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ABSTRACT OF THE DISSERTATION

Near-Future Prediction in Videos: Applications in Video Annotation and Frame Reconstruction

by

Tahmida B. Mahmud

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, September 2019

Dr. Amit K. Roy-Chowdhury, Chairperson

Near-future prediction in videos has crucial impact on a wide range of practical applications

which require anticipatory response. In videos, prediction can be performed in different spaces such

as labels, captions and frames. Labels can be predicted for a longer horizon in future but are less

informative than frames. Video frames are much richer in content than labels but only a few frames

can be predicted ahead. Captions lie in between these two extremes: they can describe changes in

activities for a longer prediction horizon and provide a much richer description than labels. In this

thesis, we provide three distinct prediction frameworks leveraged upon different computer vision and

machine learning techniques. However, these solution methods require lots of labeled data which is

challenging due to high annotation cost. Thus, we also propose a novel early prediction framework

so that video annotation becomes scalable.

Most of the existing works on labeling human activities focus on the recognition or early

recognition problem where complete or partial observations of the activity are available. However, in

the prediction problem we are addressing, no observation of the future activity is available beforehand.

We propose a system that can infer about the labels and the starting time of a sequence of future

viii



unobserved activities combining different context attributes from the observed portion of the video .

Next, we propose a sequence-to-sequence learning-based approach using an encoder-decoder LSTM

pair for captioning the near-future unobserved activity sequences.

Building upon the prediction framework, we also work on the frame reconstruction problem

in a multi-camera scenario. When a camera has multiple missing frames and available frames within

the camera are far apart, the corresponding frames from other overlapping cameras become crucial

for reconstruction . We propose an adversarial approach using conditional Generative Adversarial

Network (cGAN) where the conditional input is the preceding or following frames within the camera

or the corresponding frames from other cameras, all of which are merged together using a weighted

average. We also propose an adversarial learning solution to the multi-modal frame reconstruction

problem where we learn a mapping between 3D LIDAR point clouds and RGB images. This

facilitates faster processing since fusion-based approaches which try to combine the advantages from

both sources of data consume huge computing resources.

We also consider the video annotation problem, as it crucial for machine learning ap-

proaches described above. State-of-the-art video annotation approaches assume that there is no

latency for looking up the correct category of label and the annotator is required to watch the whole

video segment. However, choosing the correct label from thousands of categories is not instantaneous

and the long viewing time adds to the annotation cost. We propose an LSTM-based early prediction

framework which can be combined with any existing active learning approach to provide a list of

early suggestions to the annotator. This reduces annotation time and cost by a significant margin.
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Chapter 1

Introduction

Human activity analysis is an active research area in the computer vision community. There

are fundamental challenges associated with the problem, such as - the tremendous intra-class variance,

large spatio-temporal scale variation, target motion variations, low image resolution, object occlusion,

illumination change, viewpoint change etc. Most of the existing works [11, 43, 74, 75, 120, 150]

focus on the observed portion of the video. Predicting the future activity labels is critical in real

life scenarios, where anticipatory response is required, e.g., video surveillance, human-computer

interaction, autonomous navigation, active sensing, video indexing, active gaming, assisted living,

etc. However, it is only starting to garner significant interest in the computer vision community. To

the best of the our knowledge, our previous work [84] is the only other work in the computer vision

community for starting time prediction.

Information from previous activities (sequential activity context) are useful to infer about

the activities which follow. Object features or scene context become useful for dealing with ambiguity

when there are multiple possible activities. The starting time of the next activity depends on the
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duration of the last observed activity. To infer about the difference between the starting time of the

last observed activity and the future unobserved activity, we use the previous activity features as the

inter-activity time context. We develop a deep network which incorporate different context attributes

to jointly predict the labels and the starting times of future unobserved activities. The network is

trained on the previous activity features and the features of the objects present in the scene.

Next, we focus on providing a richer description of the future activities in the form of

captions. Generating description of visual content is an interesting problem in both computer

vision and natural language processing community since it exploits the relationship between two

of the richest modalities to make semantic representation meaningful. All of the existing works

on video captioning [24, 65, 140, 141, 157, 161] focus on the observed portion of the video and

ours is the first work which provides captions for a sequence of near-future unobserved activities

in videos. Leveraged on our label prediction framework, we start with the labels of the future

unobserved activities. Once the labels are available, we map them along with the scene context

of the last observed portion to generate captions for future activities using a sequence-to-sequence

learning-based approach. We use an encoder-decoder LSTM pair for the mapping task.

The problem of multi-sensor frame reconstruction is closely related with the video pre-

diction problem since it requires information from the previous frame to learn the spatio-temporal

representation of the missing frame. Although there have been works on single-view frame recon-

struction [15,53,131], to the best of our knowledge, ours is the first work to solve it in a multi-camera

scenario. Multi-sensor reconstruction becomes helpful specially when adjacent available frames

within the camera are far apart. Motivated by [52], we present an adversarial approach to learn a

joint spatio-temporal representation of the missing frame in a multi-camera scenario conditioned
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on the preceding and following frames within the camera as well as on the corresponding frames in

other overlapping cameras using conditional Generative Adversarial Network (cGAN) [89]. All of

these representations are then merged together using a weighted average. Multi-modal frame recon-

struction is crucial in autonomous navigation applications since fusion-based approaches combining

information from multiple sensors are subject to huge consumption of computational resources. We

propose a cGAN architecture to learn a mapping between 3D point clouds from mobile terrestrial

LIDARS and RGB images from cameras which facilitates scene reconstruction from LIDAR data

only.

All of these above mentioned approaches require a large amount of labeled data which

adds to high annotation cost. It takes time to look up the correct category of label from thousands of

labels and videos can be very long. Video annotation methods need to scale with growing number

of video categories and the time spent in watching a video needs to be considered in evaluating the

performance of the annotation methods. Motivated by these challenges, we incorporate a novel early

prediction framework in an active learning framework to make the annotation task scalable. The most

informative queries are initially selected using label propagation on a similarity graph and sent to

the annotator for annotation. The same queries are sent to an LSTM-based early prediction network

which dynamically provides suggestions to the annotator. The annotator selects the correct labels

from the suggestions without watching the entire video. The early prediction model is incrementally

updated using these newly labeled instances.

Main Contributions. We address four novel and practical problems in this thesis as follows.

• First, we develop a novel architecture to jointly model the sequential relationships among

activities, scene context and inter-activity time context in order to predict the future activity labels as
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well as their starting times.

• Second, we solve a novel and relevant problem of captioning a sequence of future

unobserved activities in a video using a sequence-to-sequence learning-based approach.

• Third, we solve a novel problem of multi-sensor multi-modal frame reconstruction using

conditional Generative Adversarial Network (cGAN).

• Fourth, we propose a novel approach for reducing video annotation cost by combining an

early prediction network with existing active learning framework. Our method addresses scalability

issue for video annotation since it scales quite efficiently with the number of video categories and

significantly reduce both the amount of manual labeling and the long watching time of the videos.

Extensive experiments on different benchmark datasets demonstrate that our approaches

perform substantially better compared to baselines and state-of-the-art alternative methods.

1.1 Organization of the Thesis

The rest of the thesis is organized as follows. In Chapter 2, we present our joint prediction

framework for activity labels and starting time combining different context information from the

observed portion using an LSTM-based deep network. We propose a sequence-to-sequence learning-

based approach for captioning near-future activity sequences in Chapter 3 using an encoder-decoder

LSTM pair. In Chapter 4, we propose an adversarial approach for multi-sensor frame reconstruction

using conditional Generative Adversarial Network (cGAN) where the conditional inputs are the

available frames in the camera network. We also propose an adversarial approach for multi-modal

frame reconstruction by learning a mapping between 3D point clouds and RGB images. Finally, in

Chapter 5, we propose an early prediction framework combined with any active learning framework
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for scalable video annotation in terms of number of categories and long viewing time. We conclude

the thesis in Chapter 6 by providing some future research directions.

5



Chapter 2

Joint Prediction of Activity Labels and

Starting Times in Untrimmed Videos

Abstract

Most of the existing works on human activity analysis focus on recognition or early

recognition of the activity labels from complete or partial observations. Predicting the labels of

future unobserved activities where no frames of the predicted activities have been observed is a

challenging problem, with important applications, which has not been explored much. Associated

with the future label prediction problem is the problem of predicting the starting time of the next

activity. In this work, we propose a system that is able to infer about the labels and the starting

times of future activities. Activities are characterized by the previous activity sequence (which

is observed), as well as the objects present in the scene during their occurrence. We propose a

network similar to a hybrid Siamese network with three branches to jointly learn both the future
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label and the starting time. The first branch takes visual features from the objects present in the

scene using a fully connected network, the second branch takes previous activity features using a

LSTM network to model long-term sequential relationships and the third branch captures the last

observed activity features to model the context of inter-activity time using another fully connected

network. These concatenated features are used for both label and time prediction. Experiments on

two challenging datasets demonstrate that our framework for joint prediction of activity label and

starting time improves the performance of both, and outperforms the state-of-the-arts.

2.1 Introduction

Human activity analysis is a widely studied computer vision problem. The solution to

this problem has crucial impact on a wide range of practical applications such as video surveillance,

human-computer interaction, autonomous navigation, active sensing, video indexing, active gaming,

assisted living, etc. In spite of the enormous amount of research conducted in this area, the problem is

still challenging due to the fundamental challenges inherent to the task, such as - the tremendous intra-

class variance among the activities, huge spatio-temporal scale variation, target motion variations,

etc. Moreover, low image resolution, object occlusion, illumination change and viewpoint change

further aggravate these challenges. The majority of the existing works focus on the recognition

of observed activities or early recognition of partially observed activities. In other words, they try

to answer queries like what happened before or what is happening right now, whereas predicting

the labels of future activities which have not yet been observed is a scarcely explored problem.

In [11, 74, 75, 120, 150], by using the word ‘prediction’, these papers basically refer to the early
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Figure 2.1: An example sequence of a video stream from MPII-Cooking Dataset [117]. Two related
problems are explained here - early recognition of the ith activity from partial observations of it, and
prediction of its label from previously observed activities only. In the early recognition problem
(top-right), the first few frames of the ith activity (cut slices) have been observed. In the prediction
problem (bottom-right), no frame of the ith activity has been observed.

recognition task, i.e., predicting the label of the ongoing activity where the first few frames of that

activity have already been observed. However, in the prediction problem we are addressing, no

observation is available beforehand. The difference between these two problems is illustrated in

Figure 2.1. Predicting the future activity labels is critical in real life scenarios, where anticipatory

response is required such as active sensing and autonomous navigation. For example, it can help

autonomous vehicles to decide how to maneuver depending on the next predicted activity and its time

of occurrence, or assist robots to make future decisions. There are only a few approaches [13, 63]

which perform label prediction on real-life activity datasets like VIRAT [94]. To the best of our

knowledge, only one work [84] in the video analysis community addresses the problem of predicting

the starting time of future unobserved activities.
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Figure 2.2: Overview of our approach. For joint prediction, both activity features (motion-based)
from previous activities and object featues present in the scene are used for training. Please refer to
Section 2.3.2 for details.

2.1.1 Overview of the Proposed Approach

In this work, for a video observed up to a particular time, we present an integrated approach

that can answer two important questions regarding its unobserved portion: what will happen next and

when will it happen, i.e., we predict the labels and the starting times of future unobserved activities

in both coarse (VIRAT Ground Dataset [94] ) and fine grained activity datasets (MPII-Cooking

Dataset [117]). We pose this as a joint (label and starting time) prediction task because the problems

of predicting the label and the starting time of unobserved activities are closely related and handling

them together is intuitive. For example, in MPII-Cooking Dataset, ‘cut slices’ can be followed by

two probable activities: ‘spice’ or ‘take out from drawer’. Usually, ‘spice’ takes place immediately

after ‘cut slices’; but if there is a delay, then ‘take out from drawer’ happens before.

Detailed overview of our proposed framework is illustrated in Figure 2.2. We developed

a deep network by merging three branches: one with two fully connected layers, another with two

LSTM layers and the last one with another two fully connected layers. Finally, we add another fully

connected layer to the output of this merged network. The two fully connected layers in the first

branch are trained on the features of the objects present in the last observed portion of the scene,
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the LSTM layers are trained on the visual activity features of the previously observed sequential

activities to exploit the context of long term sequential dependency and the two fully connected

layers in the third branch are trained on the visual activity features of the last observed activity to

model the context of inter-activity time based on the last observed activity label. So, the entire

network is trained on both the previous activity features and the features of the objects present in

the scene. In the output layer, we use the first few (equal to the number of activity classes) nodes as

the logistic regression nodes for label prediction and the last node as a regression node for starting

time prediction exploiting the concatenated features. The logistic regression nodes assign different

probabilities to the future activity labels from which the label with the highest probability is chosen

and the regression node provides the inter-activity time between the future activity and the last

observed activity from which the starting time of the future activity is obtained. The motivation

behind incorporating different context attributes is explained in Section 2.3.1 with ablation study

provided in Sections 2.4.3 and 2.4.4. Our main contribution is that we propose a novel architecture

that jointly models sequential relationships of the activities, scene context and inter-activity time

context in order to predict the future activity labels as well as their starting times.

2.2 Related Works

Our work involves the following areas of interest: activity recognition, future activity label

prediction, future activity starting time prediction, and Long Short-Term Memory (LSTM) network.

We will review some relevant papers from these areas.

Activity Recognition. Activity recognition approaches based on hand-crafted visual features can be

divided into three categories: low-level local feature based methods leveraged on interest point [71],
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mid-level feature based methods leveraged on tracking and pose analysis [88], and high-level semantic

attribute based methods [121]. We would like to refer to article [56] and [103] for a comprehensive

review of the state-of-the-art approaches. Most of the traditional approaches rely on hand-engineered

local features (e.g., STIP, SIFT-3D, HOG-3D, iDT). However, supervised and unsupervised learning

of meaningful hierarchical features from deep neural networks (i.e., autoencoder, sparse coding, and

convolutional neural networks) have shown huge success over hand-engineered features recently.

C3D feature learned with 3D Convolutional Networks is now the state-of-the-art spatio-temporal

feature for video and has been shown to achieve best recognition accuracy in activity recognition

tasks [135]. Moreover, methods which consider visual context, i.e., the relationships between

different activities and objects in the scene, have been successful for recognition. In [159], object and

human pose were used as context. In [16] and [69], group context was used for collective activity

recognition. In [23, 51, 153], contextual information has been incorporated with deep networks to

improve recognition accuracy. Context has also been shown to be useful for learning the models [43].

Future Activity Label Prediction. There have been a few works which predict the label of the

future unobserved activity such as approaches using semantic scene labeling [63], Probabilistic Suffix

Tree (PST) [74], augmented- Hidden Conditional Random Field (a-HCRF) [155], Markov Random

Field (MRF) [13], kernel-based reinforcement learning [49], max-margin learning [68], and deep

network [146]. Among these, only [13, 63] perform label prediction, without any observation of

the activity to be predicted. In [146], where visual representation of images is predicted and then

recognition algorithm is applied, actions can be anticipated only upto one second in the future.

Future Activity Starting Time Prediction. Predicting the starting times of future unobserved

activities is a new research problem in the video understanding community. Although, there are some
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Figure 2.3: Proposed architecture for future activity label prediction. The top two fully connected
layers (yellow) incorporate the scene context which use object features as input. The two LSTM
layers (green) are used to incorporate the sequential activity context which use motion-based features
as inputs. The bottom two fully connected layers (purple) are used to incorporate inter-activity
time context which use the last observed activity features (motion-based) as input. There is a fully
connected layer (blue) where all these layers are merged together. The output layer (gray) performs
the final prediction, where the first few nodes (green) are used as the logistic regression nodes for
label prediction and the last node (blue) is used as the regression node for starting time prediction. In
the problem description figure (bottom), activities have starting times (t1s, t2s, ..., tks) and ending
times (t1e, t2e, ..., tke). We want to predict the starting time t(k+1)s, of the (k + 1)th activity by
predicting the inter-activity time Tk.

relevant works [82, 164] in other fields, to the best of the our knowledge, there is only one relevant

work [84] in the domain of video analysis which is one of our previous works where we modeled the

inter-activity times using a Log-Gaussian Cox Process (LGCP). Our new approach outperforms this

baseline model.

