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Abstract

Transforming growth factor β (TGF-β) signaling either promotes or inhibits tumor formation and/or

progression of many cancer types including squamous cell carcinoma (SCC). Canonical TGF-β
signaling is mediated by a number of downstream proteins including Smad family proteins.

Alterations in either TGF-β or Smad signaling can impact cancer. For instance, defects in TGF-β
type I and type II receptors (TGF-βRI and TGF-βRII) and in Smad2/3/4 could promote tumor devel-

opment. Conversely, increased TGF-β1 and activated TGF-βRI and Smad3 have all been shown to

have tumor-promoting effects in experimental systems of human and mouse SCCs. Among TGF-β/
Smad signaling, only TGF-βRII or Smad4 deletion in mouse epithelium causes spontaneous SCC in

the mouse model, highlighting the critical roles of TGF-βRII and Smad4 in tumor suppression.

Herein, we review the dual roles of the TGF-β/Smad signaling pathway and related mechanisms in

SCC, highlighting the potential benefits and challenges of TGF-β/Smad-targeted therapies.
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Introduction

In mammals, transforming growth factor β (TGF-β) signaling has
been extensively studied and is known to impact diverse cellular
processes including differentiation, proliferation, migration, extra-
cellular matrix remodeling, and apoptosis, all of which could be
involved in various biological events including embryogenesis, immunity
regulation, fibrosis, wound healing and tumor progression [1]. Typically,
TGF-β ligands bind to TGF-β type II receptor (TGF-βRII), which can
phosphorylate TGF-β type I receptor (TGF-βRI). The binding of TGF-
βRII and TGF-βRI propagates signaling by phosphorylating cytoplasm
mediators, Smad2 and Smad3, which then complex with Smad4 and
translocate into the nucleus. In the nucleus, the phosphorylated Smad2/3–
Smad4 complex binds to specific DNA sequence known as Smad binding
elements (SBE), subsequently regulating transcription of TGF-β target
genes [2] (Fig. 1A).

The functions of the TGF-β signaling pathway in cancer
suppression and progression have also been extensively studied.
Studies regarding the suppressive role of TGF-β signaling in can-
cers suggest that it could inhibit tumor formation mainly through
inhibition of proliferation and by inducing growth arrest and
apoptosis [3,4]. However, TGF-β also acts as a potent inducer of
angiogenesis, inflammation, epithelial–mesenchymal transition
(EMT) and immune suppression thereby promoting tumor pro-
gression and metastasis. Furthermore, depletions or mutations in
genes encoding TGF-β receptors and Smads can cause spontan-
eous tumor development in mouse models and correlate to poor
survival in human cancer [5,6]. However, novel molecular targets
of TGF-β signaling that mediate tumor suppression and promo-
tion effects, especially the ones that may serve as druggable tar-
gets, still remain to be identified.
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Squamous cell carcinomas (SCC), as one of the most common
cancers, mainly derives from stratified squamous epithelial cells in the
upper digestive track and skin, causing more than 1 million deaths
each year worldwide [7]. This review will focus on the paradoxical
roles of TGF-β/Smad signaling in SCC in an effort to highlight the
consequences of the signaling and how a better understanding of
these outcomes may be utilized to design more targeted therapeutic
approaches for patients with SCC.

