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RESEARCH ARTICLE

Penetration and scattering—Two optical

phenomena to consider when applying

proximal remote sensing technologies to

object classifications

Christian NansenID*

Department of Entomology and Nematology, Davis, California, United States of America

* chrnansen@ucdavis.edu

Abstract

Proximal remote sensing is being used across a very wide range of research fields and by

scientists, who are often without deep theoretical knowledge optical physics; the author of

this article falls squarely in that category! This article highlights two optical phenomena,

which may greatly influence the quality and robustness of proximal remote sensing: penetra-

tion and scattering. Penetration implies that acquired reflectance signals are associated

with both physical and chemical properties of target objects from both the surface and inter-

nal tissues/structures. Scattering implies that reflectance signals acquired from one point or

object are influenced by scattered radiometric energy from neighboring points or objects.

Based on a series of laboratory experiments, penetration and scattering were discussed in

the context of “robustness” (repeatability) of hyperspectral reflectance data. High robust-

ness implies that it is possible to control imaging conditions and therefore: 1) obtain very

similar radiometric signals from inert objects (objects that do not change) over time, and 2)

be able to consistently distinguish objects that are otherwise highly similar in appearance

(size, shape, and color) and in terms of biochemical composition. It was demonstrated that

robustness of hyperspectral reflectance data (40 spectral bands from 385 to 1024 nm) were

significantly influenced by penetration and scattering of radiometric energy. In addition, it

was demonstrated that the influence of penetration and scattering varied across the exam-

ined spectrum. Characterization of how optical phenomena may affect the robustness of

reflectance data is important when using proximal remote sensing technologies as tools

used to classify engineering and biological objects.

Introduction

Proximal remote sensing has been defined as acquisition and classification of reflectance or

transmittance signals with an imaging sensor mounted within a short distance (under 1 m and

typically much less) from target objects [1]. When deploying proximal remote sensing, remit-

tance (reflectance or transmission) signals are acquired under controlled light and temperature

PLOS ONE | https://doi.org/10.1371/journal.pone.0204579 October 9, 2018 1 / 14

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Nansen C (2018) Penetration and

scattering—Two optical phenomena to consider

when applying proximal remote sensing

technologies to object classifications. PLoS ONE

13(10): e0204579. https://doi.org/10.1371/journal.

pone.0204579

Editor: Yogendra Kumar Mishra, Institute of

Materials Science, GERMANY

Received: February 15, 2018

Accepted: September 11, 2018

Published: October 9, 2018

Copyright: © 2018 Christian Nansen. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper.

Funding: The author received no specific funding

for this work.

Competing interests: The author has declared that

no competing interests exist.

http://orcid.org/0000-0003-1324-1949
https://doi.org/10.1371/journal.pone.0204579
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0204579&domain=pdf&date_stamp=2018-10-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0204579&domain=pdf&date_stamp=2018-10-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0204579&domain=pdf&date_stamp=2018-10-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0204579&domain=pdf&date_stamp=2018-10-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0204579&domain=pdf&date_stamp=2018-10-09
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0204579&domain=pdf&date_stamp=2018-10-09
https://doi.org/10.1371/journal.pone.0204579
https://doi.org/10.1371/journal.pone.0204579
http://creativecommons.org/licenses/by/4.0/


conditions and typically with a constant distance and angle between the imaging lens and tar-

get objects. The combination of: 1) high spectral resolution, 2) high spatial resolution, 3) high

robustness of radiometric signals, 4) signal acquisition is non-invasive, and 5) processing of

reflectance signals potentially being almost real-time—enables use and integration of proximal

remote sensing into wide ranges of industrial operations with high throughput and also in

many types of basic and applied engineering and biological research. Several reviews have

described applications of proximal remote sensing in different research disciplines, including:

food safety and food quality [2–6], biology of insects [1, 7], plant phenotyping and stress detec-

tion [8, 9], and pharmaceutical product analyses [10]. Separately, it is very important to high-

light that the medical field has been studying and using proximal remote sensing technologies

