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Abstract

Background: Composite scores of MRI-derived metrics in brain regions associated with 

Alzheimer’s disease (AD), commonly termed ‘AD signatures,’ have been developed to distinguish 

early AD-related atrophy from normal age-associated changes. Diffusion-based gray matter 

signatures may be more sensitive to early AD-related changes compared to thickness/volume-

based signatures, demonstrating their potential clinical utility. The timing of early (i.e., midlife) 

changes in AD signatures from different modalities, and whether diffusion- and thickness/volume-

based signatures each capture unique, AD-related phenotypic or genetic information, remains 

unknown.

Methods: Our validated thickness/volume signature, our novel mean diffusivity (MD) signature, 

and an MRI-derived measure of brain age were used in biometrical analyses to examine genetic 

and environmental influences on the measures, as well as phenotypic and genetic relationships 

between measures over 12 years. Participants were 736 men from three waves of the Vietnam Era 
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Twin Study of Aging (VETSA; baseline age=56.1, SD=2.6, range=51.1-60.2). Subsequent waves 

were at approximately 5.7-year intervals.

Results: MD and thickness/volume signatures were highly heritable (56-72%). Baseline MD 

signatures predicted thickness/volume signatures over a decade later, but baseline thickness/

volume signatures showed a significantly weaker relationship with future MD signatures. AD 

signatures and brain age were correlated, but each measure captured unique phenotypic and 

genetic variance.

Conclusions: Cortical MD and thickness/volume AD signatures are heritable, and each 

signature captures unique variance that is also not explained by brain age. Moreover, results are in 

line with changes in MD emerging before changes in cortical thickness, underscoring the utility of 

MD as a very early predictor of AD risk.
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Introduction

Composite scores of MRI-based morphometry in brain regions associated with Alzheimer’s 

disease (AD) pathology, commonly termed ‘AD signatures’, are innovative tools developed 

to identify brain changes specific to mild AD. These signatures are associated with AD 

symptom severity, AD-related biomarkers (such as β-amyloid or tau), and have been shown 

to predict progression to mild cognitive impairment (MCI) or AD dementia (1–8).

Most prior research has used AD signatures that rely on macrostructural neuroimaging 

methods (e.g., cortical thickness or volume derived from structural MRI) that are unable 

to detect microstructural changes that may present early in the disease process. In contrast, 

diffusion MRI (dMRI) offers the ability to examine neural microstructure by measuring 

the diffusion of water molecules within particular regions (9). By providing a window into 

microstructural changes, dMRI metrics may serve as particularly useful early biomarkers 

for AD-related changes in gray matter. Mean diffusivity (MD) is one such standard dMRI 

metric that may reflect the microstructural integrity of neurites and cell bodies in gray matter 

by measuring the average water diffusion within a voxel, which increases as microstructural 

barriers degenerate (9).

Some evidence suggests that these microstructural changes measured using various dMRI 

approaches may predate macrostructural atrophy as measured using conventional structural 

MRI techniques (9, 10). Several studies have found increased cortical MD in individuals 

with MCI or AD (9, 11–14), lending support to the idea that a gray matter MD signature 

could provide a way of measuring very early AD-related changes. Our group recently used a 

cortical thickness/volume signature and a novel gray matter MD signature to predict 12-year 

progression to MCI among middle-aged, cognitively normal (CN) men in their 50s (15). We 

found that the novel MD signature significantly improved longitudinal prediction of MCI 

beyond prediction based on age and polygenic risk for AD, whereas the thickness/volume 

signature did not improve prediction. This finding was followed by work by Rodriguez-
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Vieitez et al. (2021) demonstrating that elevated cortical MD predicted faster progression 

to MCI among older adults (average age=72.5 years, SD=9.4) over an average follow-up 

period of 3.2 years, but measures of cortical thickness did not predict clinical progression 

(16). Related results from a cross-sectional study by Vogt and colleagues (2020) showed 

that a composite based on multi-shell dMRI measures discriminated between CN and MCI 

participants better than a composite based on cortical thickness (17). Collectively, this 

evidence is consistent with the idea that neuropathological changes measured using dMRI 

emerge before changes measured using structural MRI, though it is unclear how early these 

changes may occur and how the two measures are related in very early disease states.

When examining multiple modalities of AD signatures (e.g., structural MRI and dMRI), 

the issue of redundancy is raised: do different signatures capture unique information 

related to AD? Our group has shown that variation in cortical and subcortical gray matter 

MD is heritable and partly influenced by genetic factors that are distinct from genetic 

factors influencing cortical thickness or subcortical volumes (18, 19). Consistent with these 

findings, recent evidence suggests that the cross-sectional discriminative and longitudinal 

predictive utility of dMRI measures remains even after controlling for cortical thickness, 

suggesting that dMRI and structural MRI metrics may capture unique information even 

within the same brain regions (16, 17).

Additionally, the extent to which AD signatures measure unique neuropathological changes 

unexplained by general age-associated changes remains unclear. Given that Alzheimer’s 

disease and age-associated neurodegeneration share a considerable degree of regional 

overlap and that age is a well-established risk factor for AD (20–23), it is possible that 

AD signatures could function to a large extent as indices of general aging. Previous work has 

demonstrated that adjusting AD signatures for age-related variance can increase (24) or does 

not substantively change their predictive utility (15). These findings lend support to the idea 

that AD signatures may capture some AD-specific variance that is distinct from measures of 

brain age, though the degree of variance shared between different AD signatures and brain 

age remains unclear.