TGF-β1 and Its Roles in SCC

TGF-β1 expression in SCC

TGF-β1 is a potent inhibitor of epithelial proliferation. Hence, it was
unexpected when Akhurst et al. identified that TGF-β1 was overex-
pressed in chemical carcinogen-induced mouse skin SCCs [8]. Further
studies from her laboratory have shown that TGF-β1 exhibits biphasic
actions in murine skin SCC: suppressing the benign tumor growth but
enhancing malignant conversion [9]. By creating a transgenic mouse
model in which TGF-β1 can be inducibly expressed at discrete stages
of skin carcinogenesis, we have further defined that the tumor suppres-
sion and promotion effects are stage-specific: inducing TGF-β1 overex-
pression prior to tumor formation suppresses benign papilloma
formation [10], whereas inducing TGF-β1 overexpression after benign
tumor formation promotes malignant transformation and metastasis
[11]. We have also found that in human head and neck SCCs
(HNSCCs) and skin SCCs, TGF-β1 is also overexpressed in ~78% and
52.9% of specimens, respectively [12,13]. Similarly, other laboratories
have also identified elevated expression of TGF-β1 in esophageal SCC
(ESCC) (Table 1). However, Logullo et al. argued that increased TGF-
β1 expression exhibited no significant correlation with clinicopatholo-
gical parameters in HNSCC [14]. Given the stage-specific effects of
TGF-β1 found in experimental models described above, attempts of
using TGF-β1 as a prognostic marker would need careful considera-
tions for the stages of cancer samples being examined.

Autocrine and paracrine effects of TGF-β1 and the

tumor suppressive roles/mechanisms in SCC

Studies described above have revealed that the functions of TGF-β1
largely depend on tumor stage; it predominantly acts as a tumor

suppressor during the early stage of tumorigenesis, while exerts a
promotive role at the late stages of tumor development. During early
tumorigenesis, components of TGF-β signaling pathway such as
TGF-βRII, Smad2 and Smad4 have not yet become depleted or
mutated; thus, endogenous TGF-β1 overexpression exerts a growth
inhibitory effect. In epithelial cells, after the secretion and activation
of endogenous TGF-β1 ligands, the ligands suppressed tumor devel-
opment by inducing cell cycle inhibitory genes including p15InK4b

and p21Waf1/Cip1. Furthermore, the TGF-β1 ligands downregulate
c-Myc expression, and this downregulation is involved in prolifer-
ation inhibition [15,16]. Similarly, the increased TGF-β1 induced by
inhibition of ANRIL (CDKN2B-AS1), a 3.8-kb long noncoding
RNA, augments p15InK4b expression, thus inhibiting cellular prolifer-
ation in ESCC cell lines [17]. Finally, in a tongue SCC study,
endogenous TGF-β1 slightly upregulated Smad4-induced p21 expres-
sion and delayed matrix metalloproteinase-2 (MMP-2) expression to
promote apoptosis and inhibit proliferation of tumor cells [18].
However, we have shown that TGF-β1-induced inflammation in
mouse oral mucosa overrides TGF-β1-mediated growth arrest [12].
Therefore, growth inhibition could not solely explain tumor suppres-
sive effects of TGF-β1 in SCCs. Glick et al. have identified a critical
role for TGF-β1 in DNA damage repair [19], which could be critical
to prevent cancer formation at early stages.

Autocrine and paracrine effects of TGF-β1 and the

tumor-promoting roles/mechanisms in SCC

We have shown that the non-malignant tissue adjacent to human
HNSCC or skin SCC exhibits TGF-β1 overexpression [12,13]. To
understand the role of TGF-β1 in this early stage of SCC carcinogen-
esis, we have generated transgenic mice in which TGF-β1 is overex-
pressed in keratinocytes of the skin or oral cavity [12,20]. TGF-β1
overexpression elicited profound inflammation in the skin and oral
cavity, including the increased secretions of inflammatory cytokines
including IL-1, IL-6, and IL-8 [20]. We have found that dramatic
epithelial hyperplasia and increased expression of IL-1β, tumor
necrosis factor α, and NF-κB are all present in TGF-β1-transgenic
stroma and epithelium [12]. Our data also suggest that through
paracrine signaling to endothelial cells, TGF-β1 transgene induction
resulted in angiogenesis through upregulated expression of ALK1/
pSmad1/5/8 [12]. Increased inflammation and angiogenesis in turn
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Figure 1. Normal and altered Smad4 signaling (A) Canonical TGF-β signaling in normal cells or stromal cells. (B) Smad4 loss in tumor epithelia causes com-

