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ABSTRACT OF THE DISSERTATION

Enabling a Laser Plasma Accelerator

Driven Free Electron Laser

by

Nathan Matthew Majernik

Doctor of Philosophy in Physics

University of California, Los Angeles, 2019

Professor James Rosenzweig, Chair

The free electron laser (FEL) is the brightest available source of x-rays, surpassing other

options by more than ten orders of magnitude. The FEL’s short (∼femtosecond), high power

(∼gigawatt), coherent x-ray pulses are uniquely capable of probing ultrafast and ultrasmall

atomic and molecular dynamics and structure, making them an invaluable research tool for

biology, chemistry, material science, physics, medicine, and other fields. Unfortunately, all

extant x-ray FELs rely on long rf linacs and undulators, with a footprint of kilometers and

a cost on the order of a billion dollars. This severely limits the number of x-ray FELs,

with the half dozen existing installations funded at the nation state level. These facilities

are significantly oversubscribed, to the detriment of scientific and technological progress.

Therefore, attempts to reduce the size and cost of FELs are an active area of research in

an effort to increase access to these powerful research tools, with the goal of making x-ray

FELs affordable to universities and companies.

One of the approaches being researched is the laser plasma accelerator (LPA). The LPA

uses an ultra-high intensity laser to eject plasma electrons from a bubble region, producing

longitudinal accelerating fields more than three orders of magnitude higher than what can

be achieved in an rf linac. In principle, this could shrink the FEL accelerating section from

the kilometer scale to a tabletop. To date though, despite continual progress and refinement

over the last decade, LPA beam quality has not yet reached the level where it can be directly
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used as an FEL driver due to stringent constraints on the lasing dynamics.

The BELLA FEL experiment at Lawrence Berkeley National Lab intends to decompress

the beam to skirt some of the beam quality requirements, by stretching the beam longi-

tudinally and reducing local energy spread. This dissertation will discuss the design and

implementation of two subsystems essential for the successful operation of this experiment.

The first of these is a coherent transition radiation bunch length diagnostic, which is re-

quired to measure the length of the LPA bunches and extrapolate other details about the

experiment’s performance. The second is an electromagnetic chicane which performs the

decompression of the electron beam. A final chapter explores the use of advanced undula-

tors to enable the next generation of LPA driven FELs without decompression and discusses

methods for realizing such undulators.
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CHAPTER 1

Introduction

1.1 History of LPAs and FELs

This dissertation discusses various efforts towards the realization of a laser plasma accelerator

(LPA) driven free electron laser (FEL). Although both LPAs and FELs have had at least

a decade of experimental demonstration and refinement, to date, there has not yet been

a demonstration of FEL gain when using an LPA driver. This section will introduce the

fundamentals and history of LPAs and FELs independently and will discuss the difficulties

of pairing them together.

1.1.1 Free electron lasers

The free electron laser was first described by John Madey in 1971 [1] and then demonstrated

by his group in 1977 [2]. FELs use a beam of relativistic electrons as the laser gain medium,

arising from their interaction with and amplification of an electromagnetic field while trav-

eling through a periodic magnetic structure called an undulator. An idealized model of

an undulator is a sinusoidally varying, vertically oriented magnetic field, By = B0 sin(kuz),

where B0 is the peak magnetic field and ku is the undulator wavenumber. This in turn causes

the electrons to follow a perpendicular, sinusoidal trajectory.

An accelerated charged particle emits synchrotron radiation which, in the context of a

constant magnetic field, is broadband and swept out tangentially along the bend. However, in

an undulator, the radiation from the individual bends interferes with each other, tightening

the emitted radiation into a forward directed cone and narrowing the emitted spectrum

into spikes at harmonics of the fundamental wavelength, λr. For a trajectory with a small
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oscillation amplitude, λr ≈ λu
2γ20

, where λu is the undulator wavelength and γ0 is the Lorentz

factor. Intuitively, this situation can be thought of as relativistic Doppler blueshifting the

output of a moving antenna, i.e. the moving electrons.

In a free electron laser though, there is an additional term in the electron equation

of motion: an external electromagnetic field. If this field is at or near the undulator’s

fundamental wavelength, it can cause the electrons to microbunch at that wavelength (This

process is discussed in much greater detail in Section 4.2.1). As the electrons microbunch, the

length of the effective emitter begins to become small relative to the radiation wavelength,

meaning that the synchrotron radiation from each individual electron adds at nearly the

same phase as all the others. This coherence leads to a the generation of radiation with

intensity scaling with the number of electrons squared, instead of linearly as in spontaneous

undulator radiation. For bunches with billions of electrons, the coherent enhancement of

power can be many orders of magnitude.

Broadly speaking, there are three classes of FEL [3]: oscillator, seeded, and self-amplified

spontaneous emission (SASE). The earliest demonstrated examples of the FEL were oscil-

lators which operate like a typical laser cavity resonator; two mirrors reflect light back and

forth through a cavity containing the gain medium, which in this case is the electron beam

passing through an undulator. Such devices operate in the “low gain” regime where the in-

crease in power per pass is small. High powers can still be reached by relying on many passes

through the medium, but it is necessary to have mirrors available for the relevant wavelength,

largely limiting them to wavelengths at and above UV. A seeded FEL does not require mir-

rors and operates in a single pass, where a pulse of radiation at the resonant wavelength

is copropagated with the electron beam through the undulator. This approach extends the

FEL’s operation to regions of the spectrum without high quality mirrors but instead requires

another source of the target radiation wavelength; this largely confines seeded FELs to use

at deep UV wavelengths. Finally, a SASE FEL relies on a resonant self-interaction with

the spontaneous undulator radiation as it slips forward along the subluminal electron beam.

This is currently the only class of FEL which can access hard x-ray wavelengths. The issue

with such FELs is the stringent requirements on beam quality (Discussed in greater detail
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in Chapter 4).

The SASE x-ray free electron laser (XFEL) is currently the brightest source of x-rays

available, more than 10 orders of magnitude brighter than the next brightest: spontaneous

undulator radiation [4]. The ultrashort (∼fs) pulses deliver gigawatts of power to spot sizes

on the order of 100 nm, making them an invaluable research tool for biology, chemistry,

material science, medicine, and more by allowing researchers to probe length and time scales

that would otherwise be inaccessible [5]. The main issue with XFELs is their enormous price

tag; costing on the order of a billion dollars each, there are only around a half dozen XFELs,

all of them constructed by nation states or supra-national organizations. The invaluable

science they can generate paired with the limited access to beamtime means these facilities

are massively oversubscribed, to the detriment of scientific and technological progress.

All current XFELs are comprised of an rf linac and a conventional undulator and have a

footprint on the order of kilometers. rf linacs can be either normally conducting or supercon-

ducting but, in either case, consist of precisely formed metal cavities which are pumped with

microwaves which create longitudinal electric fields to accelerate electrons. The linac usually

has a final energy of around 10 GeV and, since rf structures are limited by breakdown to a

gradient of a few 10s of MV/m, they are necessarily extremely long and therefore extremely

expensive. The beam is then delivered to a conventional undulator, comprised either of a

pure permanent magnet or hybrid Halbach array, with a length on the order of 100 meters.

This is also a very precise, long, and therefore expensive device. To dramatically increase

access to beamtime, research into improving both the acceleration and undulator sections of

the XFEL are extremely active in an effort to reduce their size and cost.

1.1.2 Laser plasma accelerators

The laser plasma accelerator (LPA) is a compact alternative to the rf linac for electron accel-

eration, wherein a high intensity laser causes a ponderomotive ejection of plasma electrons,

leaving behind a high charge ion channel with extremely large accelerating gradients. The

LPA was first described theoretically in 1979 by Tajima and Dawson [6] but advancements
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in ultra-intense, ultra-short lasers enabled by chirped pulse amplification were required for

experimental realization in the “bubble regime”. Early experiments, e.g. Malka et. al in

2002 [7], generated beams with exponential energy distributions, with spreads in excess of

100% with peak energies around 200 MeV. In 2004, three groups [8, 9, 10] reported a signif-

icant improvement in energy spread, to the few-% level, while still operating at <200 MeV.

Since then, refinements in the LPA process have continued, producing beams in a variety of

operational regimes including energies up to 8 GeV [11], currents over 10 kA [12], normalized

transverse emittances below 60 nm-rad [13], and sub-% energy spreads [13, 14].

A crucial advantage of the LPA over a conventional rf linac is the enormously higher

accelerating gradient, 10s to 100s of GV/m, compared to a linac’s 10s of MV/m. This allows

LPAs to be three orders of magnitude shorter than a linac while producing the same final

energy, potentially reducing the footprint of an accelerator from kilometers to a tabletop.

Generally though, there is a trade-off between beam parameters. Although an individual LPA

experiment might deliver high energy, high current, low emittance, or (relatively) low energy

spread, no group has demonstrated an LPA which can achieve all these results simultaneously,

in the manner that a modern linac can. This leads to the challenges associated with using

an LPA to drive an FEL, as detailed in the next section.

1.1.3 LPA driven FEL

As LPA beam quality has continued to improve since 2002, it was natural to propose to use

an LPA as an FEL driver. If successful, such an LPA-FEL could radically decrease the size

and cost of an FEL installation from a billion dollars to tens of millions and from kilometers

to the lab scale. This would increase access to FEL beamtime by making them affordable

to universities and companies. Considering the scientific importance of the FEL to many

disciplines and the oversubscription of present FEL beamlines, the LPA-FEL could become

an essential piece of research infrastructure with far ranging benefits.

At the present time however, experimentally demonstrated LPA beams do not meet the

stringent beam quality requirements for direct-drive XFEL operation using a conventional
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undulator; the most troublesome parameter is the relatively high energy spread of LPA

beams (See section 4.2.2 for details). However, beam quality has advanced to the point

where it is theoretically possible to skirt these constraints using a non-traditional undulator

or beam manipulation techniques.

All of the LPA-FEL experiments currently being attempted are using either a transverse

gradient undulator (TGU) [3, 15, 16, 17] or beam decompression [18, 19, 20, 21]. For the

TGU approach, beam optics are used to introduce a correlation between transverse position

and particle energy before passing the beam through an undulator which has a non-constant

undulator parameter across its width; by matching these correlations, a resonant condition

can be maintained for the whole beam despite its large energy spread. The decompression

approach, employed by the BELLA FEL project, uses a chicane to decompress the beam,

reducing the current but also reducing the slice-wise energy spread to an acceptable level for

lasing. Neither approach has yet demonstrated FEL gain but work is ongoing. An additional

option for an LPA-FEL is also considered in this dissertation: the use of advanced undulators

for a direct drive LPA-FEL. Through the use of non-conventional undulator design, it is

possible to increase the FEL’s tolerance to energy spread.

1.2 Dissertation structure

This dissertation discusses two experimental subsystems designed and built for the BELLA

FEL experiment at Lawrence Berkeley National Lab (LBNL): a coherent transition radiation

bunch length diagnostic and the beam decompression chicane. The final chapter explores

direct drive LPA-FELs based on advanced undulators using simulations and also details

approaches for constructing such advanced undulators.

Chapter 2 is about the design, simulation, construction, and commissioning of a coherent

transition radiation (CTR) based bunch length diagnostic for the BELLA FEL experiment.

It begins with a discussion on the theory of transition radiation and a subsequent derivation

of coherent transition radiation with an explanation of how it can be used to understand the

temporal structure of a beam. Next it discusses the particular constraints imposed by the
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BELLA FEL experiment for the diagnostic system. The custom simulation framework for the

optical system is described and used to determine the layout. Simulated detector responses

as a function of beam specs are demonstrated. The commissioning of the system using a

blackbody source and spectrum reconstruction are discussed. Details regarding installation

and alignment are also included. Finally, preliminary electron beam results are considered.

Chapter 3 is about the design, simulation, construction, and commissioning of a chicane

for beam decompression for the BELLA FEL experiment. It begins with a discussion about

the need for such a decompression scheme. Then fundamentals of chicane dynamics are de-

scribed theoretically. The next section is an adapted paper which describes the optimization

of low aspect ratio dipole magnets, a class of magnet likely to be relevant for future LPA

experiments. Next, the requirements imposed on the design of the chicane specifically for

the BELLA FEL experiment are enumerated. There are discussions on pole face design,

magnetic circuit analysis, coil design, thermal considerations, material selection and prop-

erties, mechanical considerations, and the evolution of the dipole design. Details about the

fabrication of the dipoles and the chicane kinematic mount are included. Measurements of

the field using a Hall probe and 3D gantry are described and compared to a simulated model.

The chapter concludes with notes about the degaussing procedure and process as well as the

final installation of the chicane at LBNL.

Chapter 4 is about direct drive LPA-FELs using advanced undulators. It opens with

a discussion of the fundamentals of FEL operation, explaining the basic principles of high

gain FEL operation in the 1D approximation. Then 3D errors and an empirical fitting

model for estimating their detrimental effects are explained. The current experimental efforts

towards realizing LPA-FEL, the transverse gradient undulator and beam decompression, are

described along with their pros and cons. The general concept of advanced undulators are

introduced and contrasted with the conventional undulators in use at all extant XFELs. Two

specific classes of advanced undulators, cryo-undulators and milliundulators, are considered

in more detail. Next, time dependent simulations incorporating all 3D effects are performed,

pairing advanced undulators with three different cases of LPAs beams to explore the potential

of a direct drive LPA-FEL. These three cases are the BELLA FEL experiment beam (both
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a conservative case and a proposed upgrade), the best experimentally demonstrated LPA

beam to date, and a particle-in-cell simulated LPA beam. Finally, the chapter closes with

sections about the construction of future advanced undulators. One of these approaches is

an adapted paper describing the use of right angle, triangular magnets in a pure permanent

magnet Halbach array. The other approach is adapted from another paper about the use of

“comb fabrication” to construct higher order Halbach and hybrid Halbach milliundulators.
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CHAPTER 2

Coherent transition radiation bunch length diagnostic

2.1 Coherent transition radiation introduction

2.1.1 Motivation

Measuring the temporal profile of an electron bunch is a crucial diagnostic for free electron

lasers. This is especially true for the BELLA FEL experiment since, combined with a

chicane and spectrometer, a bunch profile diagnostic will give information about the beam

decompression. Unfortunately, many of the diagnostic techniques developed over the past

decades for rf linacs and their few picosecond long beams (e.g. electro-optic methods, streak

cameras, and rf and passive deflectors [22, 23, 24]) are unable to resolve the ultra-short,

few femtosecond, bunches that laser plasma accelerators produce. Techniques for measuring

these beams are an area of active development and there is not yet a de facto standard [24].

Based on the requirements for this experiment of single shot measurement and resolution of

a wide range of bunch lengths with limited prior knowledge and the desire to use an already-

possessed pyroelectric detector, the implementation of a coherent transition radiation (CTR)

bunch length diagnostic was requested.

2.1.2 Transition radiation fundamentals

To discuss the operating principle of a CTR bunch length diagnostic, it is necessary to first

establish the physics of transition radiation (TR) in general. First predicted theoretically by

Ginzburg and Frank in 1946 [25], transition radiation is often described as a particle “shaking

off” the field discontinuities that result from traversing the interface between two media with
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different permittivities. The derivation from first principles is lengthy but straightforward

and can be found in standard EM textbooks like [26]. An expression for the forward transition

radiation spectral power density for an electron traversing such a discontinuity, normal to

the interface, is given by [27] as (in Gaussian units):

d2I(n, ω)

dω dΩ
=

e2β2√ε2 sin2 θ2

π2c (1− β2ε2 cos2 θ2)2

∣∣∣∣∣∣
cos(θ2)(ε1 − ε2)

(
1− β2ε2 − β

√
ε1 − ε2 sin2 θ2

)
(

1− β
√
ε1 − ε2 sin2 θ2

)(
ε1 cos θ2 +

√
ε1ε2 − ε22 sin2 θ2

)
∣∣∣∣∣∣
2

(2.1)

where dI(n,ω)
dω dΩ

is the energy radiated along vector n at frequency ω per unit frequency per unit

solid angle, Ω, e is the electron charge, ε1 and ε2 are the permittivities of the initial and final

media respectively, θ2 is the angle between the measurement vector n and the beam axis, c

is the speed of light, and β is the particle velocity normalized to c. Note that the frequency

response is flat, i.e. there is no ω dependence, corresponding to an impulse response in the

time domain.

For the case of an electron traveling through a media into vacuum, set ε2 to 1. Then

consider the second part of the expression in the ultra-relativistic limit (β → 1), in the first

order approximation for small θ2:

lim
β→1

∣∣∣∣∣∣
cos(θ2)(ε1 − ε2)

(
1− β2ε2 − β

√
ε1 − ε2 sin2 θ2

)
(

1− β
√
ε1 − ε2 sin2 θ2

)(
ε1 cos θ2 +

√
ε1ε2 − ε22 sin2 θ2

)
∣∣∣∣∣∣
2

= 1 +O(θ2
2). (2.2)

So in this limit

d2I(n, ω)

dω dΩ
≈ e2β2 sin2 θ2

π2c (1− β2 cos2 θ2)2 , (2.3)

and the dependance on the media’s permittivity, ε1, drops out. Convert to SI units by the

substitution e2 7→ e2

4πε0
:

d2I(n, ω)

dω dΩ
≈ e2β2 sin2 θ2

4π3cε0 (1− β2 cos2 θ2)2 , (2.4)
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Figure 2.1: Angular and β dependence of transition radiation.

which is a standard expression for TR (e.g. [28]). Figure 2.1 shows the angular dependence

of this expression for a few β values.

Taking the derivative of equation 2.4 with respect to θ leads to an expression for the

angle corresponding to maximum energy emission, θm:

θm = tan−1

(√
1− β2

2β2 − 1

)
. (2.5)

Using the standard Lorentz factor, γ = 1√
1−β2

, substitute into equation 2.5:

θm = cot−1
√
γ2 − 2, (2.6)

which to first order in large γ reduces to:

θm ≈ 1/γ. (2.7)

Plugging this back into equation 2.4 to find the peak intensity yields:
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Figure 2.2: Schematic of the distribution of transition radiation.

d2I(n, ω)

dω dΩ

∣∣∣∣
max

≈ γ2

4
, (2.8)

A schematic of the distribution of transition radiation is shown in Figure 2.2; a similar

process for calculating TR resulting from a particle transiting from vacuum to non-vacuum

yields “reflected transition radiation” of the same form.

2.1.3 Coherent transition radiation fundamentals

Although the transition radiation of a single particle has a flat frequency response, a bunch

will have a non-flat response based on the coherent and incoherent addition of the respective

particles’ TR. A derivation of CTR from an electron bunch can be found in many sources

including [29]. The derivation begins by taking a linear superposition of all of the TR electric

fields from each electron:
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Etotal(ω) =
N∑
j

Ej(ω)ei(ωt−knj ·rj), (2.9)

where this is a sum over the N bunch electrons, n is a normalized vector pointing from the

jth electron to the observer, and k is the wavenumber ω/c. The intensity is proportional to

the electric field squared:

I(ω) ∝

∣∣∣∣∣
N∑
j

Ej(ω)ei(ωt−knj ·rj)

∣∣∣∣∣
2

, (2.10)

which can be expressed as a product of sums running over different indices using a complex

conjugate to enforce the absolute value:

I(ω) ∝
N∑
j

Ej(ω)ei(ωt−knj ·rj)
N∑
m

E∗m(ω)e−i(ωt−knm·rm), (2.11)

with E = |E|. This can be reexpressed in the suggestive form:

I(ω) =
N∑
j

|Ej(ω)|2 +
N∑

j,m; j 6=m

Ej(ω)E∗m(ω)eikn·(rj−rm). (2.12)

The total intensity can be found in absolute rather than proportional terms by substituting

in the intensity from a single electron, i.e. |Ej(ω)|2 ∝ Ie(ω). If all the electrons can be taken

to have approximately the same energy, then the same replacement can be made between

electron field contributions, i.e. Ej(ω)E∗m(ω) = Ie(ω) ∀j,m. Then equation 2.12 simplifies

to:

I(ω) = NIe(ω) + Ie(ω)
N∑

j,m; j 6=m

eikn·(rj−rm), (2.13)

where the first term is the incoherent contribution, Iincoh, and the second term is the coherent

contribution, Icoh. In the limit that kn · (rj − rm) → 0 ∀j,m then Icoh → N(N − 1)Ie(ω)

and, if it is also true that N is large, Icoh ≈ N2Ie(ω) >> NIe(ω) = Iincoh. Qualitatively,

this means approximately that wavelengths which are long relative to the bunch’s size will
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be generated coherently and will therefore have more spectral power than if the bunch was

long relative to the wavelength.

