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Relative Patlak Plot for Dynamic PET Parametric Imaging 
Without the Need for Early-time Input Function

Yang Zuo1, Jinyi Qi2, and Guobao Wang1,3

1.Department of Radiology, University of California at Davis

2.Department of Biomedical Engineering, University of California at Davis

3.Comprehensive Cancer Center, University of California at Davis

Abstract

The Patlak graphical method is widely used in parametric imaging for modeling irreversible 

radiotracer kinetics in dynamic PET. The net influx rate of radiotracer can be determined from the 

slope of the Patlak plot. The implementation of the standard Patlak method requires the knowledge 

of full-time input function from the injection time until the scan end time, which presents a 

challenge for use in the clinic. This paper proposes a new relative Patlak plot method that does not 

require early-time input function and therefore can be more efficient for parametric imaging. 

Theoretical analysis proves that the effect of early-time input function is a constant scaling factor 

on the Patlak slope estimation. Thus, the parametric image of the slope of the relative Patlak plot is 

related to the parametric image of standard Patlak slope by a global scaling factor. This theoretical 

finding has been further demonstrated by computer simulation and real patient data. The study 

indicates that parametric imaging of the relative Patlak slope can be used as a substitute of 

parametric imaging of standard Patlak slope for tasks that do not require absolute quantification, 

such as lesion detection and tumor volume segmentation.

1. Introduction

Dynamic positron emission tomography (PET) provides four-dimensional distribution 

(three-dimensional space plus one-dimentional time) of radiotracer in living body and is 

attracting more and more research interests [Schmidt and Turkheimer, 2002, Rahmim et al, 

2009, Wang and Qi, 2013, Reader and Verhaeghe, 2014]. Analyzing dynamic PET data 

relies on kinetic modeling which commonly uses a temporal model to describe the kinetics 

of radiotracer uptake [Schmidt and Turkheimer, 2002]. Voxel-wise implementation of kinetic 

modeling provides parametric maps of kinetic parameters indicating the biological 

characters of the tissue [Gunn et al., 1998]. Parametric imaging has been found useful in 

many applications including tumor detection [Kordower et al., 2000, Gill et al., 2003] and 

extraction of metabolic tumor volume (MTV) [Visser et al., 2008].

The Patlak graphical plot is a widely used kinetic analysis method in dynamic PET for 

extracting the net influx rate of irreversible uptake of a radiotracer [Patlak et al., 1983, Patlak 

and Blasberg, 1985]. It is also used for kinetic modeling in dynamic magnetic resonance 

imaging (MRI) [Hackstein et al., 2003] and computed tomography (CT) [Hackstein et al., 

2004, Miles et al., 1999, Hom et al., 2009]. Compared with nonlinear compartmental 
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modeling, the Patlak method uses a linear model and has the advantage of being 

computationally efficient for parametric imaging and being easier to be implemented into 

new reconstruction methods [Wang et al., 2008, Tsoumpas et al., 2008, Tang et al., 2010, 

Angelis et al., 2011, Zhu et al., 2013] and for whole-body imaging [Karakatsanis et al., 

2015, Karakatsanis et al., 2016, Zhu et al., 2013, Hu et al., 2017].

Input function is essential for tracer kinetic modeling. Although the Patlak graphical plot 

only examines the time points of tissue activity at steady state, the standard Patlak method 

requires the knowledge of full-time input function from the radiotracer injection time until 

the dynamic scan end time. To obtain the information of full-time input function, either 

many blood samples are needed if arterial blood sampling is used or a long scan covering 

early-time points is required if the image-derived or reference region input function is used. 

For example in dynamic 18F-FDG PET imaging, an one-hour dynamic scan is required to 

derive the full blood input function from dynamic images, though only late 20–30 minutes 

are actually used to extract the tracer activity of tissue. This requirement for early-time input 

function presents a challenge for applying the Patlak method in the clinic, particularly for 

whole-body imaging [Hu et al., 2017].

This paper proposes a new relative Patlak plot method for PET parametric imaging. 

