a simpler network should be used instead. Our current baseline MLP network 

uses three hidden layers consisting of 128, 128, and 64 neurons respectively. This baseline 

network is trained on all available fixation locations on scan-path and duration of each 

fixation. Since the maximum number of fixations points for a single subject observation is 

33, the input feature vector has 99 dimensions, including the x and y coordinates of the 

fixation points and their durations. ReLU activation, batch normalization and dropout with a 

rate of 0.2 are applied on all hidden layers. The model is trained for 200 epochs and a batch 

size of 24 using binary cross-entropy loss with L2 regularization and Adam optimizer. 

Learning rate is 5e-4 and weigh decay of 5e-5 is employed.

In addition to the baseline MLP, we also explore an alternative branched MLP network with 

up to three encoder channels to separately extract intermediate features from the three data 

sources: synthetic saccade, scan-path fixation and statistical features as shown in 3. Each 

encoder channel consists of three fully connected hidden layers for feature extraction, 

followed by the recombination of feature vectors to produce the final prediction. Since we 

take 10 synthetic saccade points as features, the synthetic saccade branch has an input 

dimension of 20. The three hidden layers have 128, 128 and 64 neurons respectively. For the 

scan-path fixation input with location and duration data, the input vector has a dimension of 

99. The three hidden layers consist of 128, 128 and 64 neurons respectively. The third 

encoder channel with seven statistical features as input has three hidden layers with 64, 64, 

and 32 neurons respectively with ReLU activation. A dropout of 0.2 is applied to all three 

encoder channels. The feature outputs of the three encoder channels are concatenated and 

further passed through three fully connected hidden layers with 128, 128 and 64 neurons and 

ReLU activation. Batch normalization is applied to the intermediate layers. Similar to the 

baseline MLP network, the branched MLP network is trained for 200 epochs using binary 

cross-entropy loss with L2 regularization, Adam optimizer, and a batch size of 64. The 

initial learning rate is 5e-4 and the weight decay is 5e-5.

Considering that the scan-path fixation points and the synthetic saccade represent two 

dimensional locations on images, we also design a convolutional neural network using an 

input image that puts the associated fixation duration at each of the fixation point locations. 

The input image is normalized to 120 × 80. Since this two-dimensional representation is 

sparce, we apply Gaussian filtering with σ=20. To accommodate the 2D inputs, we replace 

the first fully connected layer in the two fixation encoder channels with a pretrained 

ResNet18 network block [21]. The output of the ResNet18 block is linearized, followed by 

two hidden fully connected layers. Similar to the branched MLP network, the outputs of 

these two encoder channels are concatenated and passed through three fully connected 

hidden layers. Binary cross-entropy loss with L2 regularization is adopted, and the model is 
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trained for 100 epochs with a batch size of 64, an initial learning rate of 5e-5 and weight 

decay of 5e-6.

3.2. Image Based Approach

As pointed out in Section 2, the social saliency within the image content can lead to different 

saccade responses between TD and ASD individuals. While classical low-level image 

features cannot reveal social saliency, deep neural networks have shown a remarkable 

capability in capturing high-level semantics rival that of human [20, 21, 22, 23]. Without any 

expert model such as STAR-FC used in the synthetic saccade approach, deep neural 

networks can automatically discover discriminating semantic features from the raw inputs. 

The image-based method described in this section aims to predict ASD by directly capturing 

the correlation between scan-paths and the semantic features of image as extracted by a deep 

neural network. To capture this relationship between scan-paths and high-level image 

features, we consider two different deep-learning approaches:

1. convert the fixation data to the image format and use convolutional neural 

networks to extract features directly from both the fixation data and the image;

2. given the temporal nature of scan-paths, directly apply a recurrent neural 

network to model the fixation data alongside with the deep-learned features of 

the input image.

The details of these two approaches are described in the next two sections.

3.2.1. CNN-based approach—Each record in the experimental dataset consists of an 

image and a N-point scan-path D = {(xi, yi, di), i = 1, . . . , N} from a subject viewing that 

image, where (xi, yi) denotes the location of the i-th fixation point and di denotes its time 

duration. To exploit both the spatial and temporal information of the scan-path, we convert 

the sequence of fixation points and duration into image format, similar to that used in 

keypoint prediction tasks [36]. Each data point p = (x, y, d) is represented as one image 

channel. The dimensions are the same as those of the input image. All values in this channel 

are zero except at the location (x, y) where the level is d. Since the max number of fixation 

points for each subject in the data set is 33, we set the number of channels of input as 33. 

