
UC Berkeley
Earlier Faculty Research

Title
New Methods for Modeling and Estimating the Social Costs of Motor Vehicle Use

Permalink
https://escholarship.org/uc/item/3zt3w4q6

Author
Steimetz, Seiji Sudhana Carl

Publication Date
2004

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3zt3w4q6
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA, IRVINE 
 
 

New Methods for Modeling and Estimating 
the Social Costs of Motor Vehicle Use 

 
 

DISSERTATION 
 
 

Submitted in partial satisfaction of the requirements 
for the degree of 

 
 

DOCTOR OF PHILOSOPHY 
 
 

in Economics 
 
 

by 
 
 

Seiji Sudhana Carl Steimetz 
 
 
 
 
 
 
 

Dissertation Committee: 
Professor David Brownstone, Co-Chair 

Professor Kenneth Small, Co-Chair 
Professor Kurt Van Dender 

 
 
 
 
 

2004 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2004 Seiji Sudhana Carl Steimetz 



 ii

 
 
 
 
 

This dissertation of Seiji Sudhana Carl Steimetz 
is approved and accepted in quality and form 

for publication on microfilm: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

______________________________ 
 
 
 

______________________________ 
Committee Co-Chair 

 
 

______________________________ 
Committee Co-Chair 

 
 
 
 
 
 
 

University of California, Irvine 
2004 



 iii

Dedication 
 
 

To the memory of my mother, Etsuko Steimetz, 
who taught me the meaning of “Gaman”. 

 
To my father, Calvin Steimetz, 
who has no formal education, 

and is the wisest philosopher I know. 
 

To the memory of my uncle, Shohei Sawada, 
whose lifelong dreams were to own a car, 

and to do whatever he could to fulfill my dreams. 
 

To the memory of my dear professor, mentor, and friend, David Saurman, 
who instilled me with a passion for knowledge, economic intuition, and fine beer. 

 
To Professors Roger Folsom, Rudy Gonzalez, Tom Means, Lydia Ortega, 

Mike Pogodzinski, and Thayer Watkins of San Jose State University, 
who never doubted me even when they should have. 

 
To my aunt and uncle, Sady and Amy Hayashida, 
whose generosity is without limits or prejudice. 

 
To Robert Burbridge, 

who watches over my last dollar. 
 

To Jeremy Verlinda, 
who watches over my sanity. 

 
To the memories of Tora and Kumo, 

who knew that everything I wrote 
was important enough to sit on. 

 
To all students of 

California Community Colleges, 
California State Universities, 

and the University of California, 
who ought to know how bright their futures can be. 



 iv

Table of Contents 
  Page
   
ACKNOWLEDGMENTS  v 
   
CURRICULUM VITAE  vi 
   
ABSTRACT OF THE DISSERTATION  viii 
   
INTRODUCTION  1 
   
CHAPTER 1:  Heterogeneity in Commuters’ “Value of Time” 

with Noisy Data: a Multiple Imputation Approach 
 
 
 

Section 1.1 Chapter Introduction 5 
Section 1.2 Empirical Setting: The San Diego I-15 

Congestion Pricing Project 
 
7 

Section 1.3 Multiple Imputations 11 
Section 1.4 Estimation Procedure 15 
Section 1.5 Mode Choice and Value of Time Savings 18 
Section 1.6 Multiple Imputations vs. Single Imputation 29 
Section 1.7 Chapter Conclusion 31 

   
CHAPTER 2: Defensive Driving and the External Costs 

of Accidents and Travel Delays 
 
 

Section 2.1 Chapter Introduction 33 
Section 2.2 The “Traditional Approach” 35 
Section 2.3 A Theoretical Model of Accident and Travel-Delay 

Externalities with Defensive Drivers 
 

40 
Section 2.4 Road Pricing and “Value Pricing” 46 
Section 2.5 An Empirical Analysis of Accident 

and Travel-Delay Externalities 
 

50 
Section 2.6 Implications and Comparison with Previous Studies 63 
Section 2.7 Suggestions for Further Research 70 
Section 2.8 Chapter Conclusion 74 

   
CONCLUSION  77 

   
REFERENCES  81 

   
APPENDIX A: VOT and VOD Derivation 86 

   
APPENDIX B: Figures 88 

   
APPENDIX C: Tables 91 

 



 v

Acknowledgments 
 
 

I wish to express the deepest and most sincere gratitude to my committee members, 
Professors David Brownstone, Kenneth Small, and Kurt Van Dender.  David Brownstone 
taught me how to be an Applied Econometrician; Ken Small taught me how to be a 
Transportation, Urban, and Environmental Economist; Kurt Van Dender taught me how 
to reconcile my love and hate of economic research.  This dissertation would not have 
been possible without their tremendous support, guidance, and generosity. 
 
I am particularly grateful to Professor Justin Tobias, whose talent and unusual dedication 
to teaching enabled me to recognize that I just might have what it takes to complete a 
Doctoral Degree in Economics. 
 
I also thank all of my dear classmates, and Professors Marigee Bacolod, Arthur DeVany, 
Kaku Furuya, Michelle Garfinkel, Ami Glazer, Jun Ishii, Geoffrey Iverson, Ivan 
Jeliazkov, Mark Moore, Dale Poirier, Priya Ranjan, Amelia Regan, Gary Richardson, 
Stergios Skaperdas, and David Walls, for building the staircase for my ascent from 
“barely keeping up” to “forging ahead”. 
 
For Chapter One of this dissertation, I thank David Brownstone, Tom Golob, Ken Small, 
and Jeremy Verlinda for their many valuable insights, and Jia Yan for performing 
preliminary mixed-logit experiments.  For Chapter Two, I thank David Brownstone, Ken 
Small, Kurt Van Dender, and Jeremy Verlinda for their many insights and helpful 
suggestions.  I am especially grateful to Inge Mayeres for her generous comments on an 
early draft of the chapter. 
 
This dissertation was made possible by generous financial support from the U.S. 
Department of Transportation and the California Department of Transportation through 
the University of California Transportation Center.  I am indebted to the University of 
California Transportation Center for awarding me a Dissertation Grant and numerous 
Research Fellowships.  My research was also supported in part by the Institute for 
Mathematical Behavioral Sciences and the Department of Economics at the University of 
California, Irvine. 
 
Any errors or omissions in this dissertation belong solely to me. 



 

 vi

SEIJI S.C. STEIMETZ 
University of California, Irvine 

3151 Social Science Plaza, Irvine CA, 92697  ▪  (949) 824-7376 
ssteimet@uci.edu  ▪  http://www.ags.uci.edu/~ssteimet 

 
EDUCATION 
Ph.D. Economics, University of California, Irvine, June 2004 
M.A. Economics, San Jose State University, June 1999 
B.S. Economics, San Jose State University, June 1996 
 
AREAS OF SPECIALIZATION 
Applied Microeconomics, Urban Economics, Transportation Economics, Environmental 
Economics 
 
WORKING PAPERS AND PUBLICATIONS 
 “Defensive Driving and the External Costs of Accidents and Travel Delays” 
 “Heterogeneity in Commuters' ‘Value of Time’ with Noisy Data: a Multiple 

Imputation Approach” (with David Brownstone).  Under review, Transportation 
Research Part B: Methodological. 

 “Bubbles”.  Forthcoming in David R. Henderson, ed., The Concise Encyclopedia of 
Economics, Liberty Fund (2006). 

 
INVITED PRESENTATIONS 
 University of California Transportation Center Annual Conference, University of 

California, Davis, 2004 
 
CURRENT PROJECTS 
 Comments on Estimating the Welfare Effects of Pollution Abatement Using the 

Spatial Hedonic Approach (with Kenneth Small) 
 A Network Analysis of Airport Access and Airline Competition (with Kurt Van 

Dender) 
 Notes on the Consistency of Conditional-Logit Covariance Estimates from Choice-

Based Samples (with David Brownstone) 
 Non-Recurrent Congestion Externalities: Welfare and Road-Pricing Implications 
 Risk Compensation in General Aviation: Are “Dangerous Airports” More 

Dangerous? 
 
ACADEMIC EXPERIENCE 
Instructor / Lecturer 
 Basic Economics I (425 Students, 5 Teaching Assistants), University of California, 

Irvine, 2002 
 Principles of Economics (30 Students), San Jose State University, 1999 

Teaching Assistant 
 Probability and Statistics for Economics I & II, Introduction to Econometrics, 

Introduction to Economics, Intermediate Economics II, University of California, 
Irvine, 1999-2001 



 

 vii

 Economic Statistics, Introduction to Philosophy, Current Economic Problems, 
Principles of Macroeconomics, San Jose State University, 1998-1999 

 
Online Textbook Co-Developer 
 Patterns in Problem Solving (a CD-ROM based problem-solving tutorial for 

intermediate microeconomics students), San Jose State University, 2000 
Research Assistant 
 Urban and Transportation Economics, University of California, Irvine, 2001-2003 
 Environmental and Urban Economics, San Jose State University, 1998-1999 

 
REFEREE REPORTS 
Regional Science and Urban Economics 
 
HONORS AND FELLOWSHIPS 
 University of California Transportation Center Dissertation Grant, University of 

California Transportation Center, University of California, Berkeley, 2004 
 Arthur S. DeVany Award for Best Paper Presented in Graduate Prospectus Seminar, 

Department of Economics, University of California, Irvine, 2003 
 University of California Transportation Center Research Fellowship, Department of 

Economics and Institute of Transportation Studies, University of California, Irvine, 
2001-2003 

 Institute for Mathematical Behavioral Sciences Summer Research Fellowship, 
Institute for Mathematical Behavioral Sciences, University of California, Irvine, 2001 

 Invited Panelist to the Teaching Assistant Professional Development Program, 
Instructional Resources Center, University of California, Irvine, 2001-2002 

 President’s Scholar, San Jose State University, 1998-1999 
 Dean’s Scholar, San Jose State University, 1995-1996 

 
INDUSTRY EXPERIENCE 
Project Manager, Analytic Design, Inc. 1997-1998 
Consultant, Displaytech Multimedia, Inc. 1994-1995 
President and Chief Executive Officer, Arise Technologies, Inc. 1992-1994 
President, Ascending Systems, Inc. 1991-1993 
 
REFERENCES 
David Brownstone* 
Professor of Economics 
University of California, Irvine 
dbrownst@uci.edu 
 

Kenneth A. Small* 
Professor of Economics 
University of California, Irvine 
ksmall@uci.edu 

Kurt Van Dender 
Assistant Professor of Economics 
University of California, Irvine 
kvandend@uci.edu 

*Dissertation Committee Co-Chairs 
 

 



 viii

Abstract of the Dissertation 

New Methods for Modeling and Estimating 

the Social Costs of Motor Vehicle Use 

by 

Seiji Sudhana Carl Steimetz 

Doctor of Philosophy in Economics 

University of California, Irvine, 2004 

Professors David Brownstone and Kenneth Small, Co-Chairs 

 

The body of this dissertation comprises two standalone essays, presented in two 

respective chapters. 

Chapter One develops estimates of how motorists value their travel-time savings 

and characterizes the degree of heterogeneity in these values by observable traits.  These 

estimates are obtained by analyzing the choices that commuters make in a real market 

situation, where they are offered a free-flow alternative to congested travel.  They are 

generated, however, in an empirical setting where several key observations are missing.  

To overcome this, Rubin’s Multiple Imputation Method is employed to produce 

consistent estimates and valid statistical inferences.  These estimates are then compared 

to those produced in a “single imputation” scenario to illustrate the potential hazards of 

single imputation methods when multiple imputation methods are warranted.  A preferred 

model suggests that the median commuter is willing to pay $30 to save an hour of travel 
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time.  However, taking observed heterogeneity into account, median estimates range from 

$7 to $65 according to varying, observable motorist characteristics. 

Chapter Two develops a theoretical framework for jointly modeling the marginal 

external accident and travel-delay costs of driving.  The framework explicitly accounts 

for the optimal tradeoffs that motorists make between accident risk and risk-reducing 

effort.  Accident and travel-delay externalities are decomposed into components that 

correspond to physical accident risk, efforts to offset this risk, and their effects on travel 

times.  An empirical model is developed from this framework, suggesting that joint 

external costs are $1.80 per vehicle-mile and external accident costs are $0.80 per 

vehicle-mile during a typical peak-period commute.   The analysis does not require 

observations on accident rates and illustrates how the commonly-adopted approach to 

modeling accident externalities tends to understate these costs. 



Introduction

Motorists impose external costs on each other in terms of accidents and travel

delays. There is little debate on the importance of identifying and measuring

these costs. There is, however, much disagreement on their magnitudes. This

thesis sets out to improve upon conventional methods for modeling, estimating,

and characterizing accident and travel-delay externalities between motorists.

Travel delays represent the bulk of the external costs that motorists face dur-

ing peak commute periods. The extent of these costs is typically characterized

by motorists’ willingness-to-pay for marginal reductions in travel times, tradition-

ally referred to as “the value of time” (VOT). A modern approach to estimating

these values is to exploit data from recent congestion-pricing experiments such

as California’s “High-Occupancy / Toll” (HOT) facilities along Interstate 15 and

State Route 91 in San Diego and Orange Counties. Commuters at these facili-

ties are offered, for a toll, free-flow travel along these HOT lanes, revealing their

tradeoffs between various combinations of prices and traffic conditions.

The data from these experiments, however, are often plagued by missing or

unreliable data. Chapter One develops a framework for overcoming such diffi-

culties by employing Rubin’s Multiple Imputation Methodology. The exercise

demonstrates how to generate consistent estimates from problematic data while

advancing the ongoing “value of time” debate. Despite missing observations on

key variables, the median commuter’s VOT is estimated at $30 per hour, which

is consistent with the range of estimates reported in related congestion-pricing

studies.

The value of HOT-lane facilities themselves, however, is also subject to de-

bate. Some argue that a Pareto-efficient policy is to open HOT lanes for free

1



use. A cogent response is that the option for free-flow travel, at a premium, has

its own value insofar as it caters to varying commuter preferences. As such, the

empirical efforts in this chapter focus on characterizing the extent to which VOT

varies by observable traits. Taking this observed heterogeneity into account,

median VOT estimates range from $7 per hour for low-income, part-time work-

ers taking non-work trips, to $65 per hour for high-income, full-time workers on

their daily commutes. Moreover, the analysis suggests that low-income work-trip

commuters value travel-time reductions more so than high-income non-work-trip

commuters do. It shows that high-income and low-income work-trip commuters

alike stand to gain substantially from the option to purchase a free-flow alterna-

tive to congested travel. This serves to dispel the politically visible argument

that HOT lanes only benefit “rich” motorists.

The data from these HOT-lane experiments are particularly well suited for

producing reliable VOT estimates since they reveal motorists’ preferences for

congestion relief in real-market settings. It is important to note, however, that

commuters who purchase free-flow travel receive more than just travel-time re-

ductions in the bargain. Most experienced motorists are quite familiar with the

stress and aggravation that rush-hour traffic can generate. One particular source

of this aggravation is the constant vigilance that is required of motorists to main-

tain safety margins between themselves and the many potential collision partners

surrounding them. Free-flowing HOT lanes thus provide a combination of more

rapid travel and less defensive-driving effort (corresponding to fewer potential

collision partners). Since travel times and effort levels are both increasing in

traffic levels, traditional VOT estimates generated from HOT-lane data will also

reflect the value of “defensive-effort relief” to some extent. Generating “pure”

2



VOT estimates from HOT-lane data thus requires a method for extracting the

value of the safety amenities that HOT-lanes provide from the value of the travel-

time savings that they offer. This lays the foundation for the analysis in Chapter

Two where HOT-lane data are used to estimate the extent to which motorists

impose accident externalities on one another.

The current literature on accident externalities is relatively thin, despite a

wide range of beliefs about their magnitudes. While some deem these costs to

be of first-order importance, many consider them to be negligible. The latter

view is more pronounced in the literature on accident externalities specifically

between motorists, where an accepted convention is that no such costs exist.

This convention is based on a modeling approach that focuses solely on observed

accident rates, which ignores rational driving behavior in the face of risk. When

road conditions become more hazardous, motorists naturally respond by driving

more carefully, thereby mitigating observable accident risk. This increase in

defensive effort generates true economic costs regardless of how many accidents

actually occur. It suggests that the conventional approach to modeling accident

externalities is likely to understate their magnitudes. Moreover, defensive driving

typically corresponds to slower driving, implying a natural relationship between

the costs of accident risk, defensive efforts, and travel delays — a relationship that

warrants their joint modeling.

To address these issues directly, Chapter Two presents a theoretical frame-

work that characterizes accident and travel-delay costs with explicit components

for physical risk, travel delays, and the defensive efforts that link them. It

then develops an empirical model from this framework to estimate accident and

travel-delay costs (both jointly and separately) in a manner that does not re-

3



quire observations on accident rates. This is accomplished by exploiting the

aforementioned relationship between risk, effort, and travel times. Commuters

who purchase travel along free-flowing HOT-lanes are essentially purchasing re-

lief from external accident and travel-delay costs. The analysis explicitly models

their choices along these separate dimensions and demonstrates the degrees to

which these choices are influenced by travel-times and non-travel-time factors

such as risk and effort.

The results suggest that external accident costs represent 44% of the overall

externalities generated during a typical peak-period commute, challenging the

traditional approaches to modeling them. In turn, these results are also used to

analyze related issues such as the impact of non-travel-time factors on existing

“value of time” estimates and discrepancies between estimates generated from

revealed-preference and stated-preference data.

Together these chapters represent a paradigm shift in how the marginal exter-

nal costs of accidents and travel-delays are modeled, estimated, and interpreted.

This thesis is devoted to improving upon existing methods for estimating these

costs, with resulting implications for road-pricing, highway capacity expansion,

and related transportation policies.
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1 Heterogeneity in Commuters’ "Value of Time"
with Noisy Data: a Multiple Imputation
Approach

1.1 Chapter Introduction

Typically the dominant component of benefits from a transportation project is

travel-time savings.1 This alone illustrates the need to accurately measure how

such time savings are valued, resulting in a large empirical effort to estimate

“the value of time” (VOT) for highway motorists. However, few of these studies

examine how motorists respond to actual prices, such as tolls. Fortunately,

recent “value-pricing” projects, such as those of State Route 91 (SR-91) and

Interstate 15 (I-15) in Southern California, offer unique opportunities to study

the preferences of motorists who can purchase a free-flow alternative to congested

travel in the form of toll-lanes.2

In turn, such studies have generated controversy over the “value of value-

pricing” itself3, where offering toll-lanes might reduce welfare relative to the norm

of offering all lanes at a uniform price of zero.4 In response, Small and Yan (2001)

and Small, Winston and Yan (2002) illustrate that these purported welfare losses

are driven by assuming homogenous preferences across motorists (which amounts

to saying that they all have identical VOTs). Instead, they show that accounting

for heterogeneity in motorists preferences can reveal substantial welfare gains in a

value-pricing setting, and that these gains are often increasing in the degree of het-

1Small (1999).
2Typically value-pricing experiments give special consideration to high-occupancy vehicles

(carpools). For instance, carpools on the I-15 are exempt from paying tolls, while vehicles with
three or more occupants on the SR-91 can travel at 50% of the posted toll. This leads to the
convention of referring to such toll-lanes as “high occupancy / toll” lanes, or “HOT” lanes.

3Small and Yan (2001).
4Liu and McDonald (1999).
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erogeneity. Moreover, recognizing this heterogeneity might enable policymakers

to overcome current political impediments to offering toll-lanes by ameliorating

distributional concerns through policies that cater to varying preferences.5 Thus,

identifying heterogeneity in VOT and the degree to which it may be present has

importance beyond estimating VOT itself.

Unfortunately, value-pricing studies are often plagued by poorly-measured or

missing travel-time data, as is the case for this paper. This problem must be

overcome in a manner that yields valid statistical inferences.

In light of the above, this paper serves dual roles: (1) estimating VOT and

characterizing its heterogeneity by identifiable components, and (2) describing

how to apply Rubin’s Multiple Imputation Method to overcome data problems

and produce consistent estimates yielding valid inferences.

A key finding is that median VOT is $30 per hour, but ranges from $7 to

$65 according to varying motorist characteristics. These estimates are higher

than those produced by imputing a single set of values to replace “missing”

time-savings data - an artifact of this particular analysis but illustrative of the

potential biases created by treating imputed data as known. The analysis also

shows the degree to which this “single imputation” method understates the degree

of uncertainty in estimating VOT by failing to account for the estimation error

introduced by the imputation process.

This paper is organized as follows: Section 1.2 describes the empirical setting

for the study. Section 1.3 describes how to generate multiply-imputed data

5Specifically, these distributional concerns are that offering toll-roads can involve a greater
loss in consumer surplus for lower VOT motorists (see Small, Winston, and Yan (2002)). Ad-
ditionally, there is the public perception that HOT lanes mostly benefit high income motorists,
who tend to have higher VOTs. Mohring (1999) cites a case in Minneapolis where “widespread
public opposition to publicly provided ‘Lexus lanes’ has postponed - perhaps permanently -
plans to convert one HOV lane into a HOT lane.”
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to overcome the problem of missing time-savings data for many respondents.