If N is large, a continuum approximation can be made, permitting the use of integrals

rather than sums. Let S(r) be the normalized distribution function for the bunch such that∫
R3 S(r)d3r = 1. Then equation 2.10 can be converted to

I(ω) ∝
∣∣∣∣∫

R3

NE(ω)eikn·rS(r)d3r

∣∣∣∣2 . (2.14)

As before, getting the intensity as an absolute rather than proportional expression by sub-

stituting a single electron intensity:

I(ω) = N2Ie(ω)

∣∣∣∣∫
R3

eikn·rS(r)d3r

∣∣∣∣2 , (2.15)

which can be simplified by defining the squared Fourier transform of S(r) as the form function

f(ω) ≡
∣∣∣∣∫

R3

eikn·rS(r)d3r

∣∣∣∣2 , (2.16)

giving

I(ω) = N2Ie(ω)f(ω). (2.17)

This is the fully general expression for CTR but, for many relevant cases, making a few

further assumptions can simplify the expression. The first assumption is that the bunch

distribution function is separable in cylindrical coordinates: S(r) = Sz(z)S⊥(ρ, φ). With θ

taken to be the angle between the z-axis and n, n ·z = z cos θ and n ·r⊥ = r⊥ sin θ, and with

φ defined as the angle between ρ’s projection onto the xy-plane and the x-axis equation 2.16

becomes:

f(ω, θ) =

∣∣∣∣∫ ∞
0

∫ 2π

0

S⊥(ρ, φ)eikρ cosφ sin θdφ dρ

∫ ∞
−∞

Sz(z)eikz cos θdz

∣∣∣∣2 . (2.18)
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By further assuming that the bunch distribution is cylindrically symmetrical, i.e. S⊥(ρ, φ) =

S⊥(ρ), then

f(ω, θ) =

∣∣∣∣∫ ∞
0

S⊥(ρ)

∫ 2π

0

eikρ cosφ sin θdφ dρ

∫ ∞
−∞

Sz(z)eikz cos θdz

∣∣∣∣2 , (2.19)

and the identify for a zeroth order Bessel function,

2πJ0(u) ≡
∫ 2π

0

eiu cosφdφ (2.20)

gives

f(ω, θ) = 4π2

∣∣∣∣∫ ∞
0

S⊥(ρ)J0(kρ sin θ)dρ

∫ ∞
−∞

Sz(z)eikz cos θdz

∣∣∣∣2 . (2.21)

For a transversely symmetric, tri-gaussian bunch, i.e. S⊥(ρ) = 1√
2πσ2

r

e−ρ
2/2σ2

r and Sz(z) =

1√
2πσ2

z

e−z
2/2σ2

z , the form factor is

f(ω, θ) ≈ e
−ω2
c2

(σ2
z cos2 θ+σ2

r sin2 θ). (2.22)

Substituting back into equation 2.17 which gives CTR in terms of the form factor, also

substituting the definition of single particle transition radiation from equation 2.4 gives:

∂2ICTR

∂ω ∂Ω
= N2 e2β2 sin2 θ

4π3cε0 (1− β2 cos2 θ)2 e
−ω2
c2

(σ2
z cos2 θ+σ2

r sin2 θ), (2.23)

the generic expression for spectrally and angularly dependent CTR for a transversely sym-

metric, tri-gaussian electron bunch.

Some experiments [30, 29] use a simplified version of the form factor which supposes that

the effects of the transverse beam size are negligible, i.e. σ2
z cos2 θ >> σ2

r sin2 θ. Recalling

that radiation is peaked at θ ≈ 1/γ and nearly entirely contained within a few factors of

1/γ, this supposition is good in the limit of large γ. This permits the form function to be

reduced to
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lim
γ→∞

f(ω, θ) ≈ e−(ωσzc )
2

. (2.24)

eliminating its angular dependence. However, for the CTR system discussed below, this is

not a valid approximation due to the relatively low beam energy (∼100-200 MeV) and the

fact that σz < σx.

2.2 CTR diagnostic constraints

The CTR bunch length diagnostic for the BELLA FEL experiment had a number constraints

which influenced its design. These included:

• Measurement of beams ranging from 1 to 10 µm

• Single shot diagnostic

• No pre-shot beam length assumption

• Use of existing detector

• Compact layout

A detailed discussion of these requirements and their implications follows.

2.2.1 Measurement of beams ranging from 1 to 10 µm

LBNL requested the ability to resolve beams over a wide range of lengths, from 1 to 10 µm,

due to the tunability of the LPA process [31]. They were confident in their ability to generate

10 µm beams initially and, by having a detection range up to that point, the accelerator

parameters could be tuned to reduce the bunch length. 1 µm was taken as the feasible lower

bound for this optimization process. Assuming gaussian beams at 50, 100, and 250 MeV

with a 10 µm spot size, equation 2.23 integrated over θ up to 6/γ gives spectra shown in

Figure 2.3. This plot shows the normalized CTR spectra for the maximum and minimum

15



Figure 2.3: Normalized CTR spectra for the shortest (1 µm) and longest (10 µm) beams to

be resolved at representative energies 50, 100, and 250 MeV. For reference, 4-, 6-, and 8-bit

detection limits are shown.

length beams. Also shown is the minimum resolvable intensity based on a non-clipping, 6-bit

detector (to be discussed later). Therefore, a spectral range from 1 to 40 µm was selected

for the spectrometer.

2.2.2 Single shot diagnostic

The next constraint for the diagnostic system is that it needs to be single shot. Many

other CTR bunch length diagnostics require either a multi-shot approach or significant pre-

shot knowledge, both of which require a stable beam. Some examples of a multi-shot CTR

diagnostic include interferometry [32, 33, 22] or employing discrete spectral filters on a non-

dispersed CTR signal [30] while techniques that require pre-shot knowledge of the beam’s

structure include real-time interferometry (RTI) [34, 35] or absolute energy measurement of

the whole spectrum by a single bolometer pixel [36]. Since LPA beams are highly variable

shot-to-shot compared to conventional accelerators [37, 38, 39, 40, 41], it is necessary that all

information required for bunch length reconstruction be available from a single shot. This
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requires the use of a multi-pixel detector for the spectrometer which dovetails with a later

constraint.

2.2.3 No pre-shot beam length assumption

As addressed previously, a wide range of bunch lengths are expected, with potentially high

variability. Without being able to reliably predict the approximate length of the beam

beforehand, the use of gratings as a diffractive element was ruled out. Although gratings

can have lower losses than transmissive, diffractive elements like a prism, they also can

produce multiple order reflections of the dispersed spectra, which can sometimes overlap.

Without prior knowledge of what the expected spectra should be, attempting to deconvolve

these multiple orders could be intractable. Therefore, a prism, with its single order output,

was selected as the dispersive element.

2.2.4 Use of existing detector

The design considerations above along with the nature of CTR radiation apply stringent

constraints to the selection of the spectrometer detector. The detector must be:

• Broadband - sensitive at least to photons with wavelengths from 1 to 40 µm

• Sensitive - based on the energy output expected from the CTR foil and losses in the

optical system, the detector needs to be able to resolve few to 10s of nJ

• Pulse compatible - the detector must be able to tolerate and integrate the extremely

short pulses that the CTR interaction generates

• Multiple pixel - the detector needs a few 10s of pixels to meaningfully resolve the

spectrum

A detector satisfying all of these requirements might be an expensive, potentially custom

device. Fortunately, a suitable detector was available to be loaned for this experiment. This

custom detector, SDX-1105 [34, 35], was produced as a collaboration between Gentec-EO
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USA Inc. and Radiabeam Technologies LLC. It employs a 32 channel, pyroelectric strip

sensor, comprised of 0.5 mm wide by 1 mm tall LiTaO3 active elements. It has broadband

sensitivity from the visible through THz regimes. Each channel has 1 nJ sensitivity with 6

bit resolution.

2.2.5 Compact layout

A vacuum chamber is dedicated to beam diagnostics on the BELLA FEL beamline. All of

the CTR system needs to fit inside this chamber with approximate internal dimensions of

0.35 m × 0.35 m × 0.30 m.

2.3 CTR diagnostic design

2.3.1 Prism

Based on the design constraints, a prism with transmission from 1 to 40 µm is required.

Unfortunately, very few materials satisfy this requirement as shown in Figure 2.4 (data from

[42]). Some of the cesium salts are transmissive over this range but are considered very

difficult to work with. For example, cesium iodide is described as “extremely difficult to

polish, and so performance is compromised for range” [43]. Another material has a smaller

transmissive range but covers our required spectrum: thallium bromoiodide, also called

KRS-5. KRS-5 has been used in other CTR diagnostics with similar spectral requirements

including [44, 45, 33]. It is still a difficult material to work with as it has the following

undesirable properties [43]:

• Toxic - it is fatal in both acute and chronic exposures with a HMIS health hazard

rating of 4, the maximum value

• Soft - its Knoop hardness of 40 is comparable to gypsum and more than 10 times lower

than glass

• Hygroscopic - which can lead to clouding as it absorbs moisture from the air
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Figure 2.4: Optical material transmission ranges. Data from [42].
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Figure 2.5: Transmission spectrum for KRS-5. Data from [46].

The transmission spectrum for KRS-5 is shown in Figure 2.5 (data from [46]). The losses

in transmission are dominated by interactions at the surfaces, i.e. these curves are accurate

for all KRS-5 optics of a few mm thickness, without scaling.

The vendor Crystran was engaged to produce custom KRS-5 prisms for this experiment

with details discussed in section 2.3.3.4.

2.3.2 Mirror coating material

On the consumer optics market, e.g Thorlabs and Newport, there are four common, metallic,

broadband coatings available for mirrors: protected aluminum, protected silver, protected

gold, and unprotected gold. “Protected” in this context refers to the application of a thin

layer of dielectric(s) in order to protect the soft metal and prevent tarnishing from exposure

to atmosphere [47]. Uniquely among these three metals, gold will not tarnish in atmosphere

so it is possible to leave the bare metal surface, though without the mechanical protection

of the dielectric layer, it requires considerable care to prevent damage or deterioration of the

optical qualities. Data for the reflectivity of these 4 materials for unpolarized light at a 45

degree angle of incidence (AOI), provided by Thorlabs, is shown in Figure 2.6 (data from

[47]). This illustrates the superiority of unprotected gold for the relevant spectrum of 1 to

20



Figure 2.6: Reflectivities of four common, broadband mirror materials for unpolarized light

at a 45 degree angle of incidence. Data from [47].

40 µm.

2.3.3 Optical layout

Early designs of the CTR system’s optical layout included three off-axis parabolic mirrors

(OAP) to create an additional focus which could employ a spatial filter as in [44, 45]. How-

ever, to reduce size and complexity, a two OAP design was selected. For initial planning

purposes, the system was modeled using first order ray transfer matrices. The ray vectors in-

clude a slightly unconventional fifth term to account for the transverse angular kick induced

by the prism, δx′(λ), and are of the form:

r =



x

x′

y

y′

δx′(λ)


. (2.25)
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Three classes of optical elements are also are described in matrix form: thin lenses, drifts,

and prisms:

Mthin lens(f) = ML(f) ≡



1 0 0 0 0

−1/f 1 0 0 0

0 0 1 0 0

0 0 −1/f 1 0

0 0 0 0 1


, (2.26)

Mdrift(d) = MD(d) ≡



1 d 0 0 0

0 1 0 0 0

0 0 1 d 0

0 0 0 1 0

0 0 0 0 1


, (2.27)

Mprism = MP ≡



1 0 0 0 0

0 1 0 0 1

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


, (2.28)

where f is the focal length of the lens and d is the length of the drift. The overall system

can be characterized by the matrix:

Msystem = MD(dM2−D)ML(fM2)MD(dP−M2)MPMD(dM1−P)ML(fM1)MD(dS−M1), (2.29)

where dX−Y denotes the distance between elements X and Y, fX is the focal length of element

X, and the subscripts S, D, M1, and M2 refer to the source, detector, first OAP, and second

OAP respectively.

Three additional conditions were desirable for the design of the system. First, that the

rays be collimated at the prism face to minimize the complications of non-normal incidences.
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Second, that the system disperse the relevant spectrum across the full pyroelectric sensor area

with position dictated exclusively by photon energy to the extent possible. And finally that

all of the optics, aside from the prism, be off the shelf components. This final requirement

severely constrains the design of the system (see section 2.3.2).

2.3.3.1 Requirement - collimated at prism face

Since the expected CTR source is small (few µm) compared to its divergence (∼ 1/γ ≈

3× 10−3 rad) it can be reasonably approximated as a point source for the purposes of rough

optical layout. The first condition described above, that the radiation be collimated when

incident on the prism, is encapsulated in the ray transport through the first few elements:

rat prism face = MD(dM1−P)ML(fM1)MD(dS−M1)rsource. (2.30)

The point source approximation means that the source rays are of the form:

rsource =



0

x′

0

y′

δx′(λ)


, (2.31)

and the collimation condition is equivalent to having rat prism face of the form:

rat prism face =



x

0

y

0

δx′(λ)


. (2.32)

Plugging in the definitions for the transfer matrices and equation 2.31 into the right hand

side of equation 2.30 becomes:
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rat prism face =



x′
(
dM1−P

(
1− dS−M1

fM1

)
+ dS−M1

)
x′
(

1− dS−M1

fM1

)
y′
(
dM1−P

(
1− dS−M1

fM1

)
+ dS−M1

)
y′
(

1− dS−M1

fM1

)
δx′(λ)


, (2.33)

so setting dS−M1 = fM1 satisfies the condition of equation 2.32:

rat prism face =



fM1x
′

0

fM1y
′

0

δx′(λ)


. (2.34)

This is merely a rigorous approach to showing that a point source, placed at the focal length

of a focusing lens, will be collimated. Equation 2.34 also defines the size of prism required;

if fM1 = 6” = 152.4 mm and an acceptance of at least 6× 1/γ is desired (containing > 99%

of CTR energy) then a prism with dimension of at least 6 mm × 6 mm is required.

2.3.3.2 Requirement - dispersed along sensor width

To maximize the spectral resolution, all the pixels of the pyroelectric sensor should be used.

To achieve this, the CTR spectrum should be dispersed across the whole 16 mm width.

Additionally, the position on the sensor should depend only on the photon energy in the

point source approximation. And, lastly, the vertical position of the final ray should be

constant. These conditions are summarized by the requirement that all rays at the detector,

rdetector, are of the form:
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rdetector =



F (λ)

any

0

any

δx′(λ)


, (2.35)

where F (λ) is an arbitrary function in terms of λ and “any” denotes there is no form

requirement.

Having found one constraint on the free variables, dS−M1 = fM1, refer again to the full

system matrix, Msystem, equation 2.29. Then with equation 2.31 have

rdetector =



F (λ)

any

0

any

δx′(λ)


= Msystem



0

x′

0

y′

δx′(λ)


. (2.36)

Then the RHS evaluates to

rdetector =



F (λ)

any

0

any

δx′(λ)


=



−dM2−D(fM1x
′+δx′(λ)dP−M2)

fM2
+ fM1x

′ + δx′(λ)(dM2−D + dP−M2)

−fM1x
′−δx′(λ)fM2+δx′(λ)dP−M2

fM2

fM1y
′(fM2−dM2−D)

fM2

−fM1y
′

fM2

δx′(λ)


.

(2.37)

Make the substitution dM2−D = fM2
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rdetector =



F (λ)

any

0

any

δx′(λ)


=



δx′(λ)fM2

−fM1x
′−δx′(λ)fM2+δx′(λ)dP−M2

fM2

0

−fM1y
′

fM2

δx′(λ)


, (2.38)

which now satisfies the required form.

To ensure the spectrum covers the detector, the prism angle (discussed in a later section),

which dictates δx′(λ), and fM2 must be selected such that:

detector width = 16mm = |δx′(λmax)fM2 − δx′(λmin)fM2| (2.39)

2.3.3.3 Non-point source considerations

For the previous two sections, the CTR source was treated as a point source for simplicity.

While a good approximation, the CTR source actually has finite size, which impacts the

analysis of the optical layout. Applying Msystem to a general rsource with the substitutions

from above, dS−M1 = fM1 and dM2−D = fM2, yields:

rdetector =



fM2

(
δx′(λ)− x

fM1

)
xdM1−P−fM1(−δx′(λ)fM2+δx’(λ)dP−M2+x)−f2M1x

′+x(dP−M2−fM2)

fM1fM2

−yfM2

fM1

ydM1−P−y(fM1+fM2)−f2M1y
′+dP−M2y

fM1fM2

δx′(λ)


. (2.40)

Looking at the first and third elements of this ray, it is evident that, to keep the horizontal

position on the detector as a function of λ alone to the extent possible and to keep the

vertical position on the detector a constant requires minimizing fM2/fM1. However, there

are physical limitations to achieving this, namely that fM1 cannot be made too small since

there is some unavoidable transport from the CTR source to the first OAP and that fM2
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cannot be made too large since the system is subject to space constraints. With this in

mind, along with the very limited selection of acceptable, off the shelf OAPs, it was decided

to pick fM1 = fM2 = 6”. This results in an “imaging” condition, where the CTR source is

effectively duplicated onto the detector face with the addition of a wavelength dependent

transverse kick. Since the spot size is � pixel size, the amount of smearing that results is

small.

2.3.3.4 Prism design

Figure 2.7: Schematic of dispersion by a prism.

With fM2 selected, equation 2.39 now must be solved. For a ray impinging normally on

a prism in air (See Figure 2.7), with cut angle α, the deflection angle is θ, also called δx′(λ),

is given by [48]:

θ = −α + sin−1(n(λ) sin(α)), (2.41)

where n(λ) is the refractive index of the prism material for wavelength λ. The wavelength

dependent refractive index for KRS-5 [49] is shown in Figure 2.8.
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Figure 2.8: Refractive index of KRS-5. Data from [49].

At this point, all that is required is to substitute into equation 2.39 and solve numerically

for α:

16 mm = (152.4 mm)
∣∣(α + sin−1(n(40 µm) sin(α)))− (α + sin−1(n(1 µm) sin(α))

)
|. (2.42)

This yields a prism angle, α, of 0.315 rad. However, the prisms were ordered based on an

earlier version of the design and were cut to a slightly different α of 0.273 rad. So with this

actual α and asserting that all 16 mm of detector will be used, λmax becomes a function of

λmin, shown in Figure 2.9.

The loss of resolution from the optimal case is relatively small; now if λmin is set to 1 µm,

the λmax is 46.6 µm instead of the target value of 40 µm. On the other hand, if λmax is held

at 40 µm, λmin is now only 0.74 µm instead of the target value of 1 µm. The loss of resolution

is not easy to characterize since the relationship between λ and horizontal position on the

detector is highly non-linear. By translating the detector perpendicular to the design ray,

any spectral range between these example cases can be selected. For now, suppose that the

range 1 - 46.6 µm is selected. Then the first element of equation 2.38 combined with equation

2.41 yields a relationship between transverse position on the detector to photon wavelength,
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Figure 2.9: Spectrum limits over 16 mm detector using the α = 0.237 rad prism.

shown in Figure 2.10. Note that the data has been shifted such that the detector center is

at x = 0.
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Figure 2.10: Relationship between transverse detector position and photon wavelength. Red

regions are beyond the sensor and are not detectable.

