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ABSTRACT

A schema iz defined for characterizing flowchart programs. This
schema is used to construct a procedure for generating the set of
flowcharts which contain n branching tests but which are irreducible;
i.e., have no embedded flowcharts. The sets of such flowcharts for
n € 4 are enumerated here, Some examples from these sets are
discussed. Suggestior'xs are made concerning the utility of these
flowcharts in the analysis of goto-less programming and in gaining
insight into potential programming language constructs. A proof

of the procedure for generating irreducible flowcharts is given,




PREFACE

The investigation that led to this report was prompted by the
notion that the concepts of block structured, goto-less programming
could be used in devising an automatic flowchart drawing scheme
superior to the familiar ones such as AUTOFLOW, a software product
of Applied Data Research. In drawing flowcharts in the usual wWay on
normal size pages, the goto spaghetti in a program must be cut in
many places. Following a path through the program requires shuffling
turough several pages. The question arose: could the flowchart of an
existing program with many goto's be made more understandable if it
were drawn so that each page would have one input arrow and one output
arrow? The first page would be an attemnpt to characterize the entire
program. If all of the statements could not fit on this page a search
would be made for an embedded flowchart; that is a block of statements
which had ore input and one output (but perhaps with internal jumps),
The embedded flowchart would be extracted and placed on some other
page and a page reference substituted for it on the first page, If the
program still did not fit, another search for an embedded flowchart
would be made and so on, The procedure would be recursive; the

embedded flowchart would be examined to see if it could fit on one
bpage, etc,

The obvicus difficulty is that there might be no set of embedded
flowcharts which, if extracted, would allow the remainder of the program
to fit on one page. In such cases an analysis of the program's control
structure would be made to find some way of translating a portion of
this structure into an embedded flowchart.

Assuming this could be done, would the resulting structure be
more understandable than a conventional flowchart drawing? One way
of looking for an answer to this question is to examine the pathological
fiowcharts that might arise. The emphasis of the investigation shifted
to enumerating these pathological flowcharts and analyzing their
characteristics, This paper addresses only this aspect of the investi-
gation. Although the notion of structured flowcharting of programs
with goto's (or if you like, indented listing of such programs) is still
being investigated, the results reported here suggest that it is

questionable whether a structured flowchart would make a program with
goto's more understandable,




"Wulf shows how certain pathological
algorithms become worse without goto's
but argues that most useful alporithms
don't so suffer, {I believe his argument,
but I would be happier about it if it
weren't true that almost all possible
Programs fall in the pathological class),

- M. D, Mcllroy (10).

Introduction

Since 1968, when Dijkstra (4) argued that the goto statement
in programming languages is not only unnecessary but also harmful,
there has been much discussion of the theory and practice of programs-
ming without the goto. It has been shown by Bohm and Jacopini (2)
that the goto is not necessary; that some pair of language constructs,
suchAas IFTHENELSE and DOWHILE, are adequate to express any
desired flow of program control. The cited reasons for writing
pPrograms using only such higher level constructs are many: the programs
are easier to read and understanci; they fit well into a top-down approach
to program design (11); they are easier to compile, optimize, and
modify; they submit more readily to formal analysis such as proof of
termination. Because some people have embraced these advantages
to the point of advocating the elimination of the goto, the discussion of
goto-less programming has taken on an adversary flavor. The session
at the ACM Conference in ‘Boston in August 1972 called "The GOTO
Controversy'' is the most recent example (6), (9), (14).

In such discussions, examples of programming problems are

often cited to support or attack a given point of view. This paper




identifics and analyzes those flowchart programs which must be
considered in any discussion of goto-less programming which centers
on programming structure: the class of flowchart programs with n
branching tests which have no flowchart programs embedded in them,
(A flowchart program is a program whose paths for its control token
can be represented by a connected directed graph with some input
node with in-degree zero and some output node with out-degree zero,
such that each node is on some path from input to output). These are
the only flowchart programs we will consider. Flowcharts which
have an embedded flowchart can be considered as two flowcharts:

(a) the embedded flowchart, and (b) the flowchart with the embedded
flowchart removed and replaced by a simple nonbranching edge.