pensatory TGF-β overproduction that signals through Smad2/3 in tumor cells and paracrine TGF-β signaling in stromal cells through Smad2/3/4. TGF-β signaling

can be blocked by a TGF-βRI inhibitor.
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increase keratinocyte proliferation [20]. These mice never develop
spontaneous SCC, suggesting that angiogenesis, profound inflamma-
tion and associated epithelial proliferation are insufficient for SCC
initiation. However, these TGF-β1 effects play an important role in
SCC progression [11]. We have also found that TGF-β1-induced EMT
plays a critical role in early onset SCC metastasis [11]. Additionally,
endogenous TGF-β1 secreted by stromal cells can also facilitate tumor
progression in SCC. For instance, TGF-β1 secreted by cancer-
associated fibroblasts (CAFs) increased matrix stiffness through
activation of Yap1 and MMPs, subsequently facilitating invasion in
OSCC [21,22].

In sum, the studies of molecular mechanisms described above
illustrate that TGF-β1 plays dual roles in facilitating tumor inhib-
ition and promoting tumor progression.

TGF-βRI and Its Roles in SCC

Although TGF-βRI mutation has been detected in ~19% of HNSCC
patients with metastasis [23], its mutation or loss is quite rare in all
cases of human HNSCC overall [24] (Table 1). However, in a study
of human ESCC, ~53.8% of patients exhibited reduced expression
of TGF-βRI, and this reduced expression correlated to depth of inva-
sion, metastasis, and pathological stage [25] (Table 1), illustrating
that TGF-βRI could play a suppressive role in SCC.

To understand the suppressive function of TGF-βRI in tumors,
Yasuyuki et al. have generated a mouse model with conditional
knockout of TGF-βRI in neurons by neurofilament (NF-H) Cre and
found that ~35% TGF-βRI-knockout mice developed SCC in the
periorbital or perianal regions 6 months after birth [26]. However,
these spontaneous SCCs were negative for the neuronal marker
(neuron specific enolase) and did not harbor TGF-βRI deletion, sug-
gesting the SCCs were not derived from TGF-βRI null neural cells
[26]. Instead, it is likely the SCCs were derived from TGF-βRI wild
type skin epithelial cells as the result of crosstalk between TGF-βRI
knockout neurons and epithelial stem cells [26]. In their study, 33%
of SCCs from TGF-βRI-knockout mice exhibited IL-13Rα2 and its
expression might be involved in the tumorigenesis of SCC, probably
enhancing paracrine effects of TGF-β in escaping from immunosur-
veillance [26]. Another study also showed that TGF-βRI depletion in
head and neck epithelia alone is insufficient to initiate spontaneous
HNSCC development but accelerates carcinogen 7,12-dimethybenz
(a)anthracene (DMBA) initiated SCC in mice [27]. Interestingly,
Goudie et al. have found that TGF-βRI mutation causes multiple

self-healing squamous epithelioma, an autosomal dominant skin
cancer characterized by spontaneous regression [28]. Together, these
data indicate that abrogating tumor suppressive effects of TGF-βRI
can contribute to the development of both malignant SCC as well as
benign squamous tumors.

On the other hand, TGF-βRI can also be overexpressed beyond
a physiological level. For example, 80.3% of patients with skin SCC
exhibited overexpressed TGF-βRI [29] (Table 1), and continuous
expression of TGF-βRI correlated with high pSmad2/3 in skin SCC
compared to the surrounding epidermis with the strongest TGF-βRI
expression in tumors on sun-exposed skin [29]. However, to date,
there is not an experimental model to assess the role of TGF-βRI
overexpression in SCC.

