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Abstract of the Dissertation

Physics-inspired Computational Imaging for

Machine Vision, Drug Development and Cancer

Immunotherapy

by

Madhuri Suthar

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2021

Professor Bahram Jalali, Chair

Traditional algorithms prevalent in computational imaging and signal processing

are hand-crafted empirical rules synthesized to achieve a desired goal. In contrast,

our approach is to craft qualitatively new algorithms by emulating laws of physics.

Here, we show that Non-Linear Schrodinger Equation (NLSE), the master equa-

tion in optical physics can be exploited to invent a new class of computational

imaging algorithms with best-in-class performance. We demonstrate a new con-

trast enhancement algorithm that is computationally efficient, achieves superior

color gamut performance, and is able to support real-time video enhancement at

4K and 8K resolutions. We also show how the NLSE operator becomes an edge

detection algorithm with exceptional performance in low light levels. In certain

cases, these algorithms have the potential to be implemented in physical optics.

We demonstrate efficacy of these algorithms in solving a variety of problems

for different real-world applications. Specifically, we have developed CytoLive, an

award-winning real-time live cell tracking tool utilizing our NLSE-guided algo-

rithms to analyze time-lapse microscopy videos acquired under low light condi-

tions. This tool preserves inherent cell behavior by overcoming photo-toxicity and

ii



photo-bleaching and has the potential for accelerating research in drug discovery.

Next, we discuss CytoEye, a cancer immunotherapy toolbox that mitigates the

computational overload of analyzing giga-pixel sized pathology images of tumor

micro-environment. Quantitative features extracted by this tool have the capa-

bility to predict whether or not patients respond to therapy – an important step

toward personalized cancer immunotherapy.
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3.1 Comparison of feature detection using conventional deriva-

tive based edge operator to the case of feature detection

using Phase Stretch Transform (PST) in case of visually

impaired images. Original traffic images taken in a foggy weather

are shown in (A). Detected features using conventional derivative based

edge operator and PST operator are shown in (B) and (C), respectively.

It can be seen that the conventional derivative based edge detection

operator fails to visualize the low contrast details in the visually im-

paired regions of the images (as shown in green dashed boxes). However,

PST captures these low contrast details in the low resolution regions (as

shown in green dashed boxes) due to its unique re-configurable mecha-

nism that detects features over a wide dynamic range. The strength of

features detected using PST over both low and high resolution regions of

the images is consistent unlike derivative operator as also shown in [25]. 48

3.2 Operation Principle of Phase Stretch Transform (PST).

PST is a physics-inspired feature detection method that transforms the

image by emulating propagation through a dispersive medium [27, 28].

The input image is processed in frequency domain. The nonlinear spec-

tral phase kernel encodes frequency components into the spatial phase

of the output image such that high frequency components have higher

phase. Upon phase detection of the output followed by thresholding op-

eration, high phase values corresponding to high frequency components

survive, producing a edge map. . . . . . . . . . . . . . . . . . . . . 50
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shown in [22,29,30] . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
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derivatives and hyper planes are shown as green and red boxes. . . . . 58
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3.6 Comparison of feature detection using Phase Stretch Trans-

form (PST) algorithm with the features detected using a

conventional derivative based edge operator for a lung x-
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from pneumothorax (B) Edge detection using conventional derivative

based edge operator (C) Edge detection using PST. The red oval in-

dicates the region of collapsed lung. As shown, PST traces the low

contrast lung edge with an equalized response due to intrinsic nonlinear

behavior. Conventional derivative based edge operator work well only
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3.8 Effect of Phase Stretch Transform (PST) on an input signal

with various contrast levels at a constant brightness level.

The input 1D data which is designed to have various contrast levels

at a constant brightness level is shown in (a). Numerically calculated

PST output is compared to the output using differentiation in (b) using

red-solid and blue-dotted lines, respectively. As can be seen, the output

of the differentiator has a linear response to contrast level in the input
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CHAPTER 1

Introduction

1.1 Motivation

Every day, the world creates nearly 2.5 Exabyte (1018 bytes) of data. Surprisingly,

90% of the data present in the world today has been created in the last two years

alone highlighting the exponential rise in the amount of digital data [31]. To pro-

cess this enormous data, the field of electronics has experienced a “digital revolu-

tion” leading to development of high performance digital signal processors (DSPs).

However, a large fraction of this digital data is generated by translating real world

analog signals into their digital representations using electronic Analog-to-Digital

Converters (ADCs). These electronic ADCs cannot capture fast waveforms due to

limited temporal resolution as well as impose restrictions on real time operations

owing to their slower speed. Additionally, processing massive amounts of data in

data centers accounts for 50-60% of their electricity budget and a rapidly growing

fraction of total electricity consumption.

This calls for development of new computing technologies that offer speed, en-

ergy efficiency and ease of implementation. Fortunately, nature and in particular,

photonics can provide a solution to certain class of problems. We believe that

inspirations from nature need not be limited to design of physical machines but

should be extended to creation of new computational algorithms. We expect this

new paradigm to lead to a new class of algorithms that are energy efficient while

providing unprecedented functionality.
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Traditional algorithms prevalent in computational imaging and signal process-

ing are hand-crafted empirical rules synthesized to achieve a desired goal. In

contrast, our approach is to design algorithms by emulating physical laws of na-

ture. As such, the central theme of this research work has been to develop novel

computational imaging algorithms that have roots in physical optics, i.e. these

algorithms emulate physical phenomenon. This results in a new class of computa-

tional imaging algorithms that could never have been imagined using conventional

techniques. Although the equations governing these physical phenomenon are

complex representations but fortunately there are well established approximations,

and as such the implemented algorithms are computationally fast. Additionally,

in principle these physics inspired algorithms emulating physical phenomenon can

be implemented on optical systems, thereby enabling computation at the speed

of light. In section 1.2, we first present a brief background on the evolution of

this research work and it connection to optics. And in section 1.3, we discuss an

overview of the this dissertation.

Figure 1.1: Photonic Time Stretch: A high throughput real time instrumen-

tation technology that employs dispersion to slow down an analog signal in time

and has been employed widely to slow down ultra-fast phenomena. Picture insets

courtesy of [1–10]
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1.2 Roots in Physics

Photonic time stretch, a temporal signal processing technology, employs group-

velocity delay (GVD) dispersion to slow down an analog signal in time and thereby,

compresses the bandwidth of an analog signal allowing digital processing of fast

waveforms which are otherwise not supported by slower electronic ADCs [1, 32,

33]. This method also known as the time-stretch dispersive Fourier transform

(TS-DFT) has been the most successful solution to solve the critical problems

associated with electronic ADCs in terms of temporal resolution as well as dynamic

range and has been instrumental in the development of highest performance ADCs

[34]. Time stretch technology has been employed widely for real time acquisition

of ultrafast signals as shown in Figure 1.1 but the most remarkable application of

this technology has been to study the relativistic electron structure [4].

Time stretch spectrometer is an extension of time stretch technology for high

throughput single-shot spectroscopy that has led to observation of non-repetitive

ultrafast events in optical systems such as optical rogue waves [3], soliton molecules

[5] and mode locking in lasers [7]. Similarly, time stretch camera [2], a MHz-frame-

rate bright-field imager, uses amplified dispersive Fourier transform to analyze

images and has enabled the detection of rare cancer cells in blood with false

positive rate of one cell in a million [35]. By integrating artificial intelligence with

time stretch imaging, label-free cancer cell detection with record accuracy has

been achieved [8, 9]. These high throughput imaging systems generate a torrent

of data which can be compressed by foveated sampling using warped stretch that

exploits signal sparsity [36].

The master Non-Linear Schrodinger Equation (NLSE) equation that describes

the physics behind the pulse propagation in an optical medium [37] is represented

as:

∂A

∂z
+
α

2
A+ i

β2
2

∂2A

∂T 2
− β3

6

∂3A

∂T 3
= iγ|A|2A (1.1)
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where A is the input signal that is function of time T and coefficients alpha

α, beta β2 and gamma γ are real numerical parameters standing for loss, group

velocity dispersion, self-phase modulation, respectively. As we will show later in

the text that it is also this master equation that is used to craft qualitatively

new computational imaging algorithms by exploring the properties of physical

laws of nature. Particularly, we will demonstrate a new computationally efficient

contrast enhancement algorithm and an edge detection algorithm with exceptional

performance in low light levels.

1.3 Dissertation Overview

In the first part of this thesis, we describe how Non-Linear Schrodinger Equa-

tion (NLSE) can be exploited to invent a new class of computational imaging

algorithms with best-in-class performance and in the second part, we discuss ap-

plication of these algorithms to solve real world imaging problems. In Chapter

2, we show that the Non-Linear Schrodinger Equation, the master equation used

in optics, plasma physics and a number of other disciplines, has useful properties

for contrast enhancement of digital images, demonstrate its efficacy and bench-

mark it against popular state-of-the-art algorithms. We also show how the NLSE

operation can be extended for edge detection in digital images and suggest other

interesting algorithms.

One of the major open problems in computational imaging is feature detection

in visually impaired images. In Chapter 3, we describe a potential solution using

Phase Stretch Transform (PST), a new edge detection method that is inspired by

the physics of the photonic time stretch technique, a real time data acquisition

technology. PST emulates 2D propagation through a medium with group velocity

dispersion, followed by coherent (phase) detection. The algorithm performs ex-

ceptionally well as an edge and texture extractor. We mathematically derive the
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intrinsic nonlinear transfer function and demonstrate how PST has an inherent

equalization ability resulting in high dynamic range of operation for feature detec-

tion in visually impaired images. We also propose a hybrid method by combining

our method with the conventional techniques which further improves the dynamic

range. Additionally, our results also propose a new optical computing paradigm

for the computation of mathematical derivatives via dispersion.

Emulated by an algorithm, certain physical phenomena have useful properties

that can be exploited for image transformation. For example, image denoising can

be achieved by emulating the propagation of an image through the heat diffusion

equation. Similarly, by emulating propagation of an image through a birefringent

diffractive propagation, the original image can be embedded into a set of feature

maps that select semantic information at different scale, orientation, and spatial

frequency. This decomposition method, which we term as Phase-stretch Adaptive

Gradient-field Extractor (PAGE) is introduced in Chapter 4. We also demon-

strate applications of this algorithm in edge detection and extraction of semantic

information from medical images as well as electron microscopy images.

In Chapter 5, we demonstrate efficacy of the above mentioned physics-inspired

computational imaging algorithms in solving a variety of problems for different

real-world applications. Specifically, we demonstrate two software tools, 1) Cyto-

Live, an award-winning real-time live cell tracking tool used to accelerate Drug

Discovery and 2) CytoEye, a high throughput pathology image analysis tool for

use cancer immunotherapy.

Finally, in Chapter 6 we conclude with our findings on developing novel compu-

tational imaging algorithms that have roots in physics- a fundamentally different

approach to craft algorithms. We also present ideas for potential physical imple-

mentations of these algorithms as part of future works. The latest version of the

codes relevant to this research work can be found at the official Jalali Lab Github

page [38].

5



CHAPTER 2

Nonlinear Schrodinger Framework for Image

and Video Enhancement

Non-Linear Schrodinger Equation is the master equation used in optics, plasma

physics and a number of other disciplines. In this Chapter, we show that the

equation has useful properties for contrast enhancement of digital images, demon-

strate its efficacy and benchmark it against popular state-of-the-art algorithms.

Two implementations are reported, one with fixed parameters and the other with

parameters learnt by a neural network in an unsupervised fashion. We demon-

strate that the algorithm achieves excellent color gamut performance, high com-

putational efficiency and is able to support 8K video at 100 FPS frame rate on

a NVIDIA Titan X GPU. Finally, we also show how the NLSE operation can be

extended for edge detection in digital images.

2.1 Motivation

The smartphone photography is on a meteoric rise as evident from the fact that

people all around the globe took more than 1.4 trillion digital photos and videos

in the year 2020 alone mostly using their smart phones [39]. Typically smart

phone captured photos suffer from impairments such as non-uniform illumination,

low contrast and noise due to the limitation of the camera’s optics or due to

sub-optimal lighting conditions. Poor ambient lighting conditions pose a major

challenge for smart phone camera photography due to the small camera aperture
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Figure 2.1: Conceptual description of the approach behind Nonlinear

Schrodinger Framework for Image and Video Enhancement (SIVE). The

input is transformed by propagation through the Nonlinear Schrodinger Equation

(NLSE), the master equation used in optics, plasma physics and a number of other

disciplines. Under certain conditions, described mathematically in this Chapter,

the contrast of the image is enhanced. We show that this transformation is nu-

merically efficient.

which limits the number of photons reaching the image sensor resulting in a low

signal-to-noise ratio (SNR).

In extreme low-light conditions, SNR decreases to a point that the sharpness

function extracted from the high frequency content of the captured image gets

flattened out [40]. This makes it difficult for the camera’s passive auto-focus (AF)

to correctly focus thus degrading the visual aesthetics of the captured image as

well as the performance of any subsequent machine vision tasks [41].

The low SNR problem further escalates in case of video acquisition where the

frame rate can be high and therefore, the exposure time per frame will be low.

Existing approaches to increasing the SNR for enabling AF in sub-optimal light-

ing conditions is to increase the camera exposure time resulting in longer sensor

integration time. Clearly, this approach cannot work for video acquisition where
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a high frame rate (short exposure time), is required to avoid motion blur [42].

Moreover, the smart phones being hand-held devices are not stable enough for

long exposure times. This calls for development of an advanced image and signal

processing (ISP) pipeline for image/video enhancement that is computationally

efficient and thus requires low power for implementation on a resource constrained

battery powered smart phone processor.

Traditional algorithms prevalent in computational imaging and signal process-

ing are hand-crafted empirical rules synthesized to achieve a desired goal. In

contrast, our approach is to craft qualitatively and fundamentally new algorithms

that have superior and unprecedented performance compared to conventionally

designed algorithms by emulating laws of physics. For example, Phase Stretch

Transform emulates propagation of image through a dispersive optical medium

and has inbuilt intrinsic equalization ability for feature detection in low contrast

visually impaired images [25,29].

Contrast enhancement improves the visual quality by transforming the input

image/video data to make optimal use of the dynamic range available on a given

display or an output device. In this Chapter, a novel computational imaging

paradigm is proposed in which the image is transformed by subjecting it to prop-

agation through a 2D nonlinear medium with the propagation modeled by the

Non-Linear Schrodinger Equation (NLSE). The overall framework is illustrated

in Figure 2.1.

This is an entirely new approach to image and video contrast enhancement

and the resulting algorithm is extremely computationally efficient to the extent

that can process 8K video at 100 frames per second. We call this algorithm

Nonlinear Schrodinger Framework for Image and Video Enhancement (SIVE).

We also show how the NLSE operator becomes an edge detection algorithm with

exceptional performance in low light levels. In certain cases, these algorithms have

the potential to be implemented in physical optics.
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Overall, the contributions of this Chapter are fourfold. 1) Non-Linear Schrodinger

Equation (NLSE), the master equation in optical physics is exploited to invent a

new class of computational imaging algorithms with best-in-class performance.

Particularly, we propose a novel physics inspired method for image enhance-

ment that offers significantly faster computational speed over state-of-the-art al-

gorithms. It also improves both the objective and subjective image quality and

in principle can be physically implemented as it emulates a physical phenomenon.

We also show extension of the NLSE operation to an edge detection method.

2) Because of its extremely low latency and high computational efficiency, we

are able to demonstrate image enhancement of real-time video at 4K and 8K res-

olutions. 3) To improve its performance over diverse lighting conditions, we show

a neural network guided implementation where the network learns the parameters

of the algorithm in an unsupervised fashion. 4) We demonstrate superiority of

our proposed method over the state-of-the-art algorithms for color gamut expan-

sion. All of these attributes make our algorithm superior to existing methods,

and make it suitable for integration in standard ISP pipeline of a smart phone

camera. For example, as our proposed method is computationally efficient it can

help in maintaining longer battery life as well as improving the accuracy of many

real-time machine vision tasks on a smart phone.

The rest of the Chapter is organized as follows. In section 2.2 we discuss

current state of the art in the field of contrast enhancement. The physics foun-

dations of our proposed Nonlinear Schrodinger Framework for Image and Video

Enhancement (SIVE) algorithm is discussed in detail in section 2.3 and its adap-

tive version utilizing a neural network is detailed in section 2.4. Section 2.5 com-

pares the performance with state-of-the-art in contrast enhancement. We present

the effect of dispersion that leads to an edge detection method in section 2.6.

Finally we summarize our findings in section 2.7.
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2.2 Prior Works

Since the primary focus of the present Chapter is on contrast enhancement, here

we will review the prior art in this field. To address the issue of contrast enhance-

ment, many algorithms have been proposed for increasing the contrast of images

with low dynamic range to obtain enhanced images with higher perceptual qual-

ity. In general, these methods can be categorized into three main types: (i)

traditional histogram-based, (ii) retinex theory-based and (iii) data-driven (deep

learning-based) methods. Due to the simplicity, ease-of-implementation and ef-

fectiveness, histogram-based methods have been widely adopted. The histogram

equalization (HE) [11] which flattens the histogram and stretches the dynamic

range of the intensity levels, is one of the most popular techniques used for con-

trast enhancement. However, as we will illustrate in next section, HE usually

results in over-enhancement that distorts the intrinsic colour space of the original

image. To overcome this limitation, there are other sophisticated histogram-based

enhancement methods such as contrast limited adaptive histogram equalization

(CLAHE) [12] which constructs the enhanced image by mapping the distribution

of pixel intensity with some constraints and an adaptive control. However, when

the histogram has spikes, CLAHE often results in losing intrinsic image details

and produces unnatural artifacts [43]. Other histogram based methods such as

Fuzzy-Contextual Contrast Enhancement (FCCE) [13] use computationally inten-

sive approach to obtain a transfer function for the enhanced image using fuzzy

contextual information from the low contrast image.

Retinex theory [44] assumes that the scene in a human eye is a product of illu-

mination and reflectance layer such that illumination is a measure of the intensity

of incident light on the objects in the scene and the reflectance represents the phys-

ical characteristics of objects. These methods first decompose the low contrast im-

age as a product of illumination and reflectance, either using a simplified physical
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model of light reflection [45] or treat it as an optimization problem [14,15,46,47].

For example, structure-revealing low-light image enhancement (SRIE) [14] esti-

mates reflectance and illumination simultaneously using a weighted variational

model. Then, the estimated illumination is adjusted for uniformity and projected

back to the recovered reflectance layer to obtain high contrast images. Methods

such as low-light image enhancement via illumination map estimation (LIME) [15],

only estimates illumination by imposing a structure prior and then, use reflection

to produce the enhanced results. These methods have been extensively studied

and developed in the past few decades and have demonstrated promising results

for a narrow range of test scenarios. However, there are several concerns that

restrict their widespread usage. First and foremost, since these methods involve

the reconstruction of illumination and reflectance layer by an image decomposi-

tion model or an optimization model based on retinex theory, these are extremely

computationally intensive their use in a camera ISP pipeline is restricted. Second,

these methods heavily rely on knowing constraints specified by the scene. Last,

the decomposed reflectance layer is often contaminated with residual illumination

information, and the estimated illumination contains halo artifacts which results

in poor image quality [46].

Recently, data driven methods have shown leading performance on various

computational imaging tasks, ranging from low-level demosaicing, denoising and

image sharpening to high-level image adjustment and color enhancement, some

of which can solve multiple tasks and can be easily integrated in an end-to-

end fashion in a camera ISP pipeline [13, 48–52]. For the task of contrast en-

hancement, GLobal illumination Aware and Detail-preserving Network (GLAD-

Net) [17], Multi-Branch Low-Light Enhancement Network (MBLLEN) [16] and

Zero-Reference Deep Curve Estimation (Zero-DCE) [18] have shown promising

performance. GLADNet consists of two steps, global illumination estimation step

in which a encoder-decoder network produces an illumination estimation and de-
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tail reconstruction step in which a convolutional network utilizes the input image

and the estimated illumination from the previous step to enhance the output.

On the other hand, MBLLEN method produces an enhanced image via fusion of

features learned from low contrast image. Zero-DCE method, a highly computa-

tionally efficient contrast enhancement method uses a set of carefully formulated

non-reference loss functions for training. Since these methods implicitly learn the

statistics of images, they often fail with high error when operating outside the

regime for which the model is trained.

2.3 The Physics Foundation

We propose a novel physics-inspired method which formulates image and video

enhancement as a process of propagation of image through a 2D nonlinear opti-

cal medium with engineered linear and nonlinear optical properties (Figure 2.1).

First, we describe the physics involved in our Nonlinear Schrodinger Framework for

Image and Video Enhancement (SIVE) method. We then describe the conversion

of the continuous-variable equations to discrete domain and re-parameterization

of the physics equations leading to the formulation suitable for image processing.

