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SUMMARY

Gene transfer has potential as a once-only treatment that reduces viral load, preserves the immune 

system, and avoids lifetime highly active antiretroviral therapy. This study, the first randomized, 

double-blind, placebo-controlled, phase II cell-delivered gene transfer clinical trial, was conducted 

in 74 HIV-1 infected adults who received a tat/vpr specific anti-HIV ribozyme (OZ1) or placebo 

delivered in autologous CD34+ hematopoietic progenitor cells. There were no OZ1-related 

adverse events. There was no statistical difference in viral load between the OZ1 and placebo 

group at the primary end-point (average at weeks 47 and 48) but time weighted areas under the 

curve from weeks 40-48 and 40-100 were significantly lower in the OZ1 group. Throughout the 

100 weeks, CD4+ lymphocyte counts were higher in the OZ1 group. This study provides the first 

indication that cell-delivered gene transfer is safe and biologically active in HIV patients and can 

be developed as a conventional therapeutic product.

INTRODUCTION

Highly active anti-retroviral therapy (HAART) has greatly improved the prognosis of 

individuals infected with HIV-1, but is often associated with toxicities, adverse interactions 

with other drugs and the emergence of viral resistance1. Results from HIV-1 vaccine studies 

have been disappointing. In fact, increased viral replication after therapeutic or prophylactic 

immunization has been reported2. Gene-based therapies, including ribozyme, antisense, 

aptamer, RNAi, zinc finger nuclease, dominant negative protein, fusion inhibitor, 

intracellular antibody and viral decoy approaches3-26, have been proposed as a long-lived 

alternative to small-molecule HAART10,13,20,22,24,26,27. Some of these were shown to 

be safe in Phase I clinical trials4,12,17,20,28-30. Ribozymes are small catalytic RNA 

molecules that can be engineered to target specific RNA sequences10,24,26,27,31-33 and 

offer advantages by virtue of their specificity of target site recognition and cleavage, without 

any reported “off target” effects10,24,31,34.

OZ1 comprises a Moloney Murine Leukemia Virus-based, replication-incompetent gamma 

retroviral vector (LNL6) containing a gene that encodes a ribozyme that targets the 

overlapping vpr and tat reading frames of HIV-132,35. OZ1 inhibits the replication of 

laboratory and clinical isolates of HIV-1 in vitro. Resistance mutations in the region of 

HIV-1 targeted by OZ1 were not observed in long term cell culture10,27,32,35.
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Two phase I clinical trials have been conducted using either CD4+ T lymphocytes29 or 

CD34+ hematopoietic stem cells4 to assess the feasibility and safety of ex vivo transduction 

and re-infusion of OZ1-transduced cells. Both trials demonstrated that the approach was 

technically feasible and safe. There was no serious adverse event related to the gene transfer 

process or the gene transfer product during the study period or the subsequent long-term 

safety follow-up. Safety parameters were assessed in accordance with United States Food 

and Drug Administration (FDA)/ Center for Biologics Evaluation and Research (CBER) 

recommendations36,37.

Our concept, tested in this study, is that OZ1-transduced CD34+ hematopoietic progenitor 

cells would engraft, divide and differentiate in vivo to produce a pool of mature myeloid and 

lymphoid cells that are protected from productive HIV-1 replication27 This multi-center, 

phase II, randomized, double-blind, placebo-controlled clinical trial evaluated the safety and 

efficacy of OZ1. Seventy four (74) HIV-1 infected participants were randomized (1:1) and 

received OZ1-transduced (n=38) or Control (n=36) CD34+ cells (Fig 1b). Each participant 

received a single intravenous infusion of autologous CD34+ cells without undergoing 

myeloablation or any form of bone marrow conditioning. Gene transfer safety parameters 

were assessed throughout the study in accordance with FDA/CBER guidelines36,37. The 

protocol included two antiretroviral treatment interruptions to provide positive selective 