TGF-βRII and Its Roles in SCC

The decreased expression and inhibitory roles of TGF-βRII in
human SCC have been identified (Table 1). We have found that
decreased or lost expression of TGF-βRII occurs in 35.3% of human
OSCC on the protein level and in more than 70% of human
HNSCC by mRNA levels [30,31]. The fact that TGF-βRII reduction
occurs only in HNSCCs but not in adjacent mucosa suggests that
loss of TGF-βRII is a relatively late-stage event of SCC carcinogen-
esis. In late-stage OSCC, the E221V/N238I mutation of TGF-βRII
enhanced TGF-β signaling and delayed the internalization of TGF-
βRII, subsequently leading to more invasive phenotypic changes
[32]. To define the role of TGF-βRII in SCC, several mouse models
with keratinocyte-specific TGF-βRII deletion have been established.
In oral keratinocytes with TGF-βRII deletion, we have found no
spontaneous tumor formation in mice, which is consistent with
TGF-βRII loss in human HNSCCs but not in early lesions [31].
These data suggest that TGF-βRII loss in oral keratinocyte is not an
initiation event. Indeed, when we introduced a Kras or Hras muta-
tion in this model as an SCC initiation event, these mice developed
HNSCC [31]. This model represents the first genetically engineered
mouse model with full penetrance of HNSCC. Of note, when TGF-
βRII is deleted in mouse airway epithelial cells, it causes increased
size and number of Kras-initiated lung SCC [33]. Contrary to our
findings, Guasch et al. have shown that K14-Cre/TGF-βRII–/– mice
could develop spontaneous anal and genital SCC derived from the
transition zone between mucosal epithelium of large intestine and
stratified squamous epithelium of anal skin [34,35], suggesting that
such transition zones are uniquely susceptible to tumorigenesis in

Table 1. Expression of TGF-β/Smad signaling components in human SCC

Skin SCC Oral SCC Esophageal SCC References

N/T % N/T % N/T %

TGF-β1 Up 18/34 52.9% 29/79 36.7% 110/258 42.6% [13,14,25,55]
29/80 36.3%

TGF-βRI Up 49/61 80.3% 0/68 0% [29,30]
Down 43/80 53.8% [25]

TGF-βRII Down 19/34 55.9% 36/68 52.9% 23/80 28.8% [13,25,30,53]
71/108 65.7%

Smad2 Up 19/48 39.6% [48]
Down 58/83 69.9% 7/80 8.8% [40,47]

Smad3 Up 19/48 39.6% [48]
Down 4/83 4.8% 2/80 2.5% [40,47]

Smad4 Down 58/83 69.9% 66/108 61.1% 175/258 67.8% [40,53,55]

N/T: number of positive cases in total cases; Up: overexpression in mRNA or protein level; Down: decreased or loss in mRNA, protein or genetic level.
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contrast to the more refractory oral and skin epithelium. These data
illustrate that TGF-βRII loss can be a tumor-initiating event but
exhibits tissue specificity. All these studies support the notion that
TGF-βRII loss promotes SCC progression in vivo, and can also act
as tumor initiator with tissue and temporal specificity.