The channel number corresponds to the order of data points. If N is smaller than 33, all 

values in the rest of the channels would be zero by default.

One potential issue is that the singularity of the fixation image may be overly diluted in a 

deep neural network with a large receptive field. To avoid this problem, we either apply a 

Gaussian filter to each channel, or replicate the duration value to a radius of 30 pixels around 

its original location. Since the dataset is small, we also apply data argumentation methods to 

alleviate the overfitting problem. For the fixation image, we randomly shift the location of 

data points by up to 20 pixels, and onto the duration values by multiplying them with a 

random coefficient from the range [0.8, 1.2]. For the natural image, we jitter the color values 

and add a random horizontal flip. However, we do not include any affine transformations as 

they may cause some data points to be out of the image range. Some of these preprocessing 

and augmentation schemes are different from our earlier submission in [7]. Their effects are 

investigated in our ablation studies in Section 4.3.
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To combine the image and the fixation data, we use a convolutional network with two 

branches: one branch is used to extract features of image, and the other one is to process the 

fixation points. We then fuse these two features for prediction. Fig. 4 illustrates our model 

architecture. ResNet [21] is used as the backbone for both branches. For the first branch, 

ResNet pretrained on ImageNet is applied to extract features from the input images. Each 

image is mapped to a 512 × 7 × 7 feature map. In our ablation study, we consider both the 

18-layer and 50-layer ResNet. For the second branch, the same pretrained ResNet 

architecture with 512 × 7 × 7 feature map output is used, except that the first convolution 

layer is modified to accept all the 33 fixation input channels. The two output feature maps 

are then concatenated before feeding into two convolution layers and a series of full-

connected layers to output the ASD predictive probability. Due to the limited size of the 

training dataset, we add dropout layer after the fully-connected layer to alleviate the 

overfitting problem.

For the implementation details, binary cross entropy is used as the loss function. The model 

is trained by using Adam optimizer with β1 = 0.9 and β2 = 0.999. The initial learning rate is 

2e-4. Batch size is set to 128. We train the whole network for 30 epochs. Our model is 

implemented by Pytorch [37].

3.2.2. LSTM-based approach—In analyzing the scan-path data, the fixation point time 

series represents how the subjects’ visual attention shifts over time, typically in the order of 

saliency or visual importance to the viewing subject. While the channel representation used 

in the CNN network from Section 3.2.1 encodes the ordering of the fixation points, it does 

not capture the temporal dependenancy from the one fixation point to the next. To model 

such a temporal dependancy, we study the use of Recurrent Neural Network or RNN on 

fixation data in this section. RNN is an another family of deep networks, which is well-

suited to model temporal data.

As the scan-path can have as many as 33 timesteps, we choose the long short-term memory 

network (LSTM) as our RNN model to avoid the gradient vanishing problem in modeling 

long temporal sequences [38]. Our current implementation uses a 5-layer LSTM network. 

We feed both the fixation point data (xi, yi, di) and a 49-dimensional image feature to each of 

the LSTM cell. This image feature is extracted from the convolutional layer that outputs a 7 

× 7 feature map before entering the global pooling layer in the ResNet. This feature map still 

contains sufficient spatial information of the input image for the LSTM to relate them with 

each of the fixation point. During the training, we also apply data augmentations, including 

color jittering for the input image, location and duration perturbation for the scan-path data. 

The network is trained with Adam optimizer for 50 epochs.

4. Experiments

4.1. Data collections and Experimental datasets

In this section, we briefly review the experimental conditions of the data collection process. 

More information can be found in [26]. The dataset consists of scan-path data, including 

location and duration, from children with both ASD and TD free-viewing a diversified set of 

natural images. The age of children with ASD lied in the range from 5 to 12 years old (8 
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years old on average). 300 different images were used in the experiment. Each image was 

viewed by 14 ASD children and 14 TD children. Each child viewed one image with the 

original full resolution for 3 seconds. The scan-path data was collected by Tobii T120 eye 

tracker with a 17-inch monitor.