Compared with the standard Patlak plot, the proposed relative plot does not require the 

information of early-time input function. Mathematical analysis is used to show the 

relationship between the slope of the new plot and that of the standard Patlak plot. The 

theoretical findings are further validated by computer simulation of dynamic PET data and 

real patient scan data.

2. Theory

2.1. Standard Patlak Plot

Let us denote the radiotracer concentration at time t in a tissue region of interest (ROI) or 

voxel by CT (t) and tracer concentration in the plasma by CP (t). The Patlak plot exploits the 

linearity between the normalized tissue concentration and normalized integral of input 

function CP (t) after a steady-state time t* Mathematically, it is described by a linear 

equation:

CT(t)
CP(t) = Ki ⋅

∫
0

t
CP τ dτ

CP t + b t > t∗ , (1)

where Ki is the slope constant that represents the net influx rate of irreversible uptake of a 

radiotracer and b is the intercept which equivalently indicates blood volume in the tissue and 

the normalized tracer concentration from reversible compartments.

By acquiring dynamic PET data for multiple time frames, one can plot the data of
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y(t) =
CT(t)
CP(t) (2)

and

x(t) =
∫

0

t
CP τ dτ

CP(t) (3)

of each time frame and fit the data points using the linear model Eq. (1). The slope Ki and 

intercept b are then estimated by the linear regression. Note that although y(t) is only 

sampled for t > t*, x t  contains the integral of the input function CP (t) from the injection 

time t = 0 till the scan end time. Thus the full-time input function needs to be known for the 

standard Patlak plot.

Given a set of measurements at M time points tm M
m = 1

 with t = t* and tm denoting the 

midpoint of each time frame, the Patlak slope and intercept can be estimated using the 

following least-squares formulation,

Ki, b = argmin
Ki, b

∑
m = 1

M
y tm − Ki ⋅ x tm − b 2 . (4)

where the integration in x(t) is calculated using the rectangle rule,

x tm =
∑n = 1

m CP tn Δ tn
CP tm

,

with Δtn denoting the scan duration for nth frame. The optimal solution has the following 

analytic formula

Ki = V x, y
V x, x , (5)

b = y − Ki ⋅ x, (6)

where V ⋅ , ⋅  and ⋅ have the forms as follows
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x = 1
M ∑

m = 1

M
x tm , (7)

V x, y = 1
M ∑

m = 1

M
x tm y tm − x ⋅ y, (8)

which correspond to the mean and covariance if x and y are considered as random variables.

2.2. Proposed Relative Patlak Plot

We propose a new relative Patlak plot which has the following model equation:

CT(t)
CP(t) = K′i ⋅

∫
t∗

t
CP τ dτ

CP t + b′ t > t∗ , (9)

where K′i and b′ are the slope and intercept of the new plot, respectively.

The new relative Patlak method plots the data of y(t) in Eq. (2) versus

x′(t) =
∫

t∗
t
CP τ dτ

CP t (10)

to get the slope K′i and intercept b′. This new model is very similar to the standard Patlak 

plot equation, except that the integral of the input function CP (t) here is from t* to t, not 

from 0 to t. The integral of CP (t) over early time from 0 to t* is no longer needed in this new 

plot.

Similarly to the least-squares estimation for the standard Patlak plot, the slope and intercept 

of the relative Patlak plot can be estimated by

K′i, b′ = arg min
K′i, b′

∑
m = 1

M
y tm − K′i ⋅ x′ tm − b′ 2, (11)

which gives the following optimal solution
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K′i = V x′, y
V x′, y′ , (12)

b′ = y − K′i ⋅ x′ . (13)

where ⋅ and V ⋅ , ⋅  are defined in Eqs. (7) and (8), respectively.

