
UC Irvine
UC Irvine Previously Published Works

Title
REM sleep rescues learning from interference

Permalink
https://escholarship.org/uc/item/3zq0930n

Authors
McDevitt, Elizabeth A
Duggan, Katherine A
Mednick, Sara C

Publication Date
2015-07-01

DOI
10.1016/j.nlm.2014.11.015
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3zq0930n
https://escholarship.org
http://www.cdlib.org/


REM sleep rescues learning from interference

Elizabeth A. McDevitta, Katherine A. Duggana, and Sara C. Mednicka,b

aDepartment of Psychology, University of California, Riverside, 900 University Avenue, Riverside, 
CA 92521, United States of America

Abstract

Classical human memory studies investigating the acquisition of temporally-linked events have 

found that the memories for two events will interfere with each other and cause forgetting (i.e., 

interference; Wixted, 2004). Importantly, sleep helps consolidate memories and protect them from 

subsequent interference (Ellenbogen, Hulbert, Stickgold, Dinges, & Thompson-Schill, 2006). We 

asked whether sleep can also repair memories that have already been damaged by interference. 

Using a perceptual learning paradigm, we induced interference either before or after a 

consolidation period. We varied brain states during consolidation by comparing active wake, quiet 

wake, and naps with either non-rapid eye movement sleep (NREM), or both NREM and REM 

sleep. When interference occurred after consolidation, sleep and wake both produced learning. 

However, interference prior to consolidation impaired memory, with retroactive interference 

showing more disruption than proactive interference. Sleep rescued learning damaged by 

interference. Critically, only naps that contained REM sleep were able to rescue learning that was 

highly disrupted by retroactive interference. Furthermore, the magnitude of rescued learning was 

correlated with the amount of REM sleep. We demonstrate the first evidence of a process by 

which the brain can rescue and consolidate memories damaged by interference, and that this 

process requires REM sleep. We explain these results within a theoretical model that considers 

how interference during encoding interacts with consolidation processes to predict which 

memories are retained or lost.
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1. Introduction

“A brain is a lot like a computer. It will only take so many facts, and then it will go 

on overload and blow up.” – Erma Bombeck

Daily living involves copious information processing that has the potential to “overload” the 

brain and result in memory loss. For example, after too many hours gazing at paintings in a 
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museum or studying for a chemistry exam in the library, people are liable to forget or 

confuse the details of this newly learned information. A century of psychological research 

has investigated this type of information overload, termed interference, by examining how 

the acquisition or encoding of new information can block recollection or retrieval of recent 

memories (Wixted, 2004). Memories can be protected from future interference by sleep. For 

example, Ellenbogen and colleagues (2006) trained subjects on two word-pair lists separated 

by a period of sleep or wake and found better retention of the first word-pair list when sleep 

occurred between encoding and retrieval (although see Deliens, Leproult et al., 2013 and 

Deliens, Schmitz, et al., 2013, for data suggesting that sleep reinstates sensitivity to 

retroactive interference). However, in a single day we experience many events prior to going 

to sleep at night that may interfere with one another, yet can still be recalled days, weeks or 

years later. Since we do not need to stabilize each waking experience with sleep (e.g., a nap) 

before moving on to the next, there must be a mechanism that allows the brain to rescue 

memories damaged by interference prior to sleep. One possibility is that along with 

protecting new memories, sleep may also repair damaged memories, such as those degraded 

by interference (Norman, Newman, & Perotte, 2005). Here, we investigate whether 

memories damaged by interference may be rescued by different brain states of sleep or 

wake.

Traditionally, studies have experimentally manipulated interference and examined how prior 

learning of task A may disrupt subsequent learning of task B (proactive interference), or 

how learning task B may disrupt prior learning of task A (retroactive interference). In 

addition to this task-specific interference, the period between encoding and retrieval may 

influence how memories are consolidated as well (Wixted, 2004). Early studies by Jenkins 

and Dallenbach (1924) demonstrated that a period of wake between encoding and retrieval 

of nonsense syllables resulted in more forgetting than an equivalent period of sleep. The 

authors interpreted their results to mean that normal mental exertion during an active wake 

(AW) period, compared with sleep, disrupted consolidation of recent memories and caused 

“obliteration of the old by the new” (pg. 612). However, most studies compare sleep (low 

information input) with AW (high information input; e.g., Fenn, Nusbaum, & Margoliash, 

2003), but do not include quiet wake (QW, characterized as a medium level of information 

input when the brain is awake but not cognitively engaged). Only a handful of studies have 

systematically examined how brain states that vary in amount of information input affect 

consolidation and subsequent retrieval. Amongst these studies, some have found equivalent 

memory improvements following periods of sleep and QW, compared to decreased memory 

following AW on some tasks [e.g., auditory tone sequence learning task (Gottselig et al., 

2004), a visual search task (Mednick, Makovski, Cai, & Jiang, 2009), and a pursuit motor 

task (Rieth, Cai, McDevitt, & Mednick, 2010)]. On the other hand, some have found a 

benefit of sleep compared to QW. For example, one study tested implicit priming in a 

creativity task and found significantly better performance only after a sleep period that 

included rapid eye movement (REM) sleep (Cai, Mednick, Harrison, Kanady, & Mednick, 

2009). In fact, memory improvements are frequently associated with distinct sleep stages 

and features (Mednick, Nakayama, & Stickgold, 2003; Schabus et al., 2004; Tucker et al., 

2006). These findings suggest that plasticity-related neural mechanisms during specific sleep 

stages may provide memory benefits above and beyond those of QW and AW (Diekelmann 
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& Born, 2010; Mednick, Cai, Shuman, Anagnostaras, & Wixted, 2011). Yet, no study has 

examined how different brain states — AW, QW, non-REM (NREM), and REM sleep — 

influence our ability to rescue memories damaged by interference.

Using a perceptual learning interference paradigm, we examined how competing 

information is consolidated across brain states that vary in information input. Perceptual 

learning is the long-term improvement of performance on a sensory task that is specific to 

the physical features of the trained stimulus. Perceptual learning is vulnerable to interference 

when competing tasks share stimulus features (e.g., spatial location) and when two tasks are 

trained in short temporal succession (Seitz et al., 2005; Yotsumoto, Chang, Watanabe, & 

Sasaki, 2009). Additionally, perceptual learning deteriorates with repeated, within-day 

training, but is restored to baseline following a period of NREM sleep (Censor, Karni, & 

Sagi, 2006; Mednick et al., 2002; Mednick, Arman, & Boynton, 2005; Mednick et al., 

2003), and is enhanced above baseline following a period of REM sleep (Karni, Tanne, 

Rubenstein, Askenasy, & Sagi, 1994; McDevitt, Rokem, Silver, & Mednick, 2013; Mednick 

et al., 2003; Stickgold, James, & Hobson, 2000; Stickgold, Whidbee, Schirmer, Patel, & 

Hobson, 2000). Using a nap paradigm that controls for circadian confounds, allows for 

exquisite control of sleep stages, and produces the same magnitude of learning as a full night 

of sleep (Mednick et al., 2003), we examined how learning disrupted by retroactive and 

proactive interference on a texture discrimination task was consolidated across four different 

brain states: AW, QW, naps with NREM sleep only, and naps with both NREM and REM 

sleep. Specifically, we asked: (i) Does high information input during consolidation (AW) 

disrupt learning and make memories vulnerable to interference compared with medium input 

(QW) and low input (sleep)?; and (ii), Following retroactive or proactive interference, which 

brain states rescue learning?