Since the detector pixels are of finite width, each will be responsible for a bandwidth

of photon wavelength; within this range, all photons are binned together and their wave-

lengths cannot be more finely resolved. Further, due to the non-linear dispersion curve, these

bandwidths are not constant by pixel. These per-pixel bandwidths are shown in Figure 2.11.
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Figure 2.11: Pixel bandwidths using the α = 0.237 rad prism and a range of 1 to 46.6

µm. The vertical position corresponds to pixel number (from 1 to 32). Each line shows the

bandwidth of the pixel with longer lines indicating a higher degree of spectral smearing. The

numbers on the left and right of each line are the lower and upper wavelengths binned by

that pixel respectively.

2.3.3.5 Zemax validation

The optical layout was fully constrained by the first order analysis of the preceding sections.

However, the system might not be sufficiently characterized at first order leading to issues

with constructing and operating a real world version. The greatest concern regarded the

interaction of the light, dispersed by the prism, incident on the second OAP. Since the light

is no longer collimated, the OAP could have higher order effects. To validate the design,

the system was simulated in Zemax OpticStudio [50] which is capable of a fully ray traced

solution in 3D.
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Figure 2.12: Zemax simulation of CTR system optical layout.

The prism was modeled based on the real world prism geometry and used Zemax’s built

in material library information for KRS-5. The OAP model files were provided by Thorlabs

[47]. The Zemax layout is shown in Figure 2.12. The system’s behavior was found to conform

to first order approximations.

2.4 Start-to-end simulations

To understand the expected experimental outputs from the CTR system, start-to-end simu-

lations were performed. A simulated population of CTR photons is generated, propagated,

attenuated, and collected on a virtual detector.

2.4.1 Sample photon population

The first step of this simulation is to generate a sample population of CTR macrophotons

to propagate through the optical system. Reasonable bounds should be established for

the CTR wavelength and angular range as there is no reason to simulate photons that
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will not make it to the detector. The probability distribution function of equation 2.23 is

sampled within those bounds, giving two values ω and θ for each macrophoton. Since the

CTR radiation is rotationally symmetric, a random rotation angle φ can be picked from

a uniform distribution between 0 and 2π, and produce the angular components of the ray

vector according to x′ = sin(θ) cos(φ) and y′ = sin(θ) sin(φ). Then randomly sample x and

y values from the bi-gaussian distribution associated with the electron beam’s transverse

distribution. Finally, calculate the last element of the ray vector by calculating δx′(λ) using

the approach of Figure 2.9.

The energy associated with each macrophoton must be normalized according to the

expected, total CTR energy (equation 2.23 integrated over solid angle and photon frequency),

i.e.

κnormalization =

∫ θmax

0

∫ λmax

λmin
N2 e2β2 sin2 θ

4π3cε0(1−β2 cos2 θ)2
e
−ω2
c2

(σ2
z cos2 θ+σ2

r sin2 θ)2π sin(θ)dλ dθ∑
i

ωi
, (2.43)

where i is an index associated with each macrophoton. So, for the system, a macrophoton

with frequency ω is taken to have energy equal to κnormalizationω.

2.4.2 Propagation

Then, each ray vector is propagated using Msystem, resulting in a final ray rdetector according

to equation 2.40.

2.4.3 Losses

There are transmissive and reflective losses in this system which are wavelength dependent.

Although these losses do not, in reality, modulate an individual photon’s energy, in aggregate

the effect is equivalent to reducing the energy of a macrophoton. The transmission coeffi-

cient of KRS-5, TKRS−5(ω) (Figure 2.5), and the reflectivity coefficient of unprotected gold,

Rgold(ω) (Figure 2.6) are used. The reflectivity coefficient is applied for each gold surface;

in the real world implementation there are the two OAPs but also a turning mirror which
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will be discussed later. Also, the pyroelectric detector has an efficiency in converting the

photon energy into an electrical signal but this is hidden by the proprietary software which

simply reports the incident radiant energy; from the user’s perspective, the important part

is knowing the minimum resolvable energy (1 nJ) [34, 35] and that it has a flat conversion

efficiency over the relevant spectrum [51]. Also, since the entire optical path is in vacuum,

there is no need to account for IR absorption lines from air. Therefore the detected energy

of each macrophoton is taken to be:

Emacrophoton(ω) = κnormalizationωTKRS−5(ω)R3
gold(ω), (2.44)

2.4.4 Detector

The detector is represented as an array of 32 bins. For each incoming macrophoton the x

and y values of rdetector are compared to the pyroelectric pixel areas and, if intersecting, the

macrophoton energy is added to that pixel bin.

2.4.5 Simulation results

This method was used to simulate the detector responses to BELLA LPA beams. Figure

2.13 shows an example parametric sweep with beams with conservative values: 150 MeV, 50

pC, 100 µm spot size, for a range of bunch lengths from 1 to 10 µm.

2.5 Installation and commissioning

2.5.1 Installation

The CTR system was installed in the “diagnostics chamber” of the BELLA FEL beamline,

shown in Figure 2.14. The CTR foil and a gold turning mirror are on a pneumatic pop-in,

allowing remote control. Not pictured is a light shield, in the same plane as the chamber floor,

which sits between the turning mirror and first OAP, providing a light-tight seal between

the top and bottom of the chamber except for a single penetration in line with the CTR
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Figure 2.13: Simulated detector responses for LPA beams with specs: 150 MeV, 50 pC, 100

µm spot size with σz values of 1, 4, 7, and 10 µm.

path. Shielding the detector from extraneous light from the LPA drive laser and plasma

fluorescence upstream is very important; there are 10s of joules of light from these sources,

approximately 10 orders of magnitude more than expected from CTR. This is in part why

a foil is used, rather than using the turning mirror directly as the CTR emitter. Also, since

the diagnostic chamber has a dedicated vacuum pump, the upstream pipe of the chamber is

almost completely covered with aluminum foil to further limit light leakage.

2.5.2 Alignment

For the initial installation of the system, a custom mount for a single mode optical fiber

was designed to hold the fiber tip at the center of where the CTR foil will be. The fiber

tip has a diameter of approximately 5 µm, around the size of the expected CTR spot size.

This fiber connects to an 800 nm diode laser, which is a convenient wavelength to work with

since it is both in the transmission range of KRS-5 and easily viewable using CCD cameras.
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Figure 2.14: Photograph of the installed CTR system.

A “Uniblitz” [52] laser shutter with controllable rep rate and duty cycle was installed in

line, as the pyroelectric detector requires a pulsed signal with duration of ≤ 2 ms at a rep

rate ≤ 10 Hz to operate. The laser was directed through the system using IR viewer cards

and cameras. Once aligned, a bare CCD was placed at the pyroelectric detector position

to confirm that the system was performing as expected, shown in Figure 2.15. Then, the

fiber holder was removed and the master alignment laser was passed through the LPA laser

system and beamline. This laser dictates the path of the high power laser pulse and (up

to jitter) the electron beam path. This laser does not have the correct divergence and spot

size to be imaged by the CTR system but, since its wavelength is also 800 nm, if the central

axis of the beam is aligned to the sensor pixel for 800 nm, the CTR system is referenced to

the overall experiment. This is done by simply translating the detector normal to the beam
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Figure 2.15: Left - Single mode fiber laser imaged on bare CCD at pyroelectric detector

plane. Right - master alignment laser, shown on pyroelectric sensor readout.

until the Gaussian, shown in Figure 2.15, is centered on the left-most pixel.

2.5.3 Blackbody source

There are few options for producing intense broadband radiation over the near to far IR

spectral range. One option is a blackbody source, i.e. a heated object designed to output a

spectrum near that of a blackbody. Ideal blackbody spectra are given by Planck’s law [53]:

B(ν, T ) =
2hν3

c2

1

ehν/kT − 1
, (2.45)

where B is the spectral radiance, ν is the frequency of the radiation, T is the blackbody

temperature, h is Planck’s constant, c is the speed of light, and k is the Boltzmann constant.

Some example spectra for ideal blackbodies at different temperatures are shown in Figure

2.16. Although the relative power at high wavelengths is greater for colder sources, the

absolute power at any given wavelength will always be higher for the hotter source.

To benchmark the spectrometer’s performance, a blackbody source (Infrared Systems

Development model IR-508/201) with a pinhole opening was placed at the location of the

CTR foil with the Uniblitz still in place. This source is rated to provide a stability of ±0.2 C

with an emissivity >99%. The highest temperature achievable was 1000 C but, even at this

high temperature, the power output is relatively low which, combined with the detector’s

short integration time, leads to very low incident energies. The Stefan-Boltzmann law [54]
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Figure 2.16: Example spectra for ideal blackbodies at different temperatures.

gives the total radiated power (over all wavelengths) for a blackbody source per unit area,

j∗, as:

j∗ = σT 4, (2.46)

where σ is the Stefan-Boltzmann constant = 5.67E-8 W
m2K4 . Considering an emitter with

diameter 10 µm (i.e. the CTR spot size) and a detector integration time of 2 ms, this

gives total energy equal to 23 nJ over all wavelengths for a 1000 C blackbody. Due to the

limited spectral range of the system, limited solid angle collection, and transmission losses,

this would not be resolvable by the detector with its 1 nJ/pixel sensitivity. Instead, a larger

aperture pinhole of 380 µm was used, increasing the available photon energy but reducing

the spectral resolution due to smearing from the larger source size, as the pinhole size is

around the pixel size (500 µm). This gives more of a buffer with a theoretical upper bound

on energy of 34 µJ.

This data was collected along with background data for subtraction; at the very low en-
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Figure 2.17: Pyroelectric sensor readings, averaged for 200 shots of exposure to 2 ms of 1000

C blackbody radiation through a 380 µm pinhole into the CTR spectrometer. Measured

values are in blue with 1 standard deviation error bars. Orange bars are the start to end

simulation results for this situation.

ergy levels required for this test, the intrinsic detector noise is considerable. The background

scans yielded an average pixel reading of 0.51 nJ with a standard deviation of 0.18 nJ. The

average, background subtracted results for 200 shots is shown in Figure 2.17 and compared

to simulated results. The simulated results use the same technique described in section 2.4,

except with the relevant source parameters updated to reflect the size, spectrum, and di-

vergence of a 1000 C blackbody source through a 380 µm pinhole. The transverse detector

position and overall intensity were left as fit parameters.

The spectra of both the measured and simulated cases were reconstructed by asserting

that each pixel’s central wavelength had a spectral energy density of the recorded value,

shown in Figure 2.18. Despite the very poor signal to noise ratio, the reconstructed spectrum

39



Figure 2.18: Reconstructed spectra for measured (blue) with one standard deviation error

bars and simulated (orange) detector readings. Each point corresponds to a central wave-

length of a pixel. The lines are intended to guide the eye and employ a second order spline

interpolation.

from the measured data appears to agree well with the actual, blackbody spectrum. We

sought to measure the blackbody spectrum with calibrated IR filters to more rigorously

quantify the spectrometer’s performance. Due to the very limited energy available though,

no signal above background was measured with any IR filter.

2.5.4 In-situ filters

Since both alignment and calibration via blackbody require removing the CTR foil, they are

not suitable for realtime calibration during a run. Another option to verify the system is

working as expected is the inclusion of bandpass filters. Two IR bandpass filters at 4,750

nm and 9,500 nm, each with FWHM transmission windows of 500 nm, were purchased and
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installed on a linear vacuum feedthrough (See Figure 2.14). By inserting the filters while

CTR is being generated, those two wavelength bands can be positively identified with the

associated pixel(s) of the pyroelectric detector, permitting realtime calibration.

2.6 Preliminary electron beam results

The CTR system was designed for use with LPA generated electron beams described by

[21, 31, 55]:

• Energy: 120 - 250 MeV

• Charge: 30 - 100 pC

• Spot size at CTR foil: 10 - 100 µm

To date though, such electron beams have not been delivered due to laser quality issues,

an incorrect focusing triplet, chromatic focusing effects, and suboptimal LPA injection tech-

niques. In March of 2019, an experimental run was conducted to test the CTR system. The

best beams generated though were approximately 30 pC, 60 MeV with large spread, and

focused to a 1 mm spot size. CTR arising from these parameters was simulated using the

start to end techniques of Section 2.4. The resulting simulated detector response is shown

in Figure 2.19; compare to the expected performance with nominal beams in Figure 2.13.

Even with the most ambitious case of σz = 1 µm, no pixel receives even a single nJ and in

the σz = 10 µm case, over 1,000 times more energy is required to meaningfully resolve the

CTR spectra.

LBNL is continuing to refine their LPA and electron optics to achieve the initial design

beam specs. To address laser beam quality, they are installing a deformable mirror and

wavefront sensor. They are purchasing a new permanent magnet quadrupole (PMQ) triplet

which will improve focusing. Beam quality will be improved by changing from ionization

injection to down-ramp injection [38, 37]. The improved laser quality and injection will also

reduce the energy spread of the beam and therefore mitigate the chromatic focusing issues.
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Figure 2.19: Simulated detector responses for LPA beams with specs: 60 MeV, 30 pC, 1000

µm spot size with σz values of 1, 4, 7, and 10 µm (The 10 µm case is below the lower limit

on this plot).
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CHAPTER 3

Chicane

3.1 Motivation

There are many constraints on the beam parameters for an electron beam to be successfully

used in an FEL, discussed in greater detail in Chapter 4. To motivate this chapter though,

consider the condition on energy spread: σγ < ρ. ρ is the Pierce parameter, a unitless value

given by [4]:

ρ =

(
IeK

2
0 [JJ]2

16IAγ3
0σ

2
xk

2
u

)1/3

, (3.1)

where Ie is the beam current, K0 is the undulator strength parameter, [JJ] is the Bessel

function factor dependent on K0 (of order unity), IA is the Alfvén current, γ0 is the beam

Lorentz factor, σx is the transverse beam size, and ku is the undulator wave number. Since

FEL gain length scales approximately with the inverse of ρ [4] the having a large Pierce

parameter is often desirable. Typical values of ρ in conventional undulators are on the order

10−4 to 10−3.

As noted in Chapter 1 though, LPA beams have energy spreads much larger than these

ρ values. However, by decompressing the beam, the local energy spread over a coherence

length, λc = λr/4πρ, can be reduced below ρ, enabling lasing [21]. The BELLA FEL

experiment will employ a chicane to stretch the beam by introducing a correlation between

the energy and the longitudinal position, i.e. a chirp. Figure 3.1 shows how a short beam

with high energy spread can be chirped, resulting in a longer beam with lower current but

a smaller local energy spread.

43



Figure 3.1: A cartoon of longitudinal phase space of an LPA beam before and after being

chirped by a chicane. Observe how the local energy spread, σγ, over a coherence length, λc,

is reduced by chirping.

3.2 Chicane fundamentals

3.2.1 Quantifying energy/position correlation

In beam physics, it is typical to express linear transformations of the beam using the 6D R

transfer matrix [56, 57]:

R ≡



R11 R12 R13 R14 R15 R16

R21 R22 R23 R24 R25 R26

R31 R32 R33 R34 R35 R36

R41 R42 R43 R44 R45 R46

R51 R52 R53 R54 R55 R56

R61 R62 R63 R64 R65 R66


=



∂xf
∂xi

∂xf
∂x′i

∂xf
∂yi

∂xf
∂y′i

∂xf
∂ζi

∂xf
∂δi

∂x′f
∂xi

∂x′f
∂x′i

∂x′f
∂yi

∂x′f
∂y′i

∂x′f
∂ζi

∂x′f
∂δi

∂yf
∂xi

∂yf
∂x′i

∂yf
∂yi

∂yf
∂y′i

∂yf
∂ζi

∂yf
∂δi

∂y′f
∂xi

∂y′f
∂x′i

∂y′f
∂yi

∂y′f
∂y′i

∂y′f
∂ζi

∂y′f
∂δi

∂ζf
∂xi

∂ζf
∂x′i

∂ζf
∂yi

∂ζf
∂y′i

∂ζf
∂ζi

∂ζf
∂δi

∂δf
∂xi

∂δf
∂x′i

∂δf
∂yi

∂δf
∂y′i

∂δf
∂ζi

∂δf
∂δi


(3.2)

such that the initial beam state vector ri is transformed to the final state rf :
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rf =



xf

x′f

yf

y′f

ζf

δf


= R ri = R



xi

x′i

yi

y′i

ζi

δi


(3.3)

where ζ is the longitudinal particle position relative to the design trajectory and δ ≡

∆γ/γdesign. The matrix element R56 describes introducing a correlation between energy

and longitudinal position, specifically a linear chirp. It is the figure of merit in chicane

design.

3.2.2 Chicane dynamics

A chicane is a dispersive optic for charged particles, typically comprised of four dipole mag-

nets. Particles are deflected by the magnets, with lower energy particles being deflected

more, forcing them to take a longer trajectory. Figure 3.2 illustrates a basic chicane. Ob-

serve how the lower energy particles (in green) take a longer path, causing them to lag behind

the higher energy particles at the exit of the device.

The motion of electrons through a chicane will be described by the Lorentz force equation

[26]:

dp

dt
= q(E + v ×B), (3.4)

where p is the particle momentum, q is its charge, E is the electric field, v is the particle

velocity vector, and B is the magnetic field. In the relativistic case, p = γ(|v|)m0v and in a

chicane there is no electric field. Since there are only magnetic fields, the beam energy and

therefore γ will remain constant: γ(|v|) = γ0. These substitutions give the expression:

dv

dt
=

q

γ0m0

v ×B. (3.5)
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Figure 3.2: A schematic of the trajectories of charged particles within a chicane. The

red sections correspond to regions with magnetic field pointing out of the page while the

blue regions have magnetic field pointing into the page. The green, orange, and blue lines

correspond to the trajectories of negatively charged particles of increasing energies.

By assuming that the magnetic fields that are not in the ŷ direction are negligible and that

the field is flat in the transverse direction, then B ≈ By(z)ŷ. Finally, assume that the

particle motion is overwhelmingly in the initial direction, defined as ẑ, then vz ≈ c. Then a

simplified, approximate expression for the equation of motion in x is:

dvx
dt

=
−qcBy(z)

γ0m0

. (3.6)

For some purposes, it will be easier to use an expression with z as the independent variable

instead of t; simply multiply through by dt
dz

which we have approximated as 1/c:

dvx
dt

dt

dz
=
−qcBy(z)

γ0m0

dt

dz
, (3.7)
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dvx
dz

=
−qBy(z)

γ0m0

. (3.8)

This expression allows the use of a useful shorthand for real world magnetic systems: magnets

can be described in terms of their integrated field,
∫
B dz, defined simply by:

Integrated field =

∫
B dz ≡

∫ ∞
−∞

By(z) dz (3.9)

Manufacturers and magnet designers will often provide this number as a basic specification

in units of Tesla-meter or Gauss-cm when discussing beamline magnets, e.g. [58]. Using the

integrated field and equation (3.8) the transverse kick induced by a single, idealized dipole

magnet is:

∆vx =
−q(

∫
B dz)

γ0m0

. (3.10)

In the limit of small deflections, this gives an approximate angular deflection of

θx =
−q(

∫
B dz)

γ0m0c
, (3.11)

or a maximum transverse offset, called the sagitta, of

xsagitta =
−Loutq(

∫
B dz)

γ0m0c
. (3.12)

In these expressions, the actual fields and physical geometry of a bending magnet have been

abstracted away. It is now possible to treat a whole magnet as a single delta function impulse

according to the integrated field. The chicane from Figure 3.2 has had its magnets replaced

with delta function impulses to create Figure 3.3.