2.3. Theoretical Relation Between the Two Plots

The new relative Patlak plot is closely related to the standard Patlak plot. Here we examine 

the theoretical relation between the two plots using analytical derivations. Let us define

x0 t =
∫

0
t∗CP τ dτ

CP t (14)

to account for the component of early-time input function which appears in x(t) but not in x′
(t). Obviously, we have

x t = x0 t + x′ t . (15)

In dynamic PET scans, the late-time input function CP (t) for t > t* can be analytically 

expressed by an exponential function:

CP t = a1 ⋅ e−a2t, (16)

where a1, a2 > 0. For example, the widely used Feng model for dynamic 18F-FDG PET has 

the form [Feng et al., 1993]

CP t = A1t − A2 − A3 e
−L1t

+ A2e
−L2t

+ A3e
−L3t

, (17)

with the following parameters A1 = 851.1 mg/100mL/min,A2 = 21.9 mg/100mL, A3 = 20.8 

mg/100mL, L1 = 4.1 min−1, L2 = 0.12 min−1, L3 = 0.01 min−1. For t > t* = 30 minutes, the 

Feng input function is dominated by the term A3e−L3t while the other two terms are 

negligible. Another example is the reference tissue input in dynamic 11C-PIB PET, where 

the tail also approximately follows an exponential function [Zhou et al., 2012].

As a result, x0(t) and x′(t) can be rewritten as
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x0 t = s*
a1

e
a2t

, (18)

x′ t = 1
a2

e
−a2 t* − t

− 1 , (19)

with s* being the integral of blood input over the early time from time 0 to t*,

s∗ = ∫
0

t∗CP τ dτ . (20)

It is then not difficult to verify the following linear relationship between x0(t) and x′(t):

x0 t = α + βx′ t (21)

where α and β are both constants that only depend on t*:

α = 1
a1

s*e
a2t*

, (22)

β =
a2
a1

s*e
a2t*

. (23)

Using Eq. (15), the standard Patlak plot model Eq. (1) can be re-written as

y t = Ki ⋅ x′ t + x0 t + b . (24)

Substituting Eq. (21) into Eq. (24), we obtain the following equivalence,

y t = 1 + β Ki ⋅ x′ t + αKi + b , (25)

= K′ix′ t + b′ (26)

With
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K′i = 1 + β Ki, (27)

b′ = b + αKi . (28)

The two equations above indicate that the relative Patlak slope K′i is proportional to the 

standard Patlak slope Ki with a scaling factor (1 + β). The intercept of the relative Patlak 

plot is equivalent to the intercept of the standard Patlak plot plus a shift αKi.

The scaling factor (1 + β) only depends on the input function and is independent of tissue 

time activity. It is therefore a global scaling factor when the Patlak plot is implemented for 

parametric imaging. Thus, the parametric image of the relative Patlak slope K′i is equivalent 

to the parametric image of the standard Patlak slope Ki up to a scaling factor.

2.4. Theoretical Relation Between the Least Squares Estimates

In practice, the slope and intercept of a graphical plot are commonly estimated by a least 

squares optimization. Here we examine the theoretical relation between the standard Patlak 

and relative Patlak least squares estimates.

Based on Eq. (21), x(t) and x′(t) approximately satisfy a linear relation:

x t = ν + S ⋅ x′ t t > t* , (29)

where S and v are respectively equivalent to (1 + β) and α if the late-time blood input is 

described by an exponential function. Alternatively, S and v can be estimated by a linear 

regression without assuming an exponential model:

S = V x′, x
V x′, x′ , (30)

ν = x − S ⋅ x′ . (31)

Substituting Eq. (29) into the least squares estimate of the standard Patlak slope Ki in Eq. (5) 

leads to the following expression,

Ki = V ν + Sx′, y
V ν + Sx′, ν + Sx′ . (32)

Note that the function V (·, ·) has the following properties:
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V x, y = V y, x , (33)

V c ⋅ x, y = c ⋅ V x, y , (34)

V c + c, y = V x, y , (35)

where c is an arbitrary constant. Using these properties and the definition of the least-

squares estimate of the relative Patlak slope K′i defined in Eq. (12), we then obtain the 

scaling relation between K′i and K′i:

K′i = S ⋅ Ki . (36)

We can also derive the following relation between the least-squares estimates of the two 

intercepts b′ and b:

b′ = b + ν ⋅ Ki . (37)

These results indicate that the theoretical relation between the standard Patlak plot and 

relative Patlak plot holds true as long as x(t) and x′(t) satisfy the linear relationship given in 

Eq. (29) regardless of the shape of the blood input function.