Section 1.4 describes the study’s mode choice model and how to apply it to these

imputed data toward obtaining valid statistical inferences. The results of this

estimation process follow in Section 1.5. Section 1.6 illustrates some of the

hazards of employing only a single imputation when multiple imputations are

warranted. Section 1.7 offers a few concluding remarks.

1.2 Empirical Setting: The San Diego I-15 Congestion
Pricing Project6

This value-pricing project offers solo drivers an option to pay to use an eight

mile stretch of two free-flowing lanes (“Express Lanes” or “HOT” lanes) adjacent

to (but physically separated from) the main lanes along California’s Interstate

15, just north of San Diego. It offers solo drivers a premium alternative to the

typically congested conditions along that section of the I-15 - an alternative that

carpools enjoy for free. The Express Lanes are reversible and operate in the

southbound direction during the morning commute (inbound to San Diego) and

northbound during the afternoon commute. Tolls are posted in both directions

at the Express Lane entrance and about one mile prior. Those who choose to

enter the facility must travel its entire length since there are no interim exits.

This study focuses on morning (inbound) commuters who traveled the entire

eight-mile length on or adjacent to the Express Lane facility during October and

November of 1999.7 The observation period corresponds to the fifth wave of the

project’s panel survey that gathers the necessary information about I-15 com-

muters required to conduct mode-choice analysis. The proportion of commuters

who actually pay to use the Express Lanes is relatively small, so choice-based

6See Brownstone et al. (2003) for a more detailed desciption of this project.
7Only weekday and non-holiday trips are considered.
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sampling is employed in order to obtain a sufficient amount of variation in the

data while meeting budgetary constraints. Table 1-1 summarizes these choice

shares, along with demographic information about survey respondents in our

sample.

1.2.1 Dynamic Tolls

A fascinating characteristic of the I-15 Express Lanes is how they maintain free-

flow traffic along them. Tolls change every six minutes in $0.25 increments to

maintain Level of Service C, as required by California Law for HOT lanes.8 This

is accomplished by traffic flow monitoring from loop detectors embedded in the

highway near each onramp along the facility. Posted tolls in our sample range

from $0.50 to $4.25, with a median of $2.50 during the peak of rush-hour.

Solo drivers who wish to use the Express Lanes subscribe to “FasTrak” ac-

counts and obtain transponders that are used to debit their accounts each time

they use the facility. The actual tolls faced by respondents in this study’s sam-

ple are obtained by matching the times that they reported reaching the facility

with toll data collected from the California Department of Transportation (CAL-

TRANS). These tolls are then converted to “effective tolls”, where they are set

to zero if the respondent reports that their account is paid for by someone else

(such as their employer or benevolent wife).9

1.2.2 Time Savings

Time savings are defined here as the difference between travel times on the main

lanes adjacent to the Express Lane facility and travel times on the Express Lanes

8Level of Service C is defined by a minimum speed of 64.5 MPH and a maximum service
flow rate of 1,548 passenger cars per hour per lane.

9This method provided a better empirical fit than assigning indicator variables for these
cases.
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themselves. The salient time-savings measure in this study is median time-

savings since commuters are incapable of knowing their actual time savings prior

to making a mode choice. Instead, it is assumed that commuters have a feel

for their travel time distributions and base their decisions on typical values, as is

standard in value-pricing studies.10

The sample includes a complete set of data from loop detectors, which calcu-

late vehicle speeds on the main lanes and Express Lanes in six minute intervals,

corresponding to the intervals between toll changes. Ideally, these data could be

collected across the sample period to obtain time savings distributions for each

time of day (during commute periods), as is done in Ghosh (2001) and Brown-

stone et al. (2003). There are two major reasons, however, for rejecting this

procedure.

The first is that loop detector data often result in implausible speed estimates

(such as the “Formula 1” speeds encountered in our sample). Through changes in

inductance, loop detectors sense how long a vehicle is above them (“occupancy”)

and how many vehicles pass over them (“flow”) in a given period. In order to

estimate speeds from these data, loop detector algorithms often assume homoge-

nous vehicle speeds during each period (six minutes in the present case) and,

perhaps more heroically, that “typical” vehicle lengths are known.11 Given the

mix of passenger cars, trucks, light-duty vehicles, and so forth typically observed

on interstates, it is not difficult to see how loop detectors might yield unreliable

speed estimates. It is worth noting, however, that if speeds are fairly homoge-

neous within each period, then speed variation across periods is likely to be fairly

10This approach is adopted by Brownstone et al. (2003), Small, Winston, and Yan (2002),
Ghosh (2001), Lam and Small (2001), and Brownstone et al. (1999).
11More accurately, a “mean effective vehicle length” or “G-factor” is assumed, where “effec-

tive vehicle length” is defined as the product of velocity and “occupancy” for a given vehicle.
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well represented.

As an alternative to loop detector data, speed data from floating-car experi-

ments are available and are considered to be reliable. These data were collected

professionally and involved driving the length of the main and HOT lanes re-

peatedly in fifteen minute intervals. But, due to budget constraints, such data

are only available for five days of the sample period. However, the variation in

loop-detector speed data offers a means to predict these “missing” floating-car

data, as described in Section 1.3.

The second objection is the existence of a dedicated Express Lane onramp at

Ted Williams Expressway on the northern end of the facility. Those wishing to

enter the I-15 at Ted Williams (over a third of our sample) can enjoy additional

time savings by using the express lanes since the dedicated onramp enables them

to bypass the queues that typically form at the metered entrance to the main

lanes.12 Indeed, the average observed wait time at this onramp is roughly equal

to the average observed time savings from using the Express Lanes themselves,

warranting their inclusion when calculating median time-savings.13 Unfortu-

nately, observations on Ted Williams onramp wait times are only available for

ten days of the sample period. Section 1.3 describes how to predict these missing

data.

The challenge ahead, as evident from the preceding section, is to construct

valid statistical inferences with a complete set of “bad” (loop detector) time-

savings data and an incomplete set “good” (floating-car and onramp-queue) time-

12Brownstone et al. (1999) multiply impute floating car time savings data conditioned on
loop detector data, but do not properly account for Ted Williams queue times in estimating
time-savings distributions.
13Specifically, separate time-savings distributions are constructed for those entering the I-15

at Ted Williams Expressway so that their median time-savings values reflect these additional
time savings.

10



savings data. This challenge is addressed in the following section.

1.3 Multiple Imputations

Figure 1-1 aids in depicting the types of main-lane travel time data available for

estimating time savings. As previously noted, the sample includes loop detector

data for the entire sample period (two months). However, only ten days worth

of Ted Williams onramp queue times and five days worth of floating car data

are available, both of which are deemed reliable. The task at hand is to predict

floating-car time savings and Ted Williams queue times by conditioning on loop

detector data. In cases where queue times are available, but floating car times

are missing, floating car time savings can be predicted by conditioning on both

loop detector and queue data.

The segment labeled “A” in Figure 1-1 shows where it is appropriate to pre-

dict floating car time savings from both loop detector and queue data. Segment

“B” shows where neither floating car or queue data are available, and must there-

fore be predicted from loop detector data alone.14 Segment “C” shows where

no prediction is required - these observed values are retained in the estimation

process.15

Express Lane travel times are typically measured by assuming a constant

vehicle speed (usually 65 to 75 MPH) since the free-flow conditions in these

lanes offer little variation.16 In this study, average speeds (by time of day) are

calculated from Express Lane floating-car data and are taken as representative

14More precisely, all such prediction models condition on all available information in the
sample.
15Note that loop detector data are collected in six minute intervals, while floating car and

queue data are collected in fifteen minute intervals. To make these data compatible, floating
car and queue data are interpolated into six minute intervals.
16Brownstone et al. (2003), Small, Winston, and Yan (2002), Ghosh (2001), Lam and Small

(2001), and Brownstone et al. (1999) all follow this convention.
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of Express Lane speeds. This can be seen as a compromise between assuming

a constant speed across time periods, and fully imputing these speeds (which is

likely to be fruitless, given the minor degree of variation in observed speeds).

This compromise buys an additional (though small) degree of variation in travel

time savings, which is desirable since the key variables of time savings and tolls

tend to be highly correlated.

1.3.1 Imputation Procedure

The general procedure for imputing missing data is to draw them from their

appropriate asymptotic conditional distributions. In this case, linear regression

models are used to estimate these distributions.

To avoid unreasonable predictions, the dependent variables in these regres-

sions (floating car time savings and Ted Williams onramp queue times) are trans-

formed to bound these predictions between zero and 20 minutes - a bit more than

the maximum observed loop detector time savings. Letting t represent the time

savings measure of interest, this transformation takes the logit form:17

ln

·
t/20

1− (t/20)
¸

(1)

Note that these logit transformations are “undone” when calculating predicted

time savings.

1.3.1.1 Floating Car Data Conditioned on Loop Detector and Queue

Data

Segment “A” in Figure 1-1 illustrates the empirical setting for these imputa-

tions. The analysis proceeds by regressing floating car data on both loop detector

17This approach follows Brownstone et al. (1999).
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and queue data, along with all other available covariates. For parsimony, only

covariates with significant explanatory power are retained in the model.

The right column of Table 1-2 shows the estimation results for this regression.

Note that the model fits quite well, although the reported R2 of 0.57 might be

misleading. Keep in mind that this value is calculated in the logit-space of the

dependent variable, thereby reducing in-sample variation and generating a much

lower R2 than would result from a level-space calculation.

To impute floating car time savings from these results, write this regression

model as

FLQ = Xλ+ u (2)

where FLQ is a vector of observed floating car time savings, X is a matrix of

covariates, including loop detector and queue data, λ is a vector parameters to

be estimated, and u is a vector of residuals. Let V̂FLQ = σ̂2(X 0X)−1 denote the

(standard) estimated covariance matrix for this model, where u ∼ N(0, σ2IN).

The procedure to impute a single vector of floating car time savings follows as

1. Draw σ2∗ by dividing the residual sum of squares (û0û) from regression (2)

by an independent draw from a χ2 distribution with degrees of freedom

equal to the dimension of λ.

2. Draw a vector of residuals u∗ from a N(0, σ2∗IN) distribution.

3. Draw λ∗ from a N(λ̂, V̂FLQ) distribution.

4. Construct FLQ
∗ = Xλ∗ + u∗.

This process is repeated to obtain the desired number of imputations (m)

required for the estimation process described in Section 1.3.2.
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1.3.1.2 Floating Car and Queue Data Conditioned on Loop Detector

Data

Segment “B” in Figure 1-1 illustrates the cases for which both floating car and

queue time savings must be imputed from loop detector data. The procedure is

analogous to that of the preceding section, where one might be tempted to impute

these data from equation-by-equation least-squares estimators. However, doing

so would fail to account for the error correlation across these equations when using

them to impute the missing data.18 To account for this correlation, Zellner’s

Seemingly Unrelated Regressions estimator is employed.19 The left column of

Table 1-2 gives the estimation results for these simultaneous regressions.

To impute floating car time savings and queue times from these results, write

the model as

S =

·
FL

QL

¸
=

·
XF 0
0 XQ

¸ ·
δF

δQ

¸
+

·
νF

νQ

¸
= Xδ + ν (3)

where FL and QL are vectors of observed floating car and queue data, X is a

matrix of covariates including loop detector data, δF and δQ are parameters to

be estimated, and νF and νQ are residual vectors corresponding to each equation

in the system.20 Let V̂S = (X 0(Σ̂⊗ IN)X)
−1 represent the estimated covariance

matrix for this model, where ν ∼ N(0,Σ⊗ IN). In model (3), the residuals (ele-

ments of ν) are distributed independently across observations, but are correlated

across regressions (FL and QL), which is reflected in the 2× 2 matrix Σ.

To better explain the imputation procedure in this case, write

Σ =

·
Σ11 Σ12
Σ21 Σ22

¸
(4)

18A Breusch-Pagan test confirms this error correlation across the two regressions.
19Zellner (1962).
20Note that the dimension of S is 2N × 1.
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and note that

νF ∼ N(0,Σ11IN) (5)

νQ ∼ N(0,Σ22IN)

It follows from the standard properties of multivariate normal distributions that

νQ|νF ∼ N

µ
Σ12
Σ11

νF ,

µ
Σ22 − (Σ12)

2

Σ11

¶
IN

¶
(6)

The procedure to generate single vectors of imputed floating car time savings

and Ted Williams queue times follows as21

1. Draw νF∗ from its marginal distribution given in (5).

2. Using the draw in the previous step, draw νQ∗ from its conditional distrib-

ution given in (6).

3. Draw δ∗ =
·
δF∗
δQ∗

¸
from a N(δ̂, V̂S) distribution.

4. Construct
·
FL
∗

QL
∗

¸
=

·
XF 0
0 XQ

¸ ·
δF∗
δQ∗

¸
+

·
νF∗
νQ∗

¸
.

Repeating this procedure m times produces m sets of completed data. These

imputations are used in the estimation process described in the following section.

1.4 Estimation Procedure

A common way to handle missing data (aside from deleting or ignoring these

cases) is to impute a single set of missing data from “hot-deck imputations”, or

from the procedures outlined in the previous section (m = 1). These “single

21Technically speaking, the first step should be to draw Σ∗ from an appropriately parame-
terized Inverse Wishart distribution. The following steps would then employ the elements of
this drawn matrix. This step is omitted, however, for computational convenience since it is
unlikely to have a measurable impact on the final estimation results.
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imputation” methods, however, treat the imputed values as known and fail

to account for the additional estimation error introduced by the imputation

process. In order to obtain valid and consistent estimates, the Multiple Im-

putation Method given in Rubin (1987) is employed.22 Section 1.6 illustrates

how estimates from identical models can differ between single and multiple im-

putation procedures.

The theoretical justification for multiple imputations is couched in Bayesian

estimation theory. Following Rubin and Schenker (1986), let Yobs and Ymis denote

sets of observed and missing values in a particular sample. Also, let θ represent

the population parameter to be estimated. The posterior density function of θ

is given by

h(θ|Yobs) =
Z

g(θ|Yobs, Ymis)f(Ymis|Yobs)dYmis (7)

where g(·) is the complete-data posterior density of θ and f(·) is the predictive-
posterior density of the missing values. We see from (7) that the posterior

distribution of θ can be obtained by averaging its complete-data posterior over

the predictive-posterior density of the missing values. Another way to view this

procedure is to interpret Ymis as a nuisance parameter, which is integrated out of

the posterior density of θ.

The frequentist version (or “randomization-based” version, as Rubin puts it)

of this method is used to obtain estimates.23 Schenker and Welsh (1988) show

that the imputation procedure outlined in Section 1.3.1 is equivalent to drawing

from the Bayesian predictive-posterior of the missing data (f(Ymis|Yobs)) when the
22More precisely, Rubin’s Multiple Imputation Method with Ignorable Nonresponse is used

since there is no reason to posit an endogenous nonresponse mechanism for these missing data.
See Rubin and Schenker (1986), Schenker and Welsh (1988), and Rubin (1996).
23This is done mainly for computational convenience. Moreover, these estimates are based

on 537 observations, suggesting that they would not differ in numerical significance from those
produced by a Bayesian approach with relatively flat priors.
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regressions exhibit a normal error structure with standard uninformative priors.

What remains is a valid frequentist estimator that averages a series ofm estimates

over these m imputations (for m ≥ 2), analogous to equation (7).
Let θ̃r denote a single estimate obtained from a complete set of data, includ-

ing a single set of imputed values, and let Ω̃r denote its associated covariance

estimate. Rubin’s Multiple Imputation Estimators are given by

θ̂ =
1

m

mX
r=1

θ̃r (8)

Σ̂ = U +

µ
1 +

1

m

¶
B (9)

where

B =
1

m− 1
mX
r=1

(θ̃r − θ̂)(θ̃r − θ̂)0 (10)

U =
1

m

mX
r=1

Ω̃r (11)

Equations (10) and (11) decompose the statistical error in estimating θ into

two components. B estimates the covariance between them parameter estimates,

which represents the covariance caused by the imputation (or measurement er-

ror) process. U , on the other hand, estimates the covariance of the parameter

estimates within the series of m imputations.

Rubin (1987) shows that θ̂ is a consistent estimator of θ for m ≥ 2, and

Σ̂ is a consistent estimator for the covariance of θ̂.24 Equation (9) shows that

the precision of θ̂ improves with the number of imputations by a factor of B
m
,

suggesting that “many” imputations should be drawn. However, there is no

formal stopping rule to suggest how large “many” should be. An approach

24See Rubin (1987), chapter 4, for a detailed explanation of the asymptotic equivalence of
this estimator to its Bayesian counterpart.
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adopted by Brownstone et al. (1999) is to note from Rubin (1987) that the Wald

test statistic for the null hypothesis that θ = θ0 is given by

(θ − θ0)
0Σ̂−1(θ − θ0) (12)

and is asymptotically distributed according to an F distribution with k and τ

degrees of freedom, where k equals the dimension of θ and τ is given by

τ = (m− 1)(1 + ρ−1m )
2 (13)

ρm = (1 +m−1)Trace(BU−1)k−1 (14)

The stopping rule adopted by Brownstone et al. (1999) is to increase m until τ is

large enough for the standard asymptotic χ2 distribution of Wald test statistics to

apply. They find that m = 20 is sufficient to meet this condition. In this study,

however, computing time is relatively cheap so m = 200 is chosen to effectively

minimize the B
m
component of Σ̂ such that Σ̂ ' U +B.

This multiple imputation framework enables the analysis to proceed toward

consistently estimating θ in the study’s mode choice model and to construct

consistent value of time-savings estimates, which depend on θ̂.

1.5 Mode Choice and Value of Time Savings

The mode choice model outlined in this section is estimated 200 times with the

m = 200 complete datasets constructed from as many sets of imputations, where

each estimate corresponds to a particular θ̃r and Ω̃r in the previous section. VOT

estimates are based on the final estimation results, corresponding to equations

(8)-(11) in that section.
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1.5.1 Conditional Logit Mode Choice Model

To estimate how commuters value their time savings in an actual market setting,

their mode choices are modeled among three alternatives: (1) Solo travel in the

main lanes parallel to the Express Lanes, (2) Solo travel in the Express Lanes

(referred to as the “FasTrak” choice to indicate that it involves paying a toll), and

(3) Carpooling in the Express Lanes. To characterize these choices, let Uin(Xin)

represent the utility that person n enjoys from choosing alternative i, and write

Uin(Xin) = Vi(Xin) + εin = Xinθ + εin (15)

where Vi(Xin) is the indirect utility for those with observed characteristics Xin.

The remaining term εin accounts for unobserved (latent) characteristics to ac-

commodate stochastic preferences for alternative i among those with identically

observed characteristics. If we assume that each εin is distributed independently

and identically according to a Type I Extreme Value distribution, then the prob-

ability Pin that person n chooses alternative i, conditioned on characteristics Xin,

is given by the standard logit form

Pin =
eXinθ

3P
j=1

eXjnθ

(16)

where θ is a vector of parameters to be estimated, as prescribed in Section 1.3.2.

Each θ̃r and Ω̃r estimate is obtained by maximizing the joint log-likelihood func-

tion for the N = 537 commuters in our sample, given by

L =
NX
n=1

3X
i=1

Iin ln(Pin) (17)

where Iin = 1 if person n chooses alternative i, and Iin = 0 otherwise.
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1.5.2 Alternative Models

Given the variety of choice models that are available, it is worth commenting on

why the conditional logit form is chosen. The first consideration is the fact that

the estimation sample is choice-based. Maximizing a random-sample likelihood,

as in equation (17), can yield inconsistent estimates under these circumstances.

However, Manski and Lerman (1977) show that in a conditional logit model

with a full set of alternative-specific constants (as specified in this study), only

the coefficients on these constants will be estimated inconsistently. This implies

that using an unweighted maximum likelihood estimator for this conditional logit

model is appropriate, especially since VOT estimates do not depend on these

alternative-specific constants. This notion is evident in Lam and Small (2001),

who compare both weighted and unweighted multinomial logit estimates in a

value-pricing context, which only creates differences in their alternative-specific

constant estimates, thereby leaving their VOT estimates virtually unchanged.

The next consideration is that this study’s emphasis on revealing heterogene-

ity in VOTmight suggest a form that allows for unobserved heterogeneity, such as

the mixed-logit form with random error components. Preliminary experiments

with this form, however, do not exhibit any statistically significant unobserved

heterogeneity. Small, Winston, and Yan (2001) experience the same with the

revealed-preference portion of their SR-91 data, as does Ghosh (2001) using the

same wave of I-15 data. This does not necessarily imply the absence of un-

observed heterogeneity, but it does suggest that the conditional logit form is

reasonable for this analysis.

Another consideration is that the inconvenience of obtaining a FasTrak transpon-
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der is modeled as an implicit cost of using the Express Lanes.25 An alternative

model, such as the nested-logit form, would assume that this effort has its own

random determinants by specifying it as an explicit choice dimension. In this

spirit, Lam and Small (2001) estimate VOT with the conditional logit and nested

logit forms, but obtain only very small differences between the estimates. Ghosh

(2001) experiences the same using the same wave of our I-15 data. Hence, the

more parsimonious conditional logit form is adopted.