pressure for OZ1-protected cells. The impact of OZ1 on plasma HIV-1 viral load was 

assessed at the end of the second, eight-week, analytic treatment interruption (the primary 

endpoint) (Fig 1c). Secondary endpoints of quantitative marking (presence of OZ1 gene) and 

expression (active RNA form of OZ1) of the gene transfer product, time-weighted area 

under the curve for viral load (TWAUC), CD4+ T lymphocyte count in absolute and 

percentage of T lymphocytes (CD4%), presence of HIV-1 proviral DNA and thymic 

function (T cell receptor excision circles, TREC) were also assessed to week 100. The OZ1 

treatment group participants are now enrolled in a long-term safety follow-up protocol.

RESULTS

Participants and Treatment

Of 107 participants assessed for eligibility between July 2003 and January 2006, 74 were 

randomized and received an autologous CD34+ cell infusion (USA n=42; Australia n=32). 

Intention-to-treat (all infused participants; ITT) and per-protocol (all participants who 

entered the analytic treatment interruption; PP) populations were defined prior to data-base 

lock and unblinding (Fig 2). Baseline participant demographics, HIV-1 history, were 

comparable (Table 1). The dose of G-CSF and the volume of the apheresis collection were 

similar for the two groups (data not shown). Both treatment groups received an equivalent 

dose of viable CD34+ cells/kg. The infused cell product in the OZ1 treatment group 

contained a mean of 54.0% OZ1 gene-marked cells, based on 1 vector copy per cell (Table 

1). Data were obtained to week 100 unless participants were lost to follow-up beforehand. 

Participants in the OZ1 group are now enrolled in a separate long-term follow-up protocol 

which will continue for at least 15 years. To date, the longest follow-up period from the time 

of infusion of the first participant is 5 years.
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OZ1 gene marking (DNA) and OZ1 expression (RNA)

OZ1 gene marking (DNA) and expression (RNA) were assessed to measure the frequency of 

gene containing cells and the production of active ribozyme, respectively. At week 4 post 

infusion, OZ1 DNA was detected in PBMC from 94% of the participants in the OZ1 

treatment group. This percentage decreased to 12% of participants tested at week 48 and to 

7% at week 100. Data from peripheral blood cell subsets (CD4+, CD8+ T cells; B cells; 

monocytes and granulocytes) showed a similar decline in the percentages over time. OZ1 

DNA did not reach the quantifiable range of the assay in any blood cell sample at any time 

point. Limits of detection and quantification for OZ1 DNA were 0.01% and 0.38% of cells 

analysed, respectively.

OZ1 RNA was detected in PBMC (≥ 1 copy/250ng RNA) in all participants in the OZ1 

treatment group at week 1. At this time point, expression was quantifiable in five 

participants (370 to 600 copies/250 ng of total RNA); expression in the other participants 

was detectable but not quantifiable. OZ1 RNA was detected in 94% of these participants at 

week 4 and 29% at week 48 but not quantifiable in any sample. Of the 21 participants who 

remained off HAART beyond week 48 post infusion, OZ1 RNA was detected in 15 

participants. At week 100, OZ1 RNA was detected in 5 out of 12 (42%) participants for 

whom RNA samples were available and who continued in the treatment interruption to week 

100, versus 2 of 19 (11%) participants who had resumed HAART. In some participants, 

insufficient RNA was available for analysis at this time point. Examples of results for the 

real-time quantitative PCR RNA assay, and the percentages of participants in which OZ1 

DNA and RNA were detected over time have been provided in the Supplementary Material; 

Supplementary Fig. 1 & 2. Data from peripheral blood cell subsets showed a similar decline 

in the OZ1 expression over time.