Long Short-Term Memory (LSTM) Network. Unlike traditional neural networks, Recurrent

Neural Network (RNN) has the capability of allowing information to be passed from one step of the

network to the next using the loops inherent to their structure. However, in practice, RNNs cannot
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handle long-term dependencies, primarily because of the vanishing and exploding gradient problem.

To overcome the challenge of handling long-term dependency, a special type of RNN called LSTM

(Long Short-Term Memory) was introduced in [48]. LSTMs have achieved impressive performance

in different sequence learning problems [24, 39, 102, 132, 145]. Its ability to capture long-range

dependencies makes it a perfect tool for long-term context incorporation.

2.3 Methodology

2.3.1 Role of Different Context Attributes

In real life scenarios, it is observed that activities follow fixed temporal sequences. There-

fore, previous activities can provide useful information about the upcoming ones which can be

referred to as sequential activity context. Activities are also characterized by the objects present in

the scene during the time of their occurrence which can be referred to as scene context. For many

activities, predicting the future has multiple plausible options. To deal with this specific ambiguity,

we take scene context into account along with the sequential information. Thus combining the

information obtained from these two different context attributes (temporal sequence and spatial

objects), we infer about future unobserved activities. For example, if three sequential activities in a

video are ‘wash objects’, ‘peel’ and ‘cut slices’, then there may be two probable choices for the next

activity label: ‘spice’ or ‘put in bowl’ (based on two different training instances). But a bowl present

in the scene would increase the possibility of the latter choice. Several research works on activity

recognition [16, 23, 51, 69, 153, 159, 168] and prediction [13] have shown significant performance

improvement by using such context information which are also known as context-aware approaches.

Most of the existing works have graphical model based approaches for context incorporation. How-
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ever, they are not very suitable to handle the context of long-term dependency. As mentioned before,

LSTM is a popular choice for sequential context incorporation. LSTM networks are straightforward

to fine-tune end-to-end and can handle sequential data of varying lengths. So, we use LSTM to

incorporate sequential activity context. However, for including the scene context, there is no need for

handling such sequential dependency and fully connected layers can capture this efficiently.

The inter-activity time between different activities depends on their labels. For example, it

is obvious from our experience that ‘peel’ or ‘cut slices’ takes more time than ‘wash objects’. Thus,

by observing the previous activity features we can infer about the difference between the starting

time of the observed activity and the future activity referred to as inter-activity time context.

2.3.2 Overall Framework

Our proposed architecture and the basic idea of the problem are shown in Figure 2.3. For

our case, the LSTM is used to solve a sequential input, static output problem. We use the activity

features extracted from three (chosen empirically) previously observed activities as the LSTM input.

Increasing the sequence length does not improve the prediction accuracy significantly (see Parameter

Sensitivity in Section 2.4.3 for details). We use a two-layer (chosen empirically) LSTM in the

second branch with 256 memory units in each layer. The input of the two (chosen empirically) fully

connected layers in the first branch are the visual features extracted from the objects present in the

scene with 256 nodes in each layer. The input of the two (chosen empirically) fully connected layers

in the third branch are the activity features extracted from the last observed activity with 256 nodes

in each layer as well. Finally, the outputs from these three branches are tied together and another

fully connected layer is added on top of it. The merging combines the effect of different context

attributes. In the output layer, the first few (equal to the number of activity classes) nodes are used as
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the logistic regression nodes for label prediction and the last node is used as a regression node for

starting time prediction.

2.3.3 Model Training Approach

We use the popular open source deep learning package Keras [17] with TensorFlow [1]

in the backend which has ready-to-use implementations of LSTM and fully connected layers. The

network is trained on a NVIDIA Tesla K40 GPU. The input sequences for the LSTM are chosen in a

sliding window manner with a stride of one for data augmentation. For example, to predict the ith

activity label, activity features extracted from the (i− 1)th, (i− 2)th and (i− 3)th activities are used

and for predicting the (i+ 1)th activity label, activity features extracted from the ith, (i− 1)th and

(i− 2)th activities are used and so on. We use ReLU activation function for all the fully connected

layers. In output layer, we use softmax activation function in the logistic regression nodes for label

prediction and ReLU activation function in the regression node for starting time prediction. The

parameters of the entire network (the LSTM and the fully connected layers) are jointly optimized.

We take the summation of the following two losses to compute the final loss. One is the

cross-entropy loss function which is defined as follows:

L(X,Y) = − 1
n

∑n
i=1

∑c
j=1 1(y

(i) = j)

× log p(y(i) = j|x(i)) (2.1)

Here, X = {x(1), ...,x(n)} is the set of input feature vectors in the training dataset, Y = {y(1), ..., y(n)}

is the corresponding set of labels for those input features, and j = {1, ..., c} is the set of class labels.

1(.) is an identity function. For a particular training instance, x(i) represents the sequential activity
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features extracted from the previous three activities and the object features from the last observed

portion of the scene.

Another is the mean squared loss function which is defined as follows:

L(P,Q) =
1

n

n∑
i=1

(q(i) − q̂(i))2 (2.2)

Here, P = {p(1), ...,p(n)} is the set of input feature vectors in the training dataset, and Q =

{q(1), ..., q(n)} is the corresponding set of inter-activity times. q̂(i) represents the predicted inter-

activity time given input p(i) where the ground truth inter-activity time is q(i). For a particular training

instance, p(i) represents the activity features extracted from the last observed activity.

To optimize the network, we use a stochastic gradient descent with an adaptive sub-gradient

method (Adam) [61] which is popular for its strong theoretical convergence guarantee and impressive

history of empirical success. We also tested with Adagrad [28], Adamax [61], Nadam [25] and

RMSProp [133] but empirically chose Adam. We use Dropout layer [128] with a probability of 0.2

after each layer to prevent overfitting. We use a batch size of 128 and a learning rate of 0.001. Our

network converges roughly at 60 epochs.

2.4 Experiments

We conduct experiments on two challenging datasets: MPII-Cooking Dataset [117] (fine

grained indoor activities) and VIRAT Ground Dataset [94] (coarse outdoor activities) to evaluate the

performance of our proposed framework.
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2.4.1 Datasets

MPII-Cooking Dataset. MPII-Cooking Dataset is a fine grained complex activity dataset where the

participants interact with different tools, ingredients and containers to complete a recipe. It has 65

different cooking activities recorded from 12 participants. In total there are 44 videos with a length

of more than 8 hours. The dataset contains a total of 5, 609 annotations [117].

VIRAT Ground Dataset. VIRAT Ground Dataset is a challenging human activity dataset which

consists of 11 different activities recorded in natural outdoor scenes with background clutter. There

are total 329 videos with a length of around 5 hours [94]. However, we use only 275 of them as some

videos have incomplete annotations.

Detailed description of these datasets is available in the supplementary material. These

datasets are untrimmed and have context information unlike the trimmed datasets popularly used for

recognition tasks in activity analysis.

2.4.2 Features

For MPII-Cooking Dataset, we use the bag-of-word based Motion Boundary Histograms

(MBH) [20] as activity features. According to [149], these features are extracted around densely

sampled points and a codebook is generated using k-means clustering for these 4000 words long

features. Scene context features (dimension of 212: 41 for tools, 117 for ingredients and 54 for

containers) naturally exist in the dataset. For VIRAT Ground Dataset, we use C3D features [135] as

activity features. Scene context features naturally exist in VIRAT Ground Dataset too. We use MBH

features for MPII-Cooking Dataset as these features come with the dataset. For VIRAT Ground

Dataset, we extract the C3D features as it does not come with any features. We report results for
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MPII-Cooking Dataset using C3D features as well.

2.4.3 Label Prediction Results

Objective. The main objective of these experiments is to analyze how well our framework can

predict the labels of future unobserved activities.

Performance Measures. The evaluation metrics we use are: 1. multi-class precision (Pr), 2.

multi-class recall (Rc), and 3. overall accuracy for top-1 match, top-2 matches and top-3 matches.

For all these metrics, the higher value indicates better prediction performance.

Compared Methods. We compare our approach to different state-of-the-art methods. There is

no existing method for predicting future activity labels for MPII-Cooking Dataset. Therefore, we

compare with a recent recognition approach which estimates the labels of the observed activities

using a combination of CNN and LSTM [92]. For VIRAT Ground Dataset, there is an existing

graphical model based approach [13] and a semantic scene labeling based approach [63]. We compare

our method with [13] but cannot compare with [63] since they use scene specific customized set of

labels which are not annotated in the dataset. We also compare with a state-of-the-art active learning

based recognition approach which uses sparse autoencoder [42] and achieve higher accuracy.

Experimental Setup. For MPII-Cooking Dataset, we use five fold leave-one-person-out cross

validation approach for the training-testing split and average our results over these five combinations.

Among 12 subjects, we use 7 for training and 5 for testing. For each of the five training instances, we

use 7 training subjects and 4 testing subjects for training, leaving 1 from that set for testing. This

is done 5 times leaving 1 testing subject out and then the results are averaged. For VIRAT Ground

Dataset, we use the first 170 videos for training and the rest for testing.
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Figure 2.4: Four example activity sequences showing our label prediction results and time prediction
results on MPII-Cooking Dataset (top row) and VIRAT Ground Dataset (bottom row). For time
prediction, green × marks the ground truth starting time of the activity we are trying to predict, and
red × marks the predicted time. For label prediction, top-3 matches are shown here and in most of
the cases our top-1 match corresponds to the activity that actually happened (green tick).

Results for MPII-Cooking Dataset. Comparison of our label prediction results on MPII-Cooking

Dataset with state-of-the-art method is shown in Table 2.1. The method we compare to did not report

all of the evaluation metrics we use- hence the missing values. It is seen that our method outperforms

the recognition method proposed in [92]. This is not surprising because in recognition problems

the network has to decide among all the activity classes whereas in the sequence learning based

prediction task, the network needs to consider only a subset of classes which occurred in the training

phase after that particular sequence. Using C3D features, we achieve Top-1 accuracy of 79.9%.

The coherence in Top-1 accuracies using both MBH and C3D features indicates that our method is

independent of any particular choice of feature.

Results for VIRAT Ground Dataset. Comparison of our label prediction results on VIRAT Ground

Dataset with state-of-the-art methods is shown in Table 2.1. It is seen that our method outperforms
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MPII-Cooking Dataset [117] Goal Precision Recall
Accuracy %

(Top-1)
Accuracy %

(Top-2)
Accuracy %

(Top-3)
CNN + LSTM [92] Recognition 34.8 51.7 - - -
Proposed Method Prediction 70.7 66.5 80.1 90.0 93.7

VIRAT Ground Dataset [94] Goal Precision Recall
Accuracy %

(Top-1)
Accuracy %

(Top-2 )
Accuracy %

(Top-3 )
Sparse Autoencoder [42] Recognition - - 54.2 - -

Graphical Model [13] Prediction - - 68.5 - -
Proposed Method Prediction 49.6 22.2 71.8 79.8 86.4

Table 2.1: Label prediction performance comparisons for MPII-Cooking Dataset and VIRAT Ground
Dataset.

the prediction method proposed in [13]. We also achieve higher accuracy than the recognition method

proposed by [42]. The intuition behind prediction accuracy being higher than recognition accuracy is

explained above. However, for datasets like VIRAT Ground Dataset, where the number of classes

is small, prediction accuracy is closer to recognition accuracy. Figure 2.4 depicts some example

sequences showing both of our label prediction results and time prediction results on the two datasets.

Multiple Possibilities for Future Activity Label. One particular activity sequence can have multi-

ple possible outcomes. For example, ‘wash objects’ and ‘peel’ can be followed by either ‘cut apart’

and ‘cut slices’. As the network has been trained on both of these possible sequences (in one case the

network has probably seen ‘cut apart’ as the next activity and in another case ‘cut slices’ as the next

activity), it is hard to say precisely which is the next activity. Earlier we mentioned that in case of

multiple possibilities, such as while choosing between ‘spice’ or ‘put in bowl’ after ‘wash objects’,

‘peel’ and ‘cut slices’, a bowl in the scene increases the probability of the activity label being the

latter one. But in these types of closely related activities (‘cut apart’ and ‘cut slices’), scene context

cannot contribute much as both of the activities require a knife. This is why we present the top-3

choices with the associated probabilities for each of them. We did not go beyond top-3 because

after that the probabilities become much lower as we found empirically. This is shown in the first
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example of Figure 2.4 where our network assigns almost equal probability to all of the possible future

activities (‘cut dice’, ‘cut slices’, ‘cut apart’) but the activity which actually happened (‘cut slices’)

is the one with the second highest probability. In spite of having these closely related ambiguous

activities in the dataset, our top-1 match outperforms the baseline in terms of accuracy. Our method

can also handle the case of predicting an unknown label (never seen in training) when the probability

of none of the predicted future activities crosses a threshold.

Parameter Sensitivity. We empirically choose a sequence length of 3 for preceding activity features

as sequence length of 2, 5, 7 and 9 give relatively lower accuracy for MPII-Cooking Dataset as shown

in Table 2.2.

Top-1 Accuracy %
Sequence
Length

2

Sequence
Length

3

Sequence
Length

5

Sequence
Length

7

Sequence
Length

9
78.8 80.1 79.2 77.8 77.2

Table 2.2: Parameter sensitivity analysis for MPII-Cooking Dataset.

Ablation Study. Using only sequential activity context and scene context (eliminating inter-activity

time context), we get relatively lower label prediction accuracy for MPII-Cooking Dataset than that

of our proposed network. Similarly, using only sequential activity context and inter-activity time

context (eliminating scene context), we get lower label prediction accuracy than that of our proposed

network for MPII-Cooking Dataset. These ablation study results shown in Table 2.3 justifies the

integration of label and time prediction.
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Top-1 Accuracy %

Dataset
Proposed
Network

Removing
Inter-activity
Time Context

Removing
Scene Context

MPII-Cooking [117] 80.1 75.1 33.1
VIRAT Ground [94] 71.8 69.2 61.0

Table 2.3: Ablation study for label prediction for both of the datasets.

2.4.4 Starting Time Prediction Results

Objective. The main objective of these experiments is to analyze how well our framework can

predict the starting times of future unobserved activities.

Performance Measures. We use Root-Mean-Square Error (RMSE) as our evaluation metric. The

lower the value, the better is the prediction performance.

Compared Method. We compare our approach to state-of-the-art starting time prediction method (a

statistical model) [84]. In [84], there is an underlying assumption of exponential distribution for the

inter-activity time. Our new approach is free from this assumption.

Experimental Setup. For experiments on MPII-Cooking Dataset, we use five fold leave-one-person-

out cross validation approach for the training-testing split and average our results over these five

combinations. For experiments on VIRAT Ground Dataset, we use the first 210 videos for training

and the rest of them for testing.

Results for MPII-Cooking Dataset. Comparison of our starting time prediction results on MPII-

Cooking Dataset with state-of-the-art method is shown in Table 2.4. It is seen that our method

outperforms [84]. We also analyze our time prediction result as a function of the last observed

activity label and as a function of the label of the activity being predicted. Figure 2.5 shows the

RMSE values based on the label of the last observed activity (top) and the label of the predicted

activity (bottom) for MPII-Cooking Dataset. It is seen that only one of the observed activity labels
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MPII-Cooking Dataset [117] Goal Average Inter-activity Time (sec) Average RMSE (sec)
Statistical Model [84] Prediction 5.3426 3.9431

Proposed Method Prediction 5.3426 1.2454
VIRAT Ground Dataset [94] Goal Average Inter-activity Time (sec) Average RMSE (sec)

Proposed Method Prediction 13.9567 10.4560

Table 2.4: Starting prediction performance comparisons for MPII-Cooking Dataset and VIRAT
Ground Dataset.

(28) (top) and some of the predicted activity labels (bottom) are contributing to a higher amount of

error. We found that if the last observed activity is a relatively longer one by nature, such as ‘make

puree’ (label 28 in Figure 2.5 (top)), then the predicted starting time of the next unobserved activity

is relatively more erroneous.