for over three decades [11]. Applications of proximal remote sensing in biomedical research

was recently reviewed [12]. The basic purpose of proximal remote sensing is to demonstrate

that remittance signals in selected spectral bands can be used to classify objects (food products,

seeds, growing plants, insects, pills, etc) non-invasively. These applications of proximal remote

sensing hinge on the assumption that unique and detectable remittance signals can be associ-

ated with specific qualitative traits or characteristics, so that the objects can be classified accu-

rately and consistently. With the growing interest in applications of both proximal and

airborne remote sensing technologies, it seems both timely and important to investigate some

of the factors affecting the robustness of remittance signals.

“Robustness” [13] (also referred to as “spectral repeatability” [14]) of remittance signals is

here defined as the level of consistency of acquired reflectance signals over time and space, and

high robustness implies that, it is possible to control imaging conditions and therefore; 1)

obtain very similar radiometric signals from inert objects (objects that do not change) over

time, and 2) be able to consistently distinguish objects that are otherwise highly similar in

appearance (size, shape, and color) and in terms of biochemical composition. The rapidly

growing number of studies describing applications of proximal remote sensing is largely

driven by the technology becoming progressively more robust, cost-effective, and also user-

friendly. The latter means that scientists who come from a wide range of academic back-

grounds become involved in applied proximal remote sensing applications without necessarily

having the theoretical knowledge to appreciate the complexity and importance of phenomena

associated with optical physics; the author of this article falls squarely in that category! We

non-optical physicists see the value and potential of the technology through the lens of: 1)

practical applications we encounter, 2) demand-driven research we propose in grant applica-

tions, 3) attempting to integrate novel technologies into university teaching, and 4) involving

our students in meaningful and competitive capacity building for their career paths. This arti-

cle was written with the intention to illustrate practical implications of two optical phenomena,

which can have considerable influence on the quality and robustness of reflectance signals

acquired with proximal remote sensing technologies: penetration and scattering of radiometric

energy.

Penetration implies that, even though many applications of proximal remote sensing tech-

nologies refer to object surface reflectance, the acquired reflectance signal is associated with

physical and chemical properties of the both the surface and underlying tissues or structure of

target objects. In the medical field, the optical properties radiometric energy (light) have been

well characterized for over three decades [11]. Moreover, the ability of radiometric energy to

penetrate into soft human tissues (i.e. brain, liver, lung, skin) is used to characterize the func-

tion or structure of the tissues as part of disease diagnosis and image-guided surgery [12]. Scat-

tering of radiometric energy from target objects means that the reflectance signal acquired

from any given point is partially influenced by scattered radiometric energy from neighboring

points or objects. The implications of scattering are that the reflectance signals acquired from a

Penetration depth and stray light
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given object becomes relative to its proximity to other objects. The intensity and radiometric

composition of scattering depends on the radiometric energy source and chemical and physi-

cal properties of the objects being imaged [15]. Scattering is also referred to as lens flare or veil-

ing glare [16].

In this study only hyperspectral reflectance data will be considered (not transmission), and

penetration and scattering were studied through a series of laboratory experiments with sheets

of paper, plant leaves, candy [Skittles], and mosquito adults and eggs. Statistical comparisons

were used to characterize the robustness of average reflectance values in individual spectral

bands (40 spectral bands from 385 to 1024 nm). That is, no statistical effect of either penetra-

tion or scattering was considered indication of high robustness of reflectance data in a given

spectral band. This series of experiments represents the first study, in which effects of both

penetration and scattering were quantified across a wide radiometric range. These two optical

phenomena were discussed in the context of robustness reflectance data and the reliability of

proximal remote sensing technologies as tools used to classify engineering and biological

objects.

