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Data Science Meets Physical Organic Chemistry

Jennifer M. Crawford†,
Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States; Present 
Address: Chemical Development, GlaxoSmithKline, 1250 S. Collegeville Rd., Collegeville, PA, 
USA

Cian Kingston†,
Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States;

F. Dean Toste,
Department of Chemistry, University of California, Berkeley, California 94720, United States;

Matthew S. Sigman
Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States;

CONSPECTUS:

At the heart of synthetic chemistry is the holy grail of predictable catalyst design. In particular, 

researchers involved in reaction development in asymmetric catalysis have pursued a variety of 

strategies toward this goal. This is driven by both the pragmatic need to achieve high selectivities 

and the inability to readily identify why a certain catalyst is effective for a given reaction. While 

empiricism and intuition have dominated the field of asymmetric catalysis since its inception, 

enantioselectivity offers a mechanistically rich platform to interrogate catalyst-structure response 

patterns that explain the performance of a particular catalyst or substrate.

In the early stages of an asymmetric reaction development campaign, the overarching mechanism 

of the reaction, catalyst speciation, the turnover limiting step, and many other details are unknown 

or posited based on related reactions. Considering the unclear details leading to a successful 

reaction, initial enantioselectivity data are often used to intuitively guide the ultimate direction 

of optimization. However, if the conditions of the Curtin–Hammett principle are satisfied, then 

measured enantioselectivity can be directly connected to the ensemble of diastereomeric transition 

states (TSs) that lead to the enantiomeric products, and the associated free energy difference 

between competing TSs (ΔΔG‡ = −RT ln[(S)/(R)], where (S) and (R) represent the concentrations 

of the enantiomeric products). We, and others, speculated that this important piece of information 

can be leveraged to guide reaction optimization in a quantitative way.

Although traditional linear free energy relationships (LFERs), such as Hammett plots, have been 

used to illuminate important mechanistic features, we sought to develop data science derived tools 
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to expand the power of LFERs in order to describe complex reactions frequently encountered in 

modern asymmetric catalysis. Specifically, we investigated whether enantioselectivity data from a 

reaction can be quantitatively connected to the attributes of reaction components, such as catalyst 

and substrate structural features, to harness data for asymmetric catalyst design.

In this context, we developed a workflow to relate computationally derived features of reaction 

components to enantioselectivity using data science tools. The mathematical representation of 

molecules can incorporate many aspects of a transformation, such as molecular features from 

substrate, product, catalyst, and proposed transition states. Statistical models relating these 

features to reaction outputs can be used for various tasks, such as performance prediction of 

untested molecules. Perhaps most importantly, statistical models can guide the generation of 

mechanistic hypotheses that are embedded within complex patterns of reaction responses. Overall, 

merging traditional physical organic experiments with statistical modeling techniques creates 

a feedback loop that enables both evaluation of multiple mechanistic hypotheses and future 

catalyst design. In this Account, we highlight the evolution and application of this approach in the 

context of a collaborative program based on chiral phosphoric acid catalysts (CPAs) in asymmetric 

catalysis.

Graphical Abstract

INTRODUCTION

Before entering our long-term collaboration, our teams (Sigman and Toste) had similar 

interests in conceptual aspects of asymmetric catalyst design and often applied physical 

organic tools in investigating mechanistic hypotheses. However, it was a serendipitous 

alignment of events that lead to our collaboration described in this Account. During 

discussions about early work in the area of chiral catalyst parametrization, Dr. Andrew 

Neel (a graduate student in the Toste group at the time) described his interest in optimizing 

and understanding a phase transfer chiral anion catalysis system under investigation. These 

systems are not readily studied by traditional physical organic tools, as the phase transfer 

events are often rate limiting and the nature of asymmetric induction is “kinetically silent”. 

The coalescence of shared interest provided a platform to investigate the combination of new 

data science tools (being developed by Dr. Anat Milo, a postdoc at the time in the Sigman 

lab) with traditional physical organic experiments to facilitate reaction development.1 At 

the outset of this collaboration, we sought to address the following questions: (i) Can 

one simultaneously optimize a reaction while gaining rapid insight into the mechanism? 

