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Abstract

Background: Cryo-electron microscopy (Cryo-EM) and tomography (Cryo-ET) have emerged 

as important imaging techniques for studying structures of macromolecular complexes. In 3D 

reconstruction of large macromolecular complexes, many 2D projection images of 

macromolecular complex particles are usually acquired with low signal-to-noise ratio. Therefore, 

it is meaningful to select multiple images containing the same structure with identical orientation. 

The selected images are averaged to produce a higher-quality representation of the underlying 

structure with improved resolution. Existing approaches of selecting such images have limited 

accuracy and speed.

Methods: We propose a simulated annealing-based algorithm (SA) to pick the homogeneous 

image set with best average. Its performance is compared with two baseline methods based on 

both 2D and 3D datasets. When tested on simulated and experimental 3D Cryo-ET images of 

Ribosome complex, SA sometimes stopped at a local optimal solution. Restarting is applied to 

settle this difficulty and significantly improved the performance of SA on 3D datasets.

Results: Experimented on simulated and experimental 2D Cryo-EM images of Ribosome 

complex datasets respectively with SNR = 10 and SNR = 0.5, our method achieved better accuracy 

in terms of F-measure, resolution score, and time cost than two baseline methods. Additionally, 

SA shows its superiority when the proportion of homogeneous images decreases.

Conclusions: SA is introduced for homogeneous image selection to realize higher accuracy with 

faster processing speed. Experiments on both simulated and real 2D Cryo-EM and 3D Cryo-ET 

images demonstrated that SA achieved expressively better performance. This approach serves as 

an important step for improving the resolution of structural recovery of macromolecular 

complexes captured by Cryo-EM and Cryo-ET.
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It is significant for improving quality of 3D reconstruction of large macromolecular complexes to 

select homogeneous images from all obtained projection images obtained by Cryo-electron 

microscopy and tomography and then gain higher resolution by image averaging. We aim to find a 

better working method for this job. A simulated annealing-based algorithm (SA) performs better 

than baseline methods on both accuracy and speed after testing on simulated and experimental 

datasets. In order to further enhance its performance on 3D images, restarting is introduced to 

prevent the algorithm from stopping at a local optimal solution.

Keywords

simulated annealing; image averaging; cryo-electron microscopy; cryo-electron tomography

INTRODUCTION

Cellular processes are arguably governed by macromolecular complexes. Knowing the 

structures of macromolecular complexes is important for understanding their function. Due 

to data acquisition limits, most of macromolecular structures are unknown. The recent 

revolutions in cryo electron microscopy (Cryo-EM) [1] and tomography (Cryo-ET) [2] have 

made powerful tools for the structural analysis of macromolecular complexes. Cryo-EM 

uses transmission electron microscope (TEM) to capture 2D projected images of numerous 

copies of a specific purified and frozen macromolecular complex. The projected images are 

then used for reconstructing the 3D structure of the macromolecular complex. By contrast, 

Cryo-ET often utilizes TEM to capture frozen and intact cells. The cell samples are rotated 

to capture projected images from different tilt angles. Then a tomogram is reconstructed 

from the projected images. The tomogram is a 3D gray scale image that represents a 3D 

electron density map of the cell sample at submolecular resolution and in close to native 

condition, which contains macromolecules of heterogeneous structures.

The macromolecule images captured by both Cryo-EM and Cryo-ET techniques often have 

very low signal-to-noise ratio (SNR), which is the main limiting factor to the resolution of 

recovered structures. When processing the single particle by Cryo-EM, in order to limit 

radiation damage, it should record the projection images of the particle at low election dose. 

However, it also causes the projections with much noise and low contrast. Typically, its SNR 

is less than 1 [3]. To improve resolution through increasing SNR, a key step is to average 

large numbers of images containing identical structure with identical orientation. Currently, 

given large number of heterogeneous macromolecule images available, how to efficiently 

and accurately select such images (see Fig. 1A) is an open research topic, especially for 

Cryo-ET data.