Mechanistically, we showed that TGF-βRII depletion could
increase the expression of endogenous TGF-β1 secreted by both the
epithelia and stroma, though the increase was more significant in
the stroma [31]. Consequently, the resultant overexpression of TGF-
β1 may increase angiogenesis and inflammation, subsequently pro-
moting tumor progression in HNSCC [31]. Similarly, a mouse mod-
el with TGF-βRII knockdown in airway epithelia also exhibited
increased TGF-β1 ligand expression, enhancing lung tumor develop-
ment through increased proliferation and local inflammation but
without increasing angiogenesis [33]. From these studies, it is clear
that TGF-βRII deletion in keratinocytes causes inflammation during
tumor progression. To further examine its role in inflammation,
Cohen et al. have developed an oral-specific TGF-βRII-mutant mod-
el, and have shown that mutant TP53 might serve as an upstream
repressor of TGF-βRII expression and TGF-βRII depletion in tumor
epithelial cells results in activated NF-κB1/RelA (p50/p65)[36].
Conversely, we have shown that TGF-β1 overexpression activates
NF-κB [20], and increased NF-κB activation in TGF-βRII depletion
tumor cells could be via a mechanism independent of TGF-β signal-
ing. Additionally, TGF-βRII deletion increases tumor cell migration
and invasion in human bronchial epithelial cell line [33]. Further
supporting the suppressive role of TGF-βRII in SCC, and confirmed
by both in vitro and in vivo studies, TGF-βRII ablation in epidermal
keratinocytes, in coordination with oncogenic mutations in Hras,
promotes hyperproliferation and maintains low apoptosis, thereby
leading to destabilized homeostasis and tumorigenesis in stratified
epithelium [35]. In addition, TGF-βRII deficiency also enhances
cell migration and invasion, mainly through integrin-FAK-Src sig-
naling [35]. Furthermore, tumor-initiating stem cells or cancer
stem cells (CSCs) from the anal canal and rectum transition zone
with TGF-βRII loss enhance tumor cell invasion and metastasis in
SCC through de-repression of ELMO1, a RAC-activating guanine
exchange factor specifically located in CSCs of anorectal SCC [34].
Taken together, these data demonstrate that angiogenesis, inflam-
mation, proliferation, apoptosis and tumor cell migration and/or
invasion can be involved in TGF-βRII-deficient SCC initiation or
progression.

Smad2 and Its Roles in SCC

Smad2 is located on chromosome 18q21, near the Smad4 site in the
human genome [37]. Smad2 point mutations are infrequent in
human primary HNSCC and HNSCC cell lines; only one study
reported a Smad2 mutant HNSCC cell line [38,39]. However, we
have shown that ~67% of poorly differentiated skin SCCs exhibit
loss of heterozygosity (LOH) at the Smad2 locus [40]. Similarly, in
another study, Smad2 LOH was detected in 63% of HNSCC cell
lines [41]. Further, 94% and 70% of poorly differentiated human
skin SCCs had a Smad2 reduction in mRNA and protein levels,
respectively [40] (Table 1). These studies suggest that Smad2 LOH
is a common event in pre-transcriptional, transcriptional, and post-
transcriptional levels during the SCC progression. With regard to
the correlation between decreased or loss of Smad2 and clinical
tumor behavior, Smad2 protein loss was most common in poorly
differentiated human HNSCC [39]. Intriguingly, in a study related
to posttranscriptional regulation of Smad2, epigenetically decreased

disabled homolog 2 (DAB2) in SCC cell lines inhibits Smad2 phos-
phorylation and its activation, thereby promoting tumor progression
[42]. Conversely, re-expression of DAB2 in SCC cell lines with DAB2-
downregulation results in renewed growth prohibitive responses to
TGF-β [42]. Taken together, these two studies suggest that DAB2 loss
could act as a switch to transition TGF-β pathway signaling from
tumor suppressive to promoting, and the critical protein for this trans-
ition may be Smad2.

To better understand the role of Smad2 loss in stratified epithelia
in vivo, we have created a model with inducible and keratinocyte-
specific Smad2-knockout mice driven by a keratin-5 promoter (K5.
Smad2–/–) [40,43]. Neither the homozygous (K5.Smad2–/–) nor het-
erozygous (K5.Smad2+/–) loss mice developed spontaneous skin
tumors [40], thus Smad2 loss alone is not sufficient for tumor initi-
ation. However, both K5.Smad2–/– and K5.Smad2+/– mice exhibited
accelerated tumor formation and malignant conversion when subject
to a two-stage chemical skin carcinogen exposure compared to wild
type mice [40,44], indicating that Smad2 loss promotes susceptibility
to skin tumorigenesis and promotes malignant progression.