Results for VIRAT Ground Dataset. Our starting time prediction result on VIRAT Ground dataset

is shown in Table 2.4. The state-of-the-art starting time prediction method [84] does not have results

on this dataset. For VIRAT Ground Dataset, there are randomly occurring artificial gaps between

many activities. There is no way to train a system to predict the starting time of the next activity

with such gaps, since there is no underlying structure in them. (Note that label prediction still works

because there is structure in what an actor does next, just not when). Thus, we identify activity

sequences where there is a regular pattern of activities happening one after another and show results

only on them. For example, labels like ‘person loading an object’, ‘person unloading an object’,

‘person opening a vehicle trunk’, ‘person closing a vehicle trunk’ belong to natural sequences where

we can predict when the next activity will happen. As explained above, while suitable for the label

prediction problem given the continuous nature of the data, this dataset is not ideal for activity

starting time prediction analysis, which, we believe, is making the error higher here.
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Figure 2.5: RMSE values based on the label of the observed activity (top) and the label of the
predicted activity (bottom) for MPII-Cooking Dataset.

Ablation Study. Using only inter-activity time context (eliminating sequential activity context and

scene context), we get a higher RMSE for starting time prediction than that of our proposed network

for MPII-Cooking Dataset. This ablation study result shown in Table 2.5 justifies the integration of

label and time prediction.

Average RMSE (sec)

Proposed Network
Removing Activity Context

& Scene Context
1.2454 1.4872

Table 2.5: Ablation study for starting time prediction for MPII-Cooking Dataset.
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2.4.5 Effect on Prediction Horizon

For label prediction, we perform multi-step prediction where we predict the next-to-next

activity i.e., 2-step prediction (using activity features from the (i − 3)th, (i − 2)th and (i − 1)th

activities, we predict the label of the (i+ 1)th activity) and the next-to-next-to-next activity (3-step

prediction). As expected, the accuracy decreases as the prediction horizon increases. For starting

time prediction, we also perform multi-step prediction. For example, for 2-step prediction, we train

our model using the features of the (i− 1)th activity, and its inter-activity time with the (i+ 1)th

activity. During testing, we use the observed features to predict the starting times of the next-to-next

activities. As the prediction horizon increases, there is a gradual accumulation of error. The decrease

in accuracy for multi-step label prediction for both of the datasets and the increase in RMSE for

multi-step starting time prediction for MPII-Cooking Dataset are shown in Figure 2.6.

We did not perform multi-step starting time prediction on VIRAT Ground Dataset because

of the random gaps between activities as explained earlier. We did not go beyond 3-step for joint

prediction as the RMSE error for starting time prediction is already quite high for 3-step prediction

shown in Figure 2.6. However, when we do label prediction separately as an ablation study for

prediction horizon, i.e., using a network with only sequential activity context and scene context,

the label prediction results upto 5-step prediction for both of the datasets are shown in Figure 2.7

averaged across all of the activity labels. These demonstrate that joint estimation of activity label and

starting time leads to higher accuracy, but comes at the cost of a shorter forecasting horizon.
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Figure 2.6: Accuracy of the predicted labels (top) and RMSE of the predicted starting times (bottom)
for multi-step prediction. For both of the datasets, the label prediction accuracy decreases and for
MPII-Cooking Dataset, the RMSE for predicted times increases with the increasing forecasting
horizon as expected.

Figure 2.7: Accuracy of the predicted labels for multi-step prediction without inter-activity time
context. For both of the datasets, the label prediction accuracy decreases as we try to predict further
ahead as expected.

2.5 Conclusions

In this work, we propose a framework for jointly predicting the label and the starting time

of future unobserved activity by taking advantage of the combination of LSTM and fully connected

layers to exploit the contextual relationship among activities and objects. Rigorous experimental

analysis on two challenging datasets proves the robustness of our framework. Our approach is
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capable of both multi-step label prediction and multi-step time prediction with reasonable error. In

future, we plan to extend our prediction method for multi-camera environment and investigate how

to predict new unseen activity classes.
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Chapter 3

Captioning Near-Future Activity

Sequences

Abstract

Most of the existing works on human activity analysis focus on recognition or early

recognition of the activity labels from complete or partial observations. Similarly, existing video

captioning approaches focus on the observed events in videos. Predicting the labels and the captions

of future activities where no frames of the predicted activities have been observed is a challenging

problem, with important applications that require anticipatory response. In this work, we propose

a system that can infer about the labels and the captions of a sequence of future activities. Our

proposed network for label prediction of a future activity sequence is similar to a hybrid Siamese

network with three branches where the first branch takes visual features from the objects present in

the scene, the second branch takes observed activity features and the third branch captures the last
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observed activity features. The predicted labels and the observed scene context are then mapped to

meaningful captions using a sequence-to-sequence learning based method. Experiments on three

challenging activity analysis datasets and a video description dataset demonstrate that our label

prediction framework for a future activity sequence outperforms the state-of-the-art and we achieve

comparable performance with the state-of-the-art video captioning approaches for observed events.

3.1 Introduction

Activity analysis is a widely studied problem in the computer vision community. Most

of the existing works focus on recognition of observed activities or early recognition of partially

observed activities. Predicting the labels of future activities which have not yet been observed is

a scarcely explored problem and different from the recognition problem, where inferences need

to be made on activity features which have been observed. The word ‘prediction’ has been used

in [11,74,75,120,150], referring to the early recognition task, i.e., predicting the label of the ongoing

activity where the first few frames have already been observed. However, in the prediction problem

we are addressing, no observation is available beforehand. Predicting the future activity labels is

critical in real life scenarios, where anticipatory response is required based on an observed segment

of the video, e.g., driver intent prediction [90, 169] in Advanced Driver Assistance Systems (ADAS)

where a description of which lane the driver might move into in the near future is necessary to

predict the likelihood of potential collisions in complex traffic scenarios, or Human Intent Prediction

(HIP) [86, 134] in human-robot collaboration where the robot may need to predict what the human

may do in the future to ensure safety and efficiency. There are only a few approaches [13, 63] which

perform label prediction on real-life activity datasets likes VIRAT [94]. There is only one work
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Figure 3.1: There are k activities in the observed portion of a video with starting times (t1s, t2s, ...,
tks) and ending times (t1e, t2e, ..., tke). We want to predict the labels and the captions of (k + 1)th,
(k + 2)th,... activities.

which perform label prediction for a future sequence of activities [3].

Generating description of visual content is an active research area in both computer vision

and natural language processing community. Since vision and language are two of the richest

interaction modalities available to humans, it is crucial to understand the relationship between

them. Language is the most natural way to make information from any semantic representation

meaningful. In the last few years, this problem has received significant attention for image captioning

[31, 54, 67, 144] as well as video captioning [5, 21, 24, 40, 58, 65, 66, 118, 140, 141, 161, 163]. Unlike

image description, video description has to deal not only with the appearance of the objects but also

with motion over time. To the best of our knowledge, all of the existing works on video captioning

focus on the observed portion of the video, i.e., describe events which have already happened or

happening at the moment. Ours is the first work where we look into the problem of providing captions

for a sequence of near-future unobserved events in videos. Generating the labels of future unobserved

activities can be considered as the first step towards describing the future. But it may be desirable to

offer a richer description than a simple one-word/phrase label for specific applications like assistive
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Figure 3.2: Overview of our approach. The label prediction network is trained on both the sequential
activity features from previously observed activities and the object features present in the last
observed portion of the scene. The sequence-to-sequence learning based mapping network finally
maps the sequential labels and observed scene context to a sequence of captions. A detailed version
of this figure is given in Fig. 3.3.

systems [30, 97] for the visually impaired. There has been work on generating future frames [146],

which are much richer in content, but are constrained to only a few such frames. Our work lies in

between these two extremes: it can generate semantically meaningful captions that describe changes

in activities and thus able to predict much further in time than the frame generation work [146], while

at the same time, provides a much richer description than label prediction [3, 13, 63, 85].

3.1.1 Problem Definition

For a video observed up to a certain time, we want to predict the labels and the captions of

the future activity sequence. This is illustrated in Fig. 3.1. We have observed up to the kth activity

and want to predict the labels and the captions of the future activity sequence, i.e., the labels and the

captions of (k + 1)th, (k + 2)th, · · · activities and the starting time of that sequence, i.e., t(k+1)s.
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3.1.2 Overview of the Approach

In this work, we present an integrated approach to answer two important questions re-

garding the unobserved portion of a video observed up to a particular time: what activities will

happen next, and what captions describe them best. We predict the labels of a sequence of future

unobserved activities in both coarse (VIRAT Ground Dataset [94] ) and fine grained activity datasets

(MPII-Cooking Dataset [117] and MPII-Cooking 2 Dataset [119]). This is posed as a joint label

and starting time prediction task because intuitively the problem of predicting the label and the

starting time of unobserved activities are closely related. For example, in MPII-Cooking Dataset,

‘cut slices’ can be followed by two probable activities: ‘spice’ or ‘take out from drawer’. Usually,

‘spice’ takes place immediately after ‘cut slices’; but if there is a delay, then ‘take out from drawer’

happens before. Once the labels are available, we map them along with the scene context of the

last observed portion to generate meaningful captions for a sequence of future activities. Instead

of using a rule- or template-based natural language generation (NLG) approach, we are motivated

by the data driven domain-independent learning based approach [132] which replaced rule based

methods in statistical machine translation. Instead of performing the mapping between two language

spaces, we are doing a mapping from labels to captions. This sequence-to-sequence learning based

approach makes minimal assumptions on the sequence structure.

Detailed overview of our proposed framework is illustrated in Fig. 3.2. We develop a deep

network by merging three branches: one with two fully connected layers, another with two LSTM

layers and the last one with another two fully connected layers. There is another fully connected

layer to the output of this merged network. The two fully connected layers in the first branch are

trained on the features of the objects present in the last observed portion of the scene, the LSTM
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layers are trained on the visual activity features of the previously observed three sequential activities

to exploit the context of long term sequential dependency and the two fully connected layers in

the third branch are trained on the visual activity features of the last observed activity to model the

context of inter-activity time based on the last observed activity label. The network is trained on the

previous activity features and the features of the objects present in the scene.

In the output layer, for each activity of the future sequence, we use the first few (equal to

the number of activity classes) nodes as the logistic regression nodes for label prediction. The logistic

regression nodes assign different probabilities to the future activity labels from which the label

with the highest probability is chosen. For generating captions for a sequence of future unobserved

activities, we use a multi-layered LSTM to map the predicted labels and observed scene context to

a fixed dimensional vector. Another deep LSTM (which is conditioned on the input sequence) is

used for extracting the target sequence (caption) from that vector. The ability of LSTM layers to

incorporate long term sequential dependencies makes it a suitable choice for this application.

3.1.3 Main Contributions

In this work, we propose a deep architectural framework which exploits the context of

sequential dependency, the context of the objects present in the scene and the nature of the activities

for future activity label prediction and caption generation. The main contributions of this work are:

1. We propose a novel architecture that jointly models the sequential relationships of the activities,

scene context and the last observed activity features in order to predict the labels of a future

activity sequence.
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2. We solve a novel and relevant problem of captioning a sequence of future unobserved events

of a video using a sequence-to-sequence based learning approach.

3. We perform extensive experiments that show the effectiveness of the proposed framework.

3.2 Related Works

Our work involves the following areas of interest: video captioning, future activity label

and caption prediction, and Long Short-Term Memory (LSTM) network. We will review some

relevant papers from these areas.

Video Captioning. The initial works on video captioning [5, 41, 59, 60, 64, 72] focus on rule-based

systems where sentences are generated using predefined templates following certain linguistic rules.

Later, learning based data driven approaches [21, 40, 66, 116, 118, 130, 158, 162] became popular. As

the methods started becoming free from manual engineering, the problem became more scalable

providing flexibility to work with larger datasets. Recently, Recurrent Neural Network (RNN) based

approaches [24, 140, 141, 157, 161] have achieved promising performance in video captioning. One

of the earliest works [141] using RNNs extends the image captioning methods by average pooling

the video frames which only works for short video clips containing just one event. To overcome this

shortcoming, recurrent encoder [24], [157], [140] based model and attention model [161] have been

proposed. [163] uses a hierarchical RNN to generate a paragraph for richer description. Another

paper [65] performs dense-captioning of events in videos using context information. All of them

focus on the observed portion of the video only; to the best of our knowledge, there is no existing

work which can generate captions for the future unobserved portion of a video.
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Long Short-Term Memory (LSTM) Network. Unlike traditional neural networks, Recurrent

Neural Network (RNN) has the capability of allowing information to be passed from one step of

the network to the next using the loops inherent to their structure. However, in practice, RNNs

cannot handle long-term dependencies, primarily because of the vanishing and exploding gradient

problem.To overcome the challenge of handling long-term dependency, a special type of RNN

called LSTM (Long Short-Term Memory) was introduced in [48]. LSTMs have achieved impressive

performance in different sequence learning problems [24, 39, 102, 132, 145]. Its ability to capture

long-range dependencies makes it a perfect tool for long-term context incorporation.

Future Activity Label and Caption Prediction. There have been a few works which predict the

future unobserved activity such as approaches using semantic scene labeling [63], Probabilistic

Suffix Tree (PST) [74], augmented- Hidden Conditional Random Field (a-HCRF) [155], Markov

Random Field (MRF) [13], kernel-based reinforcement learning [49], max-margin learning [68], and

deep network [3, 85, 114, 146]. Among these, only [3, 13, 63, 85] perform prediction, without any

observation of the activity to be predicted, in the label space. In [146], where visual representation of

images is predicted and then recognition algorithm is applied, actions can be anticipated only upto

one second in the future. The focus of [114] is forecasting behavior/goal where the fundamental state

variables involved are different than the label space. There is a recent work [3] which infers about

the labels of a future activity sequence using a CNN-based and a RNN-based approach. However,

they predict the labels of a future unobserved activity sequence only; whereas the main focus of

this work is predicting the captions of a future activity sequence. Our previous work on activity

prediction [85] has achieved the highest accuracy on two challenging activity datasets incorporating

different context attributes but did not perform sequence prediction.
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Extension to Previous Works. The goal of this work is to predict the captions of a sequence of future

activities which is, to the best of our knowledge, the first work in this area. This is leveraged on our

previously published paper on activity label and starting time prediction [85]. Instead of predicting

the label of one future activity at a time, here we are predicting the labels of a sequence of future

activities and finally captioning the future activity sequence using the predicted label information.

We conduct experiments on a new dataset called MPII-Cooking 2 Dataset [119] demonstrating the

effectiveness of our captioning method.

3.3 Methodology

In this section, we discuss the motivation behind the choice of our network explaining the

importance of different context attributes for the task, the network architecture in details, the training

scheme and the way we obtained the final results in the test phase.

3.3.1 Label Prediction for Activity Sequences

Role of Different Context Attributes

Activities follow fixed temporal sequences in real life scenarios. Therefore, previous

activities can provide useful information about the upcoming ones which can be referred to as

sequential activity context. Activities are also characterized by the objects present in the scene

during the time of their occurrence which can be referred to as scene context. For many activities,

predicting the future has multiple plausible options. To reduce this specific ambiguity, we take scene

context into account along with the sequential information. Thus combining the information obtained

from these two different context attributes (temporal sequence and spatial objects), we infer the
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Figure 3.3: Proposed architecture for future activity label and caption prediction. In the top figure, the
first two fully connected layers (yellow) incorporate the scene context which use object features as
input. The two LSTM layers (green) are used to incorporate the sequential activity context which use
motion-based features as inputs. The last two fully connected layers (peach) are used to incorporate
inter-activity time context which use the last observed activity features (motion-based) as input.
There is a fully connected layer (blue) where all these layers are merged together. The output layer
(gray) performs the final prediction, where for each element of the future activity sequence, the first
few nodes (green) are used as the logistic regression nodes for label prediction. The last node (blue)
of the output layer is used as the regression node for starting time prediction. All of the layers have
256 nodes. In the bottom figure, the predicted label and the scene context are then used as input to
the encoder LSTM layers and finally the decoder LSTM layers generate the captions. Here, EOS
denotes End of Sentence.

sequence of future unobserved activities. For example, if three sequential activities in a video are

‘wash objects’, ‘peel’ and ‘cut slices’, then there may be two probable future activity sequences:

‘screw open’, ‘take out from spice holder’, and ‘spice’ or ‘put in bowl’, ‘puree’ and ‘smell’ (based on

two different training instances). But a bowl present in the scene would increase the possibility of

the latter sequence.

Several research works on activity recognition [16, 23, 51, 69, 153, 159, 168] and prediction

[3, 13] have shown significant performance improvement by using such context information which
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are also known as context-aware approaches. Most of the existing works have graphical model based

approaches for context incorporation. However, they are not very suitable to handle the context

of long-term dependency. As mentioned before, LSTM is a popular choice for sequential context

incorporation. LSTM networks are straightforward to fine-tune end-to-end and can handle sequential

data of varying lengths. So, we use LSTM to incorporate sequential activity context. However, for

including the scene context, there is no need for handling such sequential dependency and fully

connected layers can capture this efficiently.