Given a set of images, we aim to find a subset S of images that produces the best average in 

terms of its resolution score. The resolution score is defined by fourier ring correlation 

(FRC) for 2D Cryo-EM images and fourier shell correlation (FSC) for 3D Cryo-ET images 

[4], derived from spatial SNR (SSNR). A simulated annealing (SA) [5] approach is proposed 

for finding such an optimal image subset S, with constraint on its size range. We compare 

our method with two baseline methods, namely image matching algorithm (MA) and genetic 
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algorithm (GA) [6]. Our experiments on both Cryo-EM and Cryo-ET images of known 

macromolecular complex structures demonstrate that our SA achieves significantly better 

performance in terms of image average resolution, selection accuracy, and convergence rate.

RESULTS

Construction of simulated images

In our experiments, 2D Cryo-EM and 3D Cryo-ET images of the ribosome complex are 

simulated in a similar way as in [7], and we add certain amount of noise controlled by the 

SNR parameter. The simulated images constitute three 2D image datasets with different 

SNR (see Fig. 1B) and a 3D dataset. Each 2D dataset consists of 100 homogeneous images 

and 100 heterogeneous images generated by randomly rotating the macromolecule. In the 

simulation 2D dataset, we set the standard deviation of rotational angle interval for 

heterogeneous images to 5° and the standard deviation of translation to 2 pixels (voxels for 

3D dataset). For the generated homogeneous images, the average rotational alignment error 

is 0.003, which is calculated in the same way as in [7]. In each dataset, these methods aim to 

select the set containing all homogeneous images.

Performance measures

Performance of these algorithms is measured by calculating final resolution score (see 

Section of “Resolution based objective functions”), time costs, precision, and recall. F-

measure is applied to summarize precision and recall.

Fβ = 1 + β2 ⋅  Precision ⋅ Recall 
 Precision  ⋅ β2 + Recll

. (1)

Since precision is expected to have a larger influence on the score, we utilize a particular 

form of F-measure with bias, Fβ and set β = 0.5 to weight precision more [8].

Resolution based objective functions

Cryo-EM 2D images—Cryo-EM captures a collection of 2D images, each is the projected 

image of a particular macro-molecule. Given a subset S of aligned 2D images represented in 

Fourier space, we let aij be the Fourier coeffcient of image i at location j. Then the average 

coefficient of a subset S of images at j is aj = 1
|S| ∑i ∈ S aij. Let J be the set of locations that 

correspond to a particular frequency in Fourier space, and let X be the collection of such 

sets. Then the corresponding SSNR is calculated as [4]:

s(J) =
∑j ∈ J ∑i ∈ S aij

2

S
S − 1 ∑j ∈ J ∑i ∈ S aij − aj

2 . (2)

Similar to [6], such SSNR can be directly calculated from several quantities that have 

additive property in the following form f (S1 ⋃ S2) = f (S1) + f (S2), ∀S1 ⋂ S2 = Φ for all 

disjoint image subsets of S. Such property makes it computationally efficient for updating 
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the corresponding SSNR after adding or removing a single image from an image set, which 

significantly increases the speed of SA. The corresponding FRC is then calculated as 

c J = s(J)
2 + s(J)  [4]. Then the resolution score is calculated as r = ∑J ∈ χ c(J), which is the 

objective function to be maximized.

Cryo-ET 3D images—Cryo-ET captures a collection of 3D images (a.k.a. 

subtomograms), each a 3D electron density map of a particular macro-molecule. Given a 

subset S of aligned 3D images represented in Fourier space, we let aij be a Fourier coeffcient 

of image i at location j, and mij be an indicator function that equals to 1 when aij is 

observable, and 0 when aij is missing. Then the SSNR that take into account of missing 

values is calculated as [6]:

s(J) = ∑j ∈ J mj | aj|2

∑j ∈ J
1

mj − 1 ∑i ∈ S mij|aij − aj|2
, (3)

where mj = Σi∈s mij and aj = 1
mj

∑i ∈ S mijaij. Similar to the 2D case, such SSNR can also be 

directly calculated from several quantities that have additive property [6]. Given the SSNR, 

the corresponding FSC and resolution score is calculated in the similar way as in Section of 

“Cryo-EM 2D images”.

Difference of processing 2D and 3D images—The major difference between 2D and 

3D case is that 3D images contain missing values in their Fourier representation. For 3D 

images, the projection data are usually incomplete since not all 3D information of the 

original structure can be gathered. It is mainly limited by current technology of acquiring the 

3D images. For instance, some objects may be not inside the radiation field [9].