Primary Efficacy End Point

For both intention-to-treat and per-protocol populations, the mean plasma HIV-1 viral load 

at weeks 47/48 (8 weeks after entering the analytic treatment interruption) was lower in the 

OZ1 group but the difference was not statistically significant (Table 2). The number of 

participants with a plasma viral load of less than 4 log10 copies/ml at weeks 47/48 (15/32) 

was greater in the OZ1 group than in the Control group (5/33) (p=0.009). In the per-protocol 

OZ1 population, the correlation between the dose of CD34+ cells/kg infused and the viral 

load at weeks 47/48 was weakly negative (Rho −0.319; p=0.076). There was no such 

negative correlation in the Control group (Rho +0.188; p=0.312).

Secondary Efficacy End Points

The viral load data from the analytic treatment interruption beginning at week 40 were used 

to calculate the TWAUC (Fig 3). The TWAUC in the per-protocol population was 

statistically lower in the OZ1 group (weeks 40-48; median difference −0.34 log10 copies/ml/

day, p=0.024 and weeks 40-100 median difference −0.37 log10 copies/ml/day, p=0.034) 

(Table 2). The number of participants with a TWAUC in the lowest quartile during weeks 

40-100 was statistically greater in the OZ1 group (OZ1 n=12; 37.5%, Control n=5; 15.2%, 

p=0.04). The median times to reach 3, 4 and 5 log10 copies/ml viral load during the analytic 

treatment interruption, in the per-protocol population, were greater in the OZ1 group. 
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However, a statistically significant difference was demonstrated only for the time to reach to 

4 log10 copies/ml viral load (Table 2).

During the analytic treatment interruption, 17 (45%) participants in the OZ1 group 

reinitiated HAART compared to 22 (61%) Control participants. For the participants in the 

Control group, the median time to re-initiation of HAART was 29.4 weeks (n=22, 61%), and 

for the OZ1 group it was greater than 60 weeks. This difference between treatment groups 

was not statistically significant.

Both treatment groups displayed peripheral blood lymphodepletion related to G-CSF 

mobilization and large volume apheresis38-40 (Fig 4 and Supplementary Fig 3. The 

relationship between viral load and CD4+ count was similar for both treatment groups. For 

the per-protocol population, the CD4+ lymphocyte counts (mean cells/μl and % of T 

lymphocytes) were 476 and 27% in the OZ1 group compared to 437 and 24% in the Control 

group at weeks 47/48 and, 490 and 28% (OZ1) and 441 and 25% (Control) at week 100. 

Analysis of the percentage of CD4+ and CD8+ T lymphocytes, showed higher CD4 and 

correspondingly lower CD8 in the OZ1 group (Fig 4a-c). CD4+ lymphocyte recovery was 

also examined in participants who recommenced HAART. In both treatment groups, once 

HAART was recommenced, CD4 + T lymphocytes (percentage) increased towards the 

baseline to week 100 (Fig 4d). The median decrease in CD4+ T lymphocyte count from 

baseline at week 100 was approximately 100 cells/μl.

Exploratory analysis of the primary end point at weeks 47/48 was performed in the subset of 

participants who continued to display OZ1 expression in PBMC at any time point beyond 

week 48. The median plasma viral load in these OZ1 participants (log 3.81, 95% CI median 

3.18-4.23; n=15) was significantly lower than in the Control participants (log 4.57, 95% CI 

median 4.31-4.83; n=33) (p=0.003). The median TWAUC from week 40-48 in these OZ1 

participants (3.44 log copies/ml/day, n=15) was significantly lower than in the Control 

participants (3.93 log copies/ml/day, n=33) (p=0.03) as was the median TWAUC from week 

40-100 (3.97 log copies/ml/day, n=15) in comparison to the Control group (4.53 log 

copies/ml/day, n=33) (p=0.005). Although the HIV-1 viral load in the OZ1 expressors were 

lower than the non-OZ1 expressors, this difference was not statistically significant.