We start with the two-dimensional Non-Linear Schrodinger Equation (NLSE)

of pulse propagation through an optical fiber [37], derived from Gross-Pitaevskii

equation:

∂A(x, y; z)

∂z
=
iβ2
2

(
∂2A(x, y; 0)

∂x2
+
∂2A(x, y; 0)

∂y2

)
+iγ|A(x, y; 0)|2A(x, y; 0)

(2.1)

where β2 is the dispersion coefficient and γ is the nonlinear coefficient. x, y, z

are the spatial dimension variables such that the input signal is function of x, y

and propagating along the z direction. Thereby, A(x, y; 0) is the input signal at

location z = 0 and the solution to the above differential equation obtained after

propagation through the optical medium is given by A(x, y; z). We can rewrite
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above NLSE in the form of dispersive operator D and nonlinear operator N as

follows:
∂A(x, y; z)

∂z
= (N + D)A(x, y; 0) (2.2)

where the nonlinear operator is defined as follows:

N = iγ|A(x, y; 0)|2 (2.3)

and similarly, the dispersive operator is defined as follows:

D =
iβ2
2

(
∂2

∂x2
+

∂2

∂y2

)
(2.4)

2.3.1 Dispersive Regime

In order to understand the individual impact of each of these operators (or the

corresponding physical regime) on image enhancement, we independently solve

the NLSE for each of these operators. We start with the dispersive operator and

solve it as follows:

∂AD(x, y; z)

∂z
= DA(x, y; 0)

=
iβ2
2

(
∂2

∂x2
+

∂2

∂y2

)
A(x, y; 0)

(2.5)

where AD is the solution of the reduced NLSE in the dispersive regime. We

implement the dispersion operation in frequency domain by taking the Fourier

transform of the above equation, as it leads to the solution easily:

∂ÃD(kx, ky; z)

∂z
=
i

2

(
k2x + k2y

)
Ã(kx, ky; 0) (2.6)

Here, ÃD and Ã are output and input spectrum respectively obtained after the

Fourier transform such that kx and ky are two dimensional spatial frequency vari-

ables. The above differential equation can be solved as follows:

ÃD(kx, ky; z) = exp

(
i ∗ z

2

(
k2x + k2y

))
Ã(kx, ky; 0) (2.7)
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As shown in the above equation, we now have a dispersive phase φ(kx, ky) that is

function of spatial frequency kx, ky, given by:

φ(kx, ky) =
z

2

(
k2x + k2y

)
(2.8)

The solution of the reduced NLSE in the dispersive regime, AD can be obtained

by taking Inverse Fourier transform as follows:

AD(x, y; z) =

∫ ∞
−∞

Ã(kx, ky; 0) exp (iφ(kx, ky))

exp (ikxx) exp (ikyy) dkxdky

(2.9)

We rewrite the above equation by expanding the phase kernel using Euler expan-

sion as follows:

AD(x, y; z) =

∫ ∞
−∞

Ã(kx, ky; 0)
(
cos (φ(kx, ky))

+isin (φ(kx, ky))
)

exp (ikxx) exp (ikyy) dkxdky

(2.10)

In this regime, the dispersive phase is very small, and as such we use the following

approximation, cosθ + isinθ = 1 + iθ. Thereby, the equation can be written as:

AD(x, y; z) =

∫ ∞
−∞

Ã(kx, ky; 0)(
1 + i φ (kx, ky)

)
exp (ikxx) exp (ikyy) dkxdky

(2.11)

or,

AD(x, y; z) =

∫ ∞
−∞

Ã(kx, ky; 0)(
1 + i

z

2

(
k2x + k2y

))
exp (ikxx) exp (ikyy) dkxdky

(2.12)

By implementing the Fourier transform property of differentiation, we can com-

pute the output as follows:

AD(x, y; z) = A(x, y; 0) + +i
z

2

(
∂2A(x, y; 0)

∂x2
+
∂2A(x, y; 0)

∂y2

)
(2.13)

The interesting aspect of the above transformation comes from the complex be-

havior of the output. The real part of dispersive output is equal to the input
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signal while the imaginary component of the dispersive output gives us second

order gradients of the input along x and y direction (Fourier transform property

of differentiation). We will show later how this dispersive operation leads to Phase

Stretch Transform [22–27], an edge detection method with a natural equalization

property making it ideal for feature extraction in visually impaired images.

2.3.2 Nonlinear Regime

We now compute the output of the nonlinear operator N, from the following

differential equation:

∂AN(x, y; z)

∂z
= N (A(x, y; 0)) = iγ|A(x, y; 0)|2A (2.14)

The solution to the above differential equation gives us the output AN(x, y; z) at

location z described by the following equation:

AN(x, y; z) = A(x, y; 0) ∗ exp (iφNL) (2.15)

The nonlinear operator N imparts a nonlinear phase φNL on the input image

(a real quantity) such that this self-phase term is a function of the input signal

|A(x, y; z)|2, nonlinear coefficient γ and physical propagation distance z given by

the following expression:

φNL = γ ∗ |A(x, y; 0)|2 ∗ z (2.16)

which can be written in form of input signal power P0 = |A(x, y; z)|2, nonlinear

coefficient γ and physical propagation distance Leff as follows:

φNL = γ ∗ |A(x, y; 0)|2 ∗ dz = γ ∗ P0 ∗ Leff (2.17)

We revise the above equation in terms of the nonlinear refractive index (physical

optical property) of the medium as:

φNL = γ ∗ P0 ∗ Leff = k0 ∗ n ∗ Leff (2.18)
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Where k0 = 2π
λ

is wave number, λ is the wavelength and the refractive index n is

a nonlinear function of input signal A. We generalize this dependency to various

orders of input but, for simplicity, here we show up to second order which gives

the expression of refractive index n as follows:

n = n0 + n1|A|+ n2|A|2 +O(|A|n) (2.19)

The second term can be identified with Pockel’s effect in nonlinear optics [53].

Similarly, the third term is known as Kerr effect [54]. The nonlinear phase can

now be written as,

φNL = k0 ∗
(
n0 + n1|A|+ n2|A|2

)
∗ Leff

= J0 + J1|A|+ J2|A|2
(2.20)

where we have parametrized the nonlinear phase with Ji = k0Leffni for i =

{0, 1, 2, ..}. And therefore, the operation of nonlinear operator N can be computed

as:

AN(x, y; z) = NA(x, y; 0)

= A(x, y; 0) (cos (φNL) + i ∗ sin (φNL))
(2.21)

2.4 Image Enhancement via 2D Nonlinear Propagation

We first consider a non-dispersive and lossless medium and therefore, α = β2 =

0. In this scenario the optical properties (refractive index) of the medium is

dependent only on the input signal and this input dependent refractive index

imposes a nonlinear transformation adding a phase which is proportional to the

input intensity as shown previously.

We would like to point out here that our input image is a real-valued vector

and the optical propagation induces an imaginary component that makes the

output complex-valued vector. We now define Nonlinear Schrodinger Framework

for Image and Video Enhancement (SIVE) algorithm as the imaginary component
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of the output computed by NLSE operation on the input image:

Â = SIVE{A(x, y; 0)} = imag{A(x, y; z)} (2.22)

and

A(x, y; z) = NA(x, y; 0) (2.23)

Here Â is the contrast enhanced output after propagation of input A through the

nonlinear optical medium such that the phase parameters J0, J1 and J2 control the

amount of enhancement. The induced pixel-dependent nonlinear phase converts

the real-valued input image into a complex-valued array, the complex component

of which is the original image raised to 2nd and 3rd (and higher) powers of the

input.

2.4.1 Proof-of-concept example for contrast enhancement

To give the reader a glimpse of the results before we engage in the detailed discus-

sions, here we show in Figure 2.2, a test image from the SICE dataset [55]. For

computing the SIVE enhanced output, we use fixed value of parameters J0 = 10−4

, J1 = 10−3 and J2 = 10−2 that we found to work for most images. When com-

puting the nonlinear phase using these parameter values, the image brightness is

first normalized for each image to the range [0,1]. Unless otherwise stated, for

all our SIVE simulations we use these values for the preliminary results. In the

next section we describe a neural network optimization that learns the optimum

parameters in a non-supervised fashion.

Our method is orders of magnitude faster than other computationally ex-

pensive state-of-the-art methods as evident from the runtime performance curve

shown in Figure 2.3(A) for this test image. For LIME, SRIE and FCCE methods,

the open sourced codes are available in Matlab, and for HE and CLAHE, Mat-

lab has highly optimized built-in functions. Therefore we used the Matlab envi-

ronment for these methods and computed the runtime using the Matlab timeit
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Figure 2.2: Comparison of proposed SIVE algorithm with the state-of-

the-art methods– Our proposed method expands the dynamic range of input

image (A) producing an enhanced image (B) with a wide color space yet pre-

serving the naturalness. As seen HE (C) distorts the intrinsic color space of the

image while other methods (D-J) produce an enhanced image with comparatively

low contrast. SIVE = nonlinear Schrodinger framework for Image and Video

Enhancement, HE = Histogram Equalization [11], CLAHE = Contrast Limited

Adaptive Histogram Equalization [12], FCCE= Fuzzy-Contextual Contrast En-

hancement [13], SRIE = Structure-Revealing low-light Image Enhancement [14],

LIME = Low-light image enhancement via Illumination Map Estimation [15],

MBLLEN = Multi-Branch Low-Light Enhancement Network [16], GLADNet =

GLobal illumination Aware and Detail-preserving Network [17], Zero-DCE =

Zero-Reference Deep Curve Estimation [18].
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Figure 2.3: Performance comparison of proposed SIVE method with the

state-of-the-art methods – As shown above in (A), our proposed method is

orders of magnitude faster than the state-of-the-art methods. The runtime is

computed for the test image shown in Figure 2.2 of dimension 800×1200×3 pix-

els and is normalized w.r.t. to SIVE (being the smallest) and rounded off to

nearest integer. Also, as can be seen from the performance evaluation metric

plot (B), our proposed method SIVE achieves almost highest colorfulness [19]

but yet preserves naturalness of the image with a much lower Naturalness Image

Quality Evaluator (NIQE) [20] than methods such as Zero-DCE and GLADNet.

SIVE = nonlinear Schrodinger framework for Image and Video Enhancement, HE

= Histogram Equalization [11], CLAHE = Contrast Limited Adaptive Histogram

Equalization [12], FCCE= Fuzzy-Contextual Contrast Enhancement [13], SRIE =

Structure-Revealing low-light Image Enhancement [14], LIME = Low-light image

enhancement via Illumination Map Estimation [15], MBLLEN = Multi-Branch

Low-Light Enhancement Network [16], GLADNet = GLobal illumination Aware

and Detail-preserving Network [17], Zero-DCE = Zero-Reference Deep Curve Es-

timation [18].
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function on an Intel Core i7 CPU (3.6 GHz). For our SIVE, as well as MBLLEN,

GLADNet and Zero-DCE, computation time is evaluated in a Python environ-

ment on a NVIDIA GeForce GTX Titan X GPU.

We use a no-reference image quality score knows as the measure of Colorfulness

as described in [19] to evaluate the perceptual impact of enhancement on image.

A higher colorfulness value represents a higher image quality. The value of col-

orfulness of the original image increases from C=45.23 to a much higher value of

C=91.97 (for SIVE) during the enhancement process as shown in Figure 2.3(B).

We also consider naturalness image quality evaluator (NIQE) [20] that measures

the distance between the natural scene statistics and the enhanced image such

that a lower NIQE value represents a higher image quality. As shown, our pro-

posed method has a low NIQE value =2.96, demonstrating the high visual quality

of enhanced result while also preserving the intrinsic image details.

2.4.2 SIVE-Net for Adaptive Contrast Enhancement

While SIVE works well as an open-loop algorithm with fixed preset parameters, it

would perform better if its parameters are optimized for different image conditions.

In this section, we show a deep learning technique where the solution of the

nonlinear Schrodinger equation is guided to the optimum output defined by the

choice of a loss function.

To enable adaptivity, we incorporate an unsupervised learning methodology

for generalizing SIVE parameters J0, J1 and J2 as function of spatial coordinate

x, y. If these physical parameters have the same values for all pixels it can over-

/under enhance local regions. To address this problem, we formulate a Physics-AI

symbiotic model that learns a pixel-wise mapping for physical parameters J0,J1

and J2 to produce an enhanced image with much wider dynamic range, as shown
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in Figure 2.4. Hence, Eq. (8) can be reformulated as:

φNL(x, y) = J0(x, y) + J1(x, y)|A|+ J2(x, y)|A|2 (2.24)

where J0, J1 and J2 are physical parameters with the same size as the input image.

To learn these physical parameters, we propose and demonstrate an adaptive

version of the SIVE algorithm called SIVE-Net. The input to the SIVE-Net is

the image while the outputs are a set of pixel-wise physical parameter array J0,

J1 and J2 of SIVE.

Figure 2.4: Unsupervised learning framework for parameter optimization

for our proposed method SIVE. The NLSE parameter is learned through a

deep neural network that outputs a mapping for physical parameter J2 corre-

sponding to each pixel of the image. The learned J2 parameters are a type of

features extracted from the image. Next this learnt physical parameter is used in

the physics equations to produce the enhanced output. The learnt features guide

the NLSE into the desired output. Batch normalization is applied to the input

images. And the output is re-scaled to the original dynamic range, for eg. the

output is re-scaled to a range of 0-255 for a 8-bit input.

For our network architecture, we employ a convolutional neural network of

two convolutional layers with symmetrical concatenation. Each layer consists of

64 convolutional kernels of size 3×3 and stride 1 followed by the ReLU activation
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function. To keep our model end-to-end differentiable, we remove down sampling

layers as these operations break the relations of neighboring pixels. The last

convolutional layer is followed by the tanh activation function and normalization

in the range [0.01,0.05], which produces a feature map for the SIVE parameter J2.

We then use this learned physical parameters to empirically compute J0 = 0.01∗J2

and J1 = 0.1 ∗ J2. We note that the SIVE-Net has only 152,899 parameters for

an input image of size 400×600×3 which makes this network lightweight and an

ideal choice for image and video enhancement on computational resource-limited

devices, such as smartphones.

In learning the optimal SIVE parameters using common error metrics such

as Peak Signal-to-Noise Ratio (PSNR), Structural Similarity (SSIM), and Mean

Absolute Error (MAE) is prone to the availability of ground truth. Therefore,

we propose a set of non-reference loss functions that measure the enhancement

performance at local and global levels.

Inverse Loss LI : The transformation of the image should be such that it

enhances the under exposure regions and avoids local over exposure. As such the

SIVE parameters should be proportional to the inverse of the local brightness. In

this case, we can define the inverse loss as:

LI =
1

N

N∑
n=1

(∣∣J2n − Ān∣∣) (2.25)

Where Ān is average intensity of the 8x8 local region of the inverted image, and

J2n is the average intensity of the learned SIVE parameter. Here, N is the total

number of non-overlapping local regions of size 8x8.

Gradient Loss LG: Natural scenes consists of large number of edges and

corners. [56]. Preserving the edge information is vital during the enhancement.

To ensure that learned physical parameters are consistent with the original image,
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we propose a gradient loss as:

LG =
1

N

N∑
n=1

∣∣∇xJ2n −∇xĀn
∣∣+
∣∣∇yJ2n −∇yĀn

∣∣ (2.26)

Where ∇xJ2n and ∇yJ2n is the spatial derivative of the learned SIVE param-

eters along the x and y direction respectively of non-overlapping regions of size

8x8. Similarly, ∇xĀn and ∇yĀn are the spatial derivatives of the inverted input

image along the x and y directions, respectively of the n-th non-overlapping region

of size 8x8. We use the L1-norm to compute the distance between gradients of

predicted SIVE parameters with those of the inverse image.

Exposure Control Loss LE: To minimizes the distance between the average

intensity of a local region to the well-exposedness level L , we use the exposure

control loss as previously defined in [18].Therefore, the exposure control loss LE

can be defined as:

LE =
1

N

N∑
n=1

(∣∣∣Ân − L∣∣∣) (2.27)

Here also we keep the non-overlapping regions of size 8 × 8 and calculate the

average intensity of the enhanced image Ân. We set L to 0.6 in our experiments.

Color Constancy Loss LC : According to the Gray-World color constancy

hypothesis [18, 57] color in each sensor channel averages to gray over the entire

image. We design here a color constancy loss to ensure that color channels of the

enhanced image do not deviate from the natural statistics. The color constancy

loss LC can be expressed as:

LC =
∑
∀(i,j)εσ

(∣∣∣∣∣ ÂiÂj − Ai
Aj

∣∣∣∣∣
)

(2.28)

Where Âi denotes the average intensity over all pixels of i-th color channel in the

enhanced image, Ai denotes the same for the input image, and (i, j) represents a

pair of channels from color space σ = {(R,G), (R,B), (G,B)}, which comprises

of permuted pairs of channels from the RGB color space. This loss maintains the

intrinsic color distribution of the original image during the enhancement process.
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Therefore, the total loss LTotal can be expressed as:

LTotal = WILI +WGLG +WELE +WCLC (2.29)

where WI ,WG,WE and WC are the weights of the individual losses.

Figure 2.5: Adaptive enhancement achieved by SIVE-Net. The input im-

ages are test images from the SICE dataset which pass through the trained SIVE-

Net to produce NLSE parameters (abstractions from the input image). The low

light regions are enhanced more and the already enhanced regions in the input

image are preserved.

Implementation Details: Our framework is implemented with PyTorch on

an NVIDIA GeForce GTX Titan X GPU. For improving the fidelity of enhance-

ment using SIVE, we incorporate both under and over-exposed images into our

training set. To this end, we use 3022 images of multi-exposure sequences from the

SICE dataset Part1 [55] that covers diverse image qualities and content. We ran-

domly split these images of different exposure levels into two parts, 2,400 images
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for training and the rest for validation. All these images are resized to 400x600x3

pixels and also scaled in the range [0,1]. In the experiment, training is done using

the ADAM optimizer [58] with a learning rate of a = 0.002, b1 = 0.9, b2 = 0.99

and e = 10−8 for network optimization. We also use the learning rate decay

strategy, which reduces the learning rate to 95% before the next epoch. A batch

size of 8 is applied. The weights WI ,WG,WE and WC are set as 20, 4 3.5 and 2

respectively. As shown in Figure 2.5, the network learns an optimal mapping for

the physical parameter J2 to produce a contrast enhanced image governed by the

NLSE.

2.5 Performance Evaluation

We evaluate the performance of our proposed method SIVE with existing state-

of-the-art image and video enhancement methods through extensive experiments.

Overall, we have done three major sets of experiments as follows:

1) Histogram based methods (HE, CLAHE, FCCE), retinex theory based

methods (SRIE, LIME) and data driven methods (GLADNet, MBBLLEN, Zero-

DCE), are used for comparison of computational performance during runtime.

The results of these existing methods are reproduced by using published source

codes with recommended parameters.

2) We next conduct experiment on 4K and 8K videos and demonstrate that

our method can support real-time video processing.

3) We show another set of comparison on the task of image enhancement

for color gamut expansion, for resolution enhancement and for noise suppression

during the contrast enhancement process.

Computational performance: To evaluate the computational performance

of our algorithm, we perform quantitative experiments on standard image sets

from previous works including Kodak [59] (24 images), LIME [15] (10 images),
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Method Kodak LIME MEF DICM

SIVE 0.0005 0.0006 0.0004 0.0005

SIVE-Net 0.002 0.003 0.002 0.003

ZeroDCE 0.003 0.004 0.003 0.005

HE 0.3 0.4 0.13 0.26

CLAHE 0.13 0.17 0.06 0.11

SRIE 3.3 14.03 4.27 5.45

LIME 0.14 0.2 0.09 0.14

FCCE 0.08 0.12 0.03 0.06

GLADNet 1.3 1.79 0.6 1.1

MBBLLEN 6.3 17.68 3.9 6.6

Table 2.1: Quantitative comparisons in terms of average runtime (in

seconds) performance. Best value is highlighted in blue, second best value

in magenta and worst value in red. As seen, SIVE is 6x times and SIVE-Net is

1.5x faster than state-of-the-art method Zero-DCE. Both SIVE and SIVE-Net are

orders of magnitude faster than other techniques.

MEF [60] (17 images) and DICM [21] (69 images). For HE, CLAHE, FCCE,

LIME and SRIE, we used the MATLAB environment to compute the runtime

where as for SIVE, SIVE-Net, GLADNet, MBBLLEN, Zero-DCE we evaluated

the runtime in a python environment. For Matlab simulations, the runtime is

computed using Matlab timeit function on Intel Core i7 CPU at 3.6 GHz. The

computational time for our method is by far the lowest when compared to the

state-of-the-art algorithms.

As seen in Table 2.1, SIVE is 6x times and SIVE-Net is 1.5x faster than state-

of-the-art method Zero-DCE. Both SIVE and SIVE-Net are orders of magnitude

faster than other techniques.
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Method Kodak LIME MEF DICM

SIVE 59.92 48.5 31.94 51.10

SIVE-Net 60.63 48.98 32.36 50.8

ZeroDCE 32.54 58.03 34.87 41.76

HE 48.25 44.15 28.91 32.45

CLAHE 36.74 38.23 22.65 33.14

SRIE 44.48 51.03 32.36 42.07

LIME 54.26 68.5 49.80 55.08

FCCE 37.98 45.61 25.32 34.95

GLADNet 38.43 38.82 28.79 35.18

MBBLLEN 51.25 54.99 31.64 43.98

Table 2.2: Quantitative comparisons in terms of measure of Colorfulness

[19] (the higher the better) averaged on all sample images from a given

dataset. Best value is highlighted in blue, second best value in magenta and

worst value in red. As seen, both SIVE and SIVE-Net have better performance

than most of the other methods as indicated by a relatively high value of the

average measure of Colorfulness.

We also compare the enhancement performance using the measure of Color-

fulness [19], such that the higher the colorfulness, the better. We compute the

average measure of Colorfulness by considering all sample images from a given

dataset. As seen in Table 2.2, SIVE-Net gives the best performance on this met-

ric for Kodak dataset and second best for DICM dataset. SIVE also gives second

best performance for Kodak dataset. In general, both SIVE and SIVE-Net have

better performance than most of the other methods for LIME and MEF datasets.

