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We have designed and fabricated a structured streak camera photocathode to provide enhanced
efficiency for high energy X-rays (1–12 keV). This gold coated photocathode was tested in a
Diagnosing Energetic Radiation with streak camera and compared side by side against a conventional
flat thin film photocathode. Results show that the measured electron yield enhancement at energies
ranging from 1 to 10 keV scales well with predictions, and that the total enhancement can be more
than 3×. The spatial resolution of the streak camera does not show degradation in the structured
region. We predict that the temporal resolution of the detector will also not be affected as it is currently
dominated by the slit width. This demonstration with Au motivates exploration of comparable
enhancements with CsI and may revolutionize X-ray streak camera photocathode design. Published
by AIP Publishing. [http://dx.doi.org/10.1063/1.4961302]

I. OVERVIEW

X-ray diagnostics are an integral part of experiments per-
formed at the National Ignition Facility (NIF).1 For example,
Diagnostic Instrument Manipulator Imaging Streak Camera
(DISC)2 and Streaked Polar Instrumentation for Diagnosing
Energetic Radiation (SPIDER)3 are used as temporal im-
agers in radiography studies, as streaked X-ray spectrometers
for backlighter source characterization, and as timing instru-
ments. Drift tube detectors such as the Dilation X-ray Imager
(DIXI)4,5 are used as 2-D imagers of imploding targets. Until
recently, these detectors have been used to collect data in the
1–10 keV range. A new, Advanced Radiographic Capability
(ARC)6 has been introduced to NIF. ARC uses four existing
NIF beams to produce short (30 ps currently) pulses with∼1 kJ
laser energy each. The new set of short pulse beams will extend
the available X-ray energies up to >300 keV. Current diag-
nostics, especially those that utilize common photocathode
materials, suffer from a drastic decrease in quantum efficiency
above ∼10 keV.7–10 This reduces the detector efficiency of the
NIF detectors and can potentially compromise data quality.

There has been an ongoing effort to identify and test a set
of geometrically enhanced photocathodes in order to improve
the detector efficiency of current NIF X-ray cameras. During
this multi-year project, a photocathode structure prototype
was identified,9 fabricated,11 and characterized. This work

Note: Contributed paper, published as part of the Proceedings of the 21st
Topical Conference on High-Temperature Plasma Diagnostics, Madison,
Wisconsin, USA, June 2016.
a)Author to whom correspondence should be addressed. Electronic mail:

opachiyp@nv.doe.gov

led to the fabrication and performance test of a full-scale
photocathode prototype in SPIDER. The measured signal
increase, along with the effects of the full-scale structured
photocathode on the streak camera performance, is presented
in this manuscript.

II. EXPERIMENTAL SETUP

A broadband Manson X-ray source12 was used to char-
acterize the performance of three full-scale structured photo-
cathodes. The source was set to generate Ni K-α lines at
∼7.5 keV by adjusting the anode to filament voltage and using
a 3 µm thick Ni filter, as shown in Fig. 1. The photocathodes
were tested in a fully calibrated SPIDER detector. SPIDER
is a multi-record length streak camera system, with a 1.2
times magnification and ∼87 µm spatial resolution.3 Potential
changes in spatial resolution were measured by using a spatial
resolution mask. The mask was laser cut into a 20 µm thick
Ta foil, and the pattern contained a series of 50 µm wide slits
evenly spaced 1.5 mm apart. The pattern was placed directly in
front of each photocathode and 1 meter away from the X-ray
source.

The photocathode design was based on the recessed
pyramid structure described in previous publications.9,11 The
photocathode shown in Fig. 2 consisted of two regions, a flat
surface and a structured surface. The structures were etched
into a Si substrate using a plasma etching system, producing
a high aspect ratio structure with 10◦–15◦ wall angles. The Si
substrate was back-thinned to 100 µm under both regions, in
order to maximize X-ray transmission, i.e., 18% transmission
at 7.5 keV. Both regions were coated with a Ti wetting layer
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FIG. 1. Experimental setup. The Manson source layout is shown, starting
with the vacuum chamber that contains the anode array on the left. The streak
camera is placed 1 meter away from the anode source.

FIG. 2. Cross sectional view of the full-scale photocathode. The side by side
flat and structured photocathode regions are shown, and the entire prototype
is coated with 700 Å of gold. The Si substrate is back etched to 100 µm
thickness.