Despite the demonstrated predictive utility of AD signatures and their potential clinical 

relevance, the contribution of genetic influences on these neuroimaging biomarkers are 

unknown. Moreover, examining the relationship between diffusion and structural AD 

signatures, and how this relationship may change across time, can yield insight into 

the predictive utility of these measures across the AD continuum. Twin modeling offers 

the unique opportunity to estimate genetic and environmental contributions to observed 

phenotypes, as well as the ability to estimate genetic, environmental, and phenotypic 

correlations both between and within measures across time. Here, we leveraged twin data 

from the Vietnam Era Twin Study of Aging (VETSA) to address the above gaps in our 

understanding with three key aims: 1) estimate the genetic and environmental influences 

on AD signatures across three timepoints; 2) test the strength of genetic and phenotypic 

relationships between structural and diffusion MRI signatures across a 12-year period; and 

3) determine the extent to which AD signatures derived from different modalities (e.g., 
structural and diffusion MRI) and brain age are consistent with their being genetically or 

phenotypically distinct neuroimaging biomarkers. We hypothesized: 1) AD signatures will 
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be heritable; 2) earlier MD signatures will predict later thickness/volume signature scores; 

and 3) genetic contributions to AD signatures will be partially independent of the genetic 

contributions to general brain aging.

Methods and Materials

Participants

The Vietnam Era Twin Study of Aging (VETSA) is a longitudinal study of cognitive and 

brain aging and risk for Alzheimer’s disease beginning in middle age (25). Participants 

were 736 men from VETSA. This community-dwelling sample of male twins is similar 

to nationally representative samples of American men in their age range with respect to 

health and lifestyle characteristics (26). All served in the United States military at some 

point between 1965 and 1975. Approximately 80% reported no combat exposure. The 

study was approved by the Institutional Review Boards at the University of California, San 

Diego (UCSD), Boston University, and the Massachusetts General Hospital (MGH). Written 

informed consent was obtained from all participants.

MRI acquisition and processing

Images at wave 1 (baseline) were acquired on Siemens 1.5T scanners at UCSD and MGH. 

Images at wave 2 were acquired with a GE 3T Discovery 750x scanner (GE Healthcare, 

Waukesha, WI, USA) with an 8-channel phased array head coil at UCSD and with a 

Siemens Tim Trio (Siemens USA, Washington, D.C.) with a 32-channel head coil at MGH. 

Images at wave 3 were acquired at UCSD with two GE 3T Discovery 750x scanners 

with eight-channel phased array head coils. Volumetric segmentation (27, 28) and cortical 

surface reconstruction (27–30) methods were performed with FreeSurfer version 5.1 (http://

surfer.nmr.mgh.harvard.edu). Structural (27–32) and diffusion (18, 19) MR images were 

processed as described previously and are available in supplementary materials.

Alzheimer’s disease brain signatures and predicted brain age difference scores

We used an AD brain signature that was previously developed by our group using data 

from the Alzheimer’s Disease Neuroimaging Initiative (6, 7). This signature (Figure 1) is 

a weighted average of thickness in seven cortical regions plus hippocampal volume, with 

separate weights for left and right hemisphere regions (referred to as “thickness/volume 

signature”). For the structural and diffusion data, we regressed out effects of age and 

scanner for each ROI, as well as estimated intracranial volume for the hippocampus to 

control for differences in head size, which affect volume but not thickness measures. 

Standardized residuals of ROIs were then weighted accordingly and summed together to 

form the thickness/volume signature scores. Given that there is, as yet, no independently 

created AD gray matter MD signature (referred to as “MD signature”), we applied these 

same weightings to the MD values for each ROI and carried out the same steps to generate 

our novel MD signature scores.

Predicted brain age was estimated using the Brain-Age Regression Analysis and 

Computation Utility software BARACUS v0.9.4 (33). We focused on predicted brain age 

difference (PBAD) scores, which have demonstrated stronger associations with cognition 
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when compared to predicted brain age (33). PBAD scores were calculated by subtracting 

predicted brain age from the chronological age. A negative PBAD is indicative of brain age 

estimated to be older than one’s chronological age (34–36). All PBAD scores were adjusted 

for scanner type prior to analyses.

Statistical analysis

Multivariate biometrical models were performed using maximum likelihood estimation in 

the OpenMx2.17.4(37) software package in R3.4.1(38). Two outliers in the MD signature data 

that were more than four times the interquartile range below the first quartile were excluded 

from analyses. Prior to twin modeling all PBAD and signature scores were residualized for 

the effects of race and ethnicity using the umx_residualize() function in the umx software 

package, version 4.9.0 (39).

In the biometrical ‘ACE’ models, the total variance in each measure is decomposed into 

additive genetic (A) influences, shared or common environmental (C) influences (i.e., 

environmental factors that make members of a twin pair similar to one another), and 

non-shared or unique environmental (E) influences (i.e., environmental factors that make 

members of a twin pair different from one another). The decomposition is achieved by 

exploiting the expected genetic and environmental correlations among monozygotic (MZ) 

and dizygotic (DZ) twin pairs (see Figure 2). MZ twin pairs are genetically identical, 

whereas DZ twin pairs share, on average, half of their segregating genes. Therefore, the MZ 

and DZ twin pair correlations for the additive genetic effects are fixed to rA=1.0 and rA=0.5, 

respectively. The model assumes that common environmental effects (C) are equal in MZ 

and DZ twin pairs (rC=1.0), while non-shared environmental effects (E) are by definition 

uncorrelated and include measurement error. The proportion of the overall variance in a 

phenotype that is attributable to additive genetic influences is the heritability (40, 41).

Importantly, these A, C, and E components of the twin model are latent variables. These 

models do not address the number of genes, type of genes, or specific environmental factors. 