Materials and methods

Hyperspectral imaging

Regarding all experimental data sets described below, hyperspectral reflectance data were

acquired under environmental conditions similar to those described in previous studies [17–

20]. In brief, a push-broom hyperspectral camera (PIKA XC, Resonon Inc., Bozeman, MT,

USA) was mounted 20 cm above the specimens, and hyperspectral images were acquired with

the spatial resolution of about 36 pixels per mm2 under artificial lighting (four 15W 12 V light

bulbs with two on either side of the lens). The main specifications of the hyperspectral camera

were: interface, Firewire (IEEE 1394b), digital output (14 bit), and angular field of view of 7

degrees. The objective lens had a 17 mm focal length (maximum aperture of F1.4), optimized

for the near-infrared and visible near-infrared spectra. Originally, we acquired reflectance sig-

nals in 240 spectral bands from 385–1024 nm (spectral resolution = 2.1 nm), but these data

were spectrally binned (averaged across six spectral bands) into 40 spectral bands (spectral res-

olution = 12.6 nm). During hyperspectral image acquisition, RH was between 30–40% and

temperature 19–22˚C in the lab. A piece of white Teflon (K-Mac Plastics, MI, USA) was used

for white calibration. Reflectance value was referred to proportional reflectance and compared

to reflectance obtained from white Teflon. All data processing and subsequent statistical analy-

ses were conducted in PC-SAS 9.4 (SAS Institute, NC).

Imaging of white paper placed on top of colored dots

To characterize penetration through layers of white paper sheets, standard grade office paper

was used. A stack of 500 paper sheets equals 54 mm, so the average thickness per sheet was

0.108 mm. Average reflectance profiles were acquired from regions immediately above colored

dots (blue, green, and red) (Fig 1a) after placing: 0, 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, and 25 addi-

tional sheets of white paper on top of the paper with colored dots. To ensure uniform packing

of sheets of white paper, consistent weight was carefully placed on top of sheets of white paper

around the region with colored dots. It was assumed that, as sheets of white paper were stacked

on top of the colored dots, reflectance data acquired from sheets above colored dots would

gradually stabilize (the effect of the colored dot would cease to affect the acquired reflectance

data). In other words, and as depicted in Fig 1b, it was predicted that reflectance values in each

spectral band would reach an asymptote after a certain number of white paper sheets had been

placed on top of the colored dots. The asymptotic response of average reflectance in a specific

Penetration depth and stray light
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spectral band (Rx) was predicted as a function of number of white paper sheets (“paper”):

Rx ¼ aþ b� ½1 � e
� 3�paper

c � ð1Þ

In Eq 1 above, there are three fitted coefficients, a, b, and c. This particular curve fit is

widely used in spatial statistics and was selected, because the three fitted coefficients conve-

niently describe important characteristics of the asymptotic response [21]: 1) a: the intercept

with the y-axis is denoted the “nugget”, 1) b: the asymptote is denoted the “sill”, and 3) c: the

number of sheets of white paper when the sill is reached is denoted the “range”. Moreover, the

range is here a direct estimate of how many sheets of white paper needed to eliminate the effect

of the colored dot underneath. Using non-linear regression (proc nlin), Eq 1 was fitted to

reflectance data from 0–25 sheets of white paper above the three colored dots (12 replicates),

and separate non-linear regression analyses were conducted for all 40 spectral bands (three

colored dots × 40 spectral band = 120 non-linear regression analyses).

Fig 1. Experimental design with colored dots (blue, green, and red) on a white piece of paper were covered with 1–15 sheets of white

paper (a). In Fig 1b-d, each cell represents the result from a statistical comparison of the average reflectance acquired immediately above

the white dot and one of the colored dots [blue (b), green (c), and red (d)]. Color coding of cells indicates statistical difference (P< 0.05).

