
UC Davis
Research Reports

Title
Balancing of Truck Parking Demand by a Centralized Incentives/Pricing System

Permalink
https://escholarship.org/uc/item/3zv2s5jr

Authors
Vital, Filipe
Ioannou, Petros

Publication Date
2022-03-01

DOI
10.7922/G2NG4NZZ

Data Availability
The data associated with this publication are within the manuscript.

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3zv2s5jr
https://escholarship.org
http://www.cdlib.org/


 

 

Balancing of Truck 
Parking Demand by a 
Centralized 
Incentives/Pricing 
System 

March 2022 
A Research Report from the National Center 
for Sustainable Transportation 

 

Filipe Vital, University of Southern California 

Petros Ioannou, University of Southern California 

   



 

TECHNICAL REPORT DOCUMENTATION PAGE 
1. Report No. 
NCST-USC-RR-22-10 

2. Government Accession No. 
N/A 

3. Recipient’s Catalog No. 
N/A 

4. Title and Subtitle 
Balancing of Truck Parking Demand by a Centralized Incentives/Pricing System 

5. Report Date 
March 2022 

6. Performing Organization Code  
N/A 

7. Author(s) 
Filipe de Almeida Araujo Vital, https://orcid.org/0000-0001-5987-5993  
Petros Ioannou, Ph.D., https://orcid.org/0000-0001-6981-0704 

8. Performing Organization Report No.  
N/A 

9. Performing Organization Name and Address 
University of Southern California 
METRANS Transportation Consortium 
University Park Campus, VKC 367 MC:0626 
Los Angeles, California 90089-0626 

10. Work Unit No. 
N/A 

11. Contract or Grant No. 
USDOT Grant 69A3551747114 

12. Sponsoring Agency Name and Address 
U.S. Department of Transportation 
Office of the Assistant Secretary for Research and Technology 
1200 New Jersey Avenue, SE, Washington, DC 20590 

13. Type of Report and Period Covered 
August 2020 – December 2021 
14. Sponsoring Agency Code  
USDOT OST-R 

15. Supplementary Notes 
DOI: https://doi.org/10.7922/G2NG4NZZ  

16. Abstract 
Due to hours-of-service (HOS) regulations, commercial drivers are required to stop and rest regularly, thus reducing fatigue-
related crashes. Nevertheless, if the parking infrastructure cannot cope with the demand generated by these required stops, new 
issues arise. In particular, this is the case for long-haul trucking, which is the focus of this work. Drivers often have difficulty 
finding appropriate parking, leading to illegal parking, safety risks, and increased pollution and costs. In this project, the 
researchers consider the issue of coordinating the parking decisions of a large number of long-haul trucks. More specifically, how 
to model the behavior of a region’s driver population and how it could be influenced. Understanding how truck parking demand 
is affected by the interaction of individual drivers’ selfish planning behaviors (in the sense that they minimize their own costs, not 
the overall system cost) and how parking prices affect optimal schedules are important steps in developing a system able to 
balance demand. The study presents a formulation that uses a modified TDSP (Truck Driver Scheduling Problem) mixed-integer 
programming model which tracks parking usage by dividing time into time-slots and charging drivers per time slot used. Results 
show that if truck drivers are following optimal schedules, then parking prices would be effective in changing which locations and 
time slots would be chosen by each driver. However, price adjustments can cause demand to shift in unexpected and not always 
beneficial ways, likely due to HOS regulations and client constraints limiting the possible alternative schedules. Therefore, further 
study is required to better understand the system’s properties and how to avoid or dampen these oscillations. Furthermore, due 
to HOS rules and client constraints, it might be impossible to divert demand from specific time slots and locations sufficiently. 
Nevertheless, this model could still aid in identifying these spots and contribute to the evaluation of infrastructure investment 
needs. 

17. Key Words 
Parking demand estimation, truck driver scheduling problem, 
hours of service regulation, demand balancing 

18. Distribution Statement 
No restrictions.  

19. Security Classif. (of this report) 
Unclassified 

20. Security Classif. (of this page) 
Unclassified 

21. No. of Pages 
43 

22. Price 
N/A 

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized 

 

https://orcid.org/0000-0001-5987-5993
https://orcid.org/0000-0001-6981-0704
https://doi.org/10.7922/G2NG4NZZ


 

 

About the National Center for Sustainable Transportation 

The National Center for Sustainable Transportation is a consortium of leading universities 
committed to advancing an environmentally sustainable transportation system through cutting-
edge research, direct policy engagement, and education of our future leaders. Consortium 
members include: University of California, Davis; University of California, Riverside; University 
of Southern California; California State University, Long Beach; Georgia Institute of Technology; 
and University of Vermont. More information can be found at: ncst.ucdavis.edu. 

Disclaimer 

The contents of this report reflect the views of the authors, who are responsible for the facts 
and the accuracy of the information presented herein. This document is disseminated in the 
interest of information exchange. The report is funded, partially or entirely, by a grant from the 
U.S. Department of Transportation’s University Transportation Centers Program. However, the 
U.S. Government assumes no liability for the contents or use thereof. 

Acknowledgments  

This study was funded, partially or entirely, by a grant from the National Center for Sustainable 
Transportation (NCST), supported by the U.S. Department of Transportation (USDOT) through 
the University Transportation Centers program. The authors would like to thank the NCST and 
the USDOT for their support of university-based research in transportation, and especially for 
the funding provided in support of this project.  



 

 

Balancing of Truck Parking Demand by a 
Centralized Incentives/Pricing System 

A National Center for Sustainable Transportation Research Report 

March 2022 

Filipe Vital, Department of Electrical and Computer Engineering, University of Southern California 

Petros Ioannou, Department of Electrical and Computer Engineering, University of Southern California  

  



 

 

[page intentionally left blank] 

 



 i 

TABLE OF CONTENTS 

EXECUTIVE SUMMARY .................................................................................................................... iv 

Introduction .................................................................................................................................... 1 

Related Work .................................................................................................................................. 2 

Demand-Side Management ........................................................................................................ 2 

Direct Allocation ......................................................................................................................... 4 

Indirect Allocation ....................................................................................................................... 5 

Significant differences to truck parking ...................................................................................... 6 

Problem Description ....................................................................................................................... 7 

Preliminaries ................................................................................................................................. 10 

Truck Driver Scheduling Problem ............................................................................................. 10 

Cooperative Game .................................................................................................................... 12 

Non-cooperative Game............................................................................................................. 13 

Formulation ................................................................................................................................... 15 

Agent interaction ...................................................................................................................... 15 

Individual Behavior ................................................................................................................... 15 

Equilibrium ................................................................................................................................ 20 

Demand Estimation....................................................................................................................... 20 

Sensitivity to HOS conditions and uniform time slot prices ..................................................... 21 

Response to price changes ....................................................................................................... 24 

Conclusion ..................................................................................................................................... 29 

References .................................................................................................................................... 30 

Data Summary............................................................................................................................... 33 

Products of Research ................................................................................................................ 33 

Data Format and Content ......................................................................................................... 33 

Data Access and Sharing ........................................................................................................... 33 

Reuse and Redistribution .......................................................................................................... 33 

  



 ii 

List of Tables 

Table 1. Variables and Parameters ............................................................................................... 19 

Table 2. Population Parameters ................................................................................................... 24 

Table 3. Experiment Results.......................................................................................................... 25 

  



 iii 

List of Figures 

Figure 1. Simplified representation of how parking demand is generated. ................................... 8 

Figure 2. System Diagram. .............................................................................................................. 9 

Figure 3. Distribution of the parking demand generated by 23h trips without parking charges 
and with HOS initial condition restricted to {0,1}. .................................................................. 21 

Figure 4. Distribution of the parking demand generated by 23h trips with hourly operational 
cost in the interval [60,80] and with each HOS initial condition varying between 0 and its 
regulation limit minus 1h. ....................................................................................................... 23 

Figure 5. Example results: Demand and prices for time steps 0, 1, 2, 7, 10 and 14..................... 28 

  



 iv 

Balancing of Truck Parking Demand by a Centralized 
Incentives/Pricing System 

EXECUTIVE SUMMARY 

Due to hours-of-service (HOS) regulations, commercial drivers are required to stop and rest 
regularly, thus reducing fatigue-related crashes. Nevertheless, if the parking infrastructure 
cannot cope with the demand generated by these required stops, new issues arise. In 
particular, this is the case for long-haul trucking, which is the focus of this work. Drivers often 
have difficulty finding appropriate parking, leading to illegal parking, safety risks, and increased 
pollution and costs. In previous projects, we focused on efficiently planning a single truck’s 
long-haul trips while accounting for HOS regulations and parking availability information, 
without considering how each driver’s parking decisions would affect the entire system. 
However, although single-vehicle planning methods can help us understand the impact of 
parking conditions and HOS regulations on trip planning, they cannot be applied on a large 
scale. If adopted by a large enough number of drivers, the parking availability information used 
would become invalid, and parking demand may turn unbalanced again. As single-vehicle 
methods are not aware of the impact of each driver’s decisions on the overall parking 
availability, they could send a large number of drivers to the same location and time slot 
regardless of the location’s parking capacity. In this project, we consider the issue of 
coordinating the parking decisions of a large number of long-haul trucks. More specifically, we 
study how to model the behavior of a region’s driver population and how it could be 
influenced. Understanding how truck parking demand is affected by the interaction of 
individual drivers’ selfish planning behaviors (in the sense that they minimize their own costs, 
not the overall system cost) and how parking prices affect optimal schedules are important 
steps in developing a system able to balance demand. 