Rather, these models estimate the total amount of variance in the measures that can be 

attributable to genetic or environmental factors. For example, suppose the correlation of a 

trait in MZ twin pairs is 0.75. Given MZ twins share all of their genes and all of the common 

environment, this correlation (shared variance) must be due to a combination of A and C 

components. Based on this correlation alone, we cannot determine what proportion is due to 

A or C specifically. However, we can determine that the remaining non-shared portion of the 

variance must be due to unique environmental influences (E), even without knowing what 

those specific environmental factors are.

Multivariate ACE models have the capability of estimating the size and significance of 

genetic and environmental influences within and between each AD signature over time. To 

address our first two aims, we fit a multivariate correlated liabilities model with both AD 

signatures at each of the three VETSA waves (Figure 3). To determine the extent to which 

AD signatures comprising different modalities and brain age constitute distinct imaging 

phenotypes (aim 3), we fit separate trivariate correlated liabilities models to the estimates of 

the MD signature scores, thickness/volume signature scores, and PBAD scores from each of 

the three waves.
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The fits of univariate and multivariate ACE models were tested relative to the fits of fully 

saturated models. The best-fitting models were determined based on an optimal balance of 

complexity and explanatory power using Akaike’s Information Criterion (AIC), root mean 

square error of approximation (RMSEA), comparative fit index (CFI), and likelihood ratio 

chi-square tests (LRTs). For each best-fitting model, the parameters were then successively 

fixed to zero and their significance determined using LRTs. Univariate tests of mean and 

variance homogeneity (Supplemental Tables S1–S2) indicated that the data did not violate 

critical assumptions of the ACE model.

Results

Participants were 56.2 (SD=2.6) years old at wave 1 with an average education of 13.83 

(SD=2.07, range=8-20) years. The sample consisted of men who self-identified as American 

Indian (<1%), Black or African American (6.3%), multiracial (1.2%), and White (91.8%). 

Most (96.3%) were non-Hispanic. Table 1 contains descriptive statistics and cross-twin 

polyserial correlations for each AD signature and PBAD.

All analyses revealed that estimates of the common environment were at or near zero and 

that AE models best fit the data (Supplementary Tables S4–S5). Therefore, AE models were 

used to estimate additive genetic (A) and non-shared environmental (E) influences for all 

measures. Model fitting results are further detailed in supplementary materials.

Aim 1: Heritability of AD signatures and genetic stability over time

Both AD signatures were highly heritable. Additive genetic influences accounted for 

between 56% to 72% of the variance in MD signature scores at each of the three waves 

and between 63% to 69% of the variance in thickness/volume signature scores (Table 2).

We examined the relative stability of genetic and environmental influences on each signature 

across time by testing phenotypic, genetic, and environmental correlations across time 

within each modality. Overall, cross-temporal phenotypic (Figure 4) and genetic correlations 

(Table 3) for the MD signature and for the thickness/volume signature were high, ranging 

from 0.59 to 0.79 (phenotypic correlations) and 0.77 to 0.98 (genetic correlations). These 

high correlations suggest that many of the same genes are influencing signature scores 

across time. Cross-temporal non-shared environmental correlations for the MD signature 

were small-to-moderate, suggesting the presence of some environmental influences on each 

signature that are consistent across waves. Any degree of measurement error is also captured 

by non-shared environmental influences, and correlated measurement error that similarly 

affects both structural and diffusion imaging modalities may also partially account for these 

moderate non-shared environmental correlations.

Aim 2: Relationship between MD and thickness/volume signature scores across 12 years

Next, we tested the hypothesis that earlier MD signature scores predicted later thickness/

volume signature scores by examining cross-wave correlations between the two signatures. 

Overall, our results supported this hypothesis. Phenotypically, MD signature scores at wave 

1 were significantly associated with thickness/volume signature scores at waves 2 and 3 

(Figure 4). In contrast, thickness/volume signature scores at wave 1 displayed a significantly 
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lower correlation with MD signature scores at waves 2 and 3, as evidenced by the non-

overlapping confidence intervals. However, thickness/volume signature scores at wave 2 

were moderately associated with MD signature scores at wave 3, similar to the moderate 

association between MD signature scores at wave 2 and thickness/volume signature scores at 

wave 3. Cross-wave genetic correlations supported this phenotypic pattern (Table 4).

Phenotypically, within-wave correlations between the MD and thickness/volume signature 

scores were significantly lower at wave 1 (r = −0.28) compared to waves 2 (r = −0.55) and 3 

(r = −0.59). Within-wave genetic correlations followed a similar pattern.

The cortical regions used in both signatures were selected a priori (6), though it may 

be the case that different regions drive associations in the MD signature compared to 

the thickness/volume signature. In post-hoc analyses, we examined correlations between 

individual regions in each signature at wave 1 with the cross-modal AD signature at 

wave 3 (Table 5). Interestingly, we found that for the thickness/volume signature regions 

at wave 1, only the superior temporal gyrus and hippocampus showed small-to-moderate 

correlations with the MD signature at wave 3. In contrast, for wave 1 MD, several regions 

demonstrated moderate correlations with the thickness/volume signature at wave 3, with 

stronger correlations among regions that are typically affected later in the disease (e.g. 
lateral orbital frontal cortex), and weaker correlations in those that are affected at the earliest 

stages (entorhinal cortex and hippocampus).

Aim 3: Relationship between AD signatures and brain age

Finally, we examined the extent to which AD signatures provide information that is 

independent of general brain aging. At wave 1, phenotypic correlations among the three 

phenotypes (the two AD signatures and PBAD) were moderate but significant, ranging from 

−0.49 to 0.27. Genetic correlations were similar, ranging from −0.62 to 0.35. At waves 2 

and 3, phenotypic and genetic correlations were higher. At each wave, genetic correlations 

among these three measures significantly differed from r=1, indicating some degree of 

independent genetic contributions to the MD signature, thickness/volume signature, and 

PBAD.