FIG. 3. A cross sectional view of the recessed pyramid structures in the
structured surface region of the photocathodes. Examples of the three cathode
types are shown: the shallow depth, mid depth, and full depth.

and 700 Å of gold. The prototype cathodes consisted of
recessed pyramid structures that were 6 × 6 µm in width and
had three depths 4, 8, and 16 µm, respectively, see Fig. 3.
These are referred to as the shallow depth, mid depth, and full
depth structures throughout the manuscript. The side by side
design was developed to ensure that the two regions are easily
comparable within the same exposure.

III. DISCUSSION AND RESULTS

Two measurements were conducted to identify potential
detector performance changes caused by the presence of a
structured photocathode surface: an evaluation of the frac-
tional signal increase collected from the structured region and
a study of changes in spatial resolution that may have been
introduced by the structures.

To characterize improvement in signal level, X-ray im-
ages were recorded for each prototype. The recorded side by
side signal image of the full depth structure is shown in Fig. 4.
The image was background subtracted and flat fielded to take

FIG. 4. Structured photocathode test results. The photocathode CCD image
is shown in the top panel, and a lineout covering the central 1/4 regions
through both the structured and planar cathode areas is shown below.

out non-uniformities introduced by the SPIDER imaging sys-
tem. Typically background levels were near ∼510 counts, with
the lowest signal of 500 counts above background recorded
in the planar cathode region. The bright region seen in Fig. 4
corresponds to that of the full depth recessed pyramid struc-
tures. A lineout through the interface is presented below the
image, showing an increase in signal of ∼3.5×. An increase in
signal between 2.7× and 4.5× was expected for this structure;
details of the model and calculations are given in our previous
publication.9 In terms of total quantum efficiency, a planar Au
photocathode at 7.5 keV emits an average of 0.0158 electrons
per photon; we measure that the structured surfaces in our work
increase this number to 0.05. The predicted and measured
yield from all three structures is summarized in Table I. The
measured fractional increase is defined as the ratio between
the signals recorded in the structured region and flat surface
region. The increase in yield from the mid depth to the full
depth is smaller than predicted; we believe this is potentially
caused by differences in the etched wall angles and widths
of the two prototypes, an etch that is not fully tapered to a
full cone and a decrease in the electric field strength within
the full depth cavity that may be trapping emitted electrons.
In general, the measured data fall within the predicted yield
increase, verifying our model and calculations.

The spatial resolution of SPIDER was measured using a
standard planar photocathode and compared with the results
from all three prototypes. A single spatial resolution mask
was used for all measurements, and the resulting line spread
functions (LSF) are shown in Fig. 5. Each LSF was normalized

TABLE I. Summary of measurement results for three structured
photocathodes.

Cathode type

Structure
dimensions

(µm)

Measured
fractional
increase

Predicted
fractional
increase

LSF FWHM
(µm)

Shallow depth 6 × 6 × 4 2.3 ± 0.02 2.2–2.4 87 ± 8
Mid depth 6 × 6 × 8 3.2 ± 0.04 2.9–3.5 88 ± 10
Full depth 6 × 6 × 16 3.5 ± 0.01 2.7–4.5 85 ± 14
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FIG. 5. Measured spatial resolution. Spatial resolution is not affected by the
addition of the structured surface. Resolution matches that of the standard
cathode for structures of all depths.

to unity and then fitted to a Gaussian function to determine
the full width at half maximum (FWHM). The mid depth
structure appears to have the widest FWHM; this is typically
caused by a slightly wider width of the etched recessed pyra-
mid. For all three structures, no correlation was seen between
the LSF width and structure depth, showing that the chosen
6 × 6 µm width was appropriate and the spatial resolution of
the detector is not affected by the introduction of the structured
surfaces. The standard spatial resolution at the photocathode
was measured to be 87 ± 10 µm, while the spatial resolution
obtained from the structured region ranged from 85 µm to
88 µm. The width varies mostly due to different signal to noise
levels. The spatial resolution results are summarized in the last
column of Table I.

IV. CONCLUSIONS

A geometrically enhanced photocathode has been devel-
oped and tested in a NIF streak camera, SPIDER. The re-
sults show an increase in yield of up to 3.5× at 7.5 keV.
The measured increase in yield falls within the predictions
made for this structure. It was also shown that the structured
photocathode surface does not affect the spatial resolution
of the detector. Temporal resolution measurements should be

performed in the future to ensure that the detector performance
remains unchanged. This demonstration with Au motivates
exploration of comparable enhancements with CsI and may
revolutionize X-ray streak camera photocathode design.
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