In 3D case, particles are cut out as small 3D images (subtomograms) from a large 3D 

tomogram image. Our target is to find a subset of subtomograms whose average achieves 

max resolution that would be very useful for mining meaningful structural patterns inside 

these subtomograms. A subtomogram is a small cubic region of a 3D tomogram image that 

potentially contains one macromolecular complex. It is a small 3D image. It is also 

convenient to represent such image in Fourier space because in such case its missing value 

can be simply represented.

Experiments

Ratio adjustment—For studying the applicability of algorithms in more realistic 

conditions, we set different proportion of homogeneous images in the data set. Ratios in 

{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} are tested respectively, with

ratio  ≔ ℎomogeneous images
ℎeteroeneous images . (4)

After 10 iterations, SA can gain higher resolution score than other two methods, and the 

final resolution score it achieves is higher with a larger proportion of homogeneous images 

in the dataset.
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From the results (see Time (s) in Table 1), we can also find that following the increase of 

iteration number, GA has a much more time cost than SA and MA, but its performance is 

not better than SA.

Moreover, MA achieves much worse resolution score than the other two methods (see Table 

1) especially when the proportion of homogeneous images is very small. It comes under 

observation that performance of MA in this problem is too dependent on the initial image 

selection. Since the initial images are chosen randomly (see Section of “Image matching”), 

for MA, if a good image pair (homogeneous) is chosen at the beginning, it may have a 

relatively good performance eventually. Once it starts from a heterogeneous image pair, it 

would cause a disastrous consequence because the algorithm cannot recover this error.

In addition, the results of experiments demonstrate that “resolution” performs not very well 

as the measurement in this project. The pair of images in S0 achieved highest resolution 

score is not always homogeneous image pair, so sometimes resolution increases but 

precision decreases. In MA, it unremittingly seeks the image which can be averaged to 

realize the highest resolution. In this extreme case, it is easier for the algorithm to be 

misguided by “resolution”. For SA, even if it starts from a bad initial situation, it can remove 

the images that are added wrongly in the following procession (see Section of “Contraction 

mechanism of SA”).

By testing, when the proportion of homogeneous images is larger in the whole dataset, 

performances of three algorithms all have an improvement to some extent. SA also performs 

better with a larger ratio. However, in reality, the proportion of homogeneous images is 

usually small, that is also why selection of homogeneous images is a very hard work but 

significant for better 3D refinement.

Tests on 2D experimental data—For demonstrating the potential of this method, these 

three methods are evaluated respectively not only on 2D simulated data but experimental 

data obtained from [10]. The image set is manually divided into two separate parts, 100 

homogeneous images and 100 heterogeneous images (see Fig. 2A). The dataset for testing 

consists of images chosen randomly from homogeneous and heterogeneous image sets by a 

certain proportion. As Table 2 shows, SA algorithm can realize higher resolution and higher 

F0.5 than two baseline methods with lower time complexity.

The experimental results on the actual cryo-EM image set also prove that SA performs better 

than two baseline methods. It has relatively stable performance for classifying homogeneous 

and heterogeneous images no matter what ratio is and spends much less time than GA. 

Furthermore, it can realize a higher resolution score finally.

In order to further prove the validity of this method, we choose another image set with 100 

homogeneous images and 100 heterogeneous images which are projection images of the 

particle from another view direction (see Fig. 2B). For testing different ratios, heterogeneous 

images are also selected at random with different number. Time costs of three algorithms are 

similar on the datasets with projection images from different view directions.
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Based on the above results, performance of SA on picking homogeneous projection images 

of macromolecular complex particle is obviously better than GA and MA. It can gain a 

higher resolution score after 10 iterations using much less time.

Tests and improvement on 3D data—SA and GA are also tested on 3D cryo-ET 

simulated data with SNR = 0.01 and 3D cryo-ET experimental data respectively. The 3D 

experimental dataset includes 859 3D projected images of ribosome where 200 images 

contain identical structures with identical orientation and thus homogeneous (ratio ≈ 0.3) 

[11].

SA algorithm usually converges after 10 iteration on 3D data, but partly due to the missing 

value of 3D images, it is more difficult for the algorithm to pick homogeneous images in 3D 

dataset than in 2D dataset. The preliminary results (see Fig. 3B) display that SA algorithm 

often results in a much small solution set S. Though the convergence rate of SA is much 

faster than GA, SA still stops at a local optimal solution untimely rather than continues to 

pursue a better solution.