2. Materials and Methods

2.1 Subjects

152 healthy, non-smoking adults between the ages of 18 and 35 with no personal history of 

neurological, psychological, or other chronic illness gave informed consent to participate in 

the study. All experimental procedures were approved by the Institutional Review Boards of 

the University of California at San Diego and University of California at Riverside. Subjects 

were asked to maintain their usual sleep-wake schedule during the week prior to the 

experiment and to refrain from consuming caffeine, alcohol, and all stimulants for 24 hours 

prior to and including the study day. Heavy caffeine users (> 240mg per day) were not 

enrolled to exclude the possibility of significant withdrawal symptoms during the 

experiment. Subjects completed sleep diaries during the entire week prior to the experiment 

and wore actigraph wrist monitors (Actiwatch-64, Respironics) the night before the 

experiment to provide subjective and objective measures of sleep-wake activity, 

respectively.

2.2 Stimulus and task

Subjects performed a texture discrimination task (TDT) similar to that developed by Karni 

& Sagi (1991). We used several different stimulus conditions in the interference paradigm. 
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Here we describe the methods common to all versions of the task. The interference paradigm 

is described in section 2.3.

Visual stimuli for the TDT were created using the Psychophysics Toolbox (Brainard, 1997; 

Pelli, 1997). Each stimulus contained two targets: a central letter (‘T’ or ‘L’), and a 

peripheral line array (vertical or horizontal orientation) in either the lower left or upper right 

quadrant at 2.5°-5.9° eccentricity from the center of the screen. The peripheral array 

consisted of three diagonal bars that were either positioned in a horizontal or vertical array 

against a background of horizontally or vertically oriented background distracters, which 

created a texture difference between the target and the background.

An experimental trial consisted of the following sequence of four screens: central fixation 

cross for 1000ms, target screen for 40ms, blank screen for a duration between 40 and 545ms 

(the inter-stimulus-interval, or ISI), mask for 27ms, followed by the response time interval 

and feedback (red fixation cross with auditory beep for incorrect trials and green fixation 

cross for correct trials) before the next trial (Figure 1B). Subjects discriminated two targets 

per trial by reporting both the letter at central fixation (‘T’ or ‘L’) and the orientation of the 

peripheral, three-element array (horizontal or vertical) by making two key presses. The 

central task controlled for eye movements.

Each block consisted of 15 trials, each with the same ISI. A threshold was determined from 

the performance across 8 blocks, with a progressively shorter ISI, starting with 545ms and 

ending with 40ms. The specific sequence of ISIs across an entire session was [545, 440, 306, 

200, 146, 106, 80, 40]. We used a short version of the task (120 trials per condition) to avoid 

perceptual deterioration effects (Censor & Sagi, 2008; Mednick et al., 2005). A 

psychometric function of percent correct for each block was fit with a Weibull function to 

determine the ISI at which performance yielded 80% accuracy.

Subjects controlled the onset of each block and were instructed to take as many breaks as 

they needed between blocks. Once a block began, a new trial was initiated every 2s, 

regardless of whether or not the subject made a response. Subjects practiced the task before 

each new stimulus condition. This practice ensured that subjects understood the task and 

were discriminating the peripheral target between 90% and 100% correct on the easiest 

version of the task.

2.3 Interference paradigm

Interference in perceptual learning is specific to the retinotopic location of the stimulus 

(Seitz et al., 2005). That is, training stimuli in the same visual quadrant causes interference, 

but when stimuli are trained in different visual quadrants there is no disruption. 

Additionally, in TDT learning, interference is specific to background orientation 

(Yotsumoto et al., 2009), such that no perceptual learning occurred when two different 

background orientations were trained in the same location. Taken together, these findings 

established that stimuli in the same location, different background cause interference, 

whereas stimuli in a different location, same background do not cause interference.
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In the present study, we induced interference by training two sets of TDT conditions (A-B) 

and (C-D). Within a set, texture targets (three diagonal lines) appeared in the same spatial 

location, but the background elements were different orientations (either vertical or 

horizontal). Texture targets for set C-D were placed in the contralateral spatial location 

relative to set A-B (A-B: loc1/bkgrd1 and loc1/bkgrd2; C-D: loc2/bkgrd1 and loc2/bkgrd2), 

as seen in Figure 1C. The texture target was either presented in the upper right or lower left 

visual field, counterbalanced across subjects. By switching the background orientation 

within sets and the location of texture targets between sets, interference should occur within 

a set, but not between sets (Seitz et al., 2005; Yotsumoto et al., 2009).

Interference was induced in the A-B set by training B immediately after A, such that A 

experienced retroactive interference and B experienced proactive interference. Low 

interference was induced in the C-D set by separating conditions C and D by a 7-hr delay. 

Importantly, Seitz and colleagues (2005) demonstrated that a 1-hr temporal delay between 

training two similar tasks could stabilize visual learning and prevent interference. In the 

current study, although the stimulus conditions were such that C and D should interfere with 

one another if they had been trained back-to-back, the 7-hr delay between training C and D 

should provide enough time for C to be stabilized before training on D, resulting in low or 

negligible effects of interference for the C-D set.

2.4 Protocol (Figure 1A)

At 09:00, thresholds were measured for A and B. Approximately one hour later, condition C 

threshold was obtained.

At 11:00, subjects were randomly assigned to one of four groups. The AW group (n = 29) 

carried out their normal daily activities but were instructed to abstain from exercise and 

napping. Wakefulness in the AW group was monitored using actigraph wrist monitors. 

Subjects in the QW group (n = 26) rested for 75-min while seated in a recliner listening to 

classical music with their eyes closed and with polysomnograpic (PSG) monitoring to make 

sure they did not fall asleep. During QW sessions, experimenters woke subjects at the first 

sign of Stage 1 sleep. Subjects in the two nap groups were randomly assigned to take either 

a 60-min or 90-min nap with PSG-recording between 13:00 and 15:00. Given that shorter 

naps tend to have less REM sleep than longer naps, the use of these two durations increased 

the likelihood of having naps with and without REM sleep. Post-hoc sleep stage scoring was 

used to place subjects into either the REM (n = 25, naps contained more than one minute of 

REM sleep) or NREM (n = 25) group after completion of the experiment.

At 16:30 (Session 2), TDT thresholds were again obtained for A and B, followed by training 

condition D, and then re-testing condition C. We did not retest condition D and therefore do 

not have a measure of learning for D.

2.5 Polysomnography

PSG data were collected using Astro-Med Grass Heritage Model 15 amplifiers and Grass 

Gamma software. Scalp electroencephalogram and electrooculogram electrodes were 

referenced to unlinked contralateral mastoids (C3/A2, C4/A1, O1/A2, LOC/A2 and ROC/
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A1), and electromyogram electrodes were attached under the chin to measure muscle tone. 