3. Materials and Methods

3.1. Validation Using Computer Simulation

We first conducted a computer simulation to validate the theoretical results on the scaling 

relationship between the standard Patlak slope and relative Patlak slope. This simulation 

study was designed for mimicking parametric imaging where a single blood input function is 

used and different voxels share the same scaling factor between the standard Patlak slope 

and relative Patlak slope. One-hour dynamic 18F-FDG scan was simulated following the 

scanning sequence of a total of 55 frames: 30 × 10-second frames, 10 × 60-second frames 

and 15 × 180 -second frames. The blood input function in this simulation was generated 

using the analytical Feng model [Feng et al., 1993]. Following the standard two-tissue 

compartmental model, we simulated 10; 000 groups of random kinetic parameters which 

follow a Gaussian distribution with the mean of kinetic parameters being K1 = 0.81 mL/mL/

min, k2 = 0.38 min−1, k3 = 0.1 min−1, k4 = 0 min−1 and standard deviation being 40% of the 

mean kinetic parameters. Noise-free time activity curves (TACs) were generated with the 

simulated FDG kinetics and blood input function. Zero-mean Gaussian noise were then 
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added to each noise-free TAC cm m + 1
M  using the noise standard deviation [Wu and Carson, 

2002] defined by

SDm = Sc · cmexp λtm / Δ tm, (38)

where Sc is a scale factor to adjust SD to match with realistic dynamic FDG-PET data at 

different noise levels. Sc = 1.0 was used to simulate a voxel-level high noise in this 

simulation. λ is the decay constant of the radiotracer set to be ln(2)/T1/2 with T1/2 = 109.8 

minutes. Δtm is the scan duration of time frame m and tm is the middle time of frame m.

To demonstrate the wide applicability of the method, we conducted a second simulation 

study to examine if a bi-exponential input model CP t = a1e
−a2t

+ b1e
−b2t

 meets the linear 

relation between x(t) and x′(t). The scanning sequence was the same as used in the first 

simulation study. To mimic blood input functions of different tail shape, one thousand sets of 

the model parameters were randomly generated using the uniform distribution with the 

intervals a1 ∈ [0, 50], b1 ∈ [0, 50], a2 ∈ [0, 1], b2 ∈ [0, 1]. The parameter bounds are 

projected from the Feng input model. The coefficient of the Pearson correlation between x(t) 
and x′(t) was calculated for each realization of the input function.

3.2. Validation Using Patient Scans

We further validated the theoretical results using dynamic FDG-PET scans of two human 

patients, one with breast cancer and the other with coronary heart disease.

The breast patient scan was operated on the GE Discovery 690 PET/CT scanner at UC Davis 

Medical Center. The patient received 5 mCi 18F-FDG with a bolus injection. List-mode 

time-of-flight data acquisition commenced right after the FDG injection and lasted for 60 

minutes. A low-dose transmission CT scan was then performed at the end of PET scan to 

provide CT image for PET attenuation correction. The raw data were then binned into a total 

of 49 dynamic frames: 30 × 10 seconds, 10 × 60 seconds and 9 × 300 seconds. Dynamic 

PET images were reconstructed using the standard ordered subsets expectation 

maximization (OSEM) algorithm with 2 iterations and 32 subsets as provided in the vendor 

software. All data corrections including normalization, attenuation correction, scattered 

correction and randoms correction, were included in the reconstruction process. A region of 

interest was placed in the left ventricle region to extract blood input function.