In this case, the distance travelled by a particle is given by:

Ltot = 2LH + (const) = 2
Lout

cos(θx)
+ (const), (3.13)
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Figure 3.3: A schematic of the trajectories of charged particles within an idealized chicane

with impulse magnets. The red and blue dashed lines correspond to positive and nega-

tive delta function kicks respectively. As in Figure 3.2, the green, orange, and blue lines

correspond to the trajectories of negatively charged particles of increasing energies.

where LH is the length of the hypotenuse travelled by a particle, Lout is the spacing between

dipoles 1 and 2 and dipoles 3 and 4 (Shown in Figure 3.3), and θx is given by equation (3.11).

Using the R matrix definition in equation (3.2) we can now use equation (3.13) to find the

R56 of a chicane. First substitute the definition of θx from equation (3.11) and replace γ with

γdesign(1 + δ) where δ is the relative deviation of a particle’s energy from the design energy,

γdesign:

Ltot = 2
Lout

cos(
−q(

∫
B dz)

γdesign(1+δ)m0c
)

+ (const). (3.14)

Continue to apply the small angle approximation to simplify the cosine:

Ltot = 2
Lout

1− 1
2

(
q(
∫
B dz)

γdesign(1+δ)m0c

)2 + (const). (3.15)

Taking the partial derivative with respect to δ gives the definition of R56:
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R56 ≡
∂Ltot
∂δ

= −
8(
∫
B dz)2c2Loutm

2q2γ2
design(1 + δ)

((
∫
B dz)2q2 − 2c2m2γ2

design(1 + δ)2)2
. (3.16)

Finally, to clean up the result, take this expression in the limit of small δ and small deflection,

leaving:

R56 ≈ −
2(
∫
B dz)2Loutq

2

c2m2γ2
design

(3.17)

Although not necessarily useful in this particular context, this result reduces one step further

to a commonly quoted expression (e.g. [59]) by evaluating equation (3.11) at γ0 = γdesign

and calling the result θ0, giving:

R56 ≈ −2Loutθ
2
0 (3.18)

This means that, given a beam energy, γdesign, the integrated field of the dipole magnets

and/or the dipole magnet spacing can be adjusted to produce a desired R56 value.

3.3 Optimization of low aspect ratio, iron dominated dipole mag-

nets

This section is adapted from [60] in accordance with the UCLA’s dissertation guidelines,

section “Alternate versions of published articles”. It describes the optimization of pole faces

for low aspect ratio magnets and its results will be used throughout this chapter.

3.3.1 Introduction

Many disciplines employ dipole magnets, often requiring a consistent, flat field over some

volume of interest. These include beam [61, 10, 62, 63, 64], plasma [65], and AMO physics

[66] as well as myriad applications in chemistry [67, 68], engineering [69], and medicine

[70, 71]. A particular subclass of interest is that of iron-dominated magnets, in contrast with
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coil dominated, e.g. superconducting and air cored, wherein the field in the region of interest

is shaped by a ferromagnetic yoke and, most importantly, pole face. In these magnets, the

high permeability of ferromagnetic materials (typically iron-based) is used to confine, direct,

and amplify the magnetic flux from a source, generally coils of wire or permanent magnets.

To produce a larger volume of flat field, the most obvious approach is to simply increase the

size of the yoke and pole faces. In some applications, this approach (with minor refinements

discussed below) is sufficient. This work will discuss the optimization of field quality for a

fixed magnet size where the gap between the pole faces is of the same order as the width

of the pole face - the case of low aspect ratio. Such magnets are especially useful in the

rapidly advancing field of laser plasma accelerators [10, 72, 73, 74] where the width of good

field region required might be low but the gap between pole faces needs to be large to

accommodate the large beam pipes required for downstream transport of the drive laser.

3.3.2 Theoretical treatment

3.3.2.1 Multipole decomposition

A brief derivation of the multipole convention follows, with a more thorough explanation

found in Ref. [61]. Maxwell’s equations for magnetostatics in the absence of sources are

∇×B = 0,

∇ ·B = 0. (3.19)

One may define a vector field F = A + iV such that B = ∇ × A = −∇V . In the 2D,

current free case, it can be shown that if F is written as a function of z = x + iy, then

F satisfies the Maxwell conditions by construction. The real part of F gives the flux lines

while the imaginary part gives the equipotentials. One particularly useful definition which

expresses F as
∑
Cnz

n is called the multipole decomposition. In the multipole decomposition

n = 1 refers to the dipole component, n = 2 is the quadrupole component, n = 3 is the

sextupole component, and so on. A commonly employed approximation is to treat the

50



iron elements of a system as having infinite permeability. This means that the pole face

surface is an equipotential surface and that conformal mapping can transform an infinite

pole face and its concomitant perfect, infinite dipole field into the fields of a finite pole [75].

This approximation is generally insufficient for real world magnet design due to the finite

permeability of iron, coil fields, saturation, and other considerations. Therefore, it tends to

only be a useful starting point for refinement in finite element method (FEM) simulations.

3.3.2.2 Flat and shimmed poles

The most common way to improve the good field region for a given aspect ratio (AR) is by

shimming the pole face by placing small, numerically optimized bumps at the edges of the

face. Expressions of the form

a

h
= c1 ln

(
∆B

B

)
+ c2, (3.20)

are given in [61], where a is the overhang of the pole face extending beyond the good field

region, h is the gap between the magnet mid-plane and the pole face, and ∆B/B is the

maximum allowable, normalized field error. Coefficients c1 and c2 for both shimmed and flat

cases are provided, giving a relationship between the magnet geometry and the field quality

required. We define the term good field region, xgfr, as the width on axis of the good field

region satisfying good field quality, GFQ = B/∆B. By writing

AR =
a+ xgfr

h
, (3.21)

equation 3.21 can be rearranged as

ARunopt =
xgfr

h
− 0.9− 0.36 ln

(
1

GFQ

)
ARopt =

xgfr

h
− 0.25− 0.14 ln

(
1

GFQ

)
. (3.22)

with the provided coefficients for the unoptimized flat case and optimized shim case respec-

tively.
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Although it was not made explicit by the analysis of Tanabe, these equations break down

for magnets where the gap is comparable or large compared to the pole width (detailed

below). This divergence motivated the search for improved pole face designs for low AR

magnets.

3.3.2.3 Parabolic poles

The symmetry conditions of a particular magnet design will impose boundary conditions

which forbid certain multipole components; the remaining, allowed components comprise

the error spectrum. The symmetry constraint on the nth moment for a N th order magnet is:

Fn

(
θ +

π

N

)
= −Fn(θ). (3.23)

There is an extended discussion of the application of Eq. 3.23 in Ref. [61] but we will only

concern ourselves with the dipole case which has allowed multipole moments n = 3, 5, 7, 9...

Therefore, the lowest order error which needs to be counteracted is n = 3, or sextupole. In

a dipole with finite, flat pole faces, this manifests as a “virtual sextupole” which causes the

field lines to bow out, away from the center. This is illustrated in Figure 3.4 for C1z+C3z
3.

Note that the equipotentials bow towards the center. This can be counteracted by curving

the pole face in a manner equal and opposite to this equipotential curve, strengthening the

field near the edges to reduce the virtual sextupole. By selecting a parabolic profile with

an even greater curvature, intrinsic sextupole focusing can be realized in a linear undulator

[76]. The optimization described below uses this approach to seed the final FEM optimization

which will account for considerations left out of this approximation.

For example, consider an AR = 1 dipole, shown in Figure 3.5. After a multipole decom-

position, normalizing to the dipole coefficient (i.e. C1 = 1), the sextupole contribution is

C3 = 0.035 inside a 0.5 gap unit radius circle on centerline. The corresponding field lines

and equipotentials from only these lowest order components are shown in Figure 3.6.

The equipotential line which is nearest to the pole face is found and is approximated

with a parabola, in this case with equation y = −0.10x2 − 0.96. Construct new pole faces
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Figure 3.4: Field lines (red) and equipotentials (blue) for a dipole magnet with small virtual

sextupole component.

Figure 3.5: AR=1 dipole with flat pole faces (red) with magnetic field vector plot.
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Figure 3.6: Field lines (red) and equipotentials (blue) for a C1 = 1, C3 = 0.035 field. Flat

pole faces are shown in grey and the area where the decomposition is calculated is in green.

with parabolic component equal and opposite to this iso-contour curvature (Figure 3.7).

Calculating the multipole components as before, find that C3 has been reduced by more

than an order of magnitude to 0.003. This serves as a very good starting point for final FEM

optimization to tune out higher order effects.

3.3.2.4 Splined poles

Using splines to define the pole face permits the creation of poles with arbitrary levels of

complexity. Splines have been employed in the optimization of axisymmetric MRI magnets

[77, 78]. The details of this current implementation are discussed in the following section.

3.3.3 Simulation methods

The parameter space of magnet design is continuous and multidimensional, so for this work

a representative, discrete subset is examined which covers magnets which are both physically

relevant and germane to the topic at hand. Specifically, we will consider three aspect ratios
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Figure 3.7: AR=1 dipole with parabolic (±0.1x2∓ 0.96) pole faces (red) with magnetic field

vector plot.

(AR): 0.5, 1, and 1.5; three good field requirements (GFQ): 1 in 103, 1 in 103.5, and 1 in 104;

and five pole face geometries: flat, shimmed, parabolic, three point spline, and five point

spline.

We define here the following terms:

Aspect ratio - the ratio of the pole face gap at the centerline to the width of the pole at its

widest;

Good field region - on the horizontal axis, the maximum xgfr value such that

|B(x, 0)−B(0, 0)|
|B(0, 0)|

<
1

GFQ

∀x < xgfr;

Shimmed - a semi-circle protrusion with center a distance one radius from the pole edge;

Spline - a cubic spline interpolation on points at x = 0, ±0.5, and ±1 width units for the

three point spline and an interpolation of points at x = 0, ±0.25, ±0.5, ±0.75, and ±1 width

units for a five point spline. The point at x = 0 has y = 1 gap unit and all other points
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Figure 3.8: Visual aid to definitions of geometric features.

satisfy y(x) = y(−x).

All geometries are subject to the additional constraint that they do not intersect a beam

pipe with a radius of 0.9 gap units. In all cases (each AR, GFQ, and geometry) all free

variables are adjusted to maximize xgfr. In the shimmed and parabolic cases, each with one

free variable, this is done with an exhaustive search. In the three- and five- point spline

cases (with two and four free variables, respectively) this procedure is done using particle

swarm optimization (PSO) [78, 79]. The 2D FEM simulation is done using the program

POISSON [80], simulating a single quadrant of an H-magnet, with a mesh step size of 0.01

gap units. The pole face is taken to be far from the rest of the yoke and coils. It is further

assumed that the magnet is operating far from saturation and the yoke is made from low

carbon steel acting linearly with relative permeability, µ/µ0, of 4000. All additional post

processing, including the coordination of the particle swarm is done with Mathematica.

3.3.4 Simulation results

The results for xgfr given in gap units follow, broken down by GFQ. Tables 1, 2, and 3

give the best case results for GFQs 103, 103.5, and 104 respectively. Figures 3.9, 3.10,
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and 3.11 illustrate these results and compare them to theoretical results for shim-optimized

and unoptimized pole faces obtained from Eq. 3.22. In these plots, better performance is

indicated by points which are lower (smaller AR for given performance requirement) and

further to the right (larger good field region for given GFQ and AR). It should be noted

that the comparison to Ref [61] is imperfect due to the use of relatively low AR; in the more

usual, AR>>1 regime, the “Flat” points should overlap the “Tanabe unoptimized” line and

the “Shimmed” points should overlap the “Tanabe optimized” line.

Table 3.1: Optimal xgfr in different geometric configurations with GFQ=103.

AR = 0.5 AR = 1.0 AR = 1.5

Flat 0.05 0.09 0.21

Round shim 0.05 0.46 0.84

Parabolic 0.07 0.47 0.69

3 point spline 0.09 0.67 1.00

5 point spline 0.09 0.71 1.17

Table 3.2: Optimal xgfr in different geometric configurations with GFQ=103.5.

AR = 0.5 AR = 1.0 AR = 1.5

Flat 0.03 0.05 0.12

Round shim 0.03 0.35 0.68

Parabolic 0.04 0.35 0.53

3 point spline 0.05 0.57 0.83

5 point spline 0.05 0.59 1.00
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Table 3.3: Optimal xgfr in different geometric configurations with GFQ=104.

AR = 0.5 AR = 1.0 AR = 1.5

Flat 0.02 0.03 0.06

Round shim 0.02 0.21 0.45

Parabolic 0.02 0.25 0.37

3 point spline 0.03 0.41 0.57

5 point spline 0.03 0.45 0.85

Figure 3.9: Optimized simulation results for GFQ = 103 vs [61] estimates. The dashed lines

are intended to guide the eye.
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Figure 3.10: Optimized simulation results for GFQ = 103.5 vs [61] estimates. The dashed

lines are intended to guide the eye.

Figure 3.11: Optimized simulation results for GFQ = 104 vs [61] estimates. The dashed lines

are intended to guide the eye.

In the original paper, a large appendix was included which details the coefficients used
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to generate these optimizations as well as figures of all the cases they represent to guide the

optimization of future magnets.

In the cases of flat and shimmed magnets, a clear divergence from the predictions of [61]

and equation 3.22 is evident. This breakdown of traditional heuristics in this low aspect

ratio regime requires additional care to be taken when designing such magnets. With that

said, it should be noted how effective shims are for higher aspect ratio magnets. Between

these three GFQ definitions, shimming an AR = 1 or AR = 1.5 magnet tends to improve

xgfr by a factor of more than four. However, at AR = 0.5 there is no improvement from

shimming. At AR = 1, parabolic faces have nearly identical performance with shims and at

AR = 1.5 shims outperform parabolic faces. In all AR and GFQ cases, three point splines are

superior to flat, shimmed, and parabolic faces and five point splines are superior to all other

geometries. The superiority of the five point spline is expected since all other geometries are

effectively (but not strictly) subsets of this geometry. This comes with the caveat that some

of the geometries generated here have sharp corners which might readily saturate in some

real-world scenarios. This limitation is discussed in greater detail in the next section.

3.4 Design of the UCLA-LBNL chicane

In addition to the two dimensional field quality discussed in the previous section, there

are many other considerations when designing physical magnets including: fringe fields,

current density in the windings, local and overall heating, mechanical rigidity, and weight.

Additionally for this project, there were significant space limitations, the requirement that

existing power supplies be used, and, due to the unavailability of preferable steel alloys, the

use of suboptimal yoke material.

3.4.1 Magnetic field requirements

The most fundamental design considerations for a chicane are the magnetic field properties;

producing these fields is the raison d’être of a chicane so every other design decision must

support this goal. In this instance, the requirements were calculated during the conception
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of the experiment to accommodate the highest expected R56 value, 1 mm, at the highest

expected beam energy, 300 MeV [55]. There is a total of 1.25 meters of space available for

the chicane. A vacuum chamber to house a mirror for laser diagnostics and monochromator

slits is to be placed between the center dipoles, occupying 30 cm. This leaves 22.5 cm per

dipole. To account for coil overhang and to allow some variability in longitudinal positioning,

a yoke length of 17.5 cm was selected giving Lout = 30 cm. Given the R56 requirement, this

corresponds (equation 3.18) to a field of 0.26 T. This gives a maximum sagitta (equation

3.12) 12 mm. It was decided [55] that the dipoles should have a GFQ of at least 103 over an

xgfr of 10 mm.

Since the maximum sagitta is 12 mm and the minimum approaches zero, xsagitta = 5

mm was used as a representative case for optimization. Dipoles 1 and 4 are centered on the

beam axis while dipoles 2 and 3 are translated (in the bend plane) by 5 mm. So instead of

the unshifted case where beams with xsagitta ranging from 0 to 12 mm being up to 12 mm

from any given dipole axis, now beams in this range will never be more than 7 mm from any

dipole axis. This enables the more efficient use of the good field region.

3.4.2 Pole face design

In order to accommodate the beam pipe in this LPA experiment, a relatively large dipole

aperture is required. The actual pipe exterior dimension was 2 inches but, per the dipole shift

mentioned above, the beam pipe must not intersect when shifted 5 mm. With this constraint,

as well as the GFQ and xgfr constraints, it is now possible to employ the machinery developed

in Section 3.3 to design a pole face which fulfills these requirements while minimizing the

width of the magnet. A 7 cm wide pole piece with pole face defined by

y = ±(2.73− 0.0237x2), (3.24)

with x and y in units of cm, was found to be the best parabolic solution, shown in Figure 3.12

along with the unshifted and 5mm shifted beam pipe locations; there is a minimum of 1.5 mm

of clearance to allow for installation and alignment. Although marginally better performance
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was possible using the spline profiles discussed in the previous section, a parabolic face was

chosen to simplify fabrication and avoid any issues of saturation at sharp points, especially

relevant given the sub-optimal steel available for yoke fabrication. This design gave a GFQ

of 103.3 and an xgfr = 13.3 mm. In the bending plane, the GFQ as a function of x is shown

in Figure 3.13 and the full 2D relative field error is shown in Figure 3.14.

Figure 3.12: Pole faces relative to 5 mm shifted (solid) and unshifted (dashed) 2 inch diameter

beam pipes.
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Figure 3.13: UCLA-LBNL chicane dipole, relative field error on axis. GFQ levels from

previous section shown as dotted lines.

Figure 3.14: UCLA-LBNL chicane dipole, relative field error.
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3.4.3 Magnetic circuit analysis

Now that the gap and maximum magnetic field are known, basic magnetic circuit rules [81]

can be used to get a first order estimate of the required coil specifications. The magnetomo-

tive force (MMF), F , is defined as

F =

∮
H · dl, (3.25)

i.e. the integration of H, magnetic field strength, around a loop. If the source of MMF for

is a coil of wire then F = NI where N is the number of turns and I is the current per turn.

In analogy to electrical circuits, this can be thought of as a voltage source. Continuing the

analogy, reluctance, R, is to a magnetic circuit what resistance is to an electrical circuit.

Then the equivalent of Ohm’s law is

F = ΦR, (3.26)

where Φ is the magnetic flux defined

Φ =

∫∫
S

B · dS, (3.27)

If the flux in a region is oriented perpendicularly to a plane with area A and B ≡ |B| then

Φ = BA. The flux density, B, at any point in the magnetic circuit will be given by

B = µH, (3.28)

where µ is the permeability at that point in the circuit.

In parallel to the concept of resistivity in electrical circuits, if the magnetic flux is “flow-

ing” through a volume of constant permeability then the reluctance associated with that

region is

R =
l

µA
, (3.29)
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with l being the length of the element, µ is its permeability, and A is its cross sectional area

relative to the flux vector.

Reluctances have the same rules for combining as resistances, i.e. circuit elements in series

have their reluctances added while elements in parallel have an inverse reluctance equal to

the sum of inverse reluctances. For the dipole magnets, the total circuit reluctance can be

thought of as two elements in series: the yoke reluctance, Ryoke, and the gap reluctance

Rgap. This gives total reluctance Rtotal = Ryoke + Rgap. For typical yokes, constructed

of soft ferromagnetic materials, the permeability of the yoke material will be thousands of

times higher than vacuum permeability, µ0. A standard approximation is therefore that

Rtotal ≈ Rgap. Combining equations 3.25 and 3.26 gives

NI = RΦ, (3.30)

and making substitutions from equations 3.27 and 3.29

NI =
l

µA
BA =

lB

µ
. (3.31)

Plugging in the gap size for l (0.054 m), vacuum permeability µ0 for µ, and the maximum

field for B (0.26 T) gives an estimate of the MMF required to drive this dipole: 11,700

amp-turns.