PSG data were digitized at 256 Hz and visually scored in 30-second epochs according to the 

sleep staging criteria of Rechtschaffen and Kales (Rechtschaffen & Kales, 1968). Data were 

excluded if there was less than fifteen minutes of total sleep time in the nap group (3 

subjects), or if the data indicated that a subject reached Stage 2 sleep despite being assigned 

to the QW group (10 subjects). Of the remaining 26 subjects in the QW group, 3 subjects 

reached Stage 1 sleep (Range: 0.5 – 3.0 minutes), but were not removed from the sample.

2.6 Statistical Analyses

Subjects’ data were also excluded if any of their three baseline thresholds were greater than 

or equal to 2.5 standard deviations from the mean (8 subjects). Data from a total of 141 

remaining subjects are presented here.

TDT thresholds were compared between Sessions 1 and 2 using repeated-measures analysis 

of variance (ANOVA) with group (AW/QW/NREM/REM) as a between-subject factor. To 

examine the magnitude of perceptual learning, we computed the difference score between 

Session 1 and Session 2 thresholds for each condition; positive values indicated decreased 

threshold in Session 2 (i.e., task improvement). We tested differences in magnitude of 

learning with a two-way ANOVA with condition (Adiff/Bdiff/Cdiff) as a within-subject factor 

and group (AW/QW/NREM/REM) as a between-subject factor. All post-hoc tests were 

family-wise corrected for multiple comparisons. Between group effects were tested with 

independent samples t-tests with the corrected significance level set at p = .008. The 

magnitude of learning was compared to zero (i.e., no change from baseline) using one-

sample t-tests with the corrected significance level set at p = .0125.

Sleep variables were compared between NREM and REM groups using independent 

samples t-tests. Linear regressions were also used to examine the relationship between each 

sleep stage and performance for all nappers combined. This is advantageous because the fit 

of the overall model (i.e., the time spent in all of the sleep stages for each subject) can be 

simultaneously examined. Furthermore, the significance of specific sleep stages controlling 

for time spent in other sleep stages can be tested. After reviewing descriptive statistics, 

variables were centered to aid in interpretation of the parameter estimates. Minutes of Stage 

1 sleep were centered on 7, minutes of Stage 2 on 31, minutes of Slow Wave Sleep (SWS) 

on 14, and minutes of REM sleep on 0. Effects of total sleep time (TST) were not estimated 

because TST is the linear combination of the minutes spent in each sleep stage, thus the 

model simultaneously estimates the effects of all the sleep stages controlling for TST. Fit 

statistics (F, p) and variance explained (adjusted R2) are provided for the overall model, and 

statistically significant parameters are noted in the text. In the regression equations, 

unstandardized regression coefficients (Bs) are interpreted as change in performance for 

every 1-minute increase on the parameter from its centered value, controlling for the effect 

of time spent in every other sleep stage. Note, however, that regressions were only used to 

determine the effects of sleep stages within the nap groups and comparisons between wake 

and nap conditions were not made.

McDevitt et al. Page 6

Neurobiol Learn Mem. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. Results

3.1 Prior sleep and experimental nap

Actigraphy data confirmed no differences between groups in prior sleep the night before the 

experiment, as reported in Table 1. A summary of nap PSG data can be found in Table 2. By 

design, the REM group had greater TST (t(48) = 5.96, p < .001) and minutes of Stage 2 

(t(48) = 2.16, p = .04) than the NREM group. There was no difference between groups in 

minutes of Stage 1 (t(48) = 0.05, p = .96) or SWS (t(48) = 0.82, p = .42). However, due to 

decreased TST, nappers in the NREM group had significantly greater percentage of Stage 1 

(t(48) = 2.36, p = .02) and Stage 2 (t(48) = 2.70, p = .01) sleep compared to the REM group. 

There was no difference in percentage of SWS (t(48) = 0.20, p = .84) between groups. REM 

nappers had greater sleep efficiency (t(48) = 4.81, p < .001) than NREM nappers, indicating 

they spent less time awake during the nap period.

3.2 Baseline performance (Figure 2)

An ANOVA with baseline thresholds for each condition (A/B/C) as a within-subjects factor 

and group (AW/QW/NREM/REM) as a between-subjects factor revealed a main effect of 

condition (F(2,202) = 10.65, p < .001), no effect of group (p = .59), and no condition × 

group interaction (p = .11). Baseline thresholds were improved for condition B compared to 

condition A (t(104) = 4.66, p < .001), but thresholds returned to initial performance on 

condition C [condition C no different than condition A, t(104) = 0.72, p = .47 and condition 

C thresholds higher than condition B, t(104) = 3.58, p = .001] (Figure 2A).

We suspected that the observed improvement from A to B was due to fast, within-session 

learning that is typical of perceptual learning tasks (Karni & Sagi, 1993), and that this fast 

learning was specific to spatial location (as it did not transfer to the new spatial location in 

condition C). Thus, we tested how much within-session learning occurred when subjects 

completed two sequential runs of the task with the same stimulus conditions (A-A) in a 

separate control experiment (n = 22, condition AAonly, Figure 2B). We calculated a 

threshold difference score between the first and second runs of the task in the control 

experiment, and compared this value with the threshold difference between tasks A and B in 

the main experiment. No differences were found (A-A: mean difference = 32.23ms, A-B: 

mean difference = 33.53ms; t(125) = .08, p = .94). These results suggested that the original 

condition A threshold was not an accurate baseline by which to compare changes in 

condition A performance because it did not take into account the within-session 

improvement that occurred after two runs in the same spatial location. Therefore, we used 

each subject's condition B threshold as the baseline to which we compared post-

consolidation condition A and B performance. We did not apply this correction for condition 

C because within-session learning did not transfer to a new spatial location.

3.3 Interference disrupts learning

We tested whether the interference paradigm produced performance impairments in 

conditions A and B (retroactive and proactive interference, respectively) compared to 

condition C (low interference). We computed the difference in threshold from Session 1 to 

Session 2 for each condition. An ANOVA with condition (Adiff/Bdiff/Cdiff) as a within factor 
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and group as a between factor found a main effect of condition (F(2,202) = 13.27, p < .001), 

a main effect of group (F(3,101) = 2.95, p = .04), and a condition × group interaction 

(F(6,202) = 2.91, p = .01).

As shown in Figure 3A, condition C showed the greatest amount of learning (M = 35.5ms, 

t(104) = 5.34, p < .001), followed by condition B (M = 21.4ms, t(104) = 3.95, p < .001), and 

no learning occurred in condition A (M = −4.8ms, p = .47). The magnitude of learning in 

condition C was similar to prior nap studies using this task with no interference 

manipulation (~40ms; Mednick, Cai, Kanady, & Drummond, 2008). In order to quantify the 

magnitude of interference induced by our task manipulation, we compared performance in 

conditions A and B to condition C. Although only trending towards significance, there was a 

numerical decrease in condition B performance compared to C (t(104) = −1.78, p = .08), 

suggesting a moderate amount of learning disruption in the proactive interference condition. 