Discussion

Our results are consistent with both structural- and diffusion-based AD signatures being 

highly heritable, with genetic variance accounting for approximately two-thirds of the 

variance in each signature score. Correlations between the two signatures are in line with 

earlier MD signature scores predicting later thickness/volume signature scores, but not the 

reverse. Moreover, our findings suggest that each AD signature captures unique genetic and 

phenotypic variance.

The MD and thickness/volume signatures showed similar, high heritability estimates, 

ranging from 56-72% across waves. This is in line with literature demonstrating many 

MRI measures of brain structure are heritable and show no significant effects of common 

environmental influences (18, 19, 31, 42–44). We also found that genetic correlations within 

each signature were high across the three VETSA waves, suggesting that many—or most—
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of the same genes are influencing each signature across these three timepoints. Notably, our 

sample spans 51 to 73 years of age, a range that is much younger than many studies of AD 

risk factors or AD signatures (1–8, 45). Our group previously demonstrated the predictive 

utility of the gray matter MD signature for incident MCI among cognitively normal adults 

in their 50s (15). The finding that this MD signature captures substantial genetic variance 

that is consistent throughout midlife and into early old age supports the utility of the MD 

signature as a very early AD-related neuroimaging biomarker.

We found that early differences in MD signatures predict later inter-individual differences in 

thickness/volume signatures, but not the reverse. Prior evidence suggests that microstructural 

changes measured using MD may emerge earlier than macrostructural changes measured 

using cortical thickness or volume (9, 10). Our results are consistent with this and suggest 

that the predictive utility of these AD signatures can change as a function of age or disease 

state, such that the MD signature may capture very early, AD-related changes that are later 

reflected in the thickness/volume signature. Interestingly, by wave 2, the thickness/volume 

signature appears to have caught up with the MD signature in terms of predictive ability for 

future cross-modal signatures. It may be that MD is able to detect microstructural changes 

first, but once macrostructural changes are apparent in measures of thickness/volume, they 

progress at similar rates allowing each to predict the other.

Previous work from our group demonstrated that gray matter MD is influenced by genetic 

factors that are distinct from factors influencing cortical thickness or subcortical volumes 

(18, 19). Here, within-wave genetic correlations between the gray matter MD and thickness/

volume signatures were small at wave 1 and moderate at waves 2 and 3. Despite the 

two signatures being derived from the same ROIs, our findings show that each signature 

contributes independent information during middle age and into older age. These results 

are further supported by the pattern of correlations between individual ROIs used in the 

signatures at wave 1 with cross-modal signatures at wave 3 (Table 5). Several wave 1 MD 

regions were moderately associated with the thickness/volume signature at wave 3, whereas 

only the superior temporal gyrus and hippocampal regions in wave 1 cortical thickness 

showed small-to-moderate associations with wave 3 MD signatures. This pattern emphasizes 

findings that the signatures capture unique phenotypic and genetic information, which may 

reflect different disease stages or different underlying processes. However, over time, these 

signatures come under the influence of more common genetic factors. This may reflect the 

MD signature detecting disease-related variance at earlier ages, with the thickness/volume 

signature “catching up” over time.

Late-onset AD, the most common form of the disease, is estimated to be 56–79% heritable 

(46). Genome-wide association studies (GWAS) have identified over 50 risk loci for AD. 

Beyond these identified risk loci, an estimated 60% of the genetic variance in late-onset 

AD remains unaccounted for, highlighting the complexity of the disease that can involve 

epistatic and polygenic mechanisms (46, 47). Many environmental factors linked to AD risk 

throughout the lifecourse have also been identified (48). Our twin models cannot determine 

how many or which genes influence AD signatures, but unlike GWAS, they are able to 

provide better estimates of the total genetic variance and total shared genetic variance across 
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different phenotypes. They also explain analogous variance components for environmental 

influences. These results thus provide useful complementary information to GWAS.

Findings from our study should be interpreted in the context of a few limitations. First, 

inferences about the process underpinning longitudinal change in AD signature scores 

across age are limited due to scanner differences across waves. To address this, signature 

scores were adjusted for scanner type and were z-scored at each wave. Additionally, the 

BARACUS algorithm used to calculate PBAD was developed using 3T data, whereas PBAD 

scores from wave 1 in the present study were based on scans conducted on 1.5T scanners. 

However, evidence from prior work strongly suggests that the PBAD scores in the present 

study are valid (34–36, 49). Additionally, the unit of measurement in twin models is within-

pair correlations, and twin pairs were always scanned on the same scanner (34–36, 49).

Cortical MD is vulnerable to partial voluming effects due to the proximity to CSF. While 

differences in MD could reflect microstructural changes to the integrity of neurites and cell 

bodies, cortical MD may also be a sensitive measure of cortical thinning due to partial 

voluming effects (18, 50). In the latter case, increased contributions of signal from CSF 

due to subtle cortical thinning would result in increased MD values. To minimize this 

contribution, we utilize a method to weight cortical MD values based on the fraction of 

gray matter tissue in each sample, and our recent findings suggest that partial volume effects 

may not be driving observed differences in the MD signature (15). Moreover, results from 

the current study provide further support that the MD and thickness/volume signatures 

constitute partially distinct imaging phenotypes.