Even though ZeroDCE has best performance for LIME and MEF datasets, it does

not perform well on the Kodak dataset.
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Figure 2.6: Visual comparisons on an example image from DICM [21]

dataset. Nonlinear Schrodinger Framework for Image and Video Enhancement

(SIVE) enhances the input image, widens the color gamut producing an output im-

age with better perceptual quality but also preserves the inherent structure details.

SIVE = nonlinear Schrodinger framework for Image and Video Enhancement, HE

= Histogram Equalization [11], CLAHE = Contrast Limited Adaptive Histogram

Equalization [12], FCCE= Fuzzy-Contextual Contrast Enhancement [13], SRIE =

Structure-Revealing low-light Image Enhancement [14], LIME = Low-light image

enhancement via Illumination Map Estimation [15], MBLLEN = Multi-Branch

Low-Light Enhancement Network [16], GLADNet = GLobal illumination Aware

and Detail-preserving Network [17], Zero-DCE = Zero-Reference Deep Curve Es-

timation [18].

In Figure 2.6, we show visual image enhancement comparison of our method

SIVE with the state-of-the-art methods for one example image from DICM [21]
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dataset. As shown, SIVE enhances the image, widens the color gamut but also

preserves the inherent structure details.

Real-time 4K and 8K Video Processing: For demonstrating real-time

video enhancement using SIVE, we use a publicly available video from SONY,

with a playback frame rate of 30 FPS and 4K resolution, as shown in Figure

2.7. We show here that SIVE processes frames faster than the playback time

(1/ frame rate) = 0.034 sec, and therefore, enable real-time video enhancement.

The processing runtime is less than 0.001 second averaged over 100 frames on a

NVIDIA GeForce GTX Titan X GPU.

Figure 2.7: Real-time video processing using Nonlinear Schrodinger

Framework for Image and Video Enhancement (SIVE): We show here

that SIVE has the potential for use in live video broadcasting as the processing

overhead computed for an input video with a decent frame rate of 30 FPS is zero.

The computation was carried out on a NVIDIA GeForce GTX Titan X GPU. We

can process a 8K video on this GPU in less than 0.01 second, to achieve a frame

rate greater than 100 FPS.
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Method Runtime (in seconds) Achievable Frame Rate (in FPS)

SIVE 0.001 1000

ZeroDCE 0.03 30

CLAHE 4 0.25

FCCE 4 0.25

LIME 5 0.2

HE 12 0.08

GLADNet 30 0.03

SRIE 250 0.04

MBLLEN 300 0.003

Table 2.3: Quantitative comparisons in terms of average runtime (in

seconds) performance, and possible 4K video broadcasting frame rate.

Best value is highlighted in blue and worst value in red.

Specifically we show that SIVE is capable of handling 4K real-time video pro-

cessing with a frame rate of 1000 FPS while the second most computationally

efficient method ZeroDCE [18] can only support a 30 FPS frame rate as shown

in Table 2.3. Moreover, we can process a 8K video in less than 0.01 second on

this GPU and achieve a frame rate greater than 100 FPS, enabling live video

streaming.

We also quantify the enhancement performance using non reference metrics like

measure of Colorfulness [19] and naturalness image quality evaluator (NIQE) [20]

for the two 4K video frames shown in Figure 2.8 and 2.9. The quantitative evalu-

ation for these frames in Figure 2.8 and 2.9 is shown in Table 2.4 and 2.5, respec-

tively. As seen in the tables, SIVE provides a very high measure of Colorfulness

and a good (low) NIQE score.
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Figure 2.8: Performance comparison of our proposed method SIVE with

state-of-the-art methods for real-time video enhancement. As seen, our

proposed method SIVE enhances the input frame in real-time, bringing out the

contrast and also, enabling possible live video broadcasting. SIVE = nonlin-

ear Schrodinger framework for Image and Video Enhancement, HE = Histogram

Equalization [11], CLAHE = Contrast Limited Adaptive Histogram Equalization

[12], FCCE= Fuzzy-Contextual Contrast Enhancement [13], SRIE = Structure-

Revealing low-light Image Enhancement [14], LIME = Low-light image enhance-

ment via Illumination Map Estimation [15], MBLLEN = Multi-Branch Low-Light

Enhancement Network [16], GLADNet = GLobal illumination Aware and Detail-

preserving Network [17], Zero-DCE = Zero-Reference Deep Curve Estimation [18].
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Method Measure of Colorfulness NIQE

(the higher, (the lower,

the better) the better)

SIVE 36.32 3.04

ZeroDCE 40.3 3.12

HE 41.77 2.69

CLAHE 24.95 2.67

SRIE 41.05 3.09

LIME 48.14 2.84

FCCE 20.12 2.69

GLADNet 30.29 3.13

MBLLEN 35.71 4.37

Table 2.4: Quantitative comparisons in terms of measure of Colorful-

ness [19] and naturalness image quality evaluator (NIQE) [20] for image

shown in Figure 2.8. As the input image itself has a very narrow color space,

SIVE has moderate measure of colorfulness. While a low NIQE value for SIVE

indicates that the enhanced image has statistics similar to natural images. Best

value is highlighted in blue and worst value in red. SIVE = nonlinear Schrodinger

framework for Image and Video Enhancement, HE = Histogram Equalization [11],

CLAHE = Contrast Limited Adaptive Histogram Equalization [12], FCCE=

Fuzzy-Contextual Contrast Enhancement [13], SRIE = Structure-Revealing low-

light Image Enhancement [14], LIME = Low-light image enhancement via Illumi-

nation Map Estimation [15], MBLLEN = Multi-Branch Low-Light Enhancement

Network [16], GLADNet = GLobal illumination Aware and Detail-preserving Net-

work [17], Zero-DCE = Zero-Reference Deep Curve Estimation [18]
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Figure 2.9: Performance comparison of our proposed method SIVE with

state-of-the-art methods for real-time video enhancement. Our proposed

method SIVE enhances the input frame by expanding the input color gamut in

real-time and providing an output image with better perceptual quality. SIVE

= nonlinear Schrodinger framework for Image and Video Enhancement, HE =

Histogram Equalization [11], CLAHE = Contrast Limited Adaptive Histogram

Equalization [12], FCCE= Fuzzy-Contextual Contrast Enhancement [13], SRIE =

Structure-Revealing low-light Image Enhancement [14], LIME = Low-light image

enhancement via Illumination Map Estimation [15], MBLLEN = Multi-Branch

Low-Light Enhancement Network [16], GLADNet = GLobal illumination Aware

and Detail-preserving Network [17], Zero-DCE = Zero-Reference Deep Curve Es-

timation [18].
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Method Measure of Colorfulness NIQE

(the higher, (the lower,

the better) the better)

SIVE 68.79 3.22

ZeroDCE 38.35 3.8

HE 43.73 3.295

CLAHE 34.06 3.293

SRIE 49.12 3.8

LIME 56.47 3.53

FCCE 35.66 3.3

GLADNet 41.67 3.50

MBLLEN 49.45 4.07

Table 2.5: Quantitative comparisons in terms of measure of Colorfulness

[19] and naturalness image quality evaluator (NIQE) [20] for image

shown in Figure 2.9. As seen, SIVE has lowest NIQE value and highest measure

of Colorfulness indicates that the enhanced image has statistics similar to natural

images and best color gamut respectively. Best value is highlighted in blue and

worst value in red.
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Figure 2.10: Color gamut expansion using our proposed SIVE method

- Our proposed method expands the input gray level in a uniform manner as

shown in the color cloud preserving input image details. We also compare the

Peak Signal-to-Noise Ratio (PSNR) between the enhanced outputs and reference

DCI-P3 color space image. Both the PSNR (=17.84) and Colorfulness (=119.47)

is highest for SIVE. Performance comparison of our proposed method SIVE with

state-of-the-art methods for color gamut expansion. Our method expands the

color gamut of input image and is also computationally efficient.
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Color Gamut Expansion: In color theory, the gamut is the part of the color

space that can be represented on the given display, or produced by an enhancement

process. Display technologies are now able to produce images with a much wider

color gamut than ever seen before [61]. We show here that using SIVE, we can

exploit the full color potential of these new displays. As an example, we consider

an input image having a narrow color space, sRGB [62], and a reference image

with a wider color space, Apple’s DCI-P3 [63]. We show that by application of

SIVE on a sRGB image, we can extend the color gamut in an efficient manner

and produce an enhanced image with a wide color gamut that is very similar to

Apple’s DCI-P3 as shown in Figure 2.10. This is also reflected from the measure

of Colorfulness which is highest for SIVE (C=119.47) followed by HE (C=99.47).

On the other hand, second most computationally efficient Zero-DCE produces

the worst output image (C=56.10), shrinking the original color cloud of sRGB

image (C=73.71). MBLLEN (C=97.3) also produces an output with much wider

color space but is computationally the most expensive method. Therefore, SIVE

produces the best output for color gamut enhancement as also reflected from the

high value of measure of Colorfulness [19] shown in Table 2.6.

We use DCI-P3 as a reference image for all our quantitative evaluation of

color gamut expansion and evaluate the enhancement performance using refer-

ence based metric Structural Similarity (SSIM) for evaluation and compare the

enhanced image with respect to the DCI-P3 image as the reference image. As

shown in Table 2.6, SSIM for SIVE is comparatively high indicating its closeness

to DCI-P3 image. While SSIM is highest for MBLLEN, it is computationally the

most expensive method (15000x times slower than SIVE). Therefore, our proposed

method SIVE produces an enhanced output with better perceptual quality and is

also computationally efficient.
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Method Computation Measure of NIQE SSIM

Runtime Colorfulness (DCI-P3 reference)

(in seconds) (the higher, (the lower, (the higher,

the better) the better) the better)

SIVE 0.0004 119.47 3.36 0.81

ZeroDCE 0.005 56.10 3.0 0.63

HE 0.4 99.47 3.5 0.8

CLAHE 0.13 69.49 3.46 0.84

SRIE 3.9 79.64 3.2 0.89

LIME 0.15 92.2 3.3 0.79

FCCE 0.09 71.96 3.02 0.87

GLADNet 1.04 64.43 3.4 0.8

MBLLEN 6.13 97.3 3.4 0.9

Table 2.6: Quantitative comparisons in terms of runtime (in seconds)

performance, measure of Colorfulness [19], naturalness image quality

evaluator (NIQE) [20] and Structural Similarity (SSIM), for images

shown in Figure 4.11. SIVE is computationally efficient, produces a wide color

gamut image, with moderate NIQE and SSIM score. MBLLEN produces a much

wider color space image and has a high SSIM value but is the most computationally

expensive (slowest) method. Best value is highlighted in blue and worst value in

red. SIVE = nonlinear Schrodinger framework for Image and Video Enhancement,

HE = Histogram Equalization [11], CLAHE = Contrast Limited Adaptive His-

togram Equalization [12], FCCE= Fuzzy-Contextual Contrast Enhancement [13],

SRIE = Structure-Revealing low-light Image Enhancement [14], LIME = Low-

light image enhancement via Illumination Map Estimation [15], MBLLEN =

Multi-Branch Low-Light Enhancement Network [16], GLADNet = GLobal illu-

mination Aware and Detail-preserving Network [17], Zero-DCE = Zero-Reference

Deep Curve Estimation [18].
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We also do additional quantitative comparison for SIVE, HE and Zero-DCE

for reference based metric Peak Signal-to-Noise Ratio (PSNR). Calculated PSNR

for SIVE is highest equal to 17.84 followed by HE (PSNR =15.13). ZeroDCE

(third most computationally efficient method after SIVE and SIVE-Net) has the

lowest PSNR (=8.6). Clearly, SIVE has the best performance for color gamut

expansion. Additionally, we also consider naturalness image quality evaluator

(NIQE) [20] that measures the distance between the natural scene statistics and

the enhanced image (lower NIQE value means a higher image quality). As shown,

our proposed method SIVE has an excellent NIQE value =3.36, demonstrating

that SIVE offers best in class performance for color gamut expansion as well as

computational efficiency.

Resolution Enhancement: To demonstrate resolution enhancement using

our proposed method SIVE, we conduct a experiment where we simulate the op-

tical lens degradation by applying a Gaussian filter to the input image. resulting

in a low contrast as well as a blurry image. As shown in Figure 2.11, our method

improves the contrast of the input image as well as helps in improving the reso-

lution. This feature can help the passive auto-focus (AF) system in the camera

to correctly focus in images with low SNR (captured under low-light conditions)

and improve image quality.

Noise Suppression: All contrast enhancement methods have the inherent

drawback of amplifying the noise during the gray-level adjustment. We evaluate

the performance of our image enhancement method SIVE on low-light input im-

age with added noise as shown in Figure 2.12. As can be observed in this figure,

the noise hidden in very low-light condition is really intense. While other methods

sufficiently enhance the visibility of low-light regions in the image, they also inten-

sively amplify the noise. By a visual comparison of result, it can be observed that

the proposed method SIVE removes the noise in dark regions but also enhances

the low-light regions.
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Figure 2.11: Simultaneous resolution and contrast enhancement using

our proposed Nonlinear Schrodinger Framework for Image and Video

Enhancement (SIVE) method- Our proposed method increases the resolution

of features in the input image as well as expands the dynamic range of input gray

level. For example, in the image shown above, the high frequency components

in the scene such as the curves in the floor can be enhanced using our proposed

method SIVE. SIVE = nonlinear Schrodinger framework for Image and Video

Enhancement, HE = Histogram Equalization [11], CLAHE = Contrast Limited

Adaptive Histogram Equalization [12], FCCE= Fuzzy-Contextual Contrast En-

hancement [13], SRIE = Structure-Revealing low-light Image Enhancement [14],

LIME = Low-light image enhancement via Illumination Map Estimation [15],

MBLLEN = Multi-Branch Low-Light Enhancement Network [16], GLADNet =

GLobal illumination Aware and Detail-preserving Network [17], Zero-DCE =

Zero-Reference Deep Curve Estimation [18].
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Figure 2.12: Noise Suppression using our proposed Nonlinear

Schrodinger Framework for Image and Video Enhancement (SIVE)

method: Our proposed method SIVE expands the input gray level but does

not intensifies the noise in the image unlike other methods that enhance the noise

in the image especially in the dark regions of the image. While SRIE does not am-

plify the noise however it fails to enhance the contrast of the image. Performance

comparison of our proposed method SIVE with state-of-the-art methods for color

gamut expansion. Our method expands the color gamut of input image and is

also computationally efficient. SIVE = nonlinear Schrodinger framework for Image

and Video Enhancement, HE = Histogram Equalization [11], CLAHE = Contrast

Limited Adaptive Histogram Equalization [12], FCCE= Fuzzy-Contextual Con-

trast Enhancement [13], SRIE = Structure-Revealing low-light Image Enhance-

ment [14], LIME = Low-light image enhancement via Illumination Map Esti-

mation [15], MBLLEN = Multi-Branch Low-Light Enhancement Network [16],

GLADNet = GLobal illumination Aware and Detail-preserving Network [17],

Zero-DCE = Zero-Reference Deep Curve Estimation [18].
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Figure 2.13: Demonstration of NLSE operation on a digital image under

various regimes: In the dispersive regime, the NLSE operation results in an

edge detection method called as PST, while for the nonlinear regime, the NLSE

operator produces a contrast enhanced image. And in the event of a nonlinear

and dispersive regime, NLSE operator produces a contrast enhanced edge output.

SIVE = nonlinear Schrodinger framework for Image and Video Enhancement,

PST = Phase Stretch Transform [22–27]

41



2.6 Edge Detection using Nonlinear Schrodinger Equation

in Dispersive Regime

In this section, we consider the effect of dispersive propagation on digital images

and show that the the solution of NLSE in the dispersive regime leads to the

Phase Stretch Transform [22–27], a high performance edge and texture extraction

algorithm. To proceed, we consider a dispersive medium that is linear and lossless

and therefore, α = γ = 0. Thereby, the NLSE can be written as:

∂A(x, y; z)

∂z
=
iβ2
2

(
∂2

∂x2
+

∂2

∂y2

)
A(x, y; 0) (2.30)

where A(x, y; z) is the solution of the reduced NLSE in the dispersive regime. As

shown previously, the solution is computed as follows:

A(x, y; z) = A(x, y; 0) + i
z

2

(
∂2A(x, y; 0)

∂x2
+
∂2A(x, y; 0)

∂y2

)
(2.31)

Next we convert the above continuous domain 2D equation to discrete domain

2D equation as follows:

A0[m,n] = IFFT 2
(
FFT 2{A[m,n]} · φ[u, v]

)
(2.32)

In the above equations, A0[m,n] is the output image, n and m are the spatial

variables, FFT 2 is the two dimensional Fast Fourier Transform, and u and v are

spatial frequency variables. The function φ[u, v] is the discrete domain disper-

sive phase propagator and FFT , IFFT is Fast Fourier Transform and Inverse

Fast Fourier Transform respectively. For simplicity, we first analyze 1D discrete

dispersive operation defined as:

A0(n) = IFFT (FFT{A(n)} · φ(u)) (2.33)

such that the discrete phase propagator is defined as quadratic function of fre-

quency given by:

φ(u) = exp(s · u2) (2.34)
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such that s is a strength variable controlling the amount of phase applied. We

substitute this phase as follows:

A0(n) = IFFT
(
FFT{A(n)} · exp(s · u2)

)
= IFFT

(
FFT{A(n)} · (cos(s · u2) + i · sin(s · u2))

) (2.35)

As shown before, for the dispersive regime to produce edge output, the value

of s is very small (i.e. phase is small). As such, we can rewrite the above equation

as:

A0(n) = IFFT
(
FFT{A(n)} · (1 + i · s · u2)

)
(2.36)

And by implementing the Fourier transform property of differentiation, we can

compute the output as follows:

A0[n] = A[n] + i · s · d
2A[n]

dn2
(2.37)

As can be seen from the above results, the real part of the dispersive propagation

output is same as the input where as the imaginary component is the second order

derivative of the input. As discussed previously, Phase Stretch Transform [22–27]

is a physics-inspired edge detection that emulates light propagation through a

dispersive medium. PST operator is defined as the phase of the dispersive output

as follows:

PST{A[n]} , ]{A0[n]}

= tan−1

(
s · d

2A[n]
dn2

A[n]

)
(2.38)

where ]{} is the angle operator. The PST operator computes edge information

from the input digital image as shown in Figure 2.13. And finally, for the case

dispersive and nonlinear regime, the solution to the NLSE equation can be ob-

tained using Split-Step Fourier Method (SSFM), where first the nonlinear part is

solved independently and then the solution obtained is used as input to solve the

dispersive part. This results in an enhanced edge map as shown in Figure 2.13.
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2.7 Conclusion

In this chapter, we have outlined a computational image processing pipeline in-

spired by the Nonlinear Schrodinger Equation (NLSE). The technique is imple-

mented in such a way that it enhances both the color as well as contrast of the

incoming frame/image. The technique works by subjecting the image to virtual

propagation through a two-dimensional NonLinear Schrodinger Equation (NLSE).

The propagation imparts a brightness-dependent pixelwise phase onto the image

transforming it into a complex-valued quantity containing both real and imagi-

nary components. The effect is a type of Self Phase Modulation (SPM) and more

generally an amplitude-modulation (AM) to phase-modulation (PM) conversion

(AM to PM conversion). The Imaginary component of the output is the desired

contrast-enhanced image. In one implementation, the parameters of the NLSE

equation are manually set.

The second implementation utilizes artificial intelligence where the parameters

of the Equation are learned by a neural network in an unsupervised fashion and

are then used to compute the output image. The concept is validated with numer-

ous images and videos illustrating benefits of the disclosed technology in differ-

ent applications and under various conditions. Experimental results on standard

datasets show superior computational efficiency compared to the state-of-the-art

image enhancement methods. Finally, we also show that our method achieves

best-in-class performance for color gamut expansion.
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CHAPTER 3

Feature Enhancement in Visually Impaired

Images

One of the major open problems in computer vision is feature detection in visually

impaired images. In this Chapter, we describe a potential solution using Phase

Stretch Transform, a new computational approach for image analysis, edge detec-

tion and resolution enhancement that is inspired by the physics of the photonic

time stretch technique. We mathematically derive the intrinsic nonlinear transfer

function and demonstrate how it leads to (1) superior performance at low con-

trast levels and (2) a re-configurable operator for hyper-dimensional classification.

We prove that the Phase Stretch Transform equalizes the input image brightness

across a range of intensities resulting in high dynamic range of operation for fea-

ture detection in visually impaired images. We also show further improvement in

the dynamic range by combining our method with the conventional techniques.

Finally, our results propose a new paradigm for the computation of mathematical

derivatives via group delay dispersion operations.

3.1 Introduction

Feature detection in images plays a critical role in the field of computer vision for

solving problems associated with object recognition, image registration, content-

based image retrieval and deep learning [64–66]. Prior works for improving feature

detection in images have focused on the use of grey level statistics of the image [64]
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and on application of edge detection methods [67]. Color distinctiveness and

color models [68, 69] and scale selections [70] in images have also been exploited

for enhancing the feature detection. The main goal of feature detection is to

classify objects more accurately and at the same time be robust to varying viewing

conditions that include changes in illumination, environmental conditions, object

orientation, and the zoom factor of the camera. Environmental conditions can

severely impair detection and localization of objects in images. For instance,

under foggy conditions, acquired images suffer from visual impairments such as

reduced contrast, blur and noise which leads to lower resolution [71, 72]. This

constitutes a major bottleneck for many computer vision applications including

autonomous vehicles. The emerging imaging technologies such as High Dynamic

Range (HDR) hold promise to solve feature detection problems in the field of

computer vision. However, the slow frame rate of these technologies restricts their

practice in self-driven cars, autonomous robotics and other real-time applications.