Smad2 loss-associated EMT and angiogenesis are the two main
processes contributing to tumor progression in SCC. We have found
that Smad2 loss recruits Smad4 binding to the SBE of Snail, subse-
quently leading to Snail expression and contributing to the loss of
E-cadherin [40]. Additionally, skin SCC with Smad2 ablation
increased the expression of hepatocyte growth factor (HGF), a
potent angiogenic factor and a promoter for tumor epithelial cell
migration, resulting in activation of the HGF receptor, c-Met, on the
endothelial cells [40,44]. These data suggest that EMT and angio-
genesis induced by Smad2 loss contribute to SCC susceptibility and
progression.

Smad3 and Its Roles in SCC

Smad3 expression in SCC

In human SCCs, Smad3 missense mutations are at a low frequency
in HNSCC [13] and Smad3 loss or reduction in protein level is also
uncommon (0%–4.8%) in HNSCC, skin SCC or ESCC [40,45,46,47]
(Table 1). Increased Smad3 expression at the mRNA level, however,
has been reported in 39.6% of OSCCs [48].

Tumor suppressive roles/mechanisms of Smad3 in

SCC

In a mouse model with conditional Smad3 knockdown, Bae et al.
found that v-RasHa-transduced Smad3–/– keratinocytes developed
SCC, while v-RasHa-transduced Smad3+/+ keratinocytes only exhib-
ited papillomas [49]. Similarly, in another study, Vijgayachandra
et al. grafted the primary keratinocytes with v-RasHa-transduced
Smad3 loss onto nude mice and found that 50% of the Smad3–/–

grafts underwent malignant conversion, while 85.7% of the
Smad3+/+ ones exhibited benign papillomas [50]. These data indi-
cate that expression of Smad3 can suppress SCC carcinogenesis.
Indeed, Smad3 expression can abrogate tumor progression through
inducing senescence and regulating inflammation. For instance,
overexpression of Smad3 in v-RasHa-transduced keratinocytes
increased senescent cells and S phase cells [50].

Tumor promotion roles/mechanisms of Smad3 in SCC

In contradiction to the above v-RasHa-transduced Smad3–/– spontan-
eous tumor data [49,50], in our study, neither Smad3+/– nor Smad3–/–
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mice developed spontaneous skin tumors [46]. Surprisingly, Smad3–/–

mice have attenuated inflammation and fewer tumor associated
macrophages but increased apoptosis [46]. Furthermore, we have
found that more than 90% of Smad3+/+ papilloma cells were posi-
tive for NF-κB, while only ~50% or less were identified in Smad3+/–

and Smad3–/– mice respectively [46], suggesting that inducing a pro-
inflammatory response is one of the potential mechanisms of Smad3
acting as a tumor promotor in SCC. In addition to alterations in
NF-κB, Smad3 can function in other capacities to promote tumor
progression by antagonizing the tumor suppressive roles of TGF-β1.
For instance, Smad3 knockdown blocks the ability of TGF-β1 to
induce either MMP-9 or uPA gene expression, consequently inhibit-
ing tumor invasion and metastasis [49]. Additionally, Park et al.
have found that death-associated protein kinase-related apoptosis-
inducing kinase 1 (DRAK1) inhibits TGF-β1 tumor suppressor activ-
ity by binding Smad3 in HNSCC, consequently blocking Smad3–
Smad4 complex formation [16]. These studies demonstrate that
Smad3 might mediate tumor promotion in SCC.