Performance in condition A was significantly decreased compared with condition C (t(104) 

= −4.27, p < .001), indicating a high level of learning impairment in the retroactive 

interference condition.

Examining the main effect of group, we found that the AW group showed no learning (M = 

2.5ms, p = .68), nearly equivalent amounts of improvement in the QW and NREM nap 

groups (MQW = 15.1ms and MNREM = 17.8ms, both p = .03, but not significant after 

correcting for multiple comparisons), and REM naps displayed the greatest amount of 

learning (M = 36.9ms, t(24) = 3.10, p = .005). In the next sections, we examine the condition 

× group interaction.

3.4 Low interference: Active wake shows learning (Figure 3B, condition C)

We asked whether high information input (AW) disrupts consolidation, thereby decreasing 

learning and increasing vulnerability to interference compared with medium input (QW) and 

low input (sleep). We examined this question by comparing group differences in the low 

interference condition (C), which was paired with interference condition (D) after the 

retention interval containing either sleep or wake. A repeated-measures ANOVA with 

session as the within factor and group as the between factor yielded a main effect of session 

(F(1,101) = 28.03, p < .001). There was no main effect of group (p = .14), and no session × 

group interaction (p = .75). Although learning was not different between groups, we further 

tested whether specific groups showed learning significantly different from zero. We found 

significant learning in the AW (t(28) = 3.10, p = .004), QW (t(25) = 3.01, p = .006), and 

NREM (t(24) = 3.19, p = .004), but not the REM group (t(24) = 1.57, p = .129). 

Furthermore, a linear regression with all the sleep stages entered as predictors was non-

significant (R2 = .03, p = .26), and no stage in particular significantly contributed to 

explaining variance in condition C learning in the nap groups.

One possibility is that training condition D in Session 2 facilitated condition C performance, 

similar to the within-session learning observed between conditions A and B in Session 1. 

We ran a control experiment (n = 14, condition ABC-noD) in which thresholds were 

obtained for conditions A, B and C during Session 1 (just as in the main experiment), and 

again for conditions A, B and C (without training D) after a 7-hour, AW retention interval. 

The magnitude of learning for condition C in the control experiment was not different from 
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the AW group in the main experiment (t(41) = .05, p = .96), suggesting that condition C 

performance during Session 2 was not boosted by training condition D, likely due to the fact 

that consolidation of condition C occurred prior to training condition D (Seitz et al., 2005).

Thus, we found no evidence that high information input during AW is a source of memory 

loss in this perceptual learning task. Rather, under specific conditions of low interference 

and short training/test sessions (15 trials/block, 120 trials per condition), we found that AW 

produced the same magnitude of learning as QW or sleep, indicating that AW (and QW) 

were just as effective as sleep at protecting condition C from subsequent interference from 

condition D.

3.5 Proactive interference: NREM sleep rescues learning from moderate interference 
(Figure 3B, condition B)

Next, we investigated which brain state rescued perceptual learning from proactive 

interference (condition B). A repeated-measures ANOVA found a main effect of session 

(F(1,101) = 17.64, p < .001), no main effect of group (p = .68), and a session × group 

interaction (F(3,101) = 2.81, p = .04). The interaction was driven by the large magnitude of 

learning in the NREM (t(24) = 2.72, p = .01) and REM (t(24) = 3.82, p = .001) groups, less 

improvement in the QW group (t(25) = 2.06, p = .05, non-significant following correction 

for multiple comparisons), and no learning in the AW group (p = .89). For subjects who 

napped, linear regression showed that sleep stages did not explain significant variance in 

condition B learning (p = .31, R2 = .02), and the benefits elicited by sleep in this condition 

were not specific to any sleep stage. Taken together, our results showed that a period of 

NREM sleep was sufficient to rescue perceptual learning from moderate, proactive 

interference, whereas AW was not.

3.6 Retroactive interference: REM sleep rescues learning from high interference (Figure 
3B, condition A)

We also examined which brain state could rescue perceptual learning from retroactive 

interference (condition A). A repeated-measures ANOVA found no main effect of session (p 

= .54) and no main effect of group (p = .91), but there was a session × group interaction 

(F(3,101) = 5.97, p = .001). The REM group showed a large magnitude of perceptual 

learning (M = 41.2ms, t(24) = 2.72, p = .01), there was no learning in the QW (M = 

−16.5ms, p = .16) or NREM (M = −13.2ms, p = .32) groups, and there was significantly 

decreased performance in the AW group (M = −26.6ms, p = .01).

To quantify the contribution of each sleep stage independent of the other stages to the 

learning observed in condition A, we used linear regression. The overall model was 

statistically significant (F(4, 45) = 4.47, p = .004), and explained 22% of the variance in 

performance. Results for minutes of each sleep stage showed that SWS was a significant 

predictor of improved performance (p = .04), but that REM sleep was even more critical (p 

= .009): Condition A = −.67BStage1 + .64BStage2 + 2.00BSWS + 2.42BREM. Stage 1 and Stage 

2 were non-significant. Because previous studies have examined the contribution of SWS 

and REM together by correlating the cross-product (SWS×REM minutes) with performance 

outcomes (Mednick et al., 2003; Stickgold, Whidbee, et al., 2000), we ran a subsequent 
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regression model with an interaction term between SWS and REM. The addition of the 

interaction term lowered the overall significance (F(5, 44) = 3.54, p = .009) and the variance 

explained (20.56%) of the model. The parameter for REM sleep remained significant (p = .

009), but SWS became non-significant (p = .10). Further, the interaction between SWS and 

REM was non-significant (p = .70), suggesting that the benefit of REM sleep is not 

moderated by time spent in SWS: Condition A = −.57BStage1 + .66BStage2 + 1.81BSWS + 

2.46BREM + .03BSWS×REM. Overall, these results show that REM is the critical sleep stage 

for recovery of disrupted learning.

We quantified the magnitude of damage due to retroactive interference by calculating the 

difference in learning between the retroactive and low interference conditions (Adiff – Cdiff), 

such that negative values indicate damage and positive values indicate rescue [Figure 4A, 

magnitude of proactive interference (Bdiff – Cdiff) also shown with no significant 

differences]. The magnitude of difference between conditions A and C was significantly 

different from zero, and in the negative direction, for the AW (t(28) = −3.56, p = .001), QW 

(t(25) = −2.71, p = .01), and NREM (t(24) = −3.21, p = .004) groups, indicating that 

performance for condition A was significantly impaired compared to condition C in these 

groups. However, this was not the case for the REM group (p = .31), indicating no 

difference in performance between condition A and condition C. Additionally, a one-way 

ANOVA demonstrated group differences in the magnitude of retroactive interference (F(3, 

101) = 4.12, p = .008). The AW, QW, and NREM groups all showed the same magnitude of 

damage incurred by retroactive interference (all comparisons were p ≥ .82), and all groups 

had significantly more damage than the REM group (AW: t(52) = −3.27, p = .002, QW: 

t(49) = −2.80, p = .007, NREM: t(48) = −3.06, p = .004). Linear regression revealed that 

sleep stages explained 20.1% of the variance in the magnitude of learning rescued from 

retroactive interference (F(4,45) = 4.08, p = .007): Retroactive rescue = −2.73BStage1 + 

1.14BStage2 + .19BSWS + 3.30BREM. Above and beyond all other stages, REM sleep was 

critical for rescue (p = .003). No other sleep stages were significant, and the model was not 

significant for proactive interference. Additionally, within the REM group, the amount of 

learning rescued from retroactive interference was positively correlated with minutes (r = .