1.5.3 Value of Time Savings

Equation (15), is used to estimate how commuters value their time savings by

estimating their marginal rates of substitution between time savings TS and the

costs of these time savings C (in the form of tolls). The value of time savings

(VOT) for commuter n is defined by

V OTn ≡ dCin

dTSin

¯̄̄̄
V̄in

= −∂Vin/∂TSin
∂Vin/∂Cin

(18)

Equation (18) shows that VOT is also a function of any characteristics that are

interacted with either time savings or tolls. This is how heterogeneity in VOT is

observed across commuters through varying characteristics such as income group,

work status, and trip distance.

It is important to point out that most value-pricing studies attempt to esti-

mate the value of reducing the variability in these time savings, often referred

to as the “value of reliability” (VOR). Aside from its policy implications, doing

so is appropriate since any such valuation is likely to appear in VOT estimates

if variability in time savings is not properly controlled for. These studies typ-

ically focus on the “upper tails” of time savings distributions, with variability

25Note that FasTrak users are not charged for obtaining transponders and establishing ac-
counts.
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measures such as the difference between the 90th and 50th percentiles of these

distributions, since it is reasonable to assume that commuters are only sensitive

to relatively large travel delays.26

This study, however, is unable to detect a significant or economically meaning-

ful direct effect of variability across a variety of measures, including those defined

in previous value-pricing studies. This is at least partially due to the high degree

of collinearity between tolls, time savings, and variability endemic to these types

of studies. The SR-91 studies are able to overcome this collinearity since tolls

follow a fixed schedule, allowing a degree of independent time-savings variation.

Carpools in these studies are also subject to tolls, which can then be converted to

per-passenger costs, providing additional independent variation. Unfortunately,

this study’s sample has no such luxuries since I-15 tolls are dynamic and carpools

travel for free.

Perhaps more importantly, the estimates presented here suggest that com-

muters use these posted tolls to acquire information about travel conditions on

the main lanes (captured by the “Low-Toll Signal” variable in Table 1-3).27 When

travel conditions are particularly bad, Express Lane tolls are particularly high,

which is likely to make commuters less averse to variability in time savings since

they are able to better predict the time savings they can enjoy on the Express

Lanes. Moreover, those who normally travel during peak periods (when vari-

ability is greatest) but are averse to small chances of late arrival can use the

Express Lanes as a “backstop” when relatively high tolls suggest doing so.28 If a

26Brownstone et al. (2003), Lam and Small (2001), Ghosh (2001), and Brownstone et al.
(1999) use this definition of variability; the latter three of these studies use I-15 data with
limited results. Small, Winston, and Yan (2002) define variability as the difference between
the 80th and 50th percentiles of their SR-91 time savings distributions.
27Ghosh (2001) constructs a similar variable to capture this ”toll signalling” effect, which

yields a statistically significant coefficient estimate.
28I thank Kenneth Small for suggesting this possibility.
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large enough proportion of commuters exhibit this behavior, then high levels of

variability and their attendant high tolls will coincide with a greater propensity

to use the Express Lanes.29

Accordingly, VOR is not estimated since even a significant direct effect of vari-

ability would result in negative VORs for this sample. Instead, the importance

of controlling for variability is recognized by including in the estimation process

the conventional “90th-50th percentile” measure (interacted with trip distance).

1.5.4 Estimation Results

1.5.4.1 Parameter Estimates

The first series of columns in Table 1-3 give the estimation results from a

conditional logit model with multiple imputations. All of the relevant parameter

estimates have the expected signs and are statistically significant at the 95%

confidence level, except for the “wrong” coefficient sign on variability interacted

with trip distance.30

In the table, the columns entitled “Estimation Covariance Shares” give the

shares of the total statistical error for each estimate that are attributable to the

imputation process (corresponding to equation (11)) and the estimation process

alone (corresponding to equation (10)). These covariance shares, as presented,

are defined as diag(Σ̂−1B) and diag(Σ̂−1U), respectively. Reporting these shares

aids in understanding the composition of the standard errors that accompany the

parameter estimates — Section 1.6 expand on this.

We focus on the FasTrak choice variables since this is where the marginal

29This notion is supported by preliminary experiments in which variability coefficients carried
the ”wrong” (positive) sign.
30A priori, we would expect commuters to be averse to time savings variability for any trip

distance. However, the discussion in Section 1.4.3 sheds light on why this sign appears.
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rates of substitution between time savings and tolls are observed; the Carpool

choice variables primarily serve as controls and are included to enhance the inde-

pendent variation in the sample. Note that solo travel in the main lanes is the

reference choice. As expected, the results show that higher income commuters,

those travelling to work or for work-related purposes, and full-time workers are

relatively less sensitive to tolls than their counterparts.

The “Low-Toll Signal” variable is included to control for the traffic-condition

signalling effects discussed in the previous section. Specifically, this is an indi-

cator variable equal to one if the posted toll is lower than the average toll across

the sample period for that time of day. This particular form is chosen due to the

inertia exhibited by a large portion of the FasTrak users in the sample.31 The

intuition is that many of these commuters are accustomed to travelling solo in the

express lanes and will deviate from this behavior when posted tolls signal that

traffic conditions in the main lanes are relatively mild. The estimates presented

here indicate a measurable toll-signal effect.

The “Free-Lane Traffic Rating” is an attempt to control for the aggravation

(disutility) associated with driving in congested conditions, which could bias VOT

estimates upwards if not controlled for.32 It is also included to separate its

effect from the toll-signal effect. Respondents were asked to rate the traffic

conditions on the free lanes on a scale from one to ten, where one represented

“bumper-to bumper traffic” and ten represented “no traffic problems at all”. As

31Of those who reported traveling solo in the Express Lanes at least once during a given
week, 62% reported that they traveled solo in the Express Lanes each time they traveled that
portion of the I-15 that week.
32VOT estimates can be thought of as reduced-form expressions for travelers’ willingness

to pay for all of the amenities that are provided by the time-saving good. This study at-
tempts to more accurately estimate the “time-savings only” dimension of VOT by controlling
for perceptions about traffic conditions, which are believed to be correlated with “congestion
aggravation”.
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expected, the estimates suggest that worsening traffic conditions correspond to

higher propensities for using Express Lanes.

Consistent with the previously cited SR-91 and I-15 studies, it is found that

home owners and those with greater education are more likely to use the Ex-

press Lanes. Those with flexible arrival times are less likely to use the Express

Lanes. In contrast, no significant effect for females is found, and the traditional

“middle-age” indicator variable is excluded since it appears to be collinear with

the sample’s income and home ownership variables.

A few additional insights arise from these estimates. One comes from notic-

ing the similarity of the estimates for cases involving higher incomes and those

involving cases where income is not reported. This mildly justifies the com-

mon practice of including income non-responses with higher-income respondents.

Another comes from the negative sign on the carpool choice variable that indi-

cates whether or not the respondent has access to a mobile phone for personal

use. Perhaps mobile-phone users are more averse to carpooling lest they reveal

sensitive information to their fellow carpoolers.

1.5.4.2 Value of Time-Savings Estimates

From the multiple imputation parameter estimates, VOT estimates are gen-

erated for each respondent in the sample using equation (18). The interaction

terms involving time savings and tolls, and their statistically significant coeffi-

cients, reveal a significant degree of observable heterogeneity in how commuters

value the time savings provided by the I-15 Express Lanes. The left-hand side

of Table 1-4 summarizes these VOT estimates, sorted into work and non-work

trips. Since income plays a prominent role in observing VOT heterogeneity,

Figure 1-2 is included to show the (in sample) distribution of income categories
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across distances, lending further insights to these estimates.

It is important to note that estimated VOT is a highly nonlinear function of

parameter estimates, which is evident from equation (18). Accordingly, small

variations in parameter estimates can lead to relatively large changes in VOT

estimates (with or without imputations). Hence, a more “robust” estimate of

each median VOT is its expected value taken over the sampling distribution of its

underlying parameters. The sampling distribution of VOT has no closed-form ex-

pression and generally cannot be characterized without using Monte Carlo meth-

ods. “Bootstrapping” this sampling distribution provides VOT estimates based

on a thorough exploration of their underlying parametric distribution rather than

estimating VOT from point estimates of these parameters. This is asymptotically

equivalent to calculating an optimal Bayesian posterior estimate of each median

VOT (with non-informative priors) and is reported in the “Bootstrap Median”

column of Table 1-4. These are taken as preferred median VOT estimates.

Since these estimates are based on a choice-based sample, the VOT estimates

are weighted to make them representative of the population of I-15 morning

commuters. Population mode shares were estimated with five days worth of

count data collected during the sample period.33 From these, “pure” choice-

based weights are constructed - equal to the ratio of population shares to sample

shares. Additionally, respondents reported the number of days that they traveled

on the I-15 corridor in a given week, as well as the number of those days that they

used each mode. To properly reflect the probability that each type of respondent

was included in the sample, these “pure” weights are adjusted as follows.

Let Wi represent these “pure” choice-based weights, Tin be the number of

times person n chose mode i in a given week, and Tn be the total number of trips

33These shares are reported in Ghosh (2001).
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taken by that person that week. The adjusted choice-based weights are given by

Win =
3X

i=1

WiTin
Tn

A (19)

where A is a constant adjustment factor required to ensure that the sum of these

weights equals the sample size.

The median VOT estimate across the sample is $30 per hour, which falls

within the $18 to $33 range of median VOT estimates reported by the previous

value-pricing studies cited in this paper. However, the considerable degree of het-

erogeneity in preferences revealed by this analysis yields median VOT estimates

ranging from $7 for part-time workers on non-work trips to $65 for high-income

work-trip commuters.

At first glance, the full-sample median VOT estimate appears to be on the

“high end” of those estimated by previous studies. This is likely driven by the

relatively higher incomes and shorter trip distances of I-15 morning commuters.

Note that Brownstone et al. (2003) report a median VOT equal to the present

study’s $30 estimate using an earlier wave of I-15 data. A more thorough basis of

comparison is presented in Brownstone and Small (2002), where this study’s I-15

sample is re-weighted by income and trip distance categories to match those of

the SR-91 sample in Small, Winston, and Yan (2002). When this I-15 sample is

“matched” to their SR-91 sample, the median VOT estimate across this sample

is $22, which corresponds nicely with their $20 to $25 range of median VOT

estimates. This is also in line with the $23 to $24 range of median VOT estimates

from the SR-91 reported in Lam and Small (2001).

Back to the present study, interacting median time savings with distance offers

an additional dimension of observable heterogeneity in VOT, which gives rise to

the “inverted U” shape illustrated in Figure 1-3. Figure 1-3 plots median VOT
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for work-trip travelers against distance, where income group and employment

status vary; a similar pattern is exhibited for non-work trips (not shown in the

figure). The quadratic form is appealing since the downward-sloping portion of

the function accounts for the possible self-selection of low-VOT commuters who

are willing to spend more time on the road and thus travel greater distances.

Counteracting this effect is the increasing scarcity of leisure time as travel time

cuts into it, or possibly that VOT is lower for shorter trips since people might

appreciate some transition time between home and work;34 both of these notions

help to explain the upward-sloping portion of the function.

As expected, Figure 1-3 shows that higher incomes correspond to higher VOTs

for a given work status. What may be slightly surprising is the magnitude by

which higher income groups place a higher value on their time savings. It is

possible that these higher income commuters are more also willing to purchase

additional amenities that the Express Lanes offer. For instance, Golob (2001)

uses an earlier wave of I-15 data to show that FasTrak users perceive a real safety

advantage to using the Express Lanes, which is plausible since these lanes are

physically separated from the main lanes. This physical separation might also

hinder the ability of highway patrol officers to issue tickets to those speeding in

the Express Lanes. Additionally, Brownstone et al. (2003) propose that using

FasTrak signals wealth - a signal that those with higher incomes might purchase

more readily.

The figure also illustrates from that even lower-income full-time workers value

their time savings more than all part-time workers do. This relationship holds

regardless of trip purpose. It suggests an additional dimension along which

policymakers can cater to varying preferences when proposing further projects.

34Small (1999).
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Table 1-4 includes interquartile ranges and their attendant percentiles next

to each estimate. These figures characterize the sampling distributions of the

parameter estimates, not the distributions of VOTs within the sample. The

interquartile ranges reported in the table reflect the degree of uncertainty in

estimating VOT due to statistical error in estimating its underlying parameters.

They are determined by Monte Carlo draws from the sampling distributions of

the parameter estimates, i.e., they are “bootstrapped”.

To illustrate the role that the imputation process plays in generating this sta-

tistical error, the left-hand side of Table 1-5 decomposes the degree of this error,

characterized by interquartile ranges, into two parts: dispersion based on the es-

timated total covariance of the parameter estimates and dispersion based on the

covariance generated by the imputation process alone. Specifically, the second

column in the table is constructed by “bootstrapping” these VOT distributions

with draws from aN(θ̂, U) distribution (see equation 10), which accounts only for

the within-imputation covariance produced by parameter estimation alone. Sub-

tracting the resulting interquartile ranges from those in the first column yields

the amount of total dispersion due to the imputation process alone. These val-

ues are divided by the values in the first column to present them as shares of the

total dispersion, given by the third column in the table. The columns labeled

“Estimation Covariance Shares” in Table 1-3 provide a similar decomposition for

the parameter estimates themselves.

1.6 Multiple Imputations vs. Single Imputation

Tables 1-3 and 1-4 include sets of estimates based on a single imputation. They

are included to illustrate the potential hazards of basing estimates on a single

set of imputed data when multiple imputations are warranted. These single-
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imputation estimates are derived from the same mode-choice model and VOT

estimators employed previously with multiply-imputed data.

This single imputation is essentially drawn according to the procedure out-

lined in Section 1.3.1, with m = 1. However, this study sheds the best possible

light on the single-imputation scenario - to facilitate a “fair” comparison - by

drawing these imputations directly from the means of their asymptotic condi-

tional distributions, given in Table 1-2, and adding the appropriate residuals.

The right-hand side of Table 1-3 displays the parameter estimates for the mode

choice model in the single-imputation case. Note that the reported t-Statistics

in this model are generally higher, illustrating that inferences based on these es-

timates will be “too sharp” since they do not account for the error introduced by

the imputation process, i.e., uncertainty due to measurement error.

The right-hand side of Table 1-4 reports VOT estimates for the single-imputation

case. These estimates are uniformly lower than their multiple imputation coun-

terparts. Although this is an artifact of this particular scenario, it illustrates

the potential biases that can be introduced by treating the single set of imputed

values as known. Also, the last column of Table 1-4 characterizes the degree

of statistical error in estimating VOT for the single-imputation case. Since the

uncertainty due to measurement error is overlooked here as well, the reported

dispersion measures are uniformly lower than their multiple imputation counter-

parts. This demonstrates that VOT inferences will also be “too sharp” when its

underlying sampling variability is understated.

Table 1-6 reflects the degree to which this understatement occurs. Its first

column gives a measure of estimation uncertainty that would be reported in a

single-imputation scenario without properly accounting for underlying sampling
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variability. The second column shows the degree to which this would understate

the estimation uncertainty that appropriately accounts for dispersion introduced

by the imputation process itself. In this study, failing to perform multiple impu-

tations would produce median VOT estimates that are 23% to 73% “too sharp”,

thereby reporting a misleading degree of estimation precision.

1.7 Chapter Conclusion

This study is based on observing the choices that commuters make when they

are offered the opportunity to purchase a free-flow alternative to their congested

daily commutes. From this, the analysis yields estimates for how these com-

muters value their time savings and characterize the degree to which their pref-

erences vary through observable characteristics. And, in accord with Small,

Winston, and Yan (2002), this heterogeneity suggests that toll-lanes like the ones

in this study have value well beyond enabling economists to better estimate the

value of time savings. In particular, the estimates suggest that preferences vary

significantly for every trip distance - a condition that provides “an opportunity

to design pricing policies with a greater chance of public acceptance by cater-

ing to varying preferences.”35 Such policies might eventually dispel the public

perception of toll-lanes as “Lexus lanes”.

Of course, obtaining these estimates requires a way to construct valid statisti-

cal inferences when reliable time savings data are missing for most of our sample.

This study demonstrates how to apply Rubin’s Multiple Imputation Method un-

der such circumstances in order to procure valid and consistent estimates. It also

illustrates the extent to which the “single imputation method” understates the

degree of uncertainty in estimating VOT by failing to account for its underlying

35Small, Winston, and Yan (2002).
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sampling variability.

The study’s median VOT estimates are plausible, intuitive, and within the

range of estimates presented by previous value-pricing studies. Their confidence

intervals, however, encompass those of the previous studies, making it difficult to

resolve discrepancies among them. Perhaps this study’s findings will encourage

wider public acceptance of value-pricing projects, hopefully yielding more reliable

data for resolving such discrepancies.
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2 Defensive Driving and the External Costs of
Accidents and Travel Delays

2.1 Chapter Introduction

Road users impose external costs on each other in terms of accidents and travel

delays. With travel-delay externalities, marginal increases in travel times are

related to traffic levels in order to estimate the magnitudes of these costs. With

accident externalities, the focus is on how accident risk changes with increasing

traffic levels.36

In current practice, estimating the magnitudes of external accident costs in-

volves a comparison between marginal and average accident rates across various

traffic volumes. This relationship is typically converted to an expression of the

elasticity of accident risk with respect to traffic flow. In what I refer to as the

“traditional approach” to modeling accident externalities, cost estimates are di-

rectly proportional to these elasticities. And since these elasticities are typically

estimated to be zero, the traditional approach often concludes that drivers do

not impose external accident costs on one another.

However, this approach overlooks the rational behavior of road users. When

driving conditions become more hazardous due to increased traffic levels, rational

drivers offset this risk, to some extent, by driving more carefully.37 This defen-

sive effort results in additional economic costs — costs that are widely recognized

by the literature on accident externalities but typically abstracted from. More-

over, cautious driving usually coincides with slower driving, which compounds

36“Accident risk” refers to the probability that a road user will be involved in an accident of
a particular type. Risk is generally considered to be an increasing function of traffic volume,
and the observed ratio of total accidents to volume is typically used to measure the level of this
risk.
37In the traffic-safety literature, this phenomenon is known as “offsetting” or “risk compen-

sating” behavior.
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the costs of defensive effort with additional travel-time costs. Positive accident

externalities can thus exist even when observed accident elasticities are zero (or

even negative) since these observed elasticities reflect the tradeoffs between risk

and effort that motorists face.

This paper first develops a theoretical model that characterizes these trade-

offs and their effects on accident and travel-delay externalities. An empirical

framework is then generated from this model by recognizing that accident risk,

defensive effort, and travel delays are linked by traffic densities. Although defen-

sive effort is not measurable, observed traffic densities enable the costs of risk, ef-

fort, and travel delays to be jointly estimated by exploiting micro-level data from

existing congestion-pricing experiments. The resulting analysis demonstrates

that accident externalities between motorists are substantial during peak-period

commutes. More generally, this paper suggests a paradigm-shift for modeling,

estimating, and interpreting the external costs of accidents and travel-delays.

The paper is organized as follows. Section 2.2 formally reviews the traditional

approach to modeling accident externalities. Section 2.3 develops a simple the-

oretical model in which rational drivers choose an optimal balance of accident

risk and defensive effort. Its results are then used to extend the traditional

approach by incorporating them into a joint model of accident and travel-delay

externalities where several distinct components of these costs are identified. Sec-

tion 2.4 describes how data from existing congestion-pricing experiments can be

used to develop estimates from this theoretical framework. Section 2.5 employs

this approach and presents external cost estimates, along with related valuation

estimates; its results imply Pigouvian tolls of $1.80 per vehicle-mile to jointly

correct accident and travel-delay externalities, and $0.80 per vehicle-mile to cor-
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rect accident externalities alone. Section 2.6 discusses the implications of these

results and compares them to those of previous studies. Suggestions for further

research and concluding remarks are offered in Sections 2.7 and 2.8.

2.2 The “Traditional Approach”

In current practice, external accident cost estimates are dictated by estimates

for the ratio of marginal to average accident rates or, alternatively, the elasticity

of accident risk with respect to traffic flow. To formally illustrate (a simplified

version of) this traditional risk-flow approach, consider a single road link in a

given time period with only one type of accident and one type of vehicle (ignoring

pedestrians). Let A represent the number of accidents between two vehicles on

the roadway and v the flow of vehicles traveling that road per unit of time.