For the data used in all the experiments reported in this paper, we separate the images and 

the associated scan-paths into two groups: the training group has 240 images and the 

associated 5542 scan-paths, while the validation group has 60 images with 1411 scan-paths. 

There is an additional hold-out test group with 2868 scan-paths from the viewing of 100 

images. The diagnosis labels for the test group were witheld by the organizers of the ICME 

2019 Challenge. The performance numbers on the test group were calculated by the 

organizers based on our submissions. For all the experiments, we include at least four 

performance measurements: accuracy, sensitivity, specificity, and area under the ROC curve 

(AUC). We compute the AUC score from the ROC curve according to the classical definition 

[39]. Our models output a score in the range of [0,1] for each input scan-path where higher 

values indicate increased confidence of the classifier that the subject belongs to the ASD 

class. We report this probability-like AUC score for all our experimental results.

4.2. Ablation Studies on Synthetic Saccade Approach

In this subsection, we study the effects of network architecture and input features on the 

classification performance of the synthetic saccade approaches described in 3.1. We begin 

by comparing the performance of three different architectures namely MLP, branched MLP 

(BrMLP), and convolutional network (CNN) on the validation and test data. For the 

validation dataset, we report the average performance and standard deviation of three 

separate training episodes with random initializations. For the test dataset, only a single run 

is reported. For this comparison, the input to the network consists of both the synthetic 

fixation points (STAR) and scan-path fixation points (SP) along with duration of each 

fixation. The results are shown in Table 1. For both the validation and test datasets, the 

branched MLP network outperforms the other two networks and the original MLP is a close 

second. CNN does not perform well at all; a possible explanation for this performance is the 

mismatch between the fixation image maps and the CNN networked pretrained on natural 

images.

After determining the network architecture most suited for this problem, we perform an 

ablation study on different input combinations of synthetic saccade points, scan-path points 

and statistical features. We focus on BrMLP, which we find to be the best performing 

architecture. We investigate the effect of real scan paths (SP), synthetic saccade features 

(STAR), and additional statistical features (F) including total duration of viewing, total 

number of fixation points, the mean and variance of the duration of the fixation points, as 

well as the distance measures of Dynamic Time Warping (DTW), Hausdorff distance and 

Frechett distance on model performance. The results on validation and test data are given in 

Table 2.

We observe that for the validation dataset, the model having input of scan-path with 

statistical features (BrMLP-SP-F) gives the best performance in terms of accuracy (66.73%) 

and AUC (0.72), whereas for the test dataset, the scan-path features alone as input (BrMLP-
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SP) give the best performance at 61.39% accuracy with an AUC of 0.66. The inclusion of 

the real scan-paths (BrMLP-SP-F vs. BrMLP-F) provides a solid improvement in accuracy 

of 2.61% for the validation dataset and 4.5% for the test dataset. For the validation dataset, 

the inclusion of statistical features with scan-path features improves accuracy (66.73% for 

BrMLP-SP-F vs. 65.01% for BrMLP-SP, and 65.99% for BrMLP-SP-STAR-F vs. 64.47% 

for BrMLP-SP-STAR) but this improvement does not translate to the test dataset. Similarly, 

the inclusion of synthetic saccade features on top of scan-path features (BrMLP-SP-STAR 

vs. BrML-SP and BrMLP-SP-STAR-F vs. BrML-SP-F) does not result in any improvements 

in performance for both the validation and test datasets. The last variation of inputs with all 

the features (BrMLP-SP-STAR-F) follows the same trend with no significant improvement 

over the basic branched MLP model with only scan-path features as input. In terms of 

sensitivity and specificity, we note that whereas the branched MLP with all variations of 

inputs has similar recall for both classes (ASD and TD) on the validation dataset, the recall 

of the ASD class improves on the test dataset at the cost of a degradation in recall of the TD 

class.

Overall, the use of the original fixation scan-path proves to be crucial for good performance. 