(ii) If so, how can one identify “mechanistic breaks” wherein a change in speciation or 

enantioselectivity determining events occurs as a response to a change in reaction conditions 

(substrate, additive, or catalyst)? (iii) Asymmetric induction often arises from differential 
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noncovalent interactions (NCIs) in diastereomeric TSs. Can statistical and computational 

tools reveal the specific nature of attractive and repulsive NCIs in enantioselective catalysis?

To answer these questions, we investigated the use of a number of data science tools, 

including computational featurization of reaction components, linear regression modeling, 

statistical classifications, and data set design.4–6 Our approach emphasizes the mantra that 

all data are useful data because poor performing reactions are just as information-rich 

as those with excellent performance metrics.5,6 Importantly, these data science tools are 

related to (and supplemented with) the results of traditional physical organic experiments 

such as the study of nonlinear effects (NLEs)7,8 and kinetic isotope effects (KIEs).9 This 

integrated approach has furthered our understanding of asymmetric catalytic processes, 

thereby providing a platform for predictable catalyst design. In this Account, we aim to 

showcase the tools we developed and exemplify how our programs have traditional physical 

organic chemistry at their heart.

MECHANISTIC BREAKS

A change in mechanism, such as a difference in speciation or rate-determining step, can 

result from modest alterations to a reaction component. A classical experimental result 

that points to such a scenario is a break in a LFER, exemplified by two different regions 

of a Hammett plot (V-shaped).10–15 In contrast to the relatively trivial observation in 

a Hammett correlation, it is quite challenging to identify such a mechanistic break in 

multivariable linear regression (MLR), as poor correlations could result from insufficient 

data or descriptor space.16 To address this issue, our groups explored a data visualization 

strategy for the identification of unique responses from certain combinations of reaction 

components and found that statistical modeling of identified classes within a data set led to 

more precise and interpretable models.1 The following case studies demonstrate how this 

technique can be used.

In 2016, our groups reported the palladium-catalyzed enantioselective 1,1-diarylation of 

benzyl acrylates via chiral anion phase transfer catalysis (CAPT) using chiral phosphoric 

acid (CPA) derivatives (Figure 1A).17–21 In this reaction, the insoluble aryldiazonium salt 

undergoes salt metathesis with a chiral phosphate anion (PA) to form a soluble chiral ion 

pair. The aryldiazonium undergoes oxidative addition to a palladium catalyst, wherein the 

PA counterion remains associated with the metal and dictates the enantioselectivity of the 

reaction. During the study, 12 PAs and 18 acrylate substrates were evaluated to provide 

145 data points for subsequent analysis.2 Graphical analysis of a subset of results revealed 

that the anthracenyl-substituted PA does not follow the same pattern as the remainder 

of the catalysts. Specifically, the observation of unique results with this PA and the 

3,5-disubstituted aryl substrates indicated that the reaction appeared to be influenced by 

the substrate in this case, while the other reactions seemed to be mainly under catalyst 

control. Hence, the anthracenyl-substituted PA was evaluated separately and investigated 

by transition state calculations. The results indicated that this PA engages in a unique 

π-stacking interaction with the aryl group of the acrylate, thus clarifying its distinct response 

in the visualization of the data set.
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In another example, a data set was designed for the study of the enantioselective fluorination 

of homoallylic alcohols via CAPT catalysis that included systematic variation of both the 

BINOL-derived PA catalyst and boronic acid (BA) directing group (Figure 1B).21 Similar 

reactivities were observed for the three PAs tested with the ortho- and para-substituted 

BAs. However, in the case of meta-substituted BAs, the isopropyl-substituted PA afforded 

the opposite enantiomer of the product compared to the other catalysts. This result was 

interpreted as a change in mechanism for these specific substrate/catalyst pairings; however, 

further mechanistic interrogation was required to identify the underlying cause of this 

break. One possibility is a change in the number of chiral catalysts involved in the 

enantio-determining step that is often ascertained using a traditional test of nonlinear effects 