3.4.4 Coil design

For simplicity, it was decided that these dipoles should be passively air cooled, rather than

using water or forced air cooling. Passive cooling requires a current density of less than 150

amps per centimeter squared [82]. Therefore, to achieve F = 11,700 amp-turns will require

approximately 78 cm2 of coil cross sectional area per dipole. If a symmetric design is used,

employing two coils per dipole, this amounts to about 40 cm2 per coil. Bearing in mind the

Lout design spec of 30 cm along with the yoke length of 17.5 cm, a coil thickness of 5 cm will

leave Lout−Lyoke−2×Lcoil thickness = 2.5 cm between dipoles for installation and adjustment.
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To get the required 40 cm2 per coil the coils must therefore each be 8 cm tall.

Up until now, only the mechanical features of the coils have been considered. The actual

winding of the coils will be contingent on the power supplies as well as manufacturability

considerations. For the chicane, two power supplies were already on hand at LBNL, removing

that degree of freedom. The power supplies are bipolar with voltage output from -50 to 50

volts and current output of -20 to 20 amps (Kepco BOP 50-20GL [83]). Each supply will drive

a pair of dipoles, one for the inner pair and one for the outer pair. To ensure consistency, the

four coils in each circuit will be wired in series to ensure every coil passes the same current.

To a first order approximation, the volume of the coil, Vcoil, will be equal to

Vcoil = hcoil((lpole + 2× tcoil)(wpole + 2× tcoil)− lpolewpole), (3.32)

where h, l, w, and t correspond to height, length, width, and thickness respectively. The

length of the wire per coil will be equal to the coil volume divided by the cross sectional

area of the wire Aw. Using the standard equation for resistance, R, and making these

substitutions, the resistance per coil can be calculated:

R =
ρl

Aw
=
ρVcoil

A2
w

(3.33)

where ρ is the resistivity of the wire and l is the length. Further, the number of turns, N ,

will be given by dividing the coil’s cross sectional area by the wire’s area: N = Ac/Aw. By

holding F = NI fixed the current:

I =
F
N

= FAw
Ac

(3.34)

and voltage (via Ohm’s law V = IR):

V = IR =

(
FAw
Ac

)(
ρVcoil

A2
w

)
=
FρVcoil

AcAw
. (3.35)

Until now, all these equations have assumed that the coil’s cross section and therefore volume

have been completely filled by copper windings. However, this is not a good approximation
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for practical realizations of coils. Due both to the insulation on the wires and geomet-

ric limitations, there is a packing efficiency term, p, that must be applied to improve the

approximation. This updates equation 3.34 to

I = F Aw
pAc

. (3.36)

Since I is linear with p and Vcoil goes with the inverse of p, the packing efficiency term cancels

out of equation 3.35.

Plugging in the values for these dipoles: hcoil = 8 cm, lpole = 17.5 cm, wpole = 7 cm,

and tcoil = 5 cm, gives Vcoil equals 2760 cm3 by equation 3.32. F is taken to be 11700/2 =

5850 amp-turns since each of the dipole’s two coils will contribute half the MMF. Packing

efficiency is estimated at 70% and ρ is set to the resistivity of copper, 1.7E-8 ohm-meter [84].

Equations 3.35 (multiplied by 4 to account for the 4 coils in series per power supply) and

3.36 are plotted in Figure 3.15. The vertical scales correspond to the current and voltage

limits of the power supply.

The power supplies will be able to supply any coils comprised of wire with area between

5.5 and 9.6 mm2. A standard wire gauge, AWG 9, sits near the middle of this range with

a cross sectional area of 6.63 mm2 [85]. According to the above approximations, this wire

selection would supply the required MMF with 422 turns at 13.9 amps with a total voltage

drop over 4 series coils of 41.4 V.

3.4.5 Thermal considerations

The total thermal power, P , dissipated in the coils is given by:

P = IV =

(
F Aw
pAc

)(
FρVcoil

AcAw

)
=
F2ρVcoil

A2
cp

. (3.37)

With the values from above, this corresponds to a peak power draw of 143 watts per coil or

286 watts per dipole. Newton’s law of cooling gives the rate of convective heat loss from an

object to its environment as
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Figure 3.15: Current and voltage curves for four series coils as a function of wire area for

UCLA-LBNL dipole parameters.

dQ

dt
= −hA∆T (t), (3.38)

where Q is heat, h is the heat transfer coefficient, A is the object’s area, and ∆T is the

difference in temperature between the object and its environment. In the case of the dipoles,

they have a surface area exposed to atmosphere approximately equal to 0.3 m2. The heat

transfer coefficient between steel and non-forced air is approximately 15.8 W/(m2 K) [86].

This suggests a worst-case, equilibrium ∆T for the dipoles of 60 C. This neglects any nat-

ural air currents, radiative heat transfer, and conduction to the base. The time-dependent

temperature of the dipole is given by:

Q(t) = mCT (t), (3.39)
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where m is the mass of the object and C is the heat capacity. Therefore

mCT ′(t) = Q′input(t) +Q′convection(t) = p− hA(T (t)− T0), (3.40)

where p is the electrical power and T0 is both the ambient temperature and the initial

temperature of the dipole. This gives

T (t) =
p(1− e−AhtCm )

Ah
+ T0. (3.41)

Assuming the dipole’s heat capacity is approximately equal to mild steel, C = 510 J/(kg K),

has a mass of approximately 100 kg, and is in a room with an ambient temperature of 23 C,

the worst case temperature evolution of a dipole is shown in Figure 3.16. This suggests it

takes approximately 10 hours of non-stop use at peak current to reach thermal equlibrium

near 80 C.

Figure 3.16: Worst case temperature over time of a UCLA-LBNL dipole at peak current.

3.4.6 Yoke magnetic properties

In a linear material, the permeability µ of a material defines the relationship between the

induced magnetic flux density, B, by an external magnetic field, H, according to the re-
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lationship B = µH = µrµ0H where µr is the relative permeability (compared to vacuum

permeability, µ0). Typical lists of relative permeability values give the material’s perfor-

mance at near-zero field, a poor approximation for most magnet yoke design. “Mu metal”

is a commonly cited example of a very high permeability material, with µr > 50,000 [87],

but this value only holds for low magnetic fields, i.e. it saturates at low field and the linear

approximation is invalid at higher fields. Therefore it is more instructive to consider µr not

as a constant for a material but as a function dependent on B (or H).

A good yoke material will have a high µr out to a few times the peak gap field (fields

in the yoke will generally be somewhat higher than the gap field). For many beamline

magnets, a low carbon steel meets this requirement while also being relatively widely available

for reasonable prices. Common low carbon alloys are 1008 and 1010 steel (∼0.1% carbon

content). An attempt was made to procure 1008 or 1010 steel for this project but, due to

the dimensions required, no economical source was available. Therefore a somewhat worse

material, 1018 steel (also called “mild steel”) was investigated. 1018 steel is a very versatile

and widely available steel on the consumer market with ∼0.18% carbon content. Although it

has a similar saturation field to 1008 or 1010 steel, its permeability below approximately 1.5

T is appreciably lower. The µr values can be extracted from published B-H curves [87]. The

µr(B) curves of 1010 and 1018 steel as well as mu metal are shown in Figure 3.17. Observe

the greater permeability of mu metal at low field but the rapid saturation. Over the range

relevant for these magnets, approximately up to 1 T, 1010 steel has approximately 2 to 2.5×

the permeability of 1018.

A high relative permeability, µr, material will permit the use of a lower cross section yoke.

Recall in section 3.4.3 that the approximation that Ryoke ≈ 0 permitted the easy calculation

of the MMF required to drive the required field in the gap. As long as this approximation

is satisfied, approximately the same number of amp-turns will be required. Recall that the

flux, Φ, from equation 3.27, is taken as constant throughout the elements of the magnetic

circuit. Therefore it can be said that

Φ = BgAg = ByAy (3.42)
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Figure 3.17: Relative permeabilities of mu metal, 1010 steel, and 1018 steel. Data from [87].

where B is the magnetic flux density in an element and A is the cross sectional area of the

element, where subscripts g and y correspond to the magnet’s gap and yoke respectively.

Applying Hopkinson’s law (Equation 3.26) and the additivity of reluctances,

F = ΦRT = Φ(Rg +Ry), (3.43)

to find the MMF, F , required to achieve a desired magnetic flux given the circuit’s total

reluctance, RT . Now apply equation 3.29 to express the reluctances based on the material

dimensions and properties,

F = Φ

(
lg

µ0Ag
+

ly
µ0µr(By)Ay

)
, (3.44)

where l is the length of a given circuit element and µr(By) gives the permeability of the yoke

material as a function of the magnetic flux density in the yoke, By. This is an approximation

that assumes the yoke cross sectional area is constant throughout the circuit. Φ will be

defined by the required gap field and area, Φ = AgBg, and By can be calculated based on
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the conservation of flux, By = Φ/Ay:

F = BgAg

(
lg

µ0Ag
+

ly

µ0µr(
BgAg
Ay

)Ay

)
. (3.45)

Using the parameters for the UCLA-LBNL dipoles (Ag = 7× 17.5 = 122.5 cm2, Bg = 0.26

T, lg = 5.4 cm, ly = 65 cm) the MMF required given the yoke area can be computed given

the µr(B) curve of the material. This is shown in Figure 3.18 for 1010 and 1018 steel as well

as for an idealized, infinite permeability yoke. A yoke cross section of 43.75 cm2 was used for

the UCLA-LBNL dipoles, requiring an estimated 12,060 amp-turns to drive (3% higher than

the 11,700 amp-turns from section 3.4.3 based on an infinitely permeable material). If 1010

steel was used, the cross section of the yoke could be reduced to 28.1 cm with no reduction

in magnetic performance. Constructed from 1018 steel, the yoke (excluding pole pieces) per

dipole weighs approximately 35 kg (75 lb); using 1010 steel would have reduced the weight

to 21 kg (47 lb).

Figure 3.18: Comparing the MMF required to achieve the required magnetic field specs,

given the geometry of the UCLA-LBNL dipoles, as a function of yoke cross sectional area.
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3.4.7 Mechanical considerations

It is important to have magnets that are physically strong enough to avoid distortion when

loaded by the magnetic fields. If fringing fields are ignorable, the approximate pressure,

Pmag, on the pole tips is given by [26]:

Pmag =
B2

2µ0

. (3.46)

So for these magnets, the peak magnetic pressure with B = 0.26 T is 28,200 Pa (4.1 PSI).

With pole face area equal to 17.5 cm × 7 cm = 122.5 cm2, this is approximately 345 N (77

lb-f) of attraction between the pole tips. The effect of this force was modeled using finite

element analysis (FEA) in Solidworks on a yoke comprised of 1018 steel. The displacement

(at a 62,000× exaggerated scale) is illustrated in Figure 3.19. The maximum displacement

of any point is less than one micron which is well within the design tolerances.

Figure 3.19: FEA model of displacement under peak magnetic pressure load with a 62,000×

exaggerated scale. Coils have been omitted for clarity.
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3.4.8 Residual dispersion

An important consideration when deciding the tradeoff between pole width and tolerable

deviation from an ideal chicane field is the residual dispersion. Due to the non-ideal fields,

beam particles with energies higher or lower than the design energy will experience net kicks

in both position and angle as a function of this energy spread, termed residual dispersion.

Position dispersion, ηx, is defined as ∆x
∆γ/γ0

, and angular dispersion, ηx′ , is defined as ∆x′

∆γ/γ0
.

These terms can lead to emittance growth, ∆εgeo,x = (σx+ |σγ
γ0
ηx|)(σx′+ |σγγ0 ηx′ |)− εgeo,x. This

impact is minimized when σx = σx′ and ηx = ηx′ .

In the Radia model, the outer coils were set to a current density and the inner coils

were tuned to minimize residual dispersion for design energy beams for a given R56 value

(typically the inner coil current is equal to the negative of the outer coil current to within less

than one part in a thousand). The dispersion curves and associated emittance growth for a

beam with a normalized emittance of 100 nm-rad with 1% spread are shown in Figure 3.20.

The expected operational R56 values are shown for 100 and 250 MeV beams with dipoles 1

and 4 centered on axis; the dispersion has been deemed acceptable [55]. By translating the

whole chicane horizontally, the energy of the zero crossing can be changed. Therefore, after

operation with the ∼100 MeV jet LPA is complete, the chicane can be moved to minimize

the emittance growth at the expected energy.
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Figure 3.20: Position and angle dispersion curves for the full UCLA-LBNL chicane as a

function of R56. Minimized normalized emittance growth for a 100 nm-rad beam with 1%

energy spread is also shown as a function of R56.
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3.4.9 Design evolution

The earliest design iteration of the UCLA-LBNL chicane considered the use of permanent

magnets with a variable gap yoke instead of electromagnetic coils. The benefit of permanent

magnets was a significantly smaller footprint, cost savings on power supplies (it was not

known at the time that two Kepco 50-20GL supplies would be available for free, saving

over $30,000), and having an entirely in vacuo chicane, permitting a smaller magnet gap

by removing the need for a beam pipe. Such a design would not be possible to “turn off”

though, requiring a way to shift the entire chicane assembly off the beam path for dispersion-

free operation. A concept design is rendered in Figure 3.21. Each of the four dipoles has

a mechanically adjustable gap, controlled by a stepper motor driven ball screw. The entire

chicane can be shifted out of the beam path by two additional ball screws.

Figure 3.21: A concept design of an early, permanent magnet version of the UCLA-LBNL

chicane. The blue line represents the beam axis.
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The permanent magnet approach was ultimately abandoned due to the mechanical com-

plexity and a more conventional electromagnetic chicane was considered. The first iteration

was a so called C-magnet. This asymmetric design requires a more complicated approach to

pole face optimization to counteract multipole modes that would otherwise be forbidden in

symmetric magnets. A benefit though is that the open side gives easy access to the gap vol-

ume for probing. Additionally, C-magnets can be driven by a single coil, reducing expense.

The cantilevered position of the magnetic pressure requires a more rigid mechanical design

to avoid deflection. An early version of the C-magnet was optimized up to the quartic term

(plus 19th and 20th terms to round the corners); it achieved an average error in a 2 cm wide

by 0.4 cm tall rectangle of 0.019%, shown in Figure 3.22. At this point, the pole faces were

still quite large compared to the magnet gap (high aspect ratio). The design moved on from

C-magnets before more extensive refinement could occur.

Figure 3.22: A Poisson simulation for a fourth order optimized C-magnet with a high aspect

ratio.

The C-magnet design was discarded in favor of a symmetric H-magnet design. The H-
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magnet requires the use of two coils but has the benefit of having symmetric fields, requiring

more straightforward optimization of the pole faces while also permitting the use of thinner

pole pieces (lower aspect ratio). It also reduces the contribution of coil fields near the beam

axis. A concept design for an H-magnet is rendered in Figure 3.23.

Figure 3.23: A concept design of an H-magnet for the UCLA-LBNL chicane.

The final design was a variant of the initial H-magnet: the stacked H-magnet. Although

similar, the stacked H-magnet requires a taller (and heavier) pole piece as well as introducing

stronger coil-based fringe fields. However, in the context of this experiment, it has the

important benefit of having a smaller footprint. The final design for the chicane, using

stacked H-magnets, is shown in Figure 3.24. Table 3.4 is a summary of the pros and cons of

the different geometries considered.
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Figure 3.24: The final design for the dipoles, shown as the assembled chicane, including

kinematic stage.

Table 3.4: Comparison of the different dipole configurations considered

Geometry Pros Cons

Permanent magnet
Compact footprint

Cost savings on power supplies
Mechanical complexity

C-magnet
Easy probe access to gap volume

Driven by single coil

Asymmetric pole face

Requires more rigid design

H-magnet

Symmetry simplifies design

Short pole piece reduces weight

Low impact from coil fields

Large per-dipole footprint

Stacked H-magnet More compact per-dipole footprint
Larger pole piece

Greater coil field contribution
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3.4.10 Design summary

Table 3.5: Summary of UCLA-LBNL chicane design parameters

Parameter Value

Peak R56 1 mm

Yoke length 17.5 cm

Peak field 0.26 T

Gap aperture 5.4 cm

Field quality (GFQ) 103.3

Field region (xgfq) 13.3 mm

MMF (optimal) 11,700 amp-turns

Peak current density 150 A/cm2

Per coil cross section 40 cm2

Wire cross section 6.6 mm2 (AWG 9)

Turns per coil 415

Peak current per coil 13.9 A

Peak voltage per coil 10.4 V

Worst case temperature rise 60 K

Yoke material 1018 steel

Yoke cross section 43.75 cm2

Force induced deflection ≤0.4 µm
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3.5 Chicane fabrication and commissioning

3.5.1 Yokes

The yokes of the magnet were designed in 6 major parts: 2 side plates, 2 pole pieces, a

top plate, and a bottom plate. The original, un-edited blueprints used for fabrication are

duplicated below:

Figure 3.25: Original side plate blueprint for fabrication.
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Figure 3.26: Original pole piece blueprint for fabrication.

Figure 3.27: Original top plate blueprint for fabrication.
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Figure 3.28: Original bottom plate blueprint for fabrication.

All the parts were made from 1018 steel from DiscountSteel.com. For the side, top, and

bottom plates blocks with dimensions 1” × 7” × 10” were purchased (16× at $58.55/ea)

while for the pole pieces blocks with dimensions 3” × 5” × 8” (8× at $104.79/ea) for a total

cost of $1,775.12. These parts were all in a rough cut state and sent to Bourdelais Grinding

where they were brought to final dimension to high tolerance (critical dimensions specified

to ±0.001”) by Blanchard grinding for a total job cost of $1,608.40. The UCLA Physical

Sciences Machine Shop then performed other operations on the pieces:

• Holes were drilled, tapped, and counterbored

• Precision holes for dowels were drilled and reamed on the top, bottom, and side plates

• The top and bottom plates were wire EDM’d to create a highly precise (-0/+0.001”)

cutout for the pole piece to index into

• Pockets for fiducial nests were milled

• Edges were chamfered
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• The pole pieces were CNC machined using a ball nose endmill to create the pole face

profile

Along with the fabrication of the kinematic mount (discussed below) the machine shop billed

330 hours for this work at a cost of $16,915.80. Since 1018 is a non-stainless steel, these

parts would rapidly rust if exposed to air, possibly causing the binding of the tightly fit

parts. To avoid this, the parts were sent to Barry Avenue Plating to be electroless plated

in nickel to a thickness of 0.0003” (8 micron) for a total job cost of $450.00. This was a

compromise between cost while maintaining minimal plating thickness: at only 8 microns

thick, the coating should not significantly affect the tolerances of the parts.

3.5.2 Coils

The coils were fabricated by Custom Coils, Inc.. They are constructed from 415 turns of

square conductor, 9 AWG copper wire and enclosed in polyimide tape (commonly referred

to as its genericized trademark, “Kapton”). The total job cost for the 8 coils was $13,230.00.

3.5.3 Kinematic mount

A kinematic mount was designed to allow the precision alignment and long term stability of

the chicane relative to the beamline (See Figure 3.24). All 6 degrees of freedom (DoF) can be

adjusted: X (transverse), Y (vertical), and Z (longitudinal) translation as well as roll, pitch,

and yaw rotations. The mount consists of two large aluminum plates 48” × 12” × 1” or

2” thick for the top and bottom plate respectively. Three tapered roller bearings were press

fit into the top plate and the lower plate was threaded. Custom threaded adjusters seated

into the thrust bearings and threaded into the top plate. This allowed the top plate to be

adjusted relative to the bottom plate in Y translation as well as roll and pitch rotations.