Smad4 and Its Roles in SCC

Smad4 is localized to 18q21–22 chromosome, near the Smad2
locus. Notably, chromosome 18q LOH is a common event in
HNSCC and it occurs in 56% of the primary and secondary
HNSCC cell lines [5,51,52]. Furthermore, we have also found that
86% of tumors and 67% of adjacent non-malignant mucosa show
more than 50% reduction of Smad4 mRNA expression in HNSCC
[5], suggesting that Smad4 reduction is an early event during the
HNSCC progression. However, by immunostaining, studies of
Smad4 loss at a protein level vary significantly from as low as 12%
to as high as 61.12% in HNSCC [53,54] (Table 1). These differ-
ences might have been caused by different tumor locations, different
methods in measurement or even different races. In accordance, by
immunostaining, 51.2% of the patients with ESCC exhibited Smad4
loss and 67.8% had a Smad4 reduction at protein level [55,56].
In both human HNSCC and ESCC, attenuated Smad4 is associated
with more advanced tumor characteristics including invasion and
poor prognosis [53,55–57]. Taken together, these observations
reveal that Smad4 loss or reduction is a common event even in the
early stage of SCC and Smad4 mainly plays a suppressive role in
SCC progression. In fact, Smad4 ablation alone causes spontaneous
SCC in the skin, oral cavity and stomach of mice [5,58–60].
Intriguingly, Smad4/Dpc4 conditional knockout in mouse mammary
glands causes SCC development, representing a trans-differentiation
of tumor type [61].

There are a variety of potential mechanisms related to carcino-
genesis induced by Smad4 loss in SCC (Fig. 1B). For example, we
have shown that Smad4 loss increases cell proliferation and reduces
apoptosis in Smad4–/– mucosa and Smad4–/– SCC when compared
to Smad+/+ mucosa [11]. These alterations effectively abrogate the
early tumor suppression induced by TGF-β via relieving the TGF-β-
mediated growth arrest. However, these changes do not explain
why Smad4 depletion alone is an initiation event for SCC, as similar
changes were found in our study on TGF-βRII ablation which
required combination with Kras or Hras mutation for HNSCC
tumorigenesis [31]. Intriguingly, we have identified that Smad4 loss
downregulates the expression of Brca/Fanc (Breast cancer suscepti-
bility/Fanconi anemia complementation) genes, which are critical for
double-stranded DNA repair [5]. Furthermore, decreased expression
of Brca/Fanc induced by Smad4 loss is essential for accumulation of
DNA damage to initiate SCC formation [5]. In support of this,

clinical data indicate that Fanconi anemia patients with Brca/Fanc
mutations have markedly increased susceptibility to HNSCC com-
pared to general population [62]. Interestingly, Brca1 depletion
leads to development of SCC in the skin, the inner ear canal and the
oral epithelium [63,64]. In addition, Smad4 loss could increase the
overexpression of TGF-β1 and activate Smad3, subsequently lead-
ing to inflammation [5]. Intriguingly, leukocyte infiltration in
Smad4–/– tissue was decreased significantly when these mice were
bred into the Smad3+/– background [5]. These results suggest that
Smad3 contributes to TGF-β1-associated inflammation during abro-
gation of Smad4 in SCC. A study using human HNSCC cells
showed that Smad4 downregulation induces EMT while enhancing
cetuximab resistance in HNSCC [65]. Similarly, we have shown that
when Smad4 deletion is targeted to K15+ stem cells, SCCs have a
high incidence of EMT [66]. Conversely, studies have also shown
that Smad4 is required for TGF-β-mediated EMT [40,67].
Therefore, EMT in HNSCCs with low Smad4 may be an indirect
effect of Smad4 loss or independent of TGF-β signaling. To this end,
Ozawa et al. have found that activated JNK and MAPK pathways
contribute to cetuximab resistance in human HNSCC cell lines with
Smad4 loss [68]. Importantly, the use of JNK and MAPK inhibitors
sensitized the Smad4-loss HNSCC cell lines to cetuximab [68].
Lastly, changes in Smad4 can impact the surrounding stromal
microenvironment. For example, Smad4 abrogation in the oral
mucosa increases infiltration of macrophages, granulocytes and T
lymphocytes in the stroma adjacent to Smad4–/– mucosa and the
tumor stroma of Smad4–/– SCC, consequently increasing inflamma-
tion [5]. Furthermore, SCCs with Smad4 loss escape CD8+ T cell-
mediated immune surveillance by activation and exhaustion of
CD8+ T cells with co-expression of programmed cell death-1 (PD-1)
and lymphocyte activation gene-3 (LAG-3), and dual inhibition of
PD-1 and LAG-3 on CD8+ T cells suppresses tumor growth in SCC
with Smad4 loss [69]. In sum, these data demonstrate that Smad4
loss in the epithelium promotes tumor formation through its direct
effects in the epithelium and indirect effects in the stroma.