We present a formulation that uses a modified TDSP (Truck Driver Scheduling Problem) mixed-
integer programming model which tracks parking usage by dividing time into time-slots and 
charging drivers per time slot used. The parking rates depend on both the time and location 
being considered. Each driver or trip is defined by an origin, a destination, a departure time 
constraint, a delivery time constraint, a set of initial conditions for the values restricted by 
working hours regulations (e.g., driving or elapsed time since last off-duty period), and an 
hourly operational cost. This heterogeneity means that different planners measure the 
advantage of using a particular parking location and time differently. Due to the complexity of 
solving the problem for a large number of drivers and modeling how to manage parking 
availability and drivers interactions within a single optimization problem, we calculate each 
drivers’ schedule separately using a common price matrix. We assume that penalties regarding 
parking difficulties faced in some locations and times could be included in the parking prices. If 
the pricing strategy used can find a price matrix that avoids overcrowding, then the solution 
generated by this model will also be a solution to the problem when all drivers and their 
interactions a modeled as a single optimization problem. Assuming we have information on the 
usual conditions of truck drivers operating in a region (or a large number of drivers/companies 
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willing to provide their trip information or keep their planning system continuously connected 
to the pricing coordinator), the system could use a sample population to simulate the effect of 
price changes before actually implementing the new prices. 

Simulations were used to study how drivers react to price changes. Results show that the 
scheduling model is very sensitive to even small changes in parking prices, which is conducive to 
using parking prices as a means to influence demand. However, under the price update rule 
tested, the system oscillates significantly before reaching a valid solution, and the initial 
iterations might see an increase in peak demand instead of the intended demand 
redistribution. In summary, if we consider that truck drivers are following optimal schedules, 
then parking prices would be effective in changing which locations and time slots would be 
chosen by each driver. However, price adjustments can cause demand to shift in unexpected 
and not always beneficial ways, likely due to HOS regulations and client constraints limiting the 
possible alternative schedules. Therefore, further study is required in order to better 
understand the system's properties and how to avoid or dampen these oscillations. 
Furthermore, due to HOS rules and client constraints, it might be impossible to divert demand 
from certain time slots and locations sufficiently. Nevertheless, this model could still aid in 
identifying these spots and contribute to the evaluation of infrastructure investment needs.
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Introduction 

According to the American Transportation Research Institute surveys, truck parking is currently 
one of the trucking industry's main issues (American Transportation Research Institute, 2019). 
Due to hours-of-service (HOS) regulations, commercial drivers are required to stop and rest 
regularly, thus reducing fatigue-related crashes. Nevertheless, if the parking infrastructure is 
unable to cope with the demand generated by these required stops, new issues arise. In 
particular, this is case for long-haul trucking (de Almeida Araujo Vital et al., 2020), which is the 
focus of this work. First, not finding appropriate rest locations may cause drivers to work 
beyond the allowed time limit, increasing chances of fatigue-related crashes. Second, drivers 
may choose to park illegally (road shoulders, ramps, abandoned lots, etc.), which also poses 
safety risks. Third, the shortage of truck parking may adversely affect industry costs in multiple 
ways, such as increased fuel consumption due to idling or looking for parking, and higher 
accident-related costs and insurance premiums. Fourth, the increase in fuel consumption will 
also negatively affect the environment. Emissions generated by truck idling can cause 
substantial deterioration of the surrounding region's air quality. 

Recent surveys found that most drivers use unauthorized parking locations at least once a week 
(Martin & Shaheen, 2013; Rodier et al., 2010; U.S. Department of Transportation, 2015). 
Furthermore, other studies report that many drivers often spend more than 30 minutes looking 
for parking (American Transportation Research Institute, 2018; NCDOT, 2017), or park one hour 
earlier than required in order to guarantee parking (Boris & Brewster, 2018), both of which 
reduce productivity. Nevertheless, less than 50% of truck stops reported working overcapacity, 
and the reported difficulties with parking usually refer to the period between 7PM and 5AM. 
Therefore, redistributing parking demand over time and space may help mitigate the effects of 
the parking shortage. 

In previous projects, we focused on efficiently planning a single truck's long-haul trips while 
accounting for HOS regulations and parking availability information, without considering how 
each driver’s parking decisions would affect the entire system (Vital & Ioannou, 2021, 2019). 
These solutions are appropriate when used only by a small number of vehicles that do not 
significantly affect the system. However, if adopted by a large enough number of drivers, the 
parking availability information used would become invalid, and parking demand may turn 
unbalanced again. This can easily happen if uncoordinated individual selections of the same 
parking rest area at the beginning of the trip lead to reaching overcapacity at arrival time, 
violating the initial assumption of parking availability at the time of arrival. Therefore, we 
approach the issue of uncoordinated parking selection by studying methods to coordinate the 
actions of multiple truck drivers/companies. Our aim is not to directly plan all trucks' trips, but 
to study ways to indirectly influence planners to better utilize the available parking capacity. 
We contemplate a central parking coordinator (CPARC) system that will have access to 
historical and real-time parking availability from a region's truck parking locations, as well as 
information on the characteristics of the region's usual truck trips, e.g., location and time 
interval when drivers expect to enter or leave the region, and drivers' remaining allowed driving 
time when entering the region. While such information flow may not be available today, the 
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industry and infrastructure are expected to become more and more connected over time. The 
development of methodologies that take advantage of this expected connectivity in order to 
identify and quantify the benefits to industry and environment is very crucial in accelerating 
information technologies in the area. The CPARC system would be able to estimate parking 
availability/demand at a region's truck parking locations. Such a system could be used to 
implement pricing schemes to control parking demand and achieve a better balance between 
supply and demand. 

In this project, we consider the issue of coordinating the decisions of a large number of long-
haul trucks. More specifically, we study how to model the behavior of a region's driver 
population and how it could be influenced. The planning models developed in previous projects 
can be used to simulate how companies would revise their trip plans in response to changes in 
different factors, such as parking prices or parking availability estimates. This information can 
then be used to study how to control parking demand. 

Related Work 

The truck parking shortage is a serious issue in several American states as their current parking 
infrastructure cannot accommodate peak demand. This could be solved by increasing capacity 
or decreasing peak demand. We are interested in the latter. As the general objective is to 
manage demand, the possible approaches depend on the level of control we have over the 
system. 

Demand-Side Management 

If a model of how the demand reacts to certain parameters is known, or if demand can be 
rejected, it is possible to directly control demand. In this case, simply controlling demand is 
often not the objective, so demand control is used along with some allocation, scheduling or 
routing system to maximize an objective or satisfy particular constraints. For example, mobility-
on-demand systems with electric vehicles where the distribution of clients’ willingness to pay is 
known, allowing demand to be directly affected by the price. In this case, the number of clients 
being serviced at each location can be controlled directly by price, and the demand at charging 
stations is controlled directly by routing decisions. However, the range of feasible demands at 
charging stations will be indirectly affected by the price and demand changes occurring 
throughout the network. There is also work on dynamic pricing applied to smart grid in order to 
maximize profit or reduce peak demand. 

In (Moradipari & Alizadeh, 2020), Moradipari and Alizadeh address the problem of managing 
demand on public EV charging stations. Their system consists of a central operator that 
allocates resources according to users’ value of time, charging demand and travel preferences. 
The system’s objectives are to provide fair service with short wait times to customers while 
managing the effects of EVs on the grid. A set of service options is provided to users, each one 
with different prices and probabilities of being assigned to particular charging stations and 
expected waiting time. Incentive compatible pricing-routing policies that maximize either a 
measure of social welfare or the central operator profits are presented. They assumed that the 
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users do not observe the exact wait times, the expected wait time is constant at equilibrium 
and given by a function of the arrival rates and routing probabilities generated by the chosen 
policy. They suggest the use of queueing models to define the expected waiting time functions, 
but this is not covered in this study. The value of time (VoT) used to model users utility and 
choice is considered a random variable with known distribution. 

In (Turan et al., 2019), Turan et al. use reinforcement learning to generate a dynamic policy 
controlling ride prices and routing/charging decisions for an autonomous-mobility-on-demand 
(AMoD) fleet of autonomous EVs. The problem is modeled as a markov decision problem with 
states determined by electricity prices at each node, customers queue lengths for each origin-
destination pair, and the number of vehicles at each node and their energy levels. The decision 
policy is defined by a deep neural network trained using Trust Region Policy Optimization. The 
system objective is to maximize operator profit. Although expected waiting time is unknown to 
customers and do not affect demand, the operator is penalized for waiting time and thus tries 
to reduce total waiting time. 

In (Tucker et al., 2019), Tucker et al. design a pricing framework for online electric vehicle (EV) 
parking assignment and charge scheduling. Each user is defined by the requested time interval, 
acceptable locations, required energy and utility obtained from each location. Energy prices at 
each location vary with time. The system allocates how the energy received by each user varies 
with time. As long as users demands are met, each location can control charging behavior in 
order to optimize its own costs. Each location can generate a certain amount of solar energy at 
no cost, and can buy a limited amount of energy from the grid. After users send their 
information, the system generates a set of options defined by cable reservation and charging 
schedule, along with a price for each option. If a request is rejected, the user’s utility is set to 
zero and it is assumed that the user parked at an auxiliary parking lot without charging 
capabilities. The offline method assumes that all requests for a certain time interval are known, 
and maximizes the social welfare, defined as the difference between the total user utility and 
operational costs. A mathematical formulation of the offline problem and its Fenchel dual are 
described. In the online method, heuristic pricing functions are used along with an auction 
mechanism. The system decides whether to accept or not a request depending on the current 
prices and the user’s potential utility gain. Prices are updated after each user request is 
processed. The proposed mechanism is shown to be α-competitive. 

In (Tian et al., 2018), Tian et al. address the problem of optimizing a parking operator’s revenue 
using a parking reservation system. Parking requests are modeled by a Poisson process with an 
arrival rate dependent on the parking price. However, it is assumed that demand for a certain 
time interval depends only on the price for that same interval in that particular parking 
location. Solutions are proposed for exponential and linear demand functions. The authors 
justify the assumptions on price/demand relations as that being the point of view of the parking 
manager. The manager is not aware of the decision process of the users and cannot observe it, 
he/she can only analyze how the changes and price affect the arrival rate. 
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Direct Allocation 

If there is some base demand that is uncontrollable, but we can directly control how that 
demand is distributed, we can look at it as a resource allocation problem or a routing with load 
balancing problem. Smart parking systems that have some flexibility in how to allocate parking 
reservation requests are examples of the resource allocation point of view. In the case of load 
balancing, we can think of the problem of routing multiple vehicles/packets over a 
transportation/communications network where the cost of an edge depends on the number of 
routes using it. Some routing studies use dynamic pricing schemes to incentivize user 
participation. 