The inter-activity time between different activities depends on their labels. For example,

we know from experience that ‘peel’ or ‘cut slices’ takes more time than ‘wash objects’. Thus,

by observing the previous activity features we can infer about the inter-activity time (difference

between the starting time of the observed activity and the future activity) which can be referred to as

inter-activity time context.

Network Architecture

Our proposed architecture for jointly predicting the labels and the starting time of a future

activity sequence is shown in Fig. 3.3. In this case, the LSTM is used to solve a sequential input,

sequential output problem. We use the activity features extracted from three (chosen empirically)

previously observed activities as the LSTM input. Increasing the sequence length does not improve

the prediction accuracy significantly (see Section 3.4.3 for details). We use a two-layer (chosen

empirically) LSTM with 256 memory units in each layer. The input of the two fully connected layers

in the first branch are the visual features extracted from the objects present in the scene and there

are 256 nodes in each layer. The input of the two fully connected layers in the third branch are the

activity features extracted from the last observed activity and have 256 nodes in each layer too.
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Finally, the outputs from these three branches are combined together and another fully

connected layer is added on top of it. The merging combines the effect of different context attributes.

In the output layer, for each future activity in the sequence, the first few (equal to the number of

activity classes) nodes are used as the logistic regression nodes for sequential label prediction and

the last node of the output layer is used as a regression node for predicting the starting time of the

future activity sequence.

Model Training Approach

This training method differs from our previous approach [85] in terms of the training

procedure. We use the popular open source deep learning package Keras [17] with TensorFlow [1]

in the backend which has ready-to-use implementations of LSTM and fully connected layers. The

input sequences for the LSTM are chosen in a sliding window manner with a stride of one for

data augmentation. For example, to predict the labels of the future sequence containing (k + 1)th,

(k + 2)th and (k + 3)th activities, activity features extracted from the kth, (k − 1)th and (k − 2)th

activities are used and for predicting the labels of the future sequence containing (k+2)th, (k+3)th

and (k+4)th activities, activity features extracted from the (k+1)th, kth and (k−1)th activities are

used and so on. The two fully connected layers in the first branch use visual object features from the

scene as input. Another two fully connected layers in the third branch use activity features extracted

from the last observed activity as input. We use ReLU activation function for all the fully connected

layers. In the output layer, we use softmax activation function in the logistic regression nodes for

predicting the label of each activity in the sequence and ReLU activation function in the regression

node for predicting the starting time of the sequence. The parameters of the entire network (both of

the LSTM and the fully connected layers) are jointly optimized.
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We take the summation of the following two losses to compute the final loss. One is the

cross-entropy loss function which is defined as follows:

L(X,Y) = − 1
n

∑n
i=1

∑c
j=1 1(y

(i) = j)

× log p(y(i) = j|x(i)) (3.1)

Here, X = {x(1), ...,x(n)} is the set of input feature vectors (activity features of the last three

observed activities and features of the objects present in the last observed portion of the scene) in

the training dataset, Y = {y(1), ..., y(n)} is the corresponding set of labels for those input features,

and j = {1, ..., c} is the set of class labels. 1(.) is an identity function. x(i) is the sequential activity

features extracted from the previous three activities.

The ReLU activation minimizes the mean squared loss between the ground truth inter-

activity time and the predicted inter-activity time which is defined as follows:

L(P,Q) =
1

n

n∑
i=1

(q(i) − q̂(i))2 (3.2)

Here, P = {p(1), ...,p(n)} is the set of input feature vectors (activity feature of the last observed

activity) in the training dataset, and Q = {q(1), ..., q(n)} is the corresponding set of inter-activity

times for those input features. q̂(i) represents the predicted inter-activity time given input p(i) where

the ground truth inter-activity time is q(i). The outputs of the training are the labels of the three future

activities and the starting time of that activity sequence.

The parameters of the network are jointly optimized by minimizing both of these losses.

To optimize the network, we use a stochastic gradient descent with an adaptive sub-gradient method
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(Adam) [61] which is popular for its strong theoretical convergence guarantee and impressive

history of empirical success. We also tested with Adagrad [28], Adamax [61], Nadam [25] and

RMSProp [133] but empirically chose Adam. We use Dropout layer [128] with a probability of 0.2

after each layer to prevent overfitting. The batch size is set to 128. We use a learning rate of 0.001.

3.3.2 Caption Generation for Activity Sequences

Role of Scene Context for Label to Caption Mapping

Motivated by the inspiring performance of sequence-to-sequence models in [132] for

machine translation and in [140] for video to text mapping, we use a similar model for label to

sentence mapping where both the input (a1,a2, · · · ,am) and the output (b1,b2, · · · ,bn) are

sequences of words of variable length for each instance. Since the labels do not contain any object

information, it is hard to predict the object in the caption only from the label. For example, it is

difficult to map from wash to A person washed carrots. So, we use the scene context from the

observed portion along with the label in the encoder LSTM input for meaningful mapping of objects.

Network Architecture

The input to the encoder LSTM is text e.g., cut apart cucumber, take out egg fridge, cut

off ends carrot, etc. corresponding to the predicted labels and scene context. In the captions, verbs

are followed by objects. To maintain this order, scene context follows the label in the text input. So,

sequence-to-sequence learning via encoder LSTM is important here to incorporate this sequential

information efficiently and maintain meaningful structure between subject, verb and objects. We

do not provide subject as the text input since the subject is constant (the person) throughout the
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dataset. However, for any other dataset where different subjects exist e.g., man, woman, boy, girl

etc., our network would take the text input in subject-verb-object order as a natural structure. An

encoder-decoder LSTM pair is the best option for maintaining meaningful structure between subject,

verb and object to incorporate this information correctly. Both the encoder LSTM and the decoder

LSTM have 3 layers with 1000 memory units in each layer.

Model Training Approach

In our case, since the caption is always longer than the combination of label and scene con-

text, n is always bigger thanm. We estimate the conditional probability p(b1,b2, · · · ,bn|a1,a2, · · · ,am)

given the input (a1,a2, · · · ,am). At first, we perform embedding by generating a dictionary using

all the words in the input of the training set and then convert these words to one hot vectors according

to that dictionary. We use one LSTM layer to encode the label to a fixed-dimensional vector and use

another LSTM layer to generate a sentence from that vector.

During encoding, the first LSTM generates a sequence of hidden states

(h1,h2, · · · ,hm) given the label and the scene context (a1,a2, · · · ,am). Then a fixed-dimensional

vector z corresponding to the label is generated by the last hidden state of the LSTM. The decoder

LSTM computes the conditional probability of the output sentence given the input label and the

scene context as follows:

p (b1,b2, · · · ,bn|a1,a2, · · · ,am)

=

n∏
d=1

p (bd|z,b1, · · · ,bd−1) (3.3)

The distribution p(bd|z,b1, · · · ,bd−1) is represented by a softmax over all words in the vocabulary.
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During training, the log probability of a correct caption (sentence) is maximized given the

label and the scene context. Cross-entropy loss function is used in this model. The batch size we use

is 1000. Keras [17] with TensorFlow [1] is the library we use for this work.

3.3.3 Test Case Scenario

For predicting the labels of a future activity sequence, the activity features of the last three

observed activities are used in the LSTM input, the features of the objects present in the last observed

portion of the scene are used as the input of the first fully connected layers and the activity features

of the last observed activity are used as the input of another two fully connected layer. Based on the

learned sequence to sequence relationship in the training phase, the network predicts the labels of the

next three activities. Using these predicted sequence of labels and observed scene context, the most

likely captions for the future activity sequence are generated by the encoder-decoder LSTM pair.

3.4 Experiments

We conduct experiments on three challenging datasets: MPII-Cooking Dataset [117],

MPII-Cooking 2 Dataset [119], (fine grained indoor activities) and VIRAT Ground Dataset [94]

(coarse outdoor activities) to evaluate the performance of our label prediction framework for a future

activity sequence. We do not present the starting time prediction performance for a future sequence

since it is exactly the same as presented in [85]. To evaluate the performance of our proposed

captioning framework, we conduct experiments on the challenging video description dataset TACoS

Multi-Level Corpus [116] built on MPII-Cooking 2 [119]. The goal of the experiments is to compare

our predictions with ground truth values, as well as to perform an ablation analysis of the methods.
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3.4.1 Datasets

MPII-Cooking Dataset. MPII-Cooking Dataset is a fine grained complex activity dataset where the

participants interact with different tools, ingredients and containers to complete a recipe. It has 65

different cooking activities recorded from 12 participants. There are 44 videos with a length of more

than 8 hours. The dataset contains a total of 5, 609 annotations [117].

MPII-Cooking 2 Dataset. MPII-Cooking 2 Dataset is a fine grained complex activity dataset where

the participants interact with different tools, ingredients and containers to complete a recipe. It has

67 different cooking activities recorded from 30 participants. In total there are 273 videos with a

length of more than 27 hours [119].

VIRAT Ground Dataset. VIRAT Ground Dataset is a challenging human activity dataset which

consists of 11 different activities recorded in natural outdoor scenes with background clutter. There

are total 329 videos with a length of around 5 hours [94]. However, we use only 275 of them as some

videos have incomplete annotations.

TACoS Multi-Level Corpus. This video description dataset consists of 185 long indoor videos

which contains different actors, fine-grained activities, and small objects in daily cooking scenarios.

Each video is annotated by multiple turkers. For each video, there are detailed description with at

most 15 sentences, a short description (3-5 sentences), and a single sentence. Since, workers could

describe videos without aligning each sentence to the video, the descriptions are natural and have a

complex sentence structure [116].

Detailed description of these datasets are available in the supplementary material. These

datasets are untrimmed unlike the trimmed datasets popularly used for recognition tasks in activity

analysis and have context information. Since we are captioning unobserved future activities, we
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need untrimmed datasets containing natural sequences of activities with annotated video descriptions.

Because of these requirements, the choice of datasets on which our method can be demonstrated is

limited. For example, we cannot use MPII-Cooking Dataset [117] or VIRAT Ground Dataset [94]

used in [85] since they do not have human descriptions and we cannot use YouCookII Dataset [166] as

it does not have the labels annotated in the current version. We cannot use Activity Net Captions [65]

because there are only 1.5 activity instances on average in each video which is not enough to

incorporate the sequential context for label prediction.

3.4.2 Features

We use C3D (Convolutional 3D) features [135] as activity features for all of the datasets.

However, we claim that our method is independent of any particular choice of feature. This is shown

in Section 3.4.3 where using bag-of-word based Motion Boundary Histograms (MBH) [20] features

gives similar label prediction result for MPII-Cooking Dataset. According to [149], these features

are extracted around densely sampled points and a codebook is generated using k-means clustering

for these 4000 words long features. Scene context features naturally exist in all of the three datasets.

3.4.3 Label Prediction Results for Activity Sequences

Objective. The main objective of these experiments is to analyze how well our framework can

predict the labels of a future unobserved activity sequence.

Performance Measures. The evaluation metrics we use are: 1. multi-class precision (Pr), 2.

multi-class recall (Rc), and 3. overall accuracy for top-1 match, top-2 matches and top-3 matches.

For all these metrics, the higher value indicates better prediction performance.
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MPII-Cooking Dataset [117] Goal Precision Recall
Accuracy %

(Top-1)
Accuracy %

(Top-2)
Accuracy %

(Top-3)
CNN + LSTM [92] Recognition 34.8 51.7 - - -
Proposed Method Prediction 72.1 67.6 79.9 89.5 93

MPII-Cooking 2 Dataset [119] Goal Precision Recall
Accuracy %

(Top-1)
Accuracy %

(Top-2)
Accuracy %

(Top-3)
Dense trajectories + Hand Trajectories [119] Recognition 52.2 - - - -

Proposed Method Prediction 58.8 53.3 65.5 77.4 82.4

VIRAT Ground Dataset [94] Goal Precision Recall
Accuracy %

(Top-1)
Accuracy %

(Top-2 )
Accuracy %

(Top-3 )
Sparse Autoencoder [42] Recognition - - 54.2 - -

Graphical Model [13] Prediction - - 68.5 - -
Proposed Method Prediction 49.6 22.2 71.8 79.8 86.4

Table 3.1: Label prediction performance comparisons for all of the datasets.

Compared Methods. There is no existing method for predicting future activity labels for MPII-

Cooking Dataset and MPII-Cooking 2 Dataset. Therefore, for MPII-Cooking Dataset, we compare

with a recent recognition approach [92] which estimates the labels of the observed activities. We

show that the precision of our prediction of future unobserved activities, is higher than that of the

recognition method using a combination of CNN and LSTM [92]. For MPII-Cooking 2 Dataset, we

compare with a recognition approach [119] which estimates the labels of the observed activities and

show that precision we achieve for prediction, is higher than that of the recognition method using a

combination of dense trajectories and hand trajectories [119]. For VIRAT Ground Dataset, there is an

existing graphical model based approach [13] and a semantic scene labeling based approach [63]. We

compare our method with [13] and achieve higher accuracy for label prediction. We cannot compare

with [63] because they use scene specific customized set of labels which are not annotated in the

original dataset. We also compare with a state-of-the-art active learning based recognition approach

which uses sparse autoencoder [42] and achieve higher accuracy.
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MPII-Cooking Dataset
Accuracy %

Next-to-Next Activity
Accuracy %

Next-to-Next-to-Next activity
Proposed Method 79.1 78.1

Multi-step Prediction 78.1 77.5

MPII-Cooking 2 Dataset
Accuracy %

Next-to-Next Activity
Accuracy %

Next-to-Next-to-Next activity
Proposed Method 64.4 63.5

Multi-step Prediction 63.7 62.6

VIRAT Ground Dataset
Accuracy %

Next-to-Next Activity
Accuracy %

Next-to-Next-to-Next activity
Proposed Method 71.5 69.2

Multi-step Prediction 70.7 68.5

Table 3.2: Sequence prediction performance comparisons for all of the datasets.

To evaluate our label prediction results for further activities in the future sequence, we

compare with our previous multi-step prediction baseline [85] where we predicted the next-to-next

activity i.e., 2-step prediction (using activity features from the (i − 3)th, (i − 2)th and (i − 1)th

activities, we predicted the label of the (i+ 1)th activity) and the next-to-next-to-next activity i.e., 3-

step prediction. Multi-step prediction is different from sequence prediction. In multi-step prediction,

each prediction step is treated as uncorrelated with the others, while in sequence prediction, the

correlations are accounted for.

Experimental Setup. For experiments on MPII-Cooking Dataset, we use five fold leave-one-person-

out cross validation approach. Among 12 subjects, we use 7 for training and 5 for testing. For

each of the five training instances, we use 7 training subjects and 4 testing subjects for training,

leaving 1 from that set for testing. This is done 5 times leaving 1 testing subject out and then

averaging the results known as ”five-fold leave-one-person-out” cross validation. For experiments

on MPII-Cooking 2 Dataset, we use the experimental setup (same train-test split) of [119]. For

experiments on VIRAT Ground Dataset, we use the first 170 videos for training and the rest of them

for testing. The network is trained on a NVIDIA Tesla K80 GPU.
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Results for MPII-Cooking Dataset. Comparisons of our label prediction results on MPII-Cooking

Dataset with the state-of-the-art method are shown in Table 3.1. The method we compare to did not

report all of the evaluation metrics we use - hence the missing values. It is seen that our method

outperforms the recognition method proposed in [92]. This is not surprising because in recognition

problems the network has to decide among all the activity classes whereas in the sequence learning

based prediction task, the network needs to consider only a subset of classes which occurred in the

training phase after that particular sequence. We achieve similar label prediction accuracy of 79.9%

and 80.7% for MPII-Cooking Dataset using C3D and MBH features respectively which justifies the

claim that our method is independent of choice of features. Sequence prediction result comparisons

with the baseline multi-step prediction method for MPII-Cooking Dataset are shown in Table 3.2. As

the prediction horizon increases, there is a gradual accumulation of error. The results show that as

the prediction horizon increases, our label prediction accuracy decreases at a slower rate than that of

the baseline method. This is intuitive because instead of learning the label of one future activity at a

time, the network is learning a sequence of future activity labels now, so, it can infer better about

the label of the 2nd or 3rd activity of the sequence than it used to do earlier because of having more

information. It is to be noted that even for sequence prediction, prediction results for the first activity

in the future sequence have higher accuracy than that of the next activities as we are still using scene

context from the last observed portion of the scene which is related to the immediate future activity

label.