From experiments, it is harder for SA algorithm to select a good initial condition on 3D data 

than 2D data. In the 3D data, the image pair which is chosen initially with high resolution 

score is not a homogeneous pair with high probability. The defect of resolution as the 

measurement is more obvious on 3D data due to the lower SNR and the missing value. In 

order to overcome it, SA is adapted for 3D data in the process of restarting, named “SA+”. 

After a certain number of iterations, SA+ will select the two non-selected images as the new 

initial condition and start selecting again on all non-selected images. A new solution set S′ 
will be generated. We choose the part of S′ which has no intersection with previous solution 

sets S, and combine it with S, S←S ⋃ S′. Then the combination will continue to be input in 

the contraction mechanism of SA.

The results shown in Tables 4 and 5 demonstrate the superior performance of SA+ as 

compared with GA and SA. Distinctly, SA and SA+ use far less time than GA on this work 

but gain higher F0.5 and resolution. From Fig. 4, SA+ has slightly higher time complexity 

than SA. However, SA+ will keep searching for a better solution rather than stop at a locally 

optimal solution after certain iterations like SA.

Comparison of convergence rate—Some reconstructions of asymmetric particles such 

as ribosomes use 106 images of particles, so speed is crucial in this project. Time consumed 

in each iteration is recorded to compare the speed and convergence of SA and GA. From 

records, time complexity of GA is obviously higher than SA (Tables 2, 3 and 5).

Analysis of different performances of SA and GA—As the experimental results 

show, SA performs better than GA aimed at this problem, whether for 2D or 3D data. Both 

of these two algorithms guide the optimization procedure based on the idea of evolution. GA 

concentrates on the evolution of next population and realizes optimization by selection. 

Different with it, SA is bent on individual optimization.
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GA is an adaptive algorithm for globally searching the optimal solution, which has a good 

performance of global searching [12]. Nevertheless, similar to natural world, GA knows 

nothing about the problem to solve and has no requirements for the searching space. 

Therefore, it is more appropriate for GA to solve those problems without an obvious 

direction of optimization. In other words, in some scenarios, we cannot define what kind of 

solution is better. For instance, when allocating a fund to multiple stocks and determining 

the proportion of investment in each stock, no clear indicator can tell what proportion of 

them must increase return of the whole portfolio. GA can generate more portfolios by 

crossover and mutation. It has a greater chance to find the optimal solution. Whereas, in this 

project, we have a specific target to find out homogeneous images and then improve 

resolution of their average. It is foreseeable that adding heterogeneous images would reduce 

the resolution of the averaged image. Nonetheless, when processing original image set by 

GA, it may generate many obviously wrong combinations unavoidably as a result of random 

mutation and crossover. It cannot guarantee the quality of new generated solutions. It means 

time to select the optimal solution from such many solutions. SA prevents this kind of work, 

which can search for a new solution with clear direction and achieve local optimum quickly. 

Owning to accepting a worse solution in a probability, it can also avoid to be trapped in the 

locally optimal solutionn. Upon the results of experiments, it can be seen that this approach 

dose save much time and achieve satisfactory resolution at the same time. GA is also 

believed to gain a satisfactory solution eventually, but it needs much more time especially 

when the amount of data is very large.

In this paper, we aim at finding out a homogeneous image set from all images obtained by 

Cryo-EM or Cryo-ET. Through it cannot be promised to gain the global optimum, SA’s 

solution is with realistic significance. It is helpful for more accurate reconstruction of real 

particle structure to enhance resolution of projection images in each direction [13].

DISCUSSION

Cryo-EM dates back to 1968, which is a significant approach for 3D reconstruction of 

biological macromolecular complexes [1]. Aiming at single-particle Cryo-EM [14], some 

software has been developed, such as EMAN2 [15], Relion [16]. Such software applies an 

integrated system to implement the entire process of Cryo-EM single particle reconstruction 

including image data acquisition, CTF estimation correction, particle selection, image 

matching, image classification, model reconstruction optimization, density image 

optimization and final model output.