For example, the flowchart:
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has the flowchart enclosed by broken lines embedded in it, so we can

treat it separately and reduce (1) to:

(2)

The set of flowcharts with n branching tests which have no embedded
flowcharts ~- herecafter called irreducible n-predicate flowcharts --
will be the subject of this paper. These are the pathological flowcharts
in goto-less programming,

First a flowchart schema useful for discussion will be defined,
then a complete (but redundant) procedure for generating the set of
irreducible n-predicate flowchart will be described. The flowcharts
generated by the procedure for n=1, 2, 3 and 4 are given., For n=1,
there are two irreducible flowcharts; for n=2, there is one; for n=3,
there are eight, for n=4, there are 82. Several of these flowcharts are
discussed. Finally some suggestions are made about the utility of

further analysis of these flowcharts,
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Flowchart schema, *

A flowchart is considered to be a directed graph containing
four types of nodes:
I : input node, in-degree zero and out-degree ;me.
O : output node, in-degree one and out-degree zero,

P : branching test or predicate nodes, in-degree
‘one and out-degree two.

C : collector nodes, in-degree two and out-degree

one,

F S - R —>C e D
’
In the examples, the horizontal branch out of a P node will be assumed
if the predicate evaluates to true, and the vertical branch if false,

All program statements which change the state of the program
are on the edges of the graph. In the exarnples, all statements on one
edge are gathered in a block. It is assumed that a predicate can test
any state variable and any state variable can be modified by any block
of statements,

Each flowchart is connected and each C or P node in the

flowchart is on some path between I and O, The foliowing is a flowchart:

P >G>l e

e

¥ |
L i

*The echema and notation used here are nearly the same as that used
by Kessler (7)., Some aspects of this investigation are refinements
and extensions of his comments,
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But these two directed graphs are not flowcharta:

IM%MCWO I P »P e O

r»P-—“o-P-» rC—»‘é-——]

Every flowchart with n P nodes will have n C nodes and has (3n)+1

edges.
A main path of a flowchart is the simple (nonlooping) path from -
Ito O which centains the most P nodes, There could be more than one

main pzth in a flowchart. In the examples, 2 main path will be drawn

2s a horizontal line. For example:

[

e P C i I b C 2 Pt P e § —a O (3)

M

An irreducible flowchart is one with no embedded flowcharts,

Two transformation rules are applied to a flowchart as part of the
process of testing for irreducibility:
{2) The block (if any) on the outgoing edge of = C ncde is removed

and replicated on each incoming edge of that C
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This is repeated until there are no blocks on any outgoing edges of
C nodes. Thus if the flowchart has a tree of C nodes, all blocks in

that tree are moved to the leaves of the tree:

a i 1 a
H becomes
]
b-——-—:a-cz —y H| G ==C
- 2
3 b i
c G {5)
H

and there are no blocks on any (C—»C) edges of the flowchart,
(b) Relabel the C nodes in any tree of C nodes to make them
indistinct, This is equivalent to collapsing a tree of C nodes into a

simple C node:

It should be clear that program equivalence is retained under these

two transformaticns (called "node splitting" in (1) ).

I a flowchart is reducible, that is if it contains an embedded

flowchart, we can apply a third transformation rule {recursively) to

make it irreducible:

obe




{c) Replace each embedded flowchart by an edge with a block
to represent it. Since embedded flowcharts could be nested, apply

transformations (a) and (b) to the result and test for irreducibility,

If reducible, apply transformation (c).

For example, if we apply transformations (a} and (b) to

flowchart (3), we find it is reducible:

i 1
I«—-—-&-P?’-‘-——u L -«—»Ll-—» 1-—-—»131-———*?2-?--«(32—-—'—0

‘_J ()
L =i M

then by transformation (c) this becomes:

‘ k.
I—= Q -M%}———bpl—-—upz——.* 2—-—-.-0

g (8)
; 2 ke

which is irreducible.




Procedure For Generating Irreducible n-Predicate Flowcharts,

We first describe a procedure for generating all n-predicate
flowcharts ard then show how this procedure can be used selectively
to generate the set of irreducible n-predicate flowcharts,

The procedure uses a recurrence relation; that is, the set of
n-predicate flowcharts is generated from the set of (n-1)-predicate
flowcharts (n¥1). For simplicity there are no blocks in the flowcharts,
A flowchart is generated by inserting P, and C, nodes at cut-points
¢Pj 2nd cp, on the same or on different edges of a flowchart, and
constructing an edge (an-—-*-Cn). For example, consider the; 2-predicate
flowchart in (8). Use the edges containing blocks Q and R as cut-points.