Results for MPII-Cooking 2 Dataset. Comparisons of our label prediction results on MPII-Cooking

2 Dataset with the state-of-the-art method are shown in Table 3.1. Our method outperforms the

recognition method proposed in [119]. The intuition behind prediction precision being higher than
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recognition precision is explained above. Sequence prediction result comparisons with the baseline

multi-step prediction method for MPII-Cooking 2 Dataset are shown in Table 3.2. For this dataset

also, the results show that as the prediction horizon increases, our label prediction accuracy decreases

at a slower rate than that of the baseline method.

Results for VIRAT Ground Dataset. Comparison of our label prediction results on VIRAT Ground

Dataset with the state-of-the-art methods is shown in Table 3.1. It is seen that our method outperforms

the prediction method proposed in [13]. We also achieve higher accuracy than the recognition method

proposed by [42]. The intuition behind prediction accuracy being higher than recognition accuracy

is explained above. Comparison of the sequence prediction results with the multi-step prediction

method for VIRAT Ground Dataset are shown in Table 3.2. Here also, as the prediction horizon

increases, our label prediction accuracy decreases at a slower rate than that of the baseline method.

Multiple Possibilities for Future Activity Labels

One particular activity sequence can have multiple possible outcomes. For example, ‘wash

objects’ and ‘peel’ can be followed by either ‘cut apart’ and ‘cut slices’. As the network has been

trained on both of these possible sequences (in one case the network has probably seen ‘cut apart’

as the next activity and in another case ‘cut slices’ as the next activity), it is hard to say precisely

which is the next activity. Earlier we mentioned that in case of multiple possibilities, such as while

choosing between ‘spice’ or ‘put in bowl’ after ‘wash objects’, ‘peel’ and ‘cut slices’, a bowl in the

scene increases the probability of the activity label being the latter one. But in these types of closely

related activities (‘cut apart’ and ‘cut slices’), scene context cannot contribute much as both of the

activities require a knife. This is why we present the top-3 choices with the associated probabilities

for each of them. We did not go beyond top-3 because after that the probabilities become much lower
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as we found empirically. In spite of having many closely related ambiguous activities (‘cut dice’,

‘cut slices’, ‘cut apart’) in the dataset, our top-1 match outperforms the baseline in terms of accuracy.

Our method can also handle the case of predicting an ‘unknown’ label (never seen in training) when

the probability of none of the predicted future activities crosses a threshold.

Effect of Different Context Attributes.

We perform an ablation study to justify the choice of our network. Using only sequential

activity context and scene context (eliminating inter-activity time context), we get relatively lower

label prediction accuracy for all of the datasets than that of our proposed network. Similarly, using

only sequential activity context and inter-activity time context (eliminating scene context), we get

lower label prediction accuracy than that of our proposed network for all of the datasets as shown in

shown in Table 3.3.

Dataset

Top-1 Accuracy%

Proposed
Network

Removing
inter-activity
time context

Removing
scene context

MPII-Cooking 79.9 75.7 33.7
MPII-Cooking 2 65.5 60.2 45.7
VIRAT Ground 71.8 69.2 61.0

Table 3.3: Ablation study for label prediction for all of the datasets.

Analysis of Observation Horizon

Here, we will justify the choice of our observation horizon. We empirically chose a

sequence length of 3 for preceding activity features as sequence length of 2, 5, 7 and 9 give relatively

lower accuracy for MPII-Cooking Dataset as shown in Table 3.4.
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Top-1 Accuracy %
Sequence
Length

2

Sequence
Length

3

Sequence
Length

5

Sequence
Length

7

Sequence
Length

9
78.6 79.9 79.1 77.5 76.9

Table 3.4: Sequence length sensitivity analysis for MPII-Cooking Dataset.

3.4.4 Captioning Results for Activity Sequences

Objective. The objective of these experiments is to evaluate the quality of the captions generated by

our framework against the ground truth captions annotated by the human annotators. More results

are presented in the supplementary material.

Performance Measure. The evaluation metrics we use are BLEU (Bilingual Evaluation Understudy)

[98], CIDEr (Consensus-based Image Description Evaluation) [138] and METEOR (Metric for

Evaluation of Translation with Explicit ORdering) [4]. BLEU is a weighted average of variable

length phrase matches against the reference translations in machine translation. CIDEr evaluates

how well a candidate sentence matches the consensus of a set of image descriptions. METEOR

uses the generalized concept of unigram matching between the machine produced translation and

human-produced reference translations. In our case, the number of word matches is compared

between the generated captions and the reference captions annotated by the descriptors. For all of the

metrics, higher value indicates better performance.

Comparisons. To the best of our knowledge, there is no existing method for generating captions

for future unobserved events in videos. Therefore, we compare with [116] which first predicts a

semantic representation (SR) of the observed portion and then generates detailed captions. We

compare against their per sentence BLEU@4 score for short descriptions. We also compare with the

BLEU@4, CIDEr and METEOR scores reported in a recent paper [163] which exploits hierarchical
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Method BLEU@4 CIDEr METEOR
SR Based [116] 22.5 - -

Hierarchical RNN [163] 30.5 1.602 0.287
Proposed Method 39.2 1.493 0.302

Table 3.5: Comparisons of BLEU@4 (in percent), CIDEr and METEOR scores per sentence for short
descriptions in TACoS Multi-Level Corpus. Please note that the SR based method and hierarchical
RNN based method report these scores for observed events whereas we report these scores for
unobserved future events.

RNNs to generate captions for the observed portion.

Similar to label prediction, since none of the existing methods perform sequence prediction

for captions, we can only compare our captioning result for the first unobserved activity with different

state-of-the-art methods. However, to evaluate our captioning results for further activities in the future

sequence, we compare with multi-step prediction baseline where we predict the next-to-next caption

i.e., 2-step caption prediction and the next-to-next-to-next caption i.e., 3-step caption prediction.

Multi-step captioning yields different results than sequence captioning because of the same reason as

in label prediction.

MPII-Cooking 2 Dataset BLEU@4 CIDEr METEOR
Proposed Method

30.2 0.588 0.291
(Next-to-Next Caption)
Multi-step Captioning

29.9 0.560 0.274
(Next-to-Next Caption)

Proposed Method
20.6 0.557 0.264

(Next-to-Next-to-Next Caption)
Multi-step Captioning

19.8 0.548 0.254
(Next-to-Next-to-Next Caption)

Table 3.6: Sequence captioning performance comparisons for MPII-Cooking 2 Dataset.

Experimental Setup. For experiments on TACoS Multi-Level Corpus, we use the experimental

setup (same test split) of [118] which has also been used in [116]. This information is provided with

MPII-Cooking 2 Dataset [119]. We train our network on a NVIDIA Tesla K80 GPU.
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Quantitative Evaluation. Comparisons of our video caption generation results on TACoS Multi-

Level Corpus with the state-of-the-art methods are shown in Table 3.5. We show that the BLEU@4

score we achieve for the unobserved events, is higher than the BLEU@4 score reported in [116].

Our BLEU@4 and METEOR scores are higher than those reported in [163] and our CIDEr score

is comparable to the CIDEr score reported in [163] for the observed events. Not all of the metrics

are reported in [116] - hence the missing values. Quantitative comparisons for captioning a future

sequence with the baseline multi-step caption prediction method for MPII-Cooking 2 Dataset are

shown in Table 3.6. As the prediction horizon increases, there is a gradual accumulation of error.

The results show that as the prediction horizon increases, our captioning performance decreases at a

slower rate than that of the baseline method.

Qualitative Evaluation. Qualitative Comparisons for captioning a future sequence with the baseline

multi-step caption prediction method for MPII-Cooking 2 Dataset are shown in Table 3.7. Fig. 3.4

depicts an example sequence showing both of our label prediction and captioning results.

No. of Generated Generated Reference
Steps Captions Captions Captions

(Multi-Step) (Proposed Method)
2 The person The person The person

sliced the leek peeled the leek peeled the leek
3 The person took The person The person

out egg peeled egg peeled the leek

Table 3.7: Qualitative comparisons of the generated erroneous captions for multi-step caption
generation vs proposed sequential captioning. Mistakes in the captions are marked in bold. Please
note that the more we try to predict ahead, the more erroneous the generated captions become.
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Figure 3.4: An example activity sequence showing our label prediction and captioning results on
TACoS Multi-Level Corpus.

Effect of the Performance of Label Prediction

We show the BLEU@4, CIDEr and METEOR scores of our generated captions when

generated from the ground truth activity labels and when generated from the predicted labels in

Table 3.8. The corresponding qualitative comparison for erroneous results are shown in Table 3.9.

The type of mistakes made in the generated captions with predicted labels is mostly related to

wrong verbs. This is expected since the information regarding the verbs comes from the labels. We

get a label prediction accuracy of 65.5% with precision 58.8 and recall 53.3 for MPII-Cooking 2

Dataset [119] which gives an idea about its effect on the evaluation metrics in Table 3.8 obtained

using ground truth labels and predicted labels.

Labels Used BLEU@4 CIDEr METEOR
Ground Truth Labels 44.0 1.615 0.351

Predicted Labels 39.2 1.493 0.302

Table 3.8: Comparisons of BLEU@4 (in percent), CIDEr and METEOR scores per sentence for
short descriptions using ground truth labels vs. predicted labels for caption generation in TACoS
Multi-Level Corpus.
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Human
Description

Generated Captions
with Predicted

Labels

Generated Captions
with Ground Truth

Labels
1. The person sliced The person peeled The person sliced

the carrot the carrot the carrot
2. The person The person cut The person

chopped the herbs the herbs chopped the herbs

Table 3.9: Qualitative comparisons of generated erroneous captions using predicted labels vs. ground
truth labels for caption generation in TACoS Multi-Level Corpus. Mistakes in the captions are
marked in bold.

Scene Context Used BLEU@4 CIDEr METEOR
Ground Truth Scene Context 39.2 1.493 0.302

Predicted Scene Context 30.8 1.033 0.292

Table 3.10: Comparisons of BLEU@4 (in percent), CIDEr and METEOR scores per sentence for
short descriptions using ground truth scene context vs. predicted scene context for caption generation
in TACoS Multi-Level Corpus.

Effect of Scene Context

MPII-Cooking 2 Dataset [119] has many small objects with similar shapes and appearances.

Detecting and recognizing these small objects (sometimes with occlusion) in complex videos is a

difficult problem itself. The performance of the object recognition method is crucial to the quality of

the generated captions. The error of the object recognition method is propagated in two steps: first

during label prediction using predicted scene context and then during the mapping from predicted

scene context to objects in the captions.

Using the predicted scene context obtained by the object recognition method used in [119]

(combining dense trajectories, hand trajectories and hand cSift features), we compute the BLEU@4,

CIDEr and METEOR scores for TACoS Multi-Level Corpus. We show the evaluation metrics of our

generated captions when generated from the ground truth scene context and when generated from the
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Human
Description

Generated Captions
with Predicted
Scene Context

Generated Captions
with Ground Truth

Scene Context
1. The person cut The person cut The person cut
an orange in half the lime in half the orange in half

2. The person took The person took The person took
a plum out a onion out plums out of

of the refrigerator of the refrigerator the refrigerator

Table 3.11: Qualitative comparisons of generated captions using predicted scene context vs. using
ground truth scene context for caption generation in TACoS Multi-Level Corpus. Mistakes in the
captions are marked in bold.

Observed 2 3 5 7 9
Sequence Length

BLEU@4 22.0 39.2 24.0 31.9 38.5
CIDEr 1.117 1.493 1.078 1.142 1.156

METEOR 0.257 0.302 0.262 0.284 0.297

Table 3.12: Comparisons of BLEU@4 (in percent), CIDEr and METEOR scores per sentence
for short descriptions using different length of observed activity sequences in TACoS Multi-Level
Corpus.

Obs. Seq. Predicted Generated Reference
Length Labels Captions Captions

2 cut apart The person cut apart the leek The person peeled the leek
3 peel The person peeled the leek The person peeled the leek
5 slice The person sliced the leek The person peeled the leek
7 peel The person peeled the leek The person peeled the leek
9 slice The person sliced the leek The person peeled the leek

Table 3.13: Qualitative comparisons of the generated erroneous captions using different length of
observed activity sequences in TACoS Multi-Level Corpus. Mistakes in the captions are marked
in bold. Please note that in most of these erroneous examples, the verbs are incorrect as a result of
incorrectly predicted labels.

predicted scene context using the above mentioned object recognition method in Table 3.10. Please

note that the evaluation metrics using our caption generation method with predicted scene context is

higher than that of the compared methods as well. The corresponding qualitative comparison for

erroneous results are shown in Table 3.11. The type of mistakes made in the generated captions with
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predicted scene context is mostly related to wrong objects. This is expected since the information

regarding the objects comes from the scene context. The mean AP using the above mentioned

object recognition method for MPII-Cooking 2 Dataset [119] is 43.7% which gives an idea about

the relation between the performance of the object recognition method and the performance of label

prediction. This in turn shows the effect of scene context on the performance of caption generation.

A better object recognition method will lead to better captioning performance.

Analysis of Observation Horizon

We empirically find that a sequence length of 3 for preceding activity features provides

best accuracy for label prediction in MPII-Cooking 2 Dataset [119]. While working with TACoS

Multi-Level Corpus, we use observed sequence lengths of 2, 3, 5, 7 and 9 and achieved the highest

BLEU@4, CIDEr and METEOR scores for caption generation in TACoS Multi-Level Corpus [116]

with an observed sequence length of 3 as shown in Table 3.12. The corresponding qualitative analysis

is given in Table 3.13. Although the number of wrong words in each sentence is similar, there is

reasonable difference in the values of the evaluation metrics in Table 3.12. This is because the label

prediction performance changes as we change the observed sequence length and this in turn changes

the number of such erroneously generated captions.

3.5 Conclusions

In this work, we proposed a novel framework for predicting the labels and captions

of a sequence of future unobserved activities. We took advantage of the combination of LSTM

and fully connected layers to exploit the contextual relationship among activities and objects for
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label prediction. For mapping the predicted labels and scene context to meaningful captions, we

incorporated a sequence-to-sequence based learning approach using an encoder-decoder LSTM pair.

Rigorous experimental analysis on challenging datasets proves the robustness of our framework. In

future, we plan to extend our prediction method for multi-camera environment and investigate how

to predict new unseen activity classes.
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Chapter 4

Multi-Sensor Multi-Modal Frame

Reconstruction with Conditional GAN

Abstract

Multi-sensor frame reconstruction is an important problem particularly when multiple

frames are missing and past and future frames within the camera are far apart from the missing

ones. Realistic coherent frames can still be reconstructed using corresponding frames from other

overlapping cameras. We propose an adversarial approach to learn the spatio-temporal representation

of the missing frame using conditional Generative Adversarial Network (cGAN). The conditional

input to each cGAN is the preceding or following frames within the camera or the corresponding

frames in other overlapping cameras, all of which are merged together using a weighted average. In

autonomous navigation, frame reconstruction is crucial in applications like pedestrian detection, lane

detection, SLAM, path planning/navigation etc. Fusion-based approaches incorporating information
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from multi-modal data (camera data and mobile terrestrial LIDAR data) are computationally expen-

sive and faster processing is possible if scenes can be reconstructed from LIDAR data only without

using any camera data. We propose a cGAN architecture for generating photo-realistic RGB images

from 3D point cloud by learning a mapping between these two sensors (camera and LIDAR) or

two modalities (image and 3D point cloud). Experiments on three challenging datasets demonstrate

that our framework produces comparable results with the state-of-the-art reconstruction method in

a single camera and achieves promising performance in multi-camera scenario. Experiments on

another challenging dataset demonstrate that our framework achieves promising performance in

generating photo-realistic RGB images from 3D point clouds.

4.1 Introduction

Looking at a video sequence with one or more missing frames, how do we infer about what

happened in the missing portion? We have never visualized that missing frame. Instead we have a

knowledge of the spatio-temporal context of the video to reason about a potential unknown scenario.

This spatio-temporal context from the adjacent frames within the camera and the corresponding

frames from other overlapping cameras is key to solving an important problem in automated video

analysis- frame reconstruction - which is the task of reconstructing missing frames in videos. Frame

reconstruction is critical in applications like retrieving missing frames in surveillance videos, anomaly

detection, data compression, video editing, video post-processing, animation, spoofing and so on.