The inclusion of the synthetic saccade and its derived features seem to provide only marginal 

improvements, if any. Since all the visual stimuli information is funneled through the 

synthetic saccade, this leads to an interesting conclusion that the scan path itself is sufficient 

for good ASD prediction. We will further discuss this finding in Section 4.4.

Finally, in Table 3, we compare the performance improvements over our earlier submissions 

[7] to the ICME 2019 Grand Challenge [6]. There is a 3.73% improvement in accuracy on 

the validation dataset and 7.51% on the test dataset, while the AUC score improves from 

0.66 to 0.72 in validation and 0.55 to 0.61 in testing. These improvements are due to the 

removal of the raw synthetic scan path and the use of a new branched MLP architecture. 

Table 4 shows a more complete picture of the differences between the ICME 2019 Grand 

Challenge submission and the best performing BrMLP-SP architecture.

4.3. Ablation Studies on Image-based Approach

In this subsection, we conduct ablation studies to show the effectiveness of different parts in 

our image-based networks. Based on these studies, we identify the best setting for our final 

model and compare that with our previous results from the Grand Challenge in ICME 2019. 

All the experiments on the validation set are repeated twice and we report the average and 

standard deviation. Only one run is conducted for the test set and the performance numbers 

were provided by the Grand Challenge organizers.

In the first experiment, we use the ResNet18 CNN structure with the image and scan-path 

together as inputs, and compare different ways to mitigate sparsity in the fixation data. 

Specifically, we consider different spreading methods to neighboring pixels from the fixation 

point. For the Gaussian method, the duration value at (r, c) is spread by the kernel function 

e− (x − r)2 + (y − c)2

σ2 , where σ is a hyper-parameter. For the replication method, we simply 

copy the duration value of the fixation data to all pixels within the same neighborhood. We 

also investigate whether it is advantageous to have each fixation data point mapped to a 
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different channel, or all to the same channel, denoted as c-1 in our comparison and used in 

the CNN variant of the synthetic saccade approach described in Section 3.1.

The comparison is shown in Table 5. While the AUC performances are roughly the same for 

all four variations, the Gaussian on separated channel methods performs the best in terms of 

accuracy. The separated channel approach (Gaussian and Replication) produces better 

results in general. This is expected as the separated channel is able to preserve the temporal 

ordering of the scan-path. Based on these observations, we will use the Gaussian method and 

33 channels for our final models.

In the second experiment, we evaluate the effects of using three different network 

architectures: two CNN networks, ResNet18 and ResNet50, as well as a LSTM network as 

described in Section 3.2. The performance results on the validation and private test dataset 

are shown in Table 6. They show that the ResNet50 achieves similar results as ResNet18 on 

the validation dataset, but produces 0.68% higher in accuracy on the test dataset. The LSTM 

framework obtains the best performance in both accuracy and AUC on the validation dataset. 

However, it does not perform well on the test dataset. One possible reason for the divergence 

of results between the two datasets is that the training and validation datasets are more 

similar to each other than to the test dataset, evident from the drop in accuracy and AUC 

performances as well as the significant changes in the sensitivity and specificity 

measurements.

In the next ablation study, we aim to investigate how the image input and the scan-path input 

affect the classification performance individually. While the image itself cannot produce a 

diagnostic prediction, it is possible to use only the scan-path data for prediction. As shown 

in Section 4.2, scan-path only option in fact produces the best result in the synthetic saccade 

approach. As such, we run a similar experiment here to compare between scan-path only 

input, denoted with (s) in Table 7, with the full scan-path plus image inputs for both 

ResNet18 and LSTM. For ResNet18, the results show that the combined input produces 

slightly better results in accuracy for both the validation and test datasets. For LSTM, the 

combine input produces slightly better results for the test dataset but almost identical for the 

validation dataset. While it is surprising that the scan-path only input produces such a 

competitive result, the trend is comparable to that observed in Section 4.2.

Finally, we report the improvements in performance of the ResNet18 architecture we made 

after the ICME 2019 Grand Challenge. Table 8 contains the previous and improved results, 

which shows a significant increase in accuracy and AUC for both the validation and test 

datasets. The key differences, shown in Table 9, include more input data augmentations such 

as perturbation on fixation locations and durations, addition of dropout layers for 

regularization, a larger batchsize, and more training epochs.