We could then generate the 3-predicate flowchart (ignoring any blocks

on the edges):

-

: '

B i ’ -
L) —s

¢ -~ P 24
‘ - ’l

-
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The inserted porticn of the flowchart, enclosed 5y a dashed line, is
called a PC segment, We could generate ancther 3-predicate flowchart
from (8) by interchanging the positions of P, and C3 (and reversing

the direction of the edge). Another flowchart could be generated from

(8) by inserting both P, and C3 in the edge containing block Q:

“f
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N % i %
WP3: Aol 3 ¥ VCI > P ‘:PZ‘-""" 2"—"0 (10)
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This is the same as the flowchart in (7}, ignoring the blocks on the
edges. Both (9) and {10) are reducible,

In general, since there are (3n)+1 edges in an n-predicate
flowchart, we can generate 2{3n+1) flowcharts from it if we choose
both cut-points to be on a given edge (all of these are reducible), and
2 ~€33§’1} flowcharts if we put the two cut-points on different edges.

in Appendix B, it is shown in Lemma 1 that this procedure,
when applied to the set of (n-1)-predicate flowcharts, generates ;t
least one copy of all n-predicate flowcharts, The procedure is
cemplete, but redundant -- obvicusly it generates more than one
cepy of some flowcharts.

We are interested only in the subset of n-predicate flowcharts
which are irreducible. The zbove procedure could be used, along
with procedures for aoplving transformations (a), {b), and {c), and
procedures for finding isomorphic graphs. This would not be very

practical. For n=l, there are two flowecharts:

I+-—>P o>l —=> 0 and I=——>C —P—*0 (11)
. &3 5

for n=2, there are 1¢ flowcharts. These have been enumerated by




Keasler (7)., Forn-3 cueeesses ?*

The above procedure can be used to generate irreducible n-
predicate flowcharts if we can show that they can all be generated from
the subset of (n-1}-predicate flowcharts which are irreducible. This
is the case, as proved in Appendix B, The proof uses the property
that any irreducible n-predicate flowchart (z22) can be generated by
inserting two PC segments in some irreducible (n-2)-predicate flow-
chart (proved deductively as Lemma 2). Thig procedure, though
complete, is also redundant, so additional procedures are needed
to eliminate isomorphic flowcharts 2s well as those which are reducible.

A set of LISP functicns were defined for these procedures,

The irreducible 1-predicate flowcharts are the two shown in (11).
Kessler (7), in enumerating all the 2-predicate flowcharts showed

that only one of these is irreducible:

{
E—-—-a-% 5o B et 1 et (et (12)

The LISP functions were applied to this flowchart to gensrate the set

of irreducible 3-predicate Ziowcharta, There are eight of these;

*This interesting problem might be attzcked by first enumerating the
balanced regular (undirected) graphs with 2n nodes of degree 3; that
ig find the number of undirected graphs with 2n nodes, each of which
has three other nodes connected to it, Fur each such graph, we
could distribute n P's and n C's, cut one edge for inserting the I and
O nodes, and assign directions to the edges (within the constraints
.of the in- and out-degree of P and C nodes),
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they are shown on page A-3. These eight were used in turn to

generate the 82 irreducible 4-predicate flowcharts which are shown

on pages A-5 to A-17, with a preceding index.
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Examples of Irreducible n-Predicate Flowcharts

r=l, The two flowcharts in (11) are the familiar IFTHENELSE

and DOWHILE constructs, Notice that transformation (a) permits yug

to transform DO G UNTIL P into G; DO G WHILE (NOT p):

I-—@C-*'G-MP--%O I"-—B’G-“-*""CWP-—B-O (13)

] T

n=2, The only irreducible 2-predicate flowchart is the following

»

(drawn with a block on every edgej:

5 _}
Iy T —-.i:--» Kf~Pr—— L -—-»1}32-—- MIF=C—INft=0 (14)