Although there have been works on frame reconstruction in a single camera setting [15, 53, 131] to

the best of our knowledge, ours is the first work to solve it in a multi-camera scenario.
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Robust understanding of the environment is vital for ensuring safety and efficiency in

autonomous navigation. Autonomous vehicles collect information from the environment using

sensors such as monocular camera, LIDAR, stereo binocular camera etc. Monocular cameras capture

rich semantic information through high resolution RGB images. But their performance is highly

affected by lighting and weather conditions. 3d point clouds provided by mobile terrestrial LIDARs

are not very sensitive to these environmental factors and provide distance information as well.

However, because of the sparse nature of the data, point clouds cannot represent rich semantic

information. Binocular cameras do not perform well in terms of precision and sensor calibration is

a prerequisite to use the data obtained from such cameras. A solution to these problems is using

fusion-based approaches [105, 106, 122, 127] which combine the advantages of mobile terrestrial

LIDAR data and camera data. However, these approaches are computationally expensive and subject

to high processing time [97]. In this work, we propose an adversarial approach to learn a mapping

between 3D point clouds to RGB images.

Overview of Our Approach. For multi-sensor frame reconstruction, we present an adversarial

approach to learn a joint spatio-temporal representation of the missing frame in a multi-camera

scenario. First, we learn the possible representations of the missing frame conditioned on the

preceding and following frames within the camera as well as on the corresponding frames in other

overlapping cameras using conditional Generative Adversarial Network (cGAN) [89] similar to the

one used in [52]. Then all of these representations are merged together using a weighted average

where the weights are chosen as follows: representations learned from frames within the camera are

given more weight when they are close to the missing frame and representations learned from frames

in other overlapping cameras are given more weight when the available intra-camera frames are far
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Figure 4.1: An example case of multi-sensor frame reconstruction when there are 3 cameras and the
ith frame, Cit is missing from target camera 1 of Office Lobby Dataset [35]. We want to generate the
missing frame using four available frames (ith frames from reference camera 2 and 3, Cir2 and Cir3
respectively, and (i− k)th and (i+ k)th frames from target camera 1, Ci−kt and Ci+kt respectively).
Here, k can be any arbitrary number.

apart. Overview of our proposed framework for multi-sensor frame reconstruction is illustrated in

Fig. 4.1.

For multi-modal frame reconstruction, we first generate a depth map from the 3D point

cloud and upsample it using a bilateral filtering approach [105] to overcome the limitation associated

with the sparse nature of the data. Then we train a cGAN where the conditional input to the cGAN is

the upsampled dense depth map and the output is the corresponding RGB image. Overview of our

proposed framework for multi-sensor multi-modal frame reconstruction is illustrated in Fig. 4.2. The

main contributions of our work are:

1. We perform extensive experiments on a challenging multi-camera video dataset to show the

effectiveness of our multi-sensor frame reconstruction method.

2. We perform extensive experiments on a single-camera video dataset to provide quantitative
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Figure 4.2: An example case of multi-modal frame reconstruction where we want to generate the
RGB image using corresponding point cloud from the LIDAR using upsampling and conditional
GAN.

comparison of our proposed method with others in the literature.

3. We perform extensive experiments on a challenging autonomous vehicle benchmark dataset to

show the effectiveness of our multi-modal frame reconstruction approach.

4.2 Related Works

Our multi-sensor frame reconstruction work is related to video inpainting, frame inter-

polation, video prediction, frame reconstruction, and generative adversarial networks. There are

important differences between frame reconstruction and the problems of video inpainting or frame

interpolation. Some spatial information is available in inpainting since the missing portions are

assumed to be localized to small spatio-temporal regions. Interpolation cannot reconstruct multiple

missing frames as it requires the adjacent (maximum 0.05 seconds apart [131]) frames as inputs.

In video prediction, the goal is to predict the most probable future frames from a sequence of past

observations.
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There are patch-based approaches [91], probabilistic model based approaches [29] and

methods handling background and foreground separately [50, 99] for video inpainting. For frame

interpolation, there are approaches [14] using dense optical flow field, phase-based method [87], deep

learning approaches [79, 93, 167] and works on long term interpolation [15, 53]. There are sequence-

to-sequence learning-based approaches [111, 129], predictive coding network [81], convolutional

LSTM [143], deep regression network [146] for video prediction. The recent state-of-the-art work

on frame reconstruction within a single camera [131] uses an LSTM-based interpolation network.

However, to the best of our knowledge, there is no work performing frame reconstruction in a

multi-camera scenario. This is important when adjacent available frames within the camera are far

apart and frames from other corresponding overlapping views can be useful. Recently, Generative

Adversarial Networks [38] have become popular to solve challenging computer vision problems

like text-to-image synthesis [113], frame interpolation [136] and so on. [52] has shown outstanding

performance in conditional transfer of pixel-level knowledge. In this work, we seek to leverage

GANs for the multi-camera reconstruction problem.

For the multi-modal frame reconstruction problem, to the best of our knowledge, there

is one more work [96] which learns a mapping between 3D point clouds from mobile terrestrial

LIDARs and RGB images using an adversarial approach without presenting any quantitative results.
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Figure 4.3: An example raw 3D point cloud (top), corresponding upsampled gray image (middle)
and ground truth RGB image (bottom).

4.3 Methodology

4.3.1 Data Preprocessing

For multi-sensor frame reconstruction, we resize the images from all the cameras to

256× 256 pixels so that they fit into the input of the cGAN. For multi-modal frame reconstruction,

some additional processing is required since the 3D point cloud is too sparse to capture meaningful

semantic information from the environment. We first create a depth map from the 3D point cloud.

Then we upsample it using the modified bilateral filtering approach proposed in [105]. The resultant

dense depth map I (output image) is computed as follows [105]:
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Figure 4.4: Proposed architecture for the generator (top) and the discriminator (bottom) [52]. The
pixel values in the 30× 30 output show how realistic that section of the unknown image is.

Im =
1

Wm

∑
n∈φ

Gs(‖m− n‖)Gr(|Dm −Dn|)Dn (4.1)

Here, D is the sparse depth map and I is the dense depth image. φ is the neighborhood

mask, Im is the intensity value of I at pixel position m, and Wm is a normalization factor. Gs

weights points at position n inversely to their distance from position m (to decrease the influence

of distant pixels), and Gr decreases the influence of points at position n when their intensity values

differ from Dm [105].

The upsampling method is similar to convolving the input with a spatial kernel where the

kernel size is fixed but the number of points depend on the sparsity of the 3D point cloud [105]. The

resultant upsampled depth image shown in Fig. 4.3 (middle) has a black area on the top which is

out of the range of the LIDAR. This dense depth map is resized to 256× 256 pixels and used as the

input of the cGAN.

4.3.2 Overall Framework

Similar to general GAN, conditional GAN has a generator and a discriminator. Both of our

generator and discriminator have the same architectures used in [109]. We use the conditional GAN

66



to do a mapping between inter-camera or intra-camera frames and between LIDAR point clouds and

RGB images. They share an underlying structure i.e., some common low-level information which we

want to transfer across the network. Previous image translation problems used an encoder-decoder

network [47] where the input was downsampled after being passed through a number of layers

and then upsampled using a reverse process when a bottleneck layer was reached [52]. We use a

“U-Net”-based architecture of the generator adding skip connection between each layer to overcome

the bottleneck problem as the skip connections directly connect encoder layers to decoder layers.

L1 loss efficiently captures the low frequency components of images. But using only L1 loss in the

objective function for image mapping generates blurry results. We are using a combination of L1 loss

and adversarial loss in the objective function. So we aim to use a discriminator efficient in modeling

the high frequency components of images. We use the PatchGAN [52] to focus on the structure at

local image patches. The discriminator tries to differentiate between the generated and the actual

missing frames at patch-level and runs convolutationally across the image to generate an averaged

output. So, in this way, the image is modeled as a Markov random field assuming that the pixels

separated by more than one patch diameter are independent. The high level network architectures for

the generator and discriminator are shown in Fig. 4.4.

4.3.3 Model Training and Inference

In conditional GANs, a mapping is learned from an observed conditional input x and

random noise vector z, to an output image y, G : x, z → y where the generator G learns to generate

outputs close to real images indistinguishable by the discriminator D [52]. The discriminator D

learns to efficiently detect the fake outputs generated by G. The objective function of the conditional
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GAN is as follows:

G∗ = Ex,y[logD(x, y)] + Ex,z[log(1−D(x,G(x, z))] + λEx,y,z[‖y −G(x, z)‖1] (4.2)

Here, Ex,y,z[‖y −G(x, z)‖1] is the L1 loss to reduce blurring.

We would refer the camera with the missing frames as the target camera and other cameras

as the reference cameras for the multi-sensor frame reconstruction task. Let us assume that there

are n overlapping cameras available in a multi-camera scenario. The ith frame, Cit , is missing in

the target camera. First, we generate two representations of the missing frame from the past and

future frame within the camera using two separate conditional GANs. We generate (Ĉit |Ci−kt ) using

the past (i− k)th frame and (Ĉit |Ci+kt ) using the future (i+ k)th frame. In our case, k can be any

arbitrary number based on availability. We generate different representations of the missing frame

from the corresponding frame in other reference cameras i.e., generate (Ĉit |Cirj ) where j = 1 . . . n.

Basically the network learns a mapping from the observed frames (Ci−kt , Ci+kt , and Cirj ) to the

missing frame Cit . In accordance with (4.2), Ci−kt , Ci+kt , and Cirj are x and Cit is y. A training

instance is shown in Fig. 4.5.

For the multi-modal frame reconstruction task, the network learns a mapping from the

upsampled depth image Ii (from the mobile terrestrial LIDAR) to the corresponding RGB image

Ci (from the camera). In accordance with (4.2), Ii is x and Ci is y. A training instance is shown

in Fig. 4.6. The generated frame tries to resemble the real frame in terms of the L1 loss along with

fooling the discriminator. Following [38], we alternate between a gradient descent step upon D and

one upon G. Also, in accordance with [38], the training maximizes logD(x,G(x, z)). We divide the

objective function in (4.2) by 2 during optimizing D to slow down it learning rate relative to G. To
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Figure 4.5: A training instance of the conditional GAN for Office Lobby dataset where the dis-
criminator learns to classify between generated and real frames and the generator learns to fool the
discriminator.

optimize the network, we use a minibatch stochastic gradient descent with an adaptive sub-gradient

method (Adam) [61] and a learning rate of 0.0002.

Figure 4.6: A training instance of the conditional GAN for KITTI dataset where the discriminator
learns to classify between generated and real RGB images and the generator learns to fool the
discriminator.
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During testing for the multi-sensor frame reconstruction task, we merge all the generated

frames using a weighted average. The weights are chosen by maximizing the average PSNR on a

smaller validation set. The more adjacent the available frames are in the target camera, the more

weight is given to the representations learned from them than those from the reference cameras. Please

note that, since the cameras are partially overlapped, we incorporate the multi-view representation

only when there is a person/object present in the overlapping zone.

4.4 Experiments

4.4.1 Datasets

Office Lobby Dataset. Office Lobby Dataset is a multi-camera summarization dataset where 3 video

clips are captured by 3 cameras [35]. The cameras are not completely overlapping and the videos

have different brightness levels across multi-views. The approximate offset between camera 1 and 2

is about 4.1s and between camera 1 and 3 is about 1.33s. To make an approximate synchronization

of the inter-camera frames, these offset values were taken into account while extracting and aligning

the frames from different cameras.

Campus Dataset. Campus Dataset is a multi-camera summarization dataset where 4 video clips

are captured by 4 cameras [35]. The cameras are not completely overlapping and the videos have

different brightness levels across multi-views. The videos are not synchronized and an approximate

synchronization of the inter-camera frames were performed to align the frames from different

cameras.

KTH Human Action Dataset. KTH Human Action Dataset consists of 6 types of human activities

(boxing, handclapping, handwaving, jogging, running, and walking). These actions are performed
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by 25 subjects in four different scenarios: outdoors, outdoors with scale variation, outdoors with

different clothes, and indoors with lighting variation [123].

KITTI Dataset. KITTI Dataset is an autonomous vehicle benchmark dataset [36]. We use the

‘object’ subset which has 7481 training pairs and 7518 testing pairs of camera images and LIDAR

point clouds. Both of the sensors are synchronized at 10Hz. For camera data, we use the RGB

images captured by the left camera. Each image has a resolution of 375 × 1242 pixels. 3D point

clouds are collected using a Velodyne HDL-64E 3D laser scanner.

4.4.2 Results

Multi-Sensor Frame Reconstruction

Objective. The main objective of these experiments is to evaluate the quality of the reconstructed

frames in multi-camera scenario. We show how the overlapping cameras become more and more

important as the distance is increased between the intra-camera frames and the missing frame.

Performance Measure. The evaluation metrics we use are PSNR (Peak Signal-to-Noise Ratio)

and SSIM (Structural Similarity Index). SSIM estimates how structurally close the reconstructed

frame is to the original one. For both of these metrics, higher value indicates better performance.

There is no existing work on multi-sensor frame reconstruction to compare our method with. To

show the effectiveness of our method in a single camera scenario, we compare with a state-of-the-art

reconstruction method [131].

Experimental Setup. We use the standard 80 : 20 split for training and testing and use TensorFlow

[1] to train our network on a NVIDIA Tesla K80 GPU.
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Quantitative Evaluation. Our reconstruction results on Office Lobby Dataset and Campus dataset

increasing the distance between the missing frame and the available intra-camera past and future

frames (multiple frames missing) are shown in Table 4.1 and Table 4.2 respectively. We consider

different lengths (gap) of missing frame while testing which are selected in a sliding window manner.

Comparisons of our reconstruction results on KTH Human Action Dataset are shown in Table 4.3.

We achieve comparable PSNR and SSIM with those reported in [131].

Gap
1 3 5 7 15 30

(frames)
PSNR 32.06 29.28 28.10 27.19 25.56 25.17
SSIM 0.95 0.92 0.91 0.90 0.88 0.87

Table 4.1: Multi-Sensor Reconstruction Performance for Office Lobby Dataset.

Gap
1 3 5 7 15 30

(frames)
PSNR 34.23 30.57 29.36 28.08 25.11 22.98
SSIM 0.98 0.96 0.95 0.94 0.91 0.89

Table 4.2: Multi-Sensor Reconstruction Performance for Campus Dataset.

Method PSNR SSIM
Proposed Method 35.03 0.93

LSTM-Based Method [131] 35.40 0.96

Table 4.3: Single-view Reconstruction Performance Comparisons for KTH Human Action Dataset.

Qualitative Evaluation. Some example results with the conditional input frames and the ground

truth missing frames for Office Lobby dataset are shown in Fig. 4.7. Some example results for
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Figure 4.7: Two example results from Office Lobby Dataset where Input 1, Input 2, Input 3, and
Input 4 are the preceding and the following frames of camera 1, and the corresponding frames of
camera 2 and 3 respectively. As we increase the gap between the preceding and following frames
with the missing frame, frames of camera 2 and camera 3 become more important. For example, due
to the large number of missing frames in gap 30, the women in red dress is not visible yet in input 1
and her position is far away in input 2. Still, a person wearing a red dress is visible in the correct
position of the generated frame incorporating information from the other two cameras.

Figure 4.8: Two examples results from Campus Dataset. As expected, the reconstruction performance
is better for gap 1 than gap 30.

Campus dataset are shown in Fig. 4.8.

Ablation Study. The comparison of achieved PSNR using only the intra-camera view of camera 1

vs. using multi-sensor reconstruction in Office Lobby Dataset is shown in Table 4.4 as ablation study
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which justifies the integration of views from multiple sensors specially when the gap is large between

the missing frame and the available intra-camera frames.

Gap
1 3 5 7 15 30

(frames)
Single 32.06 29.24 28.02 27.02 24.17 23.97
Multi 32.06 29.28 28.10 27.19 25.56 25.17

Table 4.4: Ablation Study for Frame Reconstruction in Office Lobby Dataset

Multi-Modal Frame Reconstruction

Objective. The main objective of these experiments is to evaluate the quality of the reconstructed

RGB frames from 3D point clouds.