In (Capdevila et al., 2013), Capdevila et al. used a multi-agent system for the management of 
parking reservations among requesting trucks. When a vehicle enters the road network it sends 
its origin, destination and preferred parking to the system manager. If the rest area has 
available spots a temporary reservation will be made. If the rest area does not have available 
spots the negotiation protocol is initiated. Each driver receives a list of possible rest areas to be 
graded according to his/her preferences. Each driver's vote is weighted according to their 
maximum allowed driving time and current driving time. These weights give priority to drivers 
that are closer to reaching their legal driving limit. The scores for each driver are summed for 
each feasible solution and the solution with the largest score is selected. Note that this 
algorithm assumes that there is at least 1 feasible solution for a given problem. Following the 
selection all drivers and rest areas are notified of the new allocation. While the number of 
trucks requesting parking reservations for a given parking lot is smaller than the number of 
available spaces all of them are granted spots, but when there are more reservations than 
available spaces a negotiation protocol is used to choose the parking allocation. The negotiation 
involves a voting procedure that takes into account the preferences of each truck and its 
allowed stops. The system's robustness to changes in the available parking areas and the 
system's scalability were tested through simulation and the results were promising, showing a 
substantial reduction of the necessity for drivers to park in illegal areas. Similar resource 
allocation problems were also treated before in the context of urban parking. In (Geng & 
Cassandras, 2011) the resource allocation problem was defined as a sequence of Mixed Integer 
Linear Programming problems solved over time subjected to a set of fairness constraints. 
(Doulamis et al., 2013) uses interval scheduling algorithms to try to optimally allocate parking 
spaces. 

In (Xie et al., 2015), Xie et al. approach the problem of assigning health care workers to home 
visits within certain time-windows. Practitioners have different skill sets, time constraints and 
client preferences. Similarly, visits have time-window constraints and skill requirements. The 
payment sought by each practitioner depends on their skill level and the costs incurred to 
provide the service. The system wants to minimize service costs while guaranteeing that all 
visits are covered by qualified practitioners. An iterative bidding framework is proposed where 
providers calculate feasible schedules’ costs and bid for the schedule with the largest payoff. 
The health agency provisionally chooses schedules that satisfy its constraints while minimizing 
costs. Auction follows certain bidding rules regarding when bids can be changed and by how 
much, and terminates when no valid bids are updated. 
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In (Kordonis et al., 2020), Kordonis et al. propose mechanisms to coordinate truck drivers 
routing decisions to balance the traffic load and improve the overall traffic conditions and time 
delays experienced by both truck and passenger vehicle drivers. The mechanisms use monetary 
incentives and fees to steer individual drivers’ decisions towards a system optimum without 
penalizing drivers compared to the user equilibrium. They propose fairness measures and 2 sets 
of constraints that would encourage drivers to participate either as a group (either everyone or 
no one) or individually (each driver see it as beneficial to participate regardless of other drivers' 
decisions). The effect of routing assignments on cost/travel time is assumed known. Passenger 
vehicle assignments are assumed known and fixed. Demand for each OD is a random variable 
with known distribution. 

Indirect Allocation 

If we can control only parameters that affect demand distribution indirectly, then the problem 
resembles work using dynamic pricing to indirectly influence agents’ decisions in congestion 
pricing, and work on anticipatory route guidance, which uses traffic predictions information to 
influence drivers’ routing choices. This type of system can also be viewed as a non-cooperative 
game where we a looking for a pricing policy/mechanism that leads to an equilibrium state with 
particular properties. 

In (Hollander & Prashker, 2006), Hollander and Prashker present a survey of applications of 
non-cooperative game theory in transportation problems. The problems are categorized based 
on the players involved: travelers x demon, travelers x travelers, travelers x authorities, 
authority x authority. Problems such as congestion pricing would fall into the categories of 
games between travelers or between travelers and authorities, depending on how the pricing 
scheme is included in the problem. For example, the pricing scheme can be given as an input, 
and a game between travelers is then used to study the equilibrium results from different 
inputs. The game itself would not output a policy but could be used to study a policy’s impacts. 
Another possibility is that the authority can be explicitly modeled as a player with its own 
objective and constraints. In this case, studies often use bi-level formulations where the upper 
level optimizes the authority’s objective, whereas the lower level is the user-equilibrium 
problem that defines how travelers react to the authority’s decisions. This game between an 
authority and a collective of travelers would output a policy recommendation. 

In (Kaufman et al., 1991), Kaufman et al. study anticipatory route guidance that accounts for 
the behavior of anticipatory vehicles’ impact on the system. If a prediction is given to drivers, 
they will change their behavior and invalidate the prediction. So, this paper calculates what 
traffic prediction should be given to drivers so that they behave as predicted, i.e., a self-fulfilling 
prediction. This is calculated iteratively by switching between solving dynamic assignment 
problems and time-dependent shortest path problems until the routing policy converges. 

In (Chen et al., 2020), Chen et al. use a bi-level optimization approach to choose the location 
and capacity of EV charging stations such that construction costs and drivers’ travel time and 
waiting time are minimized. The lower level calculates vehicle routing and charging behavior at 
equilibrium given a set of locations and capacities, whereas the upper level optimizes the 
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decisions regarding location and capacity subject to service level constraints at each charging 
station. The effect of routing choices on travel time is a non-linear function taken from the 
literature. Waiting time at charging stations is modeled as a queueing system, but due it being 
computationally expensive to use, an approximate function is proposed based on Monte-Carlo 
simulation. The problem is then reformulated as a single-level mathematical programming with 
complementary constraints, which solved by using standard NLP solvers to solve a sequence of 
relaxed problems. 

Significant differences to truck parking 

Dynamic pricing and incentive schemes are often studied for issues in the energy (Black & Tyagi, 
2010; Dutta & Mitra, 2017; Gabr et al., 2018; Song, 2012), transportation (Papadopoulos et al., 
2019; Turan et al., 2019; Yang et al., 2020), and communications (Falowo et al., 2009) sectors. 
However, some of the assumptions made are not reasonable for the truck parking management 
problem. 

In (Falowo et al., 2009), Falowo et al. applied dynamic pricing to solve a load balancing problem 
in wireless networks. In this case, one of their objectives was to achieve uniform load 
distribution, which may not be necessary or reasonable in our case. Our main objective is to 
avoid overloading any parking facility at any time, so the load should be balanced enough to 
avoid peaks that exceed capacity, but not necessarily uniform. 

In (Turan et al., 2019), Turan et al. used reinforcement learning to manage (ride prices, routing 
and charging decisions) an electric autonomous mobility-on-demand system. Ride prices were 
used to control customers’ arrival rate at each node. However, the authors considered that the 
base arrival rates are not time-dependent, and that the customers’ willingness-to-pay 
distribution (how much each client is willing to pay for a ride) is the same at all locations and 
times. In the case of truck parking management, due to the several factors that influence the 
planners’ costs, the willingness of each planner to pay to use a certain parking slot and the 
arrival rate may vary greatly with time and location. In addition, some dynamic pricing schemes 
treat demands at different locations and times as if they are independent and can simply be 
eliminated. When demands are reduced due to higher prices, it is assumed that customers gave 
up, it does not affect the demand at other times/locations. In our case, demand is usually not 
simply reduced, it is shifted. Although rerouting may cause the total parking time of a truck to 
be reduced (possibly turned into extra driving time), most of it is only moved to a different 
location or time slot. This issue was also raised in (Song, 2012) with regards to energy 
consumption, as some customers react to dynamic prices by changing their consumption time 
instead of only reducing consumption. Nevertheless, estimating clients’ behavior in order to 
predict when and by how much demand will be shifted or reduced is very hard. 

In the congestion pricing /coordinated routing problem, all drivers using a certain route/link are 
affected by the high usage rate of that route/link. However, in truck parking, only drivers that 
arrive after a parking lot is full would experience cost increases. The cost of drivers arriving 
early is not affected by the high occupancy, so they might be harder to influence. 
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In the coordinated routing problem all routes are assumed to be contained within a single time 
interval, so even though routes are composed of multiple links, the time dimension is ignored 
and all costs and effects affect all links at the same time. As trucks have large limitations on 
available routes, it is also somewhat reasonable to assume that the number of possible routes 
is small. Especially if we assume that these formulations focus on short-haul as they consider 
that trips are completed within a single time interval. 

In truck parking, the time dimension is important as the time a driver occupies a certain rest 
area has a large impact on the times he/she is likely to stop next. And due to the focus on long-
haul and the possibility of a large number of rest areas existing along a route, the number of 
possible combinations of rest areas used, stopping times and rest durations that form a 
schedule is very large and not straightforward to reduce. 

Problem Description  

Figure 1 shows a simplified diagram of how truck parking demand is generated. Each trucking 
company plans its trips according to some public information, such as regulations, traffic data 
and parking data when available, and its own private information regarding its own operational 
constraints and parameters, such as clients' requirements and drivers' remuneration. For 
simplicity, we refer to each truck driver/company that needs to plan a trip as a planner. Each 
planner acts in its own best interest, planning a route and schedule that minimizes its 
operational cost. The drivers will then follow their itinerary and try to park at the planned 
location and time. However, the planners do not possess information on how the decisions of 
other planners will affect the future state of the system. So, assuming planners have access to 
the same public information, if a certain parking lot is low cost compared to others and usually 
available at a certain time, all planners will assume that they can use it at that time. Unable to 
see the whole picture, all trucks may be routed to the same parking lots, causing an unbalanced 
parking capacity usage. Certain facilities may be working overcapacity, while others may have 
plenty of parking spaces left. Not being able to find parking at the expected location, some 
drivers may be forced to park illegally, which may pose significant safety and financial risks. For 
the drivers that could not find parking, the cost increase of choosing a sub-optimal 
route/schedule from the beginning may be lower than the cost increase caused by not finding 
parking at the planned route. However, in order to consciously decide against using the optimal 
route, the planner needs to know in advance whether others' decisions will turn its own 
decision infeasible. 
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Figure 1. Simplified representation of how parking demand is generated. Green boxes 
represent information that is unique to the system, regardless of whether it can be 
measured. Red boxes represent information that is specific to each company. The red 
horizontal lines on the parking demand plots represent each facility's maximum capacity. 