Additional vehicles on the road increase the number of “encounters” (potential

collisions) between vehicles, leading to a greater number of accidents described

by

A = γvρ (20)

where γ is a proportionality constant and ρ is the degree to which accidents

depend on traffic levels. Marginal and average accident rates are then given by

∂A

∂v
= ργvρ−1 (21)

A

v
= γvρ−1 (22)

Letting R(v) represent (average) accident risk (∂R(v)
∂v

> 0),

A = R(v)v = γvρ (23)

=⇒ εR,v = (ρ− 1) (24)
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where εR,v ≡ ∂R(v)
∂v

v
R(v)

. Thus, the ratio of marginal to average accident rates is

given by ρ, and the elasticity of accident risk with respect to traffic flow is given

by ρ− 1.
It is important to draw a clear distinction between flow, the (average) number

of vehicles passing a point on the road per unit of time, and density, the (average)

number of vehicles on the road per unit of distance at a given time. The above

framework is couched in terms of vehicle flows, which allows the “supply” of

accidents to be represented as a flow quantity. This framework is largely built on

contributions from William Vickrey and David Newbery. For instance, Newbery

(1988) suggests that typically “accidents increase as the square of traffic flow”,

i.e., ρ = 2 is the “natural” degree to which accident rates increase with traffic

volumes. This approach is analogous to that used in kinetic gas theory, where

the number of collisions between “particles in a box” is proportional to the square

of the number of particles in the box. In other words, it is understood in the

above model that increasing the number of vehicles on the road causes an increase

in the potential for collisions by increasing the density of vehicles on the road

at each time, which captures what is meant by an increase in the number of

“encounters”.

Vickrey (1968) offers some of the first empirical estimates of these quantities

by examining marginal and average accident rates on California highways; he

suggests ρ = 1.5.38 Newbery (1988) notes that highway engineering estimates

accept as convention that accident rates are proportional to traffic flow, i.e.,

ρ = 1.39 In light of this, Newbery compromises between the engineering estimates

38Vickrey also notes that accident risk is not directly proportional to volume since increased
traffic “induces a greater degree of caution or discipline on the part of drivers.”
39Newbery (1990) also suggests that ρ = 1 “would be the case if one took seriously the expla-

nation of ‘risk compensation’, according to which road-users choose a desired level of perceived
risk with which they are comfortable - too little risk is boring, too much is frightening. Im-
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and Vickrey’s estimate and settles on ρ = 1.25. These figures are often used as

benchmarks in efforts to estimate external accident costs.40

Jansson (1994) makes a vital contribution to this literature by building on

Vickrey’s and Newbery’s work to develop a formal model of marginal external

accident costs. Much of the recent research on accident externalities employs

Jansson’s approach in one form or another; Mayeres et al. (1996), Lindberg et al.

(1999), and Lindberg (2001) are among recent studies adopting this approach.

The model in Jansson (1994) for a single vehicle type (car) is summarized as

follows (in simplified form).

LetMR represent a typical road user’s willingness to pay to reduce her accident

risk to zero, which can include her dependents’ willingness to pay for the same.

Additional social costs resulting from an accident, such as net-output losses and

administrative costs, should also be accounted for (which Jansson’s approach

does) but are abstracted from here to keep the analysis simple.41 Total, marginal

private, and marginal social accident costs are given by

TSCt = MRA =MRR(v)v (25)

MPCt ≡ TSCt

v
=MRR(v) (26)

MSCt ≡ ∂TSCt

∂v
=MR

·
R(v) +

∂R

∂v
v

¸
(27)

where the superscript t denotes that these expressions are in the context of the

traditional approach to modeling these costs.42 Accordingly, marginal external

provements in road safety then induce compensating increases in risk taking, while deteriorating
road conditions (ice, snow, heavier traffic) induce more caution.”
40For example, Newbery (1988), Jansson (1994), and Peirson et al. (1998) adopt this estimate

for their analyses.
41These costs are often referred to as “cold-blooded costs” in the accident literature. They

represent a relatively small portion of total accident costs. Representing these costs with c,
their contribution to external accident costs are given by cR(v).
42Transportation economists usually make the simplifying assumption that marginal private
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accident costs are given by

MECt ≡MSCt −MPCt =MRR(v)εR,v (28)

which also gives the Pigouvian toll required to achieve an efficient level of traffic

in terms of accident risk. It is clear from equation (28) that the magnitude

of the accident externality is directly proportional to the accident elasticity εR,v.

Hence, under this approach, empirical estimates of these elasticities are critical in

determining the extent to which road users impose accident costs on one another.

For instance, from equation (24), the “square-law” referred to by Newbery implies

that this elasticity is unity, whereas Vickrey’s estimate implies an elasticity of

0.5. Newbery’s compromise between Vickrey’s estimate and the engineering-

based convention of zero implies an elasticity of 0.25.

However, adopting an elasticity of zero has become pervasive in public policy,

as reflected by U.S. Federal Highway Administration (1982) and Department of

Transport COBA 9 (1981-1993). This is supported by Vitaliano and Held (1991)

who estimate marginal to average accident-rate ratios as approximately unity,

from which they conclude that “no significant accident externality exists”. Elvik

(1994) reviews several empirical studies on the relationship between accidents

and traffic levels and concludes that “no precise relationship can be detected”;

he then suggests that the accident elasticity is negative for fatal accidents and

zero for non-fatal accidents.

This view has also been applied in studies that attempt to estimate the overall

external costs of road use. Mayeres et al. (1996) note “for accidents between

two motorized road users an accepted convention is to assume that the number

costs and average (variable) costs are equal. This is readily defended by noting that the
derivative of total private cost with respect to volume is relatively small, while the resulting
quantity is multiplied by a value that is relatively large when describing total costs.
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of accidents is proportional to traffic volume, such that the elasticities are zero.”

If this is the case, then equation (28) tells us that an accepted convention of

the traditional approach to modeling accident externalities is to assume that no

such externalities exist (between motorized road users). Newbery (2002) cites

evidence from Department of Transport (1996) that the ratio of marginal to

average accident rates is less than one, implying a negative accident elasticity (as

Elvik (1994) suggests for fatal accidents). In this case the traditional approach

suggests that driving should be subsidized in the interest of public safety.

However, an observed elasticity of zero does not imply that motorists create

no additional hazards for each other (as discussed by Vickrey and Newbery - see

footnotes 38 and 39). It instead indicates that motorists offset increased physical

risk, to some extent, by driving more carefully. This notion is supported empir-

ically by several studies that attempt to detect “offsetting behavior”. Peltzman

(1975) is among the first to provide such evidence and Keeler (1994) provides

more recent support.43

As noted in Newbery (1988), these defensive efforts are “not costless, and

the extra care taken by everyone should be properly costed.” The traditional

approach, however, overlooks these costs - costs that are incurred regardless of

the observed relationship between accident risk and traffic levels.

43Efforts to detect offsetting or “risk compensating” behavior is not limited to the economics
literature. Engineering-based studies such as Farmer et al. (1997), Sagberg et al. (1997),
Meeker et al. (1997), Leden et al. (1998), Assum et al. (1999), and Thiffault and Bergeron
(2002) detect risk compensation under a variety of circumstances such as road surface and
lighting improvements, driving monotony, railroad-crossing control improvements, and before-
and-after studies of anti-lock brake installations.

39



2.3 A Theoretical Model of Accident and Travel-Delay
Externalities with Defensive Drivers

Little research has been devoted to understanding offsetting behavior in the con-

text of accident externalities, though there are a few notable studies. Peirson et

al. (1998) adjust existing estimates of external accident costs with a model that

incorporates an assumed degree of offsetting behavior. Their approach suggests

that existing estimates are overstated given the cost reductions that defensive

drivers confer on one another. They acknowledge, however, that these implied

cost reductions are not balanced by the costs of exerting risk-reducing effort, such

as “congestion and reduced pedestrian mobility”.

The few studies that explicitly address the costs of defensive effort do so the-

oretically. Rotemberg (1985) explores the effects of defensive effort by modeling

optimal tradeoffs between effort and risk reduction through increased following

distances and their associated time costs. Boyer and Dionne (1987) use costly

“self-protection activities” in an expected utility framework to characterize opti-

mal insurance levels. Mayeres (1999) develops an externality model in which mo-

torists purchase a “defensive commodity” to reduce “exogenous accident risk”.44

This section builds on some of the insights from Rotemberg (1985), Boyer

and Dionne (1987), Peirson et al. (1998), and Mayeres (1999) to explicitly model

tradeoffs between accident risk and defensive effort. It then employs the re-

sults of this optimization process in a model that describes the joint contribution

of physical accident risk and defensive effort, with its attendant time-costs, to

external accident and travel-delay costs.

The “margin” of these marginal external costs is traffic volume. As discussed

44Outside the economics literature, Calabresi (1970) explains from a regulatory perspective
how defensive driving should be considered in legal reforms.
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in Section 2.2, however, (physical) accident risks are influenced by volumes only

to the extent that these volumes affect traffic densities. Likewise, vehicle speeds

(and their corresponding travel times) are influenced by volumes through their

effect on densities.45 To emphasize these principles, the modeling efforts in this

section focus on traffic densities, but are compatible with the traditional risk-flow

approach since these densities are presented as functions of traffic volumes.

2.3.1 Optimal Defensive Effort

Consider a representative driver of a given vehicle type on a single road link with

other vehicles of the same type. Let D represent the driver’s level of defensive

effort - the care she takes to ensure some degree of her own safety, including

the level of attention she pays to the task of driving. The risk of an accident

between two vehicles is R ≡ R(k,D), where k ≡ k(v) is the average density

of vehicles during some time period and v is the average flow of vehicles over

that period. This risk depends both on the physical quantity k and the driver’s

own behavior (through D), i.e., accident risk is endogenous. Also, let w be the

driver’s initial wealth and l ≡ l(k) be the loss she incurs in an accident. Note

that R only gives the probability of a collision and does not specify which type

of accident might result (e.g. fatal or serious injury). Instead, the level of l

dictates the type of accident under consideration, which is assumed to be a non-

linear function of traffic density - initially rising then falling. For example, the

likelihood of a collision might be quite high under very dense traffic conditions,

45These statements can be represented formally through a “fundamental” relationship be-
tween volumes, speeds,and densities: v = ks(k) ⇒ k = v

s(k) . A more rigorous representation
would include dynamic models that account for a phenomenon called “hypercongestion”. In
these models, average travel times are also increasing in “input flows”, as are average densities
for road segments that extend beyond the length of any queue that might be generated. See
Small and Chu (2003) for an economic review of the “hypercongestion” literature.
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but the loss associated with such a collision is likely to be quite low; fatal accidents

are assumed to be rare in heavily congested conditions.46

Since defensive effort typically involves speed reduction, travel time T ≡
T (k,D) is given in terms of this effort, along with physical characteristics such

as the roadway capacity that vehicles consume (proxied by k). Accordingly,

C(T,D) represents the (non-stochastic) disutility that results from exerting de-

fensive effort, both directly from effort itself and through its effect on travel time.

The model’s main assumptions are summarized as follows:47

∂R

∂k
> 0,

∂R

∂D
< 0 (29)

∂T

∂k
> 0,

∂T

∂D
≥ 0 (30)

∂C

∂D
> 0,

∂C

∂T
> 0 (31)

The assumptions state the following: (a) physical accident risk is increasing in

traffic density, but can be offset to some extent by defensive effort;48 (b) increased

traffic density increases travel time as does defensive effort insofar as it induces

speed reduction; (c) defensive effort and travel time are costly in terms of utility.

A state-dependent utility framework provides a simple way to relate motorist

behavior to the above variables and assumptions. Write expected utility as

U e = R(k,D)Ua(w − l) + [1−R(k,D)]U−a(w)− C(T (k,D),D) (32)

where Ua and U−a are (sub)utilities with and without the occurrence of an acci-

dent. The driver will choose a level of defensive effort that balances the marginal
46This statement must be tempered by the possibility that under queuing conditions the risk

of a fatal accident might be relatively high given an increased probability of slamming into the
vehicles at the end of the queue.
47More precisely, ∂R∂k > 0 ∀k<kj where kj is a “jam density” indicating stopped traffic. This

accounts for the fact that a vehicle cannot initiate a collision when it is not moving.
48“Physical accident risk” or “exogenous risk” refers only to the portion of risk that is influ-

enced by density. More formally, if D̄ is some fixed level of defensive effort, then an increase
in physical risk is represented by ∂R(k,D̄)

∂k > 0.
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benefit of risk-reduction with the marginal cost of exerting this level of effort,

which includes a travel-time component. That is, she will choose the level of D

satisfying the first-order condition:

∂R

∂D
[Ua(w − l)− U

−a
(w)] =

∂C

∂D
+

∂C

∂T

∂T

∂D
(33)

This implicitly defines the optimal level of defensive effort D∗ as a function of k,

i.e., D∗ = D(k). Accordingly, the driver’s optimal level of accident risk is given

by R∗ = R(k,D(k)). Note that

dR(k,D(k))

dk
=

∂R

∂k
+

∂R

∂D

dD

dk
R 0 (34)

which illustrates an indeterminate change in the driver’s resulting level of overall

risk after an increase in traffic density. Physical road hazards may increase with

traffic flows (∂R
∂k

> 0), but the magnitude and direction of the net change in risk

depends on the extent to which driver’s offset this physical risk ( ∂R
∂D

dD
dk

< 0).

The result illustrates why empirical studies using the traditional approach

might report a zero (or even negative) accident elasticity. Such studies presume

to observe R(v, D̄) when they more reasonably observe R(k,D(k)). In other

words, researchers can only observe changes in accident risk net of any offsetting

effects, where the net effect results from drivers’ optimal tradeoffs between risk

and effort.

2.3.2 External Accident and Travel-Delay Costs

The preceding analysis suggests that it is appropriate to model accident and

travel-delay externalities together since they jointly involve speed reduction. At

a drivers optimal level of defensive effortD(k), travel time is given by T (k,D(k)),

which illustrates how density provides a link between accident and travel-delay
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externalities.49

Consider the road environment described in the previous section. MT is the

marginal value of travel time savings (the “value of time”). Analogous to this

is MD, the value of a marginal reduction in the effort required to maintain a

preferred level of risk.50 MR is the value of a marginal reduction in the risk of a

loss resulting from an accident; in the case of accidents with a single fatality, the

main component of MR is often referred to as the “statistical value of life”.

The total social cost of driving that motorists bear, in terms of accidents and

travel-delay, during a commute period of duration q, is given by:51

TSC =MRR(k,D(k))qv +MTT (k,D(k))qv +MDD(k)qv (35)

The marginal private cost during this period is

MPC ≡ TSC

qv
=MRR(k,D(k)) +MTT (k,D(k)) +MDD(k) (36)

in dollars per vehicle. The marginal social cost of adding another vehicle to the

road is thus

MSC ≡ dTSC

d(qv)
=

d

dv
[MRR(k,D(k))v +MTT (k,D(k))v +MDD(k)v]

= MR

·µ
∂R

∂k
+

∂R

∂D

∂D

∂k

¶
∂k

∂v
v +R(k,D(k))

¸
+MT

·µ
∂T

∂k
+

∂T

∂D

∂D

∂k

¶
∂k

∂v
v + T (k,D(k)))

¸
+MD

·
∂D

∂k

∂k

∂v
v +D(k)

¸
(37)

49This should not be confused with the additional congestion externality that results when
an accident actually occurs, which is omitted from the present analysis.
50Appendix A shows how MT and MD can be formally derived. It involves a slightly more

complex utility framework, which is left to the appendix since it does not affect the results of
the present analysis.
51This analysis abstracts from other societal losses that accidents create, such as “warm-

blooded” and “cold-blooded” costs. Although they could be readily incorporated into the
analysis, they are omitted for clarity.
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Accordingly, marginal external costs (MEC ≡MSC−MPC) during this period

are given by

MEC = MR
∂R

∂k

∂k

∂v
v +MR

∂R

∂D

∂D

∂k

∂k

∂v
v

+MT
∂T

∂k

∂k

∂v
v +MT

∂T

∂D

∂D

∂k

∂k

∂v
v +MD

∂D

∂k

∂k

∂v
v (38)

in dollars per vehicle.

Equation (38) separates external accident and travel-delay costs into five com-

ponents. The first term is identical to the cost put forth by the traditional ap-

proach to modeling accident externalities. Likewise, the third term shows the

travel-delay externality in traditional link-flow congestion models. The second

term, however, illustrates an external benefit that an incremental driver confers

when she offsets physical risk by driving more cautiously. But this benefit is not

without its own costs. The fourth term shows caution adding to travel-delay

costs through increased travel times. Adding to this is the fifth term, which

gives the direct value of the disutility that defensive driving entails.

To compare equation (38) with equation (28) used by the traditional approach,

the first two terms can be combined as a risk-flow elasticity εR,v ≡ dR
dv

v
R
. Letting

MEC 0 denote only the portion of external costs that are attributable to accident

risk and its attendant offsetting behavior gives:

MEC 0 =MRRεR,v +MT
∂T

∂D

dD

dv
v +MD

dD

dv
v (39)

Equation (39) shows that empirical studies using the traditional approach will

tend to understate external accident costs by MT
∂T
∂D

dD
dv
v+MD

dD
dv
v unless drivers

decline to offset physical accident risk. This is contrary to Peirson et al. (1998),

who suggest that offsetting behavior implies that the traditional approach tends

to overstate these costs. Essentially, it demonstrates that an observed risk elas-
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ticity of zero does not imply zero external costs. And in the case of where εR,v

is negative, drivers can only confer net external benefits upon each other if the

value of their risk-reduction (−MRRεR,v) exceeds the combined effort and travel-

delay costs that this risk reduction creates. As can be seen from the last two

terms in equation (39), what drives these results are the costs that accompany

the “greater degree of caution” that Vickrey discussed more than thirty years

ago.

2.4 Road Pricing and “Value Pricing”

Ideally, “first-best” road pricing could correct the externalities presented in equa-

tion (38) by charging each road user a Pigouvian toll equal to MEC. At first,

this would seem infeasible since defensive effort is difficult, if not impossible, to

measure. However, the components of equation (38) are linked by traffic densi-

ties, which are observable quantities that are often available in the data used to

conduct “value pricing” experiments.

“Value pricing” refers to highway projects that offer motorists an opportunity

to purchase a free-flow alternative to congested travel.52 These projects typically

involve two parallel road segments: “HOT-lanes” and “free-lanes” or (“main

lanes”).53 Tolls to enter the HOT-lanes are set at levels that maintain “free-

flow” conditions along these lanes. Data collected from these projects allow

researchers to observe the choices that commuters make between segments of

equal length but with different prices and traffic conditions.

52Brownstone and Small (2003) provide an excellent summary and assessment of several
recent “value pricing” studies.
53The acronym “HOT” stands for “High-Occupancy / Toll”. Typically, value-pricing projects

give special consideration to high-occupancy vehicles (carpools), such as a discount on the price
of entering the tolled lanes. This leads to the convention of referring to such toll-lanes as
“HOT-lanes”.
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In this context, define the difference between the average vehicle densities

on the free-lanes (kfree) and HOT-lanes (kHOT ) during a period of duration q

as dk ≡ kfree − kHOT , where kfree ≥ kHOT . The total (non-monetary) cost

increase (dC) that a motorist would incur by jumping from the HOT-lanes to

the free-lanes (in terms of safety, defensive effort, and travel-delay) is given by

differentiating equation (36) totally with respect to k:

dC =

·
MR

µ
∂R

∂k
+

∂R

∂D

dD

dk

¶
+MT

µ
∂T

∂k
+

∂T

∂D

dD

dk

¶
+MD

dD

dk

¸
dk (40)

Each motorist would be willing to pay up to dC to enter the HOT-lanes. Follow-

ing equation (38), marginal external costs with respect to safety and travel-delay

are then given by

MEC =
dC

dk

∂k

∂v
vfree (41)

in dollars per vehicle, or dC
dk

∂k
∂v

vfree
L

in dollars per vehicle-mile, where L is the

length of the Express Lane facility. The term dC
dk
can be estimated, for example,

with a random-utility based discrete-choice model that specifies the (indirect)

utility from choosing the HOT-lanes as a function of money-cost (toll) and traf-

fic density; these variables are often available in value-pricing data. In this

framework, cdC
dk
estimates each motorist’s marginal rate of substitution between

money-price and traffic density, which I refer to as “the marginal value of a

unit reduction in average traffic density” or, more compactly, the “value of den-

sity” (VOD). This is the general framework used to the develop the estimates

described in Section 2.5.3. And, aside from estimating Pigouvian tolls, the re-

sults of this process can be used in evaluating the benefits of highway expansion

projects, which would jointly reflect travel-delay and safety benefits as advocated

by Larsen (1994).54

54Larsen (1994) formally illustrates that optimal road investment based on time-savings ben-
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It is important to point out that this approach will reflect the disutility of

all that is correlated with marginal increases in traffic densities. It is assumed,

however, that travel delay, physical risk, and defensive effort represent the bulk

of the disutility associated with these densities. And intangible quantities such

as “stress levels” are considered to be generated primarily by these factors.

Also note that this approach models choices between prices and densities,

where the densities are influenced by traffic volumes. However, since volume

data are available in value-pricing data, one might ask why choices between prices

and volumes are not modeled directly. To see this, suppose a motorist faced a

choice between two parallel, single-lane roads with identical physical dimensions.

On one road there is an average of 100 vehicles per mile and its cars are travelling

at 10 miles per hour. On the other, there are only 20 vehicles per mile and its

cars are moving along at 50 miles an hour. If both roads were toll-free, most

would agree that the motorist would likely choose the less congested road. Yet

both roads have equal traffic volumes of 1000 vehicles per hour according to the

“fundamental” relationship

v = ks(k) (42)

where s(k) is the average speed on each road. Hence, traffic volumes can fail to

predict mode choices under fairly typical traffic conditions for HOT-lane facilities.