Performance Measure. Similar to the metrics used in the multi-sensor reconstruction task, we use

PSNR (Peak Signal-to-Noise Ratio) and SSIM (Structural Similarity Index) to evaluate the multi-

modal frame reconstruction performance . For both of these metrics, higher value indicates better

performance. We cannot compare our results with [96] since they do not provide any quantitative

analysis.

Experimental Setup. We use the ‘object’ subset from the KITTI dataset. For training, we use 7481

training pairs of camera images and LIDAR point clouds and for testing we use 7518 testing pairs as

provided in the dataset. The network is trained on a NVIDIA Tesla K80 GPU.

Quantitative Evaluation. We achieve a PSNR value of 10.31 and an SSIM value of 0.21 on the test

set of KITTI ‘object’ subset.
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Figure 4.9: Some example results from Kitti Dataset.

Qualitative Evaluation. Some example reconstructed RGB frames, ground truth and corresponding

3D point clouds with upsampling are shown in Fig. 4.9.

4.5 Conclusions

In this work, we proposed an adversarial learning framework for frame reconstruction

in multi-camera scenario when one or more frames are missing. We learned the representation

of the missing frame conditioned on the past and future frames within that camera as well as the

corresponding frames in other overlapping cameras using conditional GAN and merged them together

using a weighted average. We used the conditional GAN for another important application which

is multi-modal frame reconstruction, where we learn a mapping between 3D point cloud data from

mobile terrestrial LIDARs and RGB images from cameras.
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Chapter 5

Exploiting Early Prediction for Scalable

Video Annotation

Abstract

State-of-the-art video annotation approaches are based on the assumption that the annotator

has zero latency for looking up the correct category of label and has to watch the whole video

segment. However, in reality getting the correct label from thousands of categories is time consuming

and a video segment can be very long. In spite of a lot of interest in this area, two open challenges

remain. First, methods need to scale with growing number of video categories. Second, the time

spent in watching a video needs to be considered in evaluating the performance of an annotation

method. Our proposed method not only reduces the look up time latency, but also minimizes the

number of frames required to watch for labeling, hence, the overall annotation cost is reduced.

Initially, the most informative queries are selected using label propagation on a similarity graph
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and sent to the annotator for annotation. We perform early prediction of the activity labels given

the initial frames and dynamically provide suggestions to the annotator in order to reduce the time

required for annotation. The annotator provides the correct labels to the queries by taking help from

the suggestions without watching the entire video. These newly labeled instances are then used to

incrementally update the early prediction model. Our annotation framework achieves comparable

recognition performance with the state-of-the-art methods for both ActivityNet1.2, and UCF101

datasets by watching only 7% and 16.9% of the training frames respectively and considering only

the top predicted category.

5.1 Introduction

Content-based video classification is a growing field of research due to its various practical

applications such as entertainment, multimedia, security, surveillance, etc. Enormous amount of

these videos are being generated everyday. Learning a classification model using them requires

extensive annotation effort. Data annotation is an expensive task and video data annotation is even

more expensive due to the huge number of frames to watch. Moreover, annotation becomes more

time consuming due to the higher lookup time of the labels when the number of video categories

increases. All these factors contribute to increased video annotation cost, which is a problem for

scaling up to large video databases. In this work, we propose a scalable video annotation framework

that will reduce the annotation time and cost by a significant margin.

Recent approaches for video annotation [10, 18, 107, 108, 147, 152] overlook the problem

of long viewing time of the videos during annotation. When a query video is selected for annotation,

77



Which label from hundreds of categories?

Pr
ob

ab
ili

ty
 S

co
re

s
V

id
eo

 C
lip

Top 5 suggestions –
-- Green is the ground 
truth
-- Reds are not correct.

To
p

Su
gg

es
tio

n

Skate BoardingSkiing Biking

How long should I watch?

Figure 5.1: The top row shows some frames collected from a video clip that contains a human activity,
whereas the bottom row contains a plot of probability scores of activity categories corresponding
to that clip. The video segment may belong to one of the hundred categories. It is evident from the
plots that after only a few frames the ground truth class is dominant and the ground truth belongs to
one of the top 5 suggestions.

it is sent to the annotator assuming that the annotator will provide a label instantaneously irrespective

of the length of the video. However, a video can be hundreds or thousands of frames long and the

annotation will be expensive if we do not consider this watching time into our problem formulation

and performance evaluation. Most of the recent approaches assume that the annotator has to watch

the whole video in order to provide the correct label. However, in many cases, few early frames

contain distinguishing features which is enough to infer the correct label as shown in Figure 5.1.

Moreover, number of video categories also increases with the growing amount of videos.

For example, UCF101 [126], ActivityNet1.2, ActivityNet1.3 [9], Kinetics400 [55], and YouTube-

8M [2] have 101, 100, 203, 400, and 4800 activity categories respectively. A video annotation

framework has to be scalable in terms of number of activity categories. Given a video to label, an

annotator has to lookup a large collection of categories to find the correct label. This process is time
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Figure 5.2: Overview of our proposed framework. The framework can be divided into two parts-
query selection using a semi-supervised active learning model and early suggestion generation for
those queries using an LSTM network. Please refer to Section 5.1.1 and Section 5.3 for details.

consuming and prone to mistakes when the collection is large. It is also impossible for the annotator

to memorize every category. Active learning has been proposed recently [26, 43, 46, 77] to reduce the

annotation cost. These methods leverage upon the ability of active learning to reduce the number of

videos that need to be labeled; however, they do not address the issue of how much time the annotator

needs to watch the video for, and the number of categories that he/she needs to consider.

In this work, we aim to solve these two challenges of video annotation. Some previous

works [63, 74] performed early label prediction based on few initial frames or in the presence of

missing frames. We propose to use an LSTM-based recurrent neural network to continuously predict

the labels early after watching few initial frames. The annotator can choose from these labels when

he/she is confident about a suggestion, and once he/she does, the annotation is done. Thus, only a

small part of the video needs to be watched and the annotator does not have to remember all the

labels. We embed our proposed approach within an active learning framework, which minimizes the

number of videos that are provided to the annotator, i.e., query selection, in the first place. However,

active learning is not the main contribution of this work, and the proposed method could be used
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with any other query selection approach.

5.1.1 Overview and Main Contributions

A detailed overview of our proposed framework is shown in Figure 5.2. Our goal is to

reduce the amount of manual labeling and the time spent in watching the videos during annotation.

Given a set of unlabeled and some labeled training instances, we build a graph based on Gaussian

similarity measure. We select the most diverse set (the minimum amount required to efficiently train

the LSTM network) for initial labeling using a sparse coding based technique [19]. We apply label

propagation and transductive inference on this graph to infer on the unlabeled set. Once we perform

the label propagation on the graph with few labeled instances, we compute the entropy of the rest

of the unlabeled instances. This entropy is the measure of the uncertainty of the current model on

the unlabeled set. We select top k highly uncertain training instances as the queries to be labeled

by the human annotator. This procedure is performed iteratively until the entropy of the remaining

unlabeled data goes below a certain threshold.

Upon receiving these queries, the human annotator starts to watch the long video segment

in order to provide the label. We use an LSTM network trained on the labeled training set to generate

early suggestions so that the annotator does not have to watch the entire video. The LSTM network

has the capability to take the sequential frames as input and produce non-sequential suggestions over

time. Based on the output probability distribution of the categories, we show top k categories as the

suggestions along with their probability scores. The annotator provides the correct label by taking

help from the suggestions when he/she is confident about any of the top k suggestions. These labeled

instances are then used to incrementally update the label prediction model so that it can provide

better suggestions and similar instances are not selected as queries in future iterations.
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Thus, the main contributions of this work can be summarized as follows:

1. We propose a novel approach for reducing video annotation cost by incorporating an early

prediction network in an active learning framework. We address the scalability issue for video

annotation since our method scales quite efficiently with the number of video categories and

significantly reduce both the amount of manual labeling and the long watching time of the

videos.

2. We achieve comparable recognition performance with the state-of-the-art methods for both

ActivityNet1.2, and UCF101 datasets by watching only 7% and 16.9% of the training frames

respectively and considering only the top predicted category.

5.2 Related Works

Video Annotation. Research work in [147] proposes a video annotation framework based

on crowdsourcing. It also uses the manually labeled key frames to leverage more sophisticated

interpolation strategies to maximize performance under constrained budget. Video annotation method

proposed in [108] simultaneously classifies concepts and models correlation between them in order

to perform efficient annotation. Research work in [152] proposes a video annotation framework that

learns multiple graphs for different important key factors. In [18], they annotate near-scenes sharing

the same concept or semantic meaning. [10] uses an active learning framework for temporal action

localization. However, these approaches are not scalable with the number of video categories. We

address this scalability issue in our proposed framework.

Activity Recognition and Prediction. Visual feature-based activity recognition ap-

proaches can be classified into three broad categories such as interest point-based low-level local
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features, human tracking and pose-based mid-level features, and semantic attribute-based high-level

features based methods. The survey article [104] contains more detailed review on feature-based

activity recognition. Recently, activity recognition methods have been benefited from the use of

deep learning techniques such as convolutional two-stream network [33], R*CNN [37], differential

RNN [139], Temporal Segment Network (TSN) [151], Two-Stream Inflated 3D ConvNet (I3D) [12]

etc. Research works in [74] and [63] perform early prediction of activity labels, whereas LSTM-based

RNN is used for early detection of activities in [83]. Some recognition approaches [70, 160, 168]

use context information as well. In [3, 13, 85], unobserved activity labels are predicted without any

observation. However, most of the above mentioned methods involve batch-learning algorithms

requiring all of the training instances to be present and labeled beforehand. In contrast, we combine

early prediction with active learning in order to reduce manual effort for video annotation.

Active Learning. Active learning has been successfully applied to many computer vision

problems including tracking [148], object detection [142], image [6] and video segmentation [32],

and activity recognition [42, 43, 44, 45, 46, 100]. To the best of our knowledge, none of the active

learning methods designed for video annotation takes into account the latency for looking up the

correct category of label or the time spent in watching the entire video.

Long Short-Term Memory (LSTM) Network for Video Analysis. LSTMs have been

popular to analyze temporal information because of the ability to handle long-term dependency. For

video analysis, Donahue et al. take advantage of LSTM-based RNN for visual recognition with large

scale labeled data [24]. Du et al. build an RNN in a hierarchical way to recognize actions [27]. [85]

and [3] use LSTM-based networks for predicting unobserved activity labels. Here, we exploit an

LSTM-based recurrent neural network for generating early suggestions for the annotator.
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5.3 Approach

In this section, we discuss about different parts of our proposed framework in details. We

start with explaining different components of the active learning framework used for query selection

for the sake of completeness. Then we discuss our proposed LSTM-based early prediction network

which is incorporated in this framework to reduce manual labeling effort.

5.3.1 Query Selection using Active Learning

This semi-supervised active learning method includes similarity graph formation, label

propagation, initial sample selection and entropy-based query selection.

Similarity Graph Formation

We use both of the labeled and the unlabeled videos to construct a graph based on their

feature similarity [7, 22]. We rely on this similarity of data to infer about the label of the unlabeled

data using only the labeled data. The geometry can be defined by a graph G = (V,E) where the

nodes V = {1, . . . , N} represent the activity instances, both labeled and unlabeled, and the edges E

represent similarity between them. These similarities are given by a weight matrix W, such that Wij

is non-zero if xi and xj are neighbors. We compute the weight matrix using the following Gaussian

kernel -

Wij = exp(−γ‖xi − xj‖2) (5.1)

Label Propagation

After constructing the graph, some of its nodes are initialized with ground truth labels.

The criterion behind choosing these nodes is discussed in the next section. At any time, we have
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three types of nodes - nodes belonging to the labeled training set, nodes belonging to the unlabeled

training set, and nodes belonging to the unlabeled test set. We want to smoothly propagate the

learned information and do not want a query to be selected for manual labeling that is similar to the

previous queries. For this purpose, we use label propagation which is very efficient in propagating

new information and performing more accurate inference.

Given the graph G and some labeled nodes, each node starts to propagate its label to its

neighbor and the process is repeated until convergence or maximum allowed iterations. We use

a label spreading algorithm similar to Zhou [165]. At each step, a node i receives a contribution

from its neighbors j (weighted by the normalized weight of the edge (i, j)), and an additional small

contribution given by its initial value. The detailed algorithm [7] is given as follows,

Algorithm 1 Label spreading
Compute the affinity matrix W using Eqn. 5.1
Compute the diagonal degree matrix D, Dii =

∑
jWij

Compute the graph Laplacian L = D−
1
2WD−

1
2

Initialize Ŷ (0) = (y1, . . . , yl,−1,−1, . . . ,−1)
Iterate Ŷ (t+1) = αŶ (t) + (1− α)Ŷ (0) until convergence
Label point xi by the sign of Ŷ (t+1)

i

Initial Sample Selection

We leverage sparse coding technique instead of naive approaches like random or serial

selection, for selecting the training samples to be initially labeled. This ensures that the graph is

initialized with the optimal set of labels and during first few iterations, higher test accuracy can be

achieved using fewer manually labeled examples. We select the minimum amount of diverse training
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instances required to efficiently train the LSTM network [19]. The problem can be formulated as,

min ‖X −XZ‖2F (5.2)

s.t. ‖Z‖2,1 ≤ τ,

where, X = {xi ∈ Rd, i = 1, . . . , N}. Each xi represents the feature descriptor of an activity

instance. N denotes the number of instances in the batch. Z ∈ RN×N is the sparse coefficient matrix

and ‖Z‖2,1 =
∑N

i ‖zi‖2 is the row sparsity regularizer, i.e., sum of l2 norms of the rows of Z. τ is

the parameter for the level of sparsity. Using Lagrange multipliers, optimization problem in 5.2 can

be written as,

min
1

2
‖X −XZ‖2F + λ‖Z‖2,1, (5.3)

where, λ is the trade-off parameter. We implement the algorithm using an Alternating Direction

Method of Multipliers (ADMM) optimization framework [8].

Entropy-Based Query Selection

Given the set of labeled and unlabeled videos, the goal is to select a subset of the unlabeled

videos which are most informative for the current model. Here, we consider entropy or model

uncertainty as the measure of informativeness. We then send these videos to the annotator to watch

and label. Entropy of an instance xi is given by

h(xi) = −
∑
c∈C

pc log(pc), (5.4)
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where, C is the set of class labels and pc is the probability of class c. We select a subset S of size k

from the unlabeled set U = {xi}.

argmax
S⊂U ∧ |S|=k

H(S), (5.5)

where, H(S) is the entropy of a set S, which can be computed as follows,

H(S) =
∑
xi∈S

h(xi) (5.6)

Our problem setting motivates us to use a statistical reasoning known as transductive

inference [137] which is capable of utilizing the abundance of unlabeled examples along with

the labeled ones. Given the similarity graph, we perform transductive inference on the unlabeled

examples and compute entropies. We select some training examples with higher entropy and send

them for manual labeling. Once we get the label, we continue this process until the entropy of the

system is below a certain threshold.

5.3.2 Early Prediction

In this work, the LSTM network predicts the labels of the query videos from few initial

frames and provide suggestions to the annotator. It is shown from the experiments that, using this

approach, annotation can be performed with significantly reduced budget since the annotator can

decide the label before watching the entire video once he/she is confident about any of the top

suggestions made by the early prediction network. At each time step, the LSTM network predicts the

label of the current query video using the features from the frames it has seen so far and this can be

performed in real time.
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Sequential Suggestions

The goal of the early prediction network is to decrease the viewing time as well as the

number of possible categories the annotator has to look through. After each iteration of label

propagation, the selected queries are sent to both the annotator and the LSTM network. We use the

features extracted from a sequence of video frames as the input to the LSTM network and in the

output the network produce a probability distribution of the classes as shown in Figure 5.3. For the

first iteration, we use an LSTM network trained only on the initially labeled training samples in the

similarity graph. After that for each iteration, we dynamically update our LSTM model with more

training data as more training samples get labeled by the annotator.

As the annotator starts watching a video, the network starts predicting the label of that

video and these prediction scores are generated as a function of time. Over time, the network gets

access to more and more features extracted from the increasing number of frames and the predictions

become more accurate. The annotator receives these suggestions and can stop watching the video

once he decides on one of the top k labels. The network not only helps the annotator to reduce

viewing time but also enables him to look through only k possible categories instead of hundreds

or thousands of categories. However, there is a trade-off between these two which is analyzed in

Section 5.4. This is because if the annotator wants to rely on a prediction made by the network at an

earlier stage, he/she might have to look at a higher number of possible candidates to make sure that

the annotation is correct. Whereas when the annotator decides to watch the video for a longer time,

the prediction scores become much more accurate and a smaller value of k can guarantee that the top

k prediction contains the correct label.
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Figure 5.3: Features collected from the video frames are provided as the input to the LSTM network.
The network generates prediction of the activity classes at each time stamp. The top k predictions
are shown to the annotator as suggestions.