However, due to the bottleneck of this technique, it can usually produce a projection image 

set with many noisy images which are acquired from different view directions. For each 

direction, more than one projected images are obtained with different resolution and 

different orientations. If all these images are utilized for construction, accurate structure of 

the particle cannot be obtained. Thus, more focus has been put towards image processing 

algorithm for high resolution. Filtering the projection dataset for picking homogeneous 

images is an extremely meaningful step before 3D refinement [17].
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In traditional cryo-EM, unsupervised classification is widely applied to find out the 

homogeneous projection image sets, typically clustering homogeneous images by K-Means 

[18]. Nonetheless, This unsupervised method has some insurmountable difficulties. At first, 

it is hard to evaluate the homogeneity of each cluster [18]. Most of relevant work evaluates 

performance of the algorithm by observing the output image. Beyond that, its performance 

relies much on the chosen of cluster number K. A few supervised methods of classification 

are proposed like MPA classification [19] which is based on density maps and correlation-

based projection-matching. This methods focus on molecular dynamics of protein 

complexes, which is extremely different with the target of our paper. Moreover, it is only 

aimed at cryo-EM images.

Our algorithm hopes to take out heterogeneous images from the whole image set so that 

high-resolution projected images are left, which is a supervised algorithm for a better 

refinement of 3D macromolecule complex particle. This method can assess the homogeneity 

of selected image subset well and truly by F-measure. Goals of our experiments is to test 

performance of conventional optimization algorithms on selection of homogeneous 

projection images of macromolecule complex particles. It is proved that SA can achieve a 

satisfactory resolution eventually with less time costs. In the meanwhile, by improving SA, 

it can also perform well on cryo-ET datasets to implement the selection of homogeneous 3D 

images.

Cryo-ET is another approach of 3D reconstruction using electron microscopy [1]. It is 

applied to study the 3D structure of proteins, viruses, organelles, and complexes with 

structural heterogeneity. It retrieves 3D structure of object of study through acquiring 

projected images from multiple perspectives. Although now resolution of structures gained 

by Cryo-ET cannot be compared with that of Cryo-EM single particle analysis, it plays an 

irreplaceable role on studying the structure and function of non-fixed form, asymmetric, 

heterogeneous biological samples [20,21]. Similarly, in Cryo-ET, registration of projected 

images is a key step, which is the foundation of high-quality reconstruction. Usually, a lot of 

projections are generated from a perspective after image registration, but some of them with 

low resolution may disturb following work. For evaluating the performance of our algorithm 

in widespread use, it is also test to reduce low-resolution images in cryo-ET projection 

image sets.

CONCLUSION

Selection of homogeneous images among large number of heterogeneous images is a very 

important step for improving the resolution of structural recovery of macro-molecular 

complexes captured by cryo-EM and cryo-ET. Our experiments on both simulated and real 

2D cryo-EM and 3D cryo-ET image sets demonstrated that our SA approach achieved 

significantly better image selection performance compared to baseline methods in terms of 

resolution, accuracy, and convergence rate. Further improvements include designing better 

SA strategy, and resolution measures that are more robust to noise and missing values.
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MATERIALS AND METHODS

Homogeneity of images

Image averaging is an important component in the 3D structural reconstruction, which 

involves the grouping of images so that each class represents a particular orientation of the 

particle of same structure.

In order to gain the average of images with higher resolution, image alignment [22] is 

essential since if the image is not aligned, i.e. the objects inside have different orientation 

and translations, even if they have same projection of same structure, the average image still 

does not reflect the true underlying structure.

In this paper, we define homogeneous images as the images with same orientation and in 

alignment. In other words, they can be used to generate the best average. On the contrary, 

heterogeneous image means that adding it into the image set will decrease the resolution of 

the average image.

Simulated annealing

Simulated annealing (SA) is a stochastic optimization algorithm inspired from the annealing 

theory of solid for settling combinatorial optimization problems [5]. Owning to existing 

random factors in its search process, it is not incline to converge in a local optima in the 

search space, compared to Hill Climbing algorithm [23].

Given a set of images, we first find a subset S of two images whose average achieves the 

highest resolution score. We then keep trying to add into S or replace in S an image with 

certain probability G. The calculation of G takes into account (1) the resolution score of the 

modified image set S′, (2) current maximum resolution score, and (3) current number of 

iteration. The detailed procedure can be found in Algorithm 1, where the probability G is 

calculated as G(r(S),r(S′),k) ≔ exp(|r(S)-r(S′)|/(k + 1)). G is defined according to the 

Metropolis Hastings rule. We use “k + 1” instead of “k” because k is always set to 0 at the 

beginning of the algorithm.