Densities, however, give a direct sense of how vehicles are liable to “encounter”

each other, and relate to speeds (and therefore travel times) in a predictable

manner.

To explicitly account for this relationship between densities and speeds, through

efits alone lead to under-investment since they fail to account for the increased safety benefits
of capacity expansion.
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the influence of volumes, write the ∂k
∂v
term in equation (41) as

∂k

∂v
=

1

s(k) + ∂s
∂k
k
=

1

s(k)(1 + εs,k)
(43)

where εs,k ≡ ∂s(k)
∂k

k
s(k)

is the elasticity of speed with respect to density. Equation

(41) can then be expressed as

MEC =
dC

dk

vfree
s(k)(1 + εs,k)

=
dC

dk

kfree
1 + εs,k

(44)

in dollars per vehicle, or dC
dk

kfree
1+εs,k

1
L
in dollars per vehicle-mile, which is used in

the empirical sections of this paper.

Of course, the individual components of this external cost, such as those

directly attributable to effort, would not be identified by this model. Instead,

it would generate a “reduced-form” estimate of external accident and travel-

delay costs. Moreover, without specifying densities for specific vehicle types,

this estimate would essentially average the influences of various vehicle types.

Nonetheless, it offers a way to measure the level of the externality in a manner

that accounts for the net impact of defensive effort.

At this point it is worth noting that existing “value of time” studies using

value-pricing data might already capture these external costs to some extent.

For instance, in a random-utility framework, the utility that a motorist derives

from entering a HOT-lane facility is typically written (in its simplest form) as

UHOT,n = Xnδ + βTSHOT,n + γTollHOT,n + �HOT,n (45)

where X is a vector of demographic covariates; TS and Toll are the travel-time

savings and money prices of using the HOT lanes. δ,β,γ are parameters to be

estimated and � is the stochastic component of UHOT . In this framework, the

marginal value of time savings (corresponding to MT above) is

dTollHOT,n

dTSHOT,n
= − ∂UHOT,n/∂TSHOT,n

∂UHOT,n/∂TollHOT,n
= −β

γ
(46)
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However, TS is implicitly a function of traffic density k, as are omitted terms

such as those involving accident risk and defensive effort. Accordingly, varia-

tion in traffic density influences “value of time” estimates by its effect on utility

through TS. Likewise, this variation would influence utility through its impact

on accident risk and defensive effort. So if utility is specified as in equation (45)

then “value of time” estimates are likely to reflect additional disutility from acci-

dent risk and defensive effort to the extent that β reflects the correlation between

travel time and these omitted components (through k).55 Hence, corrective tolls

and highway-expansion benefit measures that are based on estimates from exist-

ing “value of time” studies are likely to reflect some degree of the benefits from

reducing risk and effort levels. This matter is further examined in Section 2.6.2.

2.5 An Empirical Analysis of Accident and Travel-Delay
Externalities

2.5.1 Empirical Setting

The estimates presented later in this paper employ the methods developed above

and are based on data from a particular value-pricing experiment: The San Diego

I-15 Congestion Pricing Project. This project offers solo drivers an option to pay

to use an eight mile stretch of two free-flowing lanes (“Express Lanes” or “HOT”

lanes) adjacent to (but physically separated from) the main lanes (or “free lanes”)

along California’s Interstate 15, just north of San Diego. It offers solo drivers a

premium alternative to the typically congested conditions along that section of

the I-15. The HOT lanes are reversible and operate in the southbound direction

during the morning commute (inbound to San Diego) and northbound during the

55This might also help to explain why “value of time” estimates based on stated-preference
data tend to differ significantly from those based on revealed-preference data. This is further
explored in Section 2.6.2.
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afternoon commute. Those who choose to enter the facility must travel its entire

length since there are no interim exits.

The present study focuses on morning (inbound) commuters who traveled the

entire eight mile length on or adjacent to the HOT lane facility during Octo-

ber and November of 1998.56 This period corresponds to the third wave of the

project’s panel survey that gathers the necessary information about I-15 com-

muters required to conduct mode-choice analysis. Table 2-1 provides a brief

summary of respondent characteristics.

All of the valuation and cost estimates in this paper are functions of mode-

choice parameter estimates that correspond to tolls, travel-time savings, or traf-

fic densities (or, more precisely, differences in traffic densities between the two

modes). These variables are given in the first column of Table 2-2 and each

warrants a brief explanation of how it is measured.

A unique characteristic of the I-15 Express Lanes is how free-flow traffic con-

ditions are maintained along them. Tolls change every six minutes in $0.25

increments to maintain “Level of Service C”, as required by California Law for

HOT lanes.57 This is accomplished by traffic-flow monitoring from loop detec-

tors embedded in the highway near each onramp along the facility.58 Tolls are

posted at the entrance to the Express Lanes, as well as a mile before, and range

from $0.50 to $4.00 in the estimation sample with a median of $1.50 The actual

toll faced by respondents in the sample is obtained by matching the time that

they reported reaching the facility with toll data collected from the California

Department of Transportation (CALTRANS). These tolls are then converted to

56Only weekday and non-holiday trips are considered.
57Level of Service C is defined by a minimum speed of 64.5 MPH and a maximum service

flow rate of 1,548 passenger cars per hour per lane.
58 Loop detectors, through changes in inductance, sense how long a vehicle is above them

(“occupancy”) and how many vehicles pass over them (“flow”) in a given period.
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“effective tolls”, where they are set to zero if the respondent reports that their

tolls are paid for by someone else (such as their employer).

Time savings are defined here as the difference between travel time on the

main lanes adjacent to the HOT lanes and travel time on the HOT lanes them-

selves. The salient time-savings measure in this study is median time savings

since commuters do not know their actual time savings prior to making a mode

choice. Instead, it is assumed that commuters have a feel for their travel-time

distributions and base their decisions on typical values, as is standard in value-

pricing studies.59 These time-savings measures are based on data from loop

detectors, which estimate vehicle speeds on the main lanes and HOT lanes in six

minute intervals, corresponding to the intervals between toll changes.

An additional and important source of time savings is provided by a dedicated

Express Lane onramp at Ted Williams Expressway on the northern end of the

facility. Those wishing to enter the I-15 at Ted Williams can enjoy additional

time savings by using the HOT lanes since the dedicated onramp enables them to

bypass queues that typically form at the metered entrance to the main lanes. In

fact, the average observed wait time at this onramp is about 39% of the average

observed time savings from using the HOT lanes themselves. Waiting times at

this onramp are incorporated into time-savings measures for those who entered

the I-15 at Ted Williams Expressway.60 The waiting times themselves are based

on floating-car observations over ten days of the sample period.

Related to travel-time differences between the HOT lanes and main lanes are
59This approach is adopted by Brownstone et al. (2003), Steimetz and Brownstone (2003),

Small, Winston, and Yan (2002), Ghosh (2001), Lam and Small (2001), and Brownstone et al.
(1999).
60Specifically, separate time-savings distributions are constructed for those entering the I-15

at Ted Williams Expressway so that their median time-savings values reflect these additional
savings.
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differences in average traffic densities, taken here as the difference in the average

number of vehicles per lane-mile between the two modes. Since the Express Lane

facility is segmented by a series of loop detectors, each sensor measures densities

only for its corresponding section of highway. For mode-choice analysis, this

requires the operational assumption that commuters’ responses to varying traffic

densities along the facility are captured by average traffic densities over the length

of the facility, as well as over the time interval corresponding to each trip. These

assumptions are defended by observing that section-by-section densities are quite

stable for each six-minute interval in the estimation sample, as are densities across

adjacent intervals. And, analogous to the case for travel-time savings, mode-

choice estimates are based on median density differences since commuters are

not able to observe the facility’s actual traffic conditions prior to making their

choices. Instead, commuters presumably respond to conditions along the Express

Lane facility that are typical for their travel periods.

The remaining covariates in Table 2-2 serve as controls and are included based

on the “lessons learned” from Steimetz and Brownstone (2003). For instance, the

“Toll Signal” variable, defined as the difference between the posted toll and aver-

age toll for a given time period, serves two purposes. First, posted tolls change

every six minutes according to varying traffic levels, which provides motorists

with information about downstream traffic conditions. Traffic that is heavier

than usual coincides with unusually high tolls, thereby influencing the choice to

enter the Express Lanes. Second, there is evidence from recent value-pricing

studies that motorists also care about the “variability” in the user-cost savings

they hope to enjoy from entering the HOT lanes.61 However, this variability

61It is common in the value-pricing literature to define “variability” as the difference between
the 80th or 90th percentile and 50th percentile of the relevant time-savings distribution. This
is based on the notion that commuters care much more about unanticipated delays than they
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tends to be highest during peak-commute periods when traffic densities and tolls

are highest, making it especially difficult to separate the influence of time-savings

variability on mode choice from the influence of traffic density. But high levels

of variability are presumably less likely to influence mode choices when unusually

heavy traffic conditions can be predicted, to some extent, by unusually high tolls.

In this sense, the “Toll Signal” variable can be thought of as an alternative ap-

proach to modeling how commuters respond to uncertainty about the user-cost

savings that the Express Lanes can offer.

The income and distance variables are self-explanatory. The trip-purpose and

job-status variables accommodate varying levels of schedule flexibility among the

sample respondents. The “Female” variable tests a recurring theme in the value-

pricing literature: that females are more likely to use HOT lanes. Finally, the

“Mobile Phone” variable serves as a “quick and dirty” test of the notion that

those who are inclined to make calls while driving would prefer to do so under

conditions that require less attention to the task of driving (i.e., less defensive

effort). A preview of the coefficient estimates in Table 2-2 shows that each

control carries the “expected” sign.

These variables can be viewed as a minimal set of mode-choice predictors,

where the goal is to generate a series of estimates that are comparable across

model specifications. Any underlying heterogeneity in the following valuation

and costs parameters is acknowledged, but implicitly averaged for the sake of

clarity.

do about unexpectedly swift travel.
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2.5.2 Econometric Framework

Consider a sample of solo drivers on approach to the I-15 Express Lane facility

who can choose between the following alternatives: (1) travel in the free lanes

parallel to the HOT lanes, and (2) travel in the HOT lanes for a toll.62 To

characterize these choices, let Uin(Zin) represent the utility that person n enjoys

from choosing alternative i, and write:

Uin(Xin) = Vin(Xin) + �in = Zinθ + �in (47)

where Vin(Zin) is the indirect utility for those with observed characteristics Zin.

The remaining term �in accounts for unobserved (latent) characteristics to ac-

commodate stochastic preferences for alternative i among those with identically

observed characteristics. If it is assumed that each �in is distributed indepen-

dently and identically according to a Type I Extreme Value distribution, then the

probability Pin that person n chooses alternative i, conditioned on characteristics

Zin, is given by the standard binary logit form

Pin =
eZinθ

2P
j=1

eZjnθ
(48)

where θ is a vector of parameters to be estimated. With an exogenous sampling

mechanism, θ would be estimated by maximizing the joint log-likelihood function

L(θ, Zin) =
NP
n=1

2P
i=1

yin ln(Pin) (49)

where yin = 1 if person n chooses alternative i, and yin = 0 otherwise.

The proportion of commuters who actually pay to use the HOT lanes is rela-

tively small, so choice-based sampling is employed to obtain a sufficient amount

62Note that carpooling commuters, who are exempt from HOT lane tolls, are excluded from
the estimation sample.
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of variation in the data while meeting budgetary constraints. Accordingly, maxi-

mum likelihood estimates from equation (49) will generally be inconsistent unless

this endogenous sampling mechanism is properly accounted for.63 To this end,

Manski and Lerman (1977) show that a consistent estimator for θ, known as the

Weighted Exogenous Sample Maximum Likelihood Estimator (WESMLE), is the

maximand to the weighted log-likelihood function

Lw(θ, Zin, wn) =
NP
n=1

2P
i=1

wnyin ln(Pin) (50)

where wn is the weight given to the nth observation’s contribution to the log-

likelihood, which is equal to the inverse-probability of observation n being in-

cluded in the sample. If the only information available for constructing weights

were mode shares over the population and sample, then the appropriate choice-

based weights would be

wi =
pi
si

(51)

where pi and si represent the population and sample shares of mode i. However,

the commuters in the I-15 panel reported the number of days that they traveled

on the I-15 corridor in a given week, as well as the number of those days that

they used each mode. To more thoroughly reflect the probability that each type

of respondent was included in the estimation sample, weights are constructed

as follows. Let tin be the number of times person n chose mode i in a given

week, and tn be the total number of trips taken by that person that week. The

sampling weights are then given by

wn = α
2P

i=1

witin
tn

(52)

63Daniel McFadden shows that in a conditional-logit model with a full set of alternative
specific constants, only the coefficient estimates on the constants themselves will be inconsistent
when choice-based sampling is employed (see Manski and Lerman (1977)). However, it is not
clear if the standard errors on all of the parameter estimates would be estimated consistently
since they are functions of the (expectations of) inconsistently-estimated choice probabilities.
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where α is a constant adjustment factor required to ensure that the sum of these

weights equals the sample size.

The WESMLE asymptotic covariance matrix is given by

Σ = Ω−1∆Ω−1 (53)

where

Ω = −E
·
∂2wnLn(θ, Zin)

∂θ∂θ0

¸
(54)

∆ = E

·µ
∂wnLn(θ, Zin)

∂θ

¶µ
∂wnLn(θ, Zin)

∂θ0

¶¸
(55)

and Ln(θ, Zin) is the nth observation’s (unweighted) contribution to the log-

likelihood function given by equation (49). Replacing the expectation opera-

tors in equations (54) and (55) with their sample analogues, evaluated at the

WESMLE estimates for θ, yields consistent estimates of Σ.

It is worth noting that the standard errors on WESMLE estimates are typi-

cally large in practice, which tend to offset the benefits of choice-based sampling.

It is easy to see how the weighting process can do this. Suppose the weights given

by equation (51) are used in equation (50). The sampling weights would be quite

small for the relatively rare mode, thereby constraining the log-likelihood contri-

butions from the sample variation within this mode. However, the WESMLE

estimates generated from this study’s sample are reasonably sharp. Two key

factors aid in overcoming the “error inflation” that the WESMLE procedure can

often produce. First, there is a reasonable degree of variation among the key

variables within the relatively rare mode (HOT-lanes). Second, exploiting addi-

tional information about the (choice-based) sampling mechanism to employ the

sampling weights given by equation (52) somewhat relaxes the variation con-

straints that would be imposed by the weights in equation (51). This latter
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point illuminates the utility of exploring the sampling mechanism beyond simple

mode-shares if choice-based samples are to be used.

2.5.3 Valuation and External Cost Estimates

2.5.3.1 Combined Accident and Travel-Delay Costs

As described in Section 2.4, estimating the marginal external costs described

by equation (38) entails estimating how motorists value marginal reductions in

traffic densities. To this end, letKin be the median difference in average densities

between the HOT lanes and free lanes for person n’s travel period, and write:

Uin = Vin + �in = Xnδ + λKin + γTollin + �in (Model 1)

The “value of density” (VOD) for commuter n is then defined by

V OD ≡ dTollin
dKin

¯̄̄̄
V̄in

= − ∂Vin/∂Kin

∂Vin/∂Tollin
(56)

which is estimated by − λ̂
γ̂
. Hence, − λ̂

γ̂

kfree
1+ε̂s,k

1
L
jointly estimates the marginal

external costs, in dollars per vehicle-mile, associated with accident risk, travel-

delay, and driving effort attendant to larger traffic densities on the free lanes.

Since εs,k is a random variable, it must also be estimated to calculate the

magnitude of this externality. This is accomplished by a log-quadratic regres-

sion of speed against density, the results of which are given in Table 2-3. For this

regression, average daily speeds and densities in the sample are used to mitigate

potential problems with using the static relationship v = ks(k) in a dynamic

setting. Of course, the literature on estimating speed-flow relationships is volu-

minous, and this approach is not intended as a competing substitute. However,

Table 2-3 shows that the relationship between speed and density is predicted with

a reasonable degree of precision. The resulting elasticity estimate is presumably
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accurate enough to demonstrate the magnitudes of the costs described in this

paper. This comes with the caveat that the estimate essentially averages across

the traffic regimes of daily peak-period commutes.

The first set of columns in Table 2-2 report coefficient estimates for the

above model, along with their corresponding (WESMLE) standard errors and

t-statistics. Note that travel in the free lanes is the reference mode. All of the

coefficients have intuitively correct signs and are statistically significant beyond

the 95% confidence level (with the exception of “Trip Distance”).

It follows from these parameter estimates that the median commuter is will-

ing to pay $0.16 for a marginal reduction in average traffic density during peak

morning commute periods. This result is reported in Table 2-2, along with its

standard error of $0.02, which is calculated by “bootstrapping” its underlying

empirical distribution. The table also reports corresponding estimates for the

combined external costs of accidents and travel-delay, in dollars per vehicle-mile,

that an additional vehicle imposes on other motorists. These values are calcu-

lated as − λ̂
γ̂

kp
1+ε̂s,k

1
L
, where kp is the pth percentile from the distribution of average

daily traffic densities on the free lanes. They suggest that the an additional

vehicle generates external costs of $1.67 to $1.95 per vehicle mile during a typical

morning commute. The discussion in Section 2.6 sheds light on the magnitudes

of these estimates.

2.5.3.2 Separating Accident and Travel-Delay Costs

Consider the utility specification

Uin = Vin + �in = Xnδ + βTSin + λKin + γTollin + �in (Model 2)
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where the salient difference between this specification and that of Model 1 is the

inclusion of the time-savings variable TSin.64 The resulting marginal value of

density-reduction is given by

V OD0 ≡ dTollin
dKin

¯̄̄̄
V̄in

= − ∂Vin/∂Kin

∂Vin/∂Tollin
= −

·
β

γ

∂TSin
∂Kin

+
λ

γ

¸
(57)

Here V OD0 is separated into two components; −β
γ
∂TSin
∂Kin

controls for the influence

of density on utility through its influence on time savings, thereby allowing esti-

mates of V ODA ≡ −λ
γ
to directly estimate each commuter’s willingness-to-pay

for marginal reductions in costs such as physical risk and defensive effort through

marginal reductions in traffic densities.65 Accordingly, external accident costs,

denoted MECA, are given by

MECA = −λ
γ

kp
1 + εs,k

1

L
(58)

when utility is specified as in Model 2.

The remaining term in equation (57), −β
γ
∂TSin
∂Kin

, likewise can be used to es-

timate travel-delay externalities, where ∂TSin
∂Kin

must also be estimated. Alterna-

tively, note that −β
γ
directly gives the value of a marginal reduction in travel

time (the “value of time”). External travel-delay costs, denoted MECT , are

then estimated with

MECT = −β
γ

∂T

∂k

kp
1 + εs,k

1

L
(59)

where T and k are main-lane travel times and densities. Table 2-4 shows the

regression used to estimate the (average) marginal effect of density on travel time

64Note that the parameters will have different values and interpretations across the various
models specified in this paper. The same symbols are used across these models, however, to
keep the exposition as simple as possible.
65This approach will reflect all of the additional influences that are correlated with density.

However, I maintain the assumption that marginal increases in physical accident risk and
defensive effort generate the bulk of the non-travel-time disutility from marginal increases in
traffic densities. Hence, the term “accident externality” is used here to describe the costs
associated with these two factors.
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(∂T
∂k
) using median values of T and k from the free lanes along the Express Lane

facility.66

The second set of columns in Table 2-2 give the coefficient estimates for this

specification. At first glance, it might seem peculiar that β and λ are estimated

with such precision since TS and K are functionally related. Recall that the

dedicated Express Lane onramp at the facility’s entrance provides an additional

source of (potential) time savings for a portion of the estimation sample. This

onramp serves as a “collinearity breaker” that provides a sufficient degree of

independent variation in time savings to reveal the remaining influence of density

on mode choice.

Table 2-2 also reports that the resulting V ODA estimate, which gives the

median commuter’s marginal value of density-reduction while controlling for time-

savings, is $0.07. Its standard error of $0.02 is also reported. At the bottom

of this column is the marginal value of reduced travel time, V OT k, estimated at

$21.39 per hour with a standard error of $3.51. The superscript “k” reminds the

reader that this measure of the “value of time” is from a model that explicitly

controls for the influence of traffic density. In this sense, V OT k can be thought

of as having been “purified” of density-related influences such as risk and effort.

The table also provides corresponding MECA and MECT estimates. They

suggest that an additional vehicle during a typical morning commute creates

external accident costs of $0.74 to $0.86 and external travel-delay costs of $0.98

to $1.15 per vehicle-mile. Together, the externality is $1.72 to $2.01 per vehicle-

66In general, ∂T
∂k can be written as −εs,k L

ks , which might lead some readers to ask why the
regression in Table 4 is needed. Recall, however, that travel times in this particular setting
include queueing times for those entering the I-15 at Ted Williams Expressway. Overall, εs,k is
used to relate densities to volumes, while ∂T

∂k given in Table 4 relates densities to travel times,
which include onramp queueing delays. The end result is an estimate for ∂T

∂k
∂k
∂v v, which is

required in conjunction with the “value of time” to estimate MECT .
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mile.