(NLEs).8

NONLINEAR EFFECTS

Identifying NLEs within asymmetric catalysis, wherein the observed enantioselectivity of 

product does not directly correlate to the enantiopurity of catalyst, can be a powerful 

technique to increase mechanistic understanding (Figure 2).7,8 The observation of NLEs 

can be consistent with an autocatalytic process being at play23,24 or off-cycle reservoirs 

of homo- or heterochiral catalysts25 or, more commonly, more than one catalyst molecule 

being involved in a mechanistic step that influences enantioselection.8,26 In the course of a 

mechanistic study of the aforementioned diarylation of benzyl acrylates, it was found that 

while the reaction is zeroth-order in CPA, suggesting that the CPA is likely not involved 

in the rate-determining step of the reaction,2,17 increasing its concentration nevertheless 

afforded increasing amounts of product 2 relative to the Heck byproduct 3 (Figure 2A). This 

observation suggests that the formation of 3 results from a more complex kinetic scenario 

in competition with the transmetalation step. Experiments employing CPA catalysts with 

various ee’s revealed that an NLE was observed only for the product/Heck product ratio 

(2/3) and not for the product enantioselectivity. There are two reasonable proposals that 

explain this result: (a) the PA activates the boronic acid toward transmetalation to form 2 or 

(b) the PA deprotonates palladium hydride to form 3. The NLE experiments alone cannot 

distinguish between these two pathways, but an experiment was designed wherein the ratio 

between the PA and the Pd(0) catalyst was varied, which should have an effect on the 2/3 
ratio. For the deprotonation pathway, increasing the amount of PA (decreasing the Pd/PA 

ratio) should afford greater amounts of 3 (lower 2/3 ratio). In the transmetalation pathway, 

increasing the amount of PA (higher 2/3 ratio) should correspond to greater 2 formation 

as the presence of PA would convert the boronic acid to a boronic ester for efficient 

transmetalation. A direct relationship between the 2/3 ratio and Pd/PA ratio was observed; 

that is, decreasing amounts of PA (high Pd/PA product ratio) lead to greater amounts of 

2 (high 2/3 ratio) whereas increasing the concentration of PA (low Pd/PA product ratio) 

favored the formation of the 3 (low 2/3 ratio). This normal relationship between the ratios 

suggests that the deprotonation pathway is dominant. In this case, multiple catalysts are 

involved in determining the product distribution but not in the enantio-determining step.

In the course of exploring an enantioselective fluorination of allylic alcohols through CAPT 

catalysis,22 divergent selectivity patterns were observed wherein different combinations of 
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substrates, boronic acids, and catalysts led to opposite enantiomers (Figure 2B). Because of 

the doubly cationic nature of Selectfluor, a NLE study was initiated to investigate whether 

the involvement of multiple catalysts led to the divergent enantioselectivity response.7,8 For 

three different combinations (4 and 5, 6 and 7, 8 and 9), a NLE was not observed, suggesting 

that a single catalyst molecule is involved in the enantio-determining step.22 However, a 

NLE was observed with the combination of 10 and 11 that afforded the opposite enantiomer, 

likely because the lack of the ortho substituents allows for multiple catalysts to be in close 

proximity to one another. Intriguingly, although the combination of 8 and 9 also afforded 

the opposite enantiomer to the other combinations, a NLE was not observed, suggesting that 

there is a different underlying mechanistic reason for a large change in the geometry of the 

enantio-determining transition state. Hence, isotopic labeling experiments were employed to 

investigate the specific role of key hydrogen atoms in the enantio-divergent process.

KINETIC ISOTOPE EFFECTS

A KIE is a change in reaction rate due to the incorporation of an isotope, most commonly 

deuterium, into a reactant.9,27–29 In enantioselective reactions, an enantiomeric excess (ee) 

value provides a direct readout of the relative rates of the reactions leading to the two 

enantiomers. The study of KIEs can identify which atoms are involved in the rate- or 

product-determining step of a reaction, and variations in KIEs can signify changes in 

mechanism.30–32 During the development of the enantioselective fluorination of allylic 

alcohols (Figure 3), opposite selectivity was observed with the 3,5-(OMe)2-BA directing 

group (9, −77% ee) compared to BAs substituted in the 4-position (e.g., 65% ee with 

4-Me-BA 11).22 As described above, the absence of a NLE suggested that the divergent 

selectivity was not due to a change in catalyst molecularity. The investigation of KIEs was 

employed to gain greater insight into the nature of the enantio-determining step (EDS). 