41, p = .04, Figure 4B) and percent (r = .40, p = .05) of REM sleep. These results indicate 

that the benefit of REM sleep is dose-dependent, such that more time spent in REM means 

more learning rescued from retroactive interference.

4. Discussion

These results, for the first time, demonstrate a process by which the brain can rescue and 

consolidate memories damaged by interference, and that this process is mediated by specific 

brain states during consolidation (i.e., active wake (AW), quiet wake (QW), NREM, and 

REM sleep). We found: (i) When interference occurs after consolidation, AW supported 

learning and protected against future interference; (ii) Retroactive interference was more 

damaging to memory performance than proactive interference; (iii) For moderate proactive 

interference, NREM sleep was sufficient for performance improvement; and (iv) For high 

levels of retroactive interference, REM sleep was critical for rescuing performance. In 

contrast with many sleep and memory studies, these results show that under conditions of 

low interference, sleep is not necessary to stabilize and enhance learning. But as interference 
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during encoding increases, waking states are unable to rescue damaged learning and a period 

of sleep becomes necessary, with the benefits of NREM and REM sleep depending on the 

extent of damage incurred during encoding.

Prior studies investigating the role of sleep in perceptual learning have consistently shown 

improvements following sleep but not wake (Karni et al., 1994; Mednick et al., 2002, 2003; 

Stickgold, James, et al., 2000; Stickgold, Whidbee, et al., 2000). However, we found that the 

AW and QW groups showed equivalent learning to the sleep groups in the low interference 

condition. These results suggest that the enhancement of a visual skill is not sleep-dependent 

per se. TDT performance is sensitive to over-training on the stimuli, possibly caused by 

neural fatigue or sensory adaptation. Mednick et al. (2002, 2005) showed that repeated, 

within-day testing on the TDT results in performance deterioration. Censor and colleagues 

(2006, 2008) reported that long training sessions (50 trials/blocks, ~1600 trials per session) 

increased discrimination thresholds and decreased between-session learning, whereas short 

training sessions (12 trials/block, ~450 trials per sessions) eliminated adaptation-related 

performance decrements. It is possible that prior learning results may have been 

contaminated by interference from over-training, and that under specific conditions of short 

training and low interference, consolidation processes previously thought to occur only 

during sleep can also occur during waking brain states. Furthermore, because our task 

parameters did not produce deterioration due to neural fatigue or sensory adaptation, it is 

likely that performance decrements observed in the retroactive and proactive conditions 

were specifically due to the task interference manipulation.

4.1 Does high information input during consolidation disrupt learning and make memories 
vulnerable to interference?

The low interference condition results showed that a period of high information input (AW) 

does not negatively impact perceptual learning, suggesting that mental exertion does not 

play an important role in this perceptual learning task. These results are contradictory to the 

classic Jenkins and Dallenbach (1924) findings, as well as theories of forgetting that suggest 

that recently formed memories may be impaired by the subsequent encoding of unrelated 

information that may compete for the same consolidation-related resources (Wixted 2004).

Additionally, AW appeared to be just as beneficial as QW or sleep for protecting the 

condition C memory trace from subsequent interference from condition D. Although we did 

not have a true no interference condition in this study, we infer that learning for the AW 

group in condition C was robust and unhindered by interference based on two main 

observations: 1) the magnitude of perceptual learning (M = 35.5 ms) was comparable to a 

prior napping study using the TDT with no interference (M ~ 40ms; Mednick et al., 2008); 

and 2) in the ABC-noD control condition, in which we did not train condition D prior to 

testing condition C, the magnitude of condition C learning was equivalent to the main 

experiment (p = .96). These findings are in contrast to Ellenbogen et al. (2006) who found 

that sleep was required to protect declarative memories from subsequent interference, but 

are in agreement with other results from the perceptual learning domain showing that a one-

hour passage of time is sufficient to stabilize learning (Seitz et al., 2005).
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4.2 Interference: Encoding similar information disrupts learning

Although we found that learning on this task was not sensitive to the damaging effects of 

nonspecific, high information input, it was affected by proactive and retroactive interference 

from training on highly similar tasks. What might be the mechanism of this task-specific 

interference? Seitz and colleagues (2005) were the first to report task-specific disruption of 

perceptual learning. They proposed that the mechanism of perceptual learning is activation 

of a cluster of neurons that form a template optimized to process the target features. When 

multiple tasks present different target features in the same retinotopic location, the neural 

clusters overlap. Interference may occur when one template “overwrites” or blocks the 

formation of the other template representation. Within this framework, the current results 

and others (Seitz et al., 2005; Yotsumoto et al., 2009) suggest that conditions A and B would 

form overlapping templates and activate overlapping neural clusters (Figure 5, blue and red 

cells), whereas retinotopically-distinct condition C would form an independent template and 

activate a distal neural cluster (Figure 5, green cells). Thus, after encoding these three 

memories, the A and B representations are weakened, while the C representation remains 

strong.

At what stage of memory processing does interference take effect – encoding, consolidation 

or retrieval? Walker and colleagues (2003) demonstrated that interference does not 

immediately reverse initial learning at encoding, but rather disrupts the subsequent 

consolidation process. Indeed, an assumption of the current study is that the interference 

manipulation occurs during encoding by learning two similar pieces of information back-to-

back, but the effect of this intervention does not manifest until the memory has undergone a 

period of consolidation that is either disrupted or not, which is why brain states during 

consolidation are a critical consideration. However, another possibility is that interference 

occurs during retrieval. For example, reconsolidation theory hypothesizes that when 

memories are recalled, the underlying memory trace is reactivated, making it labile and once 

again vulnerable to interference (Dudai, 2004). An assumption of reconsolidation theory is 

that in order to be reactivated, a memory must initially be consolidated. In the context of the 

current study, it is possible that during Session 2, re-testing condition A may have 

reactivated memory A as well as similar memory B. In this view, re-testing A would labilize 

B, thereby subjecting memory B to another form of interference. However, the groups in 

which B was impaired, namely AW (and QW), were also the groups in which memory A 

consolidation was impaired. On the other hand, the group where A was not impaired (REM), 

also showed robust learning for B. Nonetheless, it is possible that the impairment we are 

attributing to proactive interference during encoding may be due to reconsolidation 

interference during retrieval. To eliminate this potential bias, future studies utilizing a 

between-subjects design in which only A or only B is re-tested in Session 2 would be 

informative.