The Phase Stretch Transform (PST) was recently introduced as a computa-

tional approach for signal and image processing [27, 28]. PST is a physics-based

algorithm that has its roots in photonic time stretch technique [1, 32–34, 73], a

method for real-time measurements of ultra-fast events and one that has enabled

the discovery of optical rogue waves [3], observation of relativistic electron struc-

ture [4], label-free cancer cell detection with record accuracy [8,9] and optical data

compression [36]. The algorithm mimics the propagation of electromagnetic waves

through a diffractive medium with engineered 3D dispersive property (refractive

index) [27,28]. This optics-inspired algorithm has superior properties that can be

exploited to develop advanced algorithms for feature extraction from digital im-

ages as shown previously in [22,25,29,30]. Here, we discuss in detail the nonlinear

behavior of PST and demonstrate how this behavior can be used to solve prob-

lems related to feature detection for computer vision applications. PST can be

applied to both digital images as well as time series data [73] and has been used for
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edge detection in biomedical images to develop diagnostic assistant tools [23, 24]

and Synthetic Aperture Radar (SAR) images [74]. PST has also been applied for

resolution enhancement in super-resolution localization microscopy for imaging

of a single molecule [26]. The transform drastically improved the localization of

point spread function, reduced the computational time by 400% and increased the

emitter density by the same amount. The algorithm has been open sourced on

GitHub and Matlab Central File Exchange [75] and has received extraordinary

endorsements both by the software as well as image processing community. The

transform exhibits superior performance over conventional derivative based edge

operators in particular for visually impaired images. It is able to reveal features

invisible to human eye and to conventional algorithms used today. Because of

these unique intrinsic properties offered by PST, it has promising application for

feature enhancement in visually impaired images which is discussed in detail in

this Chapter.

We first show visually that PST has an inherent equalization ability that gives

a response ideal for feature detection in low contrast regimes of visually impaired

images. To do this, we apply our edge detection algorithm on two road traffic

images taken under foggy conditions, as shown in Figure 3.1. The figure depicts

how our edge detection algorithm could significantly improve the feature detec-

tion in case of visually impaired images by outperforming the conventional edge

detection methods based on derivative of the image. The conventional derivative

based method is unable to capture details with small contrast in the bright but

low resolution areas of the image whereas our technique successfully detects fea-

tures in these low contrast visually impaired regions of the image. The warp and

strength parameters of the PST kernel as described in [27,28] for feature detection

in these images are 22 and 500, respectively. As we will show in our mathemat-

ical formulations, this property emerges because PST’s transfer function has an

inherent equalization ability, derived analytically in the next section. Finally, we
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Figure 3.1: Comparison of feature detection using conventional deriva-

tive based edge operator to the case of feature detection using Phase

Stretch Transform (PST) in case of visually impaired images. Origi-

nal traffic images taken in a foggy weather are shown in (A). Detected features using

conventional derivative based edge operator and PST operator are shown in (B) and

(C), respectively. It can be seen that the conventional derivative based edge detection

operator fails to visualize the low contrast details in the visually impaired regions of

the images (as shown in green dashed boxes). However, PST captures these low con-

trast details in the low resolution regions (as shown in green dashed boxes) due to its

unique re-configurable mechanism that detects features over a wide dynamic range. The

strength of features detected using PST over both low and high resolution regions of

the images is consistent unlike derivative operator as also shown in [25].

demonstrate the superior performance of PST at low light levels and its applica-

tion to HDR images. Towards the end, we also propose a new paradigm for the

computation of mathematical derivatives via group delay dispersion operations

that has potential applications in optical computing.
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3.2 From Optical Physics to Digital Algorithms

Photonic time stretch technique can be understood by considering the propa-

gation of an optical pulse through a dispersive optical fiber. The optical pulse

propagation in an optical fiber is governed by non-linear Schrodinger equation as

discussed in [76]. By disregarding the loss and non-linearity in an optical fiber

and considering only the group velocity dispersion, this equation upon integration

reduces to:

Eo (z, t) =
1

2π

∫ +∞

−∞
Ẽi (0, ω) ·

[
e
−jβ2zω

2

2

]
· ejωtdω (3.1)

where Ẽi(0, ω) is the input pulse spectrum, β2=GVD parameter, z is propagation

distance, Eo (z, t)is the reshaped output pulse at distance z and time t. The

response of a dispersive element in a time-stretch system can be approximated as

a phase propagator as presented in [73,77],

H (ω) = eiφ(ω) = ei
∑∞
m=0 φm(ω) =

∞∏
m=0

Hm (ω) (3.2)

Therefore, Eq. 3.1 for a pulse that propagates through the time-stretch system

and is reshaped into a temporal signal with a complex envelope can be written as

follows:

Eo (t) =
1

2π

∫ ∞
−∞

Ẽi (ω) ·H (ω) · ejωtdω (3.3)

By considering sufficient linear dispersion, the stationary phase approximation

can be satisfied resulting in a mapping of spectrum to time. Using this spectro-

temporal mapping, we can evaluate the sparsity in the spectrum of a signal

[73]. In particular, one can create an information gearbox for matching the time-

bandwidth of fast real-time optical data to that of the much slower electronics.

These photonic hardware accelerators proposed in [73] act as a means to boost

the speed and reduce the power consumption of electronics.

The time stretch operation S {Ei (t)} on an input pulse Ei (t) defined above in

terms of phase can be extended to operation on amplitude of a signal in optical
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domain as following:

S {Ei (t)} =

∫ +∞

−∞
F {Ei (t)} ·

[
ejφ(ω) · L̃ (ω)

]
· ejωtdω (3.4)

where ejφ(ω) is the phase filter and L̃ (ω) is the amplitude filter. And for a discrete

signal, the stretch operation can be defined as:

S {Ei [t]} = IFFT
{
FFT {Ei [t]} · K̃ [ω] · L̃ [ω]

}
(3.5)

where K̃ [ω] is the phase filter or propagator, L̃ [ω]is the amplitude filter, IFFT is

Inverse Fast Fourier Transform and FFT is Fast Fourier Transform.

The dispersion operation on a 1D temporal signal is equivalent to parallax

diffraction on a 2D input space. This led us to analyze the application of above

mentioned dispersion-based stretch operations to digital images which resulted

in an optics-inspired edge detection algorithm called Phase Stretch Transform

(PST) [27, 28]. PST is a qualitatively new method for feature engineering and is

discussed at length in the next section.

Figure 3.2: Operation Principle of Phase Stretch Transform (PST). PST

is a physics-inspired feature detection method that transforms the image by emulating

propagation through a dispersive medium [27, 28]. The input image is processed in

frequency domain. The nonlinear spectral phase kernel encodes frequency components

into the spatial phase of the output image such that high frequency components have

higher phase. Upon phase detection of the output followed by thresholding operation,

high phase values corresponding to high frequency components survive, producing a

edge map.
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3.3 Phase Stretch Transform

Phase Stretch Transform (PST) is a recently introduced computational approach

for signal and image processing that emerged out of the research on Photonic

Time Stretch. This algorithm transforms an image by emulating propagation

of electromagnetic waves through a diffractive medium with an engineered 3D

dispersive property (refractive index profile) [27,28].

As shown in Figure 3.2, by applying a nonlinear spectral phase kernel to the

image spectrum (by operating 2D Fast Fourier Transform (FFT2) on the image),

the frequency distribution is mapped to the spatial phase of the output image. The

nonlinear phase kernel encodes a high phase value to high frequency component.

The spatial output after the 2D Inverse Fast Fourier Transform (IFFT2) is no

longer a real quantity but instead has a complex phase associated with it. Upon

phase detection of the output followed by thresholding operation, high phase

values corresponding to high frequency components survive. Hence, edges i.e.

high frequency components in an image are detected. The time stretch stretch

operation S {} for an image can be represented as follows:

S {Ei [x, y]} = IFFT 2
{
FFT 2 {Ei [x, y]} · K̃ [u, v] · L̃ [u, v]

}
(3.6)

In the above equations, Ei [x, y] is the input image, x and y are the spatial vari-

ables, FFT 2 is the two-dimensional Fast Fourier Transform, IFFT 2 is the two-

dimensional Inverse Fast Fourier Transform and, u and v are spatial frequency

variables. The function K̃ [u, v] is called the warped phase kernel and the func-

tion L̃ [u, v] is a localization kernel implemented in frequency domain for image

processing. PST operator is defined as the phase of this Warped Stretch Trans-

form output as follows,

PST
{
Ei[x, y]

}
, ]〈S {Ei [x, y]} 〉 (3.7)

where ]〈·〉 is the angle operator.

51



(A) Original Image (B) Feature detection 
using smooth derivative

(C) Feature detection 
using PST

Figure 3.3: Comparison of feature detection using conventional deriva-

tive based edge operator to the case of feature detection using Phase

Stretch Transform (PST). The derivative is the fundamental operation used in

the popular Canny, Sobel and Prewitt edge detection methods. These derivative based

methods are unable to capture the low contrast on the surface of the Uranus planet. On

the other hand, PST extracts these surface variations efficiently as shown in [22,29,30]

PST has unique intrinsic properties which are not offered by the state-of-the-

art algorithms. To validate this claim, we refer to Figure 3.3 that shows an image

of the planet Uranus processed by the conventional derivative based edge opera-

tor and by the PST. The derivative method is the underlying function utilized by

the popular Canny, Sobel and Prewitt algorithms. The result clearly shows the

dramatic advantage offered by the optics-inspired PST. The inherent equalization

ability of PST gives a response ideal for feature detection in low contrast visu-

ally impaired images. Figure 3.4 compares the effect of feature detection using

conventional derivative based edge operator with feature detection using PST on

another image of planet Uranus captured from a different viewing angle. Conven-

tional derivative based operator fails to visualize the low contrast in the bright

areas of the image over the surface of the planet Uranus. However, PST can clearly

show these small intensity changes even in the intensity-saturated areas due to

its natural equalization mechanism. These surface variations over the planet are

consistent with the edges detected in the Fig 3 highlighting the efficiency of PST.
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(A) Original Image (B) Feature detection 
using smooth derivative

(C) Feature detection 
using PST

Figure 3.4: Comparison of feature detection using conventional deriva-

tive based edge operator to the case of feature detection using Phase

Stretch Operator (PST) on an image of the planet Uranus captured

from a different angle of view as compared to the one shown in Figure

3.3. Original image is shown in (A). Results of feature detection using conventional

derivative based edge operator and PST operator are shown in (B) and (C), respectively.

PST is able to locate the low contrast on the surface of the planet which are consistent

with the edges located in Figure 3.3 as shown in [22,29,30]

3.4 Mathematical foundations of Phase Stretch Transform

The superior performance of Phase Stretch Transform (PST) in the low contrast

regime is proved here mathematically by deriving closed-form analytical expres-

sions for its transfer function. Mathematical results reveal that the transform has

an inherent intensity equalization property leading to high dynamic range perfor-

mance. Analytical results are also supported by numerical simulations confirming

the dynamic range enhancement. As define previously, the stretch operator S {}

on an input image act as follows:

Eo [x, y] = S {Ei [x, y]} , IFFT2
{
K̃ [u, v] · L̃ [u, v] · FFT2 {Ei [x, y]}

}
(3.8)

where Eo [x, y] is a complex quantity defined as,
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Eo [x, y] = |Eo [x, y]| ejθ[x,y] (3.9)

Here for simplicity, we assume the localization kernel L̃ [u, v] = 1. Now, with-

out the loss of generality and in order to keep the notations manageable in what

follows, we consider operation of PST on 1D data, i.e.,

PST {Ei [x]} , ] {S {Ei [x, y]}} = ] {Eo [x]} = ]
〈
IFFT

{
K̃ [u] · FFT {Ei [x]}

}〉
(3.10)

The warped phase kernel K̃ [u] is defined by a phase function that has a non-

linear dependence on frequency, u,

K̃ [u] = ej·ϕ[u] (3.11)

By expanding the phase term in the warped phase kernel K̃ [u] using Taylor

series we have,

K̃ [u] = e

(
j
∑M
m=2

ϕ(m)

m!
um
)

(3.12)

where ϕ(m) is the mth- order discrete derivative of the phase ϕ [u] evaluated

for u = 0 and values of m are even numbers. PST phase term ϕ [u] only contains

even-order terms in its Taylor expansion due to the even symmetry of the phase

term ϕ [u] as first considered in [27,28]. By using the expansion of warped phase

kernel as described in Eq. 3.12, output complex-field, Eo [x], can be calculated as

follows,

Eo [x] = IFFT
{
Ẽi [u] × K̃ [u]

}
= IFFT

{
Ẽi [u] × e

(
j
∑M
m=2

φ(m)

m!
um
)}

(3.13)
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where Ẽi [u] is the spectrum of the input computed using Fast Fourier trans-

form (FFT). Simulation show that when the applied phase is small, PST works

best. Under these conditions, we can use small value approximation for the applied

phase kernel. Therefore, the phase term in Eq. 3.13 can be simplified to,

Eo [x] = IFFT

{
Ẽi [u] ×

[
1 + j

(
M∑
m=2

φ(m)

m!
um

)] }
(3.14)

→ Eo [x] ≈

[
1 × Ei [x] + j

M∑
m=2

(−1)m/2 φ(m)

m! (2π)m
Ei [x](m)

]
(3.15)

where Ei [x](m) is the mth-order discrete mathematical derivative of the input

Ei [x]. As the input is a real quantity, we can calculate the output phase as,

PST {Ei [x]} = ] {Eo [x]}

≈ tan−1


M∑
m=2

(−1)m/2 φ(m)

m! (2π)m
Ei [x](m)

Ei [x]


(3.16)

Finally, since the phase is restricted to small values (tan−1 θ ≈ θ), above

equation can be simplified to,

PST {Ei [x]} ≈


M∑
m=2

(−1)m/2 φ(m)

m! (2π)m
Ei [x](m)

Ei [x]

 (3.17)

We see that the transfer function of PST is consisting of a summation of

even order mathematical derivatives of the input in the numerator divided by the

input amplitude (brightness) in the denominator. A hyper dimensional feature

set corresponding to different measures of the curvature of the edge is computed

in the numerator while the denominator renders the response nonlinear in such a

way that low-light-levels in the input are enhanced. Above analytical results are
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derived by considering a general expression for the phase kernel and only when

the applied phase of the PST kernel is small. We now expand our analytical

findings by considering different scenarios that reveal further insights into the

unique properties of PST.

Case 1: Let’s consider the Phase Kernel K̃ [u] as a quadratic function of

frequency variable u. Under this condition K̃ [u] = u2 and by using small phase

approximation, the phase term in Eq. 3.14 can be simplified to,

Eo [x] = IFFT
{

Ẽi [u] ×
[
1 + j

(
u2
)] }

(3.18)

→ Eo [x] ≈
[
1 × Ei [x]− j

1

(2π)2
∗ d

2Ei [x]

dx2

]
(3.19)

We also assume that the phase of the complex output is restricted to small

values. Therefore, phase of the output can be simplified to,

PST {Ei [x]} = ]Eo [x] ≈
−1

(2π)2
∗ d

2Ei[x]
dx2

Ei [x]
(3.20)

Case 2: We consider here the same Phase Kernel (as a quadratic function of

frequency variable u), K̃ [u] = u2 as discussed in Case 1. However, we do not

restrict to small phase approximation. The exponential term in Eq. 3.13 can now

be represented as,

Eo [x] = IFFT
{

Ẽi [u] ×
[
cos
(
u2
)

+ j sin
(
u2
)] }

(3.21)

We expand the sine and cosine terms using Euler expansion up to third order

and then by applying small value approximation to the complex output of Eq.

3.16, the PST output can be computed as shown below
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PST {Ei [x]} = ]Eo [x] ≈
−1

(2π)2
∗ d

2Ei[x]
dx2

+ 1
3!(2π)6

∗ d
6Ei[x]
dx6

− 1
5!(2π)10

∗ d
10Ei[x]
dx10

Ei [x] − 1
2!(2π)4

∗ d4Ei[x]
dx4

+ 1
4!(2π)8

∗ d8Ei[x]
dx8

(3.22)

The closed-form expression of the transfer function of PST shown in Eq. 3.16

relates the output to the input in the case of an arbitrary phase kernel valid under

small phase approximation. For certain scenarios, the core functionality of PST

as a feature detector can be established by the closed-form expression presented in

Eq. 3.16. As we can see, the output of the PST operator is directly proportional

to the even-order derivatives of the input with weighting factors of (−1)m/2 φ(m)

m! (2π)m
.

Each computed mathematical derivative highlights a different feature of the input.

The weighting factors can be modified to selectively enhance features of interest.

Hence, our transform acts as a re-configurable operator that can be tuned to

emphasize different features in an input image.

The intrinsic equalization ability of PST can be seen in Eq. 3.16. The PST

output is inversely related to the input brightness level valid under small phase

approximation. Therefore, for a same contrast level, the PST output is higher

in dark low-light-level areas of an image. This important observation from Eq.

3.16 confirms the fact that PST has an inherent property to equalize the detected

output with the input brightness level and therefore, allows for a more sensitive

feature detection as also reported in [25,30].

Brightness level equalization is a well-studied technique to improve feature de-

tection algorithms in High Dynamic Range (HDR) images ( see [78] for example).

One approach to achieve brightness level equalization in images is by applying a

logarithmic (log) function to the input before application of feature detection al-

gorithms. By applying a log function, we can achieve high gain for low brightness

input. This brightness equalization results in a more sensitive feature detection.

Fortunately, the PST operator has a built-in logarithmic behavior which gives it
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excellent dynamic range. However, this property does not completely describe

the functionality of our transform. As observed in Eq. 3.16, our transform com-

putes a hyper-dimensional feature set for signal classification (shown in Figure

3.5). These results also demonstrate a method for computation of mathematical

derivatives via group delay dispersion operations.

mth

(m-2)th

(m+2)th

Figure 3.5: Phase Stretch Transform (PST) as a hyper dimensional clas-

sifier. PST operator can act as a reconfigurable operator to compute mth-order deriva-

tive. Here the dimensions are the order (even) of derivatives and hyper planes are shown

as green and red boxes.

3.5 Clinical Decision Support Systems using PST

Medical images act as a very important source of information in order to un-

derstand the anatomy and organ function as well as aid in diagnosis of diseases.

Lately, machine learning tools are unified with image processing techniques for

application to medical imaging leading to production of computer-aided diagnos-

tics (CAD) and decision making tools. As discussed previously, PST has superior

performance over conventional edge detectors, therefore, its application to medical

images for feature detection is promising for accurate segmentation and develop-

ment of CAD tools.
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One such application of PST is to develop a diagnostic assistant tool for pneu-

mothorax [23,24]. Pneumothorax is a medical situation in which air leaks into the

space between the lungs and the chest wall due to a chest injury or a lung disease

or even sometimes due to certain medical procedures. The major risk factor that

increases the mortality caused by pneumothorax is the failure to identify it at any

early examination by a radiologist. By the application of PST to the chest x-rays’

of patient suffering from pneumothorax, the boundary of collapsed lung is easily

located otherwise difficult to be identified during an initial visual inspection by a

radiologist as shown in Figure 3.6. This tool, which is first of its kind, traces the

collapsed lung and aids the radiologist to take correct decision in this life-critical

examination. With pneumothorax being very common in ventilated critically ill

patients, it becomes important to develop tools for accurate diagnosis as failures

in diagnosis can cause life threatening complications [79].

Figure 3.6: Comparison of feature detection using Phase Stretch Trans-

form (PST) algorithm with the features detected using a conventional

derivative based edge operator for a lung x-ray image. In the figure, (A)

X-ray of lung of a patient suffering from pneumothorax (B) Edge detection using con-

ventional derivative based edge operator (C) Edge detection using PST. The red oval

indicates the region of collapsed lung. As shown, PST traces the low contrast lung edge

with an equalized response due to intrinsic nonlinear behavior. Conventional derivative

based edge operator work well only for high contrast regions and therefore, fails to locate

the collapsed lung boundary as described in [23,24].
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Figure 3.7: Comparison of numerically simulated output of Phase Stretch

Transform (PST) algorithm with the output given by the closed-form

analytical expression derived in Eq. 3.16. The phase kernel of the PST

operator and the corresponding derivative profile of the phase kernel are shown in (a) and

(b), respectively. The simulated input 1D brightness data is shown in (c). Numerically

calculated PST output data and the output data estimated by the closed-form expression

of the PST transfer function, as derived in Eq. 3.16, is shown in (d) using red-solid and

blue-dotted lines, respectively. The above simulation result validates the accuracy of

the closed-form analytical expression of PST transfer function derived in Eq. 3.16
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3.6 Simulation Results

In this section, we present simulation results that validate the closed-form analyt-

ical expression of the transfer function of PST derived in the previous section. In

order to reinforce the new theory developed above, we also demonstrate several

visual examples of operation of PST on HDR images. In our first simulation re-

sult, we show the PST output for a given 1D data and compare it to the output

computed by the analytical expression derived in Eq. 3.16. Figure 3.7A shows the

phase kernel ϕ [u] of the PST operator designed for this simulation. The warp W,

and strength S, parameters of the phase kernel are 12.5 and 4000, respectively.