A deuterated analogue of the starting material, 12-d, was prepared and submitted to the 

standard reaction conditions. A significant KIE was observed with 9 (−77% eeH vs −90% 

eeD, 0.5 kcal/mol difference) but not with 11 (65% eeH vs 63% eeD). These results suggest a 

change in mechanism, with the C–H bond of the substrate only involved in the EDS with 9. 

This was ultimately rationalized through a concerted process with 9 compared to a stepwise 

process with 11.

EARLY INVESTIGATION OF NONCOVALENT INTERACTIONS

In 2015, our teams investigated a chiral triazole-phosphoric acid catalyzed intramolecular 

dehydrogenative C–N coupling, a reaction in which little was known about the origin of 

selectivity (Figure 4).1,33 The aim of the investigation was to utilize a data-driven approach, 

in combination with classical physical organic techniques, for mechanistic elucidation. Data-

driven analysis necessitated the evaluation of a diverse library of substrates and catalysts. 

Hence, each reaction component was strategically modified at positions hypothesized to 

influence enantioselectivity: the benzyl and the distal aryl rings for the substrates and the 

aryl ring attached to the triazole for the catalyst. The specific choice of substituents was 

determined by synthetic accessibility and a consideration of electronic (Hammet σpara) and 

steric (Sterimol B1) descriptor values. The combinations of the resulting 11 catalysts and 

12 substrates were evaluated in the reaction, providing a wide range of enantioselectivity 
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values. The data were plotted to enable visualization of selectivity trends, wherein three 

distinct regions appeared based on the substituents of the catalyst (Figure 4A). Linear 

regression was applied to the three individual subsets, and the resulting correlations with 

steric and electronic parameters were interpreted to suggest a π-interaction between the 

catalyst and substrate. At this point, KIE experiments were performed to establish the 

EDS (Figure 4B). The observation of a KIE with the enantiomeric catalysts and a stereo-

defined deuterated substrate 14-d indicated that the chiral phosphoric acid is involved 

in the rate-determining oxidation. Although the enantioselectivity of the product 15 is 

formally set during the cyclization, it is conceivable that selectivity could arise from 

preorganization of a catalyst–substrate intermediate during oxidation. If this were the case, 

then different enantioselectivities would be expected from the reaction of stereo-defined 

substrate 14-d with (S)- and (R)-catalysts. However, the observation of opposite but equal 

product ee’s obtained with opposite enantiomer of CPA catalysts is consistent with an 

enantio-determining cyclization.

Following the KIE studies, a series of catalysts were tested in the reaction to investigate 

whether the triazole or the aryl substituent of the catalyst was involved in the π-interaction 

with the substrate (Figure 4C). NCIs are often strongly affected by the charge distribution 

of an arene, so the observation of relatively similar results with the perfluorinated arene 19 
compared to the other catalysts (16–18) was interpreted to suggest that it was the triazole 

that was involved in the NCI.34 Energy stabilization gained from a π-interaction is also 

affected by the distance and geometry of the rings. This was reflected in a comprehensive 

model of the results that included a term for the torsion angle of the catalyst arene (which 

influences the geometry of the triazole ring), along with a variety of steric and electronic 

terms (Figure 4D). Several new catalysts were synthesized based on model predictions, 

resulting in extrapolation to the highest overall selectivities for the reaction. However, 

the model lacked simplicity due to the large number of variables, thereby precluding the 

development of more detailed mechanistic hypotheses.35 Overall, the true nature of the 

putative NCIs at the heart of asymmetric induction remained unclear, and this unsatisfactory 

understanding prompted the development of superior molecular features for NCIs.

DEVELOPMENT OF DESCRIPTORS FOR NONCOVALENT INTERACTIONS

It is challenging to identify and quantify the role of NCIs through purely empirical means, 

as the individual contribution of each of these stabilizing interactions is quite small (<2 

kcal/mol) and NCIs can be highly dynamic.36 As shown above (Figure 4C), the presence of 

NCIs can be probed through modification of catalyst structure, wherein the introduction of 

functional groups should modulate the strength of the hypothesized NCI.37,38 However, the 

representation of NCIs within the context of statistical modeling remained unclear.