R

This is the flowchart underlying most of the examples in the literature
on goto-less Programming, It ig the construct used by Hopkins (6)

in his example of the difficulties in goto-iess pProgramming, The
specific example he uses is the problem of finding an instance of X in

the vector A, If it is found, increment a value in a corresponding

vector of counters and return the index of X; if an inctance of X is

not found, add X te A, extend the counter vector, and return the index

-iZ2a




of . In flowchart (14), blocks J and K would initialize and increment
the index variable; Pl would test the index variable; P2 would test
the current element in A to see if it was X. Blocks Q@ and M would
modify the vector of counters appropriately, and N would assign the
returned value. Without using goto's or multiple return statements,
how can the search loop be exited in a way that retains information
about which condition caused the exit? Kessler (7) also saw this
difficulty and has suggested that because this kind of problem is so
commeon, SEARCH might be uszful as a language prixhitive. It would
require four arguments: the vector, the value to be matched, and
the blocks to be executed on success and on failure.

Flowchart (14) is also the underlying structure of the complete
DOWHILE in, say, PL/I: DO i=j TO k WHILE PI; R; but only block
R in the flowchart is accessible to the user. The blocks that one
would like to make accessible are Q and M, This suggests the
construct:

DO i=j TO k (THEN M) WHILE Pl (THEN Qj; R;
which is somewhat cumbersome, but feasible,

The flowchart in (14), in fact, has been implemented as a
primitive: it is embedded in the construczt called treewalk in MADCAP 6

(12},
Fiowchart {(14) heas also been used to illustrate methods for

-

avoiding fhe goto or to translate a program with goto's into one without

¢13-




goto's. Knuth and Floyd (8) analyze this flowchart exhaustively.
#sheroft and Manna use it as an example to describe two algorithms
for eliminating gato's. Their ALGORITHM 2 is illustrated in the
following section on irreducible 3-predicate flowcharts.

n=3, Two of the eight irreducible 3-predicate flowcharts will
be used to show two methods which can be used to avoid goto statements,
There are other rnethods, including Cooper's (3), which will not be

discussed here.

*

The introduction of auxiliary variables is necessary to avoid
goto statements in irreducible n-predicate flowcharts (n22). This has
been shown by Ashcroft afxd Manna (1). Methods for eliminating goto
statements in such flowchart programs differ according to the way
auxiliary variables are introduced and tested. Whether or not the
method chosen results in a '"natural' program depends on the semantics
of the problem. The proponents of goto-less programming would argue
that if the problem semantics are interpreted properly, the auxiliary
variables are not really auxiliary variables at all -- they are the
variables one would want to use if one designed the program from
the top down. Preblem serantics and good/bad programming are
not the primary issues here; the examgples are illustrative only,

We can use flowchzart 3.5 from sage A-3, Appendix A to

illustrate some of the difficuities Hopking (6) is concerned about if

we cheose to introduce auxiliary variables instead of permitting goto's.




Consider flowchart 3, 5;

P —Q 3.5

An example of this flowchart is the program for determining whether
there is a row of X's in the array A(m, n), PI tests whether the last
row of A has been tried, P, tests whether the current element of A

is X, and P, tests for end of row. There are two loops in the program
which must be handled by DOWHILE's, but each of these must have
more than one exit, Following Hopkins!' example, auxiliary variables

SW1 and SW2 can be used to produce the goto-less PL/1 program:

EXES:
PROC (X);
SWi=1;
DO I=1 tc M WHILE SWIi;
Sw2=1;
DO J=1 to N WHILE sw2- 1;
IF A(I,J) # X THEN Sw2= =0;
END;
IF SW2=1 THEN SW1=0;
END;
IF SW1=0 THEN OUT-= 1;
ELSE OUT=0;
RETURN(OUT)
END EXES; ©

The LEAVE « Proc> WITH < valuey conastruct in BLISS (13),

which ig a disguised goto, could avoid the use of SWI and SW2 in the

aimve example, The problems of writing goto-less programs for many

-15.




of the irreducible n-predicate flowcharts go away if this construct is

used., But consider flowchart 3.7 from Appendix A (with blocks on

three edges and C nodes replaced by e—p-——):

[P e V4 P b (15)
? 1 E 3
g K }

L..-

LEAVE will not help in this case. Nor is it obvicus how one would use
auxiliary variables as we did in the above example to avoid gotao's,
Before going on, if the reader is not familiar with Ashcroft and
Manna's method (1) he might try to write a goto-less program representing
the above flowchart in ALGOL, PL/I, or pure LISP,