Onto the top plate a pair of precision linear rails are installed. These rails are for use with

linear bearing carriages and are rated to maintain parallelism to within 15 microns over

their 4 foot length. Aluminum carrier plates were machined with a hole pattern to register

and mount the dipoles with screws and precision dowel pins with connections for a pair of
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these linear bearings. A long stainless steel threaded rod is fixed above the top aluminum

plate and it runs through arms under each carrier plate. This allows the carrier plates, and

therefore dipoles, to be independently positioned along the length of the kinematic mount

(Z translation). Finally, the entire assembly is placed directly onto an optical table in the

beamline. Threaded blocks are mounted to the optical table with transverse screws, pushing

on the lower aluminum plate, allowing the entire assembly to be adjusted in the X translation

and yaw rotation DoFs. Once aligned, the kinematic mount can be clamped to the optical

table and jam nuts can lock the adjustment of the remaining DoFs.

The most expensive material components were: 2 precision rails for $1,100, 8 linear

bearings for $1,500, and the 2 large aluminum plates cost $900. These, along with other

miscellaneous components brought the material cost of the kinematic mount to approxi-

mately $4,500. As noted above, the combined machining of the dipoles and mount by the

UCLA Physical Sciences Machine Shop cost $16,915.80.

3.5.4 Expense summary

Table 3.6: Summary of expenses for UCLA-LBNL chicane

Item Cost

Dipole steel $1,775.12

Blanchard grinding $1,608.40

Nickel plating $450.00

UCLA Physical Sciences Machine Shop $16,915.80

Coils $13,230.00

Mount material cost $4,500.00

Total $38,479.32

85



Figure 3.29: Assembled UCLA-LBNL dipoles.

3.5.5 Field quality measurements

The dipoles were assembled at UCLA (Figure 3.29) and their fields were characterized using

a MMT-6J08-VG transverse Hall probe and a Lake Shore 421 gaussmeter from Lake Shore

Cryotronics Inc., and a purpose built, 3D gantry system. These 3D field maps were compared

to Radia [88] simulation fields to ensure agreement. The vertical field of a dipole magnet

was measured in a square region with side lengths of 6 mm, over a total length of 375 mm,

centered at the dipole center. The step size for this scan was 1 mm. Although the probe

gantry was aligned to the dipole to the extent possible, small errors existed so 6 free variables
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were permitted to transform the gantry coordinate system to the magnet coordinate system

to minimize the error between the simulated model and the measured fields. Define the

following rotation matrices:

Rx(δα) =


1 0 0

0 cos(δα) − sin(δα)

0 sin(δα) cos(δα)



Ry(δβ) =


cos(δβ) 0 sin(δβ)

0 1 0

− sin(δβ) 0 cos(δβ)



Rz(δγ) =


cos(δγ) − sin(δγ) 0

sin(δγ) cos(δγ) 0

0 0 1

 .

(3.47)

Then the overall coordinate transform employed is:


xf

yf

zf

 = Rz(δγ)Ry(δβ)Rx(δα)


xi

yi

zi

+


δx

δy

δz

 , (3.48)

with fit parameters δx, δy, δz, δα, δβ, and δγ. The mean average error (MAE) disagreement

between the measured field and the Radia model, after normalizing both fields to their peak

value, is minimized with parameters:

δx = −0.05 mm

δy = 0.86 mm

δz = −1.26 mm

δα = −5.2 mrad

δβ = 0.0 mrad

δγ = −15.5 mrad

. (3.49)
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Over the 13,500 mm3 volume of interest, the MAE is found to be 0.20% of Bpeak. The

probe itself is rated for an accuracy of 0.15%, indicating excellent agreement between the

physical dipole fields and the simulated model. Note that only the vertical field needs to be

considered since, within the region of interest, the vertical field is over 99.9% of the overall

field (|By|/|B| > 0.999, ∀x ∈ region).

All of the dipoles were measured in this fashion and the on-axis fields are shown in Figure

3.30. The fields are so close as to be indistinguishable on this scale so Figure 3.31 shows the

standard deviation of the four dipoles as a function of z, stdev({By,1[z], ..., By,4[z]}). The

mean standard deviation over the measured length of the dipoles is 0.0013×Bpeak, suggesting

a very high degree of uniformity between the four dipoles.

Figure 3.30: Measured on-axis By fields for all 4 UCLA-LBNL dipoles normalized to Bpeak.

All four curves are sufficiently similar as to be indistinguishable on this plot.
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Figure 3.31: Standard deviation of By for all four UCLA-LBNL dipoles as a function of

longitudinal position.

3.5.6 Current response measurements

The relationship between the supplied current and the magnetic field is also an important

parameter to confirm experimentally. Since the dipoles have been designed to operate well

below the saturation field of the yoke, the current response should be linear. The transverse

Hall probe was centered in the dipole and the current was monotonically increased, starting

from a degaussed yoke. The results are shown in Figure 3.32. A linear model with fixed

zero intercept is fit via least-squares, giving B[mT] = 17.96 I[A] with an extremely high

coefficient of determination, R-squared value, of 0.99994.
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Figure 3.32: The magnetic field in the center of the dipole, Bpeak, plotted as a function of

current. Data in blue and a linear fit in red.

3.5.7 Degaussing

Due to the hysteresis of iron, in order to know the dipole field based only on the current

(i.e. without a sensor for an active feedback loop) the magnet’s current must be adjusted

monotonically from a known magnetization. The easiest way to get to a known magnetization

is by degaussing : applying a decaying field of alternating polarity. A degaussing profile given

by V [volts] = 25 cos(3.14 t [sec]) exp(−0.047 t), applied for three minutes, was empirically

found to reduce the residual field of the dipoles to less than 0.04 mT (less than the Earth’s

magnetic field of 0.06 mT).

3.5.8 Installation

The UCLA-LBNL chicane was shipped to LBNL and reassembled. It was surveyed with

assistance from the ALS survey crew using a Leica laser scanner, fiducial markers, and an

existing 3D model of the lab and beamline. The chicane was centered on the beam axis with

a tolerance of less than 200 microns (0.008”) (Figure 3.33).
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Figure 3.33: Chicane installed on LBNL beamline
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CHAPTER 4

LPA driven FELs using advanced undulators

4.1 Overview

This chapter discusses the current state of LPA beams and undulators and the associated

challenges with using them to build an LPA driven FEL. First, the conditions for FEL lasing

as a function of beam quality and undulator specifications are established on theoretical

grounds. Next, options for high gradient and short period undulators, termed “advanced

undulators”, are contrasted with conventional undulators. Simulations are conducted of

“direct drive” LPA driven FELs with advanced undulators for three representative cases:

the BELLA FEL beamline, the current best experimentally realized LPA beams, and a high

quality, simulated LPA beam. Finally, fabrication techniques and simulation studies for two

advanced undulator concepts are shown.

4.2 Conditions on FEL lasing

Free electron laser physics is an immensely deep and complex subject, most of which is beyond

the scope of this chapter. Luckily, there are excellent resources which offer an introduction

to the fundamentals of the subject including [4, 3]. For the purposes of this chapter, the

most relevant concepts will be those applied to a high gain, non-seeded, x-ray free electron

laser with a focus on the FEL functionality based on beam and undulator parameters.
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4.2.1 1D FEL fundamentals

In the most basic implementation of a non-seeded, high gain free electron laser, the process

of lasing begins with the production of spontaneous synchrotron radiation in an undulator.

To lowest order, the magnetic field of the undulator can be expressed as:

By = B0 sin(kuz), (4.1)

where B0 is the peak magnetic field, ku is the wavenumber of the undulator, and z is the

longitudinal position. The strength of the undulator is characterized by theK0 value, defined:

K0 =
eB0

mcku
≈ 0.934B0[Tesla] λu[cm], (4.2)

where λu is the undulator wavelength. The standard expression for the fundamental wave-

length of synchrotron radiation from an undulator on axis is [89]:

λr =
λu
2γ2

0

(
1 +

K2
0

2

)
. (4.3)

The free electron laser mechanism, in the high gain regime, is the result of a resonant

self-interaction between an electron bunch and an electromagnetic field that it is generating.

In free space, there is no sustained interaction because the synchrotron radiation will contin-

uously slip off the bunch. However, if the synchrotron radiation slips forward by exactly one

period per undulator period, a resonant interaction becomes possible. Neglecting all effects

except the subluminal speed of the electron bunch and the path length increase due to the

electrons’ sinusoidal motion, this resonant condition is satisfied by radiation with wavelength

given in equation 4.3.

Within each of these slices separated by λr, electrons either gain or lose energy to the EM

field, depending on their phase within the “ponderomotive bucket”. Over time, these energy

differences result in ballistic bunching whereby the electrons which were near the tail of the

bunch which have gained energy catch up to the electrons which were near the head that

lost energy. This periodic current modulation is called “microbunching” (See Figure 4.1).
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These microbunches, spaced as they are at the EM field’s wavelength, are able to radiate

coherently by continuing to transfer electron kinetic energy into the EM field, leading to the

massive brightness gain over incoherent sources of x-rays. This process is described to first

order by the FEL pendulum equations [4] which relate the electrons’ phase relative to the

EM wave, θ, to their relative energy error from the design energy η = (γ − γ0)/γ0 according

to:

dθ

dz
= 2kuη (4.4)

dη

dz
=
eK0[JJ]E0

2γ2
0mc

2
cos(θ + ψ0), (4.5)

where [JJ] is the Bessel function factor dependent on K0 (of order unity) and E0 and ψ0 are

the amplitude and phase of the electric field respectively.

This gain process is characterized by the Pierce parameter, ρ, which was mentioned

previously but reproduced here:

ρ =

(
IeK

2
0 [JJ]2

16IAγ3
0σ

2
xk

2
u

)1/3

, (4.6)

where Ie is the beam current, IA is the Alfvén current, and σx is the transverse beam size.

In this idealized regime, sometimes also called the 1D regime, the gain length is given as

LG0 =
λu

4π
√

3ρ
, (4.7)

where each LG0 of undulator the beam traverses corresponds to one e-folding in power, i.e.

an increase of ∼ 2.72×. This exponential gain in power continues until saturation, which

occurs when the resonant condition is no longer satisfied, typically because enough kinetic

energy has been extracted from the beam to appreciably change the slippage length from

λr. At saturation the radiation power is approximately equal to ρ times the beam power.

Real world FELs must contend with more issues than those outlined in this idealized, 1D

model. These will be discussed qualitatively and also given as quantified, scaled parameters
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Figure 4.1: Schematic of microbunching in the ponderomotive bucket for a low energy spread

(top) and high energy spread (bottom) cases. The beam’s initial state is in green, fully

microbunched state is in red, and an intermediate state in yellow. A plot showing the

beams’ current profile is also included, with the same scale for each, showing the current

spike narrowing and increasing.
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in the following subsections.

4.2.2 3D error - energy spread

First among these issues is that of energy spread, described by [4]: “Since the FEL interaction

is a resonant energy exchange between the electron and the radiation field, the evolution of

the electrons’ phase may affect the FEL performance critically. [...] an initial energy spread

can cause a phase spread [...] that degrades the microbunching process.” For illustrative

purposes, this can be understood by considering a rigid beam distribution in phase/energy

trace space in the ponderomotive bucket described before. A beam with a small energy

spread ends up covering a very thin region of phase, on the other hand, a beam with a large

spread ends up spread over a larger region of phase, reducing the coherence of its contribution

to the EM field. This is shown by the broader and lower current spike in Figure 4.1 for the

higher energy spread beam.

The scaled parameter for this error is:

ηγ =
4πLG0ση

λu
, (4.8)

where ση is the rms value of η = (γ − γ0)/γ0.

4.2.3 3D error - emittance

The next issue encountered by real world FELs is that of finite emittance. Different particles

with different amplitude trajectories due to natural undulator focusing and/or a strong

focusing lattice will have slightly different path lengths than the nominal path length induced

just by the undulator field. This effect is evident by examining the average longitudinal

velocity of an electron as a function of its transverse actions [4]:

v̄z
c

= 1− 1 +K2
0/2

2γ
− Jx + Jy

β
, (4.9)

where the transverse actions are defined:
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J{x,y} =
β

2

(
k2
β{x, y}2 + p2

{x,y}
)
, (4.10)

and where β and kβ are the focusing beta function and wave number respectively. The

path length difference resulting from this reduced average longitudinal velocity means that

particles with higher actions will slip further behind the EM field than design trajectory

particles, also leading to dilution of the microbunching, reduced coherence, and worse gain.

The ensemble mean particle actions are equal to the beam’s emittance, 〈J{x,y}〉 = ε{x,y}.

The scaled parameter for this error is:

ηε =
4πkβLG0ε

λr
. (4.11)

4.2.4 3D error - diffraction

The last issue that will be considered here is that of diffraction. The radiation generated

by the electron beam will naturally diverge, with a lower bound given by a diffraction

limited beam. For a diffraction limited beam, the spot size will double over a Rayleigh

length, ZR ≡ 4πσ2
x/λr. This expansion will cause there to be less power density within the

transverse spot size of the electron beam, reducing coupling. This effect is mitigated if the

Rayleigh length is long relative to the gain length, i.e. energy is being coupled in from the

electron beam’s kinetic energy faster than it is being lost to the divergence of radiation.

The scaled parameter for this error is:

ηd =
LG0λr
4πσ2

x

. (4.12)

4.2.5 3D FEL fitting

Ming Xie developed a fitting formula [90, 91] which gives an estimate for the 3D performance

of an FEL as a function of its 1D performance and the scaled parameters from above: ηγ,

ηε, and ηd. The gain length degradation factor, ∆, is approximated by the expression:
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∆ = a1η
a2
d + a3η

a4
ε + a5η

a6
γ + a7η

a8
ε η

a9
γ +

a10η
a11
d ηa12γ + a13η

a14
d ηa15ε + a16η

a17
d ηa18ε ηa19γ ,

(4.13)

with the coefficients

a1 = 0.45, a2 = 0.57, a3 = 0.55, a4 = 1.6, a5 = 3, a6 = 2,

a7 = 0.35, a8 = 2.9, a9 = 2.4, a10 = 51, a11 = 0.95, a12 = 3,

a13 = 5.4, a14 = 0.7, a15 = 1.9, a16 = 1140,

a17 = 2.2, a18 = 2.9, a19 = 3.2.

(4.14)

This ∆ factor can be used to approximate the 3D gain length:

LG ≈ LG0(1 + ∆), (4.15)

the saturation power:

Psat ≈
1.6

(1 + ∆)2
ρPbeam, (4.16)

and the saturation length:

zsat

LG
≈ ln

(
20Ietc
e

)
, (4.17)

where tc is the coherence time, which depends on the FEL bandwidth σω according to

tc =
√
π/σω. For most FELs though, this value zsat

LG
, “typically varies little from 18 to 20”

[4].

4.3 Current approaches to a LPA driven FEL

Since the earliest demonstration of a bubble regime LPA in 2002 with its low energy (<200

MeV peak) and large energy spread (>100%), the techniques and technologies used in LPAs
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have dramatically evolved. Beams in a variety of operational regimes have been produced,

including energies up to 8 GeV [11], currents over 10 kA [12], normalized transverse emit-

tances below 60 nm-rad [13], and sub-% energy spreads [13, 14]. Generally though, there is a

trade-off between beam parameters. Although an individual LPA experiment might deliver

high energy, high current, low emittance, or (relatively) low energy spread, no group has

demonstrated an LPA which can achieve all these results simultaneously, in the manner that

a modern linac can. Generally, the energy spread is the limiting factor since, at the ∼%

level, they are still too large to direct drive lase with a conventional undulator. Referring

back to the expression for the energy spread parameter, equation 4.18, and substituting in

for LG0 from equation 4.7:

ηγ =
4πLG0ση

λu
=

ση√
3ρ
. (4.18)

Since the equation for the degradation factor ∆ is comprised of terms with ηγ to powers over

1, a rule of thumb for maintaining an acceptably low degree of degradation is to hold ηγ � 1,

i.e. ση � ρ. For typical FEL undulators, ρ ranges from 10−4 to 10−3 which corresponds to

roughly requiring an energy spread of less than 0.1% to 0.01%, several orders of magnitude

lower than the current ∼% values. Therefore, all current LPA driven FEL experiments

employ techniques to skirt these constraints while using conventional accelerators. There

are two main approaches in use.

4.3.1 Transverse gradient undulator

The transverse gradient undulator (TGU) approach [3, 15, 16, 17] employs an undulator

where the field strength is scaled according with the function 1+f(x), i.e. varying magnitude

in the transverse direction. Recalling that K0 is proportional to B0 and that the resonant

condition from equation 4.3 depends on this, arrive at a new expression for the resonant

wavelength which depends on x:

λr =
λu
2γ2

(
1 +

((1 + f(x))K0)2

2

)
. (4.19)
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But if a matching correlation in γ and x is introduced, it is possible that the whole beam

might satisfy the resonant condition simultaneously, with each part of the beam transversely

having an acceptably small energy spread. Such a solution is far from ideal though since

TGUs have worse gain than a typical undulator, larger spot sizes leading to worse coherence,

and they require beam optics for injecting a dispersed beam into the TGU [3].

4.3.2 Beam decompression

The other major approach for an LPA driven FEL under investigation is to decompress the

beam using a chicane before injecting it into the undulator [18, 19, 20, 21]. Although the

energy spread over the whole beam remains at the few-% level, the energy spread over a co-

herence length, λc = λr/4πρ, is reduced below ρ, satisfying the condition from equation 4.18

(A more complete discussion of this approach is found in Chapter 3 including an illustration

in Figure 3.1, reproduced here as Figure 4.2). This comes at the cost of current though, and

ρ ∝ I
1/3
e so selecting the appropriate amount of decompression is an optimization problem,

balancing the lost current versus the improved local energy spread. There are additional dis-

advantages to the decompression approach over a direct-drive system: coherent synchrotron

radiation (CSR) generated in the chicane required for decompression can degrade the beam

and a longer and more complex beamline is required to facilitate the decompression. Unlike

the TGU approach though, beam decompression allows for the use of a conventional undu-

lator which is especially appealing if an undulator is already available for use, as was the

case at BELLA FEL.

4.4 Advanced undulators

Broadly speaking, the term advanced undulators, encompasses any undulator design which is

not a pure permanent magnet (PPM) or hybrid Halbach with a few-cm λu which forms the

basis of all extant XFELs. The undulators of all operating XFELs at time of writing [92, 93],

are summarized in Table 4.1. There is an enormous breadth of research into advanced undu-

lators including designs based on: superconducting wire [94, 95, 96], bulk superconductors
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Figure 4.2: (Figure 3.1 reproduced here) The longitudinal phase space of an LPA beam

before and after being chirped by a dispersing element. Observe how the energy spread, σγ,

over a coherence length, λc, is reduced by chirping.

[97, 98, 99], field redistribution [100, 101], MEMS electromagnets [102], microundulators

[103, 104, 105], RF [106, 107, 108], cryogenic magnets [109, 110, 111], crystals [112, 113],

laser driven bifilar [114], and plasma channels [115, 116, 117]. For this chapter though, the

two primary innovations considered will be the use of cryogenic magnets and techniques for

microundulator fabrication, which can be used with cryogenic magnets.