Algorithm 1

Simulated annealing

Require: A image set, S0; Maximum size of image set nmax; Maximum number of iterations kmax; Minimum resolution 
score rmin; Iteration number M

Ensure: Optimal image subset S ;

1: Calculate i*, j* arg max
i, j ∈ S0 × S0, i ≠ j

r i, j

2: S←{i*, j*}

3: nmax←|S0|/2

4: While (m < M) do

5:  While (k < kmax) do

6:   Randomly choose t∈S0\S

7:   if |S| < nmax then

Shi et al. Page 9

Quant Biol. Author manuscript; available in PMC 2020 May 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



8:    S′←S ∪ {t}

9:    Randomly choose α∈(0,1)

10:    if r(S′) > r(S) or G(r(S),r(S′),k) > α then

11:     r(S)←r(S′)

12:     S←S′

13:    else

14:    end if

15:   end if

16:   k←k + 1

17:  end while

18:  for i∈{1,…,|S|} do

19:   Randomly choose t∈S

20:   S(i)←S − {t}

21:   t(i)←t;

22:  end for

23:  Calculate i1,i2,…,i|s| such that S i1 > S i2 > … > S i|S|

24:  S S − t i1 , t i2 , …t inmin − |S|

25:  m←m + 1

26: end while

27: return S

Initial condition selection—As designed, SA algorithm selects two images (initial 

condition) in S at the beginning, and puts more other eligible images into S based on 

comparing the resolution of the average of these two images and others. Upon testing, SA 

algorithm is sensitive to the initial condition. It can perform very well with a good initial 

condition. Thus, it is very crucial to select a good initial condition. In essence, two 

homogeneous images are expected to select from So as far as possible. Originally, we select 

a pair of images whose average has highest resolution score among all pairs. However, the 

result of experiments shows it might not always be the case (see Fig. 5). Sometimes a pair of 

heterogeneous images are averaged to get a higher resolution than a pair of homogeneous 

images especially when a much low proportion of homogeneous images in S0. Selecting the 

pair with highest resolution also costs a lot of time. Meanwhile, although two homogeneous 

images cannot always gain highest resolution score, we find the arithmetic mean of 

resolutions which are achieved by every pair of homogeneous images in S0, Mhomogeneous, is 

often larger than a threshold. It is larger than the arithmetic mean of resolutions achieved by 

heterogeneous pairs or mixed pairs (a homogeneous image and a heterogeneous image). For 

selecting homogeneous pairs as far as possible, we select two images whose average 

achieves the resolution larger than a threshold near Mhomogeneous.

Contraction mechanism of SA—In initial experiments, we find that sometimes F0.5 

decreases with the increase of iteration, which indicates false positive images are selected 

into S. In order to address this issue, contraction mechanism is introduced in SA algorithm. 
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After each iteration, the algorithm checks every images i in S, and reduces i if S-{i} can 

obtain higher resolution. In multiple iterations, previously eliminated images will be 

evaluated again and added to S if higher resolution resulted.

Then Baseline methods and SA algorithm with contraction mechanism are tested on 2D 

datasets with SNR= 0.5, 10. SA significantly outperformed the two baseline methods (see 

Fig. 6), and it has a better performance on the dataset with larger SNR.

Baseline methods

Image matching—Image matching is a typical method of image denoising. For electron 

microscope images, many researches are centered on image matching for achieving high-

quality images such as feature-based matching [24,25], template-based matching [26] and 

image block matching [27]. Different methods measure the similarity between images by 

different indicators, such as the geodesic distance [27], statistical features [24], 

crosscorrelation features [28]. In essence, the image matching algorithm is to classify the 

whole image set upon “similarity” and find the subsets of more similar images.

In this paper, for ease of comparison between SA and GA, we also define the similarity of 

images based on resolution. That is, if the average of two images can realize a higher 

resolution, they are thought to more similar.