In other words, a given wavelength was found to be sensitive to a specific background color (dot color) after sheets of white paper was

placed on top of the colored dots.

https://doi.org/10.1371/journal.pone.0204579.g001
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Imaging of magnolia leaves

As a second study of penetration, reflectance profiles were acquired from a magnolia leaf

(Magnolia grandiflora) in a fixed and suspended position, and either additional magnolia

leaves (one or two) or a pot with soil (dry or wet) was placed underneath (Fig 2a). A magnolia

leaf is thick and waxy on the surface, so it could be considered considerably less sensitive to

potential penetration than thinner leaves of most economically important crops (i.e. wheat,

canola, tomato, potato, soybean, etc). Average reflectance signals were acquired from the adax-

ial side of a magnolia leaf in a fixed position with: 1) nothing underneath, 2) a second and/or a

third magnolia leaf immediately underneath, and 3) placement of a pot with wet or dry soil

underneath. Analyses of variance (Proc glm) of 12 replications were performed, in which aver-

age reflectance from a Magnolia leaf without any objects underneath was compared with aver-

age reflectance after placing objects underneath. With four scenarios (One or two additional

magnolia leaves immediately underneath or a pot with wet or dry soil underneath) and 40

spectral bands, a total of 160 analyses of variance were performed.

Imaging of adult mosquitoes

As a final study of penetration, 20 adult mosquitoes (Aedes albopictus) were placed on top of

paper in four different colors: white, blue, green, and red (Fig 3a). That is, the exact same 20

adult mosquitoes were imaged four times (placed on different sheets of paper. After hyperspec-

tral imaging, radiometric filtering procedures described in previously published studies [20,

22–25] were deployed, so that background (paper) was excluded. Analyses of variance (Proc

glm) of 20 replications were performed, in which average reflectance from adult mosquitoes

with white paper as background was compared with average reflectance when colored paper

was used as background. With three colors of background paper (blue, green, and red) and 40

spectral bands, a total of 120 analyses of variance were performed.

Imaging of Skittles

In a study of scattering, average reflectance signals were acquired from green pieces of candy

(Skittles, the Wrigley Company) under four different scenarios (Fig 4a): 1) a single green Skit-

tle (denoted “Alone”), 2) Two green Skittles neighboring the green single Skittle (denoted

Fig 2. A magnolia leaf was positioned above a benchtop, and hyperspectral imaging data were acquired with nothing underneath, additional Magnolia

leaves underneath, or a pot with wet or dry soil underneath (a). Average reflectance profiles for all scenarios in 40 spectral bands from 385 to 1024 nm

are presented (b). Difference in average reflectance values (C) represents the difference between nothing underneath compared to other scenarios.

Analyses of variance were used to compare differences in all 40 spectral bands, and black squares represent spectral bands in which presence of one or

two Magnolia leaves underneath caused a significant increase in average reflectance (P< 0.05).

https://doi.org/10.1371/journal.pone.0204579.g002
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“Green neighbors”), 3) Two brown Skittles neighboring the green single Skittle (denoted

“Brown neighbors”), and 4) Two red Skittles neighboring the green single Skittle (denoted

“Red neighbors”). The purpose of this experiment was to examine to what extent the presence

of neighboring Skittles of different colors affected the average reflectance profile of the green

Skittle. Without scattering, the average reflectance profile acquired from the green Skittle in

the middle should not be affected by presence and color of neighboring objects. Analyses of

variance (Proc glm) of 10 replications were performed, in which average reflectance from the

green Skittle alone was compared with average reflectance from the target Skittle when

Fig 3. Hyperspectral imaging data were acquired from adult mosquitos (Aedes albopictus) placed on top of different colored background

paper (a). Bar in top left equals scale of 5 mm. After excluding paper background, average reflectance profiles from mosquito bodies were

presented (b). Average reflectance values in 40 spectral bands from 385 to 1024 nm from adult mosquitoes placed on white paper were

compared statistically with reflectance values acquired from adult mosquitoes placed on top of blue, green, or red paper (c). Grey color

represents significant difference at the 0.05-level.

https://doi.org/10.1371/journal.pone.0204579.g003
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neighboring Skittles were present. With three neighboring scenarios (green, brown, and red)

and 40 spectral bands, a total of 120 analyses of variance were performed.