The cardiac scan was performed on the GE Discovery ST PET/CT scanner at UC Davis 

Medical Center in two-dimensional mode. The scanner has no time-of-flight capability. The 

patient received 20 mCi 18F-FDG with a bolus injection. List-mode data acquisition 

commenced right after the FDG injection and lasted for 60 minutes. A low-dose 

transmission CT scan was then performed at the end of PET scan to provide CT image for 

PET attenuation correction. The raw data were binned into a total of 49 dynamic frames: 30 

× 10 seconds, 10 × 60 seconds and 9 × 300 seconds. Dynamic PET images were 

reconstructed using the standard ordered subsets expectation maximization (OSEM) 
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algorithm with 2 iterations and 30 subsets as provided in the vendor software. All data 

corrections including normalization, attenuation correction, scattered correction and 

randoms correction, were included in the reconstruction process. The blood input function 

was also extracted from the left ventricle region.

4. Results

4.1. Simulation Results

The simulated noisy TACs based on the Feng input model were first analyzed using the 

standard Patlak plot and new relative Patlak plot with a start time t* = 30 minutes. For the 

standard Patlak plot, the full-time blood input from 0 to 60 minutes was used to estimate the 

slope Ki. For the relative Patlak plot, only the input function after t* was used to estimate the 

slope K′i. Early-time input function is not needed for the relative Patlak plot, which is 

equivalent to setting those time points to zeros. The two input functions are graphically 

compared in Fig. 1(a). We then verified the linear relation between ∫0

t
CP τ dτ / CP t  and 

x′ t = ∫
t∗

t
CP τ dτ / CP t  with t > t*. Figure 1(b) shows the plot of x(t) versus x′ t  for the 

simulated Feng input function. The linear fit was excellent with a pairwise linear correlation 

coefficient close to 1.

Examples of the the standard Patlak plot and relative Patlak plot are shown in Fig. 2(a) and 

(b). We examined the linearity between the standard Patlak slope Ki and the relative Patlak 

slope K′i. Fig. 3(a) shows the estimated K′i versus Ki values for all the simulated 10, 000 

TACs. The correlation coefficient between K′i and Ki was 1.0, indicating a perfect linearity. 

The intercept is negligible, indicating K′i values are equal to Ki values times the scaling 

factor. The slope of the linear plot of K′i versus Ki is approximately equal to the slope of the 

linear plot of x(t) versus x′(t). The relation between K′i and Ki is therefore verified by the 

simulation data. Fig. 3(b) further shows that the correlation coefficient between K′i and Ki 

remains stable and close to 1 when t* varied from 10 minutes to 54 minutes, though the 

scaling factor between them depends on t*. Note that t* could not be greater than 54 minutes 

given the defined time frames, otherwise less than two time points could be used for the 

Patlak plots.

Fig. 4(a) shows all the correlation coefficients of x′(t) versus x(t) for 1,000 random 

realizations of the bio-exponential input function. Fig. 4(b) show the correlation plot of x′(t) 
versus x(t) for a specific model parameter set a1 = 36.288, a2 = 0.093, b1 = 1.543, b2 = 

0.001, which corresponds to the the sample point in Fig. 4(a) with the lowest correlation 

coefficient R = 0.9927. The results validate the wide applicability of the assumption [Eq.

(29)] we made for establishing the relation between the relative Patlak slope and standard 

Patlak slope.
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4.2. Patient Results

4.2.1. Blood Input Functions—The image-derived input functions from the breast 

patient scan and cardiac patient scan are shown in Fig. 5(a) and Fig. 5(b), respectively. The 

start time t* was initially set to 30 minutes. Fig. 6 validates that the late-time time points of 

the two blood input functions approximately follow a mono-exponential model CP (t) = a1e
−a2t for t ≥ t*. It is not surprising that higher noise presents in the cardiac patient data 

because the scan was operated in a 2D mode and also without time-of-flight capability.

The linear relation between x(t) and x′(t) after t* = 30 minutes is shown in Fig. 7(a) for the 

breast patient data and in Fig. 7(b) for the cardiac patient data.

4.2.2. Breast Patient Result—The parametric maps of Ki by the standard Patlak model 

and K′i by the relative Patlak model with t* = 30 minutes are shown in Fig. 8 for transverse, 

sagittal and coronal planes. The standardized uptake value (SUV) images by the static scan 

at 55–60 minutes are also included for a comparison with parametric imaging. The two 

parametric images have different absolute values but they appear to be proportional to each 

other. Compared with the SUV images, the Ki and K′i images demonstrated higher contrast 

in the breast tumor region.