2.5.3.3 The “Value of Time”

Until now, economists have primarily used value-pricing data to estimate how

commuters value marginal reductions in travel times using methods similar to

those described in Section 2.4. The section also describes how these “value of

time” (VOT) estimates can include values associated with risk and effort reduc-

tions. To investigate this empirically, utility is specified as

Uin = Vin + �in = Xnδ + βTSin + γTollin + �in (Model 3)

which is identical to the utility specification in Model 2, except the density term

Kin is omitted. This is the basic form that nearly all value-pricing based VOT

studies use to estimate the marginal value of time savings given by

V OT =
dTollin
dTSin

¯̄̄̄
V̄in

= − ∂Vin/∂TSin
∂Vin/∂Tollin

= −β
γ

(60)

This method is often used with revealed-preference (RP) and stated-preference

(SP) data alike.67

The last set of columns in Table 2-2 give the results for this model. The

corresponding VOT estimate is $31.06 per hour, with a standard error of $4.59,

which is 45% greater than the $21.39 estimate for V OT k. The $31.06 estimate

also implies a travel-delay externality of $1.43 to $1.67 per vehicle-mile, which

are comparable to the total MEC estimates developed in the preceding sections.

This warns against interpreting the V OT and MECT estimates generated from

Model 3 as being strictly attributable to travel delays.

67Revealed-preference data are those that include the actual choices that commuters makes
in real-market situations. Stated-preference data are generated from responses based on hy-
pothetical travel scenarios.
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2.6 Implications and Comparison with Previous Studies

2.6.1 Accident Externalities

The preceding analysis suggests Pigouvian tolls on the order of $1.80 per vehicle-

mile to jointly correct accident and travel-delay externalities, and $0.80 per

vehicle-mile to correct accident externalities alone. These figures are within the

context of the external costs that motorized vehicle users impose on one another

when traveling urban freeways during peak commute periods.68 More gener-

ally, the analysis indicates that commuters are typically willing to pay around

$0.16 for marginal reductions in average traffic densities. Of this, $0.07 can be

attributed to factors such as physical accident risk and defensive effort. The

remaining factor, travel-time savings, is valued at $21 per hour. Each of these

figures can also be used to estimate the relevant benefits of highway expansion,

jointly or separately. And they are generated in a manner that does not require

observations on accident rates.

These results imply that external accident costs account for roughly 44% of

the combined cost estimate. This is particularly noteworthy in light of the fact

that typically observed accident risks are fairly stable in the face of increased

traffic levels. Under the “traditional approach”, this would imply that motorists

generally do not create external accident costs for each other. In the present

study, however, it would imply that nearly all of the external accident costs are

in the form of increased defensive efforts. The intuition behind why these costs

can be so “large” is that motorists continuously exert defensive effort during any

given trip, which is why observed accident risks are stable in the first place.

Peirson et al. (1998) make a valuable contribution by formally recognizing

68They do not consider the external costs that motorists impose on pedestrians and cyclists,
nor do they include the “cold-blooded” costs mentioned previously.
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that defensive effort plays an important role in measuring accident externalities.

However, they focus on the external safety benefits that attentive drivers confer

on one another, analogous to the
¡
MR

∂R
∂D

dD
dk
v
¢
term in equation (38). This has

the effect of adjusting accident cost estimates downward relative to what the

traditional approach would yield. But they are unable to account for the degree

to which the costs of defensive effort itself offset this benefit, which are illustrated

by the
¡
MT

∂T
∂D

dD
dk
v
¢
and

¡
MD

dD
∂k
v
¢
terms in equation (38). They do, however,

acknowledge the importance of accounting for these offsetting costs.

Peirson et al. (1998) also provide an excellent summary of the existing em-

pirical literature on accident externalities, which aids in understanding the mag-

nitudes of the estimates in Table 2-2. Their summary includes estimates of car-

related accident costs from Newbery (1987), Jones-Lee (1990), Pearce (1993), and

Jansson (1994), along with those from their own “PSVALM 1” and “PSVALM 2”

models.69 Each of these studies follows the traditional approach in some form70;

the “PSVALM” models modify the traditional approach to loosely accommodate

physical risk-reductions due to defensive effort, but without considering the costs

associated with this effort.

The estimates in Pearce (1993) and Jones-Lee (1990) follow the convention

that motorized-vehicles do not impose external accident costs on each other,

and range from $0.05 to $0.06 per vehicle-mile.71 Newbery (1987) and Jansson

(1994) both assume a risk-flow elasticity of 1.25, which allows for accident exter-

nalities between motorized vehicles and yields and estimate of $0.07 (including

69“PSVALM” is an acronym for “Peirson-Skinner-Vickerman Accidents in London Model”
70Pearce (1993) does not model accident externalities formally. Instead, he suggests that the

accident costs borne by non-motorized users be used as a minimal measure of external accident
costs. This can be viewed as following the traditional approach with the assumption that
εR,v = 0.
71These and all other estimates adapted from Peirson et al. (1998) are converted from 1991

British Pounds per vehicle-kilometer to 1998 U.S. Dollars per vehicle-mile.
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externalities on non-motorized users). The PSVALM 1 and PSVALM 2 models

developed by Peirson et al. (1998) also assume a risk-flow elasticity of 1.25, but

with downward-adjustment mentioned previously. The external accident cost

estimates from these studies range from $0.04 to $0.06 per vehicle-mile.

Mayeres et al. (1996) estimate the marginal external travel-delay and accident

costs generated by peak-period cars in 1996 and 2005 (for Brussels, Belgium).

Their 1996 estimates, in dollars per vehicle-mile, are $0.63 for travel-delay and

$0.19 for accidents, or $0.82 combined ; corresponding estimates for 2005 are

$3.25 and $0.23, totalling $3.48.72

Although none of these results are directly comparable with those developed

in this paper, they illustrate the magnitudes of the cost estimates that prevail

in the literature on accident externalities. The median estimate of $0.80 per

vehicle-mile suggests that motorists generate external accident costs during peak

periods that are much larger than indicated by preceding studies. This holds

despite the fact that these studies reflect the additional costs borne by pedestrians

and cyclists, which are outside the context of the empirics presented here.

Overall, the analysis in this paper demonstrates that accident externalities

can exist even if observed accident risks do not change with increased traffic

levels. In this case, external accident costs would be attributed to the costs

of the efforts required to hold observed risks constant. This lends intuition to

why the estimates presented here are large by comparison. The results from the

previous studies presented in this section are based on observed accident rates.

However, accidents are relatively rare events, but the defensive efforts that make

these accidents rare are ubiquitous.

72These figures are converted from 1990 European Currency Units per vehicle-kilometer to
1998 U.S. Dollars per vehicle-mile.
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2.6.2 Travel-Delay Externalities and The “Value of Time”

When tradeoffs between travel times and HOT-lane tolls are examined with

(Model 3), without controlling explicitly for traffic densities, the resulting “value

of time” estimate is $31 per hour. Brownstone et al. (2003) obtain a similar

median VOT estimate of $30 using the same wave of I-15 data; Steimetz and

Brownstone (2003) also report a median VOT estimate of $30 per hour using a

later wave of the I-15 panel. Overall, these results are in line with the $21 to

$40 range of RP-based estimates from studies using the I-15 panel or data from a

similar value-pricing experiment on California’s State Route 91 in Orange County

(see Brownstone and Small (2002) for a comprehensive review and assessment of

these studies). However, the estimate falls to $21 per hour when densities and

time savings are both explicitly controlled for.

In the current “value of time” literature, it is generally understood that VOT

estimates are only relevant to the particular travel scenario under considera-

tion. For example, in-vehicle delays appear to be less onerous than the time

costs associated with waiting at bus stops (and walking to them), presumably

because vehicles offer additional amenities that bus-stops may not, such as guar-

anteed shelter and seating.73 In this sense, VOT estimates can be thought of as

“reduced-form” approximations for not only the marginal value of time-savings

itself, but also the value of amenities that are correlated with time savings.

A particularly relevant finding along these lines is that peak-period travel

time is valued more highly than off-peak, as reported by Guttman (1975) and

Small et al. (1999). Even more relevant is Hensher (2001) who finds across a

variety of empirical models that “slowed down” and “stop/start” travel times are

73See Small (1996), pp. 43-46.
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valued at roughly four and eight times that of free-flow travel. The discussion

in Section 2.4 and results from Section 2.5.3.3 provide an explanation for this

phenomenon by demonstrating how VOT estimates based on models like the one

specified in Model 3 are likely to capture some degree of how commuters value

marginal reductions in factors such as risk and effort. Since these factors are

correlated with time savings through traffic densities, off-peak VOT estimates

might simply reflect lower levels of risk and effort in off-peak periods. This is

further illustrated in the finding that the implied travel-delay externalities based

on Model 3 resemble the total external costs implied by the models that directly

account for traffic densities. Remarkably, it also suggests that when both travel

times and traffic densities are explicitly controlled for, the resulting “value of

time” can be interpreted as an off-peak VOT estimate.

This discussion might also help to resolve a controversial issue in the “value

of time” literature: the discrepancies between VOT estimates that are based on

revealed-preference and stated-preference data. RP-based VOT estimates are

typically much larger than their SP-based counterparts, even when both sets

of data are generated from the same respondents.74 Brownstone and Small

(2002) hypothesize that this discrepancy is at least partially due to a systematic

misperception of travel times by SP respondents. They suggest, among other

things, that impatience with heavy traffic conditions causes these respondents to

exaggerate the magnitudes of their travel delays.

The approach taken here toward resolving this controversy is to more closely

examine how factors such as “impatience with heavy traffic conditions” are gen-

erated. Dense traffic requires a substantial degree of “ stop-and-go” effort to

74For example, see Brownstone and Small (2002) for a review of several RP and SP estimates
from studies using value-pricing data, where RP estimates are typically twice as large.
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avoid collisions; the reader is most likely familiar with the disutility that a sea of

brake-lights and aggressive lane-jumpers can create. However, it is quite possible

that SP questionnaires are unable to adequately depict the “stop-and-go” condi-

tions that would naturally accompany their hypothetical travel delays. Typical

SP-based VOT estimates might resemble something closer to their respondents’

opportunity cost of time rather than their overall willingness to pay for lighter

travel conditions.

To see how the estimates in Section 2.5.3 relate to this hypothesis, consider the

value-pricing studies of Ghosh (2001) and Small et al. (2001). With I-15 data,

Ghosh (2001) develops both RP-based and SP-based VOT estimates using the

same empirical framework and respondents for each. Small et al. (2001) conduct

a similar experiment with SR-91 data. Ghosh finds that his SP-based median

VOT estimate is 0.40 times that of its RP counterpart; the ratio is 0.45 for the

median VOT estimates in Small et al. Recall that VOT is estimated at $31 using

Model 3 and $21 per hour using Model 2. We might say that the $21 estimate

excludes the influence of factors that generate “impatience with” relatively dense

traffic conditions, which is 0.68 times the $31 estimate that includes some degree

of influence from these factors. A similar story might be told for the SP estimates

in Ghosh (2001) and Small et al. (2001). If the hypothetical travel scenarios

presented to their respondents focus primarily on travel times while overlooking

dimensions such as risk and effort, then we might expect the resulting VOT

estimates to be on the order of 0.68 times that which would have been achieved

had these responses been (more) influenced by these additional dimensions. We

see that the 0.40 and 0.45 SP-to-RP estimate-ratios in Ghosh (2001) and Small et

al. (2001) are roughly of this order, with additional room to explain discrepancies
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between the two types of estimates.

The analysis also reveals a potential problem with the common approach of

simply adding external travel-delay cost estimates to separate estimates for ex-

ternal accident costs. Since travel-delay costs based on existing VOT estimates

might already capture some degree of accident costs, simply adding the two to-

gether can result in some degree of “double counting” when calculating their joint

costs. Ironically, however, this practice might approximate combined accident

and travel-delay costs fairly well when adopting the convention that motorists do

not impose external accident costs on each other.

2.6.3 Choosing the “Correct” Model

Table 2-2 presents three different models for estimating accident and travel-delay

costs. These models differ by the extent to which travel times and traffic densities

are controlled for. Model 2 given in the table’s second column is preferable since

it allows accident and travel-delay costs to be separated. It is also a more

“complete” specification in the sense that it controls explicitly for both travel

times and traffic densities. However, statistically significant estimates for the

influences of these components are achieved through a “collinearity-breaking”

effect provided by the onramp queues that form at the northern end of the Express

Lane facilities. It would not be reasonable to assume that researchers would

typically have access to such fortuitous data. This leaves the remaining models

in the table, Models 1 and 3, to contend when the influences of travel times and

traffic densities cannot be separated.

The combined externality estimated from Model 1 is statistically indistin-

guishable from that of the more “complete” Model 2. Although it does not

identify separate accident and travel-delay components, road-pricing and expan-
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sion policies are more likely to be concerned with the combined estimate. Hence,

one might advocate the practice of estimating the “value of density” in usual em-

pirical settings to generate “reduced-form” external cost estimates.

Another “reduced-form” approach is provided by Model 3 in the last column

of Table 2-2. This type of model is typically used to estimate “the value of time”,

and reflects factors such as risk and effort insofar as they are correlated with travel

times (through traffic densities). In this sense, the MECT estimates produced

by Model 3 can be interpreted as “reduced-form” estimates of the combined

externality. However, these values are somewhat smaller than the combined

externality estimates generated by Models 1 and 2. So traditional “value of time”

estimates seem to serve as somewhat reasonable “reduced-form” approximations

for combined external costs if density data are not available. But the similarity of

the combined estimates fromModels 1 and 2, where traffic densities are considered

directly, suggest that densities provide more accurate cost estimates and should

be used if available.

2.7 Suggestions for Further Research

2.7.1 Mixed Traffic

The theoretical model developed in this paper focuses on homogeneous vehicle

types. It can be readily extended, however, to accommodate mixed traffic. For

instance, consider a road environment with only two vehicle types: “Heavy” and

“Light”, where qvH and qvL denote the number of each type on the road in a

given period of duration q. With the expressions for defensive effort and accident

risk in mind, the following are examples of questions that would be of concern

for public policy. First, do heavy vehicles present greater hazards to other road

users than do light vehicles, i.e., is dR
d(qvH)

> dR
d(qvL)

? For instance, occupants of
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relatively light vehicles are likely to sustain greater losses in a collision than those

of relatively heavy vehicles.75 This might lead to less cautious driving by heavy-

vehicle operators, thereby creating a relatively larger accident risk. On the other

hand, these drivers might exercise a relatively large degree of caution since they

could face greater liabilities in the event of a collision. This leads directly to

the question: do heavy vehicles incite greater defensive effort by other road users

than do light vehicles, i.e., is dD
d(qvH)

> dD
d(qvL)

? One might expect the driver of

a Mini Cooper to react more defensively to a Hummer H2 than she would to a

Volkswagen Beetle. Then again, this might not be the case if she observes that

Hummer H2 owners tend to drive more carefully than her fellow Mini Cooper

owners.

In either case, the care that each driver exercises is associated with reduced

speed. So another relevant question is: do heavy vehicles increase travel times

more than light vehicles do, i.e., is dT
d(qvH)

> dT
d(qvL)

? It is often assumed in the

congestion literature that large vehicles, such as busses, have a greater impact

on travel times since they consume more roadway capacity. In the context of

defensive effort, however, the question asks if drivers tend to slow down around

heavy vehicles more so than they do around light vehicles.

The answers to these questions are empirical in nature, but investigating these

answers is feasible under this paper’s empirical framework with additional data on

vehicle-types. Given recent policy concerns over matters such as the prevalence

of sport-utility vehicles on the road, these efforts might be warranted and could

be used to develop road-pricing policies across several vehicle classes.

A broader scope, beyond this paper’s empirical approach, would include risk

75Kockelman and Kweon (2002) find that sport utility vehicles are associated with less severe
injuries for their occupants and more severe injuries for their collision partners.
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and effort externalities that motor vehicles impose on “unprotected” users, such

as pedestrians and bicyclists. And expanding the time-frame for the decision-

margin of defensive effort could include, for example, costs such as purchasing

more “vehicle protection” by upgrading to a Hummer H2.

2.7.2 Isolating Effort Costs

In policy applications, it might be desirable to isolate the defensive-effort com-

ponent of the costs discussed in this paper. For instance, since 1998 Daimler-

Chrysler has equipped several of its Mercedes-Benz passenger cars with its “DIS-

TRONIC Proximity Control” system. These models have front-mounted radar

sensors that enable them to automatically maintain a specified following distance

in congested conditions. To date, more than 40,000 passenger vehicles world-

wide are equipped with this system, which purportedly “contributes significantly

to comfortable, stress-free and safe driving”.76 In the public sector is the U.S.

Department of Transportation’s Intelligent Vehicle Initiative, which seeks to “fa-

cilitate accelerated development and deployment of crash avoidance systems”.77

As long as resources are devoted to reducing “driver workload” in the face of

accident risk, there will be a need to estimate how such programs are fully val-

ued. Of course, any such valuation should properly account for the additional

costs that these programs can create. For instance, suppose I is some measure

of the level of “Intelligent Vehicle” equipment that a motorist uses. Accident

risk might then be written as R(k,D(k, I)), where ∂D
∂I

< 0. This shows how the

net impact of these systems on overall accident risk might be indeterminate and

illustrates how such systems can reduce the external safety benefit described by

76Source: Daimler-Chrysler press release posted at http://www.mbnz.org.
772001 Annual Report of the Intelligent Vehicle Initiative.
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the second term in equation (38).

Perhaps dynamic traffic-simulators could provide a useful approach. For ex-

ample, subjects in a real-time commuting simulation could repeatedly be given

choices between two (differently-priced) routes with identical travel times, where

one of the routes involves a greater degree of driving effort. This would re-

quire some meaningful measure of effort - possibly the number of mechanical

movements required or, more complexly, the total amount of time that eyes are

focussed on the “road”. One might also envision a real-world analogue to this

with appropriately equipped vehicles. The resulting tradeoffs between tolls and

effort could then yield estimates for the value of effort reductions, with their im-

plications for measuring accident externalities and the value of programs such as

the Intelligent Vehicle Initiative.

2.7.3 RP vs. SP

The discussion in Section 2.6.2 suggests that SP-based “value of time” estimates

typically fall short of their RP counterparts because SP respondents might gen-

erally be unable to perceive the non-travel-time factors that would influence their

choices. A crude test of this hypothesis would be to present respondents with two

distinct scenarios: one elicits preferences from a series of tolls and travel times;

the other presents identical tolls and travel times but also includes detailed pic-

tures of the traffic conditions that correspond to each travel time. The resulting

VOT estimates could then be compared.

Hensher (2001) takes a more sophisticated approach by constructing an SP

experiment that elicits choices among modes that vary by composition of travel-

delay types, such as the proportion of time spent in “slowed down” and “stop/start”

conditions. As mentioned previously, he finds that marginal travel-time reduc-
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tions under dense traffic conditions are valued much more heavily than in free-flow

traffic. This illustrates that characterizing how time savings are achieved by a

particular mode can elicit responses that reflect non-travel-time factors that ac-

company dense traffic conditions, such as physical risk and driving effort. And

not only does this offer at least a partial explanation for differences in RP and SP-

based “value of time” estimates, it also offers some promise of jointly estimating

accident and travel-delay externalities using stated-preference methods.

2.7.4 Automobile Insurance

Up to this point, the fact that motorists usually purchase automobile insurance

has been abstracted from. A more complete theoretical analysis would include

the impact of various insurance schemes on the external costs of road use (a

la Boyer and Dionne (1987)). This impact would not only enter pecuniarily

(by, say, modeling accident loss as l(k, y), where y measures a level of insurance

coverage). It would influence each motorist’s optimal level of defensive effort

since, for example, a heavily-insured motorist might be less inclined to drive

carefully. On the other hand, an uninsured motorist who knows that several

other motorists are heavily insured might also drive less carefully, or at least

have less incentive to self-insure. These types of behavior would then influence

the levels of the accident externalities discussed in this paper’s theoretical model.

Note, however, that the empirical estimates developed herein presumably capture

the net effect of these influences.

2.8 Chapter Conclusion

Most experienced motorists are quite familiar with the frustrations of traffic con-

gestion. Densely populated highways lead to travel delays and sometimes travel
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rescheduling. They also require drivers to pay more attention to maintaining

safety margins between themselves and their many potential collision partners.

And many of these drivers might gladly accept, say, a marginal increase in their

risk of a fatal accident in exchange for alleviating some of these frustrations with

less-congested travel. This illustrates the hazards of basing external accident

cost estimates on observed risk elasticities without properly accounting for the

tradeoffs that generate these observations. Moreover, it shows how accident

and travel-delay externalities are essentially two sides of the same coin, which

warrants their joint consideration.