Model Architecture and Training

We choose an LSTM-based early prediction network since LSTMs [48] are suitable to

incorporate long-term sequential dependency and do not suffer from the vanishing and exploding

gradient problem common in traditional RNNs. In this framework, the LSTM network sequentially

processes the incoming video frames and continuously generates top k prediction scores. We

empirically find that a two-layer LSTM network with 256 nodes in each layer followed by a Dropout

layer [128] with a probability of 0.2 after each layer performs better than any other architectures.

In order to learn the suggestions from the feature sequences, we use I3D features [12] of

dimension 2048 as the input to the network as shown in Figure 5.3. Maximum sequence length for
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an activity segment is T . We either zero pad or cut sequences if they are smaller or bigger than T .

We employ a many-to-many sequence learning strategy. That means, if an input activity segment

has the representation of size T × 2048, the target label is of size T × C, where, C is the number of

classes. In the output layer, we use softmax activation function in the logistic regression nodes and

use the cross-entropy loss function which is defined as follows:

L(X,Y) = − 1
n

∑n
i=1

∑c
j=1 1(y

(i) = j)

× log p(y(i) = j|x(i)) (5.7)

Here, X = {x(1), ...,x(n)} is the set of input feature vectors from the training videos, Y =

{y(1), ..., y(n)} is the corresponding set of labels, and j = {1, ..., c} is the set of class labels. 1(.) is

an identity function. For a particular training instance, x(i) represents the activity features extracted

from that video. We use RMSProp [133] as the optimizer with an initial learning rate of 0.001 and

Keras [17] with Tensorflow [1] back-end for implementing the network.

Test Case Scenario

When a query video is sent to the network, it starts processing the incoming video frames

sequentially and generates the top k suggestions. The annotator has to limit either the number of

frames he/she wants to watch or the number of suggestions he/she wants to look into. If k is fixed,

then the annotator will continue watching until he/she is confident about one of the top k predictions

made by the network and if the number of watched frames is fixed then the annotator can decide on a

higher value of k to get the correct label. The overall framework is portrayed in Algorithm 2.
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Algorithm 2 Overall framework
Input: Training activity segments, Al = {ali} and testing activity segments, Au = {aui }
Output: Accuracy on Au, the most informative queries, and suggestions generated by LSTM
network L
Extract motion and appearance features for the activity segments in Al and Au.

We use an off-the-self I3D model.
It generates 2048 dim. features for each 16 frames.

Use above I3D features to train L (Sec. 5.3.2).
Use L to generate top suggestions for the annotator.

Construct a graph, G = (V,E) (Sec. 5.3.1)
V contains activities from both Al and Au.
Use pre-computed features in the nodes.
Use Gaussian similarity for the edge weights.

Give labels to some of the nodes (k) belongs to Al.
Use sparse coding to select diverse set. (Sec. 5.3.1)

while Entropy (Al) > ε do
Run label propagation (Algo. 1) on G to compute -

Marginal probabilities of the nodes Al and Au.
Compute the entropies of the nodes.

Perform Query selection on G (Sec. 5.3.1)
Select the most informative set of size k.

Send the k queries to annotator for manual labeling.
Generate the suggestions from L. (Sec. 5.3.2)
Send the suggestions along with the queries.

Give labels to these k nodes belongs to Al in G
end while
Compute and report the accuracy on Au.
Report the amount of manual labeling and effort.

5.4 Experiments

Dataset - ActivityNe1.2: ActivityNet [9] is a large-scale video benchmark for human

activity understanding. This dataset has 4819 training videos, 2383 validation videos and 2480

test videos. ActivityNet version 1.2 provides samples from 100 activity classes with an average of

1.5 temporal activity segments per video. These videos were collected from Youtube and have the

properties of being “wild.”
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Dataset - UCF101: UCF101 [126] is an action recognition dataset collected from YouTube,

having 101 action categories and 13320 videos. With the presence of large variations in camera

motion, object appearance and pose, object scale, viewpoint, cluttered background, illumination

conditions, etc, it is one of the most challenging datasets. The videos in 101 action categories are

grouped into 25 groups, where each group consists of 4-7 videos of an action.

Features: We use I3D features of size 2048 for each sixteen frames extracted from the

Kinetics pre-trained I3D network [12].

Experiment Setup and Objectives: We use the train-test split provided with the dataset

for UCF101. It has 9537 training instances and 3783 testing instances. For ActivityNet, we use 4819

training videos and 2383 validation videos as used in the literature [151]. The network is trained on

a NVIDIA Tesla K80 GPU.

We use Scikit-Learn [101] for graph formulation and label propagation. We use a γ value

of 0.1 in the label spreading kernel and a τ value of 40 for the level of sparsity. Inference on this

graph provides us entropies and predicted labels of all of the unlabeled nodes. Then, we perform

active learning on the graph in order to select the nodes for manual labeling based on the entropy as

discussed in Section 5.3.1. We preform these operation in an iterative manner until the entropy of the

entire set reaches to a minimum level. Starting with an LSTM network trained on the initially labeled

training videos, we dynamically update our LSTM model with more training data as more training

samples get labeled by the annotator. For an activity segment, the network generates a sequence of

probability scores over time. As the annotator watches the video segment, these suggestions pop

up for the corresponding frame number. This allows the annotator to pick up the correct label in

the shortest possible time. If none of the suggested labels appear to be correct by the annotator, the
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annotator can provide a new label. Upon sufficient number of such examples, we can incrementally

train the model to handle such cases in future. We simulate the decision of the real human annotators

using ground truth labels and update the model with new labeled training sample when any of the top

k suggestions made by the LSTM matches the ground truth.
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Figure 5.4: The bar charts show the reduction of human annotation effort with respect to the accuracy
over test set for ActivityNet and UCF101. (a), and (b) corresponds to ActivityNet and UCF101
respectively where k = 1, i.e., the annotator is looking at the top prediced category only. The yellow
bar represents the total number of frames in the training set, the green bar represents the percentage
of training frames sent to the annotator and the purple bar represents the percentage of training
frames the annotator needs to watch for correct annotation. This figure is best viewed in color.
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Figure 5.5: These plots shows the trade-off between the percentage of frames needed to watch and
the number of categories the annotator has to look at in each annotation step for ActivityNet and
UCF101. This figure is best viewed in color.

We conduct a number of experiments in order to show the effectiveness of the proposed

framework for video annotation. Through our experiments, we will show that our framework not only

reduces manual effort by a huge margin but also matches state-of-the-art approaches in large-scale
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activity recognition. The main objectives are as follows,

1. To show how efficient our framework is in reducing the amount of time required for labeling

(Figure 5.4) which is the main contribution of the work.

2. To show how the percentage of frames watched and the number of categories the annotator

needs to look at vary (Figure 5.5) in each iteration and the trade-off between them.

3. To show how efficient our framework is in terms of recognition performance (Figure 5.6(a),

(b), (d), and (e).

4. To show how effective LSTM network is in performing early prediction (Figure 5.6(c) and (f).
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Figure 5.6: Four of these plots illustrate accuracies (a,d) and average entropies (b,e) of two datasets
during label propagation. At each iteration, we find the k most informative instances, provide labels
to them, perform label propagation again, and report accuracies and entropies. Plots (c) and (f)
illustrate the effectiveness of suggestion generation using the early prediction network. This figure is
best viewed in color.

Reduction of Human Effort: One of the main contributions of the proposed framework

is its ability to reduce the human effort and thus annotation cost by a great margin in terms of both

number of labels and viewing hours. The bar charts in Figure 5.4 illustrate how much cost reduction
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can be achieved as a function of test set accuracy for ActivityNet and UCF101. For each bar chart,

the Y-axis represents the number of frames belonging to the training set, while X-axis represents the

accuracy over the test set. The huge gap between the green and the purple bar shows how the early

prediction network reduces the viewing time to a great extent maintaining the same test accuracy.

The interpretation of the bars is as follows - for example if we look at the first bar in Figure

5.4(a), 49.8% of the total training frames are sent to the annotator, but he/she has to watch only

3.3% of the training frames and look at the top prediction (k = 1) to annotate the next set of queries.

This results in 83.5% accuracy on the test set. For the next bar, 200 more data have been sent for

annotation which increases both the number of frames sent to the annotator and the number of frames

needed to be watched. After this annotation, 83.6% test accuracy is achieved in the next iteration

of label propagation. In the last bar, by labeling 100% of the training frames and watching only

7% of them, we can achieve 84.5% accuracy on the test data. This is a huge margin for annotation

cost reduction, since the annotators normally charge by hour. Also huge time is saved as the lookup

time latency is reduced since the annotator has to look at only the top predicted category instead of

the long list of 100 labels for annotation. The bar charts in Figure 5.4(b) illustrate how much cost

reduction can be achieved as a function of test set accuracy for UCF101 when looking at the top

predicted category.

In Figure 5.5(a) and (b), we show the trade-off between the percentage of frames watched

and the number of categories the annotator needs to look at in each iteration for ActivityNet and

UCF101 respectively. The Y-axis represents the percentage of frames needed to watch, while X-axis

represents the number of categories the annotator has to look at (each curve corresponds to each

annotation step with a fixed test accuracy). The annotator has to watch a higher number of frames if
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he/she chooses to look at fewer number of categories and vice versa. For example, in 5.5(a), at the

final annotation step, when all training data are manually labeled and the test accuracy is 84.5%, the

annotator has to watch 5.7%, 5.8%, and 6.1% of the training frames when decided to look at top 7,

top 5, and top 3 predictions respectively.

Recognition Performance: The plots in Figure 5.6(a) and (d) shows the recognition

accuracies over test set. The X-axis represents the amount of labeled instances so far at each iteration,

whereas, the Y-axis represents the accuracies. For ActivityNet (Figure 5.6(a)), we have 4819 training

and 2383 testing videos. We initially select k = 2400 videos belonging to the training set using

sparse coding technique as discussed in Section 5.3.1 required to efficiently train the LSTM network.

At each iteration, we select additional k = 200 videos for manual labeling. It is evident from the

plots that as we add more and more labeled data, accuracy increases over time. Our method shows

comparable performance with the state-of-the-art method Temporal Segment Network (TSN) [151]

(86.3% mAP on the test set) by achieving an accuracy of 84.5% and mAP of 86% on the test set

when it uses all of the manually labeled training instances. As we are giving labels to more and more

training nodes, the plots become saturated.

For UFC101 (Figure 5.6(d)), we have 9537 training and 3783 testing videos. We initially

select k = 4600 videos belonging to the training set using sparse coding technique as discussed in

Section 5.3.1. At the beginning, only these videos are labeled and rest of them are unlabeled. At each

iteration, we select additional k = 200 videos for manual labeling based on the method described

in Section 5.3.1. Our method shows comparable performance with the state-of-the-art method [12]

(98% accuracy on the test set using I3D features) by achieving an accuracy of 95.1% and mAP of

96% on the test set when it uses all of the manually labeled training instances.
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Reduction in System Entropy: While the experimental setup remains same, the plots

in Figure 5.6(b) and (e) shows the overall reduction of system entropy as we add more and more

labeled data for both of the datasets. As expected, the entropy of the system decreases as we add

more labeled videos. Please note that these curves monotonically decrease instead of being saturated

as the accuracy vs. labeling curves because there is no exact correlation between average entropy

and accuracy. Let us consider two separate examples where the final prediction is correct. In one

case, the entropy can be lower because the top class probability is very high. For another, even with a

higher top class probability the entropy can be higher if the top class probability is close to those of

the other classes. In both cases the model is accurate but the entropy is very different.

Early Prediction Performance: We conduct experiments to investigate the effectiveness

of our suggestion generator as shown in Figure 5.6(c) and (f) for ActivityNet and UCf101 respectively.

X-axis shows the fraction of frames watched, wheres Y-axis show the Top k accuracies, where

k = 1, 5, 10, 15, and, 20. We see that the plots get saturated after a small percentage of the frames

have been watched. For ActivityNet, top 10 suggestions are accurate in 80% cases even before

watching 33% of the frames. For UCF101 top 10 suggestions are accurate in 95% cases even before

watching 25% of the frames. Please not that these plots show results on the test set when the LSTMs

are trained on the entire training set.

5.5 Conclusions

In this work, we presented a novel video annotation approach by taking scalability and

viewing time into account. We used a semi-supervised active learning technique with an LSTM-

based early prediction network. We selected the most informative queries using label propagation
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and calculated the entropy of the nodes. Then the LSTM-based early prediction network is used

for generating label suggestions which help to reduce manual effort significantly. Experimental

evaluation shows that our framework reduces the annotation cost by a significant margin.
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Chapter 6

Conclusions

6.1 Thesis Summary

Near-future prediction in videos is an active research area in the computer vision community

because of its growing importance in real-life application which require anticipatory response. The

future can be represented in terms of labels, captions, frames etc. each one having its own strength

and weakness. In this thesis, we explore several prediction tasks (i.e., label prediction, starting time

prediction, captioning, and multi-sensor multi-modal frame reconstruction) focusing on developing

efficient data driven solutions. Since all of these tasks require huge amount of labeled data which

is expensive in terms of annotation time and cost, we also explore an efficient solution for scalable

video annotation.

In Chapter 2, we presented an LSTM-based deep network leveraged on different context

attributes from the observed portion of the video to jointly predict the labels and starting times

of future unobserved activities. In Chapter 3, leveraged on our label prediction framework, we

presented a sequence-to-sequence learning-based approach using an encoder-decoder LSTM pair

98



for captioning near-future activity sequences. In Chapter 4, we proposed conditional Generative

Adversarial Network (cGAN) for multi-sensor multi-modal frame reconstruction. Finally, in Chapter

5, we presented an early prediction framework which can be combined with any active learning

framework so that video annotation becomes scalable. Experimental results show that our methods

achieve significant performance gain over existing approaches and baselines in standard benchmark

datasets.

6.2 Future Research Directions

6.2.1 Prediction for Planning and Navigation Strategy

In Chapter 2, we proposed an LSTM-based deep network for jointly predicting the labels

and starting times of future unobserved activities using observed context information. In Chapter

3, we proposed a sequence-to-sequence learning-based approach for captioning near-future activity

sequences. It would be interesting to extend our approaches for trajectory prediction in path planning

and navigation strategy. One approach could be incorporating complex dynamic models in our

existing framework for such purpose. The solution would have meaningful impact in applications

like autonomous navigation and active sensing.

6.2.2 Transfer Learning for Generative Models

Transfer learning is widely used for discriminative models using fine-tuning. However,

to the best of our knowledge, there has been only one work [154] which focus on transfer learning

for generative models. Successful generative models are data-hungry and require huge amount of

data for efficient training which is expensive to obtain. These models suffer a significant loss in
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performance or collapse completely when asked to perform a new task or provided with a new unseen

dataset. Transfer learning for generative models can reduce convergence time and improve the quality

of generated samples when target data is limited. In Chapter 4, we proposed conditional Generative

Adversarial Network for multi-sensor multi-modal frame reconstruction. One interesting extension

would be to explore transfer learning approaches for such generative models using pre-trained GANs

especially when there is a lack of sufficient training images.

6.2.3 Continual Learning for Generative Models

Another challenging future direction of work is to explore continual lifelong learning

approaches for generative models. While learning a new task, neural networks have the tendency

to overwrite the parameters necessary to perform well at a previously trained task. This chronic

phenomenon where training for a new task catastrophically degrades the system’s performance

on previously learned tasks is known as catastrophic forgetting [34]. One solution is to replay

all former data but this requires large memory and not practical since access to previous data is

limited in real life applications. Continual learning facilitates learning from a data distribution that

changes with time and thus retains important information. Although there have been a number of

works on continual learning for discriminative models based on rehearsal, regularization, activations

etc. [57, 62, 76, 78, 80, 112, 115], it has a lot of potential to be explored for generative models

[73, 95, 110, 124, 125, 156]. This can be an interesting future direction of our work since generative

models have been proven to be effective for solving many popular computer vision problems.
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