The derivative of the PST phase kernel is shown in Figure 3.7B. The simulated

1D input data is shown in Figure 3.7C. In Figure 3.7D, numerically simulated

PST output is compared to the output estimated by the analytical expression of

Eq. 3.16 using red-solid and blue-dotted lines, respectively. It is evident that

the simulations match analytically derived results validating the accuracy of the

closed-form analytical model of our algorithm as derived in Eq. 3.16.

In the next simulation example, we examine the effect of PST operation for

feature detection on a signal with varying contrast levels at a constant brightness

level and compare it to the case of using the conventional technique of differentia-

tion to detect features in the same input. The warp W, and strength S, parameters

of the PST operator are 12.15 and 0.48, respectively. The input was designed to

have varying contrast levels at a constant brightness level, as shown in Figure

3.8A. We compare numerically simulated PST output to the output using differ-

entiation in Figure 3.8B. As expected, the output of the differentiator is linearly

proportional to the contrast level and is insensitive to the input brightness level.

On the other hand, PST output is directly dependent on the input contrast level

but inversely dependent on the constant brightness level. This nonlinear behavior

is due to the inherent equalization mechanism of PST as described in Eq. 3.16.
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Figure 3.8: Effect of Phase Stretch Transform (PST) on an input signal

with various contrast levels at a constant brightness level. The input 1D

data which is designed to have various contrast levels at a constant brightness level

is shown in (a). Numerically calculated PST output is compared to the output using

differentiation in (b) using red-solid and blue-dotted lines, respectively. As can be seen,

the output of the differentiator has a linear response to contrast level in the input and

is completely insensitive to the input brightness level. On the other hand, PST output

is non-linearly related to the contrast level in the input at fixed brightness

The behavior of PST operation for feature detection on a signal with a constant

contrast level and various brightness levels is evaluated in Figure 3.9. The input

data, designed to have a constant contrast level and various brightness levels, is

shown in Figure 3.9B. The warp, W, and strength, S, factors used for the PST
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Figure 3.9: Effect of Phase Stretch Transform (PST) on an input signal

with a constant contrast level and various brightness levels. The input

data which is designed to have a constant contrast level and various brightness levels is

shown in (B). Numerically calculated PST output data for feature detection in a signal

with a constant contrast level varies with the input brightness level is shown in (C).

This shows that PST output has an inverse dependence on the input brightness level.

operator are 12.15 and 0.48, respectively. The red solid line representing the

output data confirms that the relation of PST to same contrast level at various

brightness levels, is logarithmic as also estimated in Eq. 3.16. Therefore, the

simulation result presented in Figure 3.9 further reinforce the accuracy of the

closed-form equation to estimate the output of the PST algorithm [22, 29, 30],

validating that PST has an inverse dependence on the input brightness level.
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Original image

Feature detection using smooth derivative

Feature detection using PST

(A)

(B)

(C)

Figure 3.10: Comparison of feature detection using smooth derivative

operator to the case of feature detection using Phase Stretch Trans-

form (PST). Original image is shown in (A). Smooth derivative operator is unable

to efficiently visualize the low contrast details in the dark areas of the image. How-

ever, PST captures these contrast changes in low-light-level areas due to its intrinsic

equalization property.
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Figure 3.10 shows a visual example of using PST for feature enhancement on

a 14 bit HDR image. The image has features of interest in extremely low-light-

level regions, as seen in the red boxes. We now compare the performance of the

derivative operator with PST for feature detection. The derivative operator was

implemented from native smooth derivative function. For a fair comparison, both

methods use the same localization kernel (a Gaussian function) with sigma factor

of 2. The warp W, and strength S, parameters used for the PST operator are

12.15 and 0.48, respectively. Results of feature detection using smooth deriva-

tive operator and PST operator are shown in Figure 3.10B and Figure 3.10C,

respectively.

The derivative operator is unable to unveil the small contrast details in the dark

areas of the image, as can be seen in Figure 3.10B . However, PST extracts these

low contrast details in dark areas due to its natural equalization mechanism, see

dashed box in Figure 3.10C. It also can be observed that the intensity of detected

edges in the case of smooth derivative is related linearly to the brightness level of

the original image, compare solid box areas in Figure 3.10A and Figure 3.10B.

In contrast, PST has automatically equalized the brightness level in the solid

box region in the image and outputs relatively constant feature intensity for that

region, see Figure 3.10 C. We also note that PST has failed to visualize features

in high contrast areas in the image. This is because of the inverse dependence on

brightness level as derived in Eq. 3.16. This issue can be mitigated by setting

a higher maximum threshold for detected features or by equalizing the image

brightness before passing through PST operator.

We further examine the role of PST for feature detection in low-light-level and

high-light-level regions by considering a line scan of a HDR image shown previously

in Figure 3.10. The blue box in the Figure 3.11 demonstrates the response of PST

to low-light-level regions where it outperforms conventional derivative based edge

operator. Similarly, for high-light-level regions of the image (shown in green and
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(A) Input line scan

(B) Feature detection using PST and conventional derivative operator

Figure 3.11: Comparing feature detection using conventional derivative

based edge operator and Phase Stretch Transform (PST) operator un-

der low-light-level and high-light-level conditions. (A) Original input line

scan corresponding to Row 524 from the image shown in Figure 3.10. Feature detection

of this input line scan using the derivative and the PST operator is shown in (B). The

blue box demonstrates that the response of PST is higher than the derivative operator

under low-light-level conditions. The green and purple box shows the response of PST

and derivative operator for feature detection under high-light-level conditions. While

PST enhances low contrast features under low-light-level as wells as under high-light-

levels (see green box) unlike derivative operator which identifies high contrast features

(see blue box).
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purple box in the Figure 3.11), PST outperforms when the contrast is low (shown

in green box in the Figure 3.11). On the contrary, the conventional derivative

based edge operator response is dominating only in high contrast regions (shown

in purple box in the Figure 3.11).

(A)  Original image
(B) Feature detection using
conventional edge detectors (C) Feature detection using PST

Figure 3.12: Comparison of feature detection using the smooth derivative

operator to the case of feature detection using the PST. The original image

is shown in (A). The smooth derivative operator is unable to efficiently visualize

the features in the low contrast areas of the image (see red boxes in (B)) whereas

PST detects these low contrast features (see red boxes in (C)).

We consider another 14-bit HDR image to show feature enhancement in low

light level regions using PST. The image has sharp features in the form of edges

of leaves and branches of trees in the low light level regions, see red dashed box in

Figure 3.12(A). Results of feature detection using the smooth derivative operator

and the PST operator are shown in Figure 3.12(B) and Figure 3.12(C), respec-

tively. The warp and strength parameters used for the PST operator are 22.4 and

10.5, respectively. The conventional smooth derivative operator detects features

only in high contrast regions, as shown in blue dashed box. The derivative opera-

tor fails to identify edges corresponding to low contrast areas of the image, see red

dashed box in Figure 3.12(B). PST due to its inherent equalization mechanism

detects these features as shown in red dashed box in Figure 3.12(C). It can be

observed that PST does not have a strong edge response corresponding to high
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contrast regimes such as the edges of Washington Monument in the image. We

will show later that this issue can be resolved by combining the edges from both

the methods.

(A)  Original image (C) Feature detection using PST

(D) Contrast Enhanced Image (E) Feature detection using conventional edge 
detectors on contrast enhanced image

(B) Feature detection using
conventional edge detectors

Figure 3.13: Comparison of feature detection using the smooth derivative

operator on a contrast enhanced image to the case of feature detection

using the PST. The original image is shown in (A). The smooth derivative

operator detects features in the under-exposed regions of the image only after

enhancing the contrast of the image. The edges detected by the conventional

derivative operator in the under-exposed regions of the contrast enhanced image

are consistent with the ones detected by the PST (see red boxes in (C) and (E)).

In order to evaluate the performance of PST compared to the previous meth-

ods, we show an example of using PST for feature enhancement in a 14-bit HDR

image and then compare the output with the conventional techniques for feature

enhancement in low contrast regions. The image of the rock has sharp surface

variations in the low light level regions, as shown in the red dashed box. The

smooth derivative operator fails to detect these surface features in low contrast

regions, see Figure 3.13(B). We apply the standard intensity histogram equaliza-
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tion technique [11] to enhance the contrast of the under-exposed regions of this

HDR image, shown in Figure 3.13(D). The derivative operator now detects fea-

tures in these low contrast regions, see Figure 3.13(E) which are visually consistent

with the features detected by PST, see Figure 3.13(C). The warp and strength

parameters used for the PST operator are 12.4 and 0.48, respectively.

Figure 3.14: Comparison of feature detection using the smooth derivative

operator to the case of feature detection using the PST operator. The

original image is shown in (A). The smooth derivative operator is unable to detect

features in the defocused areas of the image (as shown in red boxes in (B)).

However, PST captures the fingerprint details in these blurred areas due to its

unique re-configurable property (see (C)).

We consider another example of a defocused image, shown in Figure 3.14(A), to

show that PST outperforms conventional edge detectors for feature enhancement

in visually impaired images. By comparing the edge map from smooth derivative

function to that from the PST operator, shown in Figure 3.14 (B) and Figure

3.14 (C), respectively, it is evident that the PST operator detects edges of finger

prints in the blurred (low contrast) regions marked by red boxes. This opens up

the possibility of using PST for fingerprint analysis in forensic science. The warp

and strength parameters used here for the PST operator are 1000.2 and 50.4,

respectively.

69



(A) Original Image
(B) Feature detection 

using smooth derivative
(C) Feature detection 

using PST

Figure 3.15: Comparison of feature detection using conventional deriva-

tive based edge operator to the case of feature detection using Phase

Stretch Transform (PST). Original image is shown in (A). Results of feature

detection using conventional detectors and PST operator are shown in (B) and (C),

respectively. Enlarged view of the scroll in the painting, shown in the red boxes, estab-

lishes the superiority of PST to trace the edges of alphabets in the scroll.

Finally, Figure 3.15 shows another example application of PST for Optical

Character Recognition (OCR). As shown in Figure 3.15, in this painting of “Min-

erva of Peace” there are optical characters in the scroll that need to be recognized

(see red solid box in Figure 3.15 A). Results of feature detection using conven-

tional derivative based edge operator and PST operator are shown in Figure 3.15B

and 15C respectively. Clearly, conventional operator fails to efficiently visualize

the sharp features of the alphabets in the scroll. However, PST traces the edges of

alphabets efficiently and thus, provide more information on the contrast changes

in dark areas due to its natural equalization mechanism, see Figure 3.15C. Con-

ventional derivative based edge operator was implemented from find edge function

in ImageJ software. The warp, W, and strength, S, parameters used for the PST

operator are 13 and 0.4, respectively.
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To further enhance the dynamic range of operation for feature detection, we

introduced a hybrid system that combines the edge responses from the PST and

the conventional derivative operator, enabling feature detection in low as well as

high contrast regions [22,25]. As shown in Figure 3.16, the edge map of the hybrid

system has edges in the high contrast regions such as the hand in the image and

also in the low contrast regions such as the pattern on the curtain. It can be clearly

seen that the feature detection of the hybrid system surpasses the capabilities of

feature detection from the derivative and the PST operator.

Figure 3.16: Hybrid system that combines the edge maps from the

smooth derivative operator and the PST. The original image is shown in

(A). Results of feature detection using the smooth derivative operator and the

PST are shown in (B) and (C), respectively. The output of the hybrid system is

shown in (D). Note that in (D), the strength of the detected features in both the

high light level and low light level regions is same. The hybrid system selects the

detected features in the darker regions using the PST and in the brighter regions

using the smooth derivative operator and thereby, provides a wide dynamic range

of operation.
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3.7 Optical Computing of Mathematical Derivatives using

Dispersion and Coherent Detection

Early attempts in the field of optical computing were futile because they aimed to

construct an all-optical equivalent of the digital computer [80]. However, photon-

ics does have potential for performing certain computing functions in the analog

domain [80]. These analog photonic hardware accelerators precede an optical-to-

electrical conversion and alleviate bandwidth, dynamic range and power consump-

tion bottlenecks on the subsequent electronics [73]. Far from a general purpose

computer, photonic hardware accelerators are custom designed to perform specific

signal transformations in real time and in analog domain. The computational

operations that have already been realized by these analog optical computing

primitives include integration [81], data compression [36], time–bandwidth engi-

neering [82], logarithm [83] and optical dynamic range compression [ [84]. Optical

implementation of temporal differentiation has been demonstrated in two ways:

field differentiators realized using a micro-ring resonator [85] and intensity differ-

entiators implemented using phase modulation [86].

Figure 3.17: Implementation of Proposed Differentiator. The input signal

passes through a dispersive medium that is designed to have specific dispersive

property (refractive index profile). The complex output is detected using coherent

detection method. The real part of the output is same as the input signal while

the small imaginary component is the derivative of the input signal.
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Inspired by the physics of Photonic Time Stretch technology, and its spin-off

in the form of the Phase Stretch Transform, we proposed a novel computational

approach for calculating mathematical derivatives as described in [87]. The pro-

posed all-optical differentiator consists of group delay dispersion primitives and

coherent detection as shown in Figure 3.17 .

The reconfigurability to compute different orders of differentiation is realized

simply by controlling the applied group delay dispersion spectrum. The simulation

results presented in Figure 3.18 demonstrate that the computation of any-order of

differentiation of the input signal is possible. As shown in Figure 3.18, the imagi-

nary component of the output gives the m-th order of differentiation while the real

component of the output recovers the input signal. The proposed approach has

promising applications in signal classification and is also easy to implement en-

abling realization of a real-time, low power and broad band optical differentiation

functions.

Figure 3.18: Simulation results for computing mathematical derivatives

using dispersion. Different orders of differentiation on a calibrated signal using

group delay dispersion. The input signal is recovered using the real component

of the output while the imaginary component of the output shows the computed

derivative corresponding to different order of differentiation based on the applied

group delay dispersion. DE = Differential Equation, PST=Phase Stretch Trans-

form.
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3.8 Conclusions

In this chapter, we presented that the physics of light propagation in a dispersive

or a diffractive media has natural properties that can be exploited for various

applications. Photonic time stretch technology utilizes dispersion to slow down

an analog signal in time. Phase Stretch Transform employs dispersion to extract

features from the data. We also presented how this method is useful for edge

detection in visually impaired images and showed the mathematical transform

of this method inspired by the physics of photonic time stretch. We showed via

analytical derivations as well as numerical simulations that this physics-inspired

transform has an intrinsic equalization property. This inherent ability of PST

significantly improves feature detection in visually impaired images and thereby,

results in a high dynamic range of operation for feature extraction.

The phase kernel of PST can be tuned to compute different orders of math-

ematical derivative via group delay dispersion operations. This inbuilt reconfig-

urability of our transform can be used to generate a hyper-dimensional feature set

consisting of different orders of derivative of input for signal classification. Fur-

thermore, our results show a method for the computation of mathematical deriva-

tives via group delay dispersion operations This novel approach for computing

mathematical derivatives is based on group delay dispersion plus/and coherent

detection. The reconfigurability to compute different orders of differentiation is

realized simply by controlling the applied group delay dispersion. The simulation

results presented demonstrate that the computation of any-order of differentia-

tion of the input signal is possible. The proposed computational approach is also

easy to implement enabling realization of a real-time, low power and broad band

optical differentiator.
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CHAPTER 4

Phase-stretch Adaptive Gradient-field Extractor

Emulated by an algorithm, certain physical phenomena have useful properties for

image transformation. For example, image denoising can be achieved by propa-

gating the image through the heat diffusion equation. Different stages of the tem-

poral evolution represent a multi-scale embedding of the image. Stimulated by the

photonic time stretch, a real-time data acquisition technology, the Phase Stretch

Transform (PST) emulates 2D propagation through a medium with group velocity

dispersion, followed by coherent (phase) detection. The algorithm performs ex-

ceptionally well as an edge and texture extractor, particularly in visually impaired

images. Here, we introduce a decomposition method that draws inspiration from

the birefringent diffractive propagation. This decomposition method, which we

term as Phase-stretch Adaptive Gradient-field Extractor (PAGE) embeds the

original image into a set of feature maps that selects semantic information at differ-

ent scale, orientation, and spatial frequency. We demonstrate applications of this

algorithm in edge detection and extraction of semantic information from medical

images, electron microscopy images of semiconductor circuits, optical characters

and finger print images.

Towards the end, we also present a novel generalized approach for computing

gradient fields using the physical phenomenon of diffraction followed by coherent

(phase and amplitude) detection. The proposed diffraction differentiator can be

reconfigured to compute different orders of differentiation by controlling the value

of diffractive phase. The analysis of this physical operation is extended to digi-
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tal domain which leads to definition of a new generalized feature decomposition

method using diffraction known as Diffractive Gradient Transform (DGT). This

transform embeds an input signal into a set of Diffractive Gradient Fields (g)

which can act as feature maps for further analysis.

4.1 Introduction

Physical phenomena described by partial differential equations (PDE) have in-

spired a new field in computational imaging and computer vision [88]. Such

physics-inspired algorithms based on PDEs have been successful for image smoothen-

ing and restoration. Image restoration can be viewed as obtaining the solution to

evolution equations by minimizing an energy function. The most popular PDE

technique for image smoothening treats the original image as the initial state of

a diffusion process and extracts filtered versions from its evolution at different

times. This embeds the original image into a family of simpler images at a hierar-

chical scale. Such a scale-space representation is useful for extracting semantically

important information [89].

Physics based algorithms not only outperform their conventional counterparts,

but also have enabled new applications. Usage of these algorithms range from

feature detection in digital images [90–92], to 3D modelling of objects from 2D

images [93, 94], to optical character recognition [95] as well as for restoring audio

quality [96] .

Phase Stretch Transform (PST) is a physics inspired algorithm that emulates

2D propagation through a medium with group velocity dispersion, followed by

coherent (phase) detection [27,75]. The algorithm performs exceptionally well as

edge and texture extractor, in particular in visually impaired images [25]. This

transform has an inherent equalization ability that supports wide dynamic range of

operation for feature detection [22,25,29]. It also exhibits superior properties over
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conventional derivative operators, particularly in terms of feature enhancement

in noisy low contrast images. These properties have been exploited to develop

image processing tools for clinical needs such as a decision support system for

radiologists to diagnose pneumothorax [23,24], for resolution enhancement in brain

MRI images [97], single molecule imaging [26], and image segmentation [98].

PST emulates the physics of photonic time stretch [77], a real time measure-

ment technology that has enabled observation as well as detection of ultrafast,

non-repetitive events like optical rogue waves [3], optical fiber soliton explosions [5]

and birth of mode locking in laser [7]. Further, by combining photonic time stretch

technology with machine learning algorithms, a world record accuracy has been

achieved for classification of cancer cells in blood stream [8,9].

The photonic time stretch employs group-velocity dispersion (GVD) in an

optical fiber to slow down an analog signal in time by propagating a modulated

optical pulse through the time stretch system which is governed by the following

equation:

Eo (z, t) =
1

2π

∫ +∞

−∞
Ẽi (0, ω) ·

[
e
−jβ2zω

2

2

]
· ejωtdω (4.1)

where, β2=GVD parameter, z is propagation distance, Eo (z, t) is the reshaped

output pulse at distance z and time t. The response of dispersive element in the

time-stretch system can be approximated a phase propagator K̃ [ω] = e
−jβ2zω

2

2

which leads to the definition of PST for a discrete 2D signal as following:

PST {Ei [x, y]} , ]
{
IFFT 2

{
FFT 2 {Ei [x, y]} · K̃ [u, v]

}}
(4.2)

In the above equations, Ei [x, y] is the input image, FFT 2 is 2D Fast Fourier

Transform, IFFT 2 is 2D Inverse Fast Fourier Transform, x and y are the spatial

variables and, u and v are spatial frequency variables. The function K̃ [u, v]

is called the warped phase kernel implemented in frequency domain for image

processing. PST utilizes the GVD dispersion to convert a real image to a complex

quantity such that the spatial phase after the IFFT 2 operation is a function of
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frequency. Upon thresholding, the high frequency edges survive. The phase kernel

for the PST is designed by converting the 2D cartesian frequencies u and v to

polar coordinates which results in a symmetric cartesian phase kernel. However,

as digital images are fundamentally 2 dimensional, there is an inherent loss of

information in the features detected by PST. This motivates us to develop a

more comprehensive approach that captures angular as well as spatial frequency

information in a semantic fashion.

In this chapter, we discuss Phase-stretch Adaptive Gradient-field Extractor

(PAGE), a new physics inspired feature engineering algorithm that computes a

feature set comprising of edges at different spatial frequencies, at different orien-

tations, and at different scales and was originally introduced in [99]. These filters

emulate the physics of birefringent (orientation-dependent) diffractive propaga-

tion through a physical medium with a specific diffractive property. In such a

medium, the dielectric constant of the medium and hence, it’s refractive index is

a function of spatial frequency and the polarization in the transverse plane. To

understand this analogy, we consider an optical pulse with two linearly orthogonal

polarization’s, Ẽx and Ẽy, propagating through a dispersive diffractive medium

such that:

Ẽi (z, t) = Ẽx + Ẽy (4.3)

As the propagation constant β = n.2π
λ

is a function of refractive index (spatially

varying), the two orthogonal polarizations Ẽx and Ẽy will have different propaga-

tion constants and hence, a phase difference at the output given by the following

equation:

4 φ = φx − φy = 4β · l =
ωm
c
| nx − ny | ·L (4.4)

By controlling the value of nx and ny, as well the dependence of refractive index

on frequency nx(ω) and ny(ω), we are able to detect a semantic hyper-dimensional

feature set from a 2D image. We demonstrate with several visual examples in the

later part of this chapter that the above filter banks can be applied for image
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processing and computer vision applications such as for detection of fabrication

artifacts in semiconductor chips, development of clinical decision support sys-

tems, recognition of optical characters or finger prints. In particular, we show

that PAGE features outperform the conventional derivative operators as well as

directional Gabor filter banks.