Imaging of mosquito eggs

In a second study of scattering, reflectance profiles were acquired from mosquito eggs (Aedes
albopictus), which had been oviposited onto a piece of brown paper (Fig 5a). The entire hyper-

spectral image cube of mosquito eggs was equal to 122,500 pixels, which were divided into 49

squares. Importantly, the female mosquitoes had oviposited the eggs with varying degree of

aggregation, so that both individual eggs and also small and larger clusters of eggs were pres-

ent. All eggs are oviposited by females in a single layer, so there was a linear correlation

Fig 4. Hyperspectral imaging data were acquired from green pieces of candy (Skittles) under four different scenarios (a): 1) no other Skittles (Alone), 2)

two neighboring green Skittles (green neighbors), 3) two neighboring brown Skittles (brown neighbors), and 4) two neighboring red Skittles (red

neighbors). Average reflectance profiles in 40 spectral bands from 385 to 1024 nm are presented (b). Average reflectance (c) and statistical analyses (d) of

difference (average reflectance profiles from scenarios with neighbors divided by average reflectance profiles without neighbors) in 40 spectral bands

from 385 to 1024 nm. Grey color represents significant difference at the 0.05-level.

https://doi.org/10.1371/journal.pone.0204579.g004

Penetration depth and stray light

PLOS ONE | https://doi.org/10.1371/journal.pone.0204579 October 9, 2018 7 / 14

https://doi.org/10.1371/journal.pone.0204579.g004
https://doi.org/10.1371/journal.pone.0204579


between number of eggs and number of pixels representing mosquito eggs. Thus, this data set

was considered very suitable for determining the relative effect of egg cluster size on average

reflectance profiles. Without the presence of scattering, average reflectance profiles from mos-

quito eggs should be the same, irrespectively of egg cluster size.

The hyperspectral image of mosquito eggs represented a square of 122,500 pixels (350 by

350), and the total image was divided into 49 equally sized squares (2500 pixels each). A radio-

metric filter was applied, so that brown background was excluded. Afterwards, average reflec-

tance of pixels representing mosquito eggs in the 40 spectral bands was determined for each

square. Only 30 of the 49 squares contained mosquito egg pixels, and for each spectral band a

correlation analysis (proc corr) of the relationship between average reflectance and number of

pixels representing mosquito eggs was conducted. Under the assumption of no scattering,

average reflectance should not be affected by the number of pixels representing mosquito eggs.

However under the assumption of scattering significantly affecting the reflectance signals, one

would assume, in this case with dark objects (mosquito eggs), a negative correlation between

reflectance signals and the numbers of pixels representing mosquito eggs.

Results

Imaging of colored dots covered with sheets of white paper

Average reflectance profiles from the three colored dots (no sheets of white paper placed on

top) are presented in Fig 1c. For comparison, the average reflectance profile from white paper

is also included. It is seen that: 1) average reflectance from blue dots is consistently below that

of white paper across the examined spectrum, 2) average reflectance from green dots is similar

to that of white paper in spectral bands from 800–1024 nm, and 3) average reflectance from

red dots is similar to that of white paper in spectral bands from 650–1024 nm. Fig 1d shows

the estimated range (coefficient c in Eq 1) in all 40 spectral bands, and several noteworthy

trends are highlighted: 1) In spectral bands from 385–600 nm and for all three colored dots,

the range was 1–2 sheets of white paper which suggested that penetration in these spectral

bands was less than 0.3 mm. 2) Regarding reflectance data acquired in spectral bands from

about 850–1024 nm from blue dots, the range was 5–7 sheets of white paper. Thus, the results

suggest that penetration in these spectral bands was less than 0.8 mm. 3) Regarding reflectance

data acquired in spectral bands from about 850–1024 nm from green dots, the range was 15–

18 sheets of white paper. Thus, the results suggest that penetration in these spectral bands was