Safety Evaluations

There was no death or clinically severe cardiovascular, renal or hepatic adverse event 

reported for randomized participants (Supplementary Table 1). All 3 participants who 

experienced a serious adverse event were in the Control group. None of these serious 

adverse events was assessed as being related to G-CSF, leukapheresis, cell infusion or other 

study procedures. Most participants (99%) experienced at least one G-CSF associated 

adverse event such as musculoskeletal pain (92%) or headache (32%). Three participants, 2 

of whom were in the OZ1 group, developed transient hepatomegaly associated with G-CSF 

administration; 69% and 77% of all participants had transient elevations of aspartate 

aminotransferase and alanine aminotransferase respectively, again associated with G-CSF. 

One participant in the OZ1 group developed a grade 4 elevation of aspartate 

aminotransferase at week 40, however, it returned to within the normal range by week 48 of 

the study.
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Six participants (OZ1 n=2; Control n=4) experienced asymptomatic grade 3 

thrombocytopenia following apheresis. One of the OZ1 participants required a platelet 

transfusion. Three participants experienced thrombocytopenia associated with the first 

interruption of HAART. In all 3 cases, platelet counts returned to normal after 

recommencement of HAART. Three participants (OZ1 n=1; Control n=2) developed grade 3 

neutropenia; two recovered to the normal range by the next visit. One participant had two 

episodes of grade 3 neutropenia (0.62 and 0.65 × 103/μl), at week 20 and week 64 post-

infusion after which time neutrophil counts returned to baseline levels. Severe adverse 

events associated with community acquired infections were reported in both groups (OZ1 

n=2, 5.3%, Control n=3, 8.3%) and consisted of cases of influenza, oral herpes simplex and 

tonsillitis. Mild to moderate cases of oral candidiasis (total n=4) and oral hairy leukoplakia 

(total n=2) developed during periods of antiretroviral interruption equally in participants 

from both groups. CD4+ lymphocyte counts at the time of these events ranged from 342-467 

cells/μl and 19-36% of T lymphocytes.

No predominant integration site (LAM-PCR) or replication competent retrovirus was 

detected at any time point. No hematopoietic cell clonal expansion or other event suggestive 

of insertional mutagenesis was observed. The OZ1 target sequence in the HIV-1 plasma 

RNA was assessed over time. Individual variation in nucleotide sequence was detected in 9 

of 63 participants where sequence data was available from more than one visit (OZ1 n=5/35, 

14.3%; Control n=4/28, 14.3%). None of these changes was a modification at the ribozyme 

recognition site to prevent cleavage, nor suggested the evolution of resistant virus.

DISCUSSION

The present study is the largest cell-delivered gene therapy trial conducted to dateand the 

only randomised controlled phase II study of a potential cell-delivered gene therapeutic. 

Although the primary efficacy endpoint was not reached, HIV-1 viral loads were 

consistently lower in the OZ1 group for all analyses. Statistically significant differences 

were observed for the number of participants with less than 4 log10 copies/ml viral load at 

week 47/48, the per-protocol TWAUC week 40-48 and week 40-100, the number of 

participants in the lowest quartile of TWAUC week 40-100, and time to 4 log10 copies/ml 

viral load in the analytic treatment interruption. The impact of OZ1 on HIV-1 viral load is 

further supported by the correlation with OZ1 expression beyond week 48 and the 

correlation with CD34+ cell dose. The CD4+ and CD8+ T lymphocyte count data were 

consistent with the HIV-1 viral load differences between the treatment groups. Target site 

sequencing showed no evidence for the development of resistance to OZ1 during this 100-

week study, which could be due to the low percentage of gene-marked cells and/or the 

production of a less fit virus due to mutation(s) in the highly conserved region targeted by 

OZ1 32.

Mathematical modeling undertaken prior to this clinical study (manuscript submitted; GPS, 

GC Fanning, JLM, LAE, SMP, JMM) predicted that during the analytic treatment 

interruption, OZ1 recipients would experience an initial increase in HIV-1 viral load 

followed by the establishment of a lower set point. The model predicted that the 

establishment of OZ1 CD34+ cells in the bone marrow at 10-20% of total CD34+ cell 
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population could reduce viral load by 0.5 log10 in one year. In this phase II study, bone 

marrow aspiration was not performed because it is invasive and would present additional 

risk, particularly for the control participants; hence the percentage engraftment is not known. 