Inspired by the work of Wheeler and Houk that correlates interaction energies of stacked π 
systems to Hammett values,39 we investigated the application of interaction energies (Eπ) 

and distances (Dπ) as mechanistically driven molecular descriptors for NCIs (Figure 5A).2 

The incorporation of these descriptors in a statistically validated MLR model would suggest 

the presence of a NCI in the reaction(s) under investigation. A NCI between substrate arenes 

and catalyst triazolyl substituents was hypothesized to be a key stereo-controlling element 
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an oxidative amination.40 Therefore, the reaction data were reanalyzed using Eπ and Dπ 
parameters to gain further insight into this reaction. There are three potential rings (A, B, 

and C, Figure 5B) in the oxidized substrate intermediate 21 that could engage in a NCI 

with the CPA triazole motif. Computational analysis of each of these possible interactions 

was undertaken. Descriptors relevant to the substrate were extracted from the corresponding 

uncatalyzed transition states (TSs), which were hypothesized to resemble their catalyzed 

variants. This approach provided a platform in which highly relevant descriptors could 

be used. Two major conformations exist for the uncatalyzed TSs, which primarily differ 

through the orientation of the benzyl substituent (TS A and TS B, Figure 5B). As NCIs 

are highly distance and orientation dependent, the ability of the substrate to access these 

conformations is likely critical. Therefore, a parameter describing the difference in energy 

between these two conformers of the uncatalyzed TS was computed for each substrate. 

Again, considering the key possible orientations of the catalyst and substrate, electrostatic 

potential maps (ESPs) can be used to match areas of low and high electron density.41–43 

These ESPs highlight that the triazole region of the catalyst is an area of high electron 

density, which, based on measured distances, would match well with the electron-deficient 

iminium if the nucleophilic amide N is engaged in hydrogen bonding with the CPA.40

Finally, a 6-parameter global model describing 103 catalyst and substrate combinations 

was developed (Figure 5B, bottom), a significant improvement to the previously developed 

13-term model.44,45 The model highlights the roles of Brønsted basicity (vPOSy) and NCIs 

(EImC), and the importance of substrate conformation (EAB). The remaining terms suggest 

the geometrical importance of the orientation of the aryl rings (sin(α)) and the substrate 

nucleophilicity (vCN).

Further analysis of the previously reported allylic fluorination reaction incorporating 

these developed NCI descriptors also emphasizes the role of attractive NCIs in enantio-

determining transition states and the effectiveness of these descriptors at highlighting these 

weak, additive interactions (Figure 5C).2,21 These models illustrate how statistical modeling 

can be enhanced by incorporating mechanistic hypotheses into descriptor development, 

thereby providing greater insight into the transformation. Moreover, the combination of 

transition state analysis, statistical modeling, and traditional physical organic tools can 

maximize mechanistic insight.

THE COMBINATION OF STATISTICAL MODELING AND TRANSITION STATE 

ANALYSIS

The advancement of density functional theory (DFT) in recent years has led to the general 

feasibility of studying catalytic reactions computationally.46–49 This approach has provided 

mechanistic insights into a wide variety of reactions. However, the computational cost 

of TS analysis generally prohibits its application to the full scope of a reaction, so a 

model catalyst/substrate is often used. Hence, this approach is complementary to statistical 

modeling, which can easily take advantage of the entire reaction data set by utilizing ground 

state structures for descriptor acquisition.1,4,6
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In 2020, our groups reported the first highly enantioselective allenoate-Claisen 

rearrangement using doubly axially chiral phosphate (DAP) sodium salts as catalysts (Figure 