Fig 5. Hyperspectral imaging data were acquired from a piece of paper with mosquito eggs (Aedes albopictus) oviposited in random clusters (a). The

image was divided into 49 squares, and for each square the number of pixels representing mosquito eggs was determined. In addition, the average

reflectance was calculated for pixels representing mosquito eggs. Correlation analysis was used for each of the 40 spectral bands from 385 to 1024 nm,

and all spectral bands showed a negative correlation between number of pixels representing mosquito eggs and average reflectance (b). Strongest

negative correlation was observed at 828 nm (c).

https://doi.org/10.1371/journal.pone.0204579.g005
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less than 2.0 mm. 4) Regarding reflectance data acquired in spectral bands from about 650–

1024 nm from red dots, the range was 17–31 sheets of white paper. Thus, the results suggest

that penetration in these spectral bands was less than 3.2 mm.

The results presented here suggest that the choice of background color underneath target

objects can greatly impact both quality and robustness of proximal remote sensing data. More-

over, to avoid possible penetration interference by colors underneath, a blue background

should be preferred over a red background. In addition, it was shown that effects of colored

dots were very similar in spectral bands from 385–600 nm, and that penetration in these spec-

tral bands was negligible (less than 0.3 mm). However, it was also shown that acquired reflec-

tance signals penetrate as far as 3.2 mm (31 paper sheets) in spectral bands from 800–900 nm,

when the colored dot underneath is red. In the same spectral range (800–900 nm), the penetra-

tion only appeared to be about 2 mm when the colored dot underneath is green and about 0.8

mm when the colored dot underneath is blue.

Imaging of magnolia leaves

Average reflectance profiles show that placing either pots with soil or additional leaves caused

an increase in reflectance across the examined spectrum (Fig 2b). Fig 2c shows the relative

change, and it is seen that the strongest response (increase in reflectance) to soil in pots was

detected in spectral bands between 400–500 nm and between 600–700 nm. In comparison, the

strongest response to additional magnolia leaves placed underneath was observed in spectral

bands from 720–1024 nm. Analyses of variance were conducted for all 40 spectral bands, and

it was found that: 1) Although there was a considerable increase in average reflectance in spec-

tral bands between 400–500 nm and between 600–700 nm, there was no significant effect of

placing a pot with neither dry nor wet soil underneath the imaged magnolia leaf. 2) Spectral

bands from 728–1024 nm showed a highly significant (P < 0.001) increase in average reflec-

tance (Fig 2c), when placing either one or two magnolia leaves immediately underneath the

imaged magnolia leaf.

Imaging of adult mosquitoes

Average reflectance profiles acquired from adult mosquitoes showed distinct responses to the

color of the paper underneath (Fig 3b): 1) adult mosquitoes placed on top of blue paper had

high reflectance in spectral bands from 400–500 nm (blue light), 2) adult mosquitoes placed

on top of green paper showed a distinct reflectance peak in spectral bands near 540 nm (green

light), and 3) adult mosquitoes placed on top of red paper had high reflectance in spectral

bands from 600–700 nm (red light). It is seen that all average reflectance profiles have very

similar reflectance values at 800 nm. Fig 3d shows the statistical results from the pairwise anal-

yses of average reflectance acquired from adult mosquitoes placed on white paper compared

with each of the three additional colors of background paper, and it is seen that: 1) blue color

background paper caused a significant different in average adult mosquito reflectance in 38 of

the 40 spectral bands, 2) green color background paper caused a significant different in average

adult mosquito reflectance in spectral bands from 383–780 nm, and 3) red color background

paper caused a significant different in average adult mosquito reflectance in spectral bands

from 383–700 nm.