Of the eight irreducible 3-predicate flowcharts in Appendix A,
3.7 is the only one with three loops, In the example flowchart (15)
these are: <P1P2K)’ (P2P3L), and (PIJP3LPZK). This flowchart
will be used to illustrate Ashcroft and Manna's ALGORITHM 2: cut-sget
pointe are chosen so that each loop in the flowchart contains at least
one cut-set point, One cut-set point is also placed on the output edge,
The program is represented by a DOWHILE containing a CASE (or
cascaded IFTHENELSE's) with a block for each path from one cut-set
point to another, Auxiliary variables are uzed to determine which path
is being followed, or more specifically, which cut-get point is being

traversed. For example, if we use w, x, ¥, and z as the cut-get

-16-




points of flowchart (15}, we could write in PL/I;

THREE LOOPS:
PROC;
W=1; X=0; Y=0; Z2=1
DO WHILE Z;
IF¥ W THEN DO; W=0:;
IF Pl THEN X=1;
ELSE DO; J; Y=1; END;
END;
ELSE IF X THEN DO; X=0;
IF P2 THEN Y=1;
ELSE DO; K; W=1; END;
END;
ELSE IF Y THEN DO; Y=0;
IF P3 THEN Z=0;
ELSE DO; L; X=1; END;
END;
END THREE_LOOCPS;

The DOWHILE block is repeated until Z is set to O (P4 is true), Which
of the three THEN DO; .... END; blocks is performed depends on which
cut-set point was traversed cn the last iteration, Each of these three
blocks is the set of statements on the path from one cut-set point to
the next, An auxiliary boolean variable representing a cut-set point is
set to false when the control token departs the cut-set point and is set
to true when the control tcken arrives at the cut-set point, *

Ir tke sbove example enough cut-set points were chosen so
there are no repetitions of program blocks. Since Ashcreft and Manna's
statement of ALGORITHM 2 requires only one ;:ut-a@t point in each lc-op.

and one on the output edge, we should need cut-set points only at x and =,

¢ The auxilizry boclean variable Y ig redundant sirce Y=118 equivalent
Lo (W=0 and X=0), and Y=0 ig equivalent to (W=] or X=1), Y is
includod here for clarity,




But w must be included because the control token must have one cut-set
point to move from initially, (The statement of Ashcroft and Manna's
ALGORITHM 2 should be modified to include this requirement,) If only
cut-set points w, x, and z are used, the resulting program would
eliminate the IF Y THEN DO; ......END; block but this would require |
the substitution of an IF P3 THEN......ELSE,......; statement for the
two appearances of the Y=1 assignment statement in the above PL/I
program. Thus there is a tradeoff between (a) duplicate statements
(or multiple procedure calls) in a program and (b) the number of
auxiliary variables added to avoid the goto,

One final point about flowchart 3.7: it has a symmetry beyond
that of the particular way it has been drawn: each of the three loops
in 3.7 has as many entry points as it has exits {put ancther way, each
loop has as many C nodes as it has P nodes),

n=4. There are 82 irreducible 4-predicate flowcharts; these
are drawn in Appendix A, The maximum number of loops in any of
these flowcharts is five--and there are five such flowcharts: 4.22,
4.25, 4,51, 4,52 and 4,60, Ounly one of these, 4.25, has the symmetry
property mentioned above: each of its five loops has as many entries

as it bas exits., Flowchart 4. 25 is redrawn here:

i i
Tomrmte glwpl :?Z VPgZ >Cy —=P3—=0 (16)
. <§4“:
"’"""'1;4
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The five loops are (PZ Cy P4 Cz), (C1 Pl C‘2 P2 C4 P4),
(C2 Py Cy P3 Cy P4), (C1 Pl C3 P, C4 P4), and
(C1 Py C?. P, C3 P3 C4 P4).
Another interesting subset is the set of flowcharts that contain
some loop that does not touch the main path. These are flowcharts

4.1 and 4.2, Each of them contains three loops. A cut-set point off

of the main path breaks each of them,

-19-




Utility of Results,

The enumeration of all irreducible flowcharts with up to four
predicate nodes is a practical limit, This set should provide enough
examples (or counterexamples) to fuel the goto-less programming
"‘controversy'' and to aid in the analysis of the general case,