Without biomarker evidence, we cannot determine the extent to which variation in these 

signatures is driven by AD-related pathological burden. However, our results showing that 

each signature captured unique genetic variance unrelated to a measure of brain age strongly 

suggests that these AD signatures are not functioning simply as alternative measures 

of general brain aging. Moreover, cortical thickness AD signatures have demonstrated 

associations with AD symptom severity and AD-related biomarkers (1–8), supporting the 

idea that the genetic variance captured by the signatures in the present study may be 

AD-related.

The VETSA sample comprises only men and is largely White and non-Hispanic. Given 

evidence of differences in AD prevalence, manifestation, risk factors, and biomarkers across 

sex/gender and racial/ethnic groups (22, 51–53), findings may not generalize to women 

or individuals with different racial or ethnic backgrounds. Despite this generalizability 

limitation, the VETSA sample is unique in that it is a genetically informative twin study 

with longitudinal MRI data, and participants are very similar to American men in their age 

range with respect to health, lifestyle, and education characteristics (26).

To our knowledge, this is the first study to examine genetic and environmental influences 

on AD signatures. We found that cortical MD and cortical thickness/volume signatures 

are highly heritable, and each signature captures unique phenotypic and genetic variance 

that is also not explained by general brain aging. Previous studies have largely focused 

on AD signatures based on cortical thickness. Our finding that each signature contributes 
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unique information, even among the same ROIs, establishes the value of studying both 

structural- and diffusion-based signatures as early markers of AD risk beginning in middle 

age. MD signature scores were robustly associated with thickness/volume signature scores 

over a decade later, but not the reverse, supporting the idea that AD-related changes in MD 

may emerge before changes in cortical thickness. Moreover, this MD signature explains 

substantial genetic variance that is consistent throughout midlife and into early old age, 

supporting the potential utility of the MD signature as a very early AD-related neuroimaging 

biomarker that could aid in clinical trials of interventions designed to prevent AD dementia. 

Future work may benefit from using AD signatures as phenotypes in genetic association 

studies to help identify additional genetic risk factors, as well as from examining how 

cortical MD and cortical thickness/volume signatures may be used together to better predict 

risk for AD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Regions and corresponding weights used to create AD signatures.
The cortical thickness/volume signature is a weighted average of thickness in seven 

cortical regions (entorhinal cortex, middle temporal gyrus, bank of superior temporal 

sulcus, superior temporal gyrus, isthmus cingulate, lateral orbitofrontal cortex, and medial 

orbitofrontal cortex) plus hippocampal volume, with separate weights for left and right 

hemisphere regions. We applied the same weightings to MD values for each of these ROIs to 

generate our novel MD signature scores.
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Figure 2. 
Univariate variance decomposition to estimate the relative contribution of genetic and 

environmental influences on AD signatures. A=additive genetic, C=common/shared 

environmental, and E=unique environmental influences. rC=correlation of 1 for MZ and 

DZ twin pairs, rA=correlations 1 for MZ and 0.5 for DZ twin pairs.
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Figure 3. Multivariate correlated liabilities model with both AD signatures.
This model allows for the estimation of the phenotypic, genetic, and environmental 

correlations both within and between AD signatures across waves, without the assumption 

of any underlying factor structure for each signature. Correlation estimates from this model 

were used to address aim 2. For brevity, only additive genetic (A) and unique environmental 

(E) influences are shown (common environmental influences and autocorrelations are 

omitted).
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Figure 4. Phenotypic correlations from best-fitting multivariate correlated liabilities model.
Mean diffusivity (MD) and cortical thickness/volume signatures phenotypic correlations 

(and 95% confidence intervals).

Williams et al. Page 17

Biol Psychiatry Cogn Neurosci Neuroimaging. Author manuscript; available in PMC 2024 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Williams et al. Page 18

Ta
b

le
 1

.

D
es

cr
ip

ti
ve

 s
ta

ti
st

ic
s.

 M
ea

n 
di

ff
us

iv
ity

 (
M

D
) 

si
gn

at
ur

e,
 c

or
tic

al
 th

ic
kn

es
s/

vo
lu

m
e 

si
gn

at
ur

e,
 a

nd
 p

re
di

ct
ed

 b
ra

in
 a

ge
 d

if
fe

re
nc

e 
(P

B
A

D
) 

de
sc

ri
pt

iv
e 

st
at

is
tic

s,
 a

s 
w

el
l a

s 
m

on
oz

yg
ot

ic
 (

M
Z

) 
an

d 
di

zy
go

tic
 (

D
Z

) 
tw

in
 p

ai
r 

po
ly

se
ri

al
 c

or
re

la
tio

ns
 w

ith
 a

ss
oc

ia
te

d 
95

%
 c

on
fi

de
nc

e 
in

te
rv

al
s.

A
ge

 (
SD

)
To

ta
l s

am
pl

e 
si

ze
C

om
pl

et
e 

tw
in

 p
ai

rs
 (

M
Z

, D
Z

)
Si

ng
le

to
ns

 (
M

Z
, D

Z
)

M
ea

n
SD

C
or

r M
Z

C
or

r D
Z

W
av

e 
1

56
.2

 (
2.

6)

 
 M

D
 s

ig
na

tu
re

36
5

90
, 6

4
33

, 2
4

−
0.

02
4.

71
0.

66
 (

0.
52

, 0
.7

6)
0.

21
 (

−
0.

04
, 0

.4
2)

 
 T

hi
ck

ne
ss

/v
ol

 s
ig

na
tu

re
49

9
12

6,
 8

9
41

, 2
8

0.
01

3.
47

0.
68

 (
0.

58
, 0

.7
6)

0.
17

 (
−

0.
05

, 0
.3

7)

 
 P

B
A

D
50

8
12

8,
 9

5
39

, 2
3

−
8.