Further, we address the dual problem of spatial resolution and dynamic range

limitations in an imaging system. In an ideal imaging system, the numerical aper-

ture and the wavelength of an optical set up are the only factors that determine

the spatial resolution offered by the modality. But under non-ideal conditions, the

number of photons collected from a specimen control its dynamic range (the ratio

between the largest and the smallest value of a variable quantity) which in turn

also limits the spatial resolution. This leads to the fundamental dual-problem of

spatial resolution and dynamic range limitations in an imaging modality [100].

Certain approaches to improve the resolution of the imaging system include use

of wide-field fluorescence microscopy [101,102] which offers better resolution than

con-focal fluorescence microscopy [103], multiple fluorophores [104, 105]. Also,

various image processing techniques such as multi-scale analysis using wavelets

[106,107] have been proposed for improving the resolution while retaining impor-

tant visual information post the image acquisition. We show later in the Chapter

that we are able to alleviate this dual-problem by incorporating, in our algorithm,

a local adaptive contrast enhancement operator, also known as Tone Mapping

Operator (TMO) which leads to excellent dynamic range. Other steps of the pro-

posed decomposition method are discussed at length in the next section. The

organization of the Chapter is as follows. In Section 4.2, we describe the details of

the proposed decomposition method. Experimental results, a generalized diffrac-

tive gradient framework and conclusions are presented in Sections 4.3, 4.4, and

4.5, respectively.
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Figure 4.1: Different steps of the Phase-stretch Gradient-field Extrac-

tor (PAGE) algorithm. The pipeline starts with application of tone mapping

in the spatial domain. This is followed by a smoothening and a spectral phase

operation in the frequency domain. The spectral phase operation is the main com-

ponent of the PAGE algorithm. The generated hyper-dimensional feature vector

is thresholded and post-processed by morphological operations. PAGE embeds

the original image into a set of feature maps that select semantic information at

different scale, orientation, and spatial frequency.

4.2 Mathematical Framework

Different steps of our proposed decomposition method Phase-stretch Gradient-

field Extractor (PAGE) for feature engineering are shown in Figure 4.1. The first

step is to apply an adaptive tone mapping operator (TMO) to enhance the local

contrast. Next, we reduce the noise by applying a smoothening kernel in frequency

domain (this operation can also be done in spatial domain). We then apply a

spectral phase kernel that emulates the birefringence and frequency channelized

diffractive propagation. The final step of PAGE is to apply thresholding and

morphological operations on the generated feature vectors in spatial domain to

produce the final output. The PAGE output embeds the original image into a set

of feature maps that select semantic information at different scale, orientation, and

spatial frequency. We show in Figure 4.2 how PAGE embeds semantic information

at different orientations for an X-ray image of a flower.
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Figure 4.2: The Phase-stretch Gradient-field Extractor (PAGE) feature

map of an X-ray image. The original image is shown on the left (A). PAGE

embeds the original image into a feature map that selects semantic information

at different orientations as shown in (B). The orientation of the edges is encoded

into various color values here.

The sequence of steps of our physics-inspired feature extraction method, PAGE,

can be represented by the following equations. We first define the birefringent

stretch operator S {} as follows:

Eo [x, y] = S {Ei [x, y]} = IFFT 2

{
K̃ [u, v, θ]·L̃ [u, v]·FFT 2

{
TMO {Ei [x, y]}

}}
(4.5)

where Eo [x, y] is a complex quantity defined as,

Eo [x, y] = |Eo [x, y]| ejθ[x,y] (4.6)

In the above equations, Ei [x, y] is the input image, x and y are the spatial vari-

ables, FFT 2 is the two-dimensional Fast Fourier Transform, IFFT 2 is the two-

dimensional Inverse Fast Fourier Transform, TMO is a spatially adaptive Tone
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Mapping Operator and u and v are frequency variables. The function K̃[u, v, θ] is

called the PAGE kernel and the function L̃[u, v] is a smoothening kernel, both im-

plemented in frequency domain. For all our simulations here, we consider L̃ [u, v]

to be low pass gaussian filter whose cut off frequency is determined by the sigma

of the gaussian filter (σLPF ).

The PAGE operator P {} can then be defined as the phase of the output of

the stretch operation S {} applied on the input image Ei [x, y]:

P {Ei [x, y]} = ]
{
S
{
Ei [x, y]

}}
(4.7)

where ]〈·〉 is the angle operator. In the next subsections, we discuss each of the

above mentioned kernels in detail and demonstrate the operation of each step

using simulation results.

4.2.1 Tone Mapping Operator (TMO)

A tone mapping operator (TMO) is applied to enhance the local contrast in the

input image Ei [x, y]. This technique is a standard method in the field of image

processing to solve the problem of limited contrast in an imaging system while still

preserving important details and thereby, helps in improving the dynamic range

of an imaging system via post processing. Figure 4.3 shows that by applying a

tone mapping operator to the input image, an enhanced contrast can be achieved

(see red boxes). While various TMO operators have been developed for adaptive

contrast enhancement, here, we implement the TMO step by applying a Contrast

Limited Adaptive Histogram Equalization (CLAHE) operator to the input image.

We operate on the input image using a TMO first, followed by smoothening

operator (low pass filter) and not vice versa. The reason to follow this sequence

of operation is as follows. Noise present in an image is mostly represented by the

high frequency components in the spectrum. These high frequency components

can be present at both low-light-level or at high-light-level in the spatial domain.
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Because of the use of a tone mapping operator, the low-light-level features get over

emphasized [108, 109]. This also leads to amplification of the image noise partic-

ularly in low-light scenarios. By applying a smoothening filter after the TMO

operation, we aim to remove these noise artifacts from the contrast enhancement

step. Alternatively, where any noise is left after the application of a smoothening

kernel on the input image, it could be amplified by the TMO operation in the

next step. Therefore, one may need to alternate between the smoothening step

and TMO before obtaining a final satisfactory result [110].

Figure 4.3: Effect of Tone Mapping Operation (TMO): Tone Mapping Op-

eration is implemented using Contrast Limited Adaptive Histogram Equalization

(CLAHE) operator on the input image, that produces output image with better

perceptual quality.

4.2.2 Phase-stretch Adaptive Gradient-field Extractor (PAGE) Ker-

nel

Phase-stretch Adaptive Gradient-field Extractor (PAGE) filter banks are defined

by the PAGE kernel K̃ [u, v, θ] and are designed to compute semantic informa-

tion from an image at different orientations and frequencies. The PAGE kernel

K̃ [u, v, θ], consists of a phase filter which is a function of frequency variable u

and v, and a steerable angle variable θ which controls the directionality of the
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response. We first define the translated frequency variable u′ and v′

u′ = u · cos(θ) + v · sin(θ) (4.8)

v′ = u · sinθ) + v · cos(θ) (4.9)

such that the frequency vector rotates along the origin with θ

u′ + jv′ ⇐= u+ jv (4.10)

We then define the PAGE kernel K̃ [u, v, θ] as a function of frequency variable u

and v and steerable angle θ as follows:

K̃ [u, v, θ] = K̃ [u′, v′] = exp
{
j · φ1(u

′) · φ2(v
′)
}

(4.11)

where

φ1(u
′) = Su′ ·

1

σu′
√

2π
· exp−(|u′|−µu′ )2/2σ2

u′ (4.12)

φ2(v
′) = Sv′ ·

1

|v′|σv′
√

2π
· exp−(ln(|v′|)−µv′ )2/2σ2

v′ (4.13)

There are two important things that should be noted here. First, we consider

the modulus of our translated frequency variable u′ and v′ so that our kernel

is symmetric for proper phase operation as discussed in [25]. Second, for all

our simulation examples here, when we consider a bank of PAGE filters, we first

normalize φ1(u
′) and φ2(v

′) in the range (0,1) for all values of θ and then, multiply

the filter banks with Su′ and Sv′ respectively, in order to make sure that the

amplitude of each filter in the bank is same.

These filter banks can detect features at a particular frequency and/or in a

particular direction. Therefore, by selecting a desired direction and/or frequency,

a hyper-dimensional feature map can be constructed. We list all parameters in Ta-

ble 4.1 that control different functionalities of our proposed decomposition method

PAGE.
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Notation Variable

u and v Spatial Frequency

θ Steerable Angle

u′ and v′ Translated Spatial Frequency

φ1(·) Normal Filter

φ2(·) Log Normal Filter

Su′ Strength of φ1 Filter

Sv′ Strength of φ2 Filter

µu′ Mean of normal distribution

for φ1 Filter

µv′ Mean of log-normal distribution

for φ2 Filter

σu′ Sigma of normal distribution

for φ1 Filter

σv′ Sigma of log-normal distribution

for φ2 Filter

σLPF Sigma of gaussian distribution

for L̃[u, v] smoothening kernel

Threshold(Min,Max) Bi-level feature thresholding

for morphological operations

Table 4.1: Different parameters of our physics-inspired feature decompo-

sition method PAGE The values of these parameters for Figure 2 simulation

result are: Su′ = 3.4, , Sv′ = 1.2, µu′ = 0 , µv′ = 0.4, σu′ = 0.05, σv′ = 0.7,

σLPF = 0.1 and Threshold(Min,Max) = (−1, 0.0019). The number of filters

considered for a 1 degree resolution is equals to 180.

85



Figure 4.4: Phase-stretch Gradient-field Extractor (PAGE) Filter Banks

(A)-(P) Phase filter banks as defined in Equations (8)-(13) for various frequencies

and directions. The frequency variables u and v are normalized from −ωu to +ωu

and −ωv to +ωv, respectively. The center µv′ of the phase kernel Sv′ is gradually

increased for control over the frequency distribution. The values for steerable

angle θ considered here are 0, π/4,π/2, 3π/4.

Figures 4.4(A) to 4.4(P) show the generated phase profiles for φ1(u
′) ·

φ2(v
′) that select semantic information at different orientation and frequency as

described in equations (10)-(13) using PAGE kernels. These phase kernels are
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applied to the input image spectrum. Using the steerable angle, the directionality

of edge response can be controlled in the output phase of the transformed image.

The detected output response for each directional filter is thresholded using a bi-

level method. This is done to preserve negative high amplitude values as well as

positive high amplitude values.

4.2.2.1 Directionality

In order to detect features in a particular direction spread over the all the fre-

quency components in the spectrum, we construct the PAGE filter banks by using

equations (9)-(13) for K̃ [u, v, θ], φ1(u
′) and φ1(v

′) respectively. By controlling the

value of sigma σu′ of normal distribution for φ1(u
′) filter, we avoid any overlapping

of directional filters as seen in Figure 4.5.

Figure 4.5: Phase-stretch Gradient Field Extractor (PAGE) Directional

Filter Banks (A)-(D) The directional filter banks of PAGE computed using the

definition in equations (9)-(13) for steerable angle θ = 0, π/4, π/2 and 3π/4

respectively. By monitoring the value of sigma σu′ of the normal filter φ1(u
′), the

angular spread of kernel K̃ [u, v, θ] can be controlled to avoid any overlapping of

directional filters.
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Figure 4.6: Phase-stretch Gradient-field Extractor (PAGE) Directional

Filter Banks Response The original image is shown in (A). We design two

directional PAGE filters here to detect vertical (θ = π/2) and horizontal (θ = 0)

edges as shown in (B) and (C) respectively.

Figure 4.7: Comparison of feature detection using Phase Stretch Trans-

form (PST) and Phase-stretch Gradient-field Extractor (PAGE) The

original image is shown in (A). The output edge image obtained using PST with-

out the support of directional response is shown in (B). The edge map obtained

using PAGE filter banks that support edge detection at all frequencies is shown

in (C). Different color values are used to show the orientation of the edges.

We first evaluate the performance of these kernel by qualitatively comparing

the feature detection of PAGE with PST. The image under analysis is a gray-scale

image of a rose. For a better visual understanding of our method, we first compute

orthogonal directional responses as shown in Figure 4.6. We then show results of

edge detection using PST and PAGE in Figure 4.7. The values for the parameters
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strength Su′ = 2.8, Sv′ = 0.5, µu′ = 0 , µv′ = 0.4, σu′ = 0.05, σv′ = 0.7, σLPF = 0.1

and Threshold(Min,Max) = (−1, 0.0019). The number of filters considered for a

1 degree resolution is equals to 180. Morphological operations used for the result

shown in Figure 4.7(C) include edge thinning and isolated pixel removing for each

directional response. As evident in Figure 4.7, edges are accurately extracted with

our technique. Different colors in the computed edge response indicate the edge

directionality.

Figure 4.8: Feature detection using Phase-stretch Gradient Field Extrac-

tor (PAGE) at low and high frequency: Features detected at low frequency

are much smoother whereas for high frequency, the features are sharper. This

demonstrates the frequency selectivity for feature detection using PAGE.

4.2.2.2 Frequency Selectivity

The PAGE filter banks can also be designed to detect edges at a particular fre-

quency by controlling the spread of log normal distribution. To demonstrate this

functionality, we show the features detected at low and high frequency using the

rose image as an example in the Figure 4.8. As seen in the figure, the features

detected at low frequency are smoother and at high frequency are sharper.
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4.3 Discussion

4.3.1 Comparison to Gabor Feature Extractors

We demonstrate the effectiveness of our decomposition method by comparing the

directional edge response obtained by applying Gabor filter banks to an optical

character image. We design 24 gabor directional filters and augment the response

from each of the filters to generate the image in Figure 4.9(B). As seen in the Figure

4.9(C), with PAGE we have a better spatial localization of the edge response. By

spatial localization, we mean that inherently PAGE has a sharper edge response,

as seen in the figure. This is because, unlike the Gabor filters whose bandwidth

is determined by the sigma parameter of the filter, in PAGE, the bandwidth

of the response is determined by the input image dimension. Therefore, there

is better localization of edge with PAGE. The parameters values are strength

Su′ = 2.8, Sv′ = 0.5, µu′ = 0 , µv′ = 0.4, σu′ = 0.05, σv′ = 0.7, σLPF = 0.1 and

Threshold(Min,Max) = (−1, 0.0019). The number of filters considered for a 1

degree resolution is equals to 180.

Figure 4.9: Comparison to Gabor Feature Extractors: Features detected

using Gabor do not have inherent spatial feature localization. With PAGE, the

features are more sharper as the bandwidth of the response is determined by the

input image dimension.
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4.3.2 Comparison to Derivative Feature Extractors

To demonstrate the superiority of our decomposition method, we compare the edge

response obtained by applying derivative based operators to a test image shown

in Figure 4.10 (A). The response to a derivative based operator is computed by

using the edge function of Matlab software (canny) and is shown in Figure 4.10

(B). As seen in Figure 4.10 (C), PAGE outperforms derivative based operators by

producing the orientation information and low contrast details. The parameters

values are strength Su′ = 2.7, , Sv′ = 0.5, µu′ = 0 , µv′ = 0.4, σu′ = 0.05,

σv′ = 0.7, σLPF = 0.1 and Threshold(Min,Max) = (−1, 0.0019). The number of

filters considered for a 1 degree resolution is equals to 180.

Figure 4.10: Comparison to Derivative Feature Extractors: Features de-

tected with derivative based edge operators calculate the directionality based on

the horizontal and vertical gradients and do not provide information about the

spatial frequency of the edges. PAGE provides both the orientation as well as the

spatial frequency selectivity in the output response.
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4.3.3 Applications to Various Machine Vision Problems

We apply our decomposition method to different types of images to show that

the directional edge response obtained by PAGE can be used for various machine

vision applications. For example, in Figure 4.11 , we show application of PAGE

to a Single Electron Microscope (SEM) image of an integrated circuit chip. As

seen, the PAGE feature response is able to capture the edges corresponding to the

chip layout (even the low contrast details). Based on the viewing angle (camera

position), the layout edges should appropriately be rendered in the image as well

as in the edge map. This can be used to identify any chip artifacts during the

fabrication process. The parameters values for generating the feature map shown

in Figure 4.11 are strength Su′ = 3.1, , Sv′ = 0.9, µu′ = 0 , µv′ = 0.4, σu′ = 0.05,

σv′ = 0.7, σLPF = 0.1 and Threshold(Min,Max) = (−1, 0.0042). The number of

filters considered for a 1 degree resolution is equals to 180.

Figure 4.11: Fabrication artifact detection using Phase-stretch Gradient-

field Extractor (PAGE) on a Single Electron Microscope (SEM) image

of integrated circuit chip. The original image is shown in (A). The output

edge image obtained using PAGE filter banks that support edge detection at all

frequencies is shown in (B). Different color values are used to show the orienta-

tion of the edges that correspond to the chip layout and can be used to detect

fabrication artifacts.
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We also apply PAGE to detect directional edge response to an image of a finger

print as shown in Figure 4.12. Not only does PAGE detects a directional edge

response, but also has an inherent equalization property to detect low contrast

edges. The parameters values are strength Su′ = 1.5, , Sv′ = 0.4, µu′ = 0 ,

µv′ = 0.4, σu′ = 0.05, σv′ = 0.7, σLPF = 0.08 and Threshold(Min,Max) =

(−1, 0.0019). The number of filters considered for a 1 degree resolution is equals

to 180.

Figure 4.12: Fingerprint feature map using Phase-stretch Gradient-field

Extractor (PAGE). The original image is shown in (A). The output edge image

obtained using PAGE filter banks that support edge detection at all frequencies

is shown in (B). As the edges of the fingerprint rotate, the response value changes

(shown here with different color value).

Next, we show application of our decomposition method PAGE to extract

edges of vessels from a retinal image in Figure 4.13. The distribution of vessels

based on the orientation of the edges can be used as an important feature to detect

any abnormalities in the eye structure. As seen, the PAGE feature response is

able to capture both the low contrast details as well as information about the

directionality of the vessel edges which is coded in form of the color value in RGB

space. The parameters values are strength Su′ = 2.2, , Sv′ = 1.1, µu′ = 0 , µv′ =

0.4, σu′ = 0.05, σv′ = 0.7, σLPF = 0.1 and Threshold(Min,Max) = (−1, 0.0019).

The number of filters considered for a 1 degree resolution is equals to 180.
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Figure 4.13: Vessel detection using Phase-stretch Gradient-field Extrac-

tor (PAGE) on an image of a retina. The original image is shown in (A).

The output edge image obtained using PAGE filter banks that support edge de-

tection at all frequencies is shown in (B). Different color values are used to show

the orientation of the edges. The low contrast vessels are not only detected using

PAGE but also information on how the direction of the blood flow changes across

the eye based on the vessel distribution is extracted.

4.4 Diffractive Physics

In this section, we introduce a generalized method to compute gradient fields by

employing the physical phenomenon of diffraction. To understand our proposed

method of computing gradients using diffraction, we first study the physics behind

the homogeneous paraxial diffraction here. For this, we start with the general

solution to the homogeneous electromagnetic wave equation formed as a weighted

superposition of all possible elementary plane wave solutions given by the following

equation [111]:

Eo(x, y, z) =

∫ +∞

−∞

∫ +∞

−∞
Ẽ(kx, ky) e

+jkzz ej(kxx+kyy) dkxdky (4.14)

The output Eo (x, y, z) is a complex quantity defined as,

Eo (x, y, z) = |Eo (x, y, z)| ejψ(x,y,z) (4.15)
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where |Eo (x, y, z)| is the magnitude and ejψ(x,y,z) is the phase of the diffracted

output field as function of transverse spatial coordinates x and y and longitudinal

spatial coordinate z after propagation along the −z axis. Ẽ(kx, ky) is the spec-

trum of the incident field obtained by the Fourier transform of the input incident

field E(x, y) such that kx and ky are the transverse spatial frequency variables.