For example, the suggestion to include a SEARCH primitive
in 2 language to eliminate the 2-predicate flowchart problem naturally
raiges the question of why this would be more useful than primitives
for asome of the 3-predicate cases. Because of the number of
irreducible 3-predicate flowcharts, someone locking for interesting
counter examples might have a stronger point in using one of these--
they are all quite innocent-looking., On the other hand, one might be
hard-pressed to find a problem which requires the control paths of
flowcharts 3,7 or 4, 25, for example,

The abstract flowchart schema used here should be investigated
further; there might be more useful properties which ceould be
extracted from the set of irreducible napredicate flowcharts, The
flowcharts enumerated here might provide some direction to the search
for these properties., Note for example that none of these flowcharts
contain trees of predicate nodes. Since looping is the main difficulty

in goto-less pProgramming, we should look for additional properties

of loops in these flowcharts.

«20-




Perhaps there is something more subtle but just as simple as
no goto's that we should seek in developing control structures for
flowchart programs. If this is 80, we must look for properties of
the entire flowchart, not just individual 100?8 and paths. These might
be topological properties or transformation properties more powerful
than node splitting,

A more efficient generative grammar should also be scught,
For example, it can be shown that the §roccdure used here for generating
irreducible n-predicate flowcharts avoids the production of any flow-
chart with 1-predicate flowcharts or {n-2)-predicate flowcharts embedded
in it. Can the procedure be further refined to avoid generation of
duplicate irreducible flowcharts? The relationship between Ashcroft
and Manna's cut-set points for an irreducible (n-1)-predicate flowchart

and the cut-points used here for ingerting a PC segment should be

investigated,

-21-
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Appendix A

Irreducible 3- and 4-Predicate Flowcharts

Each flowchart below has the main path drawn as a horizontal
line. The main path is the simple (nonlooping) path from input (I) to
output (0) which traverses the most predicates (P's), * Each flowchart
is drawn so that there is no sequence of two or more adjacent
collector nodes (-—?—-;%— does not appear) on the main path, Where a
flowchart has such a sequence of collector nodes, or more generally
8 tree of collector nodes, permutations of the edges of such trees are

not distinguished; only one (arbitrary) form of these trees is shown.

For example

are isomorphic in this flowchart schema and only one form is shown.

All predicate nodes not on the main path are drawn below it,
Wherever possible, within the constraints of the above conventions,
edges not on the main path are arranged so that back-pointing (looping)
edges are below the main path, and forward-pointing ("'skip" or "escape')

edges are above the main path,

* In a few cases the main path is not unique, An example is 4, 66,
which could have been drawn as:

xm%fﬂé-oi—»g‘ -:’L o

A-1




The eight irreducible 3-predicate flowcharts are shown on
the next page, This is followed by an index to the irreducible
4-predicate flowcharts, The major ordering of this set of flowcharts
is by number of predicate nodes on the main path (2, 3, or 4). Minor.
ordering is by the position of intervening collector nodes on the main
path. The subset of flowcharts with the same sequence of nodes on

the main path are shown in arbitrary order on one page.
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Appendix B
Description and Proof of the Procedure for Generating

All Irreducible n-Predicate Flowcharts

The procedure for generating all irreducible n-predicate
flowcharts is as follows:

a, For a given (n-1)-predicate flowchart, identify all
ordered pairs of cut-points (cj, cj) on the flowchart,
The pair of cut-points can be on the same edge of the
flowchart or on different edges,

b. For each pair of cut-points generate two n-predicate
flowcharts from the (n-1)-predicate flowchart by

cutting each edge of the pair:

(S 2
Or: o o

% The inserted flowchart segment, within the dashed liness iz called
a PC segment hereafter,




c. Collapse all trees of collector nodes with { leaves
in the flowcharts to a single collector node of in-degree

4 and out-degree one.

d. Perform steps a, -d. on all irreducible (n-1)-predicate
flowcharts,
e, Eliminate from the set of generated flowcharts

any copies of flowcharts which are isomorphic,
Isomorphic here means: if under some relabelling of
nedes, the list of edges of two flowcharts are the same,
then the flowcharts are isomorphic,

f. Eliminate any flowchart which has a flowchart embedded
in it,

In the proof of this procedure, steps e, and f, will be ignored.