Based on the frequency of cells containing OZ1 (0.01% to 0.38%) in the peripheral blood, it 

can be inferred that engraftment was substantially lower than 10-20%. Previous studies have 

also shown that in the absence of strong selective pressure, peripheral blood reconstitution 

with gene-containing cells is limited 41-44. Given the engraftment and gene expression 

results in this study, the biological effect of OZ1 was greater than predicted by the 

modelling. Candidate mechanisms for this additional effect include an impact of OZ1 on cell 

to cell transmission in the lymphatic system; compartmentalisation such that the number of 

OZ1-containing cells in the peripheral blood is not representative of the survival of OZ1-

containing cells in sequestered discrete foci (eg the bone marrow and lymphatic system, in 

particular the GALT);and protection of particular cell sub-populations such as antigen-

presenting cells (including dendritic cells and macrophages) or HIV-specific CD4+ T 

lymphocytes

Improvements in mobilisation, CD34+ cell collection and transduction compared to the 

phase I study8 resulted in a mean transduced CD34+ cell dose of 5 × 106/kg and an increase 

in the frequency of OZ1-containing cells in the peripheral blood (approximate 2 log10). The 

peripheral blood lymphodepletion observed here has been described after large volume 

apheresis38,39. As with those studies, the protracted recovery appears to be limited to the T 

lymphocyte population. This may reflect slow thymic production and/or shortened lifespan 

of mature T-lymphocytes. The protracted lymphocyte recovery in this study was 

exacerbated during the antiretroviral treatment interruptions. In the future, modifications 

would aim to increase the dose, improve homing to the bone marrow, engraftment and 

differentiation through the myeloid and lymphoid compartments of transduced CD34+ cells 

and to develop a more potent construct.

In this phase II study, as for the phase I studies 4,29, no safety concerns associated with OZ1 

gene transfer were identified. All serious adverse events were unrelated to study procedures 

or study drug infusion. Importantly, no death, AIDS-defining event, severe infection, 

clinically significant cardiovascular, renal or hepatic event was reported in randomized 

participants.

The increased morbidity and mortality associated with the cessation of HAART observed 

during the SMART study became known during the course of this study45. Specific 

discussions regarding the safety of the treatment interruptions in the OZ1 protocol were 

conducted with the Data Safety Monitoring Board and the Institutional Review Boards. The 

strict entry criteria met by all participants, the stringent monitoring and the provision for 

investigators to reintroduce HAART at any stage, distinguish this OZ1 trial from the 

SMART study. Future HIV-1 gene therapy trials could be designed to study participants 

prior to the initiation of HAART, obviating the need for treatment interruptions.

This study supports our concept that OZ1 cell-delivered gene therapy is safe, and has 

efficacy, albeit modest. It shows the potential of the gene therapy approach for the treatment 

of HIV-1 and represents a major advance in the field
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METHODS

Participants and Blinding

Seventy four (74) early stage, HIV-1 infected participants aged from 18 to 45 were 

randomly allocated to receive either OZ1-transduced or Control-treated CD34+ cells. Each 

participant received a single intravenous infusion of autologous cells without myeloablation 

or other conditioning. The inclusion and exclusion criteria are described in the 

Supplementary Information. The Sponsor, Investigators, site staff, laboratory staff and 

participants were all blinded to the treatment group assignment.

OZ1 and Control Manufacture

OZ1 is an LNL6-based retroviral vector containing a ribozyme encoded by the DNA 

sequence 5′-TTA GGA TCC TGA TGA GTC CGT GAG GAC GAA ACT GGC TC-3′. 

Manufacturing was performed by BioReliance Corporation, Rockville, MD under Good 

Manufacturing Practice conditions. The OZ1 gene transfer product was harvested as the 

supernatant of AM-12/RRz2 retrovirus-producer cells; a media only Control was also 

produced.