4.4. Discussion

Based on the ablation studies in Sections 4.2 and 4.3, we can compare the best 

configurations between the synthetic saccade and image-based approaches in both the 

validation and test datasets. The results, summarized in Table 10, show that the image based 
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approaches perform slightly better than the synthetic saccade approaches in both accuracy 

and AUC.

Focusing just o the performance on the test dataset, Table 11 compares them side by side 

with the available results from the three other schemes competed at the ICME 2019 Grand 

Challenge. Overall, ResNet50 of our image-based approach produces the best result in 

accuracy, AUC, and F1, and our synthetic saccade network BrMLP-SP scores the best in 

specificity.

In the ablation studies, we find that the performance of using scan-path as input rivals those 

produced by more sophisticated methods that rely on both the scan-path and the input image 

stimuli. This is a surprising result as the scan-path itself contains no direct information about 

the visual stimuli. In fact, it is one of our design goals to deliberately introduce them through 

the inclusion of either the synthetic saccade or the image itself. Our design is motivated by 

the large body of work that found a strong link between the image content such as social 

stimuli and the difference in gaze patterns between ASD and TD subjects [14, 15, 16]. In 

fact, all the studies discussed in Section 2 drew their conclusions conditioned on the same 

visual stimuli to the two groups of subjects.

One possible reason to account for the good performance of scan-path only systems is that 

the dataset is too small in terms of the number of subjects - only 14 ASD and 14 TD children 

were included. As such, there might be a systematic bias in terms of the gaze patterns 

between these two groups. Our deep-learning schemes have certainly discovered powerful 

features to produce a respectable prediction of the diagnosis. While we have not conducted a 

full investigation to map these features back into explainable entities related to the scan-path 

data, we note that the distributions of the total scan-path duration between the two groups 

are quite different. The two histograms of the scan-path duration in milliseconds are shown 

in Figure 5. The graphs show that the scan-paths for ASD children tend to be much shorter 

in duration than those from TD children, confirmed by the one-sided two-sample 

Kolmogorov-Smirnov Test resulting in a test value of 0.278 with a p-value of 4.09 × 10−122. 

The importance of total duration as a discriminating feature was also pointed out in [27]. A 

more comphrehensive analysis to produce a set of more explainable features is left for future 

studies.

5. Conclusion

In this paper, we have extended the two deep-learning approaches, originally proposed in 

[7], on using synthetic saccade and image data to predict ASD diagnosis. A detailed ablation 

study has been performed to study the impact of different input data representations and 

network architectures. Significant improvements over the original proposed schemes have 

been reported. It has been shown that the image based approaches produce slightly better 

results than the synthetic saccade approaches. The best peforming scheme, the image-based 

ResNet50 architecture, has produced results that are comparable to the state-of-the-art 

scheme as reported in the ICME 2019 Challenge. We have also discovered that using scan-

path only is capable to produce high quality results. We have hypothesized that this is due to 
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the limited pool of participants in the study and preliminary evidence based on group 

differences in total scan-path duration is shown.
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Highlights

• Atypical visual attention associated with autism spectrum disorders can be 

studied through eye gaze behavior of children at a very young age

• Autistic gaze viewing patterns in a free-viewing paradigm studied using 

computer vision

• Correlation between scan-path fixations and high-level image semantics 

extracted through deep learning result in ASD prediction accuracy up to 62%

• Study finds significant class differences by applying machine learning to raw 

scan-path fixations and duration; verification on larger dataset needed
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Figure 1: 
Sample image and corresponding gaze fixation heat map of an ASD subject and a TD 

subject.
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Figure 2: 
Synthetic scan-path (cyan) along with real scan-path fixations points from TD (red) and 

ASD (yellow) subjects for an image from Saliency4ASD Grand Challenge dataset
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Figure 3: 
Pipeline of our branched MLP network. The model comprises of three branches for 

processing different kinds of features: (1) synthetic saccade generated by START-FC, (2) 

real scanpath and (3) statistical features. Three variants of the model namely, BrMLP-SP, 

BrMLP-SP-F, and BrMLP-SP-STAR-F with the highest performance (discussed in detail in 