Planners' decisions may be influenced by factors such as traffic, fuel costs, parking availability, 
parking rates, and illegal parking penalties. Many cost-defining factors may be particular to a 
certain planner, such as company policy about illegal parking, driving speed limits, fuel 
consumption, and driver remuneration. The same is true for the set of feasible schedules, as it 
can depend on restrictions particular to each planner, such as the details of each trip (client 
location, time-windows, etc.) and drivers' remaining driving time. This heterogeneity means 
that different planners measure the advantage of using a certain parking location and time 
differently. 

Our objective is to study how to influence this cost calculation so that planners having flexible 
schedules will opt to use low-demand parking slots instead of high-demand ones. Consider the 
effects of the following factors: hourly parking price; and illegal parking penalties. If a certain 
parking lot is expected to work overcapacity at a particular time, the parking rates for that time 
and place can be increased, motivating drivers to park at different times or locations. The price 
value would convey how good or bad (for the system) it is for the planner to use that resource 
at that time. As each planner is solving a different optimization problem (the jobs, vehicles, 
clients, and constraints may all be different), each truck has a different cost for changing 
itineraries. Therefore, as the prices increase, companies that have reasonable alternative route 
options would change their itineraries to minimize costs. Whereas companies that are in urgent 
need of that resource due to less flexible conditions, would keep their itinerary and accept the 
cost increase. Different from urban parking dynamic pricing schemes that often aim to 
maximize parking lot profits, in this case, we aim for a better utilization of the available parking 
capacity and a reduction of the cases of illegal parking. The illegal parking penalty could help 
model and control planners' unwillingness to switch routes, as well as measure the quality of 
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alternative routes. If a planner considers more cost-effective to risk parking illegally than to 
switch routes, then it means that all alternatives are too expensive. In the future, the penalty 
values could also be used to measure the need and benefits of infrastructure investments in 
certain areas. However, as the penalty's effect depends on the probability of finding parking, 
which varies according to other planners' decisions, we do not use it as a control input. 
Furthermore, it would be hard to control the ``real'' penalty values as they depend on the fines 
imposed by the government, on how strictly highway officers are enforcing parking restrictions, 
and other factors completely out of our control, such as accident rates, and average litigation 
costs. 

In Figure 2, we show the basic diagram of the CPARC including a parking pricing manager. The 
CPARC system would first provide the planners with initial parking rates, calculated according to 
historical data. Planners would then calculate their routes and communicate their desired 
parking slots to CPARC. Assuming full participation, CPARC’s Demand Estimator would be able 
to perfectly calculate the hourly demand for each parking slot, and verify which ones are 
overcapacity. The pricing manager would calculate new prices, which would then be sent to the 
planners. In the case of partial participation, CPARC could generate demand estimates by using 
the participants' demands along with historical parking availability data. Similarly, the prices 
would be adjusted according to the demand estimates and sent back to the planners. This cycle 
of planning, demand estimation, and price update would continue until an acceptable solution 
is found, or until a time or iteration limit is reached. 

 

Figure 2. System Diagram.  The blue boxes represent our system’s components and output. 
The red box represents the distributed system encompassing all truck companies and their 
decisions. 

One of the challenges in developing this kind of system is estimating planners' reactions to price 
changes so that appropriate prices can be determined. Therefore, we focus on how to use 
models for the Truck Driver Scheduling Problem to simulate planners' behavior. In our analysis, 
we assume that the objective of each planner is to minimize its overall cost, part of which is 
associated with the parking cost. By changing the parking cost at a particular location, the 
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overall cost may no longer be optimum when compared with a lower cost parking, which may 
require the planner to modify the initial route. Parameters unique to each planner, such as 
client locations, delivery constraints and driver hourly wage, can be sampled from a given 
distribution, whereas parameters such as travel time, parking locations, parking price and HOS 
regulations are the same for all planners. 

Performance measures to determine what is an acceptable solution and how distant we are 
from achieving it depend on each region's particular context, and the pricing strategy will 
depend on the measures used. For example, we could measure the parking shortage's severity 
by measuring the excess demand at each parking lot. Let 𝐷𝑖(𝑡) represent facility 𝑖 ’s parking 
demand at time 𝑡, 𝐶𝑖 is facility 𝑖 's parking capacity. Then we can define the following 
performance measures: 

 𝐸𝑖(𝑡) = max(0, 𝐷𝑖(𝑡) − 𝐶𝑖) (1) 

 
Δ𝑖 = ∫ 𝐸𝑖(𝑡)𝑑𝑡

∞

0

 
(2) 

 Δ = ∑ Δ𝑖

𝑖

 (3) 

where 𝐸𝑖(𝑡) measures the excess demand of location 𝑖 at time 𝑡 in parking spaces, Δ𝑖 is a 
measure of the parking shortage at location 𝑖 in 𝑝𝑎𝑟𝑘𝑖𝑛𝑔 𝑠𝑝𝑎𝑐𝑒𝑠 ⋅ ℎ𝑜𝑢𝑟𝑠, and Δ measures the 
parking shortage of the whole system in 𝑝𝑎𝑟𝑘𝑖𝑛𝑔 𝑠𝑝𝑎𝑐𝑒𝑠 ⋅ ℎ𝑜𝑢𝑟𝑠. Ideally, an acceptable 
solution would have Δ equal to zero, so no parking facility has a demand larger greater than it 
can support. However, in order to properly adjust the prices, we also need to know which 
facilities need to have their demand decreased and at what time. This information is provided 
by 𝐸𝑖(𝑡) and Δ𝑖. It may also be necessary to track how the price changes are affecting the costs 
of each planner and of the whole system. If the system cost decreases, it may be possible to use 
the gains of some planners to compensate for the losses of others. This ideal situation would 
allow for the system to be maintained without extra investments besides infrastructure and 
management costs. 

Preliminaries 

Truck Driver Scheduling Problem 

Consider the truck driver scheduling problem (TDSP) under parking availability constraints 
presented in (Vital & Ioannou, 2019). The problem consists of scheduling the rest stops for a 
single long-haul truck trip with a known route and a single client while taking into account the 
USA HOS regulations and estimated parking availability windows for all rest areas along the 
route. It is assumed that the rest areas are located on the route and require no detours to be 
accessed. The parking availability time-windows are assumed known. The route has 𝑛 +
1 nodes, 2 of which are the origin, node 0, and destination of the truck, node 𝑛. The other 𝑛 −
1 are rest areas located along the route. For each node 𝑖 ∈ {0,1, … , 𝑛} the variable 𝑥𝑖 =

(𝑥𝑖,𝑎, 𝑥𝑖,𝑑) represents the arrival and departure times of the truck at that node. Each rest area 

𝑖 has 𝑇𝑖 parking availability time-windows [𝑡𝑖,τ
𝑚𝑖𝑛 , 𝑡𝑖,τ

𝑚𝑎𝑥], where τ ∈ {1,2, … , 𝑇𝑖} indicates the 
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time-window's index. The time-windows restrict the arrival time at that node and are only in 
effect when the truck has to stop at that specific node, driving by it is not constrained by the 
time windows. For each location and time-window, a binary variable 𝑦𝑖,τ represents if that 

specific time window is being used (yes:1, no:0). Driving by without stopping is represented by 
the variable 𝑦𝑖,0 (drive by:1, stop:0). The travel time 𝑑𝑖,𝑖+1 in between nodes is considered 
known and independent of time. The planning horizon is denoted by 𝑡ℎ𝑜𝑟. The driver must 
reach its destination before the specified planning horizon. 

The schedule must comply with the HOS regulations (see (Vital & Ioannou, 2019) for regulations 
considered in the model). 𝑅 is defined as the set of different types of rest periods described in 
the regulation. For each 𝑟 ∈ 𝑅, 𝑡𝑟 defines the minimum duration of that type of rest period. 𝐶 is 
the set of constraints imposed by the regulation. 𝐶1 ⊆ 𝐶 is the set of constraints controlling the 
maximum elapsed time between off-duty periods. 𝐶2 ⊆ 𝐶 is the set of constraints controlling 
the maximum accumulated driving time between off-duty periods. The HOS regulations also 
limit the on-duty time over the last 7 days, but we will consider a simplified version of the 
constraint which limits the on-duty time since the last 34h rest. This simplified constraint is 
more restrictive than the original and still guarantees regulation-compliance. For each 
constraint 𝑐 ∈ 𝐶, 𝑡𝑐 is the time limit imposed by the regulation and 𝑅𝑐 ⊆ 𝑅 is the set of rest 
types that can reset this counter. The binary variable 𝑧𝑖,𝑟 indicates whether a rest of type 𝑟 is 

taken at location 𝑖 (yes:1, no:0). The driver cannot take more than 1 type of rest at the same 
location. If no type of rest is schedule for a rest area, the driver cannot stop there. The 

departure time from the origin must be within the interval [𝑡0, 𝑡𝑑𝑒𝑝]. It is assumed that the 

driver has been off-duty for long enough before the departure time, so that all constraints' 
counters are reset before departure. 