It has also been suggested that sleep may render memories more sensitive to interference by 

promoting the consolidation of an initial memory trace, thus making it more susceptible to 

reactivation and destabilization by a similar, interfering memory trace (Deliens, Leproult, 

Neu, & Peigneux, 2013; Deliens, Schmitz, et al., 2013). Using an AB-AC interference 

paradigm where subjects either slept or were sleep deprived between declarative learning of 
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AB and AC word pairings, Deliens, Schmitz et al. (2013) found more retroactive 

interference following sleep. They hypothesized that the initial memory (AB) was better 

consolidated during sleep than wake, making it more susceptible to reactivation upon partial 

presentation (i.e., the word A) when exposed to an interfering word pair (AC). However, our 

data from the non-declarative memory domain are not in line with this finding. In our study, 

the C-D set is comparable to the AB-AC paradigm, where stimulus C (loc2/bkgrd1) was first 

learned, then consolidated, and then exposed to an interfering stimulus D (loc2/bkgrd2). Just 

as AB-AC share an overlapping representation of word A, so do set C-D share an 

overlapping representation for spatial location. Importantly, we found that performance for 

condition C was the same regardless of whether or not D was exposed prior to re-testing C. 

Thus, not only does D not overwrite template C as previously shown, it also does not appear 

to promote reconsolidation during retrieval.

4.3 Following retroactive or proactive interference, which brain states rescue learning?

Proactive interference moderately disrupted learning, and NREM sleep was sufficient to 

recover this learning. We also found numerical improvement in the QW group, and learning 

reached traditional statistical significance levels (although this result did not survive 

correction). Interestingly, regression did not find a significant contribution of any particular 

sleep stage to learning in this condition, controlling for time spent in the other stages. One 

possibility is that the improvements observed in the NREM and REM groups were not due 

to any active sleep consolidation processes in a specific stage, but rather a passive reduction 

in information input, similar to that experienced during QW. Other studies have found 

similar learning profiles between QW and NREM sleep (McDevitt, Rowe, Brady, Duggan, 

& Mednick, 2014). QW and NREM sleep share some neurophysiological characteristics that 

may make both brain states conducive to consolidation. For example, the default mode, a 

quiet wake state when subjects are not engaged in a particular task (Andrews-Hanna, 2012; 

Buckner, Andrews-Hanna, & Schacter, 2008), activates a network of brain areas similar to 

those activated during NREM sleep (Larson-Prior et al., 2009). Using simultaneous high-

density EEG and functional magnetic resonance imaging, Larson-Prior and colleagues 

(2009) demonstrated no measureable change in functional connectivity as subjects moved 

from QW to early stages of NREM sleep. Future research on the similarities between NREM 

and QW should be addressed in order to identify distinctions in mechanisms of 

consolidation.

REM sleep was the only brain state able to rescue learning hindered by highly damaging 

retroactive interference. In fact, the REM group showed equivalent learning across all three 

interference conditions. Further, the magnitude of rescued learning was correlated with 

percentage and minutes of REM during the nap, suggesting a dose-dependent effect where 

more REM sleep is associated with greater rescue. Drosopoulos and colleagues (2007) 

investigated recovered declarative memory after retroactive interference and found that 

weakly encoded memories, produced by either retroactive interference or training to a 

learning criterion of 60% versus 90%, were consolidated better after sleep than after an 

equivalent period of wake. Although the effect of specific sleep stages was not reported, it is 

likely that these subjects experienced REM sleep during the night. Sleep was also shown to 

recover learning following retroactive and proactive interference on an auditory 
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classification-learning task in starlings (Brawn, Nusbaum, & Margoliash, 2013). Taken 

together, consolidation processes occurring during REM sleep appear to be a general 

mechanism for consolidating weaker, disrupted memories (Baran, Wilson, & Spencer, 

2010), and likely not specific to perceptual learning.

In the retroactive interference condition, we found that both SWS and REM predicted 

performance, but they did not interact. These regressions are a strong statistical test of the 

independent contributions of SWS and REM, as well as their interaction, as they 

simultaneously control for the effects of time spent in each sleep stage. Previously, the 

independent contribution of each sleep stage has been tested using the night-half paradigm, 

in which consolidation across the first half of the night (rich in SWS) is compared with the 

second half of the night (rich in REM sleep) and the whole night (Gais, Plihal, Wagner, & 

Born, 2000). The authors showed that a whole night of sleep containing both SWS and REM 

sleep produced the greatest improvement on TDT, compared to moderate learning following 

early SWS-rich sleep only, and no improvement following late REM-rich sleep. This is 

further supported by the current data, which show that both SWS and REM predict 

performance independent of each other, with maximum memory benefits when both sleep 

stages co-occur. In other words, NREM and REM sleep play distinct, but additive roles, for 

consolidation of this type of visual skill. This is consistent with prior work demonstrating 

that NREM sleep restores perceptual learning that has deteriorated due to over-exposure to 

the stimulus (Censor et al., 2006; Mednick et al., 2002, 2003) and protects against further 

decline, whereas REM sleep enhances learning above and beyond baseline levels (McDevitt 

et al., 2013; Mednick et al., 2003). Whether REM necessarily needs to follow SWS in order 

for learning to occur is an important and unanswered question. Additionally, we found that 

SWS is making a contribution to the rescue effect, and REM is not necessarily playing an 

exclusive role. However, the statistical results suggest that REM plays a more critical role 

than SWS for rescuing learning. This is evidenced by two main results: 1) the magnitude of 

the parameter estimate was larger for REM (B = 2.42) than SWS (B = 2.00) in model 1, and 

2) after adding the SWS×REM interaction in model 2, the parameters for SWS alone and 

SWS×REM were non-significant, whereas the parameter for REM remained stable (B = 

2.46) and significant (p = .009). REM sleep was also critical at the group level, as learning 

was only enhanced and made comparable to low (or no) interference levels of learning when 

the nap contained both SWS and REM sleep, but not SWS alone. Ideally, future studies 

should examine rescue effects with REM sleep alone, although this is methodologically 

challenging.

We chose to include the SWSxREM interaction term in model 2, as there is precedent for 

correlating the cross-product of SWS and REM with TDT learning and interpreting the 

result as the combined contribution of SWS and REM on learning, such that high levels of 

both sleep stages are needed to produce maximum performance benefits (Stickgold, 

Whidbee et al., 2000; Mednick et al., 2003). By interaction (also called moderation), we are 

referring to situations in which the effect of one independent variable (e.g., SWS) on the 

dependent variable (e.g., performance) depends on the level of another variable (e.g., REM; 

Baron & Kenny, 1986). The cross-product correlation is problematic because it does not test 

whether high levels of both sleep stages are needed to produce maximum benefits. Rather, it 

McDevitt et al. Page 14

Neurobiol Learn Mem. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



tests whether high levels of at least one of the stages (given at least 1 minute of each sleep 

stage) are needed, and confounds this with the effects of each stage on its own. To test 

interactions using two continuous variables (such as the minutes spent in each sleep stage), it 

is appropriate to use multiple linear regression (Baron & Kenny, 1986). Additionally, linear 

regression has the added benefit of partialling out the effect of each sleep stage when 

estimating the interaction parameter, thereby controlling for the effects of each sleep stage 

as well as TST.