4.2) are indicated through the three highlighted regions.
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Figure 4: 
An overview of our image-based CNN architecture. It consists of two branches. One of them 

is using ResNet to extract features of images. The second one is for data point. These two 

features are concatenated, transformed by two convolution layers, and then fed into 

classifier.
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Figure 5: 
The frequency of total duration of each scan-path for the ASD and TD children in the 

dataset.
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Table 1:

Results of our experiments on evaluation of the effect of architecture on classifier performance on validation 

and test dataset. We compare three architectures: MLP, Branched MLP (BrMLP) and convolutional (CNN) 

networks. The input feature set consists of scan-path fixation points and durations (SP) along with synthetic 

saccade data (STAR). The best results in either datasets are highlighted.

Dataset Method Accuracy Sensitivity Specificity AUC

Val

MLP-SP-STAR 63.47% ±0.20 0.61 ±0.01 0.66 ±0.02 0.68 ±0.00

BrMLP-SP-STAR 64.47% ±0.60 0.66 ±0.01 0.63 ±0.00 0.70 ±0.01

CNN-SP-STAR 59.46% ±0.65 0.58 ±0.03 0.61 ±0.01 0.63 ±0.01

Test

MLP-SP-STAR 59.81% 0.61 0.66 0.63

BrMLP-SP-STAR 60.27% 0.75 0.46 0.64

CNN-SP-STAR 52.53% 0.59 0.47 0.53
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Table 2:

Results of experiments to evaluate effect of input features on classifier performance on validation and test 

dataset. The base network is branched MLP (BrMLP). Inclusion of SP with model name indicates that fixation 

scan-path data was part of input features, STAR-FC indicates that synthetic saccade samples were used and F 

indicates that statistical features were also a part of the input.

Input Method Accuracy Sensitivity Specificity AUC

Val

BrMLP-SP 65.01% ±0.89 0.63 ±0.01 0.67 ±0.01 0.70 ±0.00

BrMLP-SP-STAR 64.47% ±0.60 0.66 ±0.01 0.63 ±0.00 0.70 ±0.01

BrMLP-SP-STAR-F 65.99% ±0.80 0.66 ±0.01 0.66 ±0.01 0.70 ±0.01

BrMLP-SP-F 66.73% ±0.27 0.62 ±0.01 0.71 ±0.01 0.72 ±0.00

BrMLP-F 64.12 % ±0.72 0.63 ±0.08 0.65 ±0.08 1.69 ±0.01

Test

BrMLP-SP 61.39% 0.66 0.57 0.66

BrMLP-SP-STAR 60.27% 0.75 0.46 0.64

BrMLP-SP-STAR-F 58.94% 0.74 0.44 0.61

BrMLP-SP-F 60.17% 0.74 0.47 0.63

BrMLP-F 55.67% 0.78 0.35 0.59
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Table 3:

Performance improvements for the synthetic saccade network over the results in the Grand Challenge.

Dataset Method Accuracy Sensitivity Specificity AUC

Val
ICME 2019 GC 63.00% 0.69 0.66 0.66

Improved (BrMLP-SP-F) 66.73% 0.62 0.71 0.72

Test
ICME 2019 GC 53.88% 0.81 0.28 0.54

Improved (BrMLP-SP) 61.39% 0.66 0.57 0.66
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Table 4:

Difference between the best performing BrMLP-SP network and the 2019 Grand Challenge submission

ICME 2019 GC BrMLP-SP

Data Preprocessing
scan-path data 10 fixation points from warped data using DTW 33 fixation points from unwarped raw data

duration data not included included

Network architecture model MLP MLP

hidden layers 10 6

inputs
scanpath
STARFC

statistical features
scanpath only

Training parameters Learning rate 5e-4 1e-3

Regularization None L2
weight decay:5e-5

Epochs 300 200

Dropout 0.3 0.2

Batch size 32 64
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Table 5:

Results of our methods on validation dataset. We compare two methods to make scan-path data not sparse in 

the image format setting. c-1 here means we collect all converted data in one channel.