Protocol Design

This 100-week, 45-visit study recruited participants whose viral load was suppressed by 

HAART. The study design included 2 periods of antiretroviral treatment interruption (weeks 

24-28 and weeks 40-48) (Fig 1). The second antiretroviral treatment interruption, termed the 

analytic treatment interruption, was allowed to continue until week 100 unless protocol-

defined limits were reached. At any stage in the protocol, the Investigator could advise a 

participant to reinitiate therapy.

Participants were treated for 5 consecutive days with G-CSF (30μg/kg/day) to mobilize 

CD34+ cells which were harvested by large volume apheresis (approximately 20 liters) on 

both days 4 and 5 (Fig 1b). The isolation, culture and transduction of the CD34+ cells are 

described in the Supplementary Information. The day of infusion was set as Day 0.

HIV-1 viral load testing was performed using the Roche Amplicor HIV-1 Monitor Assay 

(range 400-750,000 copies/ml) in real time. Efficacy parameters were assessed both in real 

time, and in batch testing by a single laboratory of stored frozen plasma samples.

Safety evaluations were performed on all participants who were randomized. Blood samples 

were taken throughout the study for analysis of the sequence of the tat/vpr RNA in the 

region targeted by OZ1. HIV-1 genotyping was performed at the end of each treatment 

interruption by PCR sequencing of the protease and reverse transcriptase genes (Virco 

Virtual Phenotype, Belgium). Testing for the emergence of a predominant OZ1-containing 

clone was conducted on PBMC by LAM-PCR integration analysis at Cincinnati Children's 

Hospital Medical Center46 at 6-monthly intervals. Replication competent retrovirus (RCR) 

was evaluated by PCR using primers specific for the amphotropic retroviral envelope.

The study was conducted in accordance with International Conference on Harmonization/

Good Clinical Practice (ICH/GCP). Approval for the study was obtained from the 
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appropriate Institutional Review Boards, Institutional Biosafety Committees, the US Food 

and Drug Administration (Centre for Biologics Evaluation Review), National Institutes of 

Health (Recombinant DNA Advisory Committee) and the Therapeutic Goods 

Administration and the Office of Gene Technology Regulator in Australia. The study was 

listed on a public clinical trial registry at www.clinicaltrials.gov; NCT00074997.

Statistical Methods

No statistical analysis was performed on the baseline data. For the analyses of efficacy, two 

populations were defined. The intention-to-treat population (ITT) was pre-defined in the 

Statistical Analysis Plan as all participants who were randomized and received the cell 

infusion. The per-protocol population (PP) was defined as all participants who completed 

the first 4 week treatment interruption, recommenced HAART and entered the analytic 

treatment interruption. Formal group comparisons of continuous primary and secondary 

parameters were performed using the Wilcoxon Rank Sum test with 95% confidence 

intervals provided for the medians and the difference in the medians (calculated using PROC 

STATXACT in SAS and the Hodges-Lehman estimate). Binary endpoints were analyzed 

using Fisher's Exact test, with 95% confidence intervals. Participants for whom data were 

unavailable, either due to non-compliance with the protocol or withdrawal prior to the 

analytic treatment interruption, were included in formal comparisons by being ranked as 

having the joint-worst outcome for continuous endpoints or being categorized as failures for 

binary endpoints. Participants who recommenced HAART prior to week 48 had an imputed 

value, the last value recorded, assigned and carried forward to week 48. Analyses were also 

performed without imputation.

The primary end point, the mean plasma viral load at weeks 47/48 (log10 copies/ml), was 

derived by taking the mean per participant of the log10 copies/ml viral load value at each of 

weeks 47 and 48. The TWAUC was calculated using linear trapezoidal integration on the 

logged data. For time to resumption of HAART, participants who did not start the analytic 

treatment interruption were included in analyses with a time of zero, while participants who 

did not resume HAART prior to week 100 had the time to resumption of HAART included 

in analyses as a censored observation and statistical significance assessed using the log rank 

test.