6A).3 A chiral Lewis acid phosphate counterion coordinates to the allenoate creating a large 

adaptable chiral pocket in which NCIs were hypothesized to play a key role. However, 

the multitude of weak interactions and flexibility of the system made this reaction difficult 

to study computationally. Hence, computational analysis of the uncatalyzed and sodium 

cation-catalyzed reactions was first performed to identify the EDS, which was found to 

be the [3,3]-sigmatropic rearrangement. This step was then studied computationally using 

the full phosphate catalyst (Figure 6B). The Boltzmann-weighted average of 14 TSs for 

the rearrangement resulted in a computed ee of 77%, comparable to the experimental 

value of 66% ee. The sodium cation assembled the TSs leading to the major and minor 

enantiomers of the product through several NCIs. Furthermore, in the major TS two edge-

to-face interactions were observed between the catalyst arene (Ar2, green), substrate arene 

(Ar1, red), and catalyst naphthyl (yellow). In contrast, a staggered sandwich arene–arene 

interaction was observed the between catalyst arene and substrate arene in the minor TS. 

While the TS analysis was performed using a single catalyst–substrate combination, the allyl 

amine component was varied significantly to afford a range of β-amino γ,δ-disubstituted 

esters (Figure 6C). MLR models were developed using the previously described descriptors 

(Figure 5) in order to test the hypothesis that changes in the structure of the substrate and 

catalyst dictate the enantioselectivity through modulation of NCIs. Based on the TS analysis, 

interaction energies and distances were calculated for the edge-to-face and sandwich 

complexes found in the major and minor TSs, respectively (see molecular renderings, 

Figure 6C). MLR of the selectivities from 24 reactions afforded a model with reasonable 

statistics (R2 = 0.77, test R2 = 0.54), supporting the NCI-driven mechanistic hypothesis. 

The introduction of further descriptors that capture other elements of the catalyst variation 

resulted in improved MLR model (R2 = 0.87, test R2 = 0.76). Overall, this computationally 

driven analysis highlights the role of NCIs for these flexible DAP catalysts.

CONFORMATIONAL DYNAMICS IN CATALYSIS

Although rigidifying elements are generally incorporated within the small molecule catalysts 

that are used for enantioselective methods in order to increase selectivity, flexible catalysts, 

like the DAP catalysts described above, may provide unique opportunities to maximize 

stabilizing NCIs throughout the catalytic cycle and perhaps provide greater substrate 

generality.50 For example, tetrapeptidic catalysts 22, pioneered by the Miller group, can 

adopt multiple conformations and have been shown to be highly effective for a variety of 

transformations, including those traditionally catalyzed by BINOL-derived CPAs 23.51–55 

Various mechanistic tools, driven by data science, were employed to directly compare these 

two disparate catalyst scaffolds in the study of an atroposelective cyclodehydration (Figure 

7A).56 It was hoped that further insight into the key features of privileged catalysts could be 

gained through this comparison, which may enable predictable catalyst design.57

One particularly powerful tool that enables direct comparison is using a substrate profiling 

technique, wherein each substrate is tested with the optimal catalyst from each catalyst type. 

In this case, 20 diverse substrates were tested with the two catalysts, and the results were 

used for the development of comparative MLR models. Although both catalysts performed 
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similarly for many of the substrates tested, there is a notable difference between the two 

when incorporating large, bulky substituents at the 7-position. The peptidic catalyst 22 leads 

to high enantiomeric excesses for this series whereas the more rigid BINOL-derived catalyst 

23 results in more moderate enantioselectivity.

The terms of the two MLR models were analyzed in order to gain greater insight into these 

results (Figure 7B). Interpretation and comparison of the descriptors used in the models 

can give insight into key catalyst–substrate interactions, providing a consistent method 

to simultaneously evaluate a flexible and a rigid catalyst. Importantly, three terms were 

conserved across both catalyst classes: the NBO charge of the carbonyl oxygen (NBOO), 

the B5 value of the substituent at the 6-position (B5C6), and the B1 value of the ortho 
substituents of the bottom aryl ring (B1ortho). These descriptors highlight the general 

importance of hydrogen bonding in CPA catalysis in addition to implicating steric effects 

during the enantio-determining cyclization step. The only nonconserved term is the length of 

the substituent at the 7-position (LC7). This suggests that the more flexible peptide catalyst 

22 may be able to rearrange to adapt to the steric demands of the substrate whereas the more 

rigid BINOL scaffold 23 cannot.

The high atroposelectivity observed with both disparate catalyst scaffolds supports the 

hypothesis that flexibility may not be inherently detrimental within asymmetric catalysis. 