Cooling praseodymium doped NdFeB magnets to cryogenic temperatures (∼30 K) dra-

matically enhances the magnetic performance in terms of residual magnetization Br, coer-

civity Hc, and energy product (See Figure 4.3). This effect was studied in [109], wherein a

short period period undulator (9 mm) was selected with a Bpeak of 2.2 T. Such an undulator

has nearly twice the field of any undulator in Table 4.1 while also having only a fraction

of the period. For the following simulations, this work will serve as the reference point for

undulator performance. Although they selected a particular λu and gap value, a smaller

gap or a change in geometry would increase the field further: Bpeak = 3.0 T is taken as the
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Name λu [mm] Array type Bpeak [T] K0

LCLS [5] 30 Hybrid 1.3 3.7

SACLA [118] 18 Hybrid 1.3 2.2

European XFEL (SASE 1) [119] 36 Hybrid 1.0 3.3

European XFEL (SASE 2) [119] 48 Hybrid 0.6 2.8

European XFEL (SASE 3) [119] 80 Hybrid 0.4 3.3

PAL-XFEL (HXU) [120] 26 Hybrid 0.8 2.0

PAL-XFEL (SXU) [120] 35 Hybrid 1.0 3.3

Swiss XFEL [121] 15 Hybrid 0.9 1.2

FLASH [122] 27 PPM 0.5 1.2

Fermi FEL-1 [123] 65 PPM, APPLE-II 0.9 4.0

Fermi FEL-2 [123] 50 PPM, APPLE-II 0.9 2.8

Table 4.1: Undulator period, type, peak field, and K0 value for all operational XFELs. (An

APPLE-II undulator is a type of helical, variable polarization, PPM undulator)

maximum in this section.

4.5 Advanced undulator LPA-FEL simulations

Simulations using the venerable GENESIS code [124] are conducted for direct drive LPA

driven FELs with advanced undulators. For these “direct drive” systems, it is assumed

that the beam is matched into the FEL from the LPA using a single focusing element,

e.g. a PMQ triplet or active plasma lens, with no other beam optics. Three representative

cases are considered: the BELLA FEL beamline, the current best experimentally realized

LPA beams, and simulated LPA beams. For the BELLA FEL case, the relaxation in the

σγ requirement facilitated by an advanced undulator is explored. For best experimental

LPA case, it is shown that pairing an advanced undulator with a demonstrated, real-world

LPA beam could facilitate the demonstration of a direct drive FEL with significant power

enhancement over the spontaneous synchrotron radiation. Finally, an LPA beam described
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Figure 4.3: Performance of praseodymium doped neodymium magnets at 30 K (dashed) and

300 K (solid). Data from [109].

by a computational paper is paired with an advanced undulator to simulate an x-ray water

window FEL with high power output.

4.5.1 BELLA FEL beamline driver

4.5.1.1 TREX beam

In the original proposal for the BELLA FEL experiment by PI Jeroen van Tilborg [21], a

preliminary case was laid out for a decompression based LPA driven FEL predicated on a

capillary LPA beam, previously demonstrated at BELLA TREX [12]. The beam used for

their GENESIS simulation had a central energy of 250 MeV with a charge of 100 pC at a 10%

rms energy spread (corresponding to a peak spectral charge density of 1.7 pC/MeV) with

an rms bunch length of 1 µm corresponding to a peak current of 12.8 kA with a normalized

emittance of 100 nm-rad. The beam was subsequently decompressed in a chicane by a factor

of 64, reducing the peak current to 0.2 kA, the instantaneous energy spread to 0.16% and

increasing the rms bunch length to 64 µm. This beam was matched (with chromatic effects
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accounted for but not coherent synchrotron radiation) to the VISA undulator [125] with its

period of 1.8 cm and K0 value of 1.26, corresponding to a Bpeak of 0.75 T. They calculate

that this configuration will yield approximately a peak power of 0.1 MW at λr = 67 nm. This

is approximately two orders of magnitude of enhancement in power over the spontaneous

synchrotron radiation.

This will be the first case considered for the application of a cryoundulator to a direct

drive FEL; supposing all of the above beam and undulator parameters are held constant,

FEL performance as a function of σγ and Bpeak is explored. Recall that the Pierce parameter,

ρ, scales approximately with B
2/3
peak, and that the scaled energy spread parameter ηγ scales

with the inverse of ρ. Therefore, the deterioration in FEL performance due to energy spread

can be mitigated by employing higher magnetic field strengths.

In Figure 4.4 over 1,800 time dependent simulations were conducted in GENESIS. The

plot shows the coherent power enhancement, i.e. P (z = Lu)/Pspontaneous. In this case, the

length of the undulator, Lu, is selected based on the slippage of the radiation off the beam;

for these extremely short, 1 µm long, beams it is not feasible to demonstrate high gain FEL

operation at optical or longer wavelengths since the beam will demonstrate superradiant

lasing spontaneously. With this in mind, Lu is set based on a slippage of 8 σz, i.e. Lu = 8σzλu
λr

.

Lu and λr calculated using equation 4.3 are shown in Figure 4.5. This result shows that an

equal enhancement in power over spontaneous power can be achieved with a cryoundulator

with a beam that has twice the energy spread as compared to the VISA undulator. However,

due to the short beams, there is an upper bound on increasing K0 at around Bpeak = 2.0

T; beyond this point, the reduced interaction length from the shorter undulator begins to

overwhelm the improved performance due to reduced ηγ. Therefore, based on the TREX

beams, moving to a cryoundulator is not a compelling option since the maximal allowed

energy spread for > 100× coherent enhancement is around 2%, five times higher than the

actual observed values near 10%.
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Figure 4.4: The power enhancement over the spontaneous synchrotron radiation (P (z =

Lu)/Pspontaneous) is shown as a function of Bpeak and σγ while otherwise assuming BELLA

beam parameters and VISA undulator λu. The 103 enhancement isocontour is highlighted,

and the Bpeak values corresponding to VISA and an optimized cryoundulator are shown.
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Figure 4.5: The undulator length, Lu, and fundamental radiation wavelength, λr, as a

function of the peak undulator magnetic field, Bpeak, for the TREX-style LPA driven FELs

simulated in Figure 4.4.

4.5.1.2 Optimized BELLA beams

The beams described above are the most conservative estimate (having been previously

demonstrated) and served in the proposal [21] to illustrate the flexibility of the decompres-

sion scheme, even to significantly suboptimal beams. A later paper by van Tilborg, et al.

[126], conducts GENESIS simulations predicated on a capillary LPA beam optimized for

FEL operation. This beam has a lower charge, 25 pC, lower energy, 220 MeV, and worse

normalized emittance, 300 nm-rad, but crucially has an improved energy spread of 1%. This

1 µm, 3.2 kA beam is decompressed by only 4.5× to 4.5 µm and 0.7 kA. After passing

through the 4 meters of VISA undulator, they simulate an output of 100 MW at λr = 87

nm, approximately three orders of magnitude over the spontaneous synchrotron radiation.

For this case, the application of a cryoundulator is extremely compelling.

In Figure 4.6 8,800 time dependent simulations were conducted in GENESIS. The beam
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described in [126] was used directly to drive a cryoundulator with variable λu and Bpeak.

These results show that in only 0.5 m of cryoundulator, a peak power output of nearly a

gigawatt is possible, corresponding to an enhancement of four orders of magnitude over the

spontaneous synchrotron radiation. With 1.0 m of cryoundulator, a peak power of nearly five

gigawatts is possible. Contrast these results with the proposed decompression experiment

using the same beam: even though the beamline is more complex and the undulator is 4

meters long, the simulated peak power is only 100 MW. Further, since the power outputs

described can be achieved at a range of radiation wavelengths depending on the undulator

parameters, over a gigawatt can be produced with a meter of undulator for wavelengths from

45 nm and up. Note that simulations where the situation is superradiant, rather than high

gain, i.e. the assumption that λr � σz is violated, are omitted since GENESIS is not capable

of handling such cases. Although these cases will output high power, they are outside the

scope of this discussion since the spontaneous radiation is functionally the same.
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Figure 4.6: Plots of the absolute (left) and relative power, P (z = Lu)/Pspontaneous, (right) as

a function of Bpeak and λu for the optimized BELLA LPA beams described in [126] based

on SASE averaged GENESIS simulations. Undulator lengths, Lu, of 0.5 m (top) and 1.0 m

(bottom) are considered. The isocontours for different λr values are included. Superradiant

cases, i.e. when the assumption that λr � σz is violated, are omitted
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4.5.2 Best experimentally demonstrated LPA driver

This section considers an advanced undulator based LPA-FEL using an experimentally

demonstrated driver beam, the goal being to show that, by employing an advanced un-

dulator, an LPA driven high gain FEL could be demonstrated using LPA beams available

today. Table 4.2 includes a summary of the parameters relevant for FEL operation for a

variety of demonstrated and simulated LPA beams including charge, energy, length (as a

proxy for current), energy spread, and emittance. Also shown are a few other examples of

non-LPA drivers such as the LCLS photoinjector and linac and a plasma wakefield acceler-

ated plasma photocathode beam, termed “trojan horse”. From these, the beam from [14]

has been selected as a driver for GENESIS simulations with parameters: 80 pC, 600 MeV,

3 µm, 0.4% spread, and 1400 nm-rad emittance.

In the previous section, the issue of external focusing was ignorable due to the very low

emittances and short undulator lengths; relying solely on the natural focusing of the undu-

lator was sufficient [3]. For this scenario however, applying a focusing lattice can marginally

improve FEL performance. It will be assumed that there is an integral FODO focusing lat-

tice in the undulator, rather than having quads between undulator sections. A discussion of

the implementation of such focusing is beyond the scope of this document but might include

a basic bar magnet approach like the VISA undulator [125] or a novel implementation of

Panofsky quadrupoles [82]. Quadrupole gradient values of 33 T/m have been demonstrated

in the VISA undulator and simple scaling laws readily extend this to ∼100 T/m. Figure 4.7

shows the effect of quadrupole focusing fields up to 200 T/m to illustrate the diminishing

return from going to greater gradients. This case uses an undulator with λu = 20 mm,

Bpeak = 2.2 T, quadrupole lengths of 8 periods (8 × 20 mm = 160 mm), and zero length

intra-quad drifts. For this case, some marginal enhancement occurs by focusing using an

external lattice; focusing down from a natural spot size around 20 µm to 18.2 µm using

70 T/m gradients enhances the average, saturation peak power by about 50% (This is �

the shot to shot variation due to SASE startup though) beyond 130 T/m or so though, the

focusing is excessive and the power begins to drop again. This is not in clear agreement with
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Reference Type
Charge

[pC]

Energy

[MeV]

Length

[µm]

Spread

[%]

Normalized

emittance

[nm-rad]

[12] LPA - demonstrated 100 250 1 10 100

[14] LPA - demonstrated 80 600 3 0.4 1400

[127] LPA - demonstrated 0.4 460 0.3 2.8 100

[128] LPA - demonstrated 15 300 1.4 6 70

[129] LPA - demonstrated 45 450 4.5

[130]
LPA - simulated

and demonstrated
20 90 0.27 5 2000

[13]
LPA - simulated

and demonstrated
15 360 0.4 56

[131] LPA - simulated 4.5 784 0.18 0.2 80

[132] LPA - simulated 30 150 1 0.5 30

[126] LPA - proposed 25 220 1 1 300

[133] Plasma photocathode 2 300 2 3 30

[5] Conventional RF 1000 14350 23 0.06 1200

Table 4.2: Overview of demonstrated and simulated LPA beams. The most critical param-

eters for FEL performance: charge, energy, length (as a proxy for current), energy spread,

and emittance are included where possible. If a reference included a range of values, the

best one is shown. Rows for other acceleration techniques proposed or used as FEL drivers

are also included: a conventional photoinjector and linac and a plasma wakefield accelerated

plasma photocathode beam.
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the expected optimal spot size [3]:

σx =

√
LG
λr/4π

εn
γ0

, (4.20)

which gives the optimum spot size as 7 µm. This disagreement is due to the relatively high

beam emittance compared to the radiation emittance, εr ≡ λr/4π.

Figure 4.7: Peak power vs location along undulator for [14] beams paired with λu = 20 mm,

Bpeak = 2.2 T undulator with integral focusing with quads length 160 mm. Cases broken

out by quadrupole gradient and mean spot size with 10 SASE averaged runs per case.

With a moderate focusing lattice applied, 75 T/m, corresponding to a matched, average

spot size of 18.2 µm, the FEL performance as a function of λu with constant Bpeak = 2.2 T

will be considered. A summary of the results are shown in Figure 4.8 (10 SASE averaged

runs per case) where λu is swept from 10 to 30 mm. The 10 mm case is very similar to

the undulator demonstrated in [109] with its 9 mm period at Bpeak = 2.2 T. This case

operates right at the edge of soft x-ray and EUV with λr = 11 nm. At this wavelength,

the beam barely demonstrates high gain, but gives a peak power output of 100 MW after 4

meters, corresponding to approximately two orders of magnitude in enhancement over the
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spontaneous radiation. For cases with λu between 15 and 30 mm the enhancement is more

significant with a peak power output over 10 GW.

Figure 4.8: Peak power vs location along undulator for [14] beams with matched, average

spot size of 18.2 µm, in undulators with Bpeak = 2.2 T. Cases are broken out for different λu

values with 10 SASE averaged runs per case.

4.5.3 PIC simulated LPA driver

For this final scenario, an LPA driver generated by a particle-in-cell (PIC) simulation is

used. Referring back to Table 4.2, the entry for [131] will be used: 4.5 pC, 784 MeV, σz

= 180 nm, 0.2% energy spread, and a normalized emittance of 80 nm-rad. This extremely

bright beam can drive an FEL deep into the x-ray spectrum when paired with an advanced

undulator, capable of demonstrating high gain at the x-ray water window and even higher

photon energies of 1 keV.

As in Section 4.5.1, this beam is of such low emittance that the effect of focusing on FEL

performance is negligible; relying on natural focusing alone gives a mean spot size of ∼4 µm.

As in the previous section, assuming a fixed Bpeak of 2.2 T, selecting a λu of 8 mm (very

similar to the [109] undulator) gives λr = 4.0 nm. This wavelength is in the “x-ray water
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window”, a region of spectrum between the K-edge of oxygen (2.3 nm) and the K-edge of

carbon (4.4 nm) with relatively high transmission of x-rays, making it useful for the study

of biological materials. Selecting a λu of 4 mm gives λr = 1.1 nm, giving a photon energy of

> 1 keV.

Figure 4.9: Peak power vs location along undulator for [131] beams with matched, average

spot size of 4 µm, in undulators with Bpeak = 2.2 T. Two cases are shown: one with a λu =

8 mm undulator lasing in the x-ray water window and another with λu = 4 mm, lasing with

a photon energy > 1 keV.

The results of 20 SASE averaged runs for each undulator configuration, 8 mm and 4 mm,

are shown in Figure 4.9. Each case is capable of producing over a gigawatt of x-ray power in

less than 3 meters of undulator, corresponding to 4 or 5 orders of magnitude of enhancement

over the spontaneous radiation power. This scenario is illustrative of what a next generation

LPA driven x-ray free electron laser might be capable as LPA beam quality continues to

improve.
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4.6 Design of Comb Fabricated Halbach Undulators

This section is adapted from [104] in accordance with the UCLA’s dissertation guidelines,

section “Alternate versions of published articles”. It discusses a fabrication technique for

short period “milliundulators” for both PPM and hybrid Halbach arrays. This is one potential

way of realizing the undulators employed in the GENESIS simulations.

4.6.1 Introduction

An idealized Halbach array of permanent magnets, originally described by Klaus Halbach in

1980 [134, 135] for use in multipole magnets and undulators, consists of regions of perma-

nent magnet with smoothly rotating residual fields. The benefit of this configuration is the

establishment of a “strong” and “weak” side to the array, enhancing the magnetic field on

the strong side and attenuating it on the weak side. This leads to more efficient use of the

available magnetic flux, giving stronger fields than other magnetization configurations. Prac-

tical realizations of Halbach arrays consist of discrete magnets, each with a unique, constant

magnetization vector, arranged to approximate the idealized case. Halbach arrays have been

used extensively in beamline magnets including the construction of permanent magnet wig-

glers and undulators [136, 137, 125, 138] and multipole magnets including dipoles [139] and

quadrupoles [140]. In addition to the pure permanent magnet (PPM) arrays, hybrid arrays

consisting of both hard and soft ferromagnetic materials are also used [109, 141, 142]. The

most common practical implementation of these hybrid arrays to realization of undulators

involves magnets with alternating polarities with their magnetization vectors oriented in the

longitudinal direction, interspersed with high-saturation soft ferromagnets. Such undulators

are capable of achieving gap fields significantly higher than PPM undulators, for reasons

that will be discussed below.

There is growing interest in the development and use of short period undulators (or

micro-undulators) [143, 142, 144, 103, 145, 146], facilitated by MEMS (microelectromechan-

ical systems) and other modern, non-conventional machining techniques. Decreasing the

undulator period length decreases free-electron laser (FEL) or light source length while also

114



producing harder radiation from lower energy electrons which may be produced by a shorter

accelerator. Comb fabrication is one approach for facilitating fabrication of micro-undulators

which has been demonstrated before for simple up-down (M ′ = 2 in the terminology of [134])

style undulators [103]. However, here we are interested in higher order, M ′, Halbach arrays,

as they offer superior magnetic field performance. If the minimum feature size of the man-

ufacturing process is at least 4 times smaller than the required period, either M ′ = 4 or

hybrid arrays can be used. Otherwise, isosceles triangle based arrays can provide the same

period length as an M ′ = 2 for a given feature size but with improved field strength [105].

4.6.2 Methods

Comb fabrication relies on the cutting of multiple “teeth” out of a single piece of material,

all of which will have the same magnetization vector. Thus this approach gives a straightfor-

ward path in both mechanical fabrication and magnetization of the machined combs. These

combs are designed in such a way that they may be slotted together to form the complete

Halbach array of a single undulator jaw. One additional constraint to the design of these

combs is that they must be manufacturable using only through-bulk cutting, as opposed to a

depth controllable process such as milling. This is due to the limited selection of machining

processes conducive both to machining rare earth magnets, which are brittle and hard, and

capable of operating at such small length scales. Two non-conventional machining processes

in particular are well suited to this task, laser machining and wire electrical discharge ma-

chining (EDM), and both are through-bulk processes. A total of four geometry types will be

considered: up-down (M ′ = 2), isosceles triangle, M ′ = 4, and hybrid arrays. The idealized

cross sections of each of these geometries in the two-dimensional limit, as well as example

combs for each, are shown in Figure 4.13.

The M ′ = 2 array is the simplest case and comb fabrication has been previously demon-

strated [103]. An array based on isosceles triangles, with the same volume of magnetic ma-

terial per period and same minimum feature size, produces integrated fields approximately

20% higher than the M ′ = 2 case [105]. The M ′ = 4 case offers a higher field than either of
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these but requires four feature lengths per period, making it unsuitable for undulators with

especially short periods. An expression from [136] gives the peak field strength for PPM,

rectangle magnet Halbach arrays:

Bpeak = 2Br
sin(π/M ′)

π/M ′

(
1− e−2πh/λu

)
e−πg/λu , (4.21)

where Bpeak is the maximum magnetic field in the gap, Br is the residual magnetization of

the permanent magnets, M ′ is the number of magnets per period, h is the height of the

magnets, g is the gap size, and λu is the undulator period. This suggests that, all else held

equal, an M ′ = 4 array will have 0.90 times the peak field of an idealized (M ′ →∞) Halbach

array while an M ′ = 2 array will have 0.64 times the ideal case. This result, combined with

the findings of [105] indicates that the isosceles case will have 0.76 times the field of the ideal

case. The performance of the hybrid case depends on additional factors, outlined below.
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Figure 4.10: Examples of the simulated undulator configurations. The left column shows

an idealized, 2D cross section omitting connecting parts. The center column shows the

constituent parts of the lower jaw in a pre-assembly state. The right column shows the

assembled state of the lower jaw array. By row: (a) M ′ = 2 array, (b) isosceles triangle

array, (c) M ′ = 4 array, and (d) hybrid array. Green and yellow correspond to vertical

magnetization vectors, blue and red correspond to longitudinal magnetization vectors, and

grey corresponds to a high-saturation, soft ferromagnetic material.
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Consider a magnetic circuit that is simply a “loop” of constant cross sectional area

permanent magnet with an air gap. Further assume that the B-H curve can be approximated

as linear with intercepts at Br, the residual magnetization, and Hc, the coercivity:

B = Br(1 +H/Hc). (4.22)

Typical values for Br and Hc for high quality neodymium magnets are 1.2 T and 106

amp/meter respectively [88]. Assuming negligible fringing fields, there is constant magnetic

flux, Φ, in both the magnet and gap:

Φ = AmBm = AgBg, (4.23)

where A is the cross sectional area (normal to the flux), B is the magnitude of the magnetic

flux density, and the subscripts m and g refer to the magnet and gap, respectively. Since

there is no exciting current the net magnetomotive force, F , is zero:

F = 0 = Hgg +Hmlm, (4.24)

where H is the magnitude of the magnetic field H and g and lm are the lengths of the flux

path in the gap and magnet respectively. Using equations 4.22, 4.23, and 4.24 along with

Bg = µ0Hg, find the field in the gap to be:

Bg =
AmBrHclmµ0

AmBrg + AgHclmµ0

. (4.25)

Since it was assumed that the PM loop was of constant area, Ag = Am, so Bg is maximized as

g → 0 and Bg → Br. This result is a reasonably good approximation for the PPM undulator

cases as confirmed by simulation.