Therefore, the operation of Inverse Fourier transform on the input incident field

spectrum Ẽ(kx, ky) can be represented as:

E(x, y) =

∫ +∞

−∞

∫ +∞

−∞
Ẽ(kx, ky) e

j(kxx+kyy) dkxdky (4.16)

The diffraction phase kernel H(kz) = ejkzz is an isotropic phase kernel. For the

case of paraxial plane waves (where the optic axis is assumed along z-axis), the

propagation constant along the z axis, kz, is equal to

kz =
√
k2 −

(
k2x + k2y

)
(4.17)

where kx = 2π
/
4x and ky = 2π

/
4y. According to the paraxial approximation,

the spatial features4x and4y are large compared to the propagation wavelength

(4x,4y >> λ
/
n) and therefore, kx and ky are very small compared to k. We

can then rewrite propagation constant equations as follows:

kz = k − (k2x + k2y)
/

(2 · k) (4.18)

using the binomial approximation (1 + d)γ ≈ 1 + γd, valid when |d| < 1 and

|γd| � 1. The diffractive phase imparted after propagating a distance z, in case

of an isotropic medium can then be written as:

φ (kx, ky) = kz.z = φo −
{
φ(k2x) + φ(k2y)

}
(4.19)

where the term φo = k.z is a constant scalar quantity. A constant term in the

phase kernel implies a finite delay in transmission and hence, can be safely ignored

for our discussion hereafter. The diffractive phase at position z, φ (kx, ky) then

becomes a quadratic function of spatial frequency kx and ky given by the sum
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of phase terms φ(k2x) = k2x
/

(2.k/z) and φ(k2y) = k2y
/

(2.k/z). For a homogenous

isotropic medium, the spatial frequency kx and ky represents a sphere in the

frequency space and therefore, a symmetric quadratic phase shift is imparted to

the input field. We insert this expression of diffractive phase in Eq. 4.14:

Eo(x, y, z) =

∫ +∞

−∞

∫ +∞

−∞
Ẽ(kx, ky) e

jφ(kx,ky) ej(kxx+kyy)dkxdky (4.20)

which can be also expanded as:

Eo(x, y, z) =

∫ +∞

−∞

∫ +∞

−∞
Ẽ(kx, ky)

{
cos (φ(kx, ky)) +

j sin (φ(kx, ky))
}
ej(kxx+kyy) dkxdky (4.21)

By ignoring the constant phase term φo in the expression of the diffractive phase

(such that φ(kx, ky) = −φ(k2x)− φ(k2y) = −(k2x + k2y)
/

(2 · k/z)) and assuming that

the value of this diffractive phase is very small compared to the amplitude of the

input field (such that cos θ = 1 and sin θ = θ) we obtain:

Eo(x, y, z) =

∫ +∞

−∞

∫ +∞

−∞
Ẽ(kx, ky)

{
1− j(k2x + k2y)

/
(2 · k/z)

}
ej(kxx+kyy) dkxdky

(4.22)

The interesting aspect of our proposed method comes from the complex behavior

of the output. The real part of our diffractive output is equal to the input signal

while the imaginary component of the diffractive output gives us second order

gradients along x and y direction from the differentiation property of Fourier

transform:

Eo(x, y, z) = E(x, y) +
j

(2 · k/z)

{
d2E(x, y)

dx2
+
d2E(x, y)

dy2

}
(4.23)

The final step of our proposed method Diffractive Gradient Transform (DGT) is

to compute the phase of the diffraction output using a coherent detector:

DGT (E(x, y)) = ]
{
Eo(x, y, z)

}
(4.24)

where ]〈·〉 is the phase operator.
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As the applied phase value is small, we can approximate the coherent phase

detection ψ = tan−1 (imaginary/real) = imaginary/real resulting in:

DGT (E(x, y)) =
1

(2 · k/z)

{
d2E(x, y)

dx2
+
d2E(x, y)

dy2

}/
E(x, y) (4.25)

The output of DGT consists of second-order directional derivative terms (one

along x-axis and other along y-axis) such that the gain factor defined as αx = αy =

1
/

(2 · k/z) is same along both the directions x and y. There are two important

observations to be noted down from the output of our proposed transform DGT.

First, the output consists of directional gradients along various dimensions of

the input signal (here, x and y). Second, our proposed transform DGT has an

inherent equalization property which comes from the nonlinear phase operation on

the complex output as defined in Eq. 4.24. This powerful operation amplifies the

gradient response at low input levels and thus, helps in capturing critical gradient

features in low intensity regions. We will show applications of this equalization

property to 1D as well as 2D signals later in the text.

4.4.1 Parameterization and Generalization of the diffraction theory

In order to understand the impact of various terms in the expression of diffraction

phase as derived in Eq. 4.19, we consider various generalizations of this expression

some of which are loosely applicable to physical systems but not always. However,

these generalization are always true in case of the digital domain.

4.4.1.1 Generalization of symmetry and dimensionality

Let us first consider the case of D - dimensional space (x1, x2, ...xD) or RD instead

of 3D space (x, y, z) or R3. Let us also generalize the gain factor α of gradients

along different directions. The expression for DGT can then be represented:
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DGT (E) =

(D)∑
d=1

αd.
d2E

dx2d

/
E (4.26)

The above expression implies an asymmetric phase shift along different coor-

dinate axis. For the case of anisotropic 3D space, the dependence of φ on kx and

ky is governed by the equation of an ellipse as follows:

φ (kx, ky) = αx.(k
2
y) + αy.(k

2
y) (4.27)

where constants αx, αy control the ellipticity of the phase in the spatial frequency

space formed by kx and ky such that αx 6= αy.

4.4.1.2 Generalization of the order

In the case of conventional homogenous diffraction, we have diffractive phase

φ (kx, ky) as a quadratic function of spatial frequency variables kx and ky, such

that φ (kx, ky) = (k2x + k2y)
/

(2.k/z) and as such we are able to compute second

order derivative of the input in the expression of the output of DGT. Here, we

generalize the expression of the diffractive phase φ(k) to a polynomial expression

of the order M such that φ(k) = α1.k
1 +α2.k

2 +α3.k
3....+αM .k

M . The diffractive

output of DGT will be a sum of different orders of derivatives given by:

DGT (E) =

(M)∑
m=1

(D)∑
d=1

αd,m.
dmE

dxmd

/
E (4.28)

The different powers of the spatial frequency k control the curvature of the phase

φ (k) and thereby, contribute to different orders of derivative at the output. The

terms αd,m represents the gain factor for the mth order gradient along the d-

direction.

4.4.1.3 Generalization of the frequency response

If we consider a physical system with a preferential resonating frequency, the im-

parted diffraction phase will have a narrow band response in this scenario. Thus,
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φ on kx and ky is no longer a monotonic function but rather a non-monotonic func-

tion which is centered around the resonating frequency of the physical diffractive

system. This scenario is used to design filters with channelized frequency response

in digital domain as shown previously with PAGE.

4.4.1.4 Generalization of nonlinear equalization property

The natural phenomenons have unique properties which we aim to exploit for

developing algorithms with unparelled performance. For instance, as shown pre-

viously our proposed transform DGT has an inherent equalization property which

play a critical role in capturing gradient information at low intensity regions. Here,

we generalize the equalization power of the input field E to an arbitrary order of

equalization p as following:

DGT (E) =

(P )∑
p=1

(M)∑
m=1

(D)∑
d=1

αd,m,p.
dmE

dxmd

/
Ep (4.29)

This is the most general expression of our transform DGT (E) which consists of

sum of Diffractive Gradient Fields defined as follows:

gd,m,p = αd,m,p.
dmE

dxmd

/
Ep (4.30)

where gd,m,p is the mth order derivative of the input along the xd direction such

that it is equalized by the input to the power of p. When p = 0, the gradient fields

gd,m,0 are simply the different orders of derivatives along various directions. For

p > 0, the derivatives are equalized by the input Ep and therefore, the response of

our method is inherently nonlinear. The DGT response can then be represented

in the form of a sum of gradient fields for the generalized case as:

DGT (E) =

(P )∑
p=1

(M)∑
m=1

(D)∑
d=1

gd,m,p (4.31)
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Variable Continuous Discrete

Spatial variables xd nd

Spatial frequencies kd ud

Input Signal E(xd) E[nd]

Input Spectrum Ẽ(kd) Ẽ[ud]

Fourier and Inverse Fourier Transform F , F−1 FFT , IFFT

Table 4.2: Discretization of the physical diffraction: Discrete equivalents

for continuous domain variables

4.4.2 Discretization of the physical diffraction theory

In this section, we discretize the phenomenon of physical diffraction by trans-

lating continuous domain variables and operations to their discrete counterparts

as shown in Table 4.2. We can then write the discrete expression of Diffractive

Gradient Transform (DGT) as follows:

DGT (E) =

(P )∑
p=1

(M)∑
m=1

(D)∑
d=1

αd,m,p.
dmE

dnmd

/
Ep (4.32)

and Diffractive Gradient Fields (g) as follows

gd,m,p = αd,m,p.
dmE

dnmd

/
Ep (4.33)
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Figure 4.14: Diffractive Gradient Transform (DGT): The arbitrary 1D signal

is shown in (A). As the power of equalization increases the amplitude of the

gradient field becomes smaller for a higher brightness level (see annotations in

Figure (E) vs (M)). The higher order of derivatives contribute to the fine details

in the gradient field (see Figure (H), (L) and (P)).
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Figure 4.15: Diffractive Gradient Transform on 2D digital images: We

compute gradient fields along different direction (n1 and n2) using the definition

of DGT. The input signal shows a strong gradient field in one direction and absent

in other (see red circle in Figure (E) vs (I) or Figure (G) vs (K)). Also, the power

of equalization play a critical role in controlling the amplitude of the gradient field

(see for m = 5 vs m = 1).

To analyze performance of our transform DGT, we consider first an arbitrary

1D signal (hence, D=1) as shown in Figure 4.14(A), such that we compute upto

three orders of derivative (m = 1,m = 2 and m = 3) and show how a higher order

of equalization plays critical role in controlling the amplitude of gradient fields

especially at high intensity levels and produce a equalized derivative response (see

Figure (E) vs (M). While the higher order of derivatives contribute to the fine

details in the gradient field (see Figure (H), (L) and (P)). We show the directional
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dependence of gradient fields by applying our transform DGT to a 2D digital

image (see Figure 4.15). We also show here how the equalization controls the

amplitude of gradient at low intensity regions and higher order derivatives contain

finer details.

Next we consider the case for a time varying 2-D input and when p = 1 such

that the DGT filters compute gradient fields at different orientations from the

input image. Additionally, these filters are deigned to have channelized frequency

response which controls the frequency distribution of the gradient fields. These

computed DGF fields are combined together to produce the final feature image as

shown in Figure 4.16. The final feature image contains the directional information

of the gradient fields encoded in form of the color pixel values.

Figure 4.16: Application of Diffractive Gradient Transform to a time

varying 2D input: The spectral diffractive phase operation is the main compo-

nent of the DGT algorithm. It embeds the original image into a set of gradient

fields at different orientation, and spatial frequency. These fields are combined

together to produce a feature image which contains the directional information of

the features encoded in form of the color pixel values. This is also an example of

channelized diffractive phase.
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4.4.3 Relation to Birefringence

Birefringence is a phenomenon observed in optically anisotropic materials where

the refractive index n is dependent on the polarization as well as the propagation

direction of incident light (and therefore n(d)). For the case of propagation of

a polarized input E such that E = Eox + Eoy = Ex(x, y) + Ey(x, y) through a

birefringent material, the propagation phase φ(kz, z) depends also on the state of

polarization (SOP) but is not a function of spatial coordinates (as the medium is

uniform). On the other hand, our transform DGT takes a scalar input (like vector

potential) and mimics propagation through a birefringent material such that the

optical properties of the medium (refractive index, n) are a function of spatial

coordinates n(x, y). The diffractive phase φ depends on the spatial coordinate

in case of birefringence through a non-uniform medium when the input is scalar

(E(x, y)) and therefore, there is only 1 SOP.

4.5 Conclusions

In this chapter, a presentation is made on a new feature engineering method

that takes inspiration from the physical phenomenon of birefringence in an opti-

cal system. The introduced method called Phase-stretch Adaptive Gradient-field

Extractor (PAGE) controls the diffractive properties of the simulated medium

as a function of spatial location and channelized frequency. This method when

applied to 2D digital images extracts semantic information from the input im-

age at different orientation, scale and frequency and embeds this information

into a hyper-dimensional feature map. The computed response is compared to

other directional filters such as Gabor to demonstrate superior performance of

PAGE. Applications of the algorithm for edge detection and extraction of seman-

tic information from medical images, electron microscopy images of semiconductor

circuits, optical character and finger print images is also shown.
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4.6 Supplementary information

4.6.1 Stationary Phase Approximation

Stationary phase approximation allows us to create a mapping of the input signal

between the time domain and spectral domain. We start with the general so-

lution to the homogenous electromagnetic wave equation in physical rectangular

coordinates (x, y, z):

Eo(x, y, z) =

∫ +∞

−∞

∫ +∞

−∞
Ẽ(kx, ky) e

j(kxx+kyy) ejzkz dkxdky (4.34)

where Ẽ(kx, ky) is the Fourier transform of the input incident field E(x, y), x

and y are the transverse spatial coordinates, z is the longitudinal spatial co-

ordinate and kx and ky are the transverse spatial frequency variables. Hence,∫ +∞
−∞

∫ +∞
−∞ Ẽ(kx, ky) e

j(kxx+kyy) dkxdky represents the operation of inverse Fourier

transform. The diffraction kernel along the z-axis is an isotropic phase kernel rep-

resented by the expression ejzkz . And, Eo (x, y, z) is a complex quantity defined

as,

Eo (x, y, z) = |Eo (x, y)| ejψ(x,y) (4.35)

where |Eo (x, y, z)| is the magnitude and ejψ(x,y) is the phase of the diffracted field

as function of x and y at position z after propagation.

For the case of paraxial plane waves (where the optic axis is assumed along

z-axis), the propagation constant along the z axis, kz, is equal to

kz =
√
k2 −

(
k2x + k2y

)
(4.36)

where kx = 2π
4x and ky = 2π

4y . Next, using the paraxial approximation, we approx-

imate that the spatial features 4x and 4y are large enough such that kx and ky

are very small compared to k. By assuming 4x,4y << λ
n
, we can rewrite above

equation as

kz = k −
(
k2x + k2y

)
2 · k

(4.37)
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using the binomial approximation (1 + d)γ ≈ 1 + γd which is valid when |d| < 1

and |γd| � 1. We can then rewrite Eq. (1) as following:

Eo(x, y, z) =

∫ +∞

−∞

∫ +∞

−∞
Ẽ(kx, ky) e

j(kxx+kyy) ejz(k−
k2x+k

2
y

2·k ) dkxdky (4.38)

where the term ejzk is a constant scalar quantity. A constant term in the phase

kernel implies a finite delay in transmission. This term is independent of variable

kx and ky and hence, can be taken out of the integration which results in:

Eo(x, y, z) = ejzk ·
∫ +∞

−∞

∫ +∞

−∞
Ẽ(kx, ky) e

−j z
2k

(k2x+k
2
y−2·xkz ·kx−2·

yk
z
·ky) dkxdky (4.39)

The terms xk
z

and yk
z

are independent of variables kx and ky and hence, can be

used to complete the squares of kx and ky variable which results in the following

equation:

Eo(x, y, z) = e
j

(
zk+x2k

2z
+ y2k

2z

)
·
∫ +∞

−∞

∫ +∞

−∞
Ẽ(kx, ky) e

−j z
2k((kx−

xk
z
)2+(ky− ykz )2) dkxdky

(4.40)

In the event the above integral has an asymptotic behavior which is completely

defined by the behavior of the integrand at the critical points, we can use the

stationary phase approximation which results in a mapping of spatial frequency

to spatial coordinates given by:

kx =
xk

z
(4.41)

and

ky =
yk

z
(4.42)

4.6.2 Spatial Domain Operation for Diffraction

We show here our analysis of conventional diffraction theory in spatial domain

eliminating the need of any spectrum operation. We start with the diffraction
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equation derived in previous section with stationery phase approximation as:

Eo(x, y, z) = e
j

(
zk+x2k

2z
+ y2k

2z

)
·
∫ +∞

−∞

∫ +∞

−∞
Ẽ(kx, ky) e

−j z
2k((kx−

xk
z
)2+(ky− ykz )2) dkxdky

(4.43)

which can also be written in form of the diffractive phase kernel H(kx, ky) as :

Eo(x, y, z) = e
j

(
zk+x2k

2z
+ y2k

2z

)
·
∫ +∞

−∞

∫ +∞

−∞
Ẽ(kx, ky) H(kx, ky) dkxdky (4.44)

where

H(kx, ky) = e−j
z
2k((kx−

xk
z
)2+(ky− ykz )2) (4.45)

Here for consistency with our analysis, we will be ignoring the constant phase

term e
j

(
zk+x2k

2z
+ y2k

2z

)
which resulted in a finite delay in transmission. Then, we

can rewrite the diffraction equation as:

Eo(x, y) =

∫ +∞

−∞

∫ +∞

−∞
Ẽ(kx, ky) H(kx, ky) dkxdky (4.46)

Here, we have the phase kernel H(kx, ky) as function of spatial frequencies kx, ky.

Let us define a spatial phase kernel K(x, y) such that

K(x, y) =

∫ +∞

−∞

∫ +∞

−∞
H(kx, ky) dkxdky (4.47)

By inserting the spatial phase kernel K(x, y) and transforming the multiplication

operation in spectrum domain to convolutional operation in spatial domain, we

will have the diffraction equation as:

Eo(x, y) = E(x, y) ∗K(x, y) (4.48)

where ∗ represents the spatial convolutional operation between the input field

E(x, y) and the spatial domain phase kernel K(x, y). Similarly, discrete equivalent

of diffraction in spatial domain can be defined as:

Eo [n1, n2] = E [n1, n2] ∗K[n1, n2] (4.49)
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where Eo [n1, n2] is the diffractive output of the 2D input E [n1, n2] and K[n1, n2]

is the diffractive phase kernel in spatial domain given by:

K[n1, n2] = FFT 2
{
ejφ[u1,u2]

}
(4.50)

where u1, u2 are discrete domain spatial frequency variables.
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CHAPTER 5

Applications of Physics-inspired Computational

Imaging Algorithms in Drug Discovery and

Cancer Immunotherapy

In this chapter, we demonstrate efficacy of physics-inspired computational imaging

algorithms in solving a variety of problems for different real-world applications.

Specifically, we demonstrate two software tools, 1) CytoLive, an award-winning

real-time live cell tracking tool used to accelerate Drug Discovery by analyzing

time-lapse microscopy videos and 2) CytoEye, a high throughput computational

pathology tool for analysis of immuno-histochemistry images useful in tailoring

personalized cancer immunotherapy treatments.

5.1 CytoLive

With the recent development of fast and highly sensitive microscopy techniques,

cell biologists are now capable to extract more information about the anatomic

as well as dynamic behavior of cellular structures. This information is critical for

advancements in the field of medicine and biology [112]. The live cell imaging

experiments generate extensive amount of data which cannot be fully processed

by a human observer. In order to completely retrieve the information contained

in the massive data, automated computerized image analysis tools are required.

Additionally, the images produced in these experiments are noisy which calls for

development of advanced image processing algorithms.
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For this, we develop CytoLive [113], an award-winning real-time live cell track-

ing tool utilizing our NLSE-guided algorithms to analyze time-lapse microscopy

videos acquired under low light conditions. The tool was developed in Jalali lab

and in collaboration with the Institute for Quantitative and Computational Bio-

sciences (QCBio) here at UCLA.

5.1.1 Problem Statement

Using CytoLive, the problem we are addressing is the high cost of drug develop-

ment by being able to catch the failures at an early stage using computational

imaging. The reason behind the high cost of drug development is the high failure

rate of almost 96 percent, including a 90 percent failure rate during the clinical de-

velopment stage [114–116]. This failure rate could be controlled by taking several

measures. For example, having a better representation by enlarging the patient

cohort. Another means to regulate the failure rate during the early clinical drug

development phase is to comprehensively understand the underlying biological

mechanisms of cell behavior to a targeted drug [117,118].

This understanding of underlying biological mechanisms for accelerating drug

discovery is achieved through tracking live cells by time-lapse microscopy [119]

over a long period of time. Researchers adopt live-cell imaging as they are more

focused on the study of cellular functions or behaviors and pathways to gain

a deeper understanding of disease mechanisms and responses to specific tailored

treatments. Live-cell imaging is a key approach to getting this information. Unlike

traditional fixed-endpoint cell assays, which only give a point-in-time snapshot of

cellular responses, live-cell imaging provides a fuller, more realistic picture of

the effects of perturbations, visualization of cellular behaviors such as division,

movement, and apoptosis. And by examining how the cells are responding to

a targeted drug over a long period of time, drug development can be achieved

efficiently.
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Time-lapse microscopy has been successfully used in discovery of self-renewing

division mechanism of muscle satellite cells in [120], for proof of the existence of

hemogenic endothelium in [121], for investigating the mechanisms of germ layer

formation in [122], among various other applications. Extracting accurate infor-

mation of cellular responses to the targeted drug is critical and must be done in

a timely fashion with minimum human intervention.

However, live-cell imaging is technically challenging [123, 124] as cells are

mostly water which makes them transparent. At the same time, cell viability

is the most important aspect when performing live cell experiments to ensure

that the physiological and biological processes that are under investigation are

not altered in any way. In order to prevent cells from being killed because of over

exposure to light the long duration experiments are done in a low-light-level envi-

ronment which makes these images inherently low contrast, noisy and have uneven

illumination which lowers down the accuracy of any cell detection method [125].

Figure 5.1: CytoLive: The software uses Phase Stretch Transform (PST) on the

contrast enhanced live cell images and extract low contrast cells, respectively. The

PST edge maps and the contrast enhanced live cell images are used to detect cells

with high accuracy and subsequently tracked over time and space.
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5.1.2 Proposed Solution

CytoLive is a powerful tool in quantitative cell biology and drug discovery as it

preserves inherent cell behavior by overcoming photo-toxicity and photo-bleaching

and allows live cell experiments at low light levels, as shown in Figure 5.1. The cen-

tral part of CytoLive exploits the intrinsic equalization ability of physics-inspired

edge detection method, Phase Stretch Transform (PST) for efficient localization

of low contrast cellular structures. As we are able to capture these low contrast

cells, we can track them with high accuracy both over time and space and even

in the presence of low light level conditions and thereby, preserve the inherent cell

behavior. Therefore, CytoLive offers best in class performance for low contrast

cell detection compared to conventional cell detectors that have a very limited dy-

namic range and also no equalization ability to overcome the limitations imposed

by the imaging systems.