 Minimize Total travel time = 𝑥𝑛,𝑎 − 𝑥0,𝑑 (4) 

s.t.: 𝑥𝑖,𝑑 + 𝑑𝑖,𝑖+1 = 𝑥𝑖+1,𝑎∀0 ≤ 𝑖 ≤ 𝑛 − 1 (5) 

 𝑥𝑖,𝑎 + ∑ 𝑡𝑟

𝑟∈𝑅

𝑧𝑖,𝑟 ≤ 𝑥𝑖,𝑑 , ∀1 ≤ 𝑖 ≤ 𝑛 (6) 

 𝑥𝑖,𝑑 ≤ 𝑥𝑖,𝑎 + (1 − 𝑦0,τ)𝑡ℎ𝑜𝑟 , ∀1 ≤ 𝑖 ≤ 𝑛 (7) 

 

𝑦𝑖,0 + ∑ 𝑦𝑖,τ

𝑇𝑖

τ=1

= 1, ∀1 ≤ 𝑖 ≤ 𝑛 

(8) 

 

∑ 𝑦𝑖,τ

𝑇𝑖

τ=1

= ∑ 𝑧𝑖,𝑟

𝑟∈𝑅

, ∀1 ≤ 𝑖 ≤ 𝑛 − 1 

(9) 

 

∑ 𝑦𝑖,τ

𝑇𝑖

τ=1

𝑡𝑖,τ
𝑚𝑖𝑛 ≤ 𝑥𝑖,𝑎, ∀1 ≤ 𝑖 ≤ 𝑛 

(10) 
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𝑥𝑖,𝑎 ≤ 𝑡ℎ𝑜𝑟 − ∑[𝑦𝑖,τ(𝑡ℎ𝑜𝑟 − 𝑡𝑖,τ
𝑚𝑎𝑥)]

𝑇𝑖

τ=1

∀1 ≤ 𝑖 ≤ 𝑛 

(11) 

 
𝑥𝑘,𝑎 − 𝑥𝑖,𝑑 ≤ 𝑡𝑐 + 𝑡ℎ𝑜𝑟 ∑ ∑ 𝑧𝑗,𝑟

𝑟∈𝑅𝑐

𝑘−1

𝑗=𝑖+1

, ∀0 ≤ 𝑖 < 𝑘 ≤ 𝑛, 𝑐 ∈ 𝐶1 
(12) 

 
∑ 𝑑𝑗,𝑗+1

𝑘−1

𝑗=𝑖

≤ 𝑡𝑐 + 𝑡ℎ𝑜𝑟 ∑ ∑ 𝑧𝑗,𝑟

𝑟∈𝑅𝑐

𝑘−1

𝑗=𝑖+1

, ∀0 ≤ 𝑖 ≤ 𝑘 ≤ 𝑛, 𝑐 ∈ 𝐶2 
(13) 

 𝑥𝑖 ∈ [0, 𝑡ℎ𝑜𝑟]2, 𝑦𝑖 ∈ {0,1}𝑇𝑖+1, 𝑧𝑖 ∈ {0,1}|𝑅|, ∀1 ≤ 𝐼 ≤ 𝑛 (14) 

 𝑥0,𝑑 ∈ [0, 𝑡𝑑𝑒𝑝], 𝑦𝑛,0 = 0 (15) 

The objective function (4) is set to minimize the total trip duration. Constraint (5) guarantees 
that the arrival time equals the departure time of the previous location plus the driving time. 
Constraint (6) states that the vehicle must not depart before the arrival time plus the minimum 
rest time decided for that location. Constraint (7) controls what happens when the driver does 
not stop at a certain location. If the vehicle does not stop at location 𝑖, the arrival time equals 
the departure time. This constraint works with constraints ((6), (8), (9)) to assure this. Equality 
will hold when 𝑦𝑖,0 = 1. If 𝑦𝑖,0 = 0, then constraint (7) is always true as 𝑡ℎ𝑜𝑟 is large. Constraint 
(8) states that at any location, either exactly 1 time-window is used or the vehicle does not 
stop. Constraint (9) states that the driver only stops if an off-duty period is scheduled. 
Constraints (10) and (11) check the time-windows. Arrival must happen after the beginning and 
before the end of the chosen time window. Constraint (12) checks that the time elapsed since 
the last rest in 𝑅𝑐, 𝑐 ∈ 𝐶1 is less than 𝑡𝑐. Constraint (13) checks if the accumulated driving time 
between rest periods in 𝑅𝑐, 𝑐 ∈ 𝐶2 is less than 𝑡𝑐. Constraint (14) sets the variables' domains, 
and (15) guarantees that the departure time from the origin is within the required period and 
that the vehicle will stop at the destination. 

Cooperative Game 

In cooperative games, the focus is on the overall system cost, not each agent’s cost. We can 
look at it as if a single entity controls all vehicles, and that entity is willing to let some vehicles 
operate at higher costs as long as the overall cost is reduced. Let 𝑉 be the set of different 
vehicles or trips usually found in the region of interest. Each 𝑣 ∈ 𝑉 contains all the parameters 
necessary to describe the trip (e.g., origin, destination, time-windows, HOS constraints initial 
condition, etc). Let 𝑇𝐷𝑆𝑃(𝑣) be the set of feasible schedules for vehicle/trip 𝑣, without 
considering parking availability constraints, we will also refer to 𝑇𝐷𝑆𝑃(𝑣) as the set of pure 
strategies for vehicle 𝑣. Although the TDSP models described in section Truck Driver Scheduling 
Problem consider time-related variables as continuous, here we assume that the decision space 
is discretized. Let 𝐴𝑣 ∈ 𝑇𝐷𝑆𝑃(𝑣) represent a pure strategy for vehicle 𝑣, and a pure strategy 
profile 𝐴 = (𝐴𝑣)𝑣∈𝑉 be the vector of pure strategies assigned to each vehicle. The set of all 
possible pure strategy profiles is defined as 𝑆 = ∏ 𝑇𝐷𝑆𝑃(𝑣)𝑣∈𝑉 . The function 
α𝑣(𝑠): 𝑇𝐷𝑆𝑃(𝑣) ↦ 𝑅 is a mixed strategy for vehicle 𝑣, defined as the probability of vehicle 𝑣 
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choosing to use schedule 𝑠 ∈ 𝑇𝐷𝑆𝑃(𝑣). The mixed strategy profile α = {α𝑣(⋅)}𝑣∈𝑉 is the vector 
of functions α𝑣(⋅) indicating the mixed strategy adopted by each vehicle. Given a system-wide 
objective function Θ(α), the system optimum can be defined as the solution to the following 
optimization problem: 

 min
α

Θ (α) (16) 

s.t.: ∑ α𝑣(𝑠)

𝑠∈𝑇𝐷𝑆𝑃(𝑣)

= 1, ∀𝑣 ∈ 𝑉 (17) 

 α𝑣(𝑠) ≥ 0, ∀𝑣 ∈ 𝑉, 𝑠 ∈ 𝑇𝐷𝑆𝑃(𝑣) (18) 

Parking capacity constraints are not included as we consider that Θ(α) already accounts for all 
relevant costs, such as costs due to overcapacity parking facilities, trip delays, etc. If feasible, 
overcrowding would be avoided by setting high associated costs sufficiently high. Nevertheless, 
this formulation assumes a cooperative relationship where all vehicles are controlled by a single 
agent, and it is acceptable to increase the costs of certain vehicles without limits as long as the 
overall system cost is reduced. 

Non-cooperative Game 

The trucking industry is a competitive market composed by a large number of agents, with large 
and small companies commanding varying fractions of the vehicles in operation and a large 
number of truck-owners operating independently. Although it is reasonable to assume 
cooperation within large companies, that is not the case for the overall system. The way agents 
behave in a competitive market is better modeled as a non-cooperative game, where each 
agent is trying to optimize its own objective depending on how it expects competitors will 
behave. This scenario is usually analyzed in the literature by assuming that agents have some 
information on each other’s' intentions and can plan accordingly. If the agents are able to reach 
a stable solution, i.e., no one could improve their objective by changing behavior given that all 
other agents' behaviors remain unchanged, that solution is called a Nash Equilibrium (NE). A 
game may have zero, one or multiple equilibria, which are usually less efficient than the system 
optimum. Therefore, the system manager is interested in either pushing the system towards 
the NE that best suits the system's objective, or implementing policies that generate NEs with 
better system-wide performance. The ratio between the worst-case NE's cost and the system 
optimum is usually referred to as the Price of Anarchy (Christodoulou, 2008), it is often used in 
the literature to study the quality of a game's equilibria. 

Let 𝐹𝑣(𝐴) be the cost of vehicle 𝑣 under a pure strategy profile 𝐴 ∈ 𝑆 and let (𝐴−𝑣, 𝑠𝑣) 
represent the strategy profile obtained when, starting from a pure strategy profile 𝐴, vehicle 𝑣 
switches to strategy 𝑠𝑣. For convenience, 𝐹𝑣(α) is also used to represent the expected cost of 
vehicle 𝑣 under a mixed strategy profile α, and, in this case, it is defined as: 

 𝐹𝑣(α) = ∑ 𝑝(𝐴)𝐹𝑣(𝐴)

𝐴∈𝑆

 (19) 
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 𝑝(𝐴) = ∏ 𝑝𝑣(𝐴𝑣)

𝑣∈𝑉

 (20) 

where 𝑝(𝐴) is the probability that pure strategy profile 𝐴 is used, and 𝑝𝑣(𝐴𝑣) is the probability 
of vehicle 𝑣 using pure strategy 𝐴𝑣. A mixed strategy profile α constitutes a NE if and only if it 
satisfies the following constraints: 

 𝐹𝑣(α−𝑣, 𝑠𝑣) ≥ 𝐹𝑣(α), ∀𝑣 ∈ 𝑉, 𝑠𝑣 ∈ 𝑇𝐷𝑆𝑃(𝑣) (21) 

 ∑ α𝑣(𝑠)

𝑠∈𝑇𝐷𝑆𝑃(𝑣)

= 1, ∀𝑣 ∈ 𝑉 (22) 

 α𝑣(𝑠) ≥ 0, ∀𝑣 ∈ 𝑉, 𝑠 ∈ 𝑇𝐷𝑆𝑃(𝑣) (23) 

If the system manager were able to recommend schedules to all users, but those users would 
only follow the recommendations if it optimizes their objective given their expected behavior of 
the other agents, the best recommendation could be calculated by finding min

α
Θ (α) such that 

(21)-(23) are satisfied. For example, a planning software used by a large number of vehicles 
would be able to both recommend schedules and show planners the expected cost of other 
options. The cost estimate is generated assuming that the other users will follow the 
recommended schedule. Although unable to directly control the vehicles and force the 
adoption of a system optimum strategy, the system manager would be able to at least steer the 
system towards the most beneficial NE. Anticipatory routing systems (Dong, 2008; Kaufman et 
al., 1991) interfere with the information provided to drivers, instead of directly charging for 
certain routes or imposing decisions. 𝐹𝑣(α) depends on predicting the strategy α−𝑣 used by 
other agents and how the different strategies from a strategy profile α interact. Therefore, it 
can be affected by the information provided to drivers regarding the expected effect of others 
on the system. However, if the provided information does not match what drivers actually 
experience, they would lose trust in the system and stop using it. So, the manager is restricted 
to using policies that make drivers behave as predicted. If we consider that the importance 
drivers give to parking conditions is already adequate and they simply lack the information to 
act on it, we could consider a system similar to anticipatory routing. In this case, the system 
would give drivers a parking availability prediction such that they realize that prediction. 