4.4 Possible sleep-dependent mechanisms of rescued learning

Although we did not directly test any one particular model, several current sleep-dependent 

consolidation models are considered to explain the neural dynamics during NREM and 

REM sleep that may rescue damaged memories. The synaptic homeostasis hypothesis 

(SHY) proposes that an important function of NREM sleep – specifically the slow wave 

activity (<1 Hz) that predominates during NREM sleep – is to downscale synapses that were 

potentiated in the course of encoding information during prior waking (Tononi & Cirelli, 

2006). According to this hypothesis, highly potentiated, strong synapses (signals) are 

preferentially protected and receive less downscaling than weaker synapses (noise), which 

are downscaled below a threshold and nullified (Tononi & Cirelli, 2014). This increased 

signal to noise ratio is posited to result in improved memories for important, to-be-

remembered information, while weaker memories are forgotten. This model can be used to 

explain some of our results. For example, learning for condition C was enhanced across a 

period of AW. Since the potentiation initiated at training was not disrupted by interference, 

potentiation of the synapses involved in learning memory C was maintained across a day of 

waking leading to enhanced performance. However, proactive interference weakened 

memory B, which may have then required other weaker information to receive relatively 

more downscaling during NREM sleep in order for B to be enhanced (Tononi & Cirelli, 

2014).

On the other hand, the active systems consolidation hypothesis posits that newly encoded 

memories are reactivated during NREM sleep, facilitating the transfer of representations 

from temporary to long-term stores where they become integrated with pre-existing long-

term memories and resistant to interference (see Diekelmann & Born, 2010 for review). It is 

equally plausible that either downscaling or reactivation could have salvaged condition B 

performance. Furthermore, the opportunistic consolidation hypothesis posits that the 

initiation of consolidation is contingent upon states of low information input, such as QW or 

NREM, when reactivation of freshly encoded memories can commence (Mednick et al., 

2011). This hypothesis could explain why we found similar learning profiles in QW and 

NREM sleep groups for all three interference conditions (A, B, and C). More basic research 

is needed that directly compares and contrasts these models with critical experimental tests 

to determine the neural mechanisms that give rise to consolidation.

For the case of highly damaged memory A, in which the memory trace was obliterated by 

AW, QW and NREM, but rescued by REM sleep, none of the current models present a 

plausible mechanism. First, the SHY and opportunistic consolidation models do not directly 

address REM-dependent memory consolidation. However, the current state of the SHY 
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model, which suggests that downscaling competitively saves strong memories while weaker 

memories are abolished (Tononi & Cirelli, 2014), is not consistent with our finding that 

weak memories are preferentially enhanced during REM sleep. The active systems 

consolidation hypothesis posits that following systems consolidation during NREM sleep, 

memories are further enhanced by synaptic consolidation that takes place during subsequent 

REM sleep (Rasch & Born, 2013). Although the active systems consolidation hypothesis 

provides a useful framework for understanding how memories might be strengthened during 

sleep, it does not directly address the case of weak memories that would be lost during 

NREM sleep and rescued during REM. Thus, our data do not differentiate any of the 

aforementioned models, and any one or more of the mechanisms are possible (e.g., Genzel, 

Kroes, Dresler, & Battaglia, 2014).

A computational model by Norman and colleagues (2005) hypothesizes that weak memories 

are enhanced during sleep, and proposed a mechanism for a functional role of REM sleep in 

repairing damaged memories. Building upon McClelland et al.'s (1995) Complementary 

Learning Systems framework, their model includes an offline learning process during REM 

sleep that rehearses and strengthens existing knowledge structures. In the model, the 

network can recall the intact version of a memory, even if the synapses underlying the 

memory have been disrupted (although too much damage will make recall impossible). 

Repair and subsequent enhancement is caused by a rehearsal mechanism during REM, 

guided by inhibitory oscillations (possibly strong theta activity). During high inhibitory 

states, weak parts of a disrupted memory show decreased activity, which triggers learning 

processes that strengthen those parts of the memory. Conversely, when inhibition is lowered, 

other memories that are similar to the damaged memory become active. This in turn triggers 

learning processes that shift the representations of these similar memories away from the 

damaged memories, allowing new memories to be integrated into the network without 

destroying or overwriting older memories. Consistent with this hypothesis, our results show 

that memories highly damaged by retroactive interference specifically benefitted from REM 

sleep. In addition, the REM group showed non-significant learning for the strongest memory 

C (although no differences were found between groups for condition C, nor was 

performance different from conditions A and B within the REM group). Although our data 

does not directly address this finding, it is possible that REM sleep preferentially processes 

weak memories, leading to smaller improvement for stronger memories. This intriguing 

hypothesis may be related to the process of pushing similar memories away from damaged 

memories as proposed by Norman and colleagues (2005), and should be experimentally 

tested in future research.

4.5 A model of neural dynamics that predicts which memories are retained or lost

We hypothesize that the extent to which these brain states (AW, QW, NREM and REM) 

encourage plasticity via fluctuations in plasticity-related neuromodulators (e.g., 

acetylcholine) may contribute to understanding which memories are retained or lost. 

Acetylcholine (ACh) shows significant fluctuations across AW, QW, NREM and REM 

sleep. Microdialysis studies report higher ACh concentrations during AW than QW. These 

concentrations decrease to one-third of waking levels during NREM sleep, and then rise to 

levels above AW during REM sleep (Hasselmo & McGaughy, 2004; Jasper & Tessier, 
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1971; Kametani & Kawamura, 1990; Marrosu et al., 1995). High levels of cholinergic 

transmission allow for induction and maintenance of long-term potentiation (LTP; Hasselmo 

& Bower, 1993; Matsukawa et al., 1997), a likely mechanism of synaptic plasticity in 

perceptual learning (Sale et al., 2011). Thus, low cholinergic tone during NREM sleep and 

QW (Hasselmo & Bower, 1993) may reduce or even block LTP induction (Jones Leonard, 

McNaughton, & Barnes, 1987) without disrupting LTP maintenance (Bramham & Srebro, 

1989). This state of low plasticity combined with low information input has been 

hypothesized to optimize conditions for stabilizing, but not enhancing, recently learned 

experiences (Mednick et al., 2011). In contrast, high cholinergic tone during AW and REM 

sleep distinguishes these states as having high synaptic plasticity, which increases likelihood 

of successful encoding during AW (Hasselmo & McGaughy, 2004) and strengthening of 

memory representations at the synaptic level during REM sleep (Diekelmann & Born, 

2010). We further hypothesize that REM, a unique state of low information input and high 

synaptic plasticity, is critical for consolidating and enhancing the weakest memories.

In light of these fluctuations in plasticity, we present a theoretical model that considers how 

interference influences the strength of memory representations during encoding, which then 

interacts with consolidation states that vary in degree of information input and plasticity, to 

predict which memories are retained and which are lost (Figure 5). In short, under 

conditions of little to no interference (C) during encoding, a period of high information input 

and high plasticity (AW) during consolidation will lead to increased signal in a smaller 

number of neurons representing the target, leading to improved memory performance. When 

learning is moderately disrupted at encoding (B), reduced information input and low 

synaptic plasticity (NREM and QW) are sufficient to resolve signal from moderately 

damaged targets, which leads to improved memory. A unique state of low information input 

and high synaptic plasticity (REM) is required to rescue and separate target templates highly 

obstructed by interference (A). Future work that tests the predictions of this model in 

interference and learning are needed.
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• When interference occurs after consolidation, AW supports perceptual learning 

(PL).