Our main concern here is whether the set of n-predicate flowcharts

generated in steps a.-d. contains at least one copy of all the irreducible

n-predicate flowcharts, We will first prove the lemma:

Lemma I: For n%l, at least one copy of all possible n-predicate
flowcharts can be generated by steps a.-c. of the above procedure when
applied to the set of all (n-1)-predicate flowcharts.

Proof: by induction on n, For n=1, the set of (n-l)-predicate,

is the single edge: (I—Q), Step b, then produces:

I P g O and I C{‘ P O (B1)

Clearly these are the only l-predicate flowcharts,
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- Inductive Step: suppose there is some (n+1)-predicate flowchart
that cannot be generated from the set of n-predicate flowcharts, that
it must be generated by inserting PC segments in some {n-i)-predicate
flowchart, 1€ i< {(n-1). This implies that the sequence of adding PC
segments is significant. Thus a necessary and sufficient condition
for the contradiction is that there is some (n+1)-predicate flowchart
which can only he generated by inserting PC1 and P’C2 in that order
in some (n-1)-predicate flowchart. For such an ordering to be
significant, PC, must be inserted so that it "breaks' P‘C1 in the
{ntl)-predicate flowchart, ''"Break! means that when PC2 is inserted,
one of the cut-points chosen in step b, must be on the new {(P-=C) edge
added when PCI was inserted in the (n-1)-predicate flowchart. There-
fore when PCZ is added, PC1 no longer exists, (If neither of the
edges chosen satisfies this condition, then PCI and PC2 could be added
to the (n-1)-predicate flowchart in either sequence). It follows that the
contradiction implies that there is only one PC segment in such an
(nt1)-predicate flowchart,

When PCI is added to an (n-1)-predicate flowchart, an
n-predicate flowchart (X,) is generated. By the inductive assumption

and the above argument, Xn must have at least two PC gegments,

including PCI. When PC? is inserted in X,» two cases arise:




{a) PCZ breaks only one of the PC segments in Xn’ Then the
(nt1}-predicate flowchart so generated will have at least two PC
segments -- the one left unbroken and PCZ' {(b) F’C2 breaks both

distinct PC segments in Xn. If we show two of the PC segments in X

explicitly, it looks like:

-~ - -

Y"z/ x /’A/’X

(n-2) predlcate and collector nodes

(B2)

The (n+l)-predicate flowchart looks like:

z{ A WA -

{n-2) predicate and collector nodes

e > ]
\fii‘ i {/Ci\ [PJ\ ‘\(j%,’ (B4)
1 7 “ R ] b‘}

There are still two PC segments in (B3) and two PC segments in (B4):

those enclosed by dashed lines. Thus in breaking two PC segments, PC2

creates two more. Therefore if any n-predicate flowchart has at leagt

two PC segments, any (n+l)-predicate flowchart generated by steps a,

and b. must also have at least two PC segments, 80 the order in which




these two PC segments are inserted is not significant. The contra-
diction is false, and Lerama | is proved. Also from observation of
(B2), (B3), and {B4), the following corollary is true: for n23, every
n-predicate flowchart has at least two PC segments,

A second lemma will now be proved: Lemma 2: For n22, an
irreducible n-predicate flowchart Z, can be generated by successive
insertions of distinct PC{ and PC, segments* in an irreducible
(n-2)-predicate flowchart Wn-2; an intermediate n-predicate flowchart
Kn-1 is reducible, and reversing the order of insertion will generate

an intermediate irreducible {n-1)-predicate flowchart Yo.i-

Schematically:
reducible
/ *n- 1\
insert PC, insert PGl
irreducible irreducible
Wn.2 — Z
- PC, insert PC, " (B5)
irreducible
Yn-l

* Distinct means that PC, does not break LE"C2 or vice versa,




For example, an irreducible 4-predicate flowchart can be

generated from the only irreducible 2-predicate flowchart as follows,

‘:V? is:

IM%WP%P-—-’C () (B6)

A Y3 can be generated from (B6) by inserting a PCI (enclosed in

dashed lines):

g P PR

=g —>P—> ¢ =P feP3eC —0 (B7)

This is the irreducible flowchart 3.5 in Appendix A, A PC, (in dashed

lines) can be inserted in (B6) to generate an X

1——-»%: ——-a-p-—a-f;-——mp —C —O (B8)

3:

This flowchart is reducible (it has a l-predicate flowchart embedded
in it). Inserting both PC; and PC, in (B6) yields an irreducible

flowchart Z4, which is equivalent to flowchart 4 £. 39 in Appendix A:

Iwcwp—w%-«-—»p-——»p Mpr*\-rc T G (B9)

N .- . --a—o--o‘

Proof: First we note that if an irreducible (n-1)-predicate
flowchart Y,.1 is to remain irreducible after the insertion of a rC,
segment, the cut-points selected must be on different edges. This is

also a sufficient condition for retaining an irreducibvle flowchart if
& »
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as assumed here, step C, of the procedure (collapsing trees of
collector nodes) is applied to Y, _j before PC, is inserted. Second,
if an (n-1)-predicate flowchart has an embedded flowchart, then in
order tc generate an irreducible flowchart from it, only one of the
cut-points used to insert 2 PC segment can be inside the embedded
flowchart: if both cut-points were in the embedded flowchart, it
would remain an embedded flowchart.

Now consider the properties of Xpo1s Yn-l' and the two inserted
PC segments required to generate Z  from W,.2- We can generate
a (reducible) X1 from an (irreducible) W 2, if the cut-points (epy)
for inserting PC) are on the same edge. The only other way to generate
£,.1 would be to put one cut-point on the input edge and other on the
output edge of W _2, but this would vio'la.te a coudition for PC, (see below).

So Xn-z will have a l-predicate flowchart embedded in it:

- ‘g ....... e - ?‘ “““““ }
L3 3 L
¥ L ]
cp, , ‘ cp, or cps cp2 (B10)
Wo.2 Wn-z

If Zy is irreducible, this embedded flowchart must be broken by PC

but it may net break the PCp segment and vice versa. Finally, if we




take into account step C. of the generating procedure {(collapsing trees

of collector no.d_.es), Zn must look like: D m e —
=" T~
’ N

1 )
A ]

\ \
Yo o a, j . X
p \ ’ N 1}
“\-1 'I “ “ \\~]’_ ’ \' \
[}

- -~ 1] - - .
- & Py -l ~. R R ¢:18Y
i »P C \ l ] A

cp, cpz c cpy or cp, cp, €py cpy

where cut-points cp; and cp, are on different edges. This construction
holds for n=2: the one irreducible 2-predicate flowchart will be

generated if the cut-points on the single edge (I+0) flowchart are

respectively:
l—t—ip—a I et (B12)
€p; ¢p; €Py ©Py

Returning to the flowcharts of (Bi1), since PC]L and F‘C2 are distinct,

Y,.1 can be generated from W, .2 by adding PC, at the same cut-points.

}
£ / x
c;z cpy crq

n-2

(B13)

Yn.1 mmust be irreducible because CP, and CPZ are on different edges of
(irreducible) W.,.2- Thus the hypothesized construction is possible and

,when it is applied, the lemma holds, The lemma is proved. Also since




PCy and PCj are distinct, the process of generating Zn is reversible,

- so we have the corollary: for n*2 we can obtain an irreducible (n-2)-predicate
flowchart by removing two distinct PC segments from some irreducible
n-predicate flowchart; one of the two possible intermediate (n-1}-predicate
flowcharts is reducible and the other is irreducible.

Proof of the Procedure for generating the set of irreducible

n-predicate flowcharts: as noted previously, the main concern is
whether steps a, -c. of the procedure when applied to the subset of
{n-1)-predicate flowcharts which are irreducible {f;; 12 is sufficient to
generate the set of irreducible n-predicate flowcharts {f;z, n?l,

Proof: by induction of n. for n=1, the procedure generates the
flowcharts in (B1l}, the set of i-predicate‘ flowcharts, which by definition
are irreducible. Inductive step: suppose there is some irreducible
(n+l)-predicate flowchart Zn+1 which can_not be generated from{fnz .
Lemma ] states that Z,,.; can be generated from some n-predicate
flowchart, and for the contradiction to hold, such a flowchart, X,, maust
be reducible. By Lemma 2, (a) 2,1 can be generated by the insertion

of two distinct PC segments in some irreducible (n-1)-predicate flowchart

and (b) one of the two intermediate n-predicate flowcharts, Y, is

irreducible, By the inductive assumption Yn is in gfnz , 20 the contradiction

j o3

¥ t
is false: gfn_lg is sgufficient to generate gf %