Now, consider the case when the system manager is unable to recommend schedules, or all NE 
have undesirable costs. In this case, we want to change the system such that the new system's 
NEs have acceptable costs. As described in (21), the NEs depend on the agents' perception of 
cost. So in order to shift the NEs towards more desirable solutions, we need to somehow 
influence the agents' costs. Good examples are the pricing mechanisms in (Kordonis et al., 
2020; Moradipari & Alizadeh, 2020). In pricing mechanisms the manager can directly charge or 
give monetary incentive for the usage of each resource, so it would be equivalent to adding an 
extra cost γ𝑣(α) to the cost function 𝐹𝑣(α) used by agents to optimize their decisions. Studies 
using this type of approach often explore concerns regarding user participation, fairness of the 
prices/incentives used, whether the manager or users are making or losing money, and 
whether users are truthful when providing information to the system. This approach can be 
described as solving the following problem: 
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 min
γ

Θ (α, γ) (24) 

s.t.: 𝐹𝑣(α−𝑣, 𝑠𝑣) + γ𝑣(α−𝑣, 𝑠𝑣) ≥ 𝐹𝑣(α) + γ𝑣(α), ∀𝑣 ∈ 𝑉, 𝑠𝑣 ∈ 𝑇𝐷𝑆𝑃(𝑣) (25) 

 ∑ α𝑣(𝑠)

𝑠∈𝑇𝐷𝑆𝑃(𝑣)

= 1, ∀𝑣 ∈ 𝑉 (26) 

 α𝑣(𝑠) ≥ 0, ∀𝑣 ∈ 𝑉, 𝑠 ∈ 𝑇𝐷𝑆𝑃(𝑣) (27) 

where γ = (γ𝑣)𝑣∈𝑉 , and Θ(α, γ) is a modified objective function to account for any impact the 
pricing policy γ might have on the system cost, e.g., the objective function might include the 
balance of incentives given and fees collected by the system. 

Formulation  

Agent interaction 

In the case of truck parking, the interaction of agents will be based on the demand of truck 
parking locations. This effect could be modeled by the recourse function used in (Vital & 
Ioannou, 2021) to estimate the cost of not finding parking or maybe a penalty for scheduling a 
stop at a full rest area. One issue is whether we assume that drivers account for this cost when 
planning their trips. In theory, drivers do not know other drivers’ decisions and how they will 
affect parking availability. We could argue that freight movement within a region follows 
certain patterns and that drivers would adapt to these patterns over time and reach a NE as if 
every driver knew other drivers' decisions. With this assumption we can calculate the impact of 
parking shortage penalties both on individual drivers and on the whole system. One option is to 
assume that the parking shortage has no impact on the drivers that arrive before rest areas 
reaching capacity. However, it might be easier to consider that all drivers are affected equally, 
similar to congestion pricing problems. It might also be interesting and reasonable to consider 
that parked drivers can be affected to a smaller extent too as overcrowding might cause 
problems within rest areas and drivers can be affected by accidents caused in the rest area's 

surroundings. Let ρ𝑖(𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙 , 𝑡𝑑𝑒𝑝, 𝑜𝑖) represent penalties due to parking conditions perceived 

by drivers parking from 𝑡0 to 𝑡1 at a location 𝑖 with parking demand profile 𝑜𝑖. This function 
defines how much drivers care about parking conditions, and whether every driver using an 
overcrowded parking facility incurs penalties or only those that arrived after it reached 
capacity. 

Individual Behavior 

We assume that each driver seeks to minimize his/her own costs, and that they are aware of 
the penalty costs that will be incurred after equilibrium is reached. For simplicity, we consider 
that all drivers at a parking facility are penalized equally when the facility is overcapacity and 
this penalty will be considered as part of the parking fees imposed by the system. As in section 
Truck Driver Scheduling Problem, each vehicle is subject to HOS constraints and client delivery 
time-windows. However, we are now interested in using this model to estimate parking 
demand, so we do not include parking availability time-window constraints. Furthermore, we 
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need to account for parking costs and initial conditions and to track the parking demand 
generated by each vehicle. Therefore, we consider the following modified TDSP formulation: 

 
min 𝛽𝑣 (𝑥𝑒𝑣,𝑎

𝑣 − 𝑥𝑠𝑣,𝑑
𝑣 ) + ∑ 𝑝𝑖

𝑣

𝑒𝑣

𝑖=𝑠𝑣

+ ∑ 𝜌𝑖
𝑣({𝑦𝑖}, 𝑜𝑖)

𝑒𝑣

𝑖=𝑠𝑣

 
(28) 

s.t.: 𝑥𝑖,𝑑
𝑣 + 𝑑𝑖 = 𝑥𝑖+1,𝑎

𝑣 , ∀𝑠𝑣 ≤ 𝑖 ≤ 𝑒𝑣 − 1 (29) 

 𝑥𝑖,𝑎
𝑣 + ∑ 𝑡𝑟

𝑟∈𝑅

𝑧𝑖,𝑟
𝑣 ≤ 𝑥𝑖,𝑑

𝑣 , ∀𝑠𝑣 ≤ 𝑖 ≤ 𝑒𝑣 − 1 

 

(30) 

 𝑥𝑖,𝑑
𝑣 ≤ 𝑥𝑖,𝑎

𝑣 + (1 − 𝑦𝑖,0
𝑣 )𝑡ℎ𝑜𝑟 , ∀𝑠𝑣 ≤ 𝑖 ≤ 𝑒𝑣 − 1 (31) 

 

𝑦𝑖,0
𝑣 + ∑ 𝑦𝑖,𝜏

𝑣

𝑇𝑖
𝑣

𝜏=1

= 1, ∀𝑠𝑣 ≤ 𝑖 ≤ 𝑒𝑣 

(32) 

 

𝑦𝑑,𝑖,0
𝑣 + ∑ 𝑦𝑑,𝑖,𝜏

𝑣

𝑇𝑖
𝑣

𝜏=1

= 1, ∀𝑠𝑣 ≤ 𝑖 ≤ 𝑒𝑣 − 1 

(33) 

 𝑦𝑑,𝑖,0
𝑣 = 𝑦𝑖,0

𝑣 , ∀𝑠𝑣 ≤ 𝑖 ≤ 𝑒𝑣 − 1 (34) 

 1 − 𝑦𝑖,0
𝑣 = ∑ 𝑧𝑖,𝑟

𝑣

𝑟∈𝑅

, ∀𝑠𝑣 ≤ 𝑖 ≤ 𝑒𝑣 − 1 (35) 

 

∑(𝑦𝑖,𝜏
𝑣 𝑡𝑖,𝜏

𝑚𝑖𝑛)

𝑇𝑖
𝑣

𝜏=1

≤ 𝑥𝑖,𝑎
𝑣 , ∀𝑠𝑣 ≤ 𝑖 ≤ 𝑒𝑣 

(36) 

 

𝑥𝑖,𝑎
𝑣 ≤ 𝑡ℎ𝑜𝑟 − ∑[𝑦𝑖,𝜏

𝑣 (𝑡ℎ𝑜𝑟 − 𝑡𝑖,𝜏
𝑚𝑎𝑥)]

𝑇𝑖
𝑣

𝜏=1

, ∀𝑠𝑣 ≤ 𝑖 ≤ 𝑒𝑣 

(37) 

 

∑(𝑦𝑑,𝑖,𝜏
𝑣 𝑡𝑖,𝜏

𝑚𝑖𝑛)

𝑇𝑖
𝑣

𝜏=1

≤ 𝑥𝑖,𝑑
𝑣 , ∀𝑠𝑣 ≤ 𝑖 ≤ 𝑒𝑣 − 1 

(38) 

 

𝑥𝑖,𝑑
𝑣 ≤ 𝑡ℎ𝑜𝑟 − ∑[𝑦𝑑,𝑖,𝜏

𝑣 (𝑡ℎ𝑜𝑟 − 𝑡𝑖,𝜏
𝑚𝑎𝑥)]

𝑇𝑖
𝑣

𝜏=1

, ∀𝑠𝑣 ≤ 𝑖 ≤ 𝑒𝑣 − 1 

(39) 

 
𝑥𝑘,𝑎

𝑣 − 𝑥𝑖,𝑑
𝑣 ≤ 𝑡𝑐 + ∑ ∑ 𝑧𝑗,𝑟

𝑣 (𝑡𝑐 + 𝑡𝑟)

𝑟∈𝑅𝑐

𝑘−1

𝑗=𝑖+1

, ∀𝑠𝑣 ≤ 𝑖 < 𝑘 ≤ 𝑒𝑣, 𝑐 ∈ 𝐶1 
(40) 

 
∑ 𝑑𝑗

𝑘−1

𝑗=𝑖

≤ 𝑡𝑐 + 𝑡𝑐 ∑ ∑ 𝑧𝑗,𝑟
𝑣

𝑟∈𝑅𝑐

𝑘−1

𝑗=𝑖+1

, ∀𝑠𝑣 ≤ 𝑖 < 𝑘 ≤ 𝑒𝑣, 𝑐 ∈ 𝐶2 
(41) 
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𝑥𝑘,𝑎

𝑣 − 𝑥𝑠𝑣,𝑎
𝑣 + ℎ𝑐

𝑣 ≤ 𝑡𝑐 + ∑ ∑ 𝑧𝑗,𝑟
𝑣 (𝑡𝑐 + 𝑡𝑟)

𝑟∈𝑅𝑐

𝑘−1

𝑗=𝑠𝑣

, ∀𝑠𝑣 < 𝑘 ≤ 𝑒𝑣, 𝑐 ∈ 𝐶1 
(42) 

 
ℎ𝑐

𝑣 + ∑ 𝑑𝑗

𝑘−1

𝑗=𝑠𝑣

≤ 𝑡𝑐 + 𝑡𝑐 ∑ ∑ 𝑧𝑗,𝑟
𝑣

𝑟∈𝑅𝑐

𝑘−1

𝑗=𝑠𝑣

, ∀𝑠𝑣 < 𝑘 ≤ 𝑒𝑣, 𝑐 ∈ 𝐶2 
(43) 