56
5.

32
0.

74
 (

0.
65

, 0
.8

0)
0.

37
 (

0.
18

, 0
.5

3)

W
av

e 
2

61
.7

 (
2.

6)

 
 M

D
 s

ig
na

tu
re

36
8

78
, 5

2
58

, 5
0

−
0.

09
4.

28
0.

73
 (

0.
61

, 0
.8

0)
0.

20
 (

−
0.

04
, 0

.4
2)

 
 T

hi
ck

ne
ss

/v
ol

 s
ig

na
tu

re
41

3
93

, 6
7

53
, 4

0
0.

03
3.

64
0.

67
 (

0.
53

, 0
.7

6)
0.

42
 (

0.
21

, 0
.5

9)

 
 P

B
A

D
42

1
96

, 6
9

53
, 3

8
−

1.
89

6.
03

0.
62

 (
0.

50
, 0

.7
0)

0.
22

 (
−

0.
00

3,
 0

.4
0)

W
av

e 
3

67
.6

 (
2.

6)

 
 M

D
 s

ig
na

tu
re

31
6

52
, 3

1
88

, 6
2

0.
01

4.
45

0.
63

 (
0.

46
, 0

.7
5)

0.
21

 (
−

0.
26

, 0
.5

5)

 
 T

hi
ck

ne
ss

/v
ol

 s
ig

na
tu

re
43

7
88

, 5
4

87
, 6

6
0.

08
3.

78
0.

61
 (

0.
46

, 0
.7

1)
0.

47
 (

0.
20

, 0
.6

6)

 
 P

B
A

D
51

3
12

2,
 7

5
65

, 5
4

1.
59

5.
47

0.
66

 (
0.

56
, 0

.7
4)

0.
28

 (
0.

04
, 0

.4
8)

N
ot

e:
 O

f 
th

e 
73

6 
to

ta
l p

ar
tic

ip
an

ts
 in

cl
ud

ed
 in

 th
e 

pr
es

en
t a

na
ly

se
s,

 6
6,

 8
7,

 a
nd

 8
1 

pa
rt

ic
ip

an
ts

 m
et

 c
ri

te
ri

a 
fo

r 
M

C
I 

at
 w

av
es

 1
, 2

, a
nd

 3
, r

es
pe

ct
iv

el
y.

 4
 p

ar
tic

ip
an

ts
 a

t w
av

e 
3 

w
er

e 
di

ag
no

se
d 

w
ith

 A
D

. T
he

 
Ja

k-
B

on
di

 a
pp

ro
ac

h 
w

as
 u

se
d 

to
 d

ia
gn

os
e 

m
ild

 c
og

ni
tiv

e 
im

pa
ir

m
en

t (
M

C
I)

 in
 th

e 
sa

m
pl

e 
(5

4,
 5

5)
.

Biol Psychiatry Cogn Neurosci Neuroimaging. Author manuscript; available in PMC 2024 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Williams et al. Page 19

Ta
b

le
 2

.

St
an

da
rd

iz
ed

 v
ar

ia
nc

e 
co

m
po

ne
nt

s 
fo

r 
be

st
-f

itt
in

g 
A

E
 m

ul
tiv

ar
ia

te
 m

od
el

.

A
95

%
 C

I
E

95
%

 C
I

M
D

 s
ig

na
tu

re
 w

av
e 

1
0.

56
(0

.4
2,

 0
.6

8)
0.

44
(0

.2
4,

 0
.4

3)

M
D

 s
ig

na
tu

re
 w

av
e 

2
0.

72
(0

.6
1,

 0
.8

0)
0.

28
(0

.2
0,

 0
.3

9)

M
D

 s
ig

na
tu

re
 w

av
e 

3
0.

62
(0

.4
8,

 0
.7

2)
0.

38
(0

.2
8,

 0
.5

2)

T
hi

ck
ne

ss
/v

ol
 s

ig
na

tu
re

 w
av

e 
1

0.
66

(0
.5

5,
 0

.7
4)

0.
34

(0
.2

5,
 0

.4
5)

T
hi

ck
ne

ss
/v

ol
 s

ig
na

tu
re

 w
av

e 
2

0.
69

(0
.5

9,
 0

.7
6)

0.
31

(0
.2

4,
 0

.4
2)

T
hi

ck
ne

ss
/v

ol
 s

ig
na

tu
re

 w
av

e 
3

0.
64

(0
.5

3,
 0

.7
2)

0.
36

(0
.2

8,
 0

.4
7)

Biol Psychiatry Cogn Neurosci Neuroimaging. Author manuscript; available in PMC 2024 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Williams et al. Page 20

Ta
b

le
 3

.
C

or
re

la
ti

on
s 

an
d 

95
%

 c
on

fi
de

nc
e 

in
te

rv
al

s 
fr

om
 b

es
t-

fi
tt

in
g 

A
E

 m
ul

ti
va

ri
at

e 
m

od
el

.

M
ea

n 
di

ff
us

iv
ity

 (
M

D
) 

an
d 

co
rt

ic
al

 th
ic

kn
es

s/
vo

lu
m

e 
si

gn
at

ur
es

 a
dd

it
iv

e 
ge

ne
ti

c 
(b

el
ow

 d
ia

go
na

l, 
bo

ld
ed

) 
&

 n
on

-s
ha

re
d 

en
vi

ro
nm

en
ta

l (
ab

ov
e 

di
ag

on
al

, i
ta

lic
iz

ed
) c

or
re

la
tio

ns
. N

on
-s

ig
ni

fi
ca

nt
 c

or
re

la
tio

ns
 a

re
 d

is
pl

ay
ed

 in
 g

ra
y 

te
xt

.