However, further investigation into the extent to which flexibility is beneficial is required. 

Hence, our teams are exploring the incorporation of flexibility as a design element such 

that multiple stabilizing NCIs can be accessed that adapt to a variety of intermediates and 

transition states throughout a catalytic cycle.

CONCLUSION AND OUTLOOK

Through our collaborative efforts, we have demonstrated how a strategy relying on the 

intersection between data science and traditional physical organic chemistry has enabled 

optimization of particular reactions while simultaneously providing mechanistic insights. 

In considering the future of this overarching strategy, we are enthusiastic that only the 

surface of this field has been investigated. There are a number of exciting questions one 

can consider, especially in the area of asymmetric catalysis. First, considering the nature 

and widespread use of privileged catalysts, can modern physical organic tools be used 

to generate a holistic understanding of underlying structural features that enable selective 

asymmetric catalysis? We have begun to address these questions in the context of chiral 

phosphoric acid catalysis,58 hydrogen bond donating catalysts,59 and bisoxazoline ligands.60 

However, a diverse range of privileged catalyst scaffolds remain unexplored.

Second, how will the incorporation of data science reshape a chemist’s approach to the 

development of new synthetic methods? For instance, a change in perspective is required 

wherein no data are wasted and “negative” results are viewed as just as valuable as 

“positive” ones. This mindset enables the identification of subtle trends within the data, even 

when a particular result may be unexpected from a chemical intuition standpoint, which can 

guide further screening, hypothesis development, and future optimization campaigns. The 

expansion and distribution of databases of physical organic features will help to increase the 
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accessibility of the data science workflow to chemists in a variety of fields.61,62 It should be 

noted that the incorporation of data science principles to project design goes hand-in-hand 

with modern advances in automation that streamline the data collection process.63,64

Finally, what might the future of our laboratories look like if we fully embrace this 

philosophy? Through the integration of data science and physical organic, synthetic, and 

computational chemistry, each experiment becomes a physical organic experiment. All 

data can be analyzed and contribute to a greater understanding of the reactions under 

investigation. More importantly, this understanding can be transferred and compared in 

the development of new processes. Thus, we embrace this strategy and pedagogical 

restructuring required to integrate the computer science and chemistry disciplines. This 

multidisciplinary approach is integral to identifying and understanding the key connections 

and patterns hidden within the data and accelerating our fundamental understanding of 

chemical reactions and reactivity.
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BA boronic acid

BINOL 1,1′-bi-2-naphthol

CAPT chiral anion phase transfer

CPA chiral phosphoric acid

DAP doubly axially chiral phosphate

DFT density functional theory

EDS enantio-determining step

ESP electrostatic potential map

KIE kinetic isotope effect

LFER linear free energy relationships

MLR multivariable linear regression

NBO natural bond orbital

NCI noncovalent interaction

NLE nonlinear effect

PA phosphate anion

TS transition state
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Figure 1. 
Data visualization highlights mechanistic breaks in (A) Pd-catalyzed enantioselective 1,1-

diarylation of benzyl acrylates and (B) enantioselective fluorination of homoallylic alcohols. 

Continuous lines in the graphs are purely for visualization purposes.
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Figure 2. 
Nonlinear effect experiments, especially in conjunction with statistical modeling, provide 

important insight into the general structure of key transition states.
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Figure 3. 
Kinetic isotope effects provide insight into key bond breaking steps in the enantioselective 

fluorination of allylic alcohols.
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Figure 4. 
Early work seeking to understand the role of NCIs within CAPT catalysis.
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Figure 5. 
Development of specific NCI descriptors enabled the evaluation of numerous mechanistic 

hypotheses.

Crawford et al. Page 20

Acc Chem Res. Author manuscript; available in PMC 2023 February 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Statistical modeling and transition state analysis are complementary techniques for 

mechanistic interrogation.
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Figure 7. 
Direct comparison of two disparate catalyst scaffolds, one rigid and one flexible, through a 

substrate profiling technique alludes to how flexibility may impart generality. Adapted with 

permission from ref 56. Copyright 2019 American Chemical Society.
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