This paper addresses these issues by jointly modeling the external costs of

accidents and travel delays, and by explicitly considering the impact of defensive

effort on these costs. An empirical framework is developed from this model by

recognizing that accident risk, defensive effort, and travel delays are linked by

traffic densities, which are observable in data from existing congestion-pricing

experiments. The resulting analysis indicates that during a typical peak-period

commute, motorists generate external accident and travel-delay costs of roughly

$1.80 per vehicle-mile. About 44% of these costs can be attributed to increases

in physical accident risk and efforts to offset this risk (along with the value of

any additional disutility that increased traffic congestion creates).

Overall, the paper demonstrates that (1) external accident costs are generally

understated by the traditional approach to estimating them, and (2) travel-delay

cost estimates are likely to reflect accident costs, to some extent, through the

influences of accident risk and defensive effort. It advocates the use of traffic

densities in estimating overall congestion externalities, and the use of separate

density and travel-time measures (whenever possible) to derive separate estimates
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for accident and travel-delay costs. And through this interplay between acci-

dent and travel-delay costs, the analysis illustrates the hazards of constructing

estimates for the overall costs of road use by simply adding together indepen-

dent estimates for these components. This interplay can also help to explain

differences in “value of time” estimates generated from revealed-preference and

stated-preference data.

This study is the first to use micro-level data to estimate the marginal external

accident costs of road use and their relationship to external travel-delay costs.

It is written with the hope of stimulating further research on its implications for

road pricing, capacity expansion, and related transportation policies.
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Conclusion

Transportation Economists have long recognized the importance of measuring

the extent to which motorists fail to pay the full social cost of their road use. Each

commute period spawns a full complement of externalities, the bulk of which are

generated between motorists in terms of travel delays and accidents. To correct

these market failures, policymakers need to know how much motorists are willing

to pay for marginal reductions in traffic levels. Unfortunately, few observable

markets exist for eliciting such preferences. Researchers have instead relied

heavily on results from hypothetical markets or "stated preference" experiments.

Recent experiments such as the I-15 San Diego Congestion Pricing Exper-

iment, however, enable researchers to observe markets in which motorists can

purchase congestion relief and its accompanying cost reductions. Data from

these experiments have been used primarily for estimating the “value of time”

(VOT) — a critical parameter for travel-delay cost estimation. The disaggregate,

revealed-preference nature of these data are particularly well suited for developing

plausible VOT estimates. This is often limited, however, by missing observations

on key variables since the equipment used to measure them are prone to failure.

In response, the first chapter in this thesis demonstrates how to overcome

such limitations by developing a multiple imputation procedure for construct-

ing consistent VOT estimates when critical data are missing or unreliable. It

also demonstrates the extent to which more common remedies, such as single-

imputation methods, can overstate the precision of the estimates that they gen-

erate. The analysis essentially guides future researchers on how to continue

benefiting from congestion-pricing data by overcoming the reliability problems

that plague them.
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Recent studies have also demonstrated that congestion-pricing experiments

have value beyond the data that they generate. These “High Occupancy / Toll”

(HOT) facilities can yield welfare gains by offering a differentiated product to het-

erogeneous consumers. The extent of these gains depends on the extent to which

commuter preferences vary. In this spirit, Chapter One of this thesis develops

a framework for estimating the extent to which commuter preferences are het-

erogeneous across observable characteristics. It shows that the value commuters

place on marginal reductions in travel times can differ widely by income, trip dis-

tance, trip purpose, and employment status. The analysis yields estimates that

can guide policymakers in their efforts to achieve welfare improvements through

product differentiation.

These estimates, like all VOT estimates generated from congestion-pricing

data, are accomplished by observing the tradeoffs that commuters make between

money prices (tolls) and travel-time savings. The second chapter in this thesis

demonstrates, however, that these estimates are likely to reflect more than just

the value of travel-time savings. As discussed formally in the chapter, HOT-lanes

provide a vector of amenities that influence commuters’ choices, including relief

from non-travel-time costs such as accident risk and defensive effort. Since travel

times, risk, and effort levels are all increasing in traffic densities (a measure of con-

gestion levels), these VOT estimates are likely to reflect all of the disutility that

increased congestion generates. This helps to explain why revealed-preference

based VOT estimates are typically much larger than their stated-preference coun-

terparts, which the chapter discusses in detail.

One source of disutility attendant to increased congestion levels is the addi-

tional effort required to contend with an increased number of vehicles available to
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collide with. The value of this disutility dictates the magnitude of the accident

externality that is created. Traditionally, external accident cost estimates are

based on observed changes in accident rates with respect to changes in traffic lev-

els. Observed rates, however, are affected by motorists rationally driving more

carefully as conditions become more congested and hazardous. Thus, traditional

accident externality estimates can only capture the costs that result when acci-

dents actually occur. They overlook the costs that motorists incur from increased

efforts to offset increased collision opportunities. As such, traditional estimates

are likely to be understated. Transportation Economists have long acknowledged

that the costs of exerting such defensive efforts should be included in external

accident cost estimates, just as pollution abatement costs should be included in

estimating environmental externalities. But this is traditionally abstracted from

since defensive efforts are typically unobservable.

Despite the inability of researchers to observe these defensive efforts, they

still influence motorists’ decisions to purchase free-flow travel along HOT lanes

where less defensive effort is required. This notion is exploited in Chapter Two,

which develops an empirical framework for using HOT-lane data to estimate the

overall value that commuters place on reduced congestion overall — not just the

value of travel-time reductions associated with reduced congestion. What results

are estimates for the value of congestion relief, which include the value of travel-

time reductions and the value of non-travel-time amenities such as risk and effort

reductions. And since accident and travel-delay externalities are determined

jointly, estimating them jointly is appropriate — if not essential.

These estimates can be interpreted as reduced-form estimates for the value of

all the cost savings that marginal reductions in traffic levels provide. Chapter
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Two demonstrates, however, that in some cases the value of travel-time and

non-travel-amenities can be estimated separately while jointly modeling their

influences on commuter choices. This yields separate valuation estimates for

marginal reductions in travel times and non-travel-time factors such as risk and

effort. To the extent that these non-travel-time factors reflect risk and effort, the

analysis suggests that accident externalities represent a substantial share of the

costs that motorists impose on each other during peak-commute periods. This is

contrary to the prevailing view in the literature that no such costs are generated

between motorists.

Together, these chapters attempt to reshape how various components to the

social costs of road use are characterized, modeled, and estimated. They yield

direct and immediate implications for road pricing, investment, and related trans-

portation policies. As such, this thesis is devoted to a better understanding and

remedying of the market failures that crowd our highways each day.

80



References

Arnott, R. (2001). "The Economic Theory of Urban Traffic Congestion: A
Microscopic Research Agenda", Mimeo, Boston College.

Assum, T., T. Bjornskau, S. Fosser, F. Sagberg (1999). "Risk Compensation —
the Case of Road Lighting", Accident Analysis and Prevention 31, 545-553.

Boyer, M. and G. Dionne (1987). "The Economics of Road Safety", Transporta-
tion Research B 21B, 413-431.

Brownstone, D (2001). "Discrete Choice Modeling for Transportation." in
Travel Behaviour Research: The Leading Edge, ed. D. Hensher. Ams-
terdam, Holland: Pergamon, 97-124.

Brownstone, D. and Small, K.A. (2002). "Valuing Time and Reliability: As-
sessing the Evidence from Road Pricing Demonstrations", presented at
the American Economic Association - Transportation and Public Utilities
Group 2003 Annual Meeting, Washington D.C.

Brownstone, D., A. Ghosh, T. Golob, C. Kazimi, D. Van Amelsfort (2003).
"Drivers’ Willingness-to-Pay to Reduce Travel Time: Evidence from the
San Diego I-15 Congestion Pricing Project", Transportation Research A
37, 373-387.

Brownstone, D., Golob, T., Kazimi, C. (1999). "Modeling Non-Ignorable Attri-
tion and Measurement Error in Panel Surveys: An Application to Travel
Demand Modeling", in Survey Nonresponse eds R.M. Groves, D.A. Dill-
man, J.L. Eltinge, R.J.A. Little, pp. 373-388. Wiley, New York.

Calabresi, G. (1970). The Costs of Accidents: a Legal and Economic Analysis.
Yale University Press: New Haven, Connecticut.

Elvik, R. (1994). "The External Costs of Traffic Injury: Definition, Estimation,
and Possibilities for Internalization", Accident Analysis and Prevention 26,
719-732.

Farmer, C.M., A.K. Lund, R.E. Trempel, E.R. Braver (1997). "Fatal Crashes
of Passenger Vehicles Before and After Adding Antilock Braking Systems",
Accident Analysis and Prevention 29, 745-757.

Ghosh, A. (2001). "Valuing Time and Reliability: Commuters’ Mode Choice
from a Real Time Congestion Pricing Experiment", Unpublished Ph.D.
Dissertation, University of California at Irvine.

Golob, T. (2001). "Joint Models of Attitudes and Behavior in Evaluation of
the Sand Diego I-15 Congestion Pricing Project", Transportation Research
Part A 35, 495-514.

Guttman, J. (1975). "Avoiding Specification Errors in Estimating the Value of
Time", Transportation 1, 19-42.

81



Hensher, D. (2001). "Measurement of the Valuation of Travel Time Savings",
Journal of Transport Economics and Policy 35, 71-98.

Jansson, J.O. (1994). "Accident Externality Charges", Journal of Transport
Economics and Policy 28, 31-43.

Johnston, J. and DiNardo, J. (1997) Econometric Methods. McGraw-Hill, New
York.

Jones-Lee, M.W. (1990). "The Value of Transport Safety", Oxford Review of
Economic Policy 6, 39-59.

Keeler, T. (1994). "Highway Safety, Economic Behavior, and Driving Environ-
ment", American Economic Review 84, 684-693.

Keeler, T. and K.A. Small (1977). "Optimal Peak-Load Pricing, Investment,
and Service Levels on Urban Expressways", Journal of Political Economy
85, 1-25.

Kockelman, K.M. and Y.J. Kweon (2002). "Driver Injury Severity: An Appli-
cation of Ordered Probit Models", Accident Analysis and Prevention 34,
313-321.

Kwon, J., Varaiya, P., Skabardonis, A. (2002). "Estimation of Truck Traffic Vol-
ume from Single Loop Detector Using Lane-to-Lane Speed Correlation",
Presented at the 82nd Annual Meeting of the Transportation Research
Board, Washington D.C.

Lam, T.C. and K.A. Small (2001). "The Value of Time and Reliability: Mea-
surement from a Value Pricing Experiment", Transportation Research E
37, 231-251.

Larsen, O. (1993). "Road Investment with Road Pricing — Investment Criteria
and the Revenue/Cost Issue", in Privatization and Deregulation in Pas-
senger Transportation, eds. A. Talvitie, D. Hensher, M. Beesley. Espoo,
Finland: Viatek Ltd., 273-281.

Leden, L., O. Hamalainen, E. Manninen (1998). "The Effect of Resurfacing on
Friction, Speeds and Safety on Main Roads in Finland", Accident Analysis
and Prevention 30, 75-85.

Lindberg, G. (1999). "Calculating Transport Accident Costs", Final Report of
the Expert Advisors to the High Level Group on Infrastructure Charging,
April 27 1999, Borlange, Sweden.

Lindberg, G. (2001). "Traffic Insurance and Accident Externality Charges",
Journal of Transport Economics and Policy 35, 399-416.

Liu, L.N. and McDonald, J.F. (1999). "Economic Efficiency of Second-Best
Congestion Pricing Schemes in Urban Highway Systems", Transportation
Research Part B 33, 157-188.

Manski, C.F. and S.R. Lerman (1977). "The Estimation of Choice Probabilities
in Choice Based Samples", Econometrica 45, 1977-1988.

82



Mayeres, I. (1999). "The Marginal External Costs: Theoretical Model", Mimeo,
Center for Economic Studies, Katholieke Universiteit Leuven, Belgium.

Mayeres, I., S. Ochelen, S. Proost (1996). "The Marginal External Costs of
Urban Transport", Transportation Research D 1, 111-130.

Meeker, F., D. Fox, C.Weber (1997). "A Comparison of Driver Behavior at Rail-
road Crossings with Two Different Protection Systems", Accident Analysis
and Prevention 29, 11-16.

Mohring, H. (1999). "Congestion", in Essays in Transportation Economics and
Policy: a Handbook in honor of John R. Meyer eds J. Gomez-Ibanez, W.B.
Tye, C. Winston, pp. 181-221. Brookings Institution Press, Washington
D.C.

Newbery, D.M. (1988). "Road User Charges in Britain", Economic Journal 98,
161-176.

Newbery, D.M. (1990). "Pricing and Congestion: Economic Principles Relevant
to Pricing Roads", Oxford Review of Economic Policy 6, 22-38.

Newbery, D.M. (2002). "Road User and Congestion Charges", Mimeo, Univer-
sity of Cambridge, England.

Peirson, J., I. Skinner, R. Vickerman (1998). "The Microeconomic Analysis of
the External Costs of Road Accidents", Economica 65, 429-440.

Peltzman, S. (1975). "The Effects of Automobile Safety Regulation", Journal
of Political Economy 83, 677-726.

Rotemberg, J.J. (1985). "The Efficiency of Equilibrium Traffic Flows", Journal
of Public Economics 26, 191-205.

Rubin, D. (1987). Multiple Imputation for Nonresponse in Surveys. Wiley, New
York.

Rubin, D. (1996). "Multiple Imputation After 18+ Years", Journal of the Amer-
ican Statistical Association 91, 473-489.

Rubin, D. and Schenker, N. (1986). "Multiple Imputations for Interval Estima-
tion from Simple Random Samples with Ignorable Nonresponse", Journal
of the American Statistical Association 81, 366-374.

Sagberg, F., S. Fosser, I.A. Saetermo (1997). "An Investigation of Behavioural
Adaptation to Airbags and Antilock Brakes Among Taxi Drivers", Accident
Analysis and Prevention 29, 293-302.

Schenker, N. and Welsh, H. (1988). "Asymptotic Results for Multiple Imputa-
tion", Annals of Statistics 16, 1550-1566.

Small, K.A. (1992). Urban Transportation Economics. Harwood Academic
Publishers GmbH: Luxembourg.

83



Small, K.A. (1999). "Project Evaluation", in Essays in Transportation Eco-
nomics and Policy: a Handbook in honor of John R. Meyer eds J. Gomez-
Ibanez, W.B. Tye, C. Winston, pp. 137-177. Brookings Institution Press,
Washington D.C.

Small, K.A. and X. Chu (2003). "Hypercongestion", Journal of Transport Eco-
nomics and Policy, Forthcoming.

Small, K.A. and Yan, J. (2001). "The Value of ‘Value Pricing’ of Roads: Second-
Best Pricing and Product Differentiation", Journal of Urban Economics 49,
310-336.

Small, K.A., C. Winston, J. Yan (2002). "Uncovering the Distribution of Mo-
torists’ Preferences", Working Paper, Department of Economics, University
of California at Irvine.

Small, K.A., R. Noland, X. Chu, D. Lewis (1999). "Valuation of Travel-Time
Savings and Predictability in Congested Conditions for Highway User-Cost
Estimation", National Highway Cooperative Research Program, Report
431, Transportation Research Board, Washington D.C.

Steimetz, S.S.C. and D. Brownstone (2003). "Heterogeneity in Commuters’
‘Value of Time’ with Noisy Data: AMultiple Imputation Approach", Work-
ing Paper, Department of Economics, University of California at Irvine.

Steimetz, S.S.C. (2003). "Defensive Driving and the External Costs of Accidents
and Travel Delays", Working Paper, Department of Economics, University
of California at Irvine.

Supernak, J., Brownstone, D., Golob, J., Golob, T., Kaschade, C., Kazimi,
C., Steffey, D. (2001). "I-15 Congestion Pricing Project Monitoring and
Evaluation Services: Task 1 Phase II Year Three Traffic Study", Report to
the San Diego Association of Governments, San Diego, California.

Thiffaut, P. and J. Bergeron (2002). "Monotony of Road Environment and
Driver Fatigue: A Simulator Study", Accident Analysis and Prevention,
Forthcoming.

U.K. Department of Transport (1981-1993). COBA 9. London: Department of
Transport.

U.S. Department of Transportation Intelligent Vehicle Initiative (2001). 2001
Annual Report.

U.S. Federal Highway Administration (1982). Final Report on the Federal High-
way Cost Allocation Study. Washington: USPGO.

Vickrey, W. (1968). "Automobile Accidents, Tort Law, Externalities, and In-
surance", Law and Contemporary Problems 33, 464-487.

Vitaliano, D.F. and J. Held (1991). "Road Accident External Effects: An Em-
pirical Assessment", Applied Economics 23, 373-378.

84



Zellner, A. (1962). "An Efficient Method of Estimating Seemingly Unrelated
Regressions and Tests for Aggregation Bias", Journal of the American Sta-
tistical Association 57, 348-368.

85



Appendix A: VOT and VOD Derivation

For the road environment described in Section 2.3, write expected utility as

Ue = R(k,D)Ua(w − l,X) + [1−R(k,D)]U−a(w,X)− C(D,T (k,D)) (61)

where X is a composite commodity and all other terms are as defined previously.

The representative driver maximizes this utility function subject to several con-

straints. One is that she cannot spend more than her accumulated wealth on

goodX, net of any accident losses.78 Another is that she only has a total amount

of time T̄ to allocate between travel time T = T (k,D) and the time it takes to

consume good X, denoted by TX . Also, travel to any given destination requires

some minimum amount of travel time TM , and such travel requires that some

minimum amount of attentionDM be paid to safely operating the vehicle. These

constraints are assumed to be binding and are given by

w ≥ l +X (62)

T̄ ≥ T + TX (63)

T ≥ TM (64)

D ≥ DM (65)

where the price of the composite commodity is normalized to one. The La-

grangian for this maximization problem is

L = Ue + λ[w − l −X] + µ[T̄ − T − TX ] + γ[T − TM ] + φ[D −DM ] (66)

where λ,µ,γ, and φ are the Lagrangian multipliers that correspond to each con-

straint. The first-order conditions with respect to D and T are

∂R

∂D
[Ua(w − l,X)− U−a(w,X)]− ∂C

∂D
(67)

78For the sake of simplicity, assume that the agent lives off of her accumulated wealth and
does not spend any time earning wages.
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−∂C
∂T

∂T

∂D
− µ

∂T

∂D
+ γ

∂T

∂D
+ φ = 0 (68)

−∂C
∂T
− µ− γ = 0 (69)

Combining (68) with (69) yields expressions for the marginal value of travel time

savings MT and the value of a marginal reduction in defensive effort MD:

MT ≡ γ

λ
=
1

λ

∂C

∂T
+

µ

λ
(70)

MD ≡ φ

λ
=
1

λ

∂C

∂D
− 1

λ

∂R

∂D
[Ua(w − l,X)− U−a(w,X)] (71)

Each of these expression describes the marginal values of time savings and risk

reduction as comprising two components. The first term in equation (70) gives

the direct value of the disutility from travel time. The second term shows the

effect of a binding constraint on the total amount of time available. In equation

(71), the first term gives the direct value of the disutility from defensive effort. Its

second term shows an opportunity cost in terms of reducing the expected utility

loss associated with both pecuniary and non-pecuniary costs of being involved in

an accident.
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Appendix B: Figures 
 
 
 
 

Figure 1-1: Data Structure 
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Figure 1-2: Income Category vs. Trip Distance 
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Figure 1-3: Work-Trip VOT vs. Trip Distance 
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Appendix C: Tables 
 
 

Table 1-1: Summary Statistics 
 

Trip Characteristics 
 In Weighted to 
 Sample Population 

Mode Share   
Solo in the Main Lanes 48.60% 72.95% 
Solo using FasTrak 37.80% 15.67% 
Carpool 13.59% 11.38% 
   
Share of Trips in Each Time Period   
5:00-6:00 AM 2.42% 3.63% 
6:00-7:00 AM 27.56% 27.26% 
7:00-8:00 AM 40.97% 41.88% 
8:00-9:00 AM 25.33% 22.70% 
9:00-10:00 AM 3.72% 4.53% 
   
Trip Distance   
Mean 26.02 25.99 
Standard Deviation 9.99 10.22 
   
Trip Purpose   
Work Related 93.48% 92.46% 
Non-Work Related 6.52% 7.54% 

 
Respondent Characteristics 

 In Weighted to 
 Sample Population 

Age   
18-24 1.83% 2.76% 
25-34 10.24% 13.07% 
35-44 37.48% 36.21% 
45-54 32.54% 29.18% 
55-64 13.89% 14.57% 
65 + 3.84% 4.17% 
Refused to Answer 0.18% 0.05% 
   
Sex   
Male 60.34% 62.14% 
Female 39.66% 37.86% 
   
Annual Income   
< $20K 1.30% 1.97% 
$20-40K 5.21% 6.74% 
$40-60K 13.22% 15.52% 
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$60-80K 16.39% 17.37% 
$80-100K 17.69% 18.76% 
$100-120K 13.97% 12.60% 
> $120 K 24.02% 18.18% 
Refused to Answer 8.19% 8.86% 
   
Home Ownership   
Owns Home 83.05% 78.97% 
Does Not Own Home 16.95% 21.03% 
   
Education   
Graduate Degree or Higher 62.94% 57.37% 
Less than Graduate Degree 37.06% 42.63% 
   