Imaging of Skittles

Average reflectance profiles were acquired from green target Skittles showed that presence of

neighboring Skittles caused a slight but detectable increase in reflectance in spectral bands

from 700–950 nm (Fig 4b). Fig 4c shows the relative difference (average reflectance profiles

Penetration depth and stray light
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from scenarios with neighboring Skittles were divided with that from the target Skittle being

alone), and several trends are highlighted: 1) presence of neighboring Skittles, irrespectively of

color, caused a marked decrease in relative reflectance in spectral bands from 385–480 nm, 2)

distinct color-specific reflectance responses were observed in spectral bands from 600–700

nm, and 3) presence of neighboring Skittles, irrespectively of color, caused an increase in rela-

tive reflectance in spectral bands from 750–850 nm. Regarding the latter trend, it is seen that

the increase in relative reflectance in spectral bands near 828 nm was about 4%. Fig 4d shows

the statistical results from the pairwise analyses of average reflectance acquired from green

Skittles alone and with presence of neighboring Skittles, and it is seen that: 1) irrespectively of

color, there was a significant decrease in relative reflectance in response to presence of neigh-

boring Skittles in the spectral bands near 400 nm, 2) presence of neighboring green Skittles

cause a significant increase in relative reflectance in spectral bands from 770–930 nm and a sig-

nificant decrease in relative reflectance in spectral bands from 1000–1024 nm, and 3) presence

of either brown or red neighboring Skittles cause similar significant changes in relative reflec-

tance as seen with green neighbors, but the spectral range of effect was slightly wider, especially

with red neighboring Skittles.

To summarize the results from this experiment, it was demonstrated that presence of neigh-

boring Skittles significantly reduced and increased average reflectance in different portions

of the examined spectrum. In general, the color of neighboring Skittles appeared to be less

important, as the three scenarios with neighboring Skittles caused similar relative reflectance

responses. However, presence of red neighboring Skittles caused a significant increase in rela-

tive reflectance in spectral bands from 700–940 nm, while presence of green neighboring Skit-

tles caused a significant increase in relative reflectance in spectral bands from 770–930 nm.

Thus, important color-specific responses of neighboring Skittles were indeed detected.

Imaging of mosquito eggs

Fig 5a shows the individual and clusters of mosquito eggs, and of the 122,500 pixels, only 3,072

pixels represented mosquito eggs (2.5%). Of the 49 squares, 30 contained mosquito eggs, and

the number of pixels per square representing mosquito eggs varied from 8–506 (aver-

age = 102.4). The correlation coefficients of the relationship between average reflectance and

number of pixels representing mosquito eggs were highly negative in all 40 spectral bands,

especially at 828 nm (Fig 5b and 5c) (df = 1,29, adjusted r2-value = 0.583, F-value = 41.496,

P-value < 0.001). That is, the radiometric signals acquired from mosquito eggs were darker

when more mosquito eggs were present within a square (a higher number of pixels represent-

ing mosquito eggs). Thus, this simple image analysis provided clear evidence of scattering

influencing the relative signal acquired across the entire spectrum, and particularly in the near

infrared region. Furthermore, the strong reflectance response in spectral bands from 770–880

nm is consistent with the reflectance response observed in the experiment with Skittles.

Discussion

Penetration and scattering are well-known optical phenomena by optical physicists and others

involved in the studies of the theories behind spectroscopy. In addition, they are well-known

and actually used in the medical field as part of developing disease diagnosis and image-guided

surgery [11]. However, these optical phenomena deserve more attention by the growing spec-

trum of researchers outside the biomedical field applying proximal remote sensing technolo-

gies in engineering and biological sciences. In this study, it was demonstrated that both optical

phenomena significantly affect average reflectance values in spectral bands from 385 to 1024

nm. In the experiment with white paper sheets on top of colored dots, it was demonstrated
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that average reflectance signals penetrate through a minimum of five sheets of normal paper

spectral bands from 800 to 950 nm, especially if the colored dot is red. In the experiment with

suspended magnolia leaves, spectral bands from 700 to 1024 nm had significantly higher aver-

age reflectance when additional leaves placed underneath. In the experiment with adult mos-

quitoes placed on top of colored paper, it was seen that spectral bands from 383–700 nm were

particularly sensitive to background color. Regarding scattering, the experiment with Skittles

showed reflectance values in spectral bands near 400 nm and from 770–930 nm were particu-

larly sensitive to presence of neighboring Skittles. Finally, the analysis of an image of mosquito

eggs showed that density of eggs affected the average reflectance across the examined spec-

trum, especially in spectral bands from 770–930 nm.