The plot of K′i versus Ki is shown in Fig. 9(a). It is clear that K′i was linearly related to Ki 

with a slope of 1.6199 and intercept of 1.7345 × 10−7. The intercept was negligible so the 

linear relation was simply a scaling. The slope of the linear plot of K′i versus Ki is very close 

to the slope of the linear plot of x(t) versus x′(t). The correlation coefficients between K′i
and Ki was close to 1. Fig. 9(b) further shows the correlation coefficient between K′i and Ki 

versus various t* values ranging from 10 minutes to 50 minutes. High correlation remains 

between K′i and Ki.

4.2.3. Cardiac Patient Result—The SUV images of the last frame (55–60 minutes), 

parametric maps of Ki by the standard Patlak model and K′i by the relative Patlak model 

with t* = 30 minutes are shown in Fig. 10. Again, the two parametric images appear to be 

proportional to each other, though with different absolute values. The contrast of the 

myocardim over the blood pool is higher in the parametric images than in the SUV images.

The plot of K′i versus Ki is shown in Fig. 11(a). It is again clear that K′i is linearly related to 

Ki with a slope of 1.2898 and intercept of 7.7 × 10−6. The negligible intercept indicates that 

the linear relation is a scaling. The slope between K′i versus Ki is very close to the slope 

between x(t) versus x′(t) shown in Fig. 7(b). The correlation coefficients between K′i and Ki 

and between x(t) and x′(t) are close to 1.

The correlation coefficient between K′i and Ki is further plotted versus the start time t* in 

Fig. 11(b). The correlation coefficient values remain above 0.90, though the one at t* = 45 

minutes is slightly lower then others. This can be explained by the fact in Fig. 7(b) that the 
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linear correlation between x and x′ for t* = 45 minutes (i.e., the last three points) is 

relatively weaker, possibly due to higher noise in the cardiac scan. The corresponding Ki and 

K′i images for t* = 45 minutes are shown in Fig. 12. Overall, the two images still have very 

similar contrast appearance, indicating the scaling relation between Ki and K′i.

5. Discussion

The relative Patlak plot is a simplified version of the standard Patlak plot but brings 

significant advantages for practical use. The theoretical relation between the standard Patlak 

plot and relative Patlak plot was derived based on the assumption that the tail of a blood 

input function follows a mono-exponential decay model or meets an approximate linear 

relation between x(t) and x′(t). This assumption is valid in many dynamic PET scans, as 

demonstrated in this work by using the popular Feng input model and two blood input 

functions extracted from real patient data. Even if the tail of a blood input function 

mathematically follows a more complex model (e.g., a bi-exponential decay model) for 

accurate description, we have demonstrated that the relation of x(t) versus x′(t) can remain 

highly linear.

The relative Patlak plot has limitations. Compared with quantitative Ki estimates by the 

standard Patlak plot, a disadvantage of the relative Patlak plot is that the slope K′i is not fully 

quantitative as the information of s∗ = ∫0

∗
CP τ dt is lost and the global scaling factor 

cannot be determined. In this regard, we do not recommend the use of K′i as a replacement 

for quantitative Ki because the variability in K′i can be different from patient to patient and 

from scan to scan. For example, the scaling factor was 1.6199 in the breast cancer patient 

and1.2898 in the cardiac patient in the patient study. Hence, the relative Patlak plot is not 

directly suitable for those applications that require absolute quantification of Ki.

However, there are many applications that do not require absolute quantification but utilize 

the contrast information in the parametric image of Ki. Examples include, but are not limited 

to, lesion detection (e.g., [Li et al., 2009, Yang et al., 2016]), and metabolic tumor volume 

segmentation (e.g., [Visser et al., 2008]) using parametric map of tracer influx rate. The 

target-to-background contrast is often higher in the parametric images than in the SUV 

images, implying that parametric imaging can offer higher lesion detectability and better 

boundary differentiation (Fig. 8 and Fig. 10). Texture analysis based on parametric images 

may also provide new insight into tumor heterogeneity beyond the analysis on SUV images. 