In the first step, live cells are detected with high accuracy in individual frames

throughout a time-lapse image sequence by using both the PST edge maps as well

as the contrast enhanced images. Also, a hyper-dimensional feature data set for

each identified cell is produced. In the second step, the tool links the detected cells

between consecutive frames by computing over hyper-dimensional data set that

comprises of geometrical as well as morphological features derived in the first step.

The missing cell events are also included by linking the resulting track segments

in a loop to generate complete trajectories. The proposed software tool has also

reduced the overall computational time for manual annotating cellular structures

and generating the lineage tree for a single live cell experiment (conducted in dura-

tion of 5 days) from 30 days to few minutes. Furthermore, our hyper-dimensional

live cell tracking software tool, CytoLive, is more accurate than existing live cell

tracking software tool for tracking low contrast cells while minimizing the amount

of manual intervention.

112



5.1.3 Analysis using CytoLive

CytoLive generates the cell-parent-daughter information as well as a rich fea-

ture dataset that comprises of individual cell area, eccentricity, velocity exported

frame by frame and also averaged over a period of frames, see Figure 5.2. This rich

dataset can help in understanding the mechanisms that control critical biological

events of cell populations, such as proliferation, differentiation, or cell fate deci-

sions, which are crucial for understanding the cell behavior to a drug. CytoLive

complements live cell microscopy by providing insights on cell responses to a drug,

the population information at the single-cell level as well as stratification of cells

based on the overall response. This in turn could increase the drug development

success rate, reduce the overall cost and certainly, help in bringing the drug earlier

to market.

Figure 5.2: Hyper-dimensional feature set generated using CytoLive: Cy-

toLive generates the cell-parent-daughter information as well as a rich feature

dataset that comprises of individual cell area, eccentricity, velocity exported frame

by frame and also averaged over a period of frames, useful in understanding the

mechanisms that control critical biological events of cell populations.
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Figure 5.3: Tracking cellular behaviour through its evolution life cycle

using CytoLive: Cells experience an increase in cell size during the Mitosis

phase (proliferation of cells) and subsequently, a decrease in cell size during the

Apoptosis phase, initiated because of the photo-toxicity.

We demonstrate in Figure 5.3 that the cells experience an increase in cell size

during the Mitosis phase and a decrease in size during the Apoptosis phase. Par-

ticularly, we show evolution of each cell through its life cycle in a large population.

To show this, we plot the cell area as it changes over time in different phase of

the cell life cycle. Each blue dot represents area of an individual cell present in all

frames and each red dot is the mean area of all cells present at a particular instant

of time. As shown, the mean area first increases with time, which corresponds to

the mitosis phase. This is biologically consistent as just before the division cells

experience an increase in size and thereby, an increase in the cell area.

Now after a certain point of time, because of the photo-toxicity cells start to

die, this is referred as the Apoptosis phase. As cells start dying, they first shrink

in size, and hence area decreases and eventually they die or become blur in the

background. Another key observation is the sudden peaks of increment in the

total number of cells, as indicated in the Figure 5.3. These peaks correspond to

various generations of cell-daughter, during the Mitosis phase of the cell life cycle.
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Figure 5.4: Building a GPU-enabled Cellular Imaging workflow on Ama-

zon Web Services (AWS): CytoCloud is cloud-based computing service that

will run CytoLive on AWS as well as an edge device. Biologists can use the service

to analyze their live cell experiments using their own imaging acquisition systems

or customized imaging hardware’s developed in our lab such as time-stretch cam-

era [2].

5.1.4 Future Work

As part of our ongoing efforts aimed towards wider adoption of CytoLive for

live cell tracking, we are collaborating with Amazon Web Services (AWS), to

develop a cloud based modular and scalable architecture, called as CytoCloud

that extends right from image acquisition system, followed by low level processing

on a edge device (for example an NVIDIA jetson nano development kit) and the

computationally expensive computing is done on the cloud service ( on AWS).

The entire system will be integrated as an online platform allowing biologists to

conveniently check their experiment progress online by building a GPU-enabled

Cellular Imaging workflow on AWS, as proposed in Figure 5.4.
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5.2 CytoEye

Immunotherapy techniques date back at least a century, but recent breakthroughs

in the field have sparked hope for their ability to offer less-invasive, durable treat-

ment for a wide variety of cancer types [126–128]. A major current hurdle for

several leading therapies, however, lies in their variable patient efficacies as these

therapies are influenced by a heterogeneous combination of health, immune, and

tumor factors [129]. Additionally, some initial responders eventually develop resis-

tance to these therapies leading to relapse of the disease [130, 131]. For instance,

30 to 55 percent of patients suffering from early-stage non-small cell lung carci-

noma (ES-NSCLC) still tend to have either local or distant recurrence even after

systemic therapy [132,133].

Due to this uncertainty, patient stratification for personalized immunotherapy

treatments approaches guesswork. In-fact till date, there is no clinically-used well

established method that is accurate and reproducible to stratify patients who will

benefit from the given personalized therapy versus patients who may have a high

risk of disease relapse and therefore, need early intensification of treatment ver-

sus low-risk immune active patients who can be treated with surgery alone. As

such, understanding the immunosuppressive mechanisms by which tumor cells in-

hibit immune cells in a tumor micro-environment (TME) is a crucial step towards

personalized immunotherapy.

With this objective in mind, we develop, CytoEye [134], an immunotherapy

toolbox for discovery of immune cells expressions and quantification of interac-

tions of immune cells with cancer cells by computationally efficient analysis of

giga-pixel sized pathology images of TME using physics-inspired computational

imaging algorithms. The generated quantitative insights is useful for stratifying

patients for personalized immunotherapy treatments. This project was done in

collaboration with the Parker Center for Cancer Immunotherapy (PICI) at UCLA.
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5.2.1 Problem Statement

In recent years, immunotherapy utilizing checkpoint blockade, particularly, ther-

apies that target the programmed death-1 (PD-1) receptor has risen in promi-

nence to become one of the fundamental methodologies of cancer immunother-

apy [135–137], leading to durable therapeutic responses not typically seen with

traditional cytotoxic anticancer agents. The biological impetus is the co-inhibitory

signaling pathway, which serves as a source of immune tolerance for native cellular

tissue. For instance, by up-regulation of PD-1 ligand (PD-L1) and its ligation to

PD-1 on immune cells, the cancer cells limit the host immune response as shown

in Figure 5.5. As these pathways do not delineate between cancerous and non-

cancerous tissue, leading to immunotolerance for malignant cells which is termed

as adaptive immune resistance. Immune checkpoint blockade therapy works by

disrupting this signaling by injection of antibodies (Anti-PD-1 antibodies for im-

mune cells and Anti-PD-L1 antibodies for cancer cells) and this helps in promoting

immune response in the tumor micro-environment as shown in Figure 5.5(B).

Figure 5.5: Types of immune cell and cancer cell interactions in a Tumor

Micro-Environment (TME). A) Example of inhibited antitumor immunity

where cancer cells mimic benign interaction with immune cells through PD1-

PDL1 interaction and B) By uncloaking this PD1-PDL1 interaction of immune

cell with Anti-PD-1 anti-body and cancer cell with Anti-PD-L1 antibody, anti-

tumor immunity can be en-hanced. PD-1 : Programmed Death 1 and PD-L1:

Programmed Death Ligand 1.
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While the availability of advanced whole slide scanners has enabled complete

digitization of pathology slides, the development of automated histo-pathology im-

age analysis tools has been challenging. On the other hand, immune checkpoint

blockade treatment decisions are often dependent on quantification of PD-1/PD-

L1 expression and immune cell infiltration as measured by traditional immuno-

histochemistry (IHC) microscopy images, the gold standard for digital pathology.

One of the critical steps in most state-of-the-art automated image analysis

is the cell segmentation process, which is often based on color intensity analy-

ses. This requires the pathologist to manually define the intensity distributions

for each type of immunostain, cell or tumor type to achieve acceptable accuracy.

As such a manual inspection of the gigapixel sized pathology images is an ex-

tremely laborious, a time-consuming and potentially error-prone approach that

is also susceptible to potentially erroneous diagnosis, high variability and lim-

ited reproducibility (and in many cases is performed without any computational

assistance).

Additionally, while some computational methods exist for the analysis of these

images for research purposes of patients who do not respond to treatment or who

develop relapsed disease on therapy, these also require extensive expert training

to operate, have limited accuracy and can have varying levels of subjectivity in

the analysis. This calls for development of computationally efficient algorithms

that are capable of quickly and accurately completing annotation and feature

extraction.

Also, due to the large variety of imaging modalities (conventional brightfield

and fluorescence whole-slide scanning as well as multispectral imaging), it is cru-

cial to tailor pathology image analysis methods that can generalize to any modal-

ity and capable of quickly and accurately completing cell annotation-feature ex-

traction and compute spatial tumor–host interactions to answer specifics aims of

pathology in question.
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5.2.2 Proposed Solution

In this section, we discuss CytoEye [134], a novel computational pathology pipeline

tailor-made for the quantitative analysis of pathology images with the ultimate

aim of inferring patient response that also mitigates the computational overload

of analyzing giga-pixel sized pathology images. Quantitative features extracted

by this tool have the capability to predict whether or not patients respond to

therapy – an important step toward personalized cancer immunotherapy.

Figure 5.6: Overview of workflow of CytoEye: CytoEye consists of single cell

analysis module that produces quantitative features for each patient IHC image

data useful in patient stratification.

A high level overview of our workflow is shown in Figure 5.6. We start with raw

digital images acquired from bright-field instruments such as Aperio ScanScope

or multi spectral imaging systems such as Vectra or CODEX. These images are

often stored in the proprietary format of the instrument, for instance in case of

Aperio Scan Scope, images are saved as ScanScope Virtual Slide (SVS) or SCN

for Vectra. The first step of our workflow is to convert these images in a more
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generic or standardized and open format such as tiff. This is done using the open-

source Bio-Formats software tool [138] developed by the OME Open Microscopy

Environment consortium that reads the proprietary microscopy image data. It

also reads in the metadata information consisting of levels of resolution at which

the images were captured or information on the bio-marker panel considered in

the given study while the images were acquired etc. Once all this information

is read, the image data is then converted and stored in a suitable format which

acts as an input to CytoEye module for single cell analysis. This produces cell

segmentation results and single cell quantitative features. These features are then

aggregated together to generate analytics for each patient IHC image data useful

in patient stratification.

We also demonstrate that CytoEye features extracted from digitized pathology

images capture the interactions between cell types (immune-tumor interactions)

and devise a new way of constructing graphs that may be predictive of the patient

response to PD1-PDLI immunotherapy. We also show that unified framework of

CytoEye also takes care of the limitations imposed by the method in which the

images are taken. To explain the usefulness of this feature, we consider the case

of a whole slide scanner such as Aperio ScanScope system that scans a single

microscope slide at a given time. As such we have a set of images for a single

patient which are acquired by staining various slices of tissue with a given bio-

marker panel used in the study. Additionally, through this understanding of the

mechanisms by which immune cells and cancer cells interact in TME has the

potential to aid the development of new therapeutics using CytoEye.

As an example study, we analyzed IHC data collected from patients with ad-

vanced melanoma receiving immunotherapy directed against PD-1/PD-L1 path-

way such that diagnostic stratification can be done by quantification of PD-1/PD-

L1 expression and immune cell infiltration from IHC data. The data used in this

analysis consists of 20 patients that were used in the study [135]. Slides were
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stained with haematoxylin and eosin, S100, CD8, PD1 and PDL1, shown in Figure

5.7. All patients in the study cohorts underwent mandatory biopsy of a metastatic

tumour within 30 days of starting the checkpoint blockade treatment. Clinical tu-

mour responses to pembrolizumab were evaluated using (RECIST) version 1.1

criteria.

Figure 5.7: CytoEye workflow for single-cell analysis of images acquired

from the whole slide scanner: The bio-markers images are first registered for

spatial localization followed by region-of-interest detection, cell segmentation and

feature extraction.

5.2.3 Single-cell Analysis using CytoEye

The first step is to register all bio-marker images with a given bio-marker. In our

case, we use S100 as the fixed image and register the other images with S100. S100

expression is used to define the invasive margin and the tumor area. The next

step is to apply cell segmentation (watershed and otsu’s segmentation) to each

of the bio-marker images and identify cells both in the invasive margin and the

tumor area. Then based on the presence or absence of the bio-marker expression,

the segmented cells are classified as + or -. Finally, a hyper-dimensional feature
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matrix is generated corresponding to each cells, as shown in Figure 5.7.

Figure 5.8: Hyper-dimensional feature computed using CytoEye: The

features are broadly categorized as spatial, morphological and vicinity and are

critical to study the immune cell- cancer cell interactions.

The hyper-dimensional feature are broadly categorized as spatial, morpho-

logical and vicinity, as shown in Figure 5.8. While the spatial features help in

localization of bio-marker expression and present us pictorial representation of

distribution of bio-marker across the tissue slice, morphological features are cal-

culated after the cell segmentation is done. The morphological features comprise

of features such as area, intensity and eccentricity. All these features are impor-

tant to study the cell-cell interaction, however eccentricity feature is very useful in

defining the PD1-PDL1 and immune cell interaction along a preferred direction.

After, the localization of each bio-marker expression in each of the bio-marker

images, cells in the vicinity across different bio-markers are analyzed which leads

us to the definition of vicinity characteristics, as shown in Figure 5.8 (B). For

examples, given that there is a CD8+ cell, find if there is a PD1+ or PDL1+ cell

in the cell neighbourhood and compute, the center to center distance between these

two cells. All this is used to define candidate cells with expressions supporting

either the case of the enhanced antitumour immunity or inhibited antitumour
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immunity, as shown previously in Figure 5.5.

Figure 5.9: Patient stratification using CytoEye: Quantitative features for

each patient IHC data computed from single-cell analysis are aggregated into

24 key feature shown in (A). Patient stratification can be potentially done using

CytoEye as evident from the high correlation of these features to patient outcome.

5.2.4 Patient Stratification using CytoEye

Once, all the cells in all the bio-marker images of a patient are analyzed, we

aggregate the features into 24 key features as shown in Figure 5.9 (A), for instance

the total number of CD8+ cells in the S100+ region. This is done to understand

what kind of features have a strong correlation with the patient response. The

24 quantitative features are correlated with the patient outcome using Principal

Component Analysis (PCA) and the computed correlation is shown using a heat

map in Figure 5.9 (B).

As expected from the underlying biology, patients responding to treatment
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showed proliferation of intratumoral CD8+ T cells which means a higher CD8+

density indicating immune cell infiltration and hence probability of patient re-

sponding increases. On the other hand, one mechanism by which cancer tissues

limit the host immune response is via upregulation of PD-1 ligand (PD-L1) and

its ligation to PD-1 on CD8+ T cells (termed adaptive immune resistance) which

means that the density of PDL1+ should be negatively correlated as shown here.

Therefore, quantitative features extracted by CytoEye have the capability to pre-

dict whether or not patients respond to therapy – an important step toward per-

sonalized cancer immunotherapy.

5.2.5 Future work

We also demonstrate that CytoEye features extracted from pathology images cap-

ture the interactions between cell types (immune-tumor interactions) and devise a

new way of constructing graphs that may be predictive of the patient response to

PD1-PDLI therapy. However, limitations of this study include the limit of access

to more extensive patient cohort that results in a low accuracy for patient stratifi-

cation using Graph Convolutional Networks [139,140]. Nevertheless, we have been

able to identify a novel way to create patient graphs computed using quantitative

cell features from CytoEye that may potentially enable patient stratification as

shown in Figure 5.10. Furthermore, the concept of creating such patient graphs

could easily be adapted for the analysis of other cell–cell interactions in TME.

5.3 Conclusions

We present here software tools utilizing NLSE-guided algorithms to solve problems

associated with imaging modalities for time lapse microscopy and immunohisto-

chemistry useful in drug discovery and cancer immunotherapy.
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Figure 5.10: Constructing patient graphs using CytoEye features: Quan-

titative features for each patient IHC data computed from single-cell analysis are

used to create graphs. The graphs are then fed to a Graph Convolutional Networks

for learning underlying bio-marker interactions for predicting patient outcome.
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CHAPTER 6

Conclusion and Future Works

6.1 Conclusion

The thesis demonstrated the use of Non-Linear Schrodinger Equation (NLSE),

the master equation in optical physics, to craft fundamentally and qualitatively

different and novel physics-inspired computational imaging algorithms. Specifi-

cally, we described a unified nonlinear Schrodinger framework for Image and Video

Enhancement (SIVE) by subjecting the image to virtual propagation through a

two-dimensional optical medium such that the optical properties of the medium

can be engineered to obtain desired response. The propagation can either imparts

a brightness-dependent pixelwise phase in case of SIVE as shown in Chapter 2) or

a frequency-dependent pixelwise phase in case of Phase Stretch Transform (PST)

and Phase-stretch Adaptive Gradient-field Extractor (PAGE), as shown in Chap-

ter 3 and 4 respectively. Due to this transformation, in every case, the real valued

input image is turned into a complex-valued quantity containing both real and

imaginary components.

Specifically, we showed that SIVE, a new computationally efficient contrast

enhancement algorithm, achieves superior color gamut performance, and is able to

support real-time video enhancement at 4K and 8K resolutions. We also show how

the NLSE operation leads us to PST, a physics-inspired computational imaging

algorithm with exceptional performance in low light levels. PST emulates 2-

dimensional diffraction followed by coherent detection and has applications for
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feature detection in visually impaired images. We also presented PAGE, a new

feature decomposition method that emulates birefringent diffraction followed by

coherent detection and extracts semantic information at different orientation, scale

and frequency.

Lastly, we also demonstrated efficacy of these algorithms in solving a variety

of problems for different real-world applications in Chapter 5. Specifically, we

discussed CytoLive - an award-winning clinical research tool to complement live

cell microscopy for accelerating drug development. We also presented CytoEye –

an immunotherapy toolbox for quantifying cancer cells and immune cells interac-

tion in a tumor microenvironment. Quantitative features extracted by this tool

have the capability to predict whether or not patients respond to therapy – an

important step toward personalized cancer immunotherapy.

6.2 Future works

The physics-inspired computational imaging algorithms, as discussed in the text,

have exceptional and unprecedented performance compared to the conventionally

designed counterparts. Most importantly as these algorithms emulate a physical

phenomenon, in certain cases, these algorithms have the potential to be imple-

mented in physical optics. Future work involves implementing these tools on a

physical system. We discuss possible experiments in this section, that can be in-

vestigated for studying the efficacy of proposed algorithms for computing at the

speed of light.

Metaphoric physical interpretation of the diffractive algorithm:

First, we describe a metaphorical interpretation of our diffractive algorithm (from

Chapter 4) on a physical system potentially using metamaterials. Metamateri-

als are composite electromagnetic materials that have the ability to transform

an input wave to not just a converging wave on the other side but a completely
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arbitrarily complex wavefront by imparting an abrupt, spatially varying phase

profile on the incident light which enables us to perform powerful wave processing

using metamaterials. These sub-wavelength scale scatterers and have been used

to for a large number of applications ranging from achieving negative refraction in

lens [141], to function as a real-time tunable, spectrally sensitive spatial masks for

terahertz imaging [142] and also to perform diffractive optics by designing meta-

materials with a specific phase profile [143]. These capabilities of metamaterials

allows us to formulate a metaphorical interpretation of our method to compute

gradient fields using the principle of diffraction followed by coherent detection,

shown in Figure 6.1.

Figure 6.1: Metaphoric interpretation of our diffractive algorithm in

terms of physical optics in 3D space: It shows a metaphoric interpretation

of our D-dimensional diffraction algorithm in 3D space. As shown, the first step

is to convert the object image from spatial domain to Fourier domain using a lens

(L1). The Fourier spectra of the object image is modulated using a metamaterial

which is designed to impart specific phase as function of frequency (spatial). Next

step is to convert the modulated spectra back to spatial domain using another lens

(L2). The diffracted output is captured through an array of single pixel coherent

detector array. The phase of the output contains the gradient information of the

input signal.
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The first step of our proposed diffractive method, from Chapter 4, is to trans-

late the spatial input to frequency or spectral domain. This could be achieved by

constructing an optical 4F such that the distance between the object plane and

the first lens L1 is F, followed by a metamaterial surface placed on the Fourier

plane and therefore, at distance F from the lens L1. As shown, the first step is

to convert the object image from spatial domain to Fourier domain using a lens

(L1).

We propose to use a metamaterial surface which is designed to have specific

diffractive property such that an engineered phase could be imparted to the spec-

trum of our input as earlier demonstrated in [143, 144]. This modulated input

spectrum then propagates through another lens L2 at distance F which is the

operation of inverse Fourier transform. Finally, we can have a single pixel phase

detector array that captures the magnitude as well as the phase of modulated

spatial field such that the amplitude of the output is same as the input while the

phase captures features of interest from the input.

Optical Differentiation using Dispersion for Signal Classification:

The inherent reconfigurability of the differentiation method using group delay dis-

persion, discussed in Chapter 3, can be examined for signal classification. The

group delay dispersion property of the optical medium can be configured as re-

quired [145]. Optical experiments can be performed with tunable group delay

dispersion to measure optical differentiation of signals. Extracted orders of differ-

entiation of the input signal can be used for subsequent analysis of signals example

for optical signal classification.
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