• Retroactive interference is more damaging to PL than proactive interference.

• For moderate proactive interference, NREM sleep is sufficient for PL.

• For high levels of retroactive interference, only naps with REM sleep rescue PL.
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Figure 1. 
Experimental methods. (A) Subjects were trained on all four TDT conditions (A, B, C, D). 

Based on prior work, conditions A & B and conditions C & D were designed to interfere 

with each other (same target location, different background orientation). That is, A-B: loc1/

bkgrd1 – loc1/bkgrd2 with no delay between conditions; and C-D: loc2/bkgrd1 – loc2/

bkgrd2 with a 7-hr delay between conditions. Baseline thresholds were obtained for 

conditions A, B and C during Session 1. During the retention interval, subjects took a nap, 

rested quietly (quiet wake, QW), or carried out their usual daily activities outside of the lab 

(active wake, AW). During Session 2, performance was retested for conditions A and B, 

followed by training condition D, and then re-testing condition C. (B) The texture 

discrimination task (TDT) entails 1000ms of fixation, followed by a target display for 40ms. 

Each display contained a central target (“L” or “T”) and a peripheral target (three diagonal 

lines either stacked in a horizontal or vertical orientation). The next screen was blank, 

followed by a mask. The duration of the blank screen, the inter-stimulus interval (ISI), 

decreased from block to block. Subjects were asked to identify the central letter and report 

the orientation of the three diagonal lines. Subjects completed 8 blocks with 15 trials per 

block for each condition at training and testing (120 trials per condition). (C) Examples of 

target stimuli used across conditions. Peripheral texture targets were either presented in the 

upper right or lower left quadrant of the display (texture targets circled with dotted line for 

demonstration purposes only). Background orientation was either horizontal or vertical. 

Each subject was tested on a combination of four conditions in each spatial location with 

each background orientation.
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Figure 2. 
Baseline thresholds. (A) Session 1 thresholds for conditions A, B and C in the main 

experiment. The threshold is defined as the ISI at which subjects performed the task at 80% 

correct. Thresholds improved within a session for texture targets in the same spatial location 

(A-B, magnitude indicated by the red arrow), and this learning did not transfer to the new 

spatial location in condition C. (B) Thresholds for the AAonly control group. Subjects 

completed two back-to-back runs of condition A. Within-session improvement (indicated by 

the red arrow) was equivalent between the AAonly control group and all subjects in the main 

experiment. **indicates p < .01 and *indicates p < .05
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Figure 3. 
Behavioral effects of interference during encoding and varying levels of information input 

during consolidation. (A) Difference scores indicate threshold improvement (ms) for each 

interference condition (A: retroactive interference; B: proactive interference; C: low 

interference). The black arrow represents the magnitude of learning on the same task in a 

prior napping study (~40ms, Mednick et al., 2008), and **indicates p < .01 and ‡ indicates p 

= .08. (B) Difference scores indicate threshold improvement (ms) for each experimental 

group in the retroactive(A), proactive (B) and low interference (C) conditions. Statistics test 

for learning significantly different from zero, and *indicates p = .05 and **indicates p ≤ .

0125 (Note: Bonferroni correction for multiple comparisons sets the significance level at p 

< .0125).
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Figure 4. 
Retroactive and proactive interference effects. (A) Bars represent difference scores between 

B learning and C learning (proactive), and A learning and C learning (retroactive). Statistics 

test for learning significantly different from zero (asterisks located below bars) and group 

differences, and *indicates p ≤ .0125 and **indicates p < .008. (B) In the REM group, 

minutes of REM sleep was positively correlated with the magnitude of rescue from 

retroactive interference (r = .41, p = .04).
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Figure 5. 
Theoretical neural model predicting profiles of learning based on interference during 

encoding and information input during consolidation. During encoding, memory A activates 

6 neurons (blue cells), and subsequent encoding of a similar memory B (red cells) also 

activates 6 neurons, three of which overlap with memory A. This overlap weakens the 

neural representation of memories A and B due to retroactive and proactive interference, 

respectively. Since retroactive interference is more damaging than proactive (see Results 

3.3), memory A occupies less neural real estate compared to memory B. Retinotopically-

distinct memory C (green cells) occupies 6 completely independent, non-overlapping 

neurons. Following a period of AW, memories A and B are not retained in the network due 

to disruption incurred during encoding and high information input during consolidation, 

while strong memory C is retained. Following QW and NREM sleep only, memory A is 

lost, whereas memories B and C are remembered. In contrast, following sleep that includes 

REM, which is a unique state of low information input and high plasticity, the network 

learns all three memories. Importantly, after consolidation each memory is represented by a 

more finely tuned group of neurons with no overlap between memories, which maximizes 

pattern separation and specificity.
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Table 1

Prior sleep the night before the experiment (from actigraphy).

AW QW NREM REM p

Bedtime 12:09 (0:55) AM 12:17 (1:14) AM 11:49 (1:15) PM 12:32 (0:48) AM .16

Wake time 7:19 (0:52) AM 7:31 (0:51) AM 7:33 (0:49) AM 7:38 (0:36) AM .63

Total Sleep Time (min) 386 (59.3) 384 (61.7) 411 (53.3) 372 (55.2) .14

Sleep Latency (min) 11.4 (17.9) 12.5 (9.8) 12.7 (12.6) 16.5 (11.6) .62

WASO (min) 44.8 (22.3) 50.6 (21.0) 52.7 (20.1) 54.1 (27.5) .58

Snooze Time (min) 15.4 (20.7) 13.1 (11.6) 10.9 (9.9) 14.2 (14.7) .77

Sleep Efficiency (%) 84.2 (8.3) 83.3 (6.6) 84.2 (5.3) 81.3 (7.6) .46

Note: Values are M (SD). Wake after sleep onset, WASO. One-way ANOVA found no differences between groups for any prior sleep variable.
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Table 2

Sleep architecture descriptives.

NREM Naps REM Naps

TST (min)
** 49.8 (16.7) 76.7 (15.2)

SE (%)
** 62.1 (21.4) 85.0 (10.3)

Minutes

    Stage 1 7.89 (5.5) 8.0 (6.2)

    Stage 2
* 28.1 (11.4) 35.6 (13.0)

    SWS 13.7 (12.9) 16.7 (13.0)

    REM 0.08 (0.28) 16.4 (11.1)

Percent (% TST)

    Stage 1
* 18.7 (15.7) 10.6 (7.3)

    Stage 2
* 56.7 (13.4) 46.3 (13.9)

    SWS 24.5 (21.3) 23.3 (19.1)

    REM 0.12 (.42) 19.9 (12.0)

Note: Values are M (SD). Total sleep time, TST; Sleep efficiency, SE; Slow wave sleep, SWS; Rapid eye movement, REM. Statistics tested 
differences between groups.

*
indicates p < .05

**
indicates p < .01
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