In addition, for cancer imaging, a background region (e.g., the liver) may be defined to 

normalize the parametric image of the relative Patlak slope, then the global scaling factor 

can be removed. The normalized K′i is quantitatively equal to the normalized Ki and can be 

used for quantitative monitoring in a longitudinal study. We will investigate the feasibility of 

normalized K′i for this purpose in a future patient study.
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The investigation and development in this work are also timely because recently whole-body 

Patlak parametric image reconstruction has become available in commercial PET scanners 

[Hu et al., 2017]. The new relative Patlak plot can have a clear impact on practical use.

6. Conclusion

We propose a new relative Patlak plot method for analyzing dynamic PET data. The new 

plot excludes the need for early-time input function and only requires late-time input 

function data, thus is easier to use than the standard Patlak method. Theoretical analysis, 

simulation results and real patient data all have demonstrated that parametric imaging by the 

relative Patlak plot determines the parametric image of the standard Patlak slope up to a 

global scaling factor. The new relative plot can replace the standard Patlak plot for certain 

applications where the determination of the global scaling factor is not necessary, such as 

lesion detection, metabolic volume segmentation, and texture analysis.
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Figure 1. 
Blood input functions in the simulation. (a) Full-time blood input function (circles) by the 

Feng model for the Standard Patlak and late time points (solid triangles) for the relative 

Patlak; (b) Linear relation between x and x′ with t* = 30 minutes.
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Figure 2. 
Comparison of the standard Patlak plot and relative Patlak plot in the simulation. (a) 

standard Patlak plot; (b) relative Patlak plot.
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Figure 3. 
Results of simulation. (a) Relation between K′i and Ki; (b) Correlation coefficient of K′i
versus Ki for various t* values.
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Figure 4. 
Validation of the approximate linear relationship between x(t) and x′(t) for the bi-

exponential input function CP (t) = a1e−a2t + b1e−b2t. t* = 30 minutes. (a) Plot of the 

correlation coefficient of x(t) versus x′(t) for 1,000 realizations; (b) Correlation plot for a 

specific parameter set that corresponds to the sample point with the lowest correlation 

coefficient in (a).
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Figure 5. 
Blood input functions from dynamic FDG-PET scans of human patients. (a) breast cancer 

patient; (b) cardiac patient.
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Figure 6. 
Validation that late-time points of real patient blood input functions approximately follow a 

mono-exponential function model. (a) breast patient data, (b) cardiac patient data.
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Figure 7. 
Linear relation between x(t) and x′(t) for patient data with t ≥ t* = 30 minutes.(a) breast 

patient data, (b) cardiac patient data.
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Figure 8. 
Comparison of SUV images and parametric imaging using the standard Patlak plot and 

relative Patlak plot for the breast patient. (a) SUV images; (b) parametric image of the 

standard Patlak slope Ki; (c) parametric image of the relative Patlak slope K′i. The start time 

t* = 30 minutes. From the top to the bottom are the views from the planes of transverse, 

sagittal and coronal, respectively.
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Figure 9. 
Results of the breast patient scan. (a) Relation between K′i and Ki (t* = 30 minutes); (b) 

Correlation coefficient between K′i and Ki versus various start time t*.
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Figure 10. 
Comparison of SUV images and parametric imaging using the standard Patlak plot and 

relative Patlak plot for the cardiac patient. (a) SUV images; (b) parametric image of Ki; (c) 

parametric image of K′i. The start time t* = 30 minutes. From the top to the bottom are the 

views from the planes of transverse, sagittal and coronal, respectively.
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Figure 11. 
Results of the cardiac patient scan. (a) Relation between K′i and Ki (t* = 30 minutes); (b) 

Correlation coefficient between Ki and K′i versus various t* values.
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Figure 12. 
Parametric images of Ki and K′i estimated with t* = 45 minutes for the cardiac patient data. 

(a) Ki by the standard Patlak plot; (b) K′i by the relative Patlak plot.
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