Work Status   
Full Time 94.23% 93.86% 
Part Time 5.77% 6.14% 
   
Household Size   
Mean 3.07 3.07 
Standard Deviation 1.26 1.28 
   
Workers per Household   
Mean 2.05 2.06 
Standard Deviation 0.69 0.72 
   
Flexible Arrival Time   
Yes 80.82% 81.94% 
No 19.18% 18.06% 
   
Number of Respondents 537 
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Table 1-2: Imputation Models 
 

Floating Car Time Savings and Ted Williams Onramp Wait Times (SUR)a 
    
Dependent Variable       
Logit of Floating Car Time Savings       
Independent Variables Coef. Std. Err. t-Stat. 
Logit of Loop Detector Time Savings 0.6621 0.2216 2.9900 
Toll -2.8130 0.6735 -4.1800 
Logit of Loop Detector Time Savings x Toll -0.2911 0.1228 -2.3700 
Minutes Past 5:00 A.M. 0.1002 0.0211 4.7400 
Minutes Past 5:00 A.M. Squared -0.0007 0.0002 -3.7100 
Minutes Past 5:00 A.M. Cubed 0.0000 0.0000 2.8200 
Minutes Past 5:00 A.M. x Toll 0.0165 0.0037 4.5100 
Mondayb -3.4591 1.0350 -3.3400 
Tuesdayb 0.5879 0.2708 2.1700 
Fridayb 0.8318 0.2921 2.8500 
Monday x Toll 0.8842 0.2986 2.9600 
Tuesday x Toll -0.6156 0.1638 -3.7600 
Friday x Toll -0.6353 0.2202 -2.8900 
Logit of Loop Detector Time Savings x Monday -0.9934 0.3221 -3.0800 
Constant -5.4512 0.8691 -6.2700 
R2 0.56c     
Root Mean Squared Error 0.72     

 
Dependent Variable       
Logit of Ted Williams Wait Time       
Independent Variables Coef. Std. Err. t-Stat. 
Logit of Loop Detector Time Savings 0.4892 0.1397 3.5000 
Mean Toll -1.3220 0.1650 -8.0100 
Minutes Past 5:00 A.M. 0.1904 0.0101 18.8300 
Minutes Past 5:00 A.M. Squared -0.0006 0.0000 -20.0300 
Mondayb -3.8032 1.4177 -2.6800 
Tuesdayb 1.2273 0.2320 5.2900 
Thursdayb 1.0100 0.2082 4.8500 
Monday x Toll 0.9393 0.3948 2.3800 
Logit of Loop Detector Time Savings x Monday -1.1881 0.4405 -2.7000 
Constant -12.4428 0.7802 -15.9500 
R2 0.79c     
Root Mean Squared Error 1.04     
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Floating Car Time Savings (OLS) 
    
Dependent Variable       
Logit of Floating Car Time Savings       
Independent Variables Coef. Std. Err. t-Stat. 
Logit of Loop Detector Time Savings 0.6559 0.2294 2.8600 
Logit of Ted Williams Wait Time -0.1908 0.0861 -2.2200 
Toll -3.5244 0.7950 -4.4300 
Logit of Loop Detector Time Savings x Toll -0.2116 0.1141 -1.8500 
Logit of Ted Williams Wait Time x Toll 0.2273 0.0781 2.9100 
Minutes Past 5:00 A.M. 0.1238 0.0264 4.6800 
Minutes Past 5:00 A.M. Squared -0.0008 0.0002 -3.9600 
Minutes Past 5:00 A.M. Cubed 0.0000 0.0000 3.0300 
Minutes Past 5:00 A.M. x Toll 0.0226 0.0048 4.7200 
Mondayb -3.2380 1.1079 -2.9200 
Tuesdayb 0.8275 0.3017 2.7400 
Fridayb 0.3381 0.1926 1.7600 
Monday x Toll 0.9883 0.3104 3.1800 
Tuesday x Toll -0.9152 0.2012 -4.5500 
Logit of Loop Detector Time Savings x Monday -0.8593 0.3456 -2.4900 
Constant -6.4719 1.1988 -5.4000 
R2 0.57     
Root Mean Squared Error 0.75     

 
a Floating Car Time Savings and Ted Williams Wait Times are estimated simultaneously using Zellner's 
Seemingly Unrelated Regressions Model  to account for residual correlation across equations. 
b These are indicator variables equal to one if the condition is true, zero otherwise. 
c Keep in mind that this value is calculated in the logit-space of the  dependent variable.  This reduces 
in-sample variation, generating a lower R2 than would result from a level-space calculation.  Note that 
these logit transformations are "undone" when imputations are generated. 
 
Note: Each model is based on 190 observations. 



 95

Table 1-3: Conditional Logit Mode-Choice Model Estimates 
 

 Multiple Imputations 
     
    Covariance Shares 

Independent Variables Coef. 
Std. 
Err. t-Stat. 

Parameter 
Estimation Imputation 

FastTrak Choice      
Constant -0.5007 0.5222 -0.9589 1.0000 0.0000 
Worktripa x Toll -0.7250 0.1847 -3.9252 0.7338 0.2662 
Non-Worktripa x Toll -1.5643 0.4572 -3.4212 0.9883 0.0117 
Part-Time Workera x Toll -0.6824 0.3123 -2.1848 0.9918 0.0082 
Income > $80Ka x Toll 0.5156 0.1487 3.4681 0.9962 0.0038 
Income Not Reporteda x Toll 0.5091 0.2395 2.1261 0.9948 0.0052 
Median Timesavings x Distance 0.0192 0.0050 3.8504 0.9085 0.0915 
Median Timesavings x Distance Squared -0.0003 0.0001 -2.3575 0.8672 0.1328 
Timesavings Variabilityb x Distance 0.0047 0.0022 2.0988 0.8129 0.1871 
"Low Toll" Signala,c -0.7951 0.2238 -3.5536 0.9703 0.0297 
Free-Lane Traffic Ratingd -0.2260 0.0525 -4.3086 0.9996 0.0004 
Flexible Arrival Timea,e -0.5087 0.2648 -1.9212 1.0000 0.0000 
Home Ownera 1.0217 0.3597 2.8406 0.9839 0.0161 
College Degree or Highera 0.5091 0.2320 2.1947 0.9917 0.0083 
Carpool Choice      
Constant -0.1164 0.5005 -0.2325 0.9895 0.0105 
Median Timesavings 0.2390 0.0609 3.9243 0.8627 0.1373 
Free-Lane Traffic Rating -0.2078 0.0675 -3.0784 1.0000 0.0000 
Single Worker Householda -1.9294 0.4191 -4.6034 0.9992 0.0008 
Dual Worker Householda -1.3886 0.3523 -3.9411 0.9979 0.0021 
People per Vehicle in Household 0.5022 0.2051 2.4484 0.9953 0.0047 
Mobile Phone Availablea -0.6085 0.3037 -2.0038 0.9992 0.0008 
           
      
Number of Observations 537     
Number of Imputations 200     
(Average)f Log-Likelihood -425.36     
(Average)f Pseudo R2 0.28     
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 Single Imputation 
    
Independent Variables Coef. Std. Err. t-Stat. 
FastTrak Choice    
Constant -0.6622 0.5250 -1.2614 
Worktripa x Toll -0.9560 0.1972 -4.8473 
Non-Worktripa x Toll -1.8649 0.4653 -4.0083 
Part-Time Workera x Toll -0.6318 0.3141 -2.0113 
Income > $80Ka x Toll 0.5627 0.1490 3.7762 
Income Not Reporteda x Toll 0.5245 0.2396 2.1886 
Median Timesavings x Distance 0.0259 0.0047 5.5599 
Median Timesavings x Distance Squared -0.0006 0.0002 -3.8043 
Timesavings Variabilityb x Distance 0.0127 0.0038 3.3571 
"Low Toll" Signala,c -0.9199 0.2251 -4.0869 
Free-Lane Traffic Ratingd -0.2120 0.0522 -4.0634 
Flexible Arrival Timea,e -0.4789 0.2664 -1.7979 
Home Ownera 0.9876 0.3569 2.7670 
College Degree or Highera 0.5263 0.2320 2.2685 
Carpool Choice    
Constant -0.2337 0.5027 -0.4649 
Median Timesavings 0.2657 0.0604 4.3964 
Free-Lane Traffic Rating -0.2030 0.0677 -2.9972 
Single Worker Householda -1.8519 0.4200 -4.4097 
Dual Worker Householda -1.3531 0.3525 -3.8386 
People per Vehicle in Household 0.4947 0.2051 2.4124 
Mobile Phone Availablea -0.6144 0.3041 -2.0205 
       
    
Number of Observations 537   
Number of Imputations 1   
(Average)f Log-Likelihood -423.13   
(Average)f Pseudo R2 0.28   

 
a These are indicator variables equal to one if the condition is true, zero otherwise. 
b Timesavings Variability is defined as the difference between the 90th and 50th percentiles of the 
(conditional) timesavings distributions. 
c Equals one if the difference between the posted toll and (conditional) mean toll is negative, zero 
otherwise. 
d Respondents were asked to rate the traffic conditions on the free lanes on a scale from 1 to 10,  where 
1 represented "bumper-to bumper traffic" and 10 represented "no traffic problems at all". 
e Equals one if late arrival did not carry serious consequences, zero otherwise. 
f For the multiple imputations mode-choice model, the reported log-likelihood and pseudo R2 values 
represent averages of these statistics across imputations. 
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Table 1-4: Value of Time Estimates and Estimation Uncertainty 
 

 Multiple Imputations 
     
 Median Bootstrap 75%-ile ,  Interquartile 
 Estimate Mediana 25%-ileb Rangec 
     
Full Sample 45.47 29.68 45.69 , 18.81 26.88 
Full Sample at Mean 
Distance 67.18 38.77 60.88 , 21.93 38.95 
     
Work Trips:     
Income > $80k 71.93 64.90 111.78 , 41.48 70.30 
Income < $80k 21.95 21.52 28.79 , 16.21 12.58 
Income Not Reported 69.78 45.29 88.91 , 20.62 68.29 
Full-Time Workers 58.33 44.12 70.36 , 25.81 44.55 
Part-Time Workers 15.89 15.65 21.50 , 11.58 9.92 
     
Non-Work Trips:     
Income > $80k 14.37 14.35 21.35 , 10.37 10.98 
Income < $80k 9.63 9.60 12.92 , 7.16 5.76 
Income Not Reported 14.88 14.87 22.34 , 10.23 12.11 
Full-Time Workers 10.45 10.83 14.43 , 7.97 6.46 
Part-Time Workers 7.28 7.25 9.57 , 5.53 4.04 
         

 



 98

 
 Single Imputation 
     
 Median Bootstrap 75%-ile ,  Interquartile 
 Estimate Mediana 25%-ileb Rangec 
     
Full Sample 17.39 18.36 25.01, 14.56 10.45 
Full Sample at Mean 
Distance 28.68 24.91 36.94, 16.29 20.65 
     
Work Trips:     
Income > $80k 39.69 39.69 55.91, 29.91 26.00 
Income < $80k 15.87 15.74 19.85, 12.62 7.23 
Income Not Reported 32.38 31.70 50.12, 20.59 29.53 
Full-Time Workers 25.77 25.08 36.31, 16.17 20.14 
Part-Time Workers 13.76 12.97 17.07, 9.86 7.21 
     
Non-Work Trips:     
Income > $80k 12.26 12.64 12.64, 9.70 2.94 
Income < $80k 8.14 8.31 10.38, 6.51 3.87 
Income Not Reported 11.65 12.03 16.94, 9.07 7.87 
Full-Time Workers 8.72 9.08 11.40, 7.22 4.18 
Part-Time Workers 6.51 6.47 8.27, 5.15 3.12 
     

 
a These estimates are expected values of median VOT taken over the sampling distribution of their 
underlying parameters. 
b These figures reflect characteristics of the estimated distributions of the parameter estimates, not the 
distributions of VOTs within the sample.  The interquartile ranges reported here characterize the degree 
of uncertainty in estimating VOT due to statistical error in estimating its underlying parameters.  They 
are determined by Monte Carlo draws from the sampling distributions of the parameter estimates, i.e., 
they are "bootstrapped". 
c These figures are differences between the 75th and 25th percentiles reported in the preceding column - 
not to be confused with VOT heterogeneity within the estimation sample. 
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Table 1-5: Decomposition of VOT Estimation Uncertainty 
 

       

 
Multiple 

Imputations 
Share of 

Uncertainty 

 IQRa IQRb 
Due to 

Imputationsc 
 N(θ,Σ) N(θ,U)   
    

Full Sample 26.88 24.36 0.09 
Full Sample at Mean 
Distance 38.95 37.67 0.03 
    
Work Trips:    
Income > $80k 70.30 66.17 0.06 
Income < $80k 12.58 11.06 0.12 
Income Not Reported 68.29 66.71 0.02 
Full-Time Workers 44.55 41.91 0.06 
Part-Time Workers 9.92 9.16 0.08 
    
Non-Work Trips:    
Income > $80k 10.98 10.16 0.07 
Income < $80k 5.76 5.18 0.10 
Income Not Reported 12.11 11.33 0.06 
Full-Time Workers 6.46 5.86 0.09 
Part-Time Workers 4.04 3.67 0.09 
       

 
a The interquartile ranges reported here characterize the degree of uncertainty in estimating VOT due to 
statistical error in estimating its underlying parameters. 
b These IQRs are determined by Monte Carlo draws from a distribution cenetered on the parameter 
estimates with a covariance reflecting parameter estimation error net of imputation error. 
c This shows the share of VOT estimation uncertainty, measured by IQR, due to estimation error 
generated by the imputation process. 
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Table 1-6:     Understatement of VOT Estimation Uncertainty 
by Single-Imputation Approach 

 
     

 
Single 

Imputation Percentage Lower than 

 Reported IQR 
Multiple Imputation 

IQR 
     
   

Full Sample 10.45 61.12% 
Full Sample at Mean 
Distance 20.65 46.98% 
   
Work Trips:   
Income > $80k 26.00 63.02% 
Income < $80k 7.23 42.53% 
Income Not Reported 29.53 56.76% 
Full-Time Workers 20.14 54.79% 
Part-Time Workers 7.21 27.32% 
   
Non-Work Trips:   
Income > $80k 2.94 73.22% 
Income < $80k 3.87 32.81% 
Income Not Reported 7.87 35.01% 
Full-Time Workers 4.18 35.29% 
Part-Time Workers 3.12 22.77% 
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Table 2-1: Respondent Summary Statistics 
 

 In Weighted to 
 Sample Population 
   
Mode Share   
Free Lanes 50.17% 84.53% 
HOT Lanes 49.83% 15.47% 
   
Posted-Toll Considered   
Mean 1.75 1.65 
Standard Deviation 1.18 1.15 
   
Trip Distance   
Mean 25.02 25.20 
Standard Deviation 9.48 9.10 
   
Annual Income   
< $80,000 37.87% 47.96% 
≥ $80,000 62.13% 52.04% 
   
Trip Purpose   
Work, School, or Appointment Trip 98.34% 97.35% 
Other 1.66% 2.65% 
   
Job Status   
Part Time 3.32% 3.31% 
Other 96.68% 96.69% 
   
Sex   
Female 41.36% 36.79% 
Male 58.64% 63.21% 
   
Mobile Phone Available   
Yes 79.57% 72.21% 
No 20.43% 27.79% 
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Table 2-2: Mode-Choice, Valuation, and External Cost Estimates 
 

WESMLE Binary Logit Estimates 
  
 MODEL 1 
Independent Variable Coef. Std. Err. t 
Median Traffic-Density Differencea 0.20 0.03 7.37 
Median Travel-Time Savingsb - - - 
Effective Toll -1.26 0.18 -7.12 
Toll Signal 1.39 0.39 3.53 
Trip Distance 0.02 0.02 1.30 
Annual Income > $80,000c 0.86 0.29 3.01 
Work, School, or Appointment Tripc 3.84 1.17 3.28 
Part-Time Workerc -2.74 0.67 -4.09 
Femalec 0.66 0.29 2.24 
Mobile Phone Availablec 0.87 0.34 2.55 
Constant -12.46 1.70 -7.35 
    
Number of Observations  602  

 
 MODEL 2 
Independent Variable Coef. Std. Err. t 

Median Traffic-Density Differencea 0.11 0.03 3.38 
Median Travel-Time Savingsb 0.56 0.10 5.70 
Effective Toll -1.57 0.22 -7.23 
Toll Signal 1.69 0.37 4.54 
Trip Distance 0.05 0.02 2.71 
Annual Income > $80,000c 0.87 0.30 2.87 
Work, School, or Appointment Tripc 4.09 1.21 3.38 
Part-Time Workerc -2.86 0.73 -3.94 
Femalec 0.69 0.31 2.20 
Mobile Phone Availablec 0.94 0.34 2.80 
Constant -11.50 1.75 -6.57 
    
Number of Observations  602  
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Independent Variable MODEL 3 
Median Traffic-Density Differencea Coef. Std. Err. t 

Median Travel-Time Savingsb - - - 
Effective Toll 0.70 0.09 8.01 
Toll Signal -1.35 0.23 -5.76 
Trip Distance 1.39 0.38 3.63 
Annual Income > $80,000c 0.05 0.02 3.19 
Work, School, or Appointment Tripc 0.77 0.29 2.62 
Part-Time Workerc 3.80 1.15 3.32 
Femalec -2.59 0.69 -3.75 
Mobile Phone Availablec 0.68 0.30 2.23 
Constant 0.89 0.33 2.72 
 -8.29 1.30 -6.36 
Number of Observations    
  602  

 
 
Valuation and External Cost Estimates* 
 
 MODEL 1 MODEL 2 MODEL 3 
VOD 0.16 - - 
(Bootstrap) Std. Err. 0.02 - - 
VODA - 0.07 - 
(Bootstrap) Std. Err. - 0.02 - 
    
MEC    
25% 1.67 1.72 - 
50% 1.79 1.84 - 
75% 1.95 2.01 - 
MECA    
25% - 0.74 - 
50% - 0.79 - 
75% - 0.86 - 
MECT    
25% - 0.98 1.43 
50% - 1.05 1.54 
75% - 1.15 1.67 
    
VOT - - 31.06 
(Bootstrap) Std. Err. - - 4.59 
VOTk - 21.39 - 
(Bootstrap) Std. Err. - 3.51 - 
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Note: the dependent variable in each mode-choice model is equal to 1 if the respondent entered the 
HOT lanes and 0 otherwise. 
 
a Defined as the median difference between HOT-lane and free-lane traffic densities for the 
respondent’s travel period. 
b Defined as the median difference between HOT-lane and free-lane travel times for the respondent’s 
travel period. 
c Indicator variables equal to 1 if the condition is true and 0 otherwise. 
 
* VOD is the “Value of Density”, estimated by dToll/dK 
 
  VODA is the direct Value of Density when Travel Times are controlled for. 
 
  MEC is the combined Accident and Travel-Delay Externality, estimated by (dToll/dK)(dK/dv)v with 
  Model 1 and by MECA + MECT with Model 2. 
 
  MECA is the Accident (risk and defensive effort) component of the combined externality, estimated by 
  (dToll/dK)(dK/dv)v with Model 2. 
 
  MECT is the Travel-Delay component of the combined externality, estimated by 
  (dToll/dTS)(dT/dk)(dk/dv)v 
 
  VOT is the Marginal Value of Travel Delay (the “Value of Time”), estimated by dToll/dTS. 
 
  VOTk is the “Value of Time” when Traffic Densities are controlled for. 
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Table 2-3: Speed vs. Traffic Density 
 

 Ordinary Least Squares Estimates 
Dependent Variable    
Log of Daily Average Vehicle Speed    
Independent Variables Coef. Std. Err. t 
Log of Daily Average Traffic Density -2.67 0.35 -7.57 
Squared Log of Daily Average Traffic 
Density 0.28 0.05 6.01 
Constant 9.92 0.66 15.08 
    
Number of Observations  27  
Adjusted R2  0.88  
    
    
 Speed-Density Elasticity Estimatea 
    

εs,k  -0.52  
 

a Evaluated at the sample median of the log of daily average traffic density.  Speeds are in 
  miles per hour and Densities are in vehicles per lane-mile. 
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Table 2-4: Travel Time vs. Traffic Density 
 

 Ordinary Least Squares Estimates 
Dependent Variable    
Median Travel Time    
Independent Variables Coef. Std. Err. t 
Median Traffic Density -0.364 0.038 -9.570 
Median Traffic Density Squared 0.006 0.000 14.030 
Ted Williams Expressway Onramp Indicator -8.908 1.829 -4.870 
Indicator x Median Traffic Density 0.408 0.079 5.160 
Indicator x Median Traffic Density Squared -0.003 0.001 -3.960 
Constant 10.767 0.839 12.830 
    
Number of Observations  602  
Adjusted R2  0.90  
    
    
 Time-Density Derivative Estimatea 
    
∂Time / ∂Density  0.26  

 
a Travel Times are in minutes and Traffic Densities are in vehicles per lane-mile.  The estimated 
derivative is the average marginal effect of density from the above regression. 