In all analyses, statistical significance was taken at the two-sided 5% level, with no 

adjustment for multiple secondary parameters and analyses.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Ribozyme target site within HIV-1 genome, schema of gene modified cell manufacture 
and protocol design
a) The HIV-1 genome is shown together with the target nucleotide sequence. The cleavage 

site is indicated by an arrow.

b) HIV-1 positive individuals received 30μg/kg/day G-CSF over 5 days. Peripheral blood 

stem cells were collected by large volume apheresis, using either manual or automatic 

settings, on days 4 and 5. CD34+ cells were selected and cultured in the presence of Stem 

Cell Factor and Megakaryocyte Growth & Differentiation Factor (SCF/MGDF) for 30-36 

hours to recruit cells into cell cycle in preparation for retroviral transduction with OZ1 or 

placebo in the presence of RetroNectin, and SCF/MGDF. On Day 8, the gene modified cell 

product was washed, prepared for infusion and tested for purity, potency and sterility prior 

to infusion. All participants received their autologous cell product as per the randomization.

c) Participants continued HAART for 24 weeks post infusion before entering a four-week 

treatment interruption (week 24-28) which was intended to apply selective pressure on any 

OZ1 containing cells. The analytical treatment interruption commenced after week 40 post 

infusion. Assessments were conducted weekly during the analytical treatment interruption 

until week 48 and then monthly until either the resumption of HAART or week 100. 

Participants were advised to recommence HAART if the protocol defined viral load limits 

were reached: 500,000 copies/ml (up to week 48) and 100,000 copies/ml (week 48-100). 

HAART was also recommenced if protocol defined limits for CD4+ lymphocyte counts 

(<150 cells/μl) were reached or if the participant developed an opportunistic infection. 

Participants who recommenced HAART were scheduled to attend 3 monthly visits.
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Figure 2. Patient Disposition
At screening, a total of 28 patients were excluded; 21 did not meet eligibility criteria and 7 

were excluded for other reasons including intervening adverse events. Of the 78 participants 

enrolled in the study, 2 were withdrawn prior to randomization and 2 after randomization 

due to cell processing failures. 3 participants were lost to follow up prior to the primary 

efficacy endpoint. A total of 9 participants did not enter the analytic treatment interruption.

Mitsuyasu et al. Page 14

Nat Med. Author manuscript; available in PMC 2009 October 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. HIV-1 Viral Load: Intention-to-Treat Population
The mean log10 viral load shown here was determined using real time assay results. As 

participants recommenced HAART at different times, the n values at the different time 

points have been included. PCR sequence data of the HIV-1 protease and reverse 

transcriptase genes were used to generate a virtual phenotype. Similar data was seen for the 

per-protocol population Only one participant with a mutation associated with resistance to 

protease inhibitors failed to suppress HIV-1 replication after the recommencement of 

HAART. screening visit is indicated as scr, ●---●---● OZ1 group, ○- -○- -○ Control group
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Figure 4. T lymphocyte counts over time
T lymphocyte counts are presented as a mean percentage of CD3+ T-lymphocytes for each 

treatment group. For panels A & B, only patients who did not resume HAART from week 

40 are included in the analysis. An additional Supplementary Figure 4 showing CD4+ T 

lymphocytes as percentage of CD3+ T-lymphocytes: Intention-To-Treat Population is in the 

Supplementary Material.

A) Change in CD4 percentage from baseline at screening: Intention-To-Treat Population, B) 

Change in CD8 percentage from baseline at screening: Intention-To-Treat Population, and 

C) CD4+ T-lymphocytes as percentage of CD3+ T-lymphocytes only for participants who 

resumed HAART prior to or at week 52. (At week 100, n=10 in OZ1 treatment group, n=9 
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in the Control group). The dotted line in the figure represents the baseline percentage. ●---

●---● OZ1 group, ○- -○- -○ Control group
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