 

𝑝𝑖
𝑣 ≥ ∑ 𝐶𝑃𝑖,𝑘(𝑦𝑑,𝑖,𝑘

𝑣 − 𝑦𝑖,𝑘+1
𝑣 )

𝑇𝑖
𝑣

𝑘=1

, ∀𝑠𝑣 ≤ 𝐼 ≤ 𝑒𝑣 − 1 

44) 

 𝑥𝑖
𝑣 ∈ [0, 𝑡ℎ𝑜𝑟]2, 𝑦𝑖

𝑣 ∈ {0,1}𝑇𝑖
𝑣+1, ∀𝑠𝑣 ≤ 𝐼 ≤ 𝑒𝑣 (45) 

 𝑦𝑑, 𝑖
𝑣 ∈ {0,1}𝑇𝑖+1, 𝑧𝑖

𝑣 ∈ {0,1}|𝑅|, ∀𝑠𝑣 ≤ 𝐼 ≤ 𝑒𝑣 − 1 (46) 

 𝑥𝑠𝑣,𝑑
𝑣 ∈ [𝑡𝑑𝑒𝑝

𝑣 , 𝑡𝑑𝑒𝑝
𝑣

] (47) 

 
𝑜𝑖,𝜏 = ∑ (∑ 𝑦𝑖,𝑘

𝑣

𝜏

𝑘=1

− ∑ 𝑦𝑑,𝑖,𝑘
𝑣

𝜏−1

𝑘=1

)

𝑣∈𝑉

, ∀𝑖, 𝜏 
(48) 

Table 1 presents a description of the variables and parameters used. Most variables are defined 
as in section Truck Driver Scheduling Problem, with the superscript 𝑣 representing to which 
vehicle that variable belongs to. Time is divided in time slots forming a partition of the interval 
[0,  𝑡ℎ𝑜𝑟] and we included an extra set of variables {𝑦𝑑} that track vehicles' departure time slots 
at each location. The time slots on rest areas are not used to restrict arrival time, but to track 
parking demand and calculate parking costs. Each time slot at each parking location is assigned 
a certain cost, which is reflected in the variables {𝐶𝑃𝑖,𝑘}. A consequence of calculating parking 
costs like this is that we automatically discretize the set of pure strategies available for each 
vehicle. The variables {𝑥𝑖

𝑣} representing the arrival and departure times at each location are 
continuous, so, originally, the TDSP can have an uncountable number of feasible solutions. 
However, as the different vehicles only interact through parking demand and its effect on 
parking costs, varying arrival or departure times within a given time slot will not change how 
the schedule affects parking demand. Therefore, the pure strategies are defined only be the 
time slots used, not by the detailed schedule described by the arrival and departure times. 

Ideally, (28) should be affected by 𝑜𝑖 through the term ∑ ρ𝑖
𝑣({𝑦}, {𝑜})𝑒𝑣

𝑖=𝑠𝑣  as described in section 
Agent interaction, and the problem should be solved for all vehicles simultaneously, including 
the equilibrium conditions described in section Non-cooperative Game, in order to find the 
generated NE. However, this would be intractable. Therefore, we chose to solve the problem 
iteratively, considering that the drivers and system manager would consider data from the 
previous iteration when estimating penalties or deciding parking rates. In addition, we assume 
that any overcrowding penalty can be included in the parking rates and thus stop using the 

term ∑ ρ𝑖
𝑣({𝑦}, {𝑜})𝑒𝑣

𝑖=𝑠𝑣 . This way, we can solve (28)-(47) for each vehicle in parallel, then use 
(48) to calculate the parking demands needed to adjust parking rates. When necessary, we will 
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refer to the simplified model that removes the ρ term and solves the optimizes each vehicle 
independently as the decoupled model. 

For the purpose of estimating parking demand, we can see each car as a system that receives 
the vehicle's parameters (initial conditions, start/end locations, departure/delivery constraints 
and hourly operational cost) and all rest areas' parking rates, and returns the trip duration, 
parking cost and parking demand for each location and time slot. If the parameters' distribution 
is known for vehicles of a certain region, it can be used to estimate the costs and parking 
demand those vehicles generate within the region. 
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Table 1. Variables and Parameters 

Variables 

Symbol Description Unit 

(𝑥𝑖,𝑎
𝑣 , 𝑥𝑖,𝑑

𝑣 ) Vehicle 𝑣’s arrival/departure times from location 𝑖 h 

(𝑦𝑖,𝜏 
𝑣 , 𝑦𝑑,𝑖,𝜏 

𝑣 ), τ > 0 
Vehicle 𝑣 stopped at/departed from location 𝑖 within time 

slot 𝜏. (True:1, False:0) 
 

𝑦𝑖,0 
𝑣 = 𝑦𝑑,𝑖,0 

𝑣  Vehicle 𝑣 does not stop at location 𝑖. (True:1, False:0)  

𝑧𝑖,𝑟
𝑣  Vehicle 𝑣 takes a rest of type 𝑟 at location 𝑖. (True:1, False:0)  

𝑝𝑖
𝑣 Parking cost incurred by vehicle 𝑣 at location 𝑖 $ 

𝑜𝑖,τ Location 𝑖’s parking demand at time slot τ.  

Parameters 

Symbol Description Unit 

𝑑𝑖 Travel between locations (𝑖, 𝑖 + 1). h 

𝑠𝑣 , 𝑒𝑣 Start/end locations of vehicle 𝑣.  

β𝑣 Vehicle 𝑣’s hourly operational cost. $/h 

[𝑡𝑑𝑒𝑝
𝑣 , 𝑡𝑑𝑒𝑝

𝑣
] Vehicle 𝑣’s departure time-window. h 

𝑡ℎ𝑜𝑟 Planning time horizon h 

𝑇𝑖
𝑣 Number of time slots considered by vehicle 𝑣 at location 𝑖.  

[𝑡𝑖,𝜏
𝑣,𝑚𝑖𝑛 , 𝑡𝑖,𝜏

𝑣,𝑚𝑎𝑥] 
Limits considered by vehicle 𝑣 for time slot of index τ at 

location 𝑖. 
h 

𝐶𝑃𝑖,𝑘  
Location 𝑖’s cumulative parking cost at time slot 𝑘. (Sum of 

the cost of all time slots from 0 to 𝑘) 
$ 

𝑅 Set of rest types defined in the HOS regulation.  

𝐶 Set of constraints defined in the HOS regulation.  

𝐶1 ⊂ 𝐶 Set of constraints restricting elapsed time.  

𝐶2 ⊂ 𝐶 Set of constraints restricting accumulated driving time.  

𝑡𝑐 Time limit related to constraint 𝑐 ∈ 𝐶. h 

𝑅𝑐 ⊂ 𝑅 Set of rest types that can reset constraint 𝑐 ∈ 𝐶.  

𝑡𝑟 Minimum duration for rest of type 𝑟 ∈ 𝑅. h 

ℎ𝑐
𝑣 Vehicle 𝑣’s initial condition relative to constraint 𝑐. h 

ρ𝑖
𝑣 

Function describing the penalty incurred by vehicle 𝑣 at 
location 𝑖 given the time slots used ({𝑦𝑖}) and the demand 

profile 𝑜𝑖. 
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Equilibrium 

A game where each player's set of strategies is described as the set of feasible time slot usage 
configurations subject to (29)-(47) constitutes a finite game, and thus it has a Nash equilibrium 
(Nash, 2020). Furthermore, if we consider the set of penalty functions ρ for which no penalty is 
applied at parking locations operating at or under capacity, we can say that any solution to the 
decoupled model that keeps all parking facilities working at or under capacity is a NE. Therefore, 
if we are able to find parking prices for which the resulting decoupled model satisfies parking 
capacity constraints, this solution will be a NE. This happens because all drivers will already be 
following their optimum route, and the resulting parking demand will not generate penalties 
that might make drivers switch strategies. 

Demand Estimation 

Let 𝑣 be a random vector with known distribution representing the parameters of vehicles 
within a region of interest. We estimate parking demand by sampling 𝑣 and solving a TDSP for 
each sample. The results indicate how this vehicle population tend to behave under the current 
parking rates. The results can be scaled to match the region’s actual traffic volume. 

When simulating a region's vehicles we need to define each vehicle's start and destination 
nodes, the time they ``enter'' de region, any departure or delivery time constraints, and the 
initial status of drivers' HOS counters. We assume that the origin-destination matrices 
representing the intent of drivers starting trips at different times/locations is known and can be 
used to generate reasonable samples of the trips start/end nodes and the time drivers are 
available to start the trip. In addition, we need to generate the initial state of the drivers' HOS 
constraints counters. As these counters are not independent, we need to consider their 
coupling when defining the probability distributions for a region's vehicles. Consider the 
following counters: 

• η𝑏 ∈ [0, 𝑡𝑒𝑏]: Accumulated driving time since last break 

• η𝑟 ∈ [0, 𝑡𝑎𝑟]: Elapsed time since last daily rest 

• ψ𝑟 ∈ [0, 𝑡𝑒𝑟]: Accumulated driving time since last daily rest 

• ψ𝑤 ∈ [0, 𝑡𝑎𝑤]: Accumulated on-duty time since last weekly rest 

where 𝑡𝑒𝑏 , 𝑡𝑎𝑟 , 𝑡𝑒𝑟 , and 𝑡𝑎𝑤 represent the time limits defined by the regulation for the 
associated constraints. break, daily rest and weekly rest refer to off-duty periods of at least 
30min, 10h and 34h, respectively. Note that the regulation regarding 30min breaks restricted 
the elapsed time since the last break when (Vital & Ioannou, 2019) was written, but it was 
recently changed to limit the accumulated driving time since the last break. After accounting for 
how different activities affect each counter, we have that the following inequalities must hold: 

 η𝑏 ≤ ψ𝑟 ≤ η𝑟,  ψ𝑟 ≤ ψ𝑤 (49) 

The convex polyhedron defined by these inequalities is the set of possible initial conditions for 
HOS counters and can be used to generate valid initial conditions. One possible approach is to 
use rejection sampling to uniformly sample the polyhedron. We can also generate samples by 
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sampling one resource at a time, using the sampled value for the smaller variables to define the 
domain of the larger ones, i.e.: 

 η𝑏 ∈ [0, 𝑡𝑒𝑏],     ψ𝑟 ∈ [η𝑏, 𝑡𝑎𝑟] (50) 

 η𝑟 ∈ [ψ𝑟 , 𝑡𝑒𝑟],  ψ𝑤 ∈ [ψ𝑟 , 𝑡𝑎𝑤] (51) 

This method does not sample the polyhedron uniformly, but we do not need to check the 
validity of generated samples. 