Potential Strategies for Targeting TGF-β/Smad

Signaling in Cancer Therapy

Considering the paradoxical roles of TGF-β/Smad signaling pathway
in tumor suppression and promotion of SCC, careful considerations
are warranted in the development of cancer therapies targeting TGF-
β signaling. Many therapeutic agents including neutralizing anti-
bodies, antisense oligonucleotides (ASOs), and receptor kinase inhibi-
tors that block TGF-β/Smad signaling have already been developed
for suppressing tumor progression after tumors have lost early TGF-
β-mediated tumor suppression. For example, in mouse models, two
neutralizing antibodies, 2G7 and 1D11, can bind all three TGF-β iso-
forms and reduce their biological activity in tumors [70,71]. Another
strategy to reduce TGF-β ligand synthesis is achieved by ASOs. ASOs
are designed to hybridize to TGF-β isoforms’ complementary
sequence in RNA and increase the mRNA degradation [72]. ASOs to
TGF-β1 and TGF-β2 have already been investigated as an approach
for cancer therapy. Clinically, the suppression of TGF-β2 production
by ASOs (AP12009) has been employed in clinical trials for glioblast-
oma and astrocytoma [73]. Although ASOs inhibit the activities of
TGF-β ligands, they are unable to block receptor signaling directly,
suggesting that inhibiting receptors may be more effective at tumor
suppression. For instance, unlike ASOs, miR-211 and miR-17/20a can
bind to TGF-βRII directly, thereby attenuating the phosphorylation
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of Smad2 or Smad3 and promoting SCC progression [74,75]. In
addition, TGF-βRI/ALK5 inhibitors such as Ki26894 and LY364937
block TGF-β signaling in pancreatic, hepatocellular cancers and glio-
blastoma [72,76]. Finally, in skin SCC, LY2109761, another ALK5
inhibitor, exhibited tumor suppression through reducing carcinoma
myofibroblasts and disrupting vascular integrity [77]. Due to the
early tumor suppressive actions of TGF-β signaling, TGF-β inhibitor
clinical trials are all at the late-stage/metastasis setting. To date, it is
unknown if treatment regimens of TGF-β inhibitor are effective in
SCC, as no such a clinical trial exist to date in SCCs. For clinical
trial designs, any therapeutic strategies developed to exploit the dual
roles of TGF-β1, TGF-βRI and Smads should be aware of the tem-
poral transition from tumor suppressor to promotor to optimize
treatment efficacy.

Conclusion

The TGF-β/Smad signaling pathway exhibits paradoxical roles by
exhibiting both tumor-suppressing and tumor-promoting functions.
TGF-β1 and TGF-βRI are identified as tumor suppressors during the
early stage of tumorigenesis, while they exert promotive roles in
later stages. Smad2, TGF-βRII, and Smad4 mainly act as tumor sup-
pressors in SCC. However, these TGF-β signaling components are
also required for tumor-promoting effects of TGF-β signaling. Only
TGF-βRII or Smad4 deletion in the epithelium could develop spon-
taneous SCC in mouse models, indicating that TGF-βRII and Smad4
play a key role in the suppression of SCC. Any therapeutic strategies
designed to inhibit the tumor-promoting role of TGF-β, TGF-βRI,
TGF-βRII, and Smads should focus on, or be aware of, the mechan-
ism and timing of the switch from tumor suppressor to promoter.
Notably, efforts in drug development of TGF-β inhibitors are now
gearing towards selectively blocking the tumor-promoting effects of
TGF-β/Smad signaling, while avoiding toxicity.
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