There are numerous studies describing the underlying optical physics of both radiometric

penetration [11, 26] and scattering [11, 15, 16, 27] with respect to their effect on proximal

remote sensing data. Lu and Fei (12) provide a comprehensive review of both the optical phe-

nomena and applications of proximal remote sensing in the biomedical field. The results pre-

sented in this study corroborate existing knowledge about penetration of reflectance signals in

the near infrared spectrum (highest in spectral bands from 700 to 1024 nm) due to tissue’s low

absorption [28]. In some medical applications of imaging technologies, changes in radiometric

penetration at a specific wavelength is the response variable of interest. For instance, it has

been demonstrated that the radiometric penetration at 630 nm is 3.42 mm for healthy lung tis-

sue but 2.81 mm for lung tissue with a tumor [26]. In addition, it has been shown that the pen-

etration of radiometric energy into fruits and vegetables is several millimeters, and that it

varies with wavelengths [29]. As an example, the penetration in a range of fruits was about 4

mm in spectral bands from 700 to 900 nm, and it was 2–3 mm in spectral bands from 900 to

1,900 nm [28]. In addition, it has been shown that penetration into fruit reached 7.1 mm at

535 nm in plums (Prunus sp.) and 13.8 mm at 720 nm for zucchini (Cucurbita pepo var. cylin-

drical) [30]. Challenges associated with penetration should not only be of concern to users of

proximal remote sensing technologies; this phenomenon also affects airborne remote sensing

applications. In airborne remote sensing applications, it is well known that both soil back-

ground and layers of leaves within a canopy affect acquired reflectance data [31]. Moreover,

crop leaves are only a few millimeters thick, and it is virtually impossible to control for super-

imposed leaves and/or effects of soil features underneath the crop canopy. Consequently,

penetration may have profound impact on the spectral repeatability of both airborne and prox-

imal applications of remote sensing technologies.

Somewhat surprisingly, this study based on proximal remote sensing data appears to be the

first in which experimental data were used to investigate the relative effect of scattering across

a broad radiometric spectrum. However, scattering is known to have considerable impact on

airborne remote sensing signals. As an example, it has been estimated that, due to scattering,

less than half of the signal recorded by the Landsat’s multispectral scanner system originates

from the imaged pixel itself, while the remainder of the reflectance signal is derived from sur-

rounding pixels [32]. The results presented here suggest that scattering can greatly influence

the robustness of reflectance signals, and that classification accuracies may vary considerably

depending on the density of objects being classified. It should be mentioned that Skittles have

a rounded and somewhat shiny surface, which likely contributes to the significant effect of

neighboring Skittles on the average reflectance signals acquired from the green Skittle in the

middle. However, many objects have similarly shiny surfaces (insects, seeds, crystals, etc), so

the Skittle experiment is considered relevant to a broad range of engineering and biological

applications.

Despite a rapidly growing interest in use of proximal remote sensing technologies across a

wide spectrum of engineering and biological disciplines, there are surprisingly few studies
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focusing on how effects of penetration and scattering can be minimized and how to correct for

them when imaging data is being acquired. Furthermore, these optical phenomena are hardly

ever mentioned as justifications for particular experimental designs, nor are they mentioned as

possible contributors to low or inconsistent classification results. Overall, this series of experi-

ments showed that spectral bands in the near infrared region are particularly sensitive to both

penetration and scattering. Finally, the experiment with adult mosquitoes placed on top of dif-

ferent colored paper highlighted that spectral bands from 383–700 nm may also be very sensi-

tive to imaging conditions. Due to penetration, the thickness of target objects should be taken

into consideration, and it is important to standardize positioning of objects so that variability

in background surface underneath is not causing noise in the reflectance signals. It is argued

that characterization of the relative sensitivity of reflectance data to penetration and scattering

is an important step towards increasing the radiometric robustness of signals and therefore the

reliability of proximal remote sensing technologies as tools used to classify engineering and

biological objects.
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