Given a set S0 of images, we first select a pair of images, a and b, whose average has highest 

resolution score among all pairs. The selected image pair is used as the initial image subset 

S. This tries to find two homogeneous images, and guarantees a good start of the algorithm. 

We then regard a and b as the target image, respectively. The algorithm constantly selects an 

image i in S0\{a,b} such that the average of the target image and i achieves highest 

resolution. Then we update S←S ⋃ {i}, and set i as new target image. We repeat the 

addition procedure until the image selected has been in S. And S is the solution subset.

Genetic algorithm—Genetic algorithm (GA) is another classical optimization algorithm, 

which has remarkable global searching ability [29]. It is also adept at finding the maximum 

or best solution of an objective function. Therefore, in this problem, we consider to 

capitalize on GA to search for best solution of the resolution-based objective function.

GA of image selection regards an image subset S as a candidate solution which consists of 

certain images. Each image in the dataset is labelled as a number. Each candidate solution is 

represented by a sequence of “0” and “1” where “1” indicates the image with corresponding 

number exists in this candidate solution set, and “0” means the opposite.

The fitness of a candidate subset is assessed by the resolution of its image average. Fit 

candidate subsets are selected for future generation to produce updated candidate subsets. In 

each generation, a fixed proportion of candidate subsets undergo random cross-over and 

mutation. The newly generated candidate subsets are subject to fitness assessment. The 

generation process is stopped when the fittest candidate subset remains unchanged over 

successive generations or the maximum number of iterations is reached. This algorithm 

works like a process of natural selection, where “survival of the fittest in natural selection, 
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survival of the fittest”. Following this process, the candidate solution set with best average is 

expected in the final generation. GA is implemented in a similar way as in [6].
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Figure 1. Examples of Cryo-EM image data for visualization purpose.
(A) Example of selecting homogeneous Cryo-EM images containing ribosome molecules of 

different orientations. The images are de-noised for visualization purpose. (B) Example of 

2D Cryo-EM homogeneous and heterogeneous images containing projections of ribosome 

macromoleculars. Images with SNR = 100 are only for displaying the projections structure 

of the particle conveniently.
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Figure 2. Examples of homogeneous and heterogeneous images in 2D experimental dataset.
The sub-figures (A) and (B) are obtained from different view directions.
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Figure 3. Results of comparing experiments of three algorithms on 3D simulated Cryo-ET image 
dataset with SNR = 0.01 and 3D experimental Cryo-ET image dataset.
(A) Simulated data. (B) Experimental data.
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Figure 4. Results of comparing experiments of SA and SA+ on 3D experimental Cryo-ET image 
dataset.
(A) F0.5. (B) Resolution score. (C) Time.
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Figure 5. Results of the average value of 5 tests of three methods on 2D CEM image dataset with 
SNR = 0.5 and ratio = 0.1, 1.
(A) F0.5. (B) Resolution score. (C) Time costs.
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Figure 6. Results of the average of 5 tests of three methods on 2D cryo-EM image dataset with 
SNR = 0.5, 10.
(A) F0.5. (B) Resolution score.
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Table 1

Average values of resolution scores, F0.5 values and time costs of 5 tests of three methods after 10 iterations on 

2D Cryo-EM simulated image dataset with SNR = 0.5

(A) SA

Ratio Resolution score F0.5 Time (s)

0.1 9.91 0.19 2.34

0.2 9.70 0.26 0.59

0.3 10.35 0.49 0.78

0.4 10.18 0.53 0.66

0.5 10.19 0.58 0.69

0.6 10.51 0.67 0.64

0.7 10.83 0.68 0.81

0.8 10.90 0.71 0.92

0.9 10.99 0.78 0.81

1.0 11.53 0.78 1.30

(B) GA

Ratio Resolution score F0.5 Time (s)

0.1 8.89 0.13 13.97

0.2 9.01 0.21 6.90

0.3 9.23 0.29 7.91

0.4 9.21 0.34 7.11

0.5 9.38 0.45 8.18

0.6 9.55 0.41 8.00

0.7 9.63 0.43 9.42

0.8 9.88 0.50 10.68

0.9 9.99 0.48 8.83

1.0 9.93 0.57 7.27

(C) MA

Ratio Resolution score F0.5 Time (s)