M
D

 w
av

e 
1

M
D

 w
av

e 
2

M
D

 w
av

e 
3

T
hi

ck
ne

ss
/v

ol
 w

av
e 

1
T

hi
ck

ne
ss

/v
ol

 w
av

e 
2

T
hi

ck
ne

ss
/v

ol
 w

av
e 

3

M
D

 w
av

e 
1

1
0.

34
 (0

.0
7,

 0
.5

5)
0.

34
 (−

0.
03

, 0
.6

3)
−0

.1
4 

(−
0.

32
, 0

.0
4)

−0
.2

1 
(−

0.
47

, 0
.0

8)
−0

.2
5 

(−
0.

51
, 0

.0
5)

M
D

 w
av

e 
2

0.
83

 (
0.

69
, 0

.9
7)

1
0.

26
 (0

.0
02

, 0
.5

1)
−0

.1
1 

(−
0.

34
, 0

.1
3)

−0
.4

1 
(−

0.
57

, −
0.

23
)

−0
.3

2 
(−

0.
51

, −
0.

10
)

M
D

 w
av

e 
3

0.
94

 (
0.

76
, 1

.1
5)

0.
98

 (
0.

87
, 1

.1
0)

1
0.

00
2 

(−
0.

28
, 0

.2
7)

−0
.2

7 
(−

0.
46

, −
0.

06
)

−0
.6

8 
(−

0.
79

, −
0.

52
)

T
hi

ck
ne

ss
/v

ol
 w

av
e 

1
−0

.3
7 

(−
0.

53
, −

0.
19

)
−0

.2
3 

(−
0.

39
, −

0.
06

)
−0

.2
0 

(−
0.

40
, −

0.
00

4)
1

0.
39

 (0
.1

8,
 0

.5
6)

0.
23

 (−
0.

01
, 0

.4
5)

T
hi

ck
ne

ss
/v

ol
 w

av
e 

2
−0

.6
9 

(−
0.

85
, −

0.
51

)
−0

.6
2 

(−
0.

72
, −

0.
49

)
−0

.5
6 

(−
0.

71
, −

0.
41

)
0.

78
 (

0.
68

, 0
.8

7)
1

0.
65

 (0
.5

1,
 0

.7
6)

T
hi

ck
ne

ss
/v

ol
 w

av
e 

3
−0

.7
1 

(−
0.

89
, −

0.
53

)
−0

.5
8 

(−
0.

72
, −

0.
43

)
−0

.5
4 

(−
0.

66
, −

0.
39

)
0.

77
 (

0.
63

, 0
.9

0)
0.

85
 (

0.
77

, 0
.9

3)
1

Biol Psychiatry Cogn Neurosci Neuroimaging. Author manuscript; available in PMC 2024 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Williams et al. Page 21

Ta
b

le
 4

.
R

el
at

io
ns

hi
p 

be
tw

ee
n 

A
D

 s
ig

na
tu

re
s 

an
d 

P
B

A
D

.

Ph
en

ot
yp

ic
, g

en
et

ic
, a

nd
 n

on
-s

ha
re

d 
en

vi
ro

nm
en

ta
l c

or
re

la
tio

ns
 (

an
d 

95
%

 c
on

fi
de

nc
e 

in
te

rv
al

s)
 b

et
w

ee
n 

m
ea

su
re

s 
fr

om
 b

es
t-

fi
tti

ng
 A

E
 tr

iv
ar

ia
te

 m
od

el
 

w
ith

 th
e 

m
ea

n 
di

ff
us

iv
ity

 (
M

D
) 

si
gn

at
ur

e,
 c

or
tic

al
 th

ic
kn

es
s/

vo
lu

m
e 

si
gn

at
ur

e,
 a

nd
 p

re
di

ct
ed

 b
ra

in
 a

ge
 d

if
fe

re
nc

e 
(P

B
A

D
) 

sc
or

es
.

P
he

no
ty

pi
c 

r
G

en
et

ic
 r

N
on

-s
ha

re
d 

en
vi

ro
nm

en
ta

l r

M
D

 s
ig

na
tu

re
 a

nd
 P

B
A

D

W
av

e 
1

−
0.

49
 (

−
0.

56
, −

0.
41

)
−

0.
62

 (
−

0.
75

, −
0.

48
)

−
0.

27
 (

−
0.

44
, −

0.
09

)

W
av

e 
2

−
0.

55
 (

−
0.

62
, −

0.
47

)
−

0.
61

 (
−

0.
74

, −
0.

46
)

−
0.

44
 (

−
0.

60
, −

0.
25

)

W
av

e 
3

−
0.

54
 (

−
0.

61
, −

0.
46

)
−

0.
63

 (
−

0.
79

, −
0.

47
)

−
0.

42
 (

−
0.

59
, −

0.
21

)

T
hi

ck
ne

ss
/v

ol
um

e 
si

gn
at

ur
e 

an
d 

P
B

A
D

W
av

e 
1

0.
27

 (
0.

18
, 0

.3
6)

0.
35

 (
0.

21
, 0

.4
9)

0.
10

 (
−

0.
07

, 0
.2

6)

W
av

e 
2

0.
51

 (
0.

42
, 0

.5
8)

0.
55

 (
0.

40
, 0

.6
8)

0.
42

 (
0.

25
, 0

.5
7)

W
av

e 
3

0.
51

 (
0.

44
, 0

.5
8)

0.
52

 (
0.

38
, 0

.6
4)

0.
50

 (
0.

36
, 0

.6
3)

Biol Psychiatry Cogn Neurosci Neuroimaging. Author manuscript; available in PMC 2024 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Williams et al. Page 22

Ta
b

le
 5

.