Method Accuracy Sensitivity Specificity AUC

Gaussian (c-1) 63.96% ±1.77 0.70 ±0.07 0.58 ±0.10 0.70 ±0.01

Gaussian 66.06% ±0.13 0.66 ±0.01 0.66 ±0.00 0.70 ±0.00

Replication (c-1) 64.40% ±0.27 0.71 ±0.01 0.58 ±0.01 0.70 ±0.00

Replication 64.76% ±0.23 0.60 ±0.02 0.67 ±0.02 0.70 ±0.01
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Table 6:

Results of our methods on validation and test dataset. We show the performance of different frameworks, 

including ResNet18, ResNet50 and LSTM.

Dataset Method Accuracy Sensitivity Specificity AUC

Val

ResNet18 66.06% ±0.13 0.66 ±0.01 0.66 ±0.00 0.70 ±0.00

ResNet50 66.03% ±0.73 0.61 ±0.02 0.71 ±0.03 0.71 ±0.00

LSTM 67.23% ±0.67 0.68 ±0.01 0.66 ±0.02 0.73 ±0.00

Test

ResNet18 61.45% 0.73 0.50 0.66

ResNet50 62.13% 0.71 0.54 0.67

LSTM 60.40% 0.75 0.48 0.64

Signal Process Image Commun. Author manuscript; available in PMC 2022 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Liaqat et al. Page 29

Table 7:

Results of our methods with different inputs on validation and test dataset. The notation ’(s)’ after the name of 

the framework means that we only use scan-path as our input.

Dataset Method Accuracy Sensitivity Specificity AUC

Val

ResNet18(s) 65.77% ±0.36 0.62 ±1.00 0.69 ±0.01 0.71 ±0.00

ResNet18 66.06% ±0.13 0.66 ±0.01 0.66 ±0.00 0.70 ±0.00

LSTM(s) 67.25% ±0.72 0.57 ±0.01 0.77 ±0.00 0.73 ±0.00

LSTM 67.23% ±0.67 0.68 ±0.01 0.66 ±0.02 0.73 ±0.00

Test

ResNet18 (s) 60.17% 0.72 0.48 0.66

ResNet18 61.45% 0.73 0.50 0.66

LSTM (s) 59.86% 0.63 0.56 0.64

LSTM 60.40% 0.75 0.48 0.64
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Table 8:

Our previous results in the Grand Challenge and our improved results.

Dataset Method Accuracy Sensitivity Specificity AUC

Val
ICME 2019 GC 61.62% 0.60 0.64 0.63

Improved 66.06% 0.66 0.66 0.70

Test
ICME 2019 GC 55.13% 0.64 0.47 0.61

Improved 61.45% 0.73 0.50 0.67
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Table 9:

Difference between the ResNet18 architecture in 2019 Grand Challenge submission and the improved one

ICME 2019 GC After Challenge

Data Augmentation Color ittering and horizontal flip Additionally perturbation added on fixation location

Network - Add dropout

Training epochs 30 45

Batch Size 100 112
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Table 10:

Comparison between synthetic saccade (Syn) and image-based (Image) approaches on both the validation and 

test datasets

Dataset Method Accuracy Sensitivity Specificity AUC

Val
Syn (BrMLP-SP-F) 66.73% ±0.27 0.62 ±0.01 0.71 ±0.01 0.72 ±0.00

Image (LSTM) 67.23% ±0.67 0.68 ±0.01 0.66 ±0.02 0.73 ±0.00

Test
Syn (BrMLP-SP) 61.39% 0.66 0.57 0.66

Image (ResNet50) 62.13% 0.71 0.54 0.67
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Table 11:

Comparison of our best schemes with other methods in the Grand Challenge, with the best results highlighted.

Method Accuracy Sensitivity Specificity AUC F1

SP-ASDNet [29] 57.90% 0.592 0.566 0.579* 0.570

RM3ASD [40] 59.30% 0.684 0.506 0.595* 0.616

Scan-path & Saliency [27] 59.84% 0.717 0.484 0.644 0.632

ResNet50 (ours) 62.13% 0.710 0.537 0.667 0.644

BrMLP-SP (ours) 61.39% 0.660 0.569 0.660 0.620

*
AUC score computed over binary labels (TD/ASD) because of non availability of output probability-like scores which are required for computing 

AUC of ROC curve. This AUC score is the average of sensitivity and specificity.
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