Now consider a magnet that is coupled to a gap by an infinite permeability yoke; the yoke

will perfectly confine the flux allowing Ag 6= Am. This approximates the case of the hybrid

undulator where lm is the thickness of the longitudinally magnetized PMs and Am is their
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area normal to this. Am can become large without affecting the period of the undulator so

consider equation 4.25 in the limit Am →∞:

Bg =
Hclmµ0

g
. (4.26)

This result suggests that the field can become arbitrarily large as lm/g →∞. However, this

approximation is only reasonable until the yoke material saturates, violating the “infinite

permeability” assertion. Since high saturation materials like vanadium permendur [88] offer

saturation fields over 2.3 T, compared to the Br of the best available permanent magnets of

around 1.2 T, hybrid Halbach undulators can provide peak fields about twice as high as a

PPM array.

An important caveat for these hybrid comb designs is that, to prevent leakage between

the two soft ferromagnetic yoke pieces, the sections interspersed with the magnets do not

cover the whole area of the magnet, Am. In the particular case simulated, the yoke piece

is only exposed to an effective area Am,eff ≈ Am/2 (See Figure 4.13(d)). This suggests

magnets of approximately twice the area are required to get the same performance as would

be possible if Am = Am,eff ; if non-magnetic side connecting pieces were brazed to the yoke

material before machining, this might be achievable.

4.6.3 Results

The performance of Halbach comb arrays are simulated in Radia [88] over a range of gap

sizes, g, and with several cases of the hybrid geometry shown with varying magnet areas

(in terms of λ2
u). The magnets are taken to be a neodymium (NdFeB alloy) with Br =

1.2 T. The soft ferromagnetic yoke material is simulated as a vanadium permendur alloy

with a saturation of 2.3 T and peak relative permeability of 7,000. In all the cases shown,

the magnet height, h, is held constant relative to λu for all PPM cases; this means that

M ′ = 2 has square magnets while M ′ = 4 magnets are rectangular. This keeps the volume

of magnetic material per period constant as M ′ is varied for the most meaningful comparison.

Additionally, the transverse dimension of the magnet is taken to be large relative to λu.
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To compare between the strengths of the different configurations, it is typical to character-

ize undulators and wigglers in terms of a unitless parameter termed the K-value, sometimes

also termed the strength parameter. K is defined [89]:

dx

ds

∣∣∣∣
max

=
1

2

∫ λu/2

0

e

γmec
By(s) ds ≡ K

γ
. (4.27)

where (dx/ds)max is the maximum deflection angle of the electron beam in the undulator,

e is the electron charge, me is the electron mass, c is the speed of light, and By(s) is the

vertical field along the undulator. To compare the strengths of undulators independent of

λu the mean absolute field, 〈|By|〉, can be used instead:

〈|By|〉 ≡
1

λu

∫ λu

0

|By(s)| ds

K =
eλu

4mec
〈|By|〉.

(4.28)

〈|By|〉 will be derived from the simulated fields.

Referring to Figure 4.11, the M ′ = 2 case, although the simplest to fabricate, also gives

the worst performance. For typical gap sizes on the order of λu/4, M ′ = 2 arrays offer a

〈|By|〉 value of only 0.42 T while the isosceles case, despite having the same minimum feature

size, has 〈|By|〉 = 0.52 T (24% enhancement) and the M ′ = 4 array has 〈|By|〉 = 0.58 T

(38% enhancement). The hybrid cases, on the other hand, shine at particularly low g values

where they can offer 〈|By|〉 values over 80% higher than M ′ = 2 cases.

Both the isosceles and M ′ = 4 cases appear to be converging to the residual magnet field,

〈|By|〉 → Br = 1.2 T in the g → 0 limit as predicted by equation 4.25, suggesting that with

four magnets per period, the flux in a loop is reasonably well approximated as normal to the

loop cross section. The M ′ = 2 case however is not converging to Br, since with only two

magnets per period, this approximation is significantly worse. Finally, looking at the hybrid

cases, it appears that the approximation from equation 4.26 that Am → ∞ is reasonably

well satisfied at values of Am ≥ (4λu)
2 and that there are negligible returns to increasing the

cross sectional area of the magnet any further. Despite being in the large Am limit, 〈|By|〉

in the g → 0 limit does not appear to be the saturation field of the yoke material. This
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Figure 4.11: Mean, absolute fields, 〈|By|〉, for different Halbach geometries as a function of

gap size, normalized to λu, based on Radia simulations.

is due to significant flux leakage between the yokes and fringing fields. Further geometry

optimization may reduce this effect.

In addition to considering the field strength, the deviation of the field compared to non-

comb (no non-tooth connecting pieces) Halbach arrays should be examined. For the PPM

geometries, determining this effect is especially straightforward since simply taking a linear

superposition of all the magnet fields is a reasonably good approximation: it is stated in

Ref. [147] that “[rare earth magnets behave] magnetically very nearly like a vacuum with an

impressed current. This makes it straightforward to predict analytically the field that will

result from almost any configuration of blocks” . Since adjacent connecting pieces can be

selected to have opposing polarization, far field errors are reduced. Further, any application

particularly sensitive to such error fields can employ thicker teeth to increase the separation

between the connecting magnets and the beam axis. Consider a concrete example of a M ′ = 4
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undulator with g = λu/4 and h = λu/2, giving a peak field, Bpeak, of 0.78 T. Within a square

region on axis, with side length equal to λu/8, averaged over a period, the field from an array

with connecting pieces has a mean absolute error (MAE) of 0.0029 T (0.37% of Bpeak) when

compared to the same configuration without connecting pieces. Any integrated effects can

be mitigated by alternating the polarities of the connecting pieces between adjacent combs.

As mentioned before, the connecting pieces are especially impactful for the hybrid case,

reducing the effective magnet area by approximately half compared to the actual magnet

area and also limiting the maximum achievable gap field due to flux leakage and fringing.

Despite these challenges, the hybrid arrays can offer higher 〈|By|〉 values than any PPM

array.

4.6.4 Conclusions and future work

A technique for fabricating Halbach arrays for micro-undulators using comb elements has

been discussed. This approach obviates the need for magnet-by-magnet fabrication and

improves the accuracy achievable by relying on the intrinsic indexing of the comb teeth

relative to each other. Example combs for a variety of Halbach configurations including M ′ =

2, M ′ = 4, isosceles triangle, and hybrid are illustrated, all of which rely only on through-

bulk, non-conventional machining processes. These combs are simulated and compared over

a wide range of gap sizes using the magnetostatics code Radia. Finally, the impact of

the connecting pieces on the field quality has been discussed. Further work will include

determining optimal wire EDM parameters for samarium cobalt machining (previous studies

for neodymium magnets have been conducted [148, 149]), fabrication of proof-of-principle

comb Halbach arrays, and field characterization. This work may prove to be a key component

of the current UCLA effort to realize an ultra-compact X-ray free-electron laser [150].

4.7 Halbach undulators using right triangular magnets

This section is adapted from [105] in accordance with the UCLA’s dissertation guidelines,

section “Alternate versions of published articles”. It discusses a fabrication technique for
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short period “milliundulators” for both PPM Halbach arrays. This is another potential way

of realizing the undulators employed in the GENESIS simulations.

4.7.1 Introduction

The Halbach array of magnets, described in [134, 135] by the eponymous Klaus Halbach,

consist of arrays of magnets with smoothly rotating residual field orientations for the con-

struction of multipole magnets and undulators. In the intervening decades, Halbach arrays

have been used extensively in the construction of permanent magnet (PM) wigglers and

undulators [125, 138, 136, 137], enhanced multipole magnets including dipoles [139] and

quadrupoles [140], in addition to use in motor design [151, 152] and other engineering appli-

cations [153]. The benefit of this configuration is the establishment of a “strong” and “weak”

side to the array, whereby the field is enhanced on the strong side and attenuated on the

weak side. This leads to more efficient use of the available magnetic flux, giving stronger

fields than other configurations. Many variations exist, most notably the hybrid-Halbach

which includes both hard and soft ferromagnetic material [141, 142], which is capable of

producing stronger fields through the use of high saturation yoke material. Despite this, the

pure PM Halbach consisting only of hard ferromagnets is still commonly used.

There is growing interest in short period undulators (micro-undulators) [144, 143, 142,

103], facilitated by MEMS (microelectromechanical systems) and other modern fabrication

techniques, with researchers seeking to decrease the period length to achieve concomitant re-

ductions in free-electron laser (FEL) or light source size. In this context though, conventional

Halbach undulators suffer from a distinct disadvantage: for a given feature size achievable by

a particular machining or fabrication process, a conventional Halbach array will have twice

the period of a simple up-down lattice (M ′ = 2 in the terminology of [134]). This limitation

motivates this exploration of triangle based Halbach arrays. The triangle Halbach involves

less magnetic material per period than an M ′ = 4 undulator so lower fields are achieved,

with the advantage that for a given feature size the undulator period is halved. Existing

triangular-magnet Halbach arrays have relied on isosceles triangle geometries [154, 155, 156],
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leading to intrinsic symmetries.

Figure 4.12: An example right angle triangle magnet.

Unfortunately, such arrays are difficult to fabricate, especially at micro-undulator length

scales. To mitigate such challenges, simplification of the component magnets and their

assembly must be re-examined. As such, here we discuss Halbach arrays based on right

triangles, which feature easier fabrication while maintaining comparable performance to the

isosceles case and superior performance to M ′ = 2 arrays. Fabrication might begin with

bar magnets, manufactured to a high degree of accuracy, parallelism, and perpendicularity

using standard, scalable machining processes like surface grinding. By using a through-bulk

cutting technique like electrical discharge machining or laser machining along the hypotenuse

a right angle triangle prism can be produced that is intrinsically indexed to the remaining,

square section (Figure 4.12). These square parts can be indexed to each other and to flat

surfaces very accurately, without relying on the non-ground hypotenuse surfaces.
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Figure 4.13: Examples of the undulator configurations. (a) M ′ = 2 array, (b) M ′ = 4 array,

(c) isosceles triangles, (d) reflection symmetric right triangles, (e) rotationally symmetric

right triangles, and (f) rotationally symmetric right triangles with jaw translation (positive

zj is illustrated but negative is typically used).
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Figure 4.14: Harmonic coefficients of the on axis field for (a) M ′ = 2, (b) isosceles triangle,

(c) rotation symmetric right triangle, and (d) reflection symmetric right triangle.

4.7.2 Simulation setup

4.7.2.1 Overview

Four configurations of magnets will be considered: the M ′ = 2 (up-down) array, isosceles

triangles, reflection symmetric right triangles, and rotationally symmetric right triangles.

Each case has an undulator period, λu, equal to twice the minimum feature size, and all

cases have an equal volume of magnetic material per period, specifically each magnet has a

height equal to half a period. These cases are shown in Figure 4.13 along with the M ′ = 4

configuration, which has λu equal to four times the minimum feature size. All simulations

are performed using the magnetostatics code, RADIA [88] with the material properties of

neodymium magnets.
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4.7.2.2 Magnetization vector

The ideal magnetization vector as a function of longitudinal position, z, for a Halbach

array [135] is simply m̂ = eizkz where kz = 2π/λu. In the case of undulators in actual

experimental realization, however, the magnets are discrete elements, each with a discrete,

constant magnetization. With M ′ square magnets per period each magnet’s magnetization

vector is rotated by a fixed amount from the previous one, meaning that the magnetization

of the nth magnet is given by ei2πn/M
′
. This rule extends to the isosceles case, which exhibits

the same rotation as M ′ = 4 arrays. However, applying this constant rotation to right angle

arrays leads to sub-optimal fields. Instead, the ideal vector field described by

m̂(z, y) = ei(zkz+φ), (4.29)

where φ is a variable utilized to independently control the phase, is averaged over the region

of each discrete magnet and normalized to one. For magnet n = 1 (see Figure 4.13d) this

average vector is

〈~m〉n=1 =

∫ λu/2
0

∫ λu/2
z

m̂(z, y) dy dz

λ2
u/8

, (4.30)

which normalizes to the unit vector

〈m̂〉n=1 =
〈~m〉n=1

|〈~m〉n=1|
=

(2 cosφ− π sinφ)ẑ + (π cosφ+ 2 sinφ)ŷ√
4 + π2

, (4.31)

The same approach for magnet n = 2 yields

〈m̂〉n=2 =
−(2 cosφ+ π sinφ)ẑ + (π cosφ− 2 sinφ)ŷ√

4 + π2
. (4.32)

The angle between these vectors is independent of φ and equal to π−2 tan−1(π/2) ≈ 64.96◦.

Magnets 3 and 4 have magnetization vectors 〈m̂〉n=3 = −〈m̂〉n=1 and 〈m̂〉n=4 = −〈m̂〉n=2

respectively. Using the angles from this approach enhances the performance over the use of

naive, 90◦ rotations and is discussed in later sections. This approach can be extended to
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permit the calculation of the rms deviation between the discrete magnet’s magnetization and

the ideal field of equation (4.29), with these results shown in Table 4.3 (the rms deviation

is independent of φ). As will be shown later, this deviation is a predictor of the undulator

strength.

Geometry RMS deviation

M ′ = 2 0.109

Right angle (90◦) 0.096

Right angle (optimized) 0.093

Isosceles 0.083

M ′ = 4 0.062

M ′ →∞ → 0

Table 4.3: RMS deviation between ideal Halbach magnetization and discrete magnet vector,

by geometry

4.7.2.3 Impact of jaw translation

The length scale is normalized to the period of the undulator, λu, leaving two free variables

for each configuration: the gap, g, and the longitudinal translation between the jaws, zj. The

jaw gap is a commonly manipulated parameter for real world undulators: increasing the gap

reduces the field on axis and also decreases the relative contributions of higher harmonics.

Longitudinal translation is not often considered in the context of linear undulators, though

it is employed in some adjustable helical undulators [89, 157, 137]). For existing undulators

which are symmetric (i.e. M ′ = 2, M ′ = 4, and isosceles triangle) translations can serve to

reduce the field strength at the cost of introducing errors [158]. As will be demonstrated

below, however, for right triangle arrays, adjusting this parameter can be used to optimize

the undulator’s magnetic performance. All reflection symmetric cases maximize vertical field

and minimize longitudinal fields at zero translation, but rotation symmetric undulators are

optimized with a different, non-vanishing zj, dependent on gap. Based on this study, a
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heuristic guide for the optimized translation is given by

zj [λu] ≈ −0.025 ln(g [λu])− 0.14. (4.33)

This approximation gives a coefficient of determination (R2 value) of 0.9996 for values of g

ranging from 0.02 λu to 0.5 λu.

4.7.3 Results

4.7.3.1 Strength comparison

To compare between the different configurations, both the magnitude and quality of the

on-axis fields will be considered. It is typical to characterize the strength of undulators and

wigglers in terms of a unitless parameter called the K-value, sometimes also termed the

strength parameter. This parameter is the normalized (to mec) vector potential, and thus

is also equal in amplitude to the largest transverse momentum due to undulator-derived

deflections. In this way, one sees thatK may be calculated by finding the maximum deflection

angle induced by the undulator multiplied by the Lorentz factor, γ. Using the small angle

approximation and neglecting non-vertical fields as in [89], the equation of motion for an

electron in the oscillation plane is:

d2x

ds2
=

e

γmec
By(s), (4.34)

where e is the electron charge, me is the electron mass, c is the speed of light, and By(s)

is the vertical field along the undulator. The maximum deflection angle and therefore the

K-value is given by:

dx

ds

∣∣∣∣
max

=
1

2

∫ λu/2

0

e

γmec
By(s) ds ≡ K

γ
. (4.35)

For the idealized case of an undulator with a perfectly sinusoidal field, By(s) = −B0 sin(2πs/λu),

the K-value is
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K =
B0eλu
2πmec

≈ 93.36B0 [T ] λu[m]. (4.36)

Equation 4.35 will be used to calculate the relative strengths of different undulator config-

urations. However, K depends on the magnetic material selected and λu in absolute units

so, to avoid confusion, K will not be directly utilized in absolute scale, but instead the

configurations will be compared in relative terms.

Over gap values ranging from 0.02 λu to 0.5 λu an isosceles array gives integrated fields

approximately 19% higher than a M ′ = 2 array while optimized right triangle arrays (of

both rotation and reflection symmetries) give integrated fields approximately 13% higher

than an M ′ = 2 array. Using an unoptimized, 90◦ magnetization vector rotation yields a

10% enhancement over M ′ = 2. This hierarchy of strength is consistent the rms deviations

between the magnetization vector as compared with the ideal configuration detailed in Table

4.3.

4.7.3.2 Quality comparison

The quality of the on-axis undulator field is sometimes described by taking a Fourier de-

composition [159, 160, 161] and inspecting the harmonic components. In typical undulators,

the even harmonics are negligible and the coefficients of the harmonics are only for the sine

contribution. In the case of right-triangle arrays though, symmetries have been broken so,

although the integrated field per period will always be zero (i.e. no net deflection of a beam)

and while there are still no even harmonics, there may be non-negligible complex compo-

nents. The coefficients for the first, third, and fifth harmonics are shown for M ′ = 2, isosceles

triangle, rotation symmetric right triangle, and reflection symmetric right triangle arrays as

functions of the gap in Figure 4.14. It can be observed that, as noted, the first harmonic

dominates at larger gap sizes at the cost of total field.

Such harmonics are not necessarily destructive and may perhaps even be valuable; pre-

vious research has used undulator harmonics to adjust the radiated spectrum [160] and to
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employ the inverse free-electron laser (IFEL) mechanism [162] at lower energy. With these

issues in mind, zj was then varied to maximize higher harmonics rather than the fundamen-

tal. The results are similar to that of the fundamental, with the third and fifth harmonics

of the isosceles array approximately 20% higher than the M ′ = 2 array and right triangle

arrays approximately 14% higher than the M ′ = 2 array.

4.7.4 Conclusions

A new variant of the Halbach array undulator comprised of right triangle magnets has been

described and compared to existing options including isosceles triangle arrays and up-down

(M ′ = 2) arrays. Such devices can offer integrated magnetic field strengths 13% higher

than M ′ = 2 arrays with no increase in undulator period while remaining easier to fabricate

than isosceles triangle arrays, which offer a 19% enhancement over M ′ = 2. These arrays

lack some of the symmetries found in more conventional Halbach undulators, requiring the

optimization of longitudinal jaw translation and introducing previously forbidden harmonic

components. The use of these harmonics to tune the radiated spectrum or drive the IFEL

mechanism means, in some cases, that higher harmonic content is desirable; these right

triangle arrays similarly outperform standard M ′ = 2 arrays at the third order. These new

configurations may be fabricated by today’s MEMS manufacturing techniques to be used in

the construction of the next generation of compact light sources [150].
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