Pe
ar

so
n 

co
rr

el
at

io
ns

 (
95

%
 c

on
fi

de
nc

e 
in

te
rv

al
s)

 b
et

w
ee

n 
w

av
e 

1 
in

di
vi

du
al

 r
eg

io
ns

 in
 A

D
 s

ig
na

tu
re

s 
w

ith
 w

av
e 

3 
cr

os
s-

m
od

al
ity

 s
ig

na
tu

re
s.

 R
es

ul
ts

 a
re

 

pr
es

en
te

d 
fo

r 
le

ft
 a

nd
 r

ig
ht

 h
em

is
ph

er
e 

re
gi

on
s 

of
 in

te
re

st
 (

R
O

I)
.

W
av

e 
1 

m
ea

n 
di

ff
us

iv
it

y 
re

gi
on

 o
f 

in
te

re
st

 (
R

O
I)

C
or

re
la

ti
on

 w
it

h 
w

av
e 

3 
co

rt
ic

al
 t

hi
ck

ne
ss

/v
ol

um
e 

si
gn

at
ur

e

L
ef

t h
em

is
ph

er
e 

R
O

I
R

ig
ht

 h
em

is
ph

er
e 

R
O

I

E
nt

or
hi

na
l c

or
te

x
−

0.
17

 (
−

0.
31

, −
0.

03
)

−
0.

18
 (

−
0.

32
, −

0.
05

)

M
id

dl
e 

te
m

po
ra

l g
yr

us
−

0.
39

 (
−

0.
50

, −
0.

26
)

−
0.

38
 (

−
0.

50
, −

0.
26

)

Su
pe

ri
or

 te
m

po
ra

l g
yr

us
−

0.
39

 (
−

0.
50

, −
0.

26
)

−
0.

43
 (

−
0.

54
, −

0.
30

)

B
an

k 
of

 s
up

er
io

r 
te

m
po

ra
l s

ul
cu

s
−

0.
37

 (
−

0.
49

, −
0.

24
)

−
0.

38
 (

−
0.

50
, −

0.
26

)

Is
th

m
us

 c
in

gu
la

te
−

0.
22

 (
−

0.
35

, −
0.

08
)

−
0.

25
 (

−
0.

38
, −

0.
12

)

L
at

er
al

 o
rb

ito
fr

on
ta

l c
or

te
x

−
0.

43
 (

−
0.

54
, −

0.
31

)
−

0.
32

 (
−

0.
44

, −
0.

19
)

M
ed

ia
l o

rb
ito

fr
on

ta
l c

or
te

x
−

0.
29

 (
−

0.
42

, −
0.

16
)

−
0.

24
 (

−
0.

37
, −

0.
11

)

H
ip

po
ca

m
pu

s
−

0.
16

 (
−

0.
29

, −
0.

02
)

−
0.

09
 (

−
0.

23
, 0

.0
5)

W
av

e 
1 

co
rt

ic
al

 t
hi

ck
ne

ss
/v

ol
um

e 
re

gi
on

 o
f 

in
te

re
st

 (
R

O
I)

C
or

re
la

ti
on

 w
it

h 
w

av
e 

3 
M

D
 s

ig
na

tu
re

L
ef

t h
em

is
ph

er
e 

R
O

I
R

ig
ht

 h
em

is
ph

er
e 

R
O

I

E
nt

or
hi

na
l c

or
te

x
0.

07
 (

−
0.

07
, 0

.2
1)

0.
02

 (
−

0.
12

, 0
.1

6)

M
id

dl
e 

te
m

po
ra

l g
yr

us
−

0.
04

 (
−

0.
17

, 0
.1

1)
−

0.
08

 (
−

0.
22

, 0
.0

6)

Su
pe

ri
or

 te
m

po
ra

l g
yr

us
−

0.
20

 (
−

0.
33

, −
0.

06
)

−
0.

29
 (

−
0.

41
, −

0.
16

)

B
an

k 
of

 s
up

er
io

r 
te

m
po

ra
l s

ul
cu

s
0.

09
 (

−
0.

05
, 0

.2
3)

−
0.

01
 (

−
0.

15
, 0

.1
2)

Is
th

m
us

 c
in

gu
la

te
−

0.
02

 (
−

0.
15

, 0
.1

2)
−

0.
08

 (
−

0.
21

, 0
.0

6)

L
at

er
al

 o
rb

ito
fr

on
ta

l c
or

te
x

−
0.

10
 (

−
0.

23
, 0

.0
4)

−
0.

02
 (

−
0.

15
, 0

.1
2)

M
ed

ia
l o

rb
ito

fr
on

ta
l c

or
te

x
0.

04
 (

−
0.

10
, 0

.1
8)

0.
05

 (
−

0.
09

, 0
.1

9)

H
ip

po
ca

m
pu

s 
(v

ol
um

e)
−

0.
29

 (
−

0.
41

, −
0.

16
)

−
0.

26
 (

−
0.

38
, −

0.
12

)

Biol Psychiatry Cogn Neurosci Neuroimaging. Author manuscript; available in PMC 2024 September 01.


	Abstract
	Introduction
	Methods and Materials
	Participants
	MRI acquisition and processing
	Alzheimer’s disease brain signatures and predicted brain age difference scores
	Statistical analysis

	Results
	Aim 1: Heritability of AD signatures and genetic stability over time
	Aim 2: Relationship between MD and thickness/volume signature scores across 12 years
	Aim 3: Relationship between AD signatures and brain age

	Discussion
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Table 1.
	Table 2.
	Table 3.
	Table 4.
	Table 5.