0.1 9.08 0.00 0.82

0.2 9.15 0.00 1.64

0.3 9.39 0.12 0.89

0.4 9.48 0.10 1.18

0.5 9.66 0.08 1.33

0.6 9.84 0.13 1.52

0.7 10.03 0.06 3.42

0.8 10.23 0.05 1.78

0.9 10.41 0.05 1.60

1.0 10.49 0.13 1.75
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Table 2

Average values of resolution scores, F0.5 values and time costs of 5 tests of three methods after 10 iterations on 

2D Cryo-EM experimental image dataset

(A) SA

Ratio Resolution score F0.5 Time (s)

0.1 9.83 0.18 70.36

0.2 9.96 0.26 91.76

0.3 10.23 0.54 110.37

0.4 10.17 0.52 198.33

0.5 10.17 0.57 226.09

0.6 10.43 0.64 422.26

0.7 10.79 0.67 133.07

0.8 10.98 0.70 198.11

0.9 10.99 0.73 174.91

1.0 11.46 0.76 315.59

(B) GA

Ratio Resolution score F0.5 Time (s)

0.1 8.74 0.02 1175.66

0.2 9.24 0.13 1184.08

0.3 9.31 0.27 899.59

0.4 9.36 0.37 829.94

0.5 9.35 0.36 1112.65

0.6 9.37 0.39 962.33

0.7 9.62 0.44 973.59

0.8 9.66 0.44 1096.13

0.9 9.77 0.48 1011.56

1.0 10.07 0.50 913.11

(C) MA

Ratio Resolution score F0.5 Time (s)

0.1 8.46 0.00 153.56

0.2 8.64 0.00 129.02

0.3 8.95 0.00 147.59

0.4 9.12 0.00 202.12

0.5 9.34 0.00 178.83

0.6 9.56 0.07 244.15

0.7 9.86 0.00 220.64

0.8 10.13 0.00 289.64

0.9 10.33 0.05 235.43

1.0 10.43 0.04 220.02
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Table 3

Average values of resolution scores, F0.5 values and time costs of 5 tests of three methods after 10 iterations on 

2D Cryo-EM experimental image dataset with projection images of the particle from another view direction

(A) SA

Ratio Resolution score F0.5 Time (s)

0.1 9.93 0.21 81.35

0.2 10.16 0.20 79.76

0.3 10.33 0.49 115.98

0.4 10.27 0.59 179.13

0.5 10.37 0.57 198.35

0.6 10.53 0.66 227.90

0.7 10.87 0.68 215.89

0.8 10.78 0.73 233.01

0.9 11.19 0.72 259.37

1.0 11.46 0.79 201.39

(B) GA

Ratio Resolution score F0.5 Time(s)

0.1 8.94 0.05 1233.16

0.2 9.54 0.20 1458.01

0.3 9.31 0.18 1198.20

0.4 9.56 0.29 938.34

0.5 9.66 0.35 949.33

0.6 9.77 0.39 1087.64

0.7 9.62 0.47 1145.01

0.8 9.86 0.49 1086.37

0.9 9.77 0.48 1010.65

1.0 10.37 0.51 1002.29

(C) MA

Ratio Resolution score F0.5 Time (s)

0.1 9.06 0.00 113.89

0.2 8.94 0.00 115.76

0.3 9.45 0.00 139.01

0.4 9.51 0.00 101.99

0.5 9.64 0.00 158.59

0.6 9.65 0.00 147.02

0.7 9.83 0.03 208.29

0.8 9.82 0.03 277.20

0.9 10.22 0.05 207.98

1.0 10.43 0.04 217.35
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Table 4

Results of comparing experiments of GA, SA and SA+ on 3D simulated Cryo-ET image dataset with SNR = 

0.01 and ratio = 0.2

Method Iteration times Resolution score F0.5 Time (s)

GA 20 10.43 0.35 11215

SA 20 11.63 0.57 54

SA+ 20 11.72 0.57 85

SA 30 11.63 0.57 72

SA+ 30 11.72 0.70 110
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Table 5

Results of comparing experiments of GA, SA and SA+ on 3D experimental Cryo-ET image dataset

Method Iteration times Resolution score F0.5 Time (s)

GA 20 8.82 0.28 46184

SA 20 14.20 0.30 784

SA+ 20 14.34 0.32 788

SA 30 15.79 0.31 1087

SA+ 30 15.79 0.36 1151
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