Sensitivity to HOS conditions and uniform time slot prices 

The following figures were generated by independently simulating 100 vehicles with the same 
origin, destination, departure/delivery time constraints. The trip has 23h of driving time and 
evenly spaced rest areas with 1h of travel time between any two adjacent rest areas. Each set 
of initial conditions was generated by sampling random integers from the intervals described 
until values satisfying (49) were generated. Figure 3 presents the parking demand generated 
without parking charges and with HOS initial conditions restricted to {0,1}. Even though there is 
a small number of valid initial conditions and no influence from parking prices we already see 
the impact that even small changes in the initial conditions have on parking demand. 

 

Figure 3. Distribution of the parking demand generated by 23h trips without parking charges 
and with HOS initial condition restricted to {0,1}. 

Figure 4 presents the parking demand generated with hourly operational costs (in $/h) are 
integers sampled from [60,80], and each HOS initial condition is an integer between 0 and its 
regulation limit minus 1h, e.g., η𝑏 ∈ [0, 𝑡𝑒𝑏 − 1]. Figure 4a does not charge for parking and 
Figure 4b uses parking charges of $5 per time slot. Despite charging the same value at all times 
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and locations, as the parking costs are calculated per time slot, setting a non-zero parking rate 
already serves to discourage drivers from taking short stops. Consequently, Figure 4b has less 
narrow demand peaks compared to Figure 4a. 
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Figure 4. Distribution of the parking demand generated by 23h trips with hourly operational cost in the interval [𝟔𝟎, 𝟖𝟎] and with 
each HOS initial condition varying between 0 and its regulation limit minus 1h.
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Response to price changes 

Price Update 

We consider keeping truck stops demand below capacity as the main objective. Consider a 
simple pricing strategy of increasing parking prices at locations/times where demand is above 
an upper threshold and decreasing it when demand is below a lower threshold. To avoid 
parking rates diverging, prices will be restricted to a certain range. Let 𝑂 and 𝑇 be matrices 
representing, respectively, the estimated demand and target demand for each location and 
time slot and let [l, 𝑢] be an interval used to define the range of demand values that do not 
required direct intervention (deadband). We define the error matrix 𝐸 as follows: 

 

𝐸𝑖,𝑗 = {
0, 𝑖𝑓 ℓ ≤

𝑂𝑖,𝑗

𝑇𝑖,𝑗
≤ 𝑢

𝑂𝑖,𝑗 − 𝑇𝑖,𝑗 , 𝑜. 𝑤.

 

(52) 

The error matrix is used to feed an integral controller. As prices are restricted to a given range, 
a back calculation anti-windup method is used to correct the integrator state. 

Experiment 

Consider a route with 23 locations where the travel time between any pair of adjacent locations 
is 1h. We define 3 vehicle populations with the parameters listed in Table 2. 

Table 2. Population Parameters 

 All P1 P2 P3 

Marginal Hourly 
Cost ($/h) 

[50, 70]    

Arrival Time (h) [12, 18]    
Max Wait (h) 12    

Start Location  0 7 5 

End Location  [5, 15] [14, 20] [17, 23] 

Resource 1 (h)  [3, 7] [0, 7] [0, 7] 

Resource 2 (h)  [3, 13] [0, 13] [0, 13] 
Resource 3 (h)  [3, 10] [0, 10] [0, 10] 

Resource 4 (h)  [3, 30] [0, 30] [0, 30] 
Size  100 100 30 

Resources 1, 2, 3 and 4 refer to, respectively, the counters for the HOS rules' 8h (30min break) 
driving limit, 14h limit, 11h driving limit and 60h on-duty time limit. Parameters defined by an 
interval are sampled uniformly from that interval. All vehicles consider daily delivery time-
windows of [8,18] at the end node. 

Consider that each location represents a region with a finite truck parking capacity equal to a 
certain percentage of the total truck population being considered. In this example we set the 
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capacity to 12% of the truck population, i.e., no location can accommodate more than 27 trucks 
at any given time. Parking demand is not considered at the end node, but it is counted at the 
start node. The deadband was set to 10-100% of the parking capacity at each location. Parking 
rates are restricted to the interval [−20,20]. Parking demand converged to values below 
capacity at every location after 14 iterations. Plots of the demand and parking price at each 
location and time slot for some time steps are presented in Figure 5. Table 3 presents the 
average time cost, parking cost, total cost and the maximum parking demand at each step of 
the experiment. 

Table 3. Experiment Results 

Step Time Cost Parking Cost Total Cost Max Demand 

0 1571.18 0 1571.18 0.182609 
1 1571.18 -0.0340742 1571.15 0.23913 

2 1571.18 -0.329091 1570.86 0.321739 

3 1571.18 -0.744367 1570.44 0.334783 

4 1571.18 -0.751305 1570.43 0.326087 

5 1571.18 -0.391361 1570.79 0.265217 
6 1571.18 -0.103988 1571.08 0.217391 

7 1571.18 0.00304427 1571.19 0.191304 
8 1571.18 0.130596 1571.32 0.191304 

9 1571.18 0.198699 1571.38 0.195652 
10 1571.18 0.240001 1571.42 0.16087 

11 1571.18 0.281829 1571.47 0.134783 

12 1571.18 0.291691 1571.48 0.134783 

13 1571.18 0.302905 1571.49 0.126087 

14 1571.18 0.302278 1571.49 0.117391 

Driver Sensitivity 

In this example, the scheduling model showed very high sensitivity to parking prices. The 
scenario considers marginal hourly costs in the range of $50-$70, but the highest parking rate 
used to balance demand was less than $1/h. Table 3 shows that the average parking cost is less 
than 0.02% of the trip's average total cost. Nevertheless, it is important to note that required 
parking rates depend on the parking capacity of the different locations, the number of vehicles 
and their parameters. As this example considers only 3 different vehicle populations, a large 
part of the parking spaces are not utilized, making it easier for demand to be redistributed. 

Transient Behavior 

The controller succeeds in adjusting the demand to within the target level. However, parking 
demand oscillates significantly in the beginning, reaching levels higher than in the original 
(uncontrolled) setting. Table 3 shows that the maximum demand increases from 18% to 33% of 
the truck population in steps 0 to 3, before starting to decrease. It is only at step 10 that we see 
an improvement relative to the original condition. If this strategy were to be applied directly to 
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a region, it could disrupt the system for a while before it starts showing benefits. Therefore, if 
we can use this kind of simulation to estimate the behavior of a region's truck population, we 
can mitigate these transient effects. 

 

t=0 

 

t=1 
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t=2 

 

t=7 
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t=10 

 

t=14 

Figure 5. Example results: Demand and prices for time steps 0, 1, 2, 7, 10 and 14. 
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Conclusion 

In this project, we consider the issue of coordinating the parking decisions of a large number of 
trucks. More specifically, we study how to model the behavior of a region's driver population 
and how it could be influenced. Understanding how truck parking demand is affected by the 
interaction of individual drivers' selfish planning behaviors (in the sense that they minimize 
their own costs, not the overall system cost) and how parking prices affect optimal schedules 
are important steps in developing a system able to balance demand. 

We present a formulation that uses a modified TDSP (Truck Driver Scheduling Problem) mixed-
integer programming model which tracks parking usage by dividing time into time-slots and 
charging drivers per time slot used. The parking rates depend on both the time and location 
being considered. Due to the complexity of solving the problem for a large number of drivers 
and modeling how to manage parking availability and drivers interactions within a single 
optimization problem, we calculate each drivers' schedule separately using a common price 
matrix. We assume that penalties regarding parking difficulties faced in some locations and 
times could be included in the parking prices. If the pricing strategy used can find a price matrix 
that avoids overcrowding, then the solution generated by this model will also be a solution to 
the problem when all drivers and their interactions a modeled as a single optimization problem. 
Assuming we have information on the usual conditions of truck drivers operating in a region (or 
a large number of drivers/companies willing to keep their planning system continuously 
connected to the pricing coordinator), the system would use a sample population to simulate 
the effect of price changes before actually implementing the new prices.  

Simulations were used to study how drivers react to price changes. Results show that the 
scheduling model is very sensitive to even small changes in parking prices, which is conducive to 
using parking prices as a means to influence demand. However, under the price update rule 
tested, the system’s demand distribution oscillates significantly before reaching a valid solution 
and the initial iterations might see an increased maximum demand instead of the intended 
demand redistribution. In summary, if we consider that truck drivers are following optimal 
schedules, then parking prices would be effective in changing which locations and time slots 
would be chosen by each driver. However, price adjustments can cause demand to shift in 
unexpected and not always beneficial ways, likely due to HOS regulations and client constraints 
limiting the possible alternative schedules. Therefore, further study is required in order to 
better understand the system's properties and how to avoid or dampen these oscillations. 
Furthermore, due to HOS rules and client constraints, it might be impossible to divert demand 
from certain time slots and locations sufficiently. Nevertheless, this model could still aid in 
identifying these spots and contribute to the evaluation of infrastructure investment needs. It is 
important to note that we assume that drivers would be using a planning tool to optimize their 
itineraries and accept the routes generated. Drivers might have their own preferences 
regarding itineraries and do not necessarily follow optimal schedules.   
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Data Summary  

Products of Research 

The data generated are simulation data presented in plots and tables in the final report. 

Data Format and Content 

The data is presented as tables and plots in the final report, and consists of occupancy rates, 
and average trip durations and costs. 

Data Access and Sharing 

The data is included in the final report. 

Reuse and Redistribution 

The data